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Abstract

Built mainly on soft soil, the Netherlands is at high risk for the effects of deformation. Interferometric
Synthetic Aperture Radar (InSAR) is successfully used to monitor the deformation trends at millimetre
level. Unfortunately the InSAR deformation trends suffer from poor geolocation estimates, limiting the
ability to link deformation behavior to objects, such as buildings, streets or bridges. A nationwide,
high resolution, airborne LiDAR point cloud is available in the Netherlands. Although the LiDAR point
cloud itself is unsuitable for deformation estimates, linking the InSAR location to the geometries out-
lined by the LiDAR point cloud can improve the geolocation estimates of the InSAR trends. In this
thesis three methods are shown to link deformation estimates to the LiDAR point cloud or reconstructed
features thereof. As a test, 3.1 million TerraSAR-X InSAR Persistent Scatterers are linked to 3 billion
LiDAR points, covering the city of Delft and surroundings. 85% of the scatterers could be linked to the
point cloud. Furthermore an outlook at the possibilities of an implementation on a national scale using
Sentinel 1 data is given.

iii





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and contribution of this work . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 InSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Remaining challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Actueel Hoogtebestand Nederland 17
3.1 Available data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Data volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Methodology 31
4.1 Common visualization of InSAR and LiDAR data . . . . . . . . . . . . . . . . . . . 32
4.2 First Nearest Neighbor linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Linking to a single surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Linking to multiple surfaces; dihedral and trihedral geometries . . . . . . . . . . . 35
4.5 Quality attributes and indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Results & validation 39
5.1 Web viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Regional trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 51
6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Acknowledgements 55

Bibliography 57

A Additional figures 61

B Data preparation commands 67

C ISPRS Conference Paper 71

D NAC Conference Poster 81

v





1
Introduction

1.1. Background
Subsidence in the Netherlands, and deformation in general, is threatening building integrity, damaging
infrastructure and lowering the land with respect to sea-level. Deformation occurs at all scales, from
single pillar failure at the ’t Loon shopping mall in 2011 [Chang and Hanssen, 2014] to complete regions
suffering from effects such as subsidence relative to the water table [Boersma, 2015].

Deformation processes include: peat compaction in the west and north of the country [Boersma, 2015];
induced subsidence and seismic activity due to gas extraction in the Groningen area [Ketelaar et al.,
2006]; land uplift and cavity formation due to the flooding of old mine works in Limburg [Bekendam and
Pottgens, 1995].

Interferometric Synthetic Aperture Radar (InSAR) is used to monitor deformation from satellites. The
monitoring technique used in this thesis is based on Persistent Scatterers (PS-InSAR), points or objects
that show consistent behavior over longer periods of time (years). For these points the deformation
time series is compiled from subsequent radar acquisitions. Based on this time series a deformation
velocity is estimated, with millimeter per year accuracy.

Unfortunately the source of the deformation signal is, in general, less accurately known: geolocation
estimates of PS-InSAR are known with meters precision at best, depending on the sensor. This process
of estimating the PS position, the geolocation, is geocoding. After geocoding the results can bemapped
to an irregular map of deformation measurements, as shown in figure 1.1. This map shows in a 2D
representation of individual deformation trends.

Although this will allow for deformation estimates up to street level [Ketelaar et al., 2006], the deforma-
tion signal can not be attributed to a single geometric feature. The location of this scatterer is of key
importance in the understanding and interpretation of the deformation behavior: a subsiding garden
house or street will require different precautions than a subsiding bridge pillar.

LiDAR (Light Detection and Ranging), is an active remote sensing technique where distance is mea-
sured by illuminating the target with a laser light and is also known as laser scanning or 3D scanning,
[Baek et al., 2017]. Either from airborne, mobile or terrestrial platforms it provides high density point
clouds.

The LiDAR point density is high enough to reconstruct (parts of) the real-world geometry. Matching the
LiDAR and PS-InSAR data sets will allow improvement of the location and enrichment of the spatially
sparse PS-InSAR measurements with geometric information derived from the LiDAR point cloud. An
example of a LiDAR data set can be seen in figure 1.2. A comparison of the point density of Persistent
Scatterers from TerraSAR-X to the density of Actueel Hoogtebestand Nederland over the centre of
Delft1 shows there are on average 20 points per square meter in AHN, but only one Persistent Scatterer
1AHN tile 37EN1_10, figure A.1.
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2 1. Introduction

Figure 1.1: An example of PS-InSAR points on the TU Delft campus, colored by the linear trend in their deformation behavior,
based on two years of TerraSAR-X data. (Background: OpenStreetMap)

Figure 1.2: The colored AHN3 point cloud of the TU Delft campus, shown in Potree. The area is similar to figure 1.1, the view is
towards the north west. The Potree viewer enables the user to fly through the point cloud in a web browser.
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every 50 square meters (0.02 pts. per sq. m).

1.2. Objectives and contribution of this work
The objective of this work is to find the location of the dominant scatterer in a LiDAR point cloud to
improve the estimated origin of the deformation signal. Such combination will allow for linking radar
scattering to geometric features in a scene.

An example of a traditional (2D) InSAR deformation map can be seen in figure 1.1. Van Natijne et al.
[2018] enabled the visual integration of both data sets in a single 3D web viewer. This 3D visualization
already aided the interpretation of the PS-InSAR signal, over the classical 2D mapped interpretation.
Explicit geometric 3D linking of PS-InSAR geolocation estimates to 3D LiDAR point cloud data will also
give a quantifiable improvement of the geolocation.

Geometric (3D) linking of the data sets could provide:

• Linking of the deformation signal to specific parts of the infrastructure, for maintenance planning
and early warning.

• Assessment of differential deformation, as multiple deformation signals can be attached to the
same building geometry.

• Detection and mitigation of (regional) errors and trends in the radar processing.

• Improved interpretation of the data.

