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Abstract
Fiber Reinforced Polymer (FRP) has increased rapidly in popularity in the past few decades.
The material’s advantageous properties, such as a high strength-to-weight ratio and low required
maintenance, gave rise to its popularity in multiple major engineering branches. Buckling behaviour
develops due to the notably low stiffness-to-strength ratio and the usual high slenderness of FRP
plates. The occurrence of initial imperfections increases the tendency of the material to buckle. This
study focuses on the non-linear buckling behaviour of a GFRP plate with progressive failure analysis.

The load-carrying capacity of structures with post-buckling behaviour can be determined with
progressive failure analysis, which requires a damage model that characterises the onset and
evolution of damage. In Abaqus, the Hashin damage model is implemented by default, which
considers the four failure modes of the material: fibres in tension, fibres in compression, the matrix
in tension and the matrix in compression. Numerical analysis of strain-softening materials with local
damage leads to deformation localisation in a single element: a finer mesh will decrease the amount
of energy dissipated. To prevent this localisation into arbitrarily small regions, the stress is related to
the deformation of a finite volume. The damage evolution is described with a stress-displacement
response instead of a stress-strain response. The energy needed to open a unit area of the crack, the
fracture energy, is defined as a material parameter and depends on the mesh size of the model.

The assessment of fracture energy properties in composite materials is challenging due to specimen
geometry and fibre lay-up, and accurate data of GFRP fracture energy is largely unknown. When no
actual post-failure behaviour is acquired, the lower bound fracture energy can be determined from
the material properties. A numerical analysis is performed to determine if the lower bound value
can be applied for non-linear buckling analysis of GFRP plates. For this analysis, two data sets
were used. Uni-directional and multi-directional coupon tests performed on a GFRP plate with a
[90/03/45/ − 45/02]𝑠 lay-up and experimental buckling tests of a GFRP plate consisting of different
variations of 0∘ and ±45∘ layers. The non-linear buckling analysis is performed on the material of the
first data set. The second data set is used as a verification method.

The difference between the stress-displacement and stress-strain response is numerically analysed
with a one-element model with constant fracture energy input and changing mesh size. Numerical
analysis of the uni-directional coupon experiments is performed to determine the input values and
response of the lower bound fracture energy. The lower bound fracture energy implementation results
in an abrupt drop in stress when the material strength is reached. Increasing the lower bound fracture
energy by a minimum of 2% prevented numerical inconsistencies. Progressive failure analysis of
the multi-directional coupons experiments validated an increase of 10% for the lower bound values.
The use of lower bound fracture energy for non-linear buckling analysis is verified with progressive
failure analysis of the buckling experiments. The lower bound fracture energy, increased by 10%,
approximates the ultimate strength of six tests with an average difference of 7.7%.

To analyse the non-linear buckling behaviour of a GFRP plate, a buckling curve is created by varying
the plate thickness. The influence of geometric imperfections on a plate’s buckling strength is studied
by applying different initial imperfections. Two types of boundary conditions are used to analyse if
they result in a different buckling curve. A difference in the buckling strength reduction factor of 0.1
is found. Initial imperfections reduce the buckling strength of the material, which is most apparent for
plate slenderness around 1.0. An initial imperfection of B/125 resulted in a 40% strength reduction
compared to the elastic buckling strength. The average difference in reduction factor between an initial
imperfection of B/1000 and B/125 was 16%, with a maximum difference of 26%. The conservative
option of B/125, as recommended by the design codes, resulted in up to 26% higher strength reduction
compared to an initial imperfection of B/1000, and can lead to over dimensioning of the plates.
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1
Introduction

1.1. Introduction
In the past few decades, fibre reinforced polymer (FRP) increased rapidly in popularity. It is a
composite material consisting of a polymer resin combined with reinforcing fibres. The material’s
advantageous properties, such as a high strength-to-weight ratio and low required maintenance,
gave rise to its popularity in multiple major engineering branches. One of the main benefits of the
material is the option to combine different types of fibres and resin, which gives the designer the
possibility to achieve optimal and case-specific objectives and properties. FRP composites have not
only been incorporated in new constructions but also for the renovation of existing structures. They
are an enhancement or substitute for infrastructure components or systems traditionally constructed
from steel or concrete. The enhanced structural performance of FRP composite materials improves
innovation, increases productivity, and extends the service life. Applications in the civil industry include
bridge decks, formwork, modular structures, and external reinforcement. Additional advantages of the
material are a high stiffness-to-strength ratio and low density of the material. As with all materials, there
are also disadvantages to using FRP composites: high material costs, a short history of applications,
and gaps in the development of established standards.

Due to the relatively recent interest in this type of material, there is a lack of research and, the design
codes are still a work in progress compared to more traditional materials as steel and concrete.
Design safety requires that design procedures identify and account for all possible failure modes and
mechanisms. One of the major concerns for building with FRP is its brittle failure behaviour. The ability
to undergo inelastic deformation before failure is an important safeguard against structural engineering
failures, and FRP does not exhibit this behaviour. A characterisation of the respective failure modes
and preventive measures are needed to develop all-inclusive design standards to continue the rise of
FRP as a construction material in structural engineering applications. Current FRP design standards
are primarily based on a small set of experimental data of pultruded profiles. Research has focused
on the automotive and aircraft industries, and materials more commonly used in the civil sector have
been less investigated. Glass fibre reinforced polymers (GFRP) are often used in the infrastructure
and building industry.

Buckling, specifically local buckling, is an important issue that needs to be considered when FRP
structures are analysed due to the notably low stiffness-to-strength ratio of thin laminates. Besides, the
manufacturing process allows for the occurrence of initial imperfections in the material. In combination
with the usual high slenderness of FRP, these imperfections make the material susceptible to buckling.
For plates made from steel or aluminium, buckling curves have been established that express the
strength of the material under in-plane compressive loading as a function of a slenderness parameter.
These buckling curves take into account geometric imperfections and are created from extensive
numerical, analytical, and experimental studies.

1
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For FRP structures, buckling design is performed in terms of the elastic critical load of an ideal
structure combined with a reducing factor based on limited test data. Design codes do not take the
influence of initial imperfections into account but mainly focus on the interaction between webs and
flanges. Steps have been made to create a Eurocode buckling verification similar to that for steel
structures, however, more research is needed to reach such a design format.

Damage to a material will degrade the material properties and eventually lead to failure. Continuum
damage mechanics with progressive failure analysis is used to predict this degrading process of a
material. For FRP materials, Abaqus/Standard has implemented, by default, the Hashin damage
criteria to characterise the damage onset and evolution. These criteria are based on the fracture energy
of the material. The assessment of fracture energy properties in composite materials is challenging due
to specimen geometry and fibre lay-up, and accurate data of GFRP fracture energy is largely unknown.
This report provides numerical research with progressive failure analysis into the non-linear buckling
behaviour of a GFRP laminate.

1.2. Scope
This report investigates the non-linear buckling behaviour of a GFRP laminate. Progressive failure
analysis is performed based on the Hashin damage criteria. Due to a lack of post-failure data, the
lower bound fracture energy is implemented in the model. The focus is on the degradation of the
material’s mechanical properties rather than micromechanical damage mechanisms.

Attention is given to glass fibre reinforced polymers due to their advantageous properties for application
in the civil industry combined with the lack of research data. The laminate used in this study consists
of multiple sub-laminates with the following lay-up: [90/03/45/ − 45/02]𝑠. This equals a distribution
of 62.5% fibres with 0∘ orientation and 12.5% fibres in the 90∘, -45∘ and +45∘ orientation each.

The initial imperfections and thickness of the plate are varied to quantify the strength reduction due to
geometric imperfections and to create a buckling curve for this specific GFRP laminate. Two types of
boundary conditions are applied to validate if the choice of boundary conditions influences the numerical
determined load-carrying capacity of the laminate. The numerical results are compared with the current
design standards.

1.3. Problem statement
The main problem statement of this research is:

How to predict the non-linear buckling behaviour of a GFRP plate
with progressive failure analysis?

The following questions are addressed to reach the primary goal:

1. Can lower bound fracture energy be used for progressive failure analysis for determining non-
linear buckling behaviour?

2. What is the influence of initial imperfections on the buckling strength of a GFRP plate?

3. Do the boundary conditions of the numerical model influence the buckling curve of a GFRP plate?
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1.4. Aim and objective
For the safe design of Glass Fibre Reinforced Polymer structures, design standards related to FRP
plates’ stability that account for the influence of initial imperfections on damage behaviour require
improvement. This thesis aims to provide a numerical approach to predict the non-linear buckling
behaviour of a GFRP laminate. With this aim, the following objectives are defined:

• Part 1: State-of-the-art
1 a) Research static failure mechanisms in FRP composites
1 b) Describe the criteria for the Hashin damage model

• Part 2: Numerical validation
2 a) One-element model

– Build a one-element model based on fracture energy values found in research and
confirm the relationship between the fracture energy and element size

2 b) Uni-directional coupon model
– Create a finite element analysis of uni-directional coupon tests to obtain the material
properties and lower bound fracture energy values

2 c) Multi-directional model
– Construct a finite element model of multi-directional coupon tests and validate
implementation of the lower bound fracture energy for progressive failure analysis

• Part 3: Parametric study
3 a) Component model part 1

– Recreate experimental buckling tests found in the literature to validate implementation
of the lower bound fracture energy for non-linear buckling analysis

3 b) Component model part 2
– Create a buckling curve for a GFRP plate by varying the plate thickness. Analyse the
strength reduction due to initial imperfections and verify if the reduction factor for the
buckling strength of the plate depends on the boundary conditions of the numerical
model.

1.5. Methodology
The research structure is divided into three parts: a literature study, a numerical validation and a
parametric study. In the first part, valuable information about fibre reinforced polymer materials and
their general damage behaviour is obtained to understand how to model damage of anisotropic
materials.

In the second part, multiple finite element models are created to validate the use of the lower bound
fracture energy. The first model consists of one element to understand the mesh dependency of the
fracture energy. The next step is to create a numerical model based on the results from previously
performed experimental coupon tests, described in the report ”Pin Bearing in Glass Fiber-Reinforced
Polyester” by Lieuwe Cornelissen (Cornelissen, 2020). Uni-directional coupon tests are used to obtain
the material properties and lower bound fracture energy of the material. Multi-directional coupon
tests are modelled to validate the lower bound fracture energy implementation for progressive failure
analysis.

The third part of this report, a parametric study, consists of two sections. Experimental buckling tests
reported in ”Buckling of Imperfect Composite Plates: Parametric Studies” by K. Misirlis et al. (Hayman
et al., 2011) are recreated to validate the use of the lower bound fracture energy for non-linear buckling
behaviour. In the second part, a buckling curve is created to study the non-linear buckling behaviour
of the GFRP plate. From this, the influence of initial imperfections on the reduction of the buckling
strength is analysed and if the boundary conditions of the numerical model influence the buckling
curve values.



2
Literature review

This chapter aims to give the reader general background information about fibre reinforced polymers. A
description of the material’s failure mechanisms is given and how the damage criteria for the numerical
prediction of failure can be defined. It explains why it is essential to design against buckling and the
current state regarding the design codes for buckling design.

2.1. Introduction
Fibre-reinforced polymer (FRP) is a composite material consisting of fibres and resin with the possible
addition of cores and additives. The composites are natural or human-made, consisting of two or
more constituent materials with significantly diverse physical or chemical properties, which remain
distinctive in the combined product. Most composites consist of strong and stiff fibres surrounded by a
weaker matrix that keeps the fibres in place. The fibres have a load-bearing function in the direction of
their orientation and provide stiffness to the material. The resin fixates the fibres in place, transfers the
forces, prevents buckling of the fibres, provides fibre protection, and increases the material’s damage
tolerance.

The material properties depend on the properties of the fibres and resin, the volume fraction, 𝑉𝑓, and
the orientation of the fibres. The different types of fibres and resin combined with the ability to vary
the fibres’ direction results in a material with a wide range of material properties; it gives the designer
freedom to design the most suitable material for each job. On the downside, it does create a more
difficult task in determining the true material properties and choosing the correct design regulations.
In this paper, reference is made to material tests performed with E-glass fibres and an unsaturated
polyester resin.

2.1.1. Fibres
Themost commonmaterials used for the fibres are carbon, aramid and glass fibres. Carbon fibres have
the highest strength, stiffness and best fatigue performance. Figure 2.1 shows the strength comparison
of carbon fibres compared to other materials. Due to the considerable interest in carbon fibres from the
aerospace and automotive industry, extensive research has been performed on those fibres. Aramid
fibres can undergo plastic deformation in compression and ductile fracture in tension, and they have
extraordinary wear resistance. The high quality of those two types of fibres comes with a higher price
compared to glass fibres. Glass fibres are most widely used due to their affordability, good chemical
resistance, high tensile strength and impact resistance. The fatigue performance and stiffness are
lower than those of carbon fibres. Compared to aramid fibres, glass fibres are more susceptible to
humidity and alkaline attack. However, their affordability makes them the most popular type of fibre.
The most used glass fibres are E-glass and S-glass. Glass fibres are abrasive and need sizing to
prevent damage to their neighbouring fibres. Sizing consists of applying a film former and a coupling
agent to the fibres. The coupling agent enhances the fibre-matrix bond; without it, the hydrophilic nature
of the glass fibres and hydrophobic properties of the matrix creates a relatively weak bond. The sizing
influences the composite materials mechanical properties (Al-Moussawi et al., 1993).

4
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Figure 2.1: Stress-strain behaviour of FRP materials compared to steel Prince-Lund Engineering (2011)

2.1.2. Resin
The polymer resin provides the matrix that surrounds the fibres. Besides the resin’s previously
mentioned functions, it provides toughness, damage tolerance, impact- and abrasion-resistance.
A resin converts into a rigid polymer by curing. Two types of polymers can be distinguished
in FRP materials: thermoplastic and thermoset. A thermoplastic polymer softens when heated,
while thermoset polymers create cross-links between the molecules and are converted into a rigid
structure. They only soften when the glass transition temperature is reached. This temperature
differs per resin and affects the stiffness, compressive strength, tensile strength and water resistance
(Ebnesajjad, 2016). Types of resins typically used in FRP materials include epoxy, vinyl ester,
polyester thermosetting plastic or phenol-formaldehyde. The most commonly used type of resin for
civil engineering is polyester. It consists of a polyester solution in a monomer, usually styrene. The
addition of styrene plays an essential role in forming cross-links between the polymer molecules, and
it reduces the viscosity of the resin, which makes it easier to handle.

Figure 2.2: Reference axis for an uni-directional ply (CUR Recommendation 96, 2017)

2.2. Material properties
Fibre-reinforced composites are formed by high strength fibres placed in a polymer matrix with distinct
interfaces in between. Both the fibres and the resin keep their physical and chemical identities, but
their combined properties create a material that cannot be achieved by one of the constituents alone.
An FRP laminate has multiple failure mechanisms which depend on the loading direction of the ply. In
uni-directional (UD) plies, the reference axis is defined as follows and demonstrated in figure 2.2:

• 1-direction is the axial direction of the fibres;
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• 2-direction is the in-plane transverse direction;

• 3-direction is the out-of-plane direction.

For a UD ply, the material’s maximum strength and stiffness are reached in the direction of the fibres.
When multiple thin layers of uni-directional plies are stacked together, a laminate is created, which
is the most common form of composites for structural applications (Uddin, 2013). An overview of the
material from the constituents to a structure is depicted in figure 2.3.

Figure 2.3: Overview of a material from constituents to structure (Sungkha777, 2016)

Varying the direction of the fibres in the stacked laminae gives the material its isotropic properties.
The fibres’ orientation determines the strength and resistance to deformation of the polymer. Glass
polymer fibres parallel to the applied force are the strongest and most resistant compared to fibres in
other directions, with fibres in perpendicular direction performing the weakest. The polymer’s strength
and elasticity are less than that of the matrix when the force is perpendicular to the fibre orientation.
The highest stiffness and strength of a laminate occurs if all the fibres are parallel to the loading
direction. Such a lay-up is good for resisting axial loading. However, this could also lead to issues
during transportation and installation or with load transfer near connections. Fibres in other directions
are added to the material to prevent these issues. Fibres can be oriented in two- or three-dimensional
constructs. Forces perpendicular to one of the directions will be parallel to fibres in another orientation;
weak spots can consequently be eliminated. Perpendicular fibres are a good use for natural hinges
and connections. However, an increase in specific properties in the matrix direction decreases the
properties in the fibre direction. The choice of an FRP laminate stacking sequence allows for optimising
their strength, stiffness, and weight to meet the desired design requirements.

2.2.1. Determination of material properties from coupon tests
Thorough knowledge of the materials’ failure modes and mechanisms is needed to design with FRP
materials safely. Comprehensive experimental andmodelling research needs to be performed to obtain
insight into the general and application-specific failure types of structural FRP systems. The laminates’
characteristic properties which influence the material’s behaviour include Young’s modulus, failure
strain, and ultimate strength. Different methods are available to obtain these properties. A commonly
used method is the flat coupon test, described in ASTM D3039 (2017), due to its ease of testing and
interpreting test results. For this test, a specimen of the material is taken and undergoes uni-axial
tension, uniaxial compression and shear tests to obtain the parameters related to the kinetic equations.
FRP composites behave almost as a linear elastic brittle material. The initiation of fracture occurs when
the rupture strain of the fibres is reached. If the strain distribution in a test sample is non-uniform, a
lower average rupture strain will be reached. Material testing aims to obtain true material properties,
which should be insensitive to the setup. The safety of an FRP structure is obtained by using safety
margins on many factors, such as the geometrical- and loading conditions and the material properties.
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2.3. Failure behaviour
FRP has three distinct damage mechanisms: damage to the matrix, damage to the fibres or damage
to the interface between the matrix and the fibres. These mechanisms relate to the FRP constituents
that provide the strength and stiffness: the fibres, the polymer matrix, and the interface in-between.
Figure 2.6 illustrates these three constituents. The interface allows for both the fibres and the matrix to
retain their physical and chemical identities, even though one of the constituents alone cannot obtain
the properties of the composite material (Gunes, 2013). The anisotropic properties of the material
generate four different failure modes. The material has the highest strength when the loading is in
line with the fibre direction. Figure 2.7 shows the failure modes of a uni-directional laminate loaded
in different directions. The normalised strength, corresponding with the tensile strength, decreases
for a deviation of the loading direction. Loading in the direction of the fibres leads to fibres failing in
tension or compression. Transverse tensile and transverse compressive failure occurs from loading
perpendicular to the fibre direction. From loading not parallel or perpendicular to the fibres, shear failure
can develop. Four failure modes for FRP composites are defined from the relation between the fibre
orientation and type of failure:

• fibre rupture in tension;

• fibre buckling and kinking in compression;

• matrix failure under transverse tension and shear:

• matrix failure under transverse compression and shear.

Failure patterns in composite structures are more complicated compared to isotropic materials.
Structural failure can originate from intra-laminar failure modes, including matrix failure, fibre breakage
and fibre matrix debonding, or from an inter-laminar failure mode, such as delamination (Ubaid
et al., 2014). The finite element method (FEM) with progressive failure analysis can model failure
accumulation and propagation. When a composite material is subjected to loading, the load will travel
through the matrix, and via the interface, to the fibres (Kuldeep Agarwal et al., 2018). The material
generally passes four stages before failure:

1. Fibers and matrix deform linear elastic;

2. Matrix behaves non-linear;

3. Fibers and matrix behave non-linear;

4. Failure is initiated.

Although FRP materials have some very favourable properties, their brittle failure behaviour is a
significant concern for structural engineers. Figure 2.1 shows that fibres loaded in the normal direction
have a linear elastic stress-strain behaviour followed by brittle failure. In structural engineering, the
ability to undergo inelastic deformation is an essential safeguard against failure. It warns before ultimate
failure occurs and reduces the dynamic load demand through increased energy dissipation and damage.
Fibre-reinforced polymers are very brittle, even more brittle than concrete. A compensating property
of FRP is their high ultimate strain, around 1.2% till 2.3%, compared to the 0.35% ultimate strain of
concrete.

Figure 2.4: Failure modes of a fractured GFRP composite (Beura et al., 2018)
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The first cracks tend to appear in the resin. This cracking of the matrix does not immediately endanger
structural integrity. After cracks are formed in the resin, delamination can occur. This failure mode is
characterised by a separation of the layers in the laminate. After it is initiated, the delamination will
continue to grow gradually. The onset of delamination is challenging to predict; the only known is
that it will not occur before cracks originate in the resin. When the laminate is subjected to tension,
the first fractures occur isolated in weak zones (Maimí et al., 2007). Stress concentrations occur in
the material surrounding these fractures, which leads to fibre-matrix debonding and matrix cracking.
Eventually, fibre will be pulled out and the material collapses.

In the case of compressive loading, kinking of the fibres will lead to fibre failure. Due to the anisotropic
characteristics and the fibres being the load-carrying component, the material is damage tolerant. It will
continue to perform even when properties in one or more plies are degraded. Material behaviour after
damage initiation can be predicted with progressive failure analysis. The basic concept of this analysis
is that plies that undergo damage or failure will have a progressive reduction on the material stiffness
matrix. To detect failure, damage initiation and damage propagation criteria are developed. When a
ply reaches a failure criterion, certain material properties are reduced, and the ability of further load
resistance is lowered. This process is continued until the global stiffness matrix becomes numerically
unstable, which denotes total failure. A progressive failure model is based on the type of failure criteria
chosen and the implemented material degradation.

2.3.1. Mechanical behaviour in fibre direction
In the fibre direction, the stresses are mainly transmitted through the fibres due to the fibres’ high
stiffness and strength compared to the matrix material. Transmitted tensile stresses are barely affected
by damage to the matrix because the fibres straighten under tension loading. However, straightening of
the fibres can contribute to damage to the matrix. When the material is compressed, the fibres’ effective
stress and strength are highly affected by the surrounding matrix. The matrix behaves similar to an
elastic foundation for the fibres in compression (Matzenmiller et al., 1995). Tension in fibre direction
can lead to rupture, while compression of the fibres can lead to buckling or kinking of said fibres. All
three occurrences cause damage to the matrix. The stiffness components of the constitutive tensor for
the damaged uni-directional laminae are degraded to account for this behaviour.

2.3.2. Mechanical behaviour in transverse direction
Normal stresses transverse to the fibres and shear stresses are both endured by the matrix and the
fibres. Damage from these stresses occursmainly in thematrix or the fibre-matrix interface, which leads
to debonding. Compared to the other constituents, the bond strength at the interface between the fibres
and the matrix generally has the lowest strength. Cracks advance from the matrix into the interface
and propagate alongside the fibres without entering the fibre material. Tensile loading in the transverse
direction leads to the progressive opening of existing cracks, while compression in transverse loading
usually leads to crushing of the matrix material.

2.4. Damage model
Damage to a material will lead to a degradation of its stiffness and strength. This degradation
reduces the load-carrying capacity and the service life of the structure. Modelling a material’s damage
behaviour is essential to make engineering predictions about damage initiation, crack propagation,
and fracture. A damage model can be used as a prediction tool suitable for design and provide better
insight into damage behaviour. Continuum damage mechanics assumes that damage accumulates
within a material, reducing the effective cross-sectional area and eventually leading to rupture. It is
based on the concept that cracks or defects imply a reduced capacity to withstand stresses. The rate
and direction of damage propagation define the damage tolerance of a structure and the eventual
collapse. For the non-linear response of quasi-brittle materials with damage accumulation, non-linear
constitutive models have been developed and implemented in finite element methods. Progressive
failure analysis can be used in combination with failure criteria to predict the load-carrying capacity
and failure propagation.
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Damage is an important aspect for many composite materials with brittle properties; it has a
destabilising influence and can cause a structure to lose its stability (Akbarov, 2013). Damage
mechanisms are the underlying processes and changes that initiate a particular failure mode from
which fracture can follow. In composite materials, damage develops continuously at a micro-scale and
grows from the before mentioned mechanisms: fibre breakage, fibre debonding, matrix micro-cracking
and delamination. In figure 2.5 these four types of damage are illustrated. The elastic-brittle behaviour
of FRP material is characterised by the formation and evolution of micro-cracks and cavities, which are
surface- and volume discontinuities, respectively. These discontinuities result in a degradation of the
stiffness and strength of the material (Rahimian Koloor et al., 2020). The different types of fibres and
resins combined with the wide range of fibre volume ratios in composites make the study of initiation and
propagation of cracks case-specific. A physical discontinuity in a material can occur from an existing
flaw or its variation of properties. Damage to composites can occur during initial processing or when the
material is in service. Since the complete prevention of damage is not possible, composite structures
should be designed to function safely even when flaws are present in the material.

Figure 2.5: Examples of types of damage in FRP (Unnthorsson and Runarsson, 2020)

Fracture mechanics analyses the initiation and propagation of cracks through a solid body. The
ultimate stage of the damage process generally responds to a material discontinuity that is relatively
large compared to the material’s microscopic heterogeneity. The main crack is then assumed to be
developed through several layers and shows a sufficient macroscopic homogeneity in the crack’s size
and direction. The challenging part of understanding fracture behaviour in high-strength material is
that cracks modify the local stress to an extreme, and elastic stress analysis is no longer sufficient.
Kachanov (KACHANOV, 1958) proposed a macroscopic damage variable in combination with the
effective stress concept. Thematerial’s microscopic deterioration, which includes voids or micro-cracks,
is taken into account by the damage parameter 𝐷. It is generally accepted to use 𝐷 = 0 for initially
unstressed material and 𝐷 = 1 at material failure.

2.4.1. Development of failure criteria
The determination of material failure from an analytical detection of micro-stress, micro-failure, and
coalescence is too complicated. A way to approach failure prediction is to assume a three-dimensional
failure criterion with terms consisting of macro variables (Hashin, 1980). Examples of these macro
variables are the average stresses or strains, which can be determined frommaterial tests. The problem
remains with the initial yield criterion for an elastoplastic material. Tsai(Tsai et al., 1965) assumed that
the failure criterion of a UD fibre is composed of the same mathematical form as the yield criterion of
an orthotropic ideally plastic material, given by Hill (Hill, 1948).

𝐹 (𝜎22 − 𝜎33)
2 + 𝐺 (𝜎33 − 𝜎11)

2 + 𝐻 (𝜎11 − 𝜎22)
2 + 2𝐿𝜎223 + 2𝑀𝜎231 + 2𝑁𝜎212 = 1 (2.1)

𝜎𝑖𝑗: true stress tensor components
𝐹, 𝐺, 𝐻, 𝐿, 𝑀, 𝑁: constants that have to be determined from experiments

The one-dimensional uni-axial stresses and shear stresses in this equation can be easily determined.
However, it includes the assumption that isotropic stress has no effect, which is not valid for the
isotropic tension of a fibre’s composite. To account for the unequal failure in tension and compression in
composites, Hoffman (Hoffman, 1967) added linear stress terms. Furthermore, Tsai and Wu presented
the failure criteria as a general quadratic stress equation and, by doing so, eliminating the dependence
on the normal stress.
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Figure 2.6: A fibre, the interface between the fibres
and the matrix, and the matrix Kalveram (2015)

Figure 2.7: Relation between fibre orientation and
different failure modes Gunes (2013)

𝐹𝑖𝑗𝜎𝑖𝜎𝑗 + 𝐹𝑖𝜎𝑖 = 1 (2.2)

𝐹𝑖𝑗 and 𝐹𝑖 are parameters provided by analogous expressions that are related to the lamina strength
in the principal directions, where i, j = 1, ..., 6 for a 3-D case. For an orthotropic material with unequal
strength in tension and compression, the strength variables are defined as follows:

𝐹11 =
1

𝑁+1 𝑁−1
, 𝐹1 =

1
𝑁+1

− 1
𝑁−1
, 𝐹66 =

1
𝑆26

(2.3)

Tensile and compressive strength in the 1-direction is given by 𝑁+1 and 𝑁−1 , respectively. The shear
strength in the 12-plane is stated as 𝑆6. Considering that material failure is indifferent to a change of
sign of the shear stress, all terms containing shear stress to the first power must disappear. For a
uni-directional ply, this results in the following failure criteria:

𝐹11𝜎211 + 𝐹22𝜎222 + 2𝐹12𝜎11𝜎22 + 𝐹66𝜎212 + 𝐹1𝜎11 + 𝐹2𝜎22 = 1 (2.4)

The fibre direction is 𝑥1 and the transverse direction is 𝑥2. For the determination of 𝐹12, a variety
of bi-axial failure tests is needed: tension-tension, compression-compression or tension-compression.
Equation 2.3 provides all other coefficients. The main downside to this failure criteria is that a fibre
composite consists of very distinct phases: stiff elastic brittle fibres and a yielding matrix. Consequently,
the failure of the material can occur due to multiple different mechanisms.

2.4.2. Damage initiation
Fibre reinforced polymers behave linear elastically with a plane stress orthotropic material stiffness
matrix until damage is initiated. Damage initiation indicates the start of material degradation and occurs
when the equivalent strain is larger than the damage threshold. Cracks in the material affect the stress
and material stiffness of the surrounding integration points. Since the amount of energy stored in the
fracture process zone can be relatively high, stable crack growth can occur before failure of the material.
For fibre reinforced materials, Abaqus has implemented the damage initiation and evolution criteria
based on the theory of Hashin and Rotem (1973) and Hashin (1980). An advantage of this theory
is that Hashin differentiates between the different failure modes, while many other damage criteria
only describe if a material is damaged or not. The theory considers four different damage initiation
mechanisms, one for each of the failure modes, based on an excitation of the strength parameters.
The general form of these initiation criteria is as follows:

• Fibre tension (�̂�11 ≥ 0):

𝐹𝑡𝑓 = (
�̂�11
Χ𝑇 )

2 + 𝛼( �̂�12𝑆𝐿 )
2 (2.5)
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• Fibre compression (�̂�11 < 0):

𝐹𝑐𝑓 = (
�̂�11
Χ𝐶 )

2 (2.6)

• Matrix tension (�̂�22 ≥ 0):

𝐹𝑡𝑚 = (
�̂�22
𝑌𝑇 )

2 + (𝜏12𝑆𝐿 )
2 (2.7)

• Matrix compression (�̂�22 < 0):

𝐹𝑐𝑚 = (
𝜎22
2𝑆𝑇 )

2 + [( 𝑌
𝐶

2𝑆𝑇 )
2 − 1](𝜎22𝑌𝐶 ) + (

𝜏12
𝑆𝐿 ) (2.8)

The definition of the parameters in the above equations is stated as:

𝑋𝑇: tensile strength in the fibre direction;
𝑋𝐶: compressive strength in the fibre direction;
𝑌𝑇: tensile strength in the direction perpendicular to the fibres;
𝑌𝐶: compressive strength in the direction perpendicular to the fibres;
𝑆𝐿: longitudinal shear strength;
𝑆𝐿: transverse shear strength;
𝛼: coefficient that accounts for the contribution of the shear stress for the fibre tensile criteria
�̂�11, �̂�22, �̂�12: components of the effective stress tensor, �̂�.

The effective stress tensor (�̂�) is computed from the nominal stress (𝜎) and the damage operator (𝑀):
�̂� = 𝑀𝜎 (2.9)

The damage operator consists of the internal damage variables 𝑑𝑓, 𝑑𝑚 and 𝑑𝑠, that describe the
current state of the fibre-, matrix- and shear damage, respectively. They are derived from the damage
variables 𝑑𝑡𝑓, 𝑑𝑐𝑓 , 𝑑𝑡𝑚, and 𝑑𝑐𝑚.

𝑀 =
⎡
⎢
⎢
⎢
⎣

1
1−𝑑𝑓

0 0
0 1

1−𝑑𝑚
0

0 0 1
1−𝑑𝑠

⎤
⎥
⎥
⎥
⎦

(2.10)

𝑑𝑓 = {
𝑑𝑡𝑓 if �̂�11 ≥ 0
𝑑𝑐𝑓 if �̂�11 < 0

(2.11)

𝑑𝑚 = {
𝑑𝑡𝑚 if �̂�22 ≥ 0
𝑑𝑐𝑚 if �̂�22 < 0

(2.12)

𝑑𝑠 = 1 − (1 − 𝑑𝑡𝑓)(1 − 𝑑𝑐𝑓)(1 − 𝑑𝑡𝑚)(1 − 𝑑𝑐𝑚) (2.13)

Before any initiation of damage, the effective stress tensor equals the nominal stress, thus �̂� = 𝜎. After
the damage is initiated for one or more failure modes, the damage operator will influence the other
damage initiation modes’ criteria. It has to be noted that the Hashin criteria are claimed to be incapable
of predicting the hardening effect under shear stress (Gu and Chen, 2017).
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2.4.3. Damage evolution
After one or more damage initiation criteria are met, the damage evolution will define the material’s
further degradation. Each damage initiation criteria has a form of damage evolution, and multiple forms
of damage evolution may act on the material simultaneously. The stress-strain relationship for a stable
material is linear and follows from the true strain rate ̇𝜖 and the damaged elasticity matrix ℂ:

�̇�𝑖𝑗 = ℂ𝑖𝑗𝑘𝑙 ̇𝜖𝑘𝑙 (2.14)

ℂ = 1
𝐷 [

(1 − 𝑑𝑓)𝐸1 (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝑣21𝐸1 0
(1 − 𝑑𝑓)(1 − 𝑑𝑚)𝑣12𝐸2 (1 − 𝑑𝑚)𝐸2 0

0 0 (1 − 𝑑𝑠)𝐺
] (2.15)

𝐸1 and 𝐸2: Young’s modulus in fibre- and matrix direction, respectively;

𝐺: shear modulus;

𝜈12, 𝜈21: Poisson’s ratio

The material is stable and remains in equilibrium when the true stress (�̇�𝑖𝑗) and strain rate ( ̇𝜖𝑖𝑗) have
a positive stiffness tensor:

�̇�𝑖𝑗 ̇𝜖𝑖𝑗 > 0 (2.16)

When this condition no longer holds, the material becomes unstable and reaches its bifurcation point.
At this point, strain-softening occurs; decreasing stress for an increase in strain. Strain-softening
is typically observed at a continuum level in damaged quasi-brittle materials, such as concrete and
FRP. It is primarily a consequence of brittleness and heterogeneity of the material (Vignjevic et al.,
2018). Finite element analysis of strain-softening materials combined with local constitutive models
where damage is present leads to deformation localisation. Localisation is defined as instability in the
macroscopic constitutive description of inelastic deformation of the material Rudnicki and Rice (1975).
The imbalance of the material’s stress-strain behaviour leads to large deformations, which localises
within an infinitely small instability zone and becomes non-uniform. The result is numerical instability in
local continuum damage models. The tangent stiffness tensor, which is the slope of the stress-strain
curve, loses positive definiteness, which was the criteria for material stability presented in equation
2.16. The result is an infinite number of solutions.

Non-physical results occur with unrealistic energy dissipation due to damage with a zero volume zone
(Vignjevic et al., 2014). Issues with boundary conditions arise from the material unloading outside of the
localisation zone and the softening area acting as a free boundary. Deformation localises in a narrow
zone, which is the fracture process zone. The material properties define the width and direction of such
a band. As a result of this localisation, numerical predictions based on continuum damage mechanisms
are strongly dependent on the mesh size of the finite element model and are thereby sensitive to mesh
density. The amount of energy released by the cracking of the material depends on the mesh size, and
for an infinitesimally refined mesh, it tends to zero. To prevent the localisation of smeared cracking
into arbitrarily small regions, Bazant and Oh (1983) proposed a crack band model in which fracture
is modelled as a band of parallel densely distributed micro-cracks. An adaptation of the crack band
model is the smeared crack concept. This non-local damage theory relates the stress at any point to
the deformation for a finite volume around that point. This is done by adjusting the energy dissipated
by each failure mechanism and defining the fracture energy as a material parameter.

𝐺𝑐 = ∫
�̄�𝑓

�̄�0
𝐿𝑐𝜎𝑦𝑑 ̄𝜖 = ∫

�̄�𝑓

0
𝜎𝑦𝑑�̄� (2.17)

The fracture energy is now dependent on a characteristic length (𝐿𝑐), which estimates to the length of
the fracture process zone based on material properties. The definition of the characteristic length is
applied, because the direction of the cracks is unknown. As a result, larger elements can have different
behaviour, depending on the crack direction. For finite element analysis, the fracture energy is now
considered as a model property and not as a material property. The definition of this characteristic
length is dependent on the element geometry and element formulation. For a first order element, the
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characteristic length is the line across an element and for a second order element it is half of the same
length. For a shell, it is a characteristic length in its reference surface. With the introduction of the
characteristic length, instead of a stress-strain response, a stress-displacement response is created
after damage initiation. This equivalent displacement does not depend on the crack direction. The
equivalent displacement (𝛿𝑖𝑗𝑒𝑞) and equivalent stress (𝜎𝑖𝑗𝑒𝑞) for the four damage modes are given as
follows (Lapczyk and Hurtado, 2007):

• Fibre in tension (�̂�11 ≥ 0):

𝛿𝑓𝑡𝑒𝑞 = 𝐿𝑐√⟨𝜖11⟩
2 + 𝛼𝜖212 (2.18)

𝜎𝑓𝑡𝑒𝑞 =
⟨𝜎11⟩ ⟨𝜖11⟩ + 𝛼𝜏12𝜖12

𝛿𝑓𝑡𝑒𝑞/𝐿𝑐
(2.19)

• Fibre in compression (�̂�11 < 0):

𝛿𝑓𝑐𝑒𝑞 = 𝐿𝑐 ⟨−𝜖11⟩ (2.20)

𝜎𝑓𝑐𝑒𝑞 =
⟨𝜎11⟩ ⟨𝜖11⟩ + ⟨−𝜎11⟩

𝛿𝑓𝑐𝑒𝑞/𝐿𝑐
(2.21)

• Matrix in tension (�̂�22 ≥ 0):

𝛿𝑚𝑡𝑒𝑞 = 𝐿𝑐√⟨𝜖22⟩
2 + 𝜖212 (2.22)

𝜎𝑚𝑡𝑒𝑞 =
⟨𝜎22⟩ ⟨𝜖22⟩ + 𝛼𝜏12𝜖12

𝛿𝑚𝑡𝑒𝑞 /𝐿𝑐
(2.23)

• Matrix in compression (�̂�22 < 0):

𝛿𝑚𝑐𝑒𝑞 = 𝐿𝑐√⟨−𝜖22⟩
2 + 𝜖212 (2.24)

𝜎𝑚𝑐𝑒𝑞 =
⟨−𝜎22⟩ ⟨−𝜖22⟩ + 𝜏12𝜖12

𝛿𝑚𝑐𝑒𝑞 /𝐿𝑐
(2.25)

The ⟨⟩-signs represent the Macaulay bracket operator defined for every 𝛼 ∈ ℜ as ⟨𝛼⟩ = (𝛼+|𝛼|)/2. The
damage variable depends on the initial equivalent displacement (𝛿0𝑒𝑞) for which the initiation criteria
for that mode is met. The equivalent displacement (𝛿𝑓𝑒𝑞) is for the completely damaged stage of
a the respective failure mode. The relation between the damage variable (𝑑) and the equivalent
displacement is presented in figure 2.9.

𝑑 =
𝛿𝑓𝑒𝑞(𝛿𝑒𝑞 − 𝛿0𝑒𝑞)
𝛿𝑒𝑞(𝛿𝑓𝑒𝑞 − 𝛿0𝑒𝑞)

(2.26)
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Figure 2.8: Equivalent stress versus equivalent
displacement for each of the failure modes

Figure 2.9: The damage variable as a function of the
equivalent displacement

The toughness of amaterial is a measure of the amount of energy amaterial can absorb before it breaks.
Due to the different fracture modes of the composite material, the characterisation of the fracture
toughness of the material is still in development. Different tests are available for the determination
of the interlaminar and intralaminar fracture toughness. Most research on the intralaminar fracture
energy is conducted with Compact Tension (CT), Compact Compression (CC) or Three-Point Bend
tests. For all three tests, an initial notch is made in a square or rectangular specimen. At the root of the
notch, a starter crack has to be introduced, after which the specimen is loaded. The fracture toughness
is determined from the relationship between the load initiating crack growth and the dimensions of
the crack. Due to the wide range of FRP materials, different resin and fibres combination and lay-up
options, the fracture toughness needs to be determined for each laminate specifically. Table 2.1 shows
an overview of a view fracture energy values found in literature.

𝐺𝐹𝑡
(N/mm)

𝐺𝐹𝑐
(N/mm)

𝐺𝑀𝑡
(N/mm)

𝐺𝑀𝑐
(N/mm)

E1
MPa

E2
MPa

𝜎𝐹𝑡
MPa

𝜎𝐹𝑐
MPa

𝜎𝑀𝑡
MPa

𝜎𝐹𝑐
MPa

Almeida-Fernandes et al. (2019) 20.2 29600 11900 322 70.7
Barbero et al. (2013) 11.5 44700 12700 1020 620 40 140
Nunes et al. (2016) 2.38 5.28 0.424 0.948 36633 10754 365 468 86 110
Nunes et al. (2017) 9.48
Xin et al. (2017) 12.5 12.5 5 5 39630 11670 1159 908 49 97

Table 2.1: Overview of fracture energy values found in literature for pultruded GFRP laminates

An option to approximate the fracture toughness of a material is from the area under the corresponding
stress-strain curve. The height and width of this curve equal the strength and strain of the material.
The strength of a material is equal to the force needed to break it, and the strain is the distance the
material is stretched. Energy is force times distance, which is proportional to strength times strain.
The fracture energy of a fibre reinforced polymer material in the normal direction is thus defined by the
area under the normal traction-displacement curve (Tan et al., 2016).

Suppose the boundary conditions of a model are such that displacement is allowed only in the normal
direction. In that case, the unloading follows a linear path after the initial equivalent displacement
is reached, as shown in figure 2.8. The grey triangle-shaped area is equal to the specified fracture
energy (𝐺𝑐) dissipated due to failure; the values of 𝛿𝑓𝑒𝑞 for the different modes depending on the
corresponding 𝐺𝑐 values. An accurate implementation of the fracture energy is necessary, because
the fracture energy of each failure mode influences the damaged area, state of damage of the finite
element, the ultimate load prediction and the post-failure behaviour (Barbero et al., 2013).
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2.5. Buckling behaviour
Buckling is the phenomenon of thin-walled structures, such as plates and shells, that under certain
levels of in-plane compressive loading or shear loading exhibit large out-of-plane deflection. Thin
elastic plates can easily bend and are prone to rotations, even when subjected to relatively small
loads. When a plate buckles, a sudden deviation occurs from a flat state into an out-of-plane state.
It is an effect that occurs in structures with high stiffness in one direction and low stiffness in the other.
Due to its anisotropic behaviour, fibre reinforced polymer composites are prone to buckling and deform
relatively easy. Plates may, however, have a significant post-buckling capacity. The buckling and
post-buckling behaviour lead to important design criteria for FRP structures. The possibility to modify
the layer orientation and stacking sequence of an FRP laminate provides the option to find optimal
structural configurations. Plate buckling behaviour can be determined analytically, from tests or with
the use of FEM models.

2.5.1. Buckling design
The design of plates is usually dominated by stability (Bažant and Cedolin, 2010). To realise an exact
analysis of a thin-walled member, the member needs to be treated as a continuous folded plate. Due
to the high mathematical complexity of such a problem, most analyses consider an element as an
assembly of individual plates with certain boundary- and loading conditions, such that the individual
plates define the behaviour of the complete element. Figure 2.10 demonstrates this relation. Profiles
are such an assembly in which flanges and webs are considered as separate plates with boundary
conditions that take into account the interaction between each other. It is important to notice that
idealised boundary conditions can not be realised in practice. The analysis of the non-linear static
stability behaviour of composite plates and shells is based on governing differential equations.