This thesis is dedicated to the creation of this missing link between those data sets, by truly integrat-
ing both data sources. Given the (free) availability of a nationwide airborne LiDAR data set (Actueel
Hoogtebestand Nederland), the Netherlands form a perfect test bed for the integration of radar data
sets with point clouds. Furthermore the existing online point cloud viewer, based on Potree [Schütz,
2018], can be extended to visualize this link between the laser point cloud and radar data.

Limitations and assumptions
In this project only Persistent Scatterers (PS) are considered, Distributed Scatterers (DS) are explicitly
not discussed here. Scattering of Distributed Scatterers is governed by an ensemble of weak scatterers.
In the context of this work a single (strong) scatterer is expected to dominate the response (scattering
behavior). Only then the response can be pin-pointed to a single (geometric) feature.

It has to be noted that in urban environments scattering behavior might be complex and persistent
scattering behavior might be the result of the larger geometry, [Samiei Esfahany, 2017]. Modelling of
the surroundings, for example based on LiDAR information, may allow for analysis of such complex
scatterers, [Yang et al., 2017].

If the assumption is made that scattering behavior of PS can be attributed to a single feature one may
use data sets other than LiDAR to analyze those features. In this way the properties of the radar
measurement (e.g. amplitude variations, polarimetry) may be extended with properties of the joined
data sources. These sources include all sources that may add information or attributes to the radar
measurements, such as a data set with addresses or building outlines. In this study the focus will be
only on joining LiDAR point clouds.

1.3. Research questions
The primary objective is improving the location of PS-InSAR scatterers by combining the positioned
PS data with high resolution point clouds. These point clouds can be of any origin, but the focus is on
LiDAR data.

By using data redundancy the uncertainty can be estimated and reduced. Information concealed in the
properties of both data sets (geometry, deformation behavior, …) can be used to combine measure-
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ments of similar properties. Preferably developed method is scaleable, which allows the technique to
be applied at regional scale, providing useful data to the operator in the field.

The leads to the principal question:

How to improve geolocation of InSAR point scatterers using detailed 3D point clouds?

This question is subdivided into the following sub-questions:

1. What aspects of PS-InSAR deformation assessment can be improved by linking to 3D surface
geometry?

2. What statistical model applies to the data, and how was it defined?

• Is the statistical model valid?

• Is the data suitable for the planned application?

3. How are PS-InSAR and LiDAR point clouds best spatially joined?

• How to represent the point cloud in segments of similar features?

• How to join a persistent scatterer to the surface outlined by LiDAR point cloud data?

• How to represent the uncertainties of this match?

4. What is the quality of the alignment between the data sets and can the alignment be improved?

• Is there a constant offset or another bias between data sets? Is this offset local or regional?

• Can this offset be mitigated, based on the spatial join?

5. How to scale the matching process to regional or national scale?

1.4. Outline
A review of previous work and an overview of the data available to this study is given in chapter 2.
As the Actueel Hoogtebestand Nederland (LiDAR data set) has a primary role in this combination a
separate chapter is spent on the properties, preparation and validation of this data set (chapter 3).
Chapter 4 and 5 form an unity, discussing the method applied, quality indicators for the provided result
and the results of the method over the study areas. A conclusion is drawn in chapter 6.1. Additional
figures are provided in the appendix.

1.5. Case studies
Two main case studies were planned based on their spatial extent and sensor type:

1. Delft and surroundings

A combination of TerraSAR-X data, Actueel Hoogtebestand Nederland 3 (Airborne LiDAR) and
Mobile Laser Scanner data. The TerraSAR-X data covers the city of Delft, parts of The Hague
and neighboring fields and villages. Mobile Laser Scanning data is available of the perimeter of
the Delft University of Technology campus, while Actueel Hoogtebestand Nederland is available
for the whole of the Netherlands.

2. The Netherlands

A nationwide coverage, based on Sentinel 1 PS-InSAR data. Combined with AHN3 where avail-
able and AHN2 otherwise.



2
Background

This chapter is an overview of previous work and the required enhancements to achieve the aforemen-
tioned goal of improving the estimated position of the PS-InSAR deformation signal. The principles
of InSAR monitoring will be discussed, along with the data available to this study. The principles of
LiDAR data acquisition will be discussed in this chapter, the LiDAR data used is introduced in chap-
ter 3. This chapter is concluded with an overview of related works and the challenges remaining to be
solved.

2.1. InSAR
InSAR (Interferometric Synthetic Aperture Radar) and PS-InSAR (Persistent Scatterer InSAR) are es-
tablished deformation monitoring techniques, providing centimeter to millimeter resolution deformation
estimates. In this section the acquisition method, processing and resulting data, used in this thesis, will
be introduced.

Principles
The principles of InSAR are covered in detail in many sources. This section is a summary of some of
those sources, sources that cover the mathematical or physical background of the matter discussed.
For an in depth introduction the reader is referred to: Hanssen [2001], Rees [2001], van Leijen [2014]
and Samiei Esfahany [2017].

A radar instrument, mounted on a satellite, is operated as it flies over the earth below. Each measure-
ment starts with the emission of a (short) radio pulse, that is received with a slight delay - due to the
distance between the satellite and the earth. As the instrument is mounted at an angle (’side-looking’)
longer delays correspond to a longer distance, on flat terrain this equals a distance further to the side,
[Rees, 2001].

The azimuth (direction of flight) resolution of such ’Real Aperture Radar’ (RAR) or ’side-looking radar’
(SLR) system is dependent on the height and the size of the antenna. The range (perpendicular to the
direction of flight) resolution is limited by the length of the pulses transmitted. Due to practical limita-
tions (the minimum orbit height, maximum practical size of the antenna, the high energy requirements
of short pulses, etc.) possibilities for improvement are limited. The altitude dependence of the azimuth
resolution can be circumvented by the use of ’Synthetic Aperture Radar’ (SAR). Instead of a single
acquisition multiple acquisitions are used to form a single image, artificially enlarging the antenna to all
integrated acquisitions. Range limitations are circumvented by chirping, shortening of the transmitted
pulse by means of signal processing, [Rees, 2001]. Unlike in surveillance radar systems the time differ-
ence between transmission and receiving the pulse as such is not of interest. Instead, after processing,
only the phase and amplitude of the (complex) signal are stored for each range cell (which is effectively
a time bin).