Figure 2.10: An element can be treated as a continuous folded plate which can be modelled as an assembly of individual
plates (Landolfo, 2008)

When a plate buckles, it experiences a sudden deviation from a flat state under in-plane loading to a new
state where the plate bends in the direction normal to the plane of the plate. Figure 2.11 demonstrates
how a simply supported rectangular plate (a) deflects when the compressive load exceeds the critical
buckling load (b). The critical buckling load, 𝑁𝑐𝑟, is the load at which the plate buckles and can be
determined with a linear eigenvalue analysis. This value depends on the geometry of the plate, the
material properties, the type of boundary- and loading conditions.

Figure 2.11: For loading below the critical buckling load, a perfect plate remains flat (a), but when the load reaches the critical
buckling load, the plate buckles (b) and experiences out-of- plane deformation (c) (Helbig et al., 2016)
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Plates exhibit post-buckling behaviour; the plate continues to carry the load after buckling. Figure 2.12
illustrates the post-buckling behaviour of a perfect plate and an imperfect plate. An imperfect plate
has initial out-of-plane deformations, while a perfect plate is entirely straight. In the case of a perfect
plate, for an increasing load below the buckling load, the plate shows no out-of-plane deflection and
only shortens in the in-plane direction. When the critical buckling load is reached, the plate buckles
and takes on a new shape and equilibrium state. The point at which a perfectly flat plate buckles under
in-plane loading is known as the bifurcation point. Load eccentricities and geometric imperfections are
initial imperfections that will result in an ’imperfect plate’. The plate will deviate from its flat state before
the critical buckling load is reached. After the critical buckling load is reached, an increased out-of-
plane displacement will occur, and the plate will approach the response of a ’perfect plate’. Bifurcation
buckling analysis, asymptotic analysis and full non-linear analysis are methods available to analyse the
geometrical non-linearity.

2.5.2. Initial imperfections
The buckling behaviour of a plate is influenced by geometrical imperfections, which signifies the
importance of the manufacturing process on the material- and structural properties (Greenhalgh, 2009).
Structural composite elements can have internal and external imperfections. Internal imperfections
are material imperfections and occur within the material. Examples of this type of imperfections are
voids, local waviness of the fabrics and initial delamination. External imperfections are geometrical
imperfections. These arise from the deviations of the element’s intended geometry—variations in
thickness, flatness or straightness of the element and eccentricities within the loads or supports.
The magnitude of the initial displacement and the load on the plate influences the magnitude of the
out-of-plane deformation.

Figure 2.12: Buckling of a square plate with initial imperfections (Kaskovits, 2018)

Fibre misalignment, porosity and delamination are material defects that influence the strength and
stiffness of the material and, therefore, the structural buckling and post-buckling behaviour. After
the material has cured, residual stresses and residual deformations can occur, affecting the static
response characteristics. The uncertainties of the material defects and geometrical imperfections
make them important parameters for research. Post-buckling behaviour is a decisive aspect, both for
the design of plate-type and shell-type composite structures (Degenhardt et al., 2014). Shell design
and analyses aim to take the imperfection sensitivity into account for each specific situation and at the
same time not be over-conservative.

Design codes, as mention in the subsection 2.5.3 and 2.5.4, describe that appropriate allowances
should be considered in the structural analysis to cover the effects of imperfections. These
imperfections include residual stresses due to curing, and geometrical imperfections, such as
out-of-plane straightness, misalignment, unevenness, inaccuracies of fit in the area of joints and
connections, and eccentricities. Effects of bow and other local geometrical imperfections, including
pre-existing effects, need to be considered for analysis if they result in significant geometrical
non-linear effects. The effects are significant if the internal forces and moments from the least
favourable imperfection are more than 10% of the design loads on the member without imperfections.
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A buckling reduction factor for members in compression in the direction of the fibres takes the effect
of initial imperfections into account for the elastic buckling stage. For flat laminates, this factor is
larger than 1.0 and can be conservatively taken as 1.0. The post-buckling capacity of an element
is defined by the buckling and material strength. The design codes do not consider the influence of
initial imperfections on the post-buckling capacity.

2.5.3. JRC - Prospect for new guidance in the design of FRP
A design procedure for local instability under longitudinal compression for pultruded double symmetric
elements is provided in Annex C of the Joint Research Centre (2016). Calculation procedures are
given for box, I-, C-, Z-, and L-sections. A structure is analysed as a set of plates. The design
value for the compressive force is the design value of the local critical stress over the cross-sectional
area, which is the minimum design value for the local critical stresses in the flanges or web under
compression loading. The critical stresses are calculated depending on their boundary conditions,
which describe the connection between the web and the flanges. The element with the lowest critical
stress will buckle first. Due to the interaction between the elements, the other elements will restrain
the part with the lowest critical buckling stress. The critical stress is evaluated with the restraining part
and an additional stiffness as a rotational constraint.

This procedure is combined in a set of formulas for rectangular plates with different boundary conditions
under compression loading or bending. A detailed insight into the background of the procedures in JRC
can be found in the research paper ”Local buckling of Fiber Reinforced Plastic Composite Structural
Members with Open and Closed Cross Sections” by L.P. Kollar (Kollár, 2003). For a simply supported
plate, critical stress calculation in case of compression, 𝜎𝑐𝑟,𝑐, is presented in equation 2.27 and for a
clamped plate in equation 2.28. These questions depend on 𝐷𝑖𝑗, which are the element on row’ i’ and
column ’j’ of the bending stiffness matrix, the thickness of the plate, 𝑡, and the width of the plate, 𝑏.

𝜎𝑐𝑟,𝑐 =
𝜋2
𝑡𝑏2 [2√𝐷11𝐷22 + 2 (𝐷12 + 2𝐷66)] (2.27)

𝜎𝑐𝑟,𝑐 =
𝜋2
𝑡𝑏2 [4.53√𝐷11𝐷22 + 2.44 (𝐷12 + 2𝐷66)] (2.28)

The influence of initial imperfections on buckling behaviour is implicitly taken into account by the
interaction between local and global buckling modes under axial compression. Due to the linear
behaviour of FRP for large strains, the local and global critical buckling stress can be in close range.
When both buckling modes interact, a combined buckling mode can occur with a failure load below the
predicted load for the separate buckling modes. In buckling design, this behaviour is taken into account
by a reduction factor 𝜒. The design force taking buckling into account, 𝑁𝑅𝑑2,𝑐, is:

𝑁𝑅𝑑2,𝑐 = 𝜒 ⋅ 𝑁𝑙𝑜𝑐,𝑅𝑑 (2.29)

• 𝜒
• 𝑁𝑙𝑜𝑐,𝑅𝑑

reduction factor for the interaction between local and global buckling
design value for the compressive force causing instability of the element

𝜒 = 1
𝑐 ⋅ 𝜆2 (Φ +

√Φ2 − 𝑐 ⋅ 𝜆
2
) (2.30)

• 𝑐
• 𝜆
• Φ

numerical coefficient of 0.65 in the absence of more accurate tests
relative slenderness
factor for the determination of reduction factor 𝜒

𝜆 = √𝑁𝑙𝑜𝑐,𝑅𝑑𝑁𝐸𝑢𝑙
(2.31)

• 𝑁𝐸𝑢𝑙 Eulerian critical load
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𝑁𝐸𝑢𝑙 =
𝜂𝑐
𝛾𝑀

⋅ 𝜋
2 ⋅ 𝐸𝐿𝐶 ⋅ 𝐼min

𝐿20
(2.32)

• 𝜂𝑐
• 𝛾𝑀
• 𝐼𝑚𝑖𝑛
• 𝐿0

correction factor for the shape of the beam cross-section
partial material safety factor for buckling resistance
minimum value of the moment of inertia
buckling length of the member

2.5.4. CUR96 - Dutch design guidance for infrastructure
Annex E of CUR Recommendation 96 (2017) provides a set of analytical formulas to determine the
characteristic buckling strength for which wrinkling is taken into account, but imperfections are not. The
flange’s critical stress depends on factors that take the type of cross-section and loading conditions into
account. These factors consist of the coefficient of restraint 𝜉, which is defined by the ratio between
the width of the web and the width of the flange. Different material properties between the flanges
and the web of a profile are not considered in these equations. When the material properties differ,
the expression for the restraint coefficient should be calculated in line with the background document
”Step-by-Step Engineering Design Equations for Fiber-reinforced Plastic beams for Transportation
Structures” (Davalos et al., 2002). The critical buckling stress of the web is assumed as a plate with
simply supported connections to the flanges. CUR96 provides formulas to calculate the critical local
buckling stress of a profile. The resulting stress is the Euler buckling stress, which needs to be reduced
to take imperfections into account. The resulting stress may also be determined from numerical models.

Critical buckling stress for the flange

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑓 =
𝜋2
12 ⋅ (

𝑡𝑓
𝑏 )

2
⋅ [√𝑞 ⋅ (2 ⋅ √𝐸𝑥 ⋅ 𝐸𝑦) + 𝑝 ⋅ (𝑦 ⋅ 𝑣𝑥𝑦 + 2 ⋅ 𝐺𝑥𝑦)] (2.33)

The constants 𝑝 and 𝑞 are defined by the coefficient of restraint 𝜉. This coefficient for restraint is as
follows for I- and H-shaped cross-sections:

𝑝 = 0.3 + 0.004
𝜉 − 0.5 ; 𝑞 =

0.025 + 0.065
𝜉+0.4

𝜃2corr
; 𝜉 = 2 ⋅ 𝑏𝑤

𝑏𝑓
; 𝑏 =

𝑏𝑓
2 ; 𝜃corr = 1.1 (2.34)

Critical buckling stress for the web

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑤 =
𝜋2
𝑡𝑤𝑏2𝑤

[2√𝐷11𝐷22 + 2 (𝐷12 + 2𝐷66)] (2.35)

• 𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑤
• 𝑡𝑤
• 𝑏𝑤

characteristic compressive strength of the web taking wrinkling and plate
imperfections into account
thickness of the web
width of the web

The characteristic value of the critical buckling force, 𝑁𝑏,𝑅𝑑, is calculated as follows:

𝑁𝑏,𝑅𝑑 = 𝜒 ⋅
𝜂𝑐 ⋅ 𝐴 ⋅ 𝜌 ⋅ 𝑓𝑐,𝑘

𝛾𝑀
(2.36)

• 𝜂𝑐
• 𝐴
• 𝜌
• 𝑓𝑐,𝑘
• 𝛾𝑀

conversion factor
area of the cross-section
reduction factor for local wrinkling and imperfections
characteristic compressive strength
partial factor that accounts for initial imperfections
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Initial imperfections are taken into account by a partial factor 𝛾𝑀, that consists of a factor for the
uncertainties in obtaining the correct material factors, 𝛾𝑀1 and a factor for uncertainties in material
properties due to the nature of the constituent parts and depends on the production method, 𝛾𝑀2.

𝛾𝑀 = 𝛾𝑀1 ⋅ 𝛾𝑀2 (2.37)

• 𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘 characteristic compressive strength considering wrinkling and plate
imperfections

Χ = 1

Φ + √Φ2 − �̄�2𝑓
(2.38)

Φ𝐿𝑇 = 0.5 [1 + 𝛼𝑓 (�̄�𝑓 − �̄�𝑓,0) + �̄�2𝑓 ] (2.39)

• 𝛼𝑓
• �̄�𝑓,0

imperfection factor
plateau length of the buckling curve

Parameters 𝑎𝑓 and �̄�𝑓 depend on the shape of the considered cross-section and were determined
experimentally and numerically.

�̄�𝑓 = √
𝐴 ⋅ 𝜌 ⋅ 𝑓𝑐,𝑘
𝑁𝑐𝑟

(2.40)

CUR96 gives an additional guideline for plate buckling:

𝑓𝑥,𝑅𝑑,𝑐 = 𝛼 ⋅
𝜂𝑐 ⋅ 𝜎𝑐𝑟,𝑐
𝛾𝑀

(2.41)

The critical buckling load can be determined from the supplied plate formulas. Imperfection factor, 𝛼
must be determined in consultation with the supplier but can be taken conservative as the maximum
value of allowed bow imperfection of B/125, with B being equal to the smallest value of the width or
length of the plate.

2.6. Conclusion
Fibre-reinforced composites are formed by high strength fibres placed in a polymer matrix with
distinct interfaces in between. The three constituents of the material result in three distinct damage
mechanisms: damage to the matrix, damage to the fibres and damage to the interface. FRP’s brittle
failure behaviour is a significant concern for structural engineers. The ability to undergo inelastic
deformation is an essential safeguard against failure in structural engineering. To safely design with
FRP materials, a thorough knowledge of the failure modes and mechanisms is needed. To detect
the failure of the material, initiation and propagation failure criteria are developed, which describe the
materials damage. Progressive failure analysis can be used in combination with these failure criteria
to predict the load-carrying capacity and failure propagation.

Continuum damage mechanics assumes that damage accumulates within a material, reducing the
effective cross-sectional area and eventually leading to rupture. It is based on the concept that cracks
or defects imply a reduced capacity to withstand stresses. The damage behaviour of a GFRP plate
can be described with damage initiation and damage evolution criteria. Damage initiation criteria
predict the failure of the material, and the damage evolution criteria describe the post-failure behaviour.
Abaqus implemented the Hashin damage criteria as the default criteria for FRP material. The Hashin
damage criteria differentiate between the four different failure modes: fibres in tension, fibres in
compression, the matrix in tension and the matrix in compression. When the material excites the
ultimate strength for that failure mode, damage of a failure mode is initiated. After one or more damage
initiation criteria are met, the damage evolution will define the material’s further degradation.
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Finite element analysis of strain-softening materials combined with local constitutive models where
damage is present leads to deformation localisation. Localisation is defined as instability in the
stress-strain relation of inelastic deformation of the material, which leads to numerical instability.
The deformation localises in a narrow zone and is thereby sensitive to the mesh density. A finer
mesh will decrease the amount of energy dissipated. Bazant and Oh (1983) proposed a crack band
model to prevent this localisation into small regions. Fracture is modelled as a band of parallel
densely distributed micro-cracks. This non-local damage theory relates the stress at any point to the
deformation for a finite volume around that point. This is done by adjusting the energy dissipated by
each failure mechanism and defining the fracture energy based on a characteristic length. For finite
element analysis, the fracture energy is now considered as a model property and not as a material
property.

The design of plates is usually dominated by stability. Structural composite elements can have internal
and external imperfections, which influence the buckling behaviour of a plate. Fibre misalignment,
porosity and delaminations are material defects influencing the strength and stiffness of the material
and, therefore, the structural buckling and post-buckling behaviour. Load eccentricities and geometric
imperfections are initial imperfections that will result in an ’imperfect plate’. An imperfect plate has initial
out-of-plane deformations, and as a result, the plate will deviate from its flat state before the critical
buckling load is reached. Post-buckling behaviour is a decisive aspect for the design of plate- and
shell-type composite structures. Shell design and analyses aim to take the imperfection sensitivity into
account for each specific situation and try not to be over-conservative. A buckling reduction factor for
members in compression in the direction of the fibres takes the effect of initial imperfections into account
for the elastic buckling stage. The design codes do not consider the influence of initial imperfections
on the post-buckling capacity. Progressive failure analysis is used to include the effect of damage and
determine the load-carrying capacity for structures with post-buckling behaviour, which is only possible
with a proper damage model that characterises the onset and evolution of damage.



3
One-element model

The previous chapter established that damaged quasi-brittle materials experience strain-softening
behaviour at a continuum level. Finite element analysis of damage behaviour for materials with
strain-softening experience mesh sensitivity: a more refined mesh will decrease the amount of energy
dissipated. To reduce this mesh dependancy for numerical analysis, a stress-displacement response
is created instead of a stress-strain response after the damage is initiated. This stress-displacement
response creates a dependency between the fracture energy and the element size of the finite element
model. A model consisting of one element is built to verify the relation between the fracture energy
and the element size and to evaluate how a change in element size influences the material’s failure
behaviour.

3.1. Equivalent displacement model
The equivalent displacement theory described in the previous chapter is illustrated by comparing the
failure behaviour of a numerical model, created with Abaqus/Standard, consisting of one element with
the defined definitions for the initial equivalent displacement and the equivalent displacement at the
completely damaged stage. The mesh size is chosen equal to the element size to prevent mesh
dependency, which is then, by definition, equal to the characteristic length. The characteristic length
is dependent on the element geometry and element formulation. Different sized models are built, and
both conventional shells with S4R elements and continuum shells with SC8R elements are created.

Figure 3.1: Conventional shell model Figure 3.2: Continuum shell model
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A conventional shell element is a 2D element with displacement and rotational degrees of freedom.
Solid elements are 3D elements with only displacements as degrees of freedom (Asicone et al., 2012).
Conventional shell elements are a good choice to define the orthotropic behaviour for analysis on ply
level. Solid elements offer the option to model delamination, out-of-plane shear and through-thickness
behaviour. A third type of elements is continuum shell elements, also referred to as 2.5D elements.
The continuum shell element is a three-dimensional continuum solid with kinematic and constitutive
behaviour similar to conventional shell elements. Figure 3.2 shows the difference in finite element
modelling between the two types of shell bodies. An advantage of conventional shell elements is that
the material’s composite lay-up can be easily defined as a cross-section property. However, stresses
and stiffness in the through-thickness direction and out-of-plane shear properties are not exact. It is
not possible to model delamination if the member consists of one element in the through-thickness
direction.

Figure 3.3: Difference between a conventional shell and continuum shell model (Systèmes, 2011)

In this chapter, the numerical models consist of one layer of a GFRP material, loaded until failure.
Loading is applied in four directions, which correspond with the four failure modes. Figure 3.4 illustrates
the relation between the loading direction and failure mode.

Figure 3.4: Schematization of the four different loading
directions

• Tension in fibre direction [TF]
• Compression in fibre direction [CF]
• Tension in matrix direction [TM]
• Compression in matrix direction [CM]

The values for the fracture energy are implemented as stated in the report ”Pin Bearing in Glass Fiber-
Reinforced Polyester: An experimental and numerical study on the static and fatigue response of a
GFRP laminate” (Cornelissen, 2020). In this report, the GFRP laminate is subjected to flat coupon tests
to determine the material’s strength, stiffness, and ultimate strain. The area under the resulting stress-
strain curves is used to calculate the fracture energy for each failure mode. It has to be noted that flat
coupon tests not intended to determine the actual fracture energy of the material. No minimum element
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size restriction applies, and the discreteness of any method can be increased with mesh refinement,
however, this may lead to high computational costs. The equivalent displacement equations prescribe
that the mesh size of the model can be increased up to the maximum characteristic length, 𝐿𝑐,𝑚𝑎𝑥.

𝐿𝑐,𝑚𝑎𝑥 =
2𝐸𝐺𝑐
𝜎2𝑐

(3.1)

• 𝐸
• 𝜎2𝑐

stiffness in the direction of the loading
ultimate stress for the respective loading direction

If this equation is not satisfied, the numerical analysis will produce inaccurate results; the fracture
energy provided is less than the energy needed to open a unit area of crack. As a result, damage will
not be initiated.The maximum mesh size for each of the four models is as follows:

• Tension in fibre direction:
• Compression in fibre direction:
• Tension in matrix direction:
• Compression in matrix direction:

2.35 mm
2.08 mm
42.6 mm
2.00 mm

3.2. Material properties
The material properties for the numerical model are from the beforementioned report (Cornelissen,
2020). The material properties for each of the failure modes are provided in table 3.1 and 3.2. The
expected equivalent displacement is calculated according to equations 3.2 till 3.5. Displacement is
applied to obtain failure of the models.

Strength (𝑁/𝑚𝑚2) Fracture Energy (𝑁/𝑚𝑚2) Viscosity coefficient (−)
Longitudinal Tensile 845.8 20.1354 0.001
Longitudinal Compressive 486 5.832 0.001
Transverse Tensile 25.8 1.1 0.005
Transverse Compressive 116.1 1.045 0.005
Longitudinal Shear 73.45
Transverse Shear 73.45

Table 3.1: Material properties for the four failure modes

𝐸1 𝐸2 𝐸3 𝜈12 𝜈13 𝜈23 𝐺12 𝐺13 𝐺23
41700 12900 12900 0.28 0.28 0.28 3560 3560 3560

Table 3.2: Input values for the engineering constants

𝜖0𝑒𝑞 =
𝜎𝑐
𝐸𝑐

(3.2)

𝛿0𝑒𝑞 = 𝜖0𝑒𝑞𝐿𝑐 (3.3)

𝜖𝑓𝑒𝑞 =
𝐺𝑐

0.5𝜎𝑐𝐿𝑐
(3.4)

𝛿𝑓𝑒𝑞 =
𝐺𝑐
0.5𝜎𝑐

(3.5)
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3.3. Conventional shell element results
The numerical results are compared to the results from equation 3.2 up to and including 3.5. The
Abaqus/Standard models are created with conventional shell elements. The equations in the plots
referenced with ’Eq.’ are in good agreement with the FEM models. Three of the four graphs show
that the numerical models align with the equivalent displacement theory. The ultimate strength of the
material is equal to the maximum stress in the model. When the material reaches the ultimate strength,
damage is initiated, and failure occurs.

The material strength is equal to the maximum stress, and when the material reaches its
ultimate strength, the material damages and eventually fails. Graph 3.5c with the result from
the stress-displacement for tension loading in matrix direction shows a higher peak than expected.
This behaviour is explained at the end of this section. For each of the four models, only failure in the
respective failure mode developed. The damage variables for failure of the models can be found in
appendix A.

Figure 3.7 shows the stress-strain curve of the same four models for each of the four failure modes.
The area under the curve increases for a smaller element size. This increase relates to the indication
of mesh dependency due to strain-softening behaviour, which results in a finer mesh decreasing the
amount of energy dissipated. The ultimate strain is a material property and is not influenced by the
mesh size; the behaviour until damage initiation remains the same.

(a) Numerical results (FEM) versus analytical results (Eq.)
for tensile failure in fibre direction

(b) Numerical results (FEM) versus analytical results (Eq.)
for compressive failure in fibre direction

(c) Numerical results (FEM) versus analytical results (Eq.)
for tensile failure in matrix direction

(d) Numerical results (FEM) versus analytical results (Eq.)
for compressive failure in matrix direction

Figure 3.5: Stress-displacement comparison of the analytical results (Eq.) and the numerical output of the Abaqus/Standard
conventional shell element model (FEM) for an element of 1.0 by 1.0 mm for each of the four failure modes

The area under the stress-displacement curve is equal to the fracture energy input in the FEM model
for each respective failure mode. Figure 3.6 shows that the area under the curve remains the same for
a change in element size. Smaller elements require less displacement to reach the materials ultimate
strain, at which damage is initiated. These results show that the stress-displacement response of the
material depends on the mesh size of the FEM model.



3.3. Conventional shell element results 25

(a) Tensile failure in fibre direction for three different
element sizes (mm)

(b) Compressive failure in fibre direction for three different
element sizes (mm)

(c) Tensile failure in matrix direction for three different
element sizes (mm)

(d) Compressive failure in matrix direction for two different
element sizes (mm)

Figure 3.6: Numerical determined stress-displacement curves for the four failure modes with an element size of 1.0 by 1.0 mm,
2.0 by 2.0 mm and the maximum characteristic element size. For figure d, the maximum charactersitic element size equals 2.0

by 2.0 mm.

(a) Tensile failure in fibre direction for three different
element sizes (mm)

(b) Compressive failure in fibre direction for three different
element sizes (mm)

(c) Tensile failure in matrix direction for three different
element sizes (mm)

(d) Compressive failure in matrix direction for two different
element sizes (mm)

Figure 3.7: Numerical determined stress-strain curves for the four failure modes with an element size of 1.0 by 1.0 mm, 2.0 by
2.0 mm and the maximum characteristic element size. For figure d, the maximum charactersitic element size equals 2.0 by 2.0

mm.
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Peak occurrence for tensile failure in matrix direction
The stress-displacement and stress-strain curves for tensile failure in matrix direction show a higher
peak than expected. The material’s maximum stress exceeds the material’s ultimate strength for the
failure mode tension in fibre direction. This peak disappears when the element size is increased to the
maximum element size of 42.6 mm, which is shown in figure 3.6 (c) and 3.7 (c). When the maximum
element size is 40 and 20 times higher than the studied element sizes of 1.0 by 1.0 and 2.0 by 2.0, it is
plausible that the fracture energy is too high for the model to capture the failure behaviour accurately.

Stress-displacement comparison of the four failure modes
Figure 3.8 shows the numerical results for the stress-displacement failure behaviour of the 1.0 by 1.0-
millimetre elements in each of the four loading directions. The area under each of the four triangles is
equal to the input fracture energy for the related failure mode. The initial equivalent displacement is
defined as 𝐷𝑒𝑞,0 and the equivalent displacement at the completely damaged stage as 𝛿𝑓𝑒𝑞. The initial
equivalent stress (𝜎0𝑒𝑞) equals the strength of the material respective to their loading direction.

Figure 3.8: Numerical results for the stress-displacement behaviour of the four failure modes

3.4. Continuum shell element results
The choice of element type influences the mesh dependency of the FEMmodels. Four continuum shell
models are created in Abaqus/Standard. The output of those four models is compared to the results
from equations 3.2 till 3.5, similar as for the conventional shell models. The same four failure modes
are analysed: compression and tension in fibre and matrix direction. The size of the models is 1.0 by
1.0 millimetres, and they all consist of one element. Figure 3.9 demonstrates that the numerical output
is in agreement with the analytical result from the equivalent displacement theory. For each of the four
models, only failure in the respective failure mode developed. The damage variables for failure of the
models can be found in appendix A. The conventional- and continuum shell models result in the same
stress-displacement curves.
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(a) Numerical results (FEM) versus analytical results (Eq.)
for tensile failure in fibre direction

(b) Numerical results (FEM) versus analytical results (Eq.)
for compressive failure in fibre direction

(c) Numerical results (FEM) versus analytical results (Eq.)
for tensile failure in matrix direction

(d) Numerical results (FEM) versus analytical results (Eq.)
for compressive failure in matrix direction

Figure 3.9: Stress-displacement comparison of the analytical results (Eq.) and the numerical output of the Abaqus/Standard
continuum shell element model (FEM) for an element of 1.0 by 1.0 mm for each of the four failure modes

3.5. Conclusion
The one-element models follow an elastic loading and unloading path. When the material’s
ultimate strength is reached for its respective loading direction, the damage initiation criteria for the
corresponding failure mode are met. For the stress-displacement output, the equivalent displacement
at failure is independent of the mesh size, but the displacement at which damage is initiated changes.
Smaller elements require less displacement to reach the materials ultimate strain, at which damage is
initiated. After that, the evolution of damage proceeds more gradual and the different sized models are
completely failed for equal applied displacement. The larger elements withstand a higher displacement
until the materials ultimate strain is reached and damage is initiated, followed by a more immediate
damage evolution. The area under the stress-displacement curve remains the same and is equal to
the implemented fracture energy value.

The stress-strain graphs show that the element size influences the material’s behaviour after damage
initiation. A decrease in element size for a constant fracture energy results in a more graduate damage
development. Consequently, the area under the curve increases for a smaller element size. This
increase relates to the indication of mesh dependency due to strain-softening behaviour, which results
in a finer mesh decreasing the amount of energy dissipated. The ultimate strain is a material property
and is not influenced by themesh size; the behaviour until damage initiation remains the same. The one-
element models created in Abaqus/Standard show that stress-strain and stress-displacement results
are mesh-size dependent. The equivalent displacement response is observed for both conventional
and continuum shell elements.



4
Uni-directional model

The Hashin damage criteria can be used to model the damage of an FRP component. These
criteria differentiate between the four failure modes and require the fracture energy of the material as
input. One method to obtain these values is by calculating the area under the stress-strain curve of
experimental flat coupon tests. In this chapter, fracture energy values determined from such tests are
implemented in a numerical model of four uni-directional plies. The numerical outcome is compared
to the coupon experiments. The influence of the dependancy between the fracture energy and the
model’s mesh size on the failure behaviour of the model is evaluated by varying both the fracture
energy input and element size.

4.1. Uni-directional coupon tests
A series of experimental flat coupon tests were performed by Lieuwe Cornellisen and reported in the
paper ”Pin Bearing in Glass fiber-Reinforced Polyester” (Cornelissen, 2020). For this research, uni-
directional panels were manufactured to create specimen with 0° and 90° orientations. The specimens
were loaded in tension and compression in the longitudinal and transverse direction, which aligns with
the four failure modes as discussed in chapter 3, figure 3.4. For each direction, seven specimens were
created. The specimens were made from E-glass fibres with a silane coating and a dicyclopentadiene-
modified unsaturated polyester resin, with a fibre volume ratio of 0.54. The coupons were tested until
failure. From the experimental test results, the material properties and geometry for a representative
Abaqus/standard model are defined and used to calculate the materials’ fracture energy.

4.1.1. Model properties
Coupon testing was performed according to ISO 527 (Normcommissie:310061, 2012) for tensile tests
and according to ISO 14126 (Normcommissie:310061, 1999) for compression tests. The tested
coupons’ geometry is presented in figure 4.1 till 4.4.

Figure 4.1: Coupon geometry for 0° tensile testing
(ISO527-5 type A)

Figure 4.2: Coupon geometry for 90° tensile testing
(ISO527-5 type B)
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Figure 4.3: Coupon geometry for 0° compressive testing
(ISO14126)

Figure 4.4: Coupon geometry for 90° compressive testing
(ISO14126)

The material properties of the models are determined from the experimental test results. The plate
geometry and boundary conditions for the four models are shown in figures 4.5 and 4.6 and stated in
table 4.1. The plates are loaded by a displacement in the x-direction. For the models loaded in the
longitudinal direction, this aligns with the direction of the fibres. For transverse loading, the material
orientation is rotated 90 degrees. The opposite side of the displacement restraints movement in the
x-direction. In one node, all degrees of freedom are fixed.

Figure 4.5: Geometry for the models loaded in tension Figure 4.6: Geometry for the models loaded in compression

The clip length of the coupons loaded in the longitudinal direction is 50.00 millimetres, while the width
and thickness are 25.00 and 1.72 millimetres, respectively. Due to symmetry, the Abaqus/Standard
model is a 25.00 by 25.00-millimetre plate. The specimens consist of four layers of fibres, each with
0.43-millimetre thickness. The numerical model is created with one layer of fibres. For the coupons
loaded in the transverse direction, the length between the test machine’s clamps is 10.00 millimetres,
which is the same size as the coupon’s width. The numerical mode is a 5.00 by 10.00-millimetre plate
with a thickness of 0.43 millimetre. A static general analysis is performed.

In chapter 3 it was determined that both conventional and continuum shell elements can be used.
Preference is given to the continuum shell elemens, which will be used for the numerical models, due to
the inclusion of transverse shear deformation and changing thickness. Themodels consist of continuum
shell elements with an SC8R mesh: an 8-node quadrilateral in-plane general-purpose continuum shell
with reduced integration with hourglass control and finitemembrane strains. Distribution of the elements
is as demonstrated in figure 4.7 and figure 4.8.
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Figure 4.7: Mesh size of 1.0 by 1.0 mm for tension models Figure 4.8: Mesh size of 1.0 by 1.0 for compression models

4.1.2. Post-failure behaviour experiments
The results of the four experimental flat coupon tests are shown in figure 4.9 up to and including 4.12.
The data is acquired from the aforementioned report (Cornelissen, 2020). Capturing the post-failure
behaviour of the specimens turned out to be complicated. The results show a large scatter of data.
For the uni-axial tensile test in fibre direction, the ultimate strain showed large amount of scatter at the
end of the elastic region, with a coefficient of variation of 7.36%. A possibly explanation could be the
explosive nature of the failure mode, which shifted the clips of the extensometer. For the specimen
under uni-axial tensile loading in matrix direction, the fibres continued to carry the loading after the
matrix failed. In case of compressive loading in fibre direction, failure between the tabs, buckling of
the specimen and unusable DIC data led to three unsuccessfully performed tests. Three specimens
loaded in compression in matrix direction were successfully tested. Others experienced cracking when
placed in the test set-up and technical difficulties with the DIC measurements occurred.

Figure 4.9: Experimental results for 0° tensile model
(UDT0)

Figure 4.10: Experimental results for 90° tensile model
(UDT90)

4.1.3. Lower bound fracture energy
The material properties are determined from the average results of the coupon tests. These properties
include the strength, stiffness and ultimate strain of the material. The average test results for each
loading direction is plotted onto the actual test results with a black dotted line. The first part of this
line represents the elastic behaviour of the coupons until the ultimate strength of the material is
reached. After this point, the black dotted line shows abrupt failure of the material, even though not all
experimental results show this behaviour. When the material fails abruptly, it equals the lower bound
fracture energy, considering that the fracture energy does not influence the elastic behaviour. A more
gradual failure, where the material can experience more strain before complete failure, equals a higher
fracture energy; more fracture energy can be absorbed before the material is completely damaged.
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The lower bound fracture energy is a conservative option for modelling failure of a material, abrupt
failure means that there is no post-failure load carrying capacity in the material. However, when the
actual fracture energy of the material is lower than the determined lower bound value, the fracture
toughness of the material is overestimated. Due to the beforementioned lack of post-failure data, the
choice has beenmade to implement thematerials lower bound fracture energy. The lower bound values
can be calculated from the stress-strain curve with abrupt failure after the materials ultimate strength is
reached. Hence, the fracture energ, 𝐺𝑐 depends on the material strength (𝜎𝑚𝑎𝑥) and the ultimate strain
(𝜖𝑓) , which for the lower bound value equals the strain at damage initiation. To implement the fracture
energy in the numerical model it was determined in chapter 3, that the experimental determined value
needs to be multiplied by the mesh size. The fracture energy input value is thus calculated as follows:

𝐺𝑐,𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 0.5 ∗ 𝜎𝑚𝑎𝑥 ∗ 𝜖𝑓 ∗ 𝐿𝑐 (4.1)

4.1.4. Material properties
The average test results for tensile loading in the fibre direction and tensile loading in thematrix direction
are shown with a black dotted line in figure 4.9 and 4.10, respectively. The stress-strain curve of the
second situation shows bi-linear behaviour, which originates from the stitching fibres that continue to
carry the ply’s strength after the resin has failed. A numerical model including the bi-linear behaviour
could not be obtained with implicit analysis. The numerical model will approach the stress-strain curve
without the bi-linear behaviour and only displays the behaviour of the resin’s strength in the transverse
direction.

Figure 4.11: Experimental results for 0° compression mode
(UDC0)

Figure 4.12: Experimental results for 90° compression model
(UDC90)

The results of the uniaxial compressive tests are shown in figure 4.11 and 4.12. As mentioned in
subsection ”Lower bound fracture energy”, due to various reasons, not all specimens were tested
succesfully. Table 4.1 provides an overview of the geometry and material parameters obtained from
the tests.

Length
(mm)

Width
(mm)

Thickness
(mm)

Strength
(MPa)

Stiffness
(MPa)

Ultimate strain
(-)

UDT0 25.00 25.00 0.43 839.53 41700 0.0201
UDT90 25.00 25.00 0.43 16.21 6317 0.0026
UDC0 5.00 10.00 0.43 413.06 37939 0.0109
UDC90 5.00 10.00 0.43 95.98 9634 0.0100

Table 4.1: Geometry and material properties of the four different models
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4.1.5. Models loaded in tension
First, the numerical results of the specimens loaded in tension are discussed. A model with a
characteristic element length of 1.00 millimetre is given a positive displacement in the fibres’ direction.
For this case, the lower bound value of the fracture energy is 8.45 N/mm. Figure 4.13 shows that
the resulting stress-strain curve, the green line, is similar to the average test result, the black dotted
line. A slightly more accurate result occurs for a fracture energy input of 8.40 N/mm, displayed by
the yellow line. Table 4.2 displays the difference between the lower bound fracture energy input value
and the numerical results. The output fracture energy value is the area below the numerical created
stress-strain graph.

𝜎𝑐 (𝑁/𝑚𝑚2) 𝜖0 (-) 𝐿𝑐 (mm) 𝐺𝑐 (N/mm) Difference (%)

Input 839.53 0.02013 1.0 8.45
Output 835.55 0.02009 1.0 8.39 -0.70%

Input 839.53 0.02013 2.5 21.13
Output 838.46 0.02011 2.5 21.07 -0.27%

Table 4.2: UDT0: difference between the lower bound fracture energy (input) and numerical stress-strain area (output)

Figure 4.13: UDT0 stress-strain curve for different fracture
energy values and element size of 1.00 mm

Figure 4.14: UDT0 stress-strain curve with different fracture
energy values and element size of 2.50 mm

When the fracture energy input is increased by a factor of two, and no other parameters are changed,
the area under the resulting stress-strain curve also doubles in size. The blue line indicates the
stress-strain curve for the fracture energy input equal to twice the lower bound value. When the
element size increases, the related lower bound fracture energy value needs to be increased
proportionately.

Figure 4.14 demonstrates the results for an element size of 2.50 by 2.50-millimetres, with a fracture
energy input of 17.00. The material properties of the model remain the same. The lower bound fracture
energy value gives an accurate result; the value under the stress-strain curve multiplied by 2.5 equals
the fracture energy input vale. For this situation, increasing the fracture energy input by a factor of two
also results in the area under the stress-strain curve increasing by the same factor.
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Figure 4.15: UDT0 stress-strain curve with different fracture energy values and an element size of 1.00 mm

When a material has a higher fracture energy it means that more energy can be absorbed before
ultimate failure of the material is reached. For the numerical model, a higher fracture energy input
relates to a more gradual degradation after damage is initiated in the material. To demonstrate this
behaviour, the previous model, with a characteristic element length of 1.00 millimetre, is given a
positive displacement in the direction of the fibres. The fracture energy input is varied between 8.4
N/mm and 20 N/mm. Figure 4.15 shows the results and demonstrates that the slope after damage
initiation degrades more gradually for a higher fracture energy input.

Additionally, the corresponding fracture energy input values are plotted against the resulting area under
their stress-strain curves. As shown in figure 4.16, the fracture energy input values and the area
under the curves are similar. As expected, a linear relationship can be identified, which relates to
the established linear relation between the fracture energy and mesh size. The lower bound value
of 8.45 N/mm for the fracture energy and the smallest possible area under the stress-strain curve is
presented in vertical and horizontal directions. The area’s under the curves are within a 4% difference
of the fracture energy input values.

Figure 4.16: Relation between the fracture energy input and area under the stress-strain curve
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The stress-strain curves for the model loaded in tension in the transverse direction are depicted in figure
4.17 and 4.18. For an element size of 1.00 by 1.00-millimetre, the lower bound fracture energy value
is 0.021 N/mm. The resulting stress-strain curve, the green line, is almost identical to the average
result from the coupon tests, indicated by the black dotted line. The blue line shows that a fracture
energy input of twice the lower bound value results in a doubling of the area under the stress-strain
curve. When the element size is increased to 2.50 by 2.50-millimetre, the lower bound value of 0.052
N/mm is not returning the predicted results. A slight increase to 0.053 N/mm, a change of less than
2%, provides the desired outcome. Table 4.3 shows the difference between the fracture energy input
values and numerical results.

Figure 4.17: UDT90 stress-strain curve with different fracture
energy values and an element size of 1.00 mm

Figure 4.18: UDT90 stress-strain curve with different fracture
energy values and an element size of 2.50 mm

The numerical determined fracture energy value for the larger element size is slightly higher than the
model input value. In some cases, Abaqus/Standard returns incorrect results for fracture energy values
below the lower bound. Abaqus/Standard calculates the minimal required fracture energy based on
the ultimate strenth and failure strain of the material, which are computed with incremental steps. The
required fracture energy is also dependent on the element’s actual characteristic length, which is the
square root of the area. When the plate deforms even the slightest, the characteristic length will change,
which results in a higher or lower value for the lower bound. The original value of 0.052 N/mm was
below the lower bound value, and the resulting stress-strain curve was inaccurate. This behaviour is
explained more in detail in subsection 4.1.7.

𝜎𝑐 (𝑁/𝑚𝑚2) 𝜖0 (-) 𝐿𝑐 (mm) 𝐺𝑐 (N/mm) Difference (%)

Input 16.21 0.002567 1.0 0.021
Output 15.93 0.002522 1.0 0.020 -4.32%

Input 16.21 0.002567 2.5 0.05200
Output 16.19 0.002572 2.5 0.05204 0.08%

Input [increase fracture energy by 2%] 0.05300
Output 16.18 0.002561 2.5 0.05179 -2.29%

Table 4.3: UDT90: difference between the lower bound fracture energy (input) and numerical stress-strain area (output)

4.1.6. Models loaded in compression
The numerical process is repeated for the models loaded in compression. Figure 4.19 and 4.20 show
the stress-strain curves for the model loaded in compression in the longitudinal direction with different
fracture energy input values, with an element size of 1.00 and 2.50 millimetre, respectively. In both
cases, the lower bound fracture energy values return the expected stress-strain curves, and a doubling
of the input value results in a doubling of the area under the stress-strain curve. Table 4.4 shows that
the input lower bound fracture energy is larger than the numerical fracture energy for both element
sizes.
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Figure 4.19: UDC0 stress-strain curve with different fracture
energy values and element size of 1.00 mm

Figure 4.20: UDC0 stress-strain curve with different fracture
energy values and element size of 2.50 mm

𝜎𝑐 (𝑁/𝑚𝑚2) 𝜖0 (-) 𝐿𝑐 (mm) 𝐺𝑐 (N/mm) Difference (%)

Input 400.67 0.0109 1.0 2.18
Output 397.6093 0.0108 1 2.15 -1.52%

Input 400.67 0.0109 2.5 5.45
Output 397.61 0.0108 2.5 5.37 -1.52%

Table 4.4: UDC0: difference between the lower bound fracture energy (input) and numerical stress-strain area (output)

For the two models loaded in compression in the transverse direction, the experimentally determined
lower bound values do not return the desired outcome, as shown by the green lines in figure 4.21 and
4.22. The first figure demonstrates the stress-strain curve for a characteristic element length of 1.00
millimetre and the second figure for a characteristic elmeent length of 2.5 millimetres. In both cases,
the stress does not drop-down immediately after damage is initiated. When the lower bound values
are slightly increased, the expected stress-strain curves are obtained.

Table 4.5 demonstrates that for both element sizes the experimentally determined lower bound input
value is less than the numerically determined area under the stress-strain curve. When the input values
are increased to be larger than the output area, the resulting stress-strain curves are as expected.
Subsection 4.1.7 gives an indepth explanation for the unexpected outcome. For the model with an
element size of 1.00-millimetre, the fracture energy needs to increase from 0.480 to 0.484 N/mm. For
the element size of 2.50-millimetres, an increase from 1.20 to 1.21 N/mm is needed. In both situations,
this is an increase of less than 1%.

𝜎𝑐 (𝑁/𝑚𝑚2) 𝜖0 (-) 𝐿𝑐 (mm) 𝐺𝑐 (N/mm) Difference (%)

Input 95.960 0.0100 1.0 0.480
Output 95.947 0.0101 1.0 0.485 0.99%

Input [increase fracture energy by 1%] 0.484
Output 95.957 0.0100 1.0 0.480 -0.87%

Input 95.960 0.0100 2.5 1.200
Output 95.947 0.0101 2.5 1.211 0.99%

Input [increase fracture energy by 1%] 1.210
Output 95.954 0.0100 2.5 1.199 -0.87%

Table 4.5: UDC90: difference between the lower bound fracture energy (input) and numerical stress-strain area (output)



4.1. Uni-directional coupon tests 36

Figure 4.21: UDC90 stress-strain curve with different
fracture energy values and element size of 1.00 mm

Figure 4.22: UDC90 stress-strain curve with different
fracture energy values and element size of 2.50 mm

4.1.7. Fracture energy input below the lower bound value
In some cases, the stress-strain curve showed a gradual stress decrease after damage initiation,
instead of the expected abrupt drop in strength. To analyse this behaviour, a range of low fracture
energy input values is applied to the first model. This model was given a positive displacement in the
direction of the fibres. The characteristic element length is 1.0 millimetres, and the experimentally
determined lower bound fracture equals 8.45 N/mm.