5



6 2. Background

As active Remote Sensing technique, radar is dependent on this return of the emitted signal from the
object of interest. The recorded phase and amplitude are the result of the reflections on all objects
within the ground footprint of the resolution cell and noise. The strength of the reflection is dependent
on the physical and electrical properties of the objects met and on the properties of the signal itself
such as wavelength and incidence angle, [van Leijen, 2014].

Two radar images, amaster and a slave, acquired at different times, can be combined into an interfero-
gram. The two (radar) images, taken from approximately the same position and with the same viewing
geometry are aligned first. The interferogram is created by the multiplication of the complex master
image with the complex conjugate of the slave image. The interferometric phase is a summation of the
(residual) errors and the interferometric (deformation) signal, [van Leijen, 2014].

Especially man-made structuresmay have backscattering characteristics that are consistent over longer
periods of time, where the signal is dominated by a single scatterer or an ensemble of scatterers, con-
sistent between acquisitions. Due to their consistent behavior these points are referred to as Persistent
Scatterers (PS), [van Leijen, 2014]. This property allows extraction of the same feature in consecutive
radar images, and the compilation of a time series of its movement. Millimeter per year accuracy can
be achieved in deformation trend estimation based on those measurements, [van Leijen, 2014].

PS-InSAR monitoring is opportunistic: the presence of persistent scatterers can not be controlled,
except by the placement of artificial reflectors. Frequent satellite radar acquisitions, for example the 6
day repeat frequency of Sentinel 1 allow for more and more detailed analysis of subsidence behavior.
Higher resolutions, for example of TerraSAR-X (maximum 3×3 m over large areas, up to 25 cm for
small areas) [Werninghaus and Buckreuss, 2010], allow smaller, weaker, scatterers to be detected.
Combined with increased geolocation accuracy and precision this enables the monitoring at building
or feature scale, [Gernhardt et al., 2010, Werninghaus and Buckreuss, 2010].

Geolocation

Geocoding, the process of mapping the position of the scatterer from the radar geometry (azimuth,
range and cross-range) to a 3D Terrestrial Reference Frame, [Dheenathayalan et al., 2016]. The po-
sitioning precision is first estimated in radar coordinates, and then transformed to a (local) Cartesian
coordinate system. The standard deviation for range (𝜎፫) and azimuth (𝜎ፚ) follow directly from the
properties of the radar, based on formal error propagation of radar system properties and precision
of: timing, (sub-)pixel positioning, atmospheric effects, solid earth tides and plate tectonics, [Schubert
et al., 2015]. The precision in range and azimuth are assumed to be uncorrelated, although, timing
(errors) for example, are shared error sources, [Dheenathayalan et al., 2016].

The error in the cross-range direction can only be estimated after solving for the cross-range, which
exploits the baseline between acquisitions that causes small differences in the look angle and range.
This cross-range precision depends on six factors: sub-pixel positioning; temporal (phase) stability;
phase unwrapping; the number of images; the baseline distribution and phase noise. Only the first two
are considered by Dheenathayalan et al. [2016]: sub-pixel positioning and temporal phase stability.
Unwrapping is assumed to be error free. Again, the covariance between range, azimuth and cross-
range is assumed to be negligible, [Dheenathayalan et al., 2016].

Then the estimated precision for all points be described in radar coordinates as a diagonal matrix, of
variances only:

Qፑፀፂ = [
𝜎ኼ፫

𝜎ኼፚ
𝜎ኼ፫
] , (2.1)

whereQፑፀፂ is the diagonal matrix of the variance of the range (𝜎ኼ፫ ), azimuth (𝜎ኼፚ ) and cross-range (𝜎ኼ፫)
geolocation estimate.

The viewing geometry of the radar satellite is expressed as a rotationmatrix relative to world coordinates
(RDNAP, the Dutch national coordinate system). A rotation matrix R is found using the S-transform,
based on the transformation of the points from radar coordinates to the terrestrial reference frame,
[Dheenathayalan et al., 2016]. The quality model of the radar geolocation (Qፑፀፂ, equation 2.1) can
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be transformed to the covariance matrix, Qፄፍፔ, relative to world coordinates (in East, North and Up),
using this rotation matrix, R:

Qፄፍፔ = RQፑፀፂR
ፓ = R [

𝜎ኼ፫
𝜎ኼፚ

𝜎ኼ፫
]Rፓ = [

𝜎ኼ፞ 𝜎ኼ፞፧ 𝜎ኼ፞፮
𝜎ኼ፞፧ 𝜎ኼ፧ 𝜎ኼ፧፮
𝜎ኼ፞፮ 𝜎ኼ፧፮ 𝜎ኼ፮

] . (2.2)

Represented by the 𝜎ኼ፞፧, 𝜎ኼ፞፮ and 𝜎ኼ፧፮ elements, is the covariance between the coordinates introduced
by the transformation to world coordinates.

Important geometries

Corner reflectors have strong reflecting capabilities over a wide angular range (figure 2.1). In such a
corner reflector the geometric configuration creates a strong backscatter of the incoming radar signal,
[Richards et al., 2010]. Due to their insensitivity to the angle of incidence corner reflectors may show
up in radar data, even with changes to radar geometry, when scattering from planes is lost. Their
strong scattering characteristics make them major features in InSAR data, their consistent appearance
important features in PS-InSAR.

Figure 2.1: Radar cross section (RCS) as function of angle of incidence (aspect), for corner (trihedral) reflectors, planes and
spheres, [Yarovoy et al., 2017]. The RCS of a plane fluctuates strongly with slight variations in the incidence angle, while corner
reflectors are relatively insensitive to such changes. A sphere has an equal surface, regardless of the incidence angle.