The expected outcome from the stress-strain curves would be a straight drop-down after damage is
initiated, as a low fracture energy value equals a small capacity to absorb the energy before damage
of the material. Contrary to this expectation, figure 4.23 shows that input values below the lower
bound value return a gradual stress decrease after damage is initiated. The stress-strain curve
widens, similarly as it does for fracture energies values higher than the lower bound value. Figure
4.24 demonstrates that fracture energy input values below and above the lower bound value return
the same stress-strain curves. This behaviour occurs because Abaqus/Standard is programmed to
automatically increase the fracture energy input when this value is below the lower bound value it
numerically determines from the elastic failure behaviour. When this increase does not occur, and the
input value is too low, numerical issues can occur.

Figure 4.23: UDT0 stress-strain curve with fracture energy
values below the lower bound value and an element size of

1.00 mm

Figure 4.24: Different fracture energy values result in the
same stress-strain curves before coefficient is updated
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4.1.8. Larger mesh size
To verify if the equivalent displacement theory also applies to larger mesh sizes, the mesh size of the
model is increased. The plate loaded in uniaxial tension is modelled with a mesh size of 5.00 and 25.00
millimetres. The resulting stress-strain curves are shown in figure 4.25 and 4.26. As can be seen, the
curves deviate from the expected result, which is indicated by the black dotted line. For elements larger
than 2.50 millimetres, a lower fracture value input is needed to obtain the desired stress-strain curve.
Figure 4.27 demonstrates the relation between the fracture energy input and the area under the curve
for element sizes up to 25.00 millimetres.

Figure 4.25: Stress-strain curves of an UDT0 plate with
element size of 5.00 mm

Figure 4.26: Stress-strain curves of an UDT0 plate with
element size of 25.00 mm

Figure 4.27: Fracture energy lower bound values (input) versus the area
under the curve (output)

The reason for this behaviour could be the low number of elements in the model. To validate this
statement, the area of the plate is increased, as shown in figure 4.28 and 4.29. For an element size of
25.00 millimetres and fracture energy input equal to the lower bound value, three of the four resulting
stress-strain curves show the abrupt drop in stress when the material’s ultimate strength is reached.

In the case of tension in the longitudinal direction, a slight decrease of 3.2% of the fracture input yields
a better result. In this case, the mesh size could be too large to accurately capture the damaged area or
the incremental step size is too large to accurately determine failure properties. For the models loaded
in tension in the transverse direction and compression in the longitudinal direction, the lower bound
value gives the desired result. A small increase is needed to improve the plate’s stress-strain output
for the model under compression loading in the transverse direction. For this situation, it seemed that
the fracture energy input is too low, as discussed in section 4.1.7.
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Figure 4.28: Mesh size of 25.00 by 25.00 mm for tension
models

Figure 4.29: Mesh size of 25.00 by 25.00 for compression
models

Figure 4.30: Stress-strain curve UDT0 for fracture
energy related to the lower bound value

Figure 4.31: Stress-strain curve UDT90 for different
fracture energy values

Figure 4.32: Stress-strain curve UDC0 for fracture
energy related to the lower bound value

Figure 4.33: Stress-strain curve UDC90 for different
fracture energy values

4.2. Conclusions
The fracture energy of a material can be approximated from flat coupon experiments, as it equals
the area under the stress-strain curve. To model the damage behaviour of FRP material with the
Hashin damage criteria, the fracture energy is required as an input parameter to describe the damage
evolution of the material. The fracture energy does not influence the elastic failure behaviour of the
material. Due to large scatter in the experimental data, the post-failure behaviour of the coupon could
not be determined. Instead, the lower bound value is used, which is determined from the strength of
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the material and the strain at damage initiation. The lower bound value equals an abrupt drop after
the strength of the material is reached. The lower bound fracture energy is a conservative option for
modelling failure of a material, abrupt failure means that there is no post-failure load carrying capacity
in the material. However, when the actual fracture energy of the material is lower than the determined
lower bound value, the fracture toughness of the material is overestimated.

Implementing the lower bound value in the numerical models should, in theory, result in this abrupt
drop after damage initiation. In practice, this was not always the case. Abaqus/Standard calculates
the minimal required fracture energy based on the material’s ultimate strength and failure strain, which
are computed with incremental steps. When the increment step is too large, it can underestimate the
material’s stress and calculate that more fracture energy is left for the progression of damage.

The required fracture energy is also dependent on the element’s actual characteristic length, which
for a shell element is the square root of the area of the element. Deformation of the elements can
lead to a change in the characteristic element length—consequently, the energy required to reach
failure increases or decreases. Abaqus/Standard is programmed to increase the implemented fracture
energy when the input value is below the numerical lower bound value to prevent modelling issues.
This increase results in a more gradual decrease in stiffness and strength, which means that a low
fracture value input is not always a conservative solution. Adding a minimum of two % to the fracture
energy lower bound value prevented this problem.



5
Multi-directional model

A common type of fibre-reinforced polymer structures are laminates: multiple uni-directional layers
with different fibre directions stacked together. In this chapter, three GFRP multi-directional (MD) flat
coupon experiments are modelled with Abaqus/Standard to determine if lower bound fracture energy
can be used for progressive failure analysis.

5.1. Multi-directional coupon tests
Similar to the uni-directional flat coupon experiments modelled in the previous chapter, three MD-
coupon experiments will be created with Abaqus/Standard. The MD-coupon tests were performed
and reported in the paper ”Pin Bearing in Glass fiber-Reinforced Polyester” (Cornelissen, 2020). This
paper can be consulted for an elaborated version of the test methods and results. The MD coupons
consist of the samematerial as the UD coupons. Multiple plies with different fibre directions are stacked
together. The lay-up of the laminate is [90/03/45/−45/02]𝑠, which is schematically shown in figure 5.1.
This lay-up results in a distribution of 62.5% of the fibres in the 0°-direction, and the other directions
each account for 12.5% of the fibres. The 0°-direction is indicated as the primary fibre direction or
x-direction.

Figure 5.1: Lay-up of the multi-directional laminate

The coupon tests are performed for each failure mode. Seven specimens were manufactured for
each test. The specimens were loaded until material failure, with the testing procedures performed
as described in ISO527-1 and ISO527-5 (Normcommissie:310061, 2012). The tabs, used to facilitate
load introduction from the clamps of the test machine onto the material, are a glass-fabric/polyester

40



5.1. Multi-directional coupon tests 41

laminate bonded to both flat surfaces of the coupon at two opposite edges. The tests for the coupons
loaded in compression in the longitudinal direction failed, and no results are available. For the coupons
loaded in tension, the engineering strain was measured by a clip-on extensometer that determined
the displacement over the gauge length. The surface of the coupons loaded in compression was
too small to fit an extensometer, and the strains were measured with Digital Image Correlation (DIC).
The tests were performed on the Schenk 600 kN test machine in the TU Delft Stevin II Laboratory in
a dry environment at room temperature. The tensile and compressive test specimens’ geometry is in
agreement with ISO527-5 and ISO14126 (Normcommissie:310061, 1999), respectively, and presented
in figure 5.2 and 5.3.

Figure 5.2: Coupon geometry for 0°and 90°tensile testing
(ISO527-4 type 3)

Figure 5.3: Coupon geometry for 0°and 90°compressive
testing (ISO14126 type B2)

5.1.1. Modelling approach
The first choice for the model was a stacked continuum shell model with cohesive zone modelling
(CZM) because it has been demonstrated that this method is able to capture the failure behaviour of
FRP in good agreement with the test results Csillag et al. (2019). However, the solver failed to reach the
ultimate strength, as shown in Appendix B, figure B.4. In implicit analyses, as used in Abaqus/Standard,
strain-softening of materials often leads to convergence issues. For this reason, instead of a stacked
shell approach with CZM, the laminate was modelled with continuum shell elements and one continuum
shell element in the through-thickness direction.

Figure 5.4: Geometry of the model for tensile loading Figure 5.5: Geometry of the model for compressive loading

The geometry and the boundary conditions for the models are shown in figures 5.4 and 5.5. The width
of the coupons loaded in the longitudinal direction is 25 millimetres, and the clip length between the test
tabs is 150 millimetres. Due to symmetry, the length and width of the finite element model are 75.00
by 25.00 millimetres. For the coupons loaded in compression, the clip length is 25.00 millimetres,
which is equal to the plate’s width. The dimensions of the model are the same. The compression- and



5.2. Test results 42

tension-loaded models have equivalent boundary conditions. A displacement is applied to one face of
the laminate, with the global positive x-axis as normal. The opposite face constraints displacement
in the x-direction and consists of one nodal point where all rotations and displacements are zero.
These boundary conditions are chosen to allow displacement for the non-loading directions to prevent
unrealistic stress concentrations in the model. The coupons are modelled with an SC8R mesh: an
8-node quadrilateral in-plane general-purpose continuum shell with reduced integration with hourglass
control and finite membrane strains. Element stiffness degradation is set at a value of 1, which
means that an element is removed from the mesh if all integration points reach the maximum stiffness
degradation value of 1. In the case of tensile loading, none of the integration points is in compression.
Static general analysis is performed.

5.1.2. Material properties
Plies, from the same material as the UD-coupons in chapter 4, are stacked together in different
directions to create the MD-laminate. The material properties of this laminate have thus the same
properties as the UD plies. Table 5.1 states the material properties that are obtained from the four
different UD-coupon models. The stiffness properties in tension and compression for both directions
differ. For the input properties of the MD models, the average stiffness is used, which is shown in table
5.2.

𝜎 (MPa) 𝐸 (MPa) 𝜖 (-)

T0 839.53 41700 0.0201
T90 25.17 9634 0.0026
C0 413.06 37939 0.0109
C90 95.98 9634 0.0100

Table 5.1: Material properties of the UD-models

𝜎 (MPa) 𝐸 (MPa) 𝜖 (-)

T0 839.53 39820 0.0211
T90 25.17 9634 0.0020
C0 413.06 39820 0.0104
C90 95.98 9634 0.0120

Table 5.2: Material properties of the MD-models

5.2. Test results
MD-coupon models are created for three of the four failure modes: the three coupons for which the MD-
coupon experiments succeeded. These are tensile loading in the longitudinal and transverse direction
and compressive loading in the transverse direction. The average result of each set of experiments is
compared with the numerical results obtained from the Abaqus/Standard models.

5.2.1. Lower bound fracture energy
Similar to the UD-coupon tests, the MD-coupon tests did not provide enough accurate data about the
post-failure behaviour. The modelled post-failure behaviour is limited to the abrupt failure when the
plate reaches its ultimate strength. The lower bound fracture energy value is implemented to verify
the predicted drop in strength and significant stiffness degradation after the material strength of the
plate is reached. As determined, this fracture energy depends on a characteristic length, which is
equal to the length of the element for a continuum shell element. Numerical issues occured for the
UD-coupon models, which led to inconsistent output. These issues occurred when the fracture energy
input was below the model’s lower bound fracture energy value. It was established that to prevent
this behaviour, the lower bound fracture energy value needed to be increased by at least 2%. For the
MD-coupon models, the lower bound fracture energy value was increased by 5% and 10% to verify
that an increased lower bound value would not change the expected outcome and thus be a reliable
method for progressive failure analysis.

5.2.2. MDT0 model
Figure 5.6 shows the results of seven MD-coupon experiments under longitudinal tensile loading
obtained from the before mentioned report (Cornelissen, 2020). The jump in the strain level near
the point of failure indicates that one or multiple plies have failed, but the damage zone is outside the
extensometer’s range. From this jump, the strength and failure strain of each coupon is determined.
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The black dotted line presents the average stress-strain curve of the coupon test. The following figure
5.7 shows the results of the numerical model. Four different plots are visible.

• The black dotted line is the average stress-strain curve obtained from figure 5.6;

• The blue line shows the numerical result with the UD-coupon material properties as stated in table
5.2;

• The orange line shows the numerical result for the MD-material properties and the lower bound
fracture energy

• The yellow line shows the numerical result for the MD-material properties and an increased
fracture energy value of 5%;

• The green line shows the numerical result for the MD-material properties and an increased
fracture energy value of 10%.

The results with the material properties from the UD-coupon models differ from the test results, as
shown by the blue line in figure 5.7. The decreased strength of the MD-coupon experiments could be
explained due to an incorrect set-up of the boundary conditions or due to corner effects. A difference in
volume fraction between the UD- and MD-coupons can cause an increase in stiffness: a higher volume
fraction results in a higher stiffness. The input values are adjusted to obtain a numerical result in
agreement with the experimental results, as shown by the orange line. Table 5.3 states the UD-values
that were implemented for the first model and the MD-values, were the strength is decreased.

𝜎𝐹𝑇 (MPa) 𝐸1 (MPa) 𝜖𝐹𝑇 (-)
UD-values 839.53 39820 0.0211
MD-values 705.41 47000 0.0144

Table 5.3: Original (UD-values) and updated material properties (MD-values) for MDT0-coupon model

After decreasing the strength and increasing the stiffness of the laminate, failure of the fibres occurs
around 1.4% strain. Around 0.35%, a small change in the slope can be seen, where the matrix fails
in tension. The stress-strain curve is similar compared to the average experimental results. The
material strength is around 460 MPa, and when this strength is reached, a significant drop in stress and
stiffness can be seen. A slight increase in the fracture energy of 5% and 10% returns approximately the
same result. After the failure of the coupon, a small amount of stiffness remains, and abnormal strain
hardening occurs. For Abaqus to consider the complete loss of the material’s stiffness, every ply of the
laminate needs to fail. Even though the plies loaded in the longitudinal direction fail, as can be seen by
the peaks at 0.35% and 1.4% strain, some plies in the other direction continue to carry the loading.

Figure 5.6: Stress-strain curves for the test results from the
MDT0-coupon tests and their average value

Figure 5.7: Stress-strain curves of the numerical results for
the MDT0-coupon
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5.2.3. MDT90 model
Six of the seven specimens, loaded in tension in the transverse direction, resulted in a proper
stress-strain curve, shown in figure 5.8. One of the specimens failed, and no data was obtained. At
around 0.2% strain, a kink can be observed in the curves. This kink corresponds with the failure
strain of a UD-ply loaded in transverse tension. Failure of these plies results in a stiffness loss in
the laminate, corresponding to the graphs’ change in slope. Around 2.1%, failure of the fibres in the
longitudinal direction is indicated, resulting in the complete failure of the coupons. The numerical
results in figure 5.9 show roughly the same behaviour. The model with the original UD-values, stated
in table 5.4, has a kink around 0.2% and fails at 2.1% strain. For the updated values displayed in the
same table, equivalent kinks occur, slightly shifted to the right of the graph.

𝜎𝐹𝑇 (MPa) 𝐸1 (MPa) 𝐸2 (MPa) 𝜖𝐹𝑇 (-) 𝜖𝑀𝑇 (-)
UD-values 839.53 39820 7976 0.0211 0.0020
MD-values 995.53 42500 9634 0.0234 0.0026

Table 5.4: Original (UD-values) and updated material properties (MD-values) for MDT90-coupon model

A curvature in the coupons can explain the difference in strength and transverse stiffness between the
numerical and the test results. FiberCore Europe, the producer of the coupons, noted a curvature in
the plates due to thermal effects during infusion, which affects the measured elasticity, strength and
ultimate strain. In addition, the UDT90-coupons did not have the correct geometry for testing at 90∘.
The coupons’ width was different, which could lead to edge effects influencing the material properties
obtained from these tests.

The updated stiffness is the same as for the UD-coupons under compressive loading in the transverse
direction. Similar to the MDT0-model, a remaining stiffness is apparent. Due to the large drop in
stiffness, the coupon is considered to have failed. The model with the updated properties and the 5%
and 10% increase in fracture energy show the same kink at 0.2% strain, with a change of slope and
failure around 0.023% strain. After the strength of the material was reached, the expected abrupt drop
in stress can be noted.

Figure 5.8: Stress-strain curves for the test results from the
MDT90-coupon tests and their average value

Figure 5.9: Stress-strain curves of the numerical results for
the MDT90-coupon

5.2.4. MDC90 model
The third set of specimens was loaded in compression in the transverse direction. The UD-coupons’
material properties result in a stress-strain curve with lower ultimate stress than the average
experimental results. Additionally, around 0.012 % strain, the plies loaded in compression in matrix
direction fail. The transverse strength properties are increased proportionally. The previously
mentioned curvature of the coupons can explain the lower material strength of the UD coupons. After
updating the material properties, both the fibres and the matrix in compression fail around a strain of
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1%. Furthermore, figure 5.11 also shows residual stiffness for each of the models. This lower bound
fracture energy is increased with 5% and 10% to provide some certainty. The returned stress-strain
curves are as expected: a large drop-down when the plies in the transverse direction fail. The analysis
with increased fracture energy shows a slightly more gradual stress decrease. The material’s ultimate
strength remains the same, and the fracture energy increase does not significantly affect the test results.

𝜎𝐹𝐶 (MPa) 𝜎𝑀𝐶 (MPa) (MPa) 𝐸1 (MPa) 𝐸2 (MPa) 𝜖𝐹𝐶 (-) 𝜖𝑀𝐶 (-)
UD-values 413.06 95.98 39820 7976 0.0104 0.012
MD-values 425.89 111.56 41700 9634 0.0102 0.0102

Table 5.5: Original (UD-values) and updated material properties (MD-values) for MDC90-coupon model

Figure 5.10: Stress-strain curves for the test results from the
MDC90-coupon tests and their average value

Figure 5.11: Stress-strain curves of the numerical results for
the MDT90-coupon

5.2.5. Difference in material properties between UD- and MD-coupons
The numerical results for the MD-coupon tests were different compared to the experimental results.
The tensile strength in the direction of the fibres needed to be decreased for the MDT0-model and
increased for the MDT90-model. For the final laminate, the result from the UD-coupon test is used, as
it is roughly the average value as used for the MDT0- and MDT90-model. The rest of the MD coupons
has a slight strength increase ranging between 1% and 4%.

MDT0 MDT90 MDC90 Average

UDT0 𝜎𝑇0 -16% 19% 1%
UDT90 𝜎𝑇90 1% 1%
UDC0 𝜎𝐶0 3% 3%
UDC90 𝜎𝐶90 4% 4%
UDT 𝐸1 15% 6% 5% 9%
UDC 𝐸2 17% 19% 18%

Table 5.6: Strength and stiffness difference between UD-coupons and MD-coupons

A possible explanation could be the curvature of the UD-coupons, while the MD-coupons remained
flat. This curvature was most noticeable for the specimen oriented in the 90-degrees. In addition to the
curvature, a higher fibre volume fraction of the MD specimens could be the reason for the increased
stiffness of the laminate. This increase is an assumption as no additional verification can be performed.
Due to the notable curvature of the UD specimens, the choice has been made to apply a slight strength
and stiffness increase, except for the tensile strength in the fibres’ direction. Uncertainties about the
laminate material properties will remain, which is less significant for the non-linear buckling analysis,
as for the time being, only numerical analyses will be performed.
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5.3. Conclusion
Stacking multiple uni-directional plies on top of each other and varying the direction of the fibres
creates a laminate. Experimental coupon tests performed on a GFRP laminate were modelled in
this chapter. The properties for the modelled were obtained from the UD models. Even though the
MD-coupons were manufactured from the same material as the UD-coupons, the numerical results of
the MD models differ from the experimental results.

Curvature issues with the UD specimens which developed during manufacturing, and a possibly
increased fibre volume fraction for the MD coupons, could explain the differences. Due to the notable
curvature of the UD specimens, the choice has been made to apply a slight strength and stiffness
increase, except for the tensile strength in the fibres’ direction. The stress-strain curves obtained with
progressive failure analysis are in good agreement with the test results. When the material reached
the ultimate strength, a significant drop in stress was observed, as expected from implementing the
lower bound fracture energy.

The numerical results of the UD-coupon models produced modelling issues, which led to inconsistent
output. These issues occurred when the fracture energy input was below the model’s lower bound
fracture energy value. To prevent this behaviour, it was concluded that the lower bound fracture energy
value needs to be increased by at least 2%. For the MD models, the lower bound fracture energy
input was additionally increased by 5% and 10% to verify that an increased lower bound value would
not change the expected outcome. Similar to the models without an increased lower bound fracture
energy value, the numerical results for the increased values showed the expected significant drop in
strength and stiffness degradation after the ultimate strength was reached.



6
Component model

6.1. Introduction
In the previous chapter, it has been concluded that progressive failure analysis with lower bound
fracture energy returns the expected results: a significant decrease in stress after the material
strength has been reached. This chapter aims to extend the previous analysis to determine if the
lower bound fracture energy can be used for non-linear buckling behaviour. This is executed by
performing progressive ply failure analysis with lower bound fracture energy on experimental buckling
tests reported in ”Buckling of Imperfect Composite Plates: Parametric Studies” by Hayman et al. (2011).

In the second part of this chapter, progressive failure analysis is used to predict the buckling strength of
the GFRP plate studied in chapter 5. The goal is to obtain a buckling curve and analyse the influence
of initial imperfections on the strength reduction of a GFRP plate. Different initial imperfection sizes are
implemented for varying plate thicknesses, and two types of boundary conditions are applied to study
if the boundary conditions change the resulting buckling curve.

6.2. Part 1: Buckling model
A wide-ranging series of studies have been performed for the Network of Excellence on Marine
Structures (MARSTRUCT) (Hayman et al., 2011). One of the studies focused on the buckling behaviour
of GFRP plates under in-plane compression loading. For this research, three series of square laminated
panels with different initial imperfections were fabricated by two universities: the National Technical
University of Athens (NTUA) and the Technical University of Denmark (DTU). In this chapter, two series
of plates that are produced by the same university are studied. The material properties of the plates
were obtained by a round-robin study in which both universities independently tested the plates. Each
plate was clamped in a test rig and uniformly compressed until failure to stimulate buckling of the
plates. The test rig was set up to allow displacements in the in-plane direction only; however, some
unintentional movement was detected during the buckling tests.

6.2.1. Material
The NTUA produced two series of plates with different thicknesses. The plates are an E-glass/epoxy
composite laminate fabricated using a wet lay-up vacuum bag process. The fibre reinforcement
consists of 623 g/m2 Uni-directional glass fabric, with 50 g/m2 in the weft direction, combined with
a 306 g/m2 ± 45∘ biaxial, non-crimp fabric and an epoxy resin with low viscosity (600-750) MPa⋅s at
25∘C). The first series is considered as a thin plate with a thickness of 9.7 millimetres and the second
series as a mid-thick plate of 15 millimetres. The lay-up for both plates is symmetric:

• Series 1: [± 45 / 04 / ± 45 / 03]𝑠

• Series 2: [± 45 / 04 / ± 45 / 04 / ± 45 / 03]𝑠

47
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The area of each plate is 400 by 380 millimetre. After mounting a plate in the test rig, the unsupported
area of the plate is 320 by 320 millimetres. The shape of the geometric imperfection is the first buckling
mode of a corresponding fully clamped plate. The initial imperfection of the plate is created with a
convex mould, numerically machined from an aluminium plate. The glass fibres are placed on top of
the mould and impregnated with resin by hand. Both series consisted of 9 plates with three imperfection
sizes:

• 3 plates: no imperfection;

• 3 plates: small built-in imperfection of B/100, which equals 𝛿0 = 0.01 ∗ 320 = 3.2 mm;

• 3 plates: large built-in imperfection of B/33, which equals 𝛿0 = 0.03 ∗ 320 = 9.6 mm.

A round-robin material characterisation test programme was performed to determine the material
properties of the plates. Both DTU and NTUA tested an UD-specimen created identical to the specimen
used during the buckling test. The average ply thickness of this specimen was 0.55 millimetre, with a
fibre volume fraction of 0.43. Performed tests determined the tensile, compressive and shear strength
and moduli. The tests were performed according to the following standards: ASTM D3039M standard
for the tensile properties at 0∘ and 90∘, ISO 14126 for the compressive properties at 0∘ and 90∘, and
ASTMD5379 for the shear properties. The two universities had different test equipment at their disposal.
Table 6.1 displays the material properties as determined by both universities. The MARSTRUCT study
recommended the use of the material properties as determined by the NTUA.

Material property NTUA test DTU test

E1𝑡 29658 MPa (11) 33170 MPa (4)
E1𝑐 38671 MPa (3) 37238 MPa (6)
E2𝑡 6563 MPa (23) 9338 MPa (7)
E2𝑐 8501 MPa (14) 9536 MPa (7)
G12 2034 MPa (7) 2169 MPa (22)
𝜈12 0.290 (37) 0.268 (8)
X𝑡 559 MPa (21) 698 MPa (10)
X𝑐 253 MPa (23) 191 MPa (21)
Y𝑡 60 MPa (20) 43 MPa (14)
Y𝑐 59 MPa (17) 69 MPa (12)
S 31 MPa (3) 30 MPa (3)

Table 6.1: Average material properties from NTUA test and DTU test

6.2.2. Buckling test set-up
The buckling tests were performed at the DTU with an Instron 8508 5 MN servo-hydraulic testing
machine combined with a special test rig. The plates were placed between the side flanges and fixed
with bolts between the top and bottom flange. The plate is free to move in the x- and y-direction between
the two vertical towers. Out-of-plane displacements and rotations are restricted. The deformations
during testing were monitored with an ARAMIS 4M, a non-contact DIC system.

6.2.3. Test-results
All specimens, independent of the size of imperfection, experienced out-of-plane deformations before
failure, as was concluded by the DIC out-of-plane measurements. The bending deformations occurred
due to a combination of specimen imperfections, test rig deformations and instability or buckling
behaviour of the plates. For series 1, a decrease of compressive strength occurs when imperfections
are introduced. However, this decrease is almost the same for the small and large imperfection,
indicating only a minor imperfection sensitivity. It should be noted that the number of results is too
low to give definitive conclusions. For series 2, a consistent decrease in compressive strength can be
observed with increased imperfection size. The test rig deformations introduced displacements and
rotations of the panel boundaries and created additional geometric imperfections.



6.3. Finite element model 49

Figure 6.1: The front side (left) and the back side (right) of a plate specimen installed in
the test rig, ready for testing (Hayman et al., 2011)

Imperfection (mm) Series 1 (kN) Series 2 (kN)

0 N/A 1218
415 1092
390 1170

3.2 294 906
213 882
309 930

9.6 294 750
320 780
N/A 792

Table 6.2: Ultimate failure load for each plate

6.3. Finite element model
The lay-up of series 1 and series 2 is shown in figure 6.2. The 0.36-millimetre thick layer of 45∘
degrees represents two 0.18 millimetre thick layers of 45∘ and -45∘. A progressive failure analysis
using implicit finite element method is performed. The applied number of elements is similar as used
in the MARSTRUCT research, where a mesh refinement study was performed, which determined the
number of elements to be 46x46 elements for the 320x230 millimetre plates. Table 6.3 states the
material properties, the characteristic element length and the numerical values for the fracture energy,
which are taken as the lower bound value with an increase of 10%.

Figure 6.2: Lay-up for series 1 with a thickness of 9.7 mm (left) and lay-up for series 2 with a thickness of 15.14 mm (right)
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𝜖0(−) 𝜎𝑐 (N/mm2) 𝐿𝑐(𝑚𝑚) 𝐺𝑐 (N/mm) 𝐺𝑐 + 10% (N/mm)

Longitudinal tensile 0.016 559 6.96 31.81 34.99
Longitudinal compression 0.007 253 6.96 6.52 7.17
Transverse tensile 0.008 60 6.96 1.66 1.83
Transverse compression 0.008 59 6.96 1.61 1.77

Table 6.3: Material properties for the component model, including the lower bound fracture energy value and the
lower bound fracture energy value increased by 10%

6.3.1. LBA
Linear buckling analysis is performed to obtain the critical buckling mode shape of the plate with
clamped boundary conditions, shown in figure 6.3. The mode shape is scaled to the pre-determined
imperfection size and inserted as an initial stress-free imperfect condition, equal to the initial geometric
imperfection built into the test panels during fabrication. For the plates without initial imperfections, an
imperfection magnitude equal to 5% of the thickness of the plates is implemented to nucleate buckling.

Figure 6.3: Shape of the geometric imperfection Figure 6.4: Schematization of the test rig
(Hayman et al., 2011)

6.3.2. Boundary conditions
Figure 6.4 shows the set-up of the plate. The plate is bolted to the top and bottom of the test rig. On
the sides, no bolts are used, which allows for some degree of movement. Compression to the plate is
applied from the top. Due to the detected unwanted movement of the plate in the test rig, five different
types of boundary conditions are applied to determine an accurate representation of the test set-up.
The applied boundary conditions range from a clamped plate with no degree of freedom to a simply
supported plate with rotation allowed at the edges and are presented in figure 6.6 up to and including
6.10. Figure 6.5 shows the six degrees of freedom of the conventional shell models. The different
boundary conditions also cover the possible horizontal and vertical movement at the sides of the test
rig. The numerical model is turned 90 degrees, and a displacement is given from the right side, in the
x-direction, instead of from the top as it was done with the test rig.

Figure 6.5: Schematic view of the six degrees of freedom Figure 6.6: Boundary conditions for ’CC/CC’
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Figure 6.7: Boundary conditions for ’CC/CC, U2=free’ Figure 6.8: Boundary conditions for ’CC/SS, U2=free’

Figure 6.9: Boundary conditions for ’CC/SS’ Figure 6.10: Boundary conditions for ’SS/SS’

6.4. Numerical results
The stress-displacement curves for the six different plates are presented in figure 6.11 up to and
including 6.21. Series 1 represents the thin plates with a thickness of 9.7 millimetres, and series 2
embodies the mid-thick plates with a thickness of 15.14 millimetre. The end shortening is determined
at the side of the plate where the load is applied. All models, independent of the type of boundary
condition applied, show a significant drop in strength and large stiffness reduction after the ultimate
strength is reached. This abrupt decrease in strength is as expected with the lower bound fracture
energy value implemented in the models. The deflection is the out-of-plane deformation at the plate’s
mid-centre, where the out-of-plane deformation is the largest.

6.4.1. End-shortening and deflection graphs for series 1

Figure 6.11: Stress-end shortening curves for series 1 with
zero imperfection

Figure 6.12: Stress-central deflection curves for series 1 with
zero imperfection
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Figure 6.13: Stress-end shortening curves for series 1 with
imperfection size B/100

Figure 6.14: Stress-central deflection curves for series 1 with
imperfection size B/100

Figure 6.15: Stress-end shortening curves for series 1 with
imperfection size B/33

Figure 6.16: Stress-central deflection curves for series 1 with
imperfection size B/33

Results for series 1: No imperfection
For the plates with ’no imperfection’, an initial imperfection of B/640, which equals an imperfection of 0.5
millimetres, is applied to nucleate buckling. The ’𝐶𝐶/𝐶𝐶’ and ’𝐶𝐶/𝐶𝐶, U2=free’ models overestimate
the ultimate strength by roughly 10%, while the other three models underestimate this value. The
’𝑆𝑆/𝑆𝑆’ curve provides the best approximation for the in-plane and out-of-plane displacement.

Model Maximum Difference In-plane Difference Out-of-plane Difference
stress (MPa) (%) displ. (mm) (%) displ. (mm) (%)

Test 114.63 1.74 17.31
CC/CC 124.42 8.5% 1.34 -22.8% 4.67 -73.0%
CC/CC, U2=free 128.06 11.7% 1.40 -19.7% 4.23 -75.6%
CC/SS, U2=free 110.85 -3.3% 1.27 -27.0% 5.12 -70.4%
CC/SS 107.55 -6.2% 1.23 -29.3% 5.51 -68.1%
SS/SS 85.94 -25.0% 1.59 -8.6% 12.06 -30.3%

Table 6.4: Series 1, no imperfection: maximum stress, in-plane displacement and out-of-plane displacement
difference between the test results and the Abaqus/Standard model for the five different boundary

conditions.

Results for series 1: Imperfection size B/100
An initial imperfection of B/100, which equals 3.2 millimetres, is applied. The ’𝐶𝐶/𝐶𝐶’ and ’𝐶𝐶/𝐶𝐶,
U2=free’ models are a good approximation of the ultimate strength, of which the first one reaches
the exact value of 103 MPa. The other models underestimate the ultimate strength by at least 6%.
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The overall in-plane displacement is relatively accurate: the first four boundary conditions undervalue
the displacement by 10%, and the ’𝑆𝑆/𝑆𝑆’ boundary condition overestimates by 3%. All models
underestimate the out-of-plane displacement by at least 25%.

Model Maximum Difference In-plane Difference Out-of-plane Difference
stress (MPa) (%) displ. (mm) (%) displ. (mm) (%)

Test 103.02 1.49 13.74
CC/CC 103.21 0.2% 1.36 -9.2% 6.31 -54.1%
CC/CC, U2=free 104.65 1.6% 1.37 -8.2% 6.18 -55.0%
CC/SS, U2=free 96.23 -6.6% 1.35 -9.8% 6.68 -51.4%
CC/SS 96.02 -6.8% 1.33 -10.7% 6.66 -51.5%
SS/SS 82.20 -20.2% 1.54 3.4% 10.23 -25.5%

Table 6.5: Series 1, imperfection size B/100: maximum stress, in-plane displacement and out-of-plane displacement difference
between the test results and the Abaqus/Standard model for the five different boundary conditions.

Results for series 1: Imperfection size B/33
An initial imperfection of B/33, which equals 9.6 millimetres, is applied. All models underestimate
the ultimate strength, of which ’𝐶𝐶/𝐶𝐶’ and ’𝐶𝐶/𝐶𝐶, U2=free’ provide the best result with an
underestimation of 13%. The ’𝐶𝐶/𝐶𝐶′ and ’𝐶𝐶/𝑆𝑆’ model have an in-plane displacement difference of
only 0.8% and 1.7%, respectively. The other three models have a maximum displacement difference
of 4% in the in-plane direction. All boundary conditions underestimate the out-of-plane displacement
by at least 50%.

Model Maximum Difference In-plane Difference Out-of-plane Difference
stress (MPa) (%) displ. (mm) (%) displ. (mm) (%)

Test 103.02 1.49 13.74
CC/CC 88.71 -13.9% 1.50 0.8% 5.74 -58.2%
CC/CC, U2=free 88.98 -13.6% 1.54 3.4% 6.01 -56.2%
CC/SS, U2=free 86.45 -16.1% 1.55 4.0% 6.12 -55.4%
CC/SS 86.50 -16.0% 1.52 1.7% 5.89 -57.2%
SS/SS 71.10 -31.0% 1.44 -3.7% 6.93 -49.6%

Table 6.6: Series 1, imperfection size B/33: maximum stress, in-plane displacement and out-of-plane displacement difference
between the test results and the Abaqus/Standard model for the five different boundary conditions.

6.4.2. End-shortening and deflection graphs for series 2

Figure 6.17: Stress-end shortening curves for series 2 with
zero imperfection

Figure 6.18: Stress-central deflection curves for series 2 with
zero imperfection
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Figure 6.19: Stress-end shortening curves for series 2 with
imperfection size B/100

Figure 6.20: Stress-central deflection curves for series 2 with
imperfection size B/100

Figure 6.21: Stress-end shortening curves for series 2 with
imperfection size B/33

Figure 6.22: Stress-central deflection curves for series 2 with
imperfection size B/33

Results for series 2: No imperfection
For the plate without initial imperfections, the ’𝐶𝐶/𝐶𝐶’ and ’𝐶𝐶/𝐶𝐶, U2=free’ model underestimate
the ultimate strength by respectively 1.2% and 3%. The top four boundary conditions in the
graph undervalue the out-of-plane displacement by roughly 25%. The ’𝑆𝑆/𝑆𝑆’ boundary condition
underestimates the out-of-plane displacement by 45%, but this model gives the best approximation
for the in-plane displacement, with a difference of 9%.

Model Maximum Difference In-plane Difference Out-of-plane Difference
stress (Mpa) (%) displ. (mm) (%) displ. (mm) (%)

Test 182.56 2.36 7.18
CC/CC 180.29 -1.2% 1.82 -23.2% 1.43 -80.1%
CC/CC, U2=free 177.11 -3.0% 1.83 -22.7% 1.16 -83.9%
CC/SS, U2=free 170.09 -6.8% 1.77 -25.3% 1.59 -77.9%
CC/SS 169.03 -7.4% 1.71 -27.6% 1.79 -75.1%
SS/SS 109.65 -39.9% 1.31 -44.5% 6.52 -9.3%

Table 6.7: Series 2, no imperfection: maximum stress, in-plane displacement and out-of-plane displacement difference
between the test results and the Abaqus/Standard model for the five different boundary conditions.

Results for series 2: Imperfection size B/100
An initial imperfection of B/100, which equals 3.2 millimetres, is applied to the plates. The ultimate
strength is best approached by the first two models,’ 𝐶𝐶/𝐶𝐶’ and ’𝐶𝐶/𝐶𝐶, U2=free’, with an un-
derestimation of 6%. All models have an in-plane displacement difference below 5% with ’𝐶𝐶/𝐶𝐶,
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U2=free’ providing the most accurate result with a difference of 0.4%. The first four models have an
out-of-plane difference of around 65%, while the fifth model, ’𝑆𝑆/𝑆𝑆’, has an underestimation of 12%.

Model Maximum Difference In-plane Difference Out-of-plane Difference
stress (Mpa) (%) displ. (mm) (%) displ. (mm) (%)

Test 148.36 1.44 8.13
CC/CC 138.18 -6.9% 1.47 2.0% 2.76 -66.0%
CC/CC, U2=free 139.40 -6.0% 1.51 4.7% 2.57 -68.4%
CC/SS, U2=free 129.96 -12.4% 1.44 -0.4% 2.93 -64.0%
CC/SS 128.88 -13.1% 1.40 -2.8% 3.10 -61.9%
SS/SS 102.33 -31.0% 1.39 -3.3% 7.17 -11.8%

Table 6.8: Series 2, imperfection size B/100: maximum stress, in-plane displacement and out-of-plane displacement difference
between the test results and the Abaqus/Standard model for the five different boundary conditions.

Results for series 2: Imperfection size B/33
An initial imperfection of B/33, which equals 9.6 millimetres, is applied to the plates. The first twomodels
approximate the ultimate strength the best, with an underestimation of around 15%. The in-plane and
out-of-plane displacement are most accurate for the ’𝑆𝑆/𝑆𝑆’ model with an underestimation of 6% and
25%, respectively. The other four models undervalue the in-plane and out-of-plane displacement by
roughly 11% and 50%, respectively.

Model Maximum Difference In-plane Difference Out-of-plane Difference
stress (Mpa) (%) displ. (mm) (%) displ. (mm) (%)

Test 132.19 1.66 8.60
CC/CC 111.82 -15.4% 1.48 -11.1% 3.98 -53.7%
CC/CC, U2=free 111.96 -15.3% 1.49 -10.4% 3.97 -53.8%
CC/SS, U2=free 106.51 -19.4% 1.46 -12.1% 4.12 -52.1%
CC/SS 106.40 -19.5% 1.45 -12.7% 4.16 -51.7%
SS/SS 94.89 -28.2% 1.56 -6.0% 6.46 -24.9%

Table 6.9: Series 2, imperfection size B/33: maximum stress, in-plane displacement and out-of-plane displacement difference
between the test results and the Abaqus/Standard model for the five different boundary conditions.

6.4.3. Numerical agreement with experimental results
Table 6.10 presents the average values of the six situations for the five types of boundary conditions.
The simply supported boundary condition ’𝑆𝑆/𝑆𝑆’ gives the overall best result for the in-plane and
out-of-plane displacement of the plate. However, the essential factor for buckling is the ultimate
strength of the material. The model with the simply supported boundary conditions returns a significant
underestimation of on average 29% of the strength of the plate. The ultimate strength is best
approximated by the first model with the clamped boundary conditions ’𝐶𝐶/𝐶𝐶’ which an average
difference of 7.7%. Even though the test rig allowed some degree of movement and rotation, the
model with all degrees of freedom restricted performs the best when modelling the ultimate strength of
the plate. When additional degrees of freedom are introduced in the model, the underestimation of the
material’s ultimate strength is increased. Table 6.11 shows the best model for each of the six cases.

Model Difference Difference in-plane Difference out-of-plane
ultimate strength (%) displacement (%) displacement (%)

CC/CC 7.7% 11.5% 64.2%
CC/CC, U2=free 8.5% 11.5% 65.5%
CC/SS, U2=free 10.8% 13.1% 61.9%
CC/SS 11.5% 14.1% 60.9%
SS/SS 29.2% 11.6% 25.2%

Table 6.10: Average difference in ultimate strength, in-plane displacement and out-of-plane displacement for all six situations
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Series Size of Maximum Diff. In-plane Diff. Out-of-plane Difference
imp. (mm) stress (Mpa) (%) displ. (mm) (%) displ. (mm) (%)

S1 No imp. CC/SS, U2=free -3.3% SS -8.6% SS -30.3%
S1 3.2 CC 0.2% SS 3.4% SS -25.5%
S1 9.6 CC/CC, U2=free -13.6% CC 0.8% SS -49.6%
S2 No imp. CC -1.2% CC/CC, U2=free -23.2% SS -9.3%
S2 3.2 CC/CC, U2=free -6.0% CC/SS, U2=free -0.4% SS -11.8%
S2 9.6 CC/CC, U2=free -15.3% SS -6.0% SS -24.9%

Table 6.11: Overview of which type of boundary conditions approximates the test result the closest, for each of the six models

6.5. Part 2: Initial imperfections
The first part of this chapter has verified that the lower bound fracture energy can be used for
progressive failure analysis to determine non-linear buckling behaviour. In the second part, the
influence of initial imperfections on the buckling strength of a GFRP laminate is studied, for which the
lower bound approach will be applied. Current design codes define the elastic buckling strength as
an upper bound value and consider strength reduction due to initial imperfections via partial safety
factors, and other factors, to characteristic strength values. There is a lack of data regarding the
buckling strength reduction of GFRP plates, and it is unsure if the design code recommendations are
too conservative or even underestimating the strength reduction for certain situations.

The influence of initial imperfections on the ultimate compressive strength of an anisotropic GFRP plate
are investigated. Progressive failure analysis is applied to include the effect of damage and determine
the load-carrying capacity for structures with post-buckling behaviour. A buckling curve is created by
varying the thickness of the plate. The influence of geometric imperfections on the strength reduction
is analysed by applying different sizes of initial imperfections. The material of the plate is as discussed
in chapter 5. Plate geometry and boundary conditions are similar to the analysis performed in the first
part of this chapter. Two types of boundary conditions are applied to the model: clamped and simply
supported. In practice, most structures are in between such boundary conditions. In the last part, it
was determined that those two types best replicate the strength and deformability of the plate. The goal
is to quantify the influence of the initial imperfections on the plate’s strength reduction and determine if
the boundary conditions alter the resulting buckling curve.