Nevertheless the importance of corner reflectors is doubted by Perissin and Ferretti [2007] stating that
only 13% of radar scatterers are formed by dihedral scattering and 8% by trihedral scattering. More than
50% of the scattering is due to monohedral scattering on roofs, [Schunert and Soergel, 2016].

PS-InSAR preparation

PS-InSAR are extracted from time series of SAR images. Time series allow for the separation of the
deformation signal from noise sources, such as atmospheric distortions. First a series of stable features
has to be found, those features will be assumed stable in the separation of the various signals. This
selection could, be based on Normalized Amplitude Dispersion, for example, where the amplitude is
used to estimate the stability of the phase, [van Leijen, 2014]. The phase itself is unlikely to be stable,
even for stable scatterers, due to aforementioned noise sources. After extraction and modelling of the
noise sources their contribution can be corrected for and the deformation signal extracted from the
images, [van Leijen, 2014].

Instead of evaluating the phase difference for all measurements in the radar image, Persistent Scatterer
Interferometry evaluates the signal only at selected scatterers, thereby creating a time series at those
scatterers. An example of such point and its time series is shown in figure 2.2.

The data used in this thesis was acquired by TerraSAR-X, processing from raw data to persistent
scatterers was done by Delft’ firm SkyGeo.

Detection of underlying deformation processes
Deformation analysis can be conducted at a regional or national scale, such as shown by Cuenca
et al. [2011] (figure 2.3). It requires only low spatial resolution to reveal large scale trends in surface
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Figure 2.2: An example of a PS-InSAR time series (TerraSAR-X) of an artwork at the Mekelpark in front of the CEG faculty
building. The subsidence signal is measured as an increase in the (slant-)range over time. Superimposed are a linear trend,
and a linear trend with a seasonal variation.

Figure 2.3: Estimated vertical rates for the period 1992-2010, showing large scale deformation in the Netherlands. [Cuenca et
al., 2011]
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deformation, but such an analysis does not differentiate between shallow and deep subsidence or other
effects with influence on the scattering characteristics.

The origin of the PS-InSAR signal is not predefined. It could be on a building, rigidly fixed to a stable
layer; subsiding with the shallow subsurface; thermal effects (e.g. on steel structures); influence of
groundwater or influence of multipath effects with surrounding features. This problem is addressed by
Ketelaar and Hanssen [2003], who suggest the use of polarization to differentiate between even and
odd bounce scatterers and the linking to a 3D city model to determine if a scatterer is on a building or
not.

Different scattering regimes react differently to these subsidence regimes, and understanding of the
origin of the signal will help in understanding and modelling the deformation signal. An illustration of this
combination of subsidence regimes and their effect on the radar signal is given in figure 2.4. A recent,
innovative, approach is to use techniques from deep learning to automatically identify deformation
regimes without prior knowledge of their physical background, [e.g. van de Kerkhof et al., 2017].

Figure 2.4: ”Deformation regimes and their effect on single and double-bounce reflections: (a) reference situation; (b) shallow
mass displacement (compaction), affecting only the double-bounce reflection; (c) structural instabilities (foundation), affecting
only the single-bounce reflection; (d) deep mass displacement (gas extraction), affecting both the single-bounce and the double-
bounce reflection.” [Ketelaar and Hanssen, 2003]

To distinguish between different deformation processes understanding of the source of the radar signal
is required. This solves two questions: what object does the scatter originate from and how does it
behave. Such analysis is based on either the radar data itself (e.g. polarization) or on the addition of
auxiliary data, for example a point cloud or 3D building model, [Ketelaar and Hanssen, 2003].

Dheenathayalan and Hanssen [2013] showed that a reasonable distinction could be made between
ground and building pixels by separating them based on the estimated height, based on the estimation
of a ground surface from other points - when no such surface is yet available. Another approach is to
model the radar signal using ray-tracing to reconstruct the source of the scattering signal, [Yang et al.,
2017].

TerraSAR-X
The German (DLR) TerraSAR-X Synthetic Aperture Radar (SAR) mission, was launched in 2007 and
delivers high resolution radar imagery ever since. As a Public-Private Partnership themission combines
scientific and commercial interests of X-band, land oriented monitoring applications. With an 11-day
repeat cycle and resolutions up to 3 × 3 m in StripMap mode the mission can provide deformation data
of high spatial and temporal resolution over large areas, [Werninghaus and Buckreuss, 2010].

The PS-InSAR time series in this thesis, extracted from radar data of two TerraSAR-X orbits was pro-
cessed and provided by SkyGeo. The data consists of both ascending and descending orbits over
the same region and covers Delft, surrounding fields, Rijswijk and parts of The Hague (the Nether-
lands). The extends are shown in figure 2.5, or in relation to the Netherlands as a whole in red on
figure 3.1.
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Figure 2.5: Extend of the TerraSAR-X data set available to this study. Left: PS-InSAR velocity estimates from both ascending
and descending orbits. The city of Delft is hidden below the points. The Hague can be seen at the top and the northern part of
Rotterdam at the bottom. (Background: OpenStreetMap) Right: digital surface model extracted from AHN3 for the same region.
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Figure 2.6: Availability of TerraSAR-X StripMap acquisitions over Delft between July 2015 and January 2018, [Airbus D&S, 2014].
Acquisitions used in the time series production are marked in green.

Figure 2.7: Alignment patterns as can be seen in the Sentinel 1 persis-
tent scatterer geolocation estimates over Utrecht, due to lack of sub-
pixel positioning in the range and azimuth direction. The small varia-
tions visible are due to the variation in height, mapped on the range
direction. (Background: OpenStreetMap)

0 50 100 km

Figure 2.8: Approximate coverage
of the Sentinel 1 data set that was
available to this study. (Background:
PDOK [2018])
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A total of 118 radar images were acquired by TerraSAR-X between 2015-07-03 and 2018-01-01, of
which 98 where used: 36 ascending and 62 from a descending orbit. Their temporal distribution can
be seen in figure 2.6. For each orbit roughly two years of data was included in the processing. For
unknown reasons acquisitions of 2017-06-04 (ascending) and 2017-06-06 (descending) are no longer
available in the archive.

SAR Interferometry (InSAR) was applied to extract deformation signals by analyzing the time series
of phase changes. Pixels that can be tracked consistently over multiple acquisitions are Persistent
Scatters (PS). These coherent pixels denote the deformation behavior of the same scatterer over
longer periods of time [Hanssen, 2001]. A linear deformation trend (in time, mm

yr
) is estimated for those

points.

Data of the descending orbit contains 1.7 million PS-InSAR points, the ascending data contains 1.4
million points. For all points a geolocation estimation is provided in WGS84 coordinates, RD coordi-
nates and a height above NAP (Normaal Amsterdams Peil). Both data sets span the same area of 123
km2, of which 60 km2 is over urban (built) terrain, where the highest density of persistent scatterers is
to be excepted [CBS, 2017, Hanssen, 2001].

Error model

The geolocation precision of TerraSAR-X was estimated by Dheenathayalan et al. [2016] and verified
using a field experiments. The ratio of the error ellipsoid in range (direction of radar signal), azimuth
(direction of flight) and cross-range (perpendicular to signal and flight direction) was estimated to be
1/2/22 for typical consistent scatterers. With an estimated standard deviation of 0.128 m, the axes of
the error ellipsoids are 0.128 m (range, 𝜎፫), 0.256 m (azimuth, 𝜎ፚ), 2.816 m (cross-range, 𝜎፫). These
values were assumed constant for all scatterers, as the per point estimates, or the parameters required
to estimate them, were not present in the data available.

The direction of flight was defined to be 192° for the descending and 350° for the ascending orbit, with
a elevation angle of 65.9° for both orbits. Both are considered error free and equal over the whole data
set.

Sentinel 1
Given the free availability of Sentinel 1 data, that covers large parts of the Europe and the world, new
studies on a national level are being planned [e.g. Novellino et al., 2017]. As indicated by Dheenathay-
alan et al. [in press] a high spatial precision (decimeters) can be achieved for trihedral reflectors, albeit
at a lower spatial resolution. This makes it comparable to TerraSAR-X in that respect and suitable
for the application of the same or a very similar matching technique. Sentinel acquisitions were pro-
cessed by the TU Delft radar group for large parts of the Netherlands, as can be seen in figure 2.8.
Unfortunately the processing was aimed at large scale deformation estimates, rather than geolocation
estimates. As a result geolocation estimates are poor and follow the regular pattern of the original
radar image, as can be seen in figure 2.7. This makes the data unsuitable for the planned application
of geometric linking (error to large).

2.2. LiDAR
Optical distance measurements can roughly be divided in two main branches: triangulation (angle
measurements) and time/coherence measurements (time-of-flight and interferometry). In this thesis
only time-of-flight measurements are covered, as most mid- and long-range sensors are of this type.
Lasers providemuch higher angular and range resolutions (for singlemeasurements) than possible with
radio waves (radar), [Vosselman and Maas, 2010]. Just like with pulse based radar, given the known
propagation velocity of light in air, (travel) time and distance are linked. This principle is illustrated in
figure 2.9.
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Figure 2.9: Principle of a time-of-flight laser scanner. The distance (Z) is calculated from the travelling time of the emitted pulse
(delay), to the surface and back to the sensor, [Vosselman and Maas, 2010].

The range, 𝜌, is directly related to half of the the travelling time, 𝜏,

𝜌 = 𝑐
𝑛
𝜏
2 , (2.3)

with the speed of light, 𝑐 = 299 792 458 m/s, and the refractive index of air, 𝑛 ≈ 1.00025, dependent
on temperature, pressure and humidity.

Such laser ranging systems are capable of reaching an accuracy in the order of 5 - 10 mm, not including
the position and attitude accuracy of the sensor. Furthermore, frequently the intensity of the returned
signal is measured, mapping the reflective properties of the object and providing a visual reference,
[Vosselman and Maas, 2010].

Although the ground footprint of the laser is much smaller than that of radar based systems, the emitted
pulse may still reflect from multiple surfaces, such as the branches of a tree canopy. Most airborne
sensors are capable of capturing multiple peaks in the return signal, recording measurements for all
surfaces visited by the laser beam. Some sensors are capable of capturing the full waveform, the
intensity profile over time of the returned signal, [Vosselman and Maas, 2010].

To measure more than a single point the laser pulse is moved/pointed in a regular pattern using a
moving mirror. As the attitude of the mirror is known the direction of the laser pulse can be determined.
Combined with the distance, known from the time-of-flight, it is possible to determine the position of
the reflecting surface in 3D with respect to the sensor. A small (pointing) error is introduced by the
mirror.

To map larger areas the sensor is placed on a mobile platform, for example an airplane, helicopter, car
or train. Moving the sensors while measuring. The position of this airborne sensor is determined using
a Global Navigation Satellite System (GNSS, e.g. GPS) and the attitude of the sensor (the looking
angle) using an Inertial Measurement Unit (IMU), [Vosselman and Maas, 2010]. The errors of the
position and attitude propagate do not influence the range measurement itself but propagate into the
position estimate of the reflecting surface.

AHN, Actueel Hoogtebestand Nederland, is such an airborne LiDAR survey. As main point cloud data
source of this thesis a separate chapter is spend on the properties of this data set.

2.3. Related work
A selection of related work is presented here. Various works exist on the matching of radar data with
building models or photographs. Furthermore a plethora of work exists on the analysis of point cloud
data and feature extraction. All work on large areas faces high computational and storage requirements,
various methods of data organization and querying are discussed.

Fusion of building geometries with InSAR measurements
A combination of optical images and SAR aimed at the texturing, classification or 3D reconstruction
of SAR point clouds, has been made before, for example by Tupin [2010] and Schmitt et al. [2017].
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Although successful, combinations suffer from poor InSAR geolocation precision, [Wang et al., 2017].
When building models are combined with PS-InSAR data essential building details may get lost in the
generalization of the 3D model, [Schunert and Soergel, 2016]. A third approach is chosen by Schunert
and Soergel [2016]: attaching PS-InSAR points to the surfaces of a 3D building model. Attachment
to relevant surfaces is very successful, but the generalization of the surfaces makes assignment to
individual features impossible.