6.5.1. Model properties
Progressive failure analysis of a GFRP plate requires the following parameters to be specified:

• The linearly elastic response of the undamaged material

• Damage initiation criteria

– Hashin’s failure criteria
– Ultimate stresses

• Damage evolution response

– Choice of element removal
– Fracture energy for each of the four failure modes

The stiffness parameters of the material describe the linearly elastic response of the undamaged
material. Hashin’s damage initiation and evolution criteria are enforced as described in chapter 2.
Linear degradation is chosen for element removal, as it is the only available option in Abaqus/Standard
for the progressive failure of anisotropic materials. The material properties, presented in table 6.12,
areas concluded in chapter 5. The lay-up of themulti-directional laminate is used: [90/03/45/−45/02]𝑠.
A regular mesh of 96 by 46 conventional shell elements is applied, as was recommended in the mesh
refinement study by Hayman et al. (2011), which results in a characteristic element length of 6.95
millimetres. A 10% increase of the lower bound fracture energy is implemented, for which the model
properties are stated in table 6.13.
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𝜎 (MPa) 𝐸 (MPa) 𝜖 (-) 𝐺𝑐 N/mm2

Tension in fibre direction (TF) 839.53 41700 0.0201 8.44
Compression in fibre direction (CF) 425.89 41700 0.0102 2.17
Tension in matrix direction (TM) 25.17 12000 0.0021 0.03
Compression in matrix direction (CM) 122.56 12000 0.0102 0.63

Table 6.12: Material properties of the GFRP plate

TF CF TM CM

𝐺𝑐 + 10% (N/mm) 64.50 16.60 0.20 4.78

Table 6.13: Model properties for the fracture energy

6.5.2. Geometry and boundary conditions
The size of the plate is 320 by 640, which is equal to the width and twice the length as for the buckling
models discussed in part I of this chapter. The thickness is varied from 6.88 millimetres, the thickness
of the MD specimens, to 48.00 millimetres, which equals a plate slenderness of approximately 0.5.

Figure 6.23: Dimensions of the plate

Two types of boundary conditions are applied to evaluate the dependency of the buckling curve on the
boundary conditions of the numerical model. The degrees of freedom for both the simply supported
and clamped boundary conditions are shown in figure 6.25 and 6.26. Figure 6.24 displays the degrees
of freedom of a conventional shell element. In both cases, displacement is applied in the x-direction on
the two shorter sides of the plate. The edges are allowed to rotate for the simply supported boundary
conditions, while all degrees of freedom are restricted for the clamped boundary conditions.
6.23.

Figure 6.24: Schematic view of the six
degrees of freedom

Figure 6.25: Simply supported boundary
conditions

Figure 6.26: Clamped boundary
conditions
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6.5.3. Initial imperfection
Six different initial imperfections are applied to the plate. These imperfections are created by scaling
the size of the first buckling mode shape in relation to the width of the plate ’𝐵’. The applied sizes are
as follows: B/1000, B/640, B/320, B/240, B/160 and B/125. These ratios equal imperfections ranging
from 0.32 to 2.56 millimetres. The value of B/125 equals the limiting value of L/125, as stated in CUR96
(CUR Recommendation 96, 2017), with 𝐿 equal to the smallest dimension of width or length of the plate.

Figure 6.27: Shape of the geometric imperfection for the
simply supported model

Figure 6.28: Shape of the geometric imperfection for the
clamped model

6.6. Numerical results
For both boundary conditions, eleven plate thicknesses are analysed with six different initial
imperfection each. The force-displacement curves are shown in appendix D. In the following sections,
the influence of the initial imperfections on the strength reduction of the plate will be discussed, and if
the type of boundary conditions influences the obtained buckling curve. All curves show a significant
drop in strength after the failure of the plate, as expected from implementing the lower bound fracture
energy.

6.6.1. Buckling curve
The plate slenderness, 𝜆, is a ratio used to classify plates with different geometries and material
properties. The slenderness of a plate depends on the critical buckling stress of plate, 𝜎𝑐𝑟, and the
material strength of a perfect plate under uniform loading, 𝑓𝑢𝑙𝑡. The material strength depends on the
chosen failure criteria.

𝜆 = √𝑓𝑢𝑙𝑡𝜎𝑐𝑟
(6.1)

In the case of 𝜆 = 1, the compressive load coincides with the critical loading. The slenderness is
defined for a plate without imperfections and can be derived analytically. The failure load of a plate with
initial imperfections, 𝑓𝑓𝑎𝑖𝑙, can be determined with progressive failure analysis. When loading is applied
to a plate with eccentricities, additional bending moments arise and additional stresses are introduced.
The reduction factor, 𝜌, describes the strength reduction of the imperfect plate:

𝜌 =
𝑓𝑓𝑎𝑖𝑙
𝑓𝑢𝑙𝑡

(6.2)

Table 6.15 shows the critical stress, slenderness and reduction factors for the different plate
thicknesses, applied initial imperfections and boundary conditions. In appendix C, the numerical
critical stress values are compared to the analytical determined critical stress values. ′𝐶𝐶′ equals
the clamped boundary conditions as depicted in figure 6.26 and ′𝑆𝑆′ equals the simply supported
boundary conditions as shown in figure 6.25. A buckling curve is created from the slenderness
values and reduction factors to represent the influence of geometric imperfections on the buckling
failure behaviour of the plate. This is done for both boundary conditions and each of the six initial
imperfections. The buckling curves can be found in figure 6.29 and 6.30.
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The horizontal axis of the buckling curves indicates the plate slenderness, and the vertical axis displays
the reduction factor. The elastic buckling strength is depicted with a black dotted line; this line
represents the strength reduction due to buckling without residual stresses and geometric imperfections.
The horizontal plateau represents thick plates, where the material strength is governing. Around
1.5 slenderness, the elastic buckling strength crosses the curves with initial imperfections. Plate
slenderness above 1.5 equals a plate where the critical buckling stress is below the material strength
of the plate. When they reach the critical buckling stress, these plates will buckle and continue to carry
the loading until the material strength is reached.

Thickness BC 𝜎𝑐𝑟 𝜆 𝜌 (-)
(mm) (-) (N/mm2) (-) B/1000 B/640 B/320 B/240 B/160 B/125

6.88 CC 58.39 2.42 0.323 0.323 0.322 0.320 0.319 0.317
10.40 CC 135.16 1.59 0.453 0.453 0.455 0.449 0.446 0.443
13.76 CC 231.11 1.21 0.670 0.648 0.602 0.577 0.539 0.523
16.00 CC 306.63 1.05 0.793 0.754 0.689 0.659 0.611 0.586
20.64 CC 486.97 0.84 0.905 0.875 0.808 0.758 0.718 0.685
24.00 CC 632.83 0.73 0.933 0.908 0.851 0.804 0.766 0.733
27.52 CC 794.54 0.66 0.947 0.923 0.878 0.836 0.800 0.774
32.00 CC 1006.97 0.58 0.962 0.940 0.898 0.860 0.829 0.797
34.40 CC 1121.35 0.55 0.964 0.945 0.905 0.870 0.838 0.808
41.28 CC 1441.14 0.49 0.966 0.956 0.924 0.895 0.859 0.831
48.00 CC 1729.62 0.44 0.970 0.953 0.923 0.893 0.872 0.846
6.88 SS 31.50 3.29 0.348 0.348 0.349 0.350 0.350 0.351
10.40 SS 70.28 2.20 0.418 0.417 0.416 0.414 0.413 0.413
13.76 SS 120.90 1.68 0.416 0.419 0.424 0.426 0.428 0.428
16.00 SS 161.22 1.45 0.466 0.451 0.447 0.443 0.440 0.439
20.64 SS 260.32 1.14 0.679 0.654 0.603 0.577 0.541 0.523
24.00 SS 343.86 1.00 0.796 0.759 0.706 0.677 0.627 0.604
27.52 SS 440.59 0.88 0.881 0.849 0.781 0.750 0.700 0.669
32.00 SS 575.29 0.77 0.926 0.900 0.842 0.810 0.759 0.727
34.40 SS 651.91 0.72 0.937 0.915 0.862 0.834 0.785 0.752
41.28 SS 884.62 0.62 0.958 0.941 0.900 0.876 0.834 0.803

Table 6.14: Numerical results for the critical stress, relative slenderness and reduction factor for the different
plate thickness, varying initial imperfection sizes and two types of boundary conditions

Figure 6.29: Buckling curve for different initial imperfections
with clamped boundary conditions

Figure 6.30: Buckling curve for different initial imperfections
with simply supported boundary conditions
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6.6.2. Design code
CUR Recommendation 96 (2017) considers the buckling strength of a plate to be equal to the elastic
buckling strength, which does not take the non-linear buckling behaviour due to residual stresses and
geometric imperfections into account. The reduction factor as determined from the elastic buckling
strength is shown with a black dotted line in figure 6.29 and 6.30. It is the upper value for thick and
mid-thick plates that do not reach the critical buckling stress. The design value for the compressive force
is multiplied by the reduction factor obtained from the elastic buckling curve. For numerical analysis,
the recommendation is provided to include all imperfections by modelling a dominant imperfection
with appropriate magnitude, such as the out-of-straightness imperfection with amplitude B/125. For
plate slenderness around 1.0, buckling curves in figure reffig:curveCC and 6.30 show a difference
in reduction factor compared to the elastic buckling strength of 15% and 40% for B/1000 and B/125,
respectively. The conservative option to implement B/125 leads to the use of unnecessary thick plates.

6.6.3. Influence of initial imperfection size
The influence of geometrical imperfections on the strength of the plate is shown in figure 6.29 and 6.30.
For thick and mid-thick plates, the plates fail before they reach the critical buckling stress, and a larger
imperfections result in a higher strength reduction. Large initial imperfections can result in 40% strength
reduction compared to the elastic buckling strength. The difference in reduction factor between an initial
imperfection of B/1000 and B/125 is shown in table 6.15 for clamped boundary conditions and in table
6.16 for simply supported boundary conditions. The results are compared in figure 6.31.

Figure 6.31: Difference in reduction factor between
B/1000 and B/125 for simply supported [SS] and

clamped [CC] boundary conditions

The difference in reduction factor is larger for the plate with clamped boundary conditions than for the
plate with simply supported boundary conditions. The largest difference in ultimate strength between
an initial imperfection of B/1000 and B/125 can be found for plate slenderness around 1.0, where the
critical stress coincides with the ultimate strength of a perfect plate. Here, an initial imperfection of
B/125 resulted in 40% strength reduction compared to the elastic buckling strength. For the plates
with clamped boundary conditions, a reduction factor difference of up to 26% is found. The difference
is most significant for slenderness values between 0.84 and 1.21. For simply supported boundary
conditions, the largest difference can be found for a slenderness range of 0.88 till 1.14, reaching a
difference of 24%. On average, the difference in reduction factor is 16.14% and 14.65%, for clamped
and simply supported boundary conditions, respectively.

Plates with relatively high slenderness have an ultimate strength higher than their critical buckling
stress. The plates buckle when the critical load is reached and continue to carry the loading. These
thin plates have the lowest buckling resistance. The size of the initial imperfection does not significantly
influence the ultimate strength, and the difference in reduction factor is below 3%. For plates with
slenderness above 1.0, the difference in reduction factor for different imperfection sizes decreases for
an increase in plate slenderness.
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Plate thickness (mm) 𝜆 Difference (%)

6.88 2.42 1.83
10.40 1.59 2.32
13.76 1.21 22.03
16.00 1.05 26.13
20.64 0.84 24.37
24.00 0.73 21.45
27.52 0.66 18.24
32.00 0.58 17.22
34.40 0.55 16.23
41.28 0.49 14.39
48.00 0.44 13.33

Table 6.15: Difference in reduction factor for initial
imperfection B/1000 and B/125 for clamped boundary

conditions

Plate thickness (mm) 𝜆 Difference (%)

6.88 3.29 -0.81
10.40 2.20 1.11
13.76 1.68 -2.87
16.00 1.45 5.94
20.64 1.14 23.01
24.00 1.00 24.14
27.52 0.88 24.08
32.00 0.77 21.45
34.40 0.72 19.75
41.28 0.62 16.12
48.00 0.55 13.81

Table 6.16: Difference in reduction factor for initial
imperfection B/1000 and B/125 for simply supported

bounday conditions

6.6.4. Influence of boundary conditions
The buckling curves for an initial imperfection size of B/1000 and B/125 with simply supported (SS) and
clamped (CC) boundary conditions are compared in 6.32 and 6.33, to analyse if changing the boundary
conditions results in a different buckling curve.

Imperfection size B/1000
For plate slenderness between 0.55 and 0.84, there is no difference in the reduction factor for both
boundary conditions. For mid-thick plates, ranging from 1.00 and 1.50, the CC curve is slightly shifted
to the right; clamped thinner plates have the same strength reduction as thicker simply supported plates.
For thin plates with slenderness above 1.50, the situation switches around.

Imperfection size B/125
For slenderness values of 0.72 and lower, thick clamped plates have a slightly higher strength reduction
than similar simply supported plates. When the plate slenderness is between 0.72 and 1.05, this
difference disappears. The clamped plates show less strength reduction for higher slenderness values
except for the thickest clamped plate, which has a notable lower strength compared to a simply
supported plate with the same thickness.

Figure 6.32: Reduction factor comparison for both types
of boundary conditions and initial imperfection of B/1000

Figure 6.33: Reduction factor comparison for both types
of boundary conditions and initial imperfection of B/125

The strength reduction values for slenderness above 1.50 differ significantly. A possible explanation
could be the difference in initial imperfection shape. The imperfection size is the same, but the out-
of-plane deformation does not coincide. Initial imperfections have the most significant influence on
mid-thick plates. The highest strength reduction between an initial imperfection of B/1000 and B/125
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was found for plate slenderness around 1.0. When comparing the curves of both boundary conditions
for this slenderness value, the reduction factor is reduced by 0.05 for the simply supported curve,
which equals a lower buckling strength. This difference occurs for a small imperfection of B/1000
and disappears for a large imperfection of B/125. The largest difference between the two boundary
conditions is found for plate slenderness around 1.45; an initial imperfection of B/1000 shows a 0.1
decrease in reduction factor for the buckling curve with simply supported boundary conditions. For an
imperfection size B/125, this decrease reduces to 0.05.

6.6.5. Failure modes
To create a better understanding of why the plates fail, the failure behaviour of four of the models is
analysed. For each model, it is studied which failure mode occurs first and which failure mode results
in failure of the plate. The models are all in the slenderness range of 1.00 and 1.50. In figure D.12
up to and including D.2, the force-displacement curves of the four plates are shown. The four models
are a clamped plate with an initial imperfection size of B/1000 and B/125 and a simply supported plate
with the same imperfections. On each of the curves, the displacement at which a certain failure mode
occurs is plotted. The black dotted line equals the critical buckling stress obtained from linear buckling
analysis (LBA).

Figure 6.34: Force-displacement curve for plate
thickness of 13.76 mm, 𝜆 = 1.21, initial imperfection size

of B/1000 and clamped boundary conditions

Figure 6.35: Force-displacement curve for plate
thickness of 13.76 mm, 𝜆 = 1.21, initial imperfection size

of B/125 and clamped boundary conditions

Figure 6.36: Force-displacement curve for plate
thickness of 20.64 mm, 𝜆 = 1.14, initial imperfection size
of B/1000 and simply supported boundary conditions

Figure 6.37: Force-displacement curve for plate
thickness of 20.64 mm, 𝜆 = 1.14, initial imperfection size
of B/125 and simply supported boundary conditions

For all four models, the material fails when the fibres fail in compression (FC). For the small initial
imperfection of B/1000, the first failure mode is matrix failure in compression (MC), followed by matrix
failure in tension (MT). For the larger initial imperfections of B/125, these two failure modes are switched.
First, the matrix fails in tension, followed by matrix failure in compression. The difference between the
clamped and simply supported boundary conditions is that fibre failure in tension (FT) does not occur
for the latter. For the applied imperfection of B/1000, all failure modes occur close to the point of failure,
while for an applied imperfection of B/125, the first two failure modes occur at a lower displacement.
The failure modes are displayed in figure 6.38 up to and including 6.53.
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Figure 6.38: Clamped BC and initial imperfection of
B/1000 - First failure mode: matrix in compression

Figure 6.39: Clamped BC and initial imperfection of
B/1000 - Second failure mode: matrix in tension

Figure 6.40: Clamped BC and initial imperfection of
B/1000 - Third failure mode: fibres in compression

Figure 6.41: Clamped BC and initial imperfection of
B/1000 - Fourth failure mode: fibres in tension

The first failure of the matrix in compression occurs in ply 1, which is the top, and because of symmetry,
the bottom ply. This ply is in the 90∘ direction. The second and third failure mode occur in the third ply,
which is oriented in the 0∘ direction. The fourth failure mode is again in the first ply and occurs due to
damage at the edges. The ply in which each failure mode occurs is the same for the initial imperfection
of B/1000 and B/125. However, the larger imperfection shows an increased damaged area for the first
three failure modes.

Figure 6.42: Clamped BC and initial imperfection of
B/125 - First failure mode: matrix in tension

Figure 6.43: Clamped BC and initial imperfection of
B/125 - Second failure mode: matrix in compression

Figure 6.44: Clamped BC and initial imperfection of
B/125 - Third failure mode: fibres in compression

Figure 6.45: Clamped BC and initial imperfection of
B/125 - Fourth failure mode: fibres in tension

When the failure modes for the two types of boundary conditions are compared, a couple of differences
can be seen. The damaged area is more significant for the simply supported plates, which relates to the
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first buckling shape mode for this boundary condition. For the clamped boundary conditions, there is
notable damage around the edges. Due to a larger flat area at the edges, the stress concentrations will
move around the imperfection and towards these flat areas that can still resist loading. This could also
be related to why fibres’ failure in tension only occurs for the plates with clamped boundary conditions.
The failure occurs near the edges, and for the simply supported plates, the stress can not arise at this
location.

Figure 6.46: Simply supported BC and initial imperfection
of B/1000 - First failure mode: matrix in compression

Figure 6.47: Simply supported BC and initial imperfection
of B/1000 - Second failure mode: matrix in tension

Figure 6.48: Simply supported BC and initial imperfection
of B/1000 - Third failure mode: fibres in compression

Figure 6.49: Simply supported BC and initial
imperfection of B/1000 - No failure of fibres in tension

Figure 6.50: Simply supported BC and initial imperfection
of B/125 - First failure mode: matrix in tension

Figure 6.51: Simply supported BC and initial imperfection
of B/125 - Second failure mode: matrix in compression

Figure 6.52: Simply supported BC and initial imperfection
of B/125 - Third failure mode: fibres in compression

Figure 6.53: Simply supported BC and initial
imperfection of B/125 - No failure of fibres in tension
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6.7. Conclusion
A two-part parametric study is performed. The first part is performed to validate if progressive
failure analysis with Hashin damage criteria based on lower bound fracture energy can be used for
determining the non-linear buckling behaviour of a GFRP laminate. In the second part, the effects
of initial imperfections on the ultimate compressive strength of composite plate-like structures are
studied. In part 1, numerical analysis is performed on experimental tests obtained from literature. Two
different lay-ups and three different initial imperfections size are implemented in these tests. The
buckling behaviour of the plates was tested in a test rig, which allowed for some degree of movement.
By applying different types of boundary conditions, it was determined that restricting the movement
of the plate in all directions most accurately modelled the test set-up. For this type of boundary
conditions, the numerical determined ultimate strength had an average difference of 7.7%. When
rotation was allowed in the model, the in-plane and out-of-plane displacement of the model were better
approximated, but the ultimate strength deviated by 30%. The lower bound fracture energy, increased
by 10%, was implemented. The numerical results all showed an abrupt drop in strength and stiffness
when the ultimate strength of the plate was reached. The lower bound fracture energy resulted in
an average strength difference of 7.7%, partly explained by the uncertainties about the boundary
conditions and material properties. It is concluded that the Hashin damage criteria with lower bound
fracture energy can be used for progressive ply analysis of non-linear buckling analysis.

In the second part, a non-linear buckling analysis is performed to study the influence of initial
imperfections on the buckling strength of a GFRP laminate. Two boundary conditions are applied to
analyse if these model properties influence the resulting buckling curve. The highest strength reduction
between an initial imperfection of B/1000 and B/125 was found for plate slenderness around 1.0. When
comparing the reduction factor for this plate slenderness for both boundary conditions, the reduction
factor is reduced by 0.05 for the simply supported curve, which equals a lower buckling strength. This
difference occurs for a small imperfection of B/1000 and disappears for a large imperfection of B/125.
The largest difference between the two boundary conditions is found for plate slenderness around
1.45; an initial imperfection of B/1000 shows a 0.1 decrease in reduction factor for the buckling curve
with simply supported boundary conditions. For an imperfection size B/125, this decrease reduces
to 0.05. Failure of fibres in compression is for both boundary conditions the failure mode that results
in failure of the plate. For simply supported boundary conditions, the matrix fails first in compression,
followed by matrix failure in tension. For clamped plates, the occurring order of these failure modes is
switched.

The buckling curves are analysed to determine the influence of initial imperfections on the strength
of a GFRP plate. A higher initial imperfection results in a higher ultimate strength reduction factor
and thus a lower buckling resistance. Higher plate slenderness equals thinner plates, which are more
prone to buckling. The influence of the imperfection size is most apparent for the plates with relative
slenderness around 1.0, where the critical stress coincides with the ultimate strength of the perfect
plate. Here, an initial imperfection of B/125 resulted in 40% strength reduction compared to the elastic
buckling strength. For clamped boundary conditions, the imperfection size results in a difference in
the reduction factor of up to 26% for slenderness values between 0.84 and 1.21. For simply supported
boundary conditions, a reduction factor difference of 24% can be found for the slenderness range of
0.88 to 1.14. The conservative option of an imperfection size of B/125 results in unnecessary thick
plates.
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Conclusion & recommendation

7.1. Conclusion
This paper investigates how the non-linear buckling behaviour of GFRP plates can be predicted with
progressive failure analysis. Abaqus implement the Hashin damage criteria as default criteria for the
damage behaviour of FRP materials. These criteria require the input of the material’s fracture energy.
An accurate implementation of the fracture energy is necessary because the fracture energy of each
failure mode influences the damaged area, state of damage of the finite elements, the ultimate load
prediction and the post-failure behaviour. Due to a lack of experimental data, the actual fracture
energy of the material could not be determined, and the lower bound value is implemented to analyse
the buckling behaviour of a GFRP plate. The lower bound fracture energy is a conservative option for
modelling failure of a material; it equals abrupt failure and thus no post-failure load carrying capacity
in the material. However, when the actual fracture energy of the material is lower than the determined
lower bound value, the fracture toughness of the material is overestimated.