Other attempts combine the radar data with photographs, battling alignment, temporal and radiometric
differences, [Schmitt et al., 2017]. Merging optical and radar data can benefit both data products, for
example it aids interpretation of radar data by optical texturing and the enhancement of contrast in
optical images based on radar, [Tupin, 2010].

Wang et al. [2017] combined aerial photographs and high resolution radar data. First a point cloud is
constructed from the aerial images using photogrammetry. Their combination allows for texturing the
radar data and the creation of a ’SARptical’ point cloud of urban areas. Geolocation can not be improved
based on the point cloud, as accuracy and precision do not allow for individual improvement. Instead the
radar and optical point clouds are coregisterd using a variation of the Iterative Closest Point algorithm
(ICP). Facades are poorly presented in this model, as they would require oblique images.

Mou et al. [2017] and Hughes et al. [2018] extended the work of Wang et al. by adding a deep-learning
technique that attributes scatters to features in an image, thereby linking optical images to radar scat-
tering behavior.

Opportunities for improvement
Airborne laser scanning outperforms photogrammetry in mapping areas of poor texture and mapping
long, narrow features, [Baltsavias, 1999]. Unfortunately acquisition of LiDAR data has its own problems,
such as offsets between acquisition strips, [van der Sande et al., 2010]. Fortunately quality descriptions
are available [e.g. van der Sande et al., 2010, van der Zon, 2013, van Meijeren, 2017].

Although a combination with the LiDAR point may suffer from the same issues identified by Schmitt
et al. [2017] for photogrammetric surveys (alignment, temporal and radiometric differences), the high
quality of individual measurements may allow for a combination between the data sets. Furthermore
the combination can be used to improve the geolocation of the PS-InSAR, under the assumption that
the PS-InSAR reflector is described by the geometry in the point cloud.

Various methods exist to reconstruct buildings or surfaces from point clouds. A benchmark for complex
shapes is presented by Berger et al. [2013]. Fortunately most buildings are more regularly shaped
than those complex shapes, many buildings contain straight walls only, [Yari et al., 2014]. Others can
be approximated by a series of rectangles, [Vinson and Cohen, 2002, Vinson et al., 2001]. Or by a
standard model for a house, where necessary replaced by fitting a series of straight planes, [Maas and
Vosselman, 1999]. In case of low point cloud densities ground plans could be added to enhance the
building reconstruction, [Vosselman et al., 2001]. High quality point clouds may allow reconstruction
based on a series of geometric primitives to approximate the original surface, [Baek et al., 2017]. But
most generalizations lose small scale information that might be important in the understanding of the
radar scattering characteristics, [Schunert and Soergel, 2016].

In 3D building models, in case these are advanced and detailed enough, potential simple dihedral
and trihedral reflectors are immediately obvious at the intersections of planes. But as illustrated in
figure 2.10, more complex situations might be more complex to detect.

Detecting dihedral and trihedral geometries
When no building model is available corners might be detected directly in the point cloud or on a Digital
Surface Model (DSM) [e.g. Kovács and Tevesz, 2013]. Methods that work directly on the point cloud
often require the normal for each point, a vector perpendicular to the surface the point is a member of.
Weber et al. [2010], for example, detect sharp features based on analysis of the variability in the orien-
tation of the normals of neighboring points. Briese [2004] used a similar technique to detect breaklines,
the line of intersection between surfaces.
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Figure 2.10: Left: a textbook example of a dihedral corner reflector. Right: a less obvious example of a dihedral reflector in a
non-standard geometric arrangement. [Richards et al., 2010]

The normal is unavailable in most point clouds as the original surface the point belonged to is unknown.
Various methods exist to estimate the normals of an existing point cloud, such as: fitting a analytic
function through the point cloud; fitting a plane through or creating a triangular mesh of the points.

Strictly speaking those methods do not give the normal at the point but the normal of the surface
formed with the surrounding points, and yield poor results at the intersection of surfaces. More complex
methods, such as the deep learning method by Boulch andMarlet [2016] try to enhance the prominence
of abrupt changes in the direction of the normal at the cost of computing power.

Alternative methods, that do not depend on normals often depend on finding the surfaces directly. The
method by Auer and Hinz [2007] uses a triangulation for region growing rather than normal estimation.
It creates generalized planes of (roof) surfaces based on the triangulated mesh between points.

Another approach is estimating the parameters of the surface directly, using the Hough transform, for
example. The implementation by Bhattacharya et al. [2000] is mostly applied to depth images rather
than point clouds, but the method can be applied on point clouds too. It detects groups of planes with
similar properties first before distinguishing between individual planes and their intersection, reducing
computational cost. A comparable approach was chosen by Rohr [1992], uses corner detection in
images to detect the position of the (possible) corner. A model of a corner is then fitted based on
this initial position and orientation. Using Markov Random Fields, Hackel et al. [2016] determined the
likelihood of a point belonging to a corner.

Random Sample Consensus (RANSAC), introduced by Fischler and Bolles [1980], can be applied for
the detection of planes too. RANSAC is capable of fitting a model to data that contains a significant
percentage of noise. Other corners or planes, close to the area of interest, may not necessarily be
noise and finding the correct settings might be difficult with the large variation in (point) density and
difference in scale of the scattering features. The pbM-method, by Subbarao and Meer [2006], is free
of predefined parameters and might solve this issue of RANSAC.

None of those methods are able to detect the more complex reflectors such as shown in figure 2.10.
Detection of such reflectors would require a ray-tracing model, that simulates the path of the radar
signal from and to the radar satellite, [e.g. Yang et al., 2017].