The plate’s material properties and lower bound fracture energy are determined from numerical analysis
of uni-directional coupon experiments. Numerical analysis of multi-directional coupon experiments
validated the use of lower bound fracture energy for progressive failure analysis. Implementation of
the lower bound fracture energy for non-linear buckling analysis was affirmed by numerical analysis of
experimental buckling tests.

A parametric study is performed to determine the load-carrying capacity of a GFRP plate with
post-buckling behaviour. A buckling curve is created by varying the thickness of the plate. The
influence of geometric imperfections on buckling strength reduction is analysed by applying different
initial imperfections. Two types of boundary conditions are enforced to determine if the boundary
conditions alter the resulting buckling curve. The following conclusions are drawn in this report:

• Abaqus/Standard implemented the Hashin damage criteria for FRPmaterial by default. Damaged
quasi-brittle materials experience strain-softening, which can lead to deformation localisation in
a single element. To prevent the localisation of smeared cracking into arbitrarily small regions,
the stress is related to the deformation of a finite volume. This is done by adjusting the energy
dissipated by each failure mechanism and defining the fracture energy as a material parameter.
The fracture energy is now dependent on a characteristic length (𝐿𝑐), which estimates the fracture
process zone length based on material properties. For both conventional and continuum shell
elements, the characteristic length is equal to the square root of the area of the element.

• Numerical issues can occur when the fracture energy input for the numerical analysis is too
low. Abaqus/Standard calculates the minimal required fracture energy that leads to failure
based on the material properties and the element’s actual characteristic length. Deformation
of the elements can lead to a change in the characteristic element length. Abaqus/Standard is
programmed to increase the implemented fracture energy if it is below the minimum required
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value. After the material reaches the ultimate strength, a more gradual stress decrease occurs
instead of the expected abrupt drop in strength, and a low fracture energy value is not a
conservative solution. Adding a minimum of two % to the fracture energy lower bound value
prevented this problem.

• Progressive failure analysis of four multi-directional coupon experiments verified that increasing
the lower bound fracture energy value does not change the validity of the numerical results. The
lower bound fracture energy input for thesemodels was increased by 5% and 10%. The numerical
results are in good agreement with the test results.

• The lower bound fracture energy, increased by 10%, was implemented for progressive failure
analysis of non-linear buckling experiments. Two GFRP plates with varying thickness and three
different types of initial imperfections were analysed. The ultimate strength was estimated with
an average difference of 7.7% compared to the experimental results.

• A clamped and simply supported type of boundary conditions were applied for non-linear buckling
analysis. The buckling curves were comparable for slenderness values below 1.50. The most
significant difference in the reduction factor for the two boundary conditions is found for plate
slenderness of 1.45; an initial imperfection of B/1000 showed a 0.1 decrease of the reduction
factor for the simply supported plate. For an imperfection size of B/125, this decrease reduced
to 0.05. Failure of the fibres in compression is for both boundary conditions the failure mode that
results in failure of the plate.

• Initial imperfections in a plate reduce the buckling strength of the material. The influence of the
imperfection size is most apparent for plates with relative slenderness around 1.0, where the
critical stress coincides with the ultimate strength of the perfect plate. An initial imperfection
of B/125 resulted in a 40% strength reduction compared to the elastic buckling strength. The
average difference in reduction factor between an initial imperfection of B/1000 and B/125 was
16%, with a maximum difference of 26%. The conservative option of B/125, as recommended
by the design codes, resulted in up to 26% higher strength reduction compared to an initial
imperfection of B/1000, and can lead to over dimensioning of the plates.

7.2. Recommendation
This study can be extended by performing further research into the following topics:

• Experimental tests are available for the determination of the fracture toughness of a material.
In the absence of experimental data, the stress-strain curve of coupon tests can be used to
approximate the fracture energy of a material. Due to the large scatter in data from the coupon
tests, the fracture energy could not be determined, and the lower bound value was used. It
is recognised that this report does not model the actual post-failure behaviour. Experimental
research for determining fracture energy values of GFRP plates is highly recommended to obtain
more data to improve the numerical analyses and increase the understanding of GFRP failure
behaviour.

• The fracture energy is implemented in relation to the characteristic element length, which
represents the fracture process zone. The relation was demonstrated by a small sensitivity study,
where the fracture energy input and element size were scaled separately. An additional sensitivity
study could provide valuable information about the maximum allowable mesh size to determine
a good fit between low computational costs and numerical accuracy.

• Previous literature has shown that a continuum stacked shell approach with cohesive zone
modelling can capture failure behaviour of FRP well. The use of Abaqus/Standard led to
convergence issues when this modelling method was applied. A repeat of this study, with a
continuum stacked shell approach with cohesive zone modelling, could better capture the failure
behaviour and improve the understanding of the influence of the fracture energy on GFRP failure
behaviour. Using explicit analysis instead of implicit analysis should dismiss the convergence
issues.
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• The modelling accuracy of FRP laminates could be increased even more by using a 3D damage
model. The Hashin damage model can only be used for shell elements and not for solid
elements. Implementing the Hashin failure criteria in Abaqus/Explicit, using a user subroutine,
could significantly increase the modelling accuracy.

• In this research, the buckling curves from two plates with different boundary conditions are
compared. The buckling curves are similar, but differences do occur. To the author’s
knowledge, the exact reason for this difference is unknown. Additional research could improve
the understanding of the influence of boundary conditions on non-linear buckling results. The
initial imperfection is applied for both plates as the first mode shape for the respective boundary
condition, similar to steel structures. This difference in mode shape results in different damaged
areas. For both plates, failure of the fibres in compression is the definitive failure mode of the
plate, which is as expected with buckling behaviour. However, it is interesting to notice that the
first failure modes are different.

• It is recognised that the ply thickness used to create the buckling curve is not practical. The
number of variables had to be limited, and it was chosen to vary the thickness of the laminate,
the size of initial imperfection and the boundary conditions. A large ply thickness was needed to
obtain thicker laminates, which have low relative slenderness. A change in laminate lay-up can
be applied to achieve similar slenderness values.
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A
Damage variables one-element model

A.1. Conventional shell element results
The displacement of the conventional shell models with a size of 1.0 by 1.0 millimetre is depicted in
figure A.1, for each of the four failure modes.

(a) Tension in fibre direction (b) Compression in fibre
direction (c) Tension in matrix direction (d) Compression in matrix

direction

Figure A.1: Applied displacement for the conventional shell models of 1.0 by 1.0 millimetres for each of the four loading
directions

A.1.1. Damage variables
The damage variables describe if the model is damaged in one of the four failure modes. For the
1.0 by 1.0 millimetres models the damage variables for a failed element are shown in figure A.7 up
to and including A.10. When the material strength is reached, the damage variable in the direction of
the loading should be ′1.0′, which equals completely damaged, and in the other directions ′0.0′, which
equals no damage.

Tension in fibre direction
The damage variable for tension in fibre direction is ′1.0′, while the other three damage variables are
′0.0′. Only failure in tension in fibre direction occurred.

(a) Damage variable for tension in
fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for tension in
matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.2: The four damage variables for the conventional shell model loaded in tension in fibre directions
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Compression in fibre direction
The damage variable for compression in fibre direction is ′1.0′, while the other three damage variables
are ′0.0′. Only failure in compression in fibre direction occurred.

(a) Damage variable for
tension in fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for
tension in matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.3: The four damage variables for the conventional shell model loaded in tension in fibre directions

Tension in matrix direction
The damage variable for tension in matrix direction is ′1.0′, while the other three damage variables are
′0.0′. Only failure in tension in matrix direction occurred.

(a) Damage variable for
tension in fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for
tension in matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.4: The four damage variables for the conventional shell model loaded in tension in fibre directions

Compression in matrix direction
The damage variable for compression in matrix direction is ′1.0′, while the other three damage variables
are ′0.0′. Only failure in compression in matrix direction occurred.

(a) Damage variable for
tension in fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for
tension in matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.5: The four damage variables for the conventional shell model loaded in tension in fibre directions

For each of the four models, only damage in the failure mode related to the respective loading direction
developed.
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A.2. Continuum shell element results
The displacement of the continuum shell models in each of the four loading directions is depicted in
figure A.1.

(a) Displacement for tension in
fibre direction

(b) Displacement for
compression in fibre direction

(c) Displacement for tension in
matrix direction

(d) Displacement for
compression in matrix direction

Figure A.6: The continuum shell model for each of the four loading directions in the displaced situation

A.2.1. Damage variables
The damage variables describe if the model is damaged in one of the four failure modes. For the
1.0 by 1.0 millimetres models the damage variables for a failed element are shown in figure A.7 up
to and including A.10. When the material strength is reached, the damage variable in the direction of
the loading should be ′1.0′, which equals completely damaged, and in the other directions ′0.0′, which
equals no damage.

Tension in fibre direction
The damage variable for tension in fibre direction is ′1.0′, while the other three damage variables are
′0.0′. Only failure in tension in fibre direction occurred.

(a) Damage variable for
tension in fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for
tension in matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.7: The four damage variables for the continuum shell model loaded in tension in fibre directions

Compression in fibre direction
The damage variable for compression in fibre direction is ′1.0′, while the other three damage variables
are ′0.0′. Only failure in compression in fibre direction occurred.

(a) Damage variable for
tension in fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for
tension in matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.8: The four damage variables for the continuum shell model loaded in tension in fibre directions
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Tension in matrix direction
The damage variable for tension in matrix direction is ′1.0′, while the other three damage variables are
′0.0′. Only failure in tension in matrix direction occurred.

(a) Damage variable for
tension in fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for
tension in matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.9: The four damage variables for the continuum shell model loaded in tension in fibre directions

Compression in matrix direction
The damage variable for compression in matrix direction is ′1.0′, while the other three damage variables
are ′0.0′. Only failure in compression in matrix direction occurred.

(a) Damage variable for
tension in fibre direction

(b) Damage variable for
compression in fibre direction

(c) Damage variable for
tension in matrix direction

(d) Damage variable for
compression in matrix direction

Figure A.10: The four damage variables for the continuum shell model loaded in tension in fibre directions

For each of the four models, only damage in the failure mode related to the respective loading direction
developed.



B
Continuum shell model with cohesive

zone modelling
The multi-directional coupons were modelled as a stacked continuum shell element with cohesive zone
modelling (CZM). The stacked shell approach divides a laminate into multiple sub-laminates for one
or more plies. A continuum shell element represents each sub-laminate, and the sub-laminates are
coupled with a cohesive zone. This method can capture the failure behaviour of FRP well, including
the occurrence of delamination. In this model, the cohesive zone is created with a surface-to-surface
contact between the different plies. This approach is schematised in figure B.1. The contact properties
for the surface-to-surface contact are stated in table B.1.

Figure B.1: Stacked shell method: (a) laminate cross-section, (b) laminate split in plies, (c) shell model of sub-laminates, (d)
stacked shells with CZM (Pearce et al., 2014)

Normal (Mode 1) 1st shear (Mode II) 2nd shear (Mode III)

Strength (MPa) 25.8 31 31
Fracture Energy (N/mm) 1.1 2.79 2.79

Table B.1: Surface-to-surface properties \citep{Lieuwe}

The boundary conditions are shown in figure B.2. The applied mesh consists of SC8R elements: 8-
node hexahedron, general-purpose and finite membrane strains. The characteristic element length
is chosen to be equal to the thickness of each ply, which is 0.43 millimetres. Static general analysis
has been performed. The solver failed before the ultimate strength was reached due to convergence
issues, as shown in figure B.4. The numerical result is compared to the average experimental result. In
implicit analyses, as used in Abaqus/Standard, strain-softening of materials often leads to convergence
difficulties.

76



77

Figure B.2: Boundary conditions Figure B.3: SC8R elements with a length of 0.43 millimetre

Figure B.4: Stress-strain curve continuum shell model with cohesive zone modelling



C
Classical Laminate Theory

Due to the anisotropic behaviour of FRP material, the description of elastic material is not the same
as for engineering materials such as steel and concrete. The elastic properties of a laminate can
be calculated with the classical laminate theory. This theory is based on the assumption that the
deformation of the laminate behaves as a thin plate.

𝜀(𝑥, 𝑦, 𝑧) = 𝜀0(𝑥, 𝑦) + 𝜅(𝑥, 𝑦)𝑧

• 𝜀 is the in plane strain vector;

• 𝜀0 is the strain at mid-plane;

• 𝜅 is the curvature;

• 𝑧 is the thickness coordinate.

𝜀 = {𝜀𝑥𝑥 𝜀𝑦𝑦 𝛾𝑥𝑦}
𝑇

𝜀0 = {𝜀0𝑥𝑥 𝜀0𝑦𝑦 𝜀0𝑥𝑦}
𝑇

𝜅 = { 𝜅𝑥𝑥 𝜅𝑦𝑦 𝜅𝑥𝑦 }
𝑇

The stress resultants are calculated as distributed membrane forces, N, and distributed bending
moments,M. The relation between the stress resultants and the deformation is as follows:

{ NM } = [ A B
B D ] { 𝜀𝜅 }

The components A,B and D are 3 × 3 stiffness matrices. A multi-layered material has different elastic
properties for each layer with a different fibre direction. Plies from the same material have the same
Q matrix. However, the Q matrices will differ because of the different fibre angles, which influence the
transformation from the local to global coordinate frame. To transform from local to global coordinate
frame, the following set of equations is used-the quantities defined in the local coordinate frame are
indicated with an over-bar:

𝜎 = Q𝜀 with Q = TQT𝑇
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Q =
⎡
⎢
⎢
⎢
⎣

1
𝐸1

−𝜈12𝐸1 0
−𝜈12𝐸1

1
𝐸2

0
0 0 1

𝐺12

⎤
⎥
⎥
⎥
⎦

−1

T = [
cos2 𝜃 sin2 𝜃 −2 sin𝜃 cos𝜃
sin2 𝜃 cos2 𝜃 2 sin𝜃 cos𝜃

sin𝜃 cos𝜃 − sin𝜃 cos𝜃 cos2 𝜃 − sin2 𝜃
]

A component-wise calculation can be performed with the following formulas:

𝑄11 = �̄�11 cos4 𝜃 + �̄�22 sin4 𝜃 + (2�̄�12 + 4�̄�66) sin2 𝜃 cos2 𝜃
𝑄12 = (�̄�11 + �̄�22 − 4�̄�66) cos2 𝜃 sin2 𝜃 + �̄�12 (cos4 𝜃 + sin4 𝜃)
𝑄16 = (�̄�11 − �̄�12 − 2�̄�66) cos3 𝜃 sin𝜃 − (�̄�22 − �̄�12 − 2�̄�66) cos𝜃 sin3 𝜃
𝑄22 = �̄�11 sin4 𝜃 + �̄�22 cos4 𝜃 + (2�̄�12 + 4�̄�66) sin2 𝜃 cos2 𝜃
𝑄26 = (�̄�11 − �̄�12 − 2�̄�66) sin3 𝜃 cos𝜃 − (�̄�22 − �̄�12 − 2�̄�66) sin𝜃 cos3 𝜃
𝑄66 = (�̄�11 + �̄�22 − 2�̄�12 − 2�̄�66) sin2 𝜃 cos2 𝜃 + �̄�66 (sin4 𝜃 + cos4 𝜃)

The A,B and D matrices of the laminate depend on the parameter ℎ, which is the vertical position of
the ply from the mid-plane, and are calculated as follows:

• The extensional stiffness matrix:

A = ∑𝑛𝑗=1 (𝑧𝑗 − 𝑧𝑗−1)Q𝑗
• The strain-curvature coupling stiffness matrix:

B = ∑𝑛𝑗=1
1
2 (𝑧

2
𝑗 − 𝑧2𝑗−1)Q𝑗

• The bending stiffness matrix:

D = ∑𝑛𝑗=1
1
3 (𝑧

3
𝑗 − 𝑧3𝑗−1)Q𝑗

The critical buckling load is dependent on the material properties, boundary- and loading conditions,
which are stated in table C.1. The length and width are described with 𝑎 and 𝑏, 𝑚 is the number of
half-waves of the plate and, 𝐴𝑅 is the aspect ratio, which is the ratio between the width and the length
of the plate.

E1 E2 G12 v12 a b m AR t

41.7 12 3.8 0.28 640 320 2 0.5 6.44
GPa GPa GPa (-) mm mm (-) (-) mm

Table C.1: Material properties and buckling coefficients

Implementing the material properties of the GFRP plate results in the following matrices:

Q = [
42.66 3.44 0.00
3.44 12.28 0.00
0.00 0.00 3.80

]

−1
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A = [
227.12 37.78 0.00
37.78 122.60 0.00
0.00 0.00 40.28

]

B = [
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

]

D = [
816.12 117.68 7.25
117.68 626.07 7.25
7.25 7.25 127.51

]

The critical buckling load is calculated according to the following formula for simply supported boundary
conditions (𝑆𝑆):

𝑁𝑜 =
𝜋2[𝐷11𝑚4+2(𝐷12+2𝐷66)𝑚2(𝐴𝑅)2+𝐷22(𝐴𝑅)4]

𝑎2𝑚2

The critical buckling load is calculated according to the following formula for clamped boundary
conditions (𝐶𝐶):

𝜆 = 𝑎
𝑏 (

𝐷22
𝐷11

)
1/4 𝑁𝑜 =

𝜋2
𝑏2√𝐷11𝐷22(𝐾) 𝐾 = 42

𝜆2 +
8(𝐷12+2𝐷66)
3√𝐷11𝐷22

+ 4𝜆2 0 < 𝜆 < 1.094

𝐾 = 𝑚4+8𝑚2+1
𝜆2(𝑚2+1) +

2(𝐷12+𝐷66)
√𝐷11𝐷22

+ 𝜆2
𝑚2+1 𝜆 > 1.094

Figure C.1: Critical buckling load for a plate with clamped boundary conditions (𝐶𝐶) and simply supported boundary conditions
(𝑆𝑆)

The critical buckling load results from Abaqus and the equations above are presented and compared
in table C.2. For the two thinnest plates, the analytical results return lower critical buckling values,
and for the other plate thicknesses, the analytical results are higher than the numerical results. The
difference is higher for the plates with clamped boundary conditions, with a difference of up to 39%,
compared to the simply supported boundary conditions, where the most significant difference is 24%.
How thicker the plate, how larger the difference between the analytical and numerical results.
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BC Plate thickness (mm) Abaqus result (kN) Calculated result (kN) Difference (%)

SS 6.88 69.34 67.08 -3.4%
SS 10.40 233.90 231.71 -0.9%
SS 13.76 532.33 536.67 0.8%
SS 16.00 825.45 843.74 2.2%
SS 20.64 1719.36 1811.25 5.1%
SS 24.00 2640.84 2847.62 7.3%
SS 27.52 3880.03 4293.33 9.6%
SS 32.00 5890.92 6749.92 12.7%
SS 34.40 7176.26 8385.41 14.4%
SS 41.28 11685.50 14489.98 19.4%
SS 48.00 17265.50 22780.99 24.2%
CC 6.88 128.56 127.92 -0.5%
CC 10.40 449.82 441.84 -1.8%
CC 13.76 1017.64 1024.45 0.7%
CC 16.00 1569.97 1608.90 2.4%
CC 20.64 3216.35 3453.81 6.9%
CC 24.00 4860.15 5430.04 10.5%
CC 27.52 6997.06 8186.80 14.5%
CC 32.00 10311.40 12871.20 19.9%
CC 34.40 12343.80 15989.85 22.8%
CC 41.28 19036.90 27630.45 31.1%
CC 48.00 26476.20 43440.28 39.1%

Table C.2: Numerical and analytical determined critical buckling load and their difference for varying plate
thickness with two types of boundary conditions



D
Stress-displacement buckling models

The stress-displacement curves of the plates used to create the buckling curves discussed in chapter
6. Simply supported and clamped boundary conditions are represented in the first and second section,
respectively. The thickness of the plates ranges from 6.88 to 48.00 millimetres. Progressive failure
analysis is performed on each plate with six different initial imperfection sizes, ranging from B/1000
to B/125. ’LBA’ represents the critical buckling stress determined from linear buckling analysis. Thin
plates buckle when they reach the critical buckling stress and continue to carry the loading until the
material strength is reached. Thick plates fail before reaching their critical buckling stress.

D.1. Simply supported boundary conditions

Figure D.1: Stress-displacement curve for laminate
thickness 6.88 mm

Figure D.2: Stress-displacement curve for laminate
thickness 10.40 mm

Figure D.3: Stress-displacement curve for laminate
thickness 13.76 mm

Figure D.4: Stress-displacement curve for laminate
thickness 16.00 mm
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Figure D.5: Stress-displacement curve for laminate
thickness 20.64 mm

Figure D.6: Stress-displacement curve for laminate
thickness 24.00 mm

Figure D.7: Stress-displacement curve for laminate
thickness 27.52 mm

Figure D.8: Stress-displacement curve for laminate
thickness 32.00 mm

Figure D.9: Stress-displacement curve for laminate
thickness 34.40 mm

Figure D.10: Stress-displacement curve for laminate
thickness 41.28 mm

Figure D.11: Stress-displacement curve for laminate
thickness 48.00 mm
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D.2. Clamped boundary conditions

Figure D.12: Stress-displacement curve for laminate
thickness 6.88 mm

Figure D.13: Stress-displacement curve for laminate
thickness 10.40 mm

Figure D.14: Stress-displacement curve for laminate
thickness 13.76 mm

Figure D.15: Stress-displacement curve for laminate
thickness 16.00 mm

Figure D.16: Stress-displacement curve for laminate
thickness 20.64 mm

Figure D.17: Stress-displacement curve for laminate
thickness 24.00 mm
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Figure D.18: Stress-displacement curve for laminate
thickness 27.52 mm

Figure D.19: Stress-displacement curve for laminate
thickness 32.00 mm

Figure D.20: Stress-displacement curve for laminate
thickness 34.40 mm

Figure D.21: Stress-displacement curve for laminate
thickness 41.28 mm

Figure D.22: Stress-displacement curve for laminate
thickness 48.00 mm
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