Data organization and storage
Files have shown to be a very reliable form of storage. LiDAR data sets can grow to enormous amounts
of data. With an average density of 25 points per square meter for airborne LiDAR and even higher
densities for mobile LiDAR efficient storage and access is required, [Boehm, 2014]. Compression
algorithms, such as LASzip [Isenburg, 2013], exploit the similarity between points to reduce the file
size up to 90%. Reduced disk space requirements come at the cost of increased CPU usage.

Querying large data sets for individual points or segments is non trivial. Boehm [2014] suggests keeping
the spatial extends of each individual file in a database. Querying the database for the tiles involved
first, then querying each candidate tile for the point involved. Van Oosterom et al. [2015] took the
integration of points clouds and databases one step further, by testing the performance of various point
cloud databases on inserting and querying of individual points and on more complex queries. A tile (file)
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oriented approach was fastest for simple queries, while the database environment performed better on
complex queries.

Algorithms for Nearest Neighbor search are often based on the Euclidean or the Manhattan distance
metric. When the statistical properties of a point cloud are accounted for the distance metric is more
complex and above all different for every statistical configuration. Use of a whitening transform trans-
forms the data to a subspace compatible with the Euclidean distance metric, allowing use of conven-
tional Nearest Neighbor algorithms, [Stansbury, 2013]. This process is also known as decorrelation in
geodetic applications, [e.g. Teunissen and Kleusberg, 2012].

This transformation is based on the statistical properties, therefore the change of properties requires
a new transformation of the data and rebuilding of any search structure. This problem is solved by
Sakurai et al. [2001] by preparing many transformations and accompanying search structures. At query
point the most similar transformation is used to find the approximate nearest neighbors after which the
distances are checked (and sorted) using the exact transformation. The increased speed at search
time comes at great computational cost in preparing the data set.

A completely different solution is the use of Space Filling Curves. Where points are indexed or sorted
along a single linear index. This index is constructed in such a way spatial proximity is represented by
numerical proximity in the index. When this linear index is fine enough, the index could even replace
the original coordinates, as the coordinates can be reconstructed based on the index, [Psomadaki,
2016]. Search queries with complex geometries can be solved in iterations by such an index: when no
points are found the search area is enlarged up until a predefined maximum.

2.4. Remaining challenges
Although various studies showed successful alignment of the deformation signal with buildings and
building geometries, the signal can only be analyzed at the level of detail of facades or planes. Individual
features can not be distinguished, nor is the positioning accuracy and precision of the point cloud used
to improve the geolocation estimation.

The challenge is to develop a method that is capable of matching the radar measurements to the LiDAR
geometries while respecting the statistical properties of both: a fusion method at a high level of detail,
capable of data fusion at a national level.





3
Actueel Hoogtebestand Nederland

Actueel Hoogtebestand Nederland (AHN) is a nationwide LiDAR elevation model, covering the whole
territory of the European Netherlands. AHN was first recorded in 1996 and is licensed as open data
since March 2014. This chapter will take an in depth look at the properties of AHN as an information
resource. It will discuss the properties of the data, including the error model and show the steps taken
to adapt AHN for the task at hand.

AHN was acquired from an airborne platform, from which laser pulses were fired at the ground below.
Given the known propagation velocity of light in air, the time interval between transmission and receiving
the reflected signal (echo) is proportional to the distance from the aircraft to the ground. Multiple returns
are possible, for example in vegetated areas, where parts of the pulse reflect on different surfaces in
the scene. The position and orientation of the aircraft are recorded simultaneously using GNSS and
inertial motion sensors to record the position from where the measurement was acquired and in which
direction [Vosselman and Maas, 2010].

The first release of AHN (1996 - 2003) was at the forefront of technology. As technology advanced,
density requirements were increased from 1 point per 16mኼ to 1 point per square meter. Classification
of points was only applied outside the built environment. Due to the low point density the quality of the
ground estimation was limited in vegetated areas, as not enough laser pulses penetrated through the
canopy, [van der Zon, 2013].

New iterations are acquired approximately once every ten years, as can be seen in table 3.2. Acqui-
sition of both AHN1 and AHN2 is finished: AHN2 supersedes AHN1. The most recent version, AHN3
is yet only partially available (figure 3.1), with new regions added yearly till 2019. Contracts for AHN3
were published as six tenders between 2013 and 2017 for acquisition over the period 2014 - 2019,
[e.g. Rijkswaterstaat, 2013]. The raw point cloud data (of each iteration) is published via Publieke
Dienstverlening Op de Kaart (PDOK) [PDOK, 2018].

As of AHN2 the technical specifications are no longer defined for the acquisition but on the final prod-
ucts. The acquisition strategy is left to the surveying company. For example, there is no requirement
on the point density, given that these requirements are met, [N.N., 2013, van der Zon, 2013]. The final
product should comply with the following requirements:

• Elevation accuracy/precision should be less than 5 cm systematic and 5 cm stochastic (standard
deviation), although no definition of ’systematic errors’ is provided.

• The accuracy, precision, density and distribution of points is such that a 2 by 2 meter object has
a position error of maximum 50 cm.

• Classification of the points. For AHN2 this classes are as ground and non-ground points, for
AHN3 the following classes are defined: ground, buildings, water, civil structure and unclassified.

• The final product should include a Digital Elevation Model (DEM) of ground points, on an equidis-
tant grid of 0.5 by 0.5 meter.

17
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AHN is defined in Rijksdriehoekscoördinaten with height relative to NAP, ’RDNAP’, the Dutch na-
tional coordinate system (EPSG:7415). This Cartesian coordinate system is used as the basis for
this project.

For AHN4, which is currently in the planning phase, the conditions are reconsidered and where neces-
sary adapted to the current possibilities and requirements, [Leusink, 2018].

3.1. Available data
A nationwide coverage of AHN2 was finished in 2012, and full coverage for AHN3 is expectedmid 2019.
A summary of the currently available data and volume is given in table 3.1. The spatial availability of
AHN3 can be found in figure 3.1. The file size increase of AHN3 compared to AHN2 is due to the
addition of extra attributes, such as classification, intensity and acquisition time. In total 1447 tiles are
defined, as some only cover water, a full data set contains less tiles. Tiles can be subdivided in 25 equal
size sub-tiles to lower computational requirements when working with tiles1. These tiles are made from
a combined product of AHN2 and AHN3, and will be elaborated on in section 3.3.

Area (km2) Points Size Tiles
AHN2 35 997 640 billion 988 GiB 1370
AHN3 16 249 252 billion 1.1 TiB 765
Combined 1.7 TiB 30137 (sub-tiles)

Table 3.1: Coverage, point count and data set size of AHN2, AHN3 and their combination. Although not yet fully available,
storage requirements for AHN3 will double with respect to AHN2 even though the point density is approximately equal.

Recording Avg. Density ( pts
mᎴ
)

AHN1 1996 - 2003 0.06 - 1
AHN2 2008 - 2012 16.8
AHN3 2014 - 2019 18.2

Table 3.2: Acquisition years and average point density of the three available iterations of AHN. Actual point densities for AHN2
and AHN3 were estimated over the study area in Delft (9 tiles).

25 0 25 50 75 100 km
Study area

AHN Availability

AHN2
AHN3

Legend

Figure 3.1: Map of the Netherlands, showing the availability of AHN3 (purple) at the time of writing, AHN2 is available in all
regions. Shown in red is the extent of the TerraSAR-X data available to this study.

1An example of the sub-tile structure is shown in figure A.1, the main tiling schema at national level is shown in figure 3.12.



3.1. Available data 19

To ease navigation, I colored the point cloud based on the publicly available aerial photograph of 2016
[PDOK, 2018]. This photo may differ from the point cloud, as it was not recorded simultaneously. For
AHN4 simultaneous acquisition of LiDAR and imagery data is planned, [Leusink, 2018].

Vertical density
As airborne LiDAR product acquisition is focused on the nadir direction (looking down). Horizontal
surfaces are covered with high density, while vertical surfaces suffer from low sampling densities. An
example is shown in figure 3.2, which shows the vertical point density on the facade of the EEMCS
faculty building at Delft University of Technology. The roof is densely sampled while the facades are
sparsely sampled. In point cloud viewers the surface density difference is less obvious, as can be seen
in figure 3.3. The other (rear) facade of the building is not present in the data at all. Which part of a
building is sampled, and which is in the shadow, is dependent on the flight line and the equipment used.
For AHN4 experiments are conducted with equipment better capable of sampling walls and facades,
[Leusink, 2018].
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Vertical point density of the EEMCS faculty in AHN3

Figure 3.2: Vertical point density profile along the height of the EEMCS building. Only points classified as ’building’ within the
building outline are shown. Eight height meters of facade cover approximately the same surface area as the roof. The (horizontal)
roof is frequently sampled, while the point density on the facades is only a fraction of that.

Figure 3.3: EEMCS faculty building in AHN3, visualized in CloudCompare, looking to the south-west. The low point density on
the facades results in visible gaps of the building outline. The non-uniform point distribution on the facade appears as horizontal
lines, corresponding to small ridges between the exterior plating, and patches of higher point density related to sunblinds.
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Known errors

Various tiles, as published on PDOK [2018], suffer from corrupt files or missing segments2. The gov-
erning body of AHN (Waterschapshuis) and Rijkswaterstaat were contacted about these problems and
new tiles were provided to PDOK in July 2018. Only AHN2 ground tile 16DZ1 is unrecoverable. With
AHN3, some tiles3 that overlap with multiple concessions do not contain points from both concessions
(figure 3.1). This results in gaps in the data if not replaced by older data from AHN2. As of July 2018
new tiles were provided for part of the data4.

3.2. Error model
For AHN (iteration 2 and 3) the accuracy is defined asmaximum 5 cm systematic (1𝜎) and precision as a
5 cm stochastic error (1𝜎) in the vertical direction. Requirements for horizontal accuracy are 50 cm (1𝜎,
both 𝑥 and 𝑦) for objects larger than 2× 2 m. In reality this is often outperformed [van Meijeren, 2017],
but differences between acquisitions might be larger [Soudarissanane et al., 2010, van der Sande
et al., 2010]. Quality reports, including accuracy assessment, were commissioned for the individual
tenders/concessions. Unfortunately these reports are not publicly available. The tender states that re-
acquisition of the data is necessary if the requirements are not met, [Rijkswaterstaat, 2013], therefore
one may assume that the data meets at least the requirements set in the tender.

To asses the applicability of the error model the surfaces of the runways 06/24, 18L/36R and 04/22 of
Schiphol Airport were analyzed in tile 25DZ1_09.

Assessment of the stochastic error
The vertical stochastic error has been assessed by measuring the surface roughness of a known (lo-
cally) flat surface: the runways. For this purpose the roughness is defined as the distance from a
plane fitted through neighboring points. For each point a flat surface is fitted through all neighboring
points within 1 meter distance, the distance of the point to this surface is the roughness of this point,
[Girardeau-Montaut et al., 2018].

In this tile the requirements set in the tender are outperformed, as can be seen in figure 3.4. The
roughness is half-normal distributed with 𝜎 = 0.031 m and zero mean. The spatial distribution of the
roughness is related to the flight lines, with higher roughness where data of multiple flight lines meet.
When only a single flight line is analyzed, roughness is no longer half-normal distributed. This is either
due to imperfections in the runway used as reference or due to non-normal distributed perturbations
dominating the error of the LiDAR measurements. Furthermore correlation between the surface re-
flectance, roughness and precision can be seen (compare figure 3.7 with figures 3.5 and 3.6).

Assessment of systematic errors
To asses the systematic error the height difference between the various flight lines the distance between
flight line 54048 and 54049 (see figure 3.7) is calculated. To mitigate the noise of individual points local
planes are fitted with all points within 1 meter. The resulting average distance (𝜇) is 0.05 meter over
the whole runway (𝜎 = 0.02 meter), where spatial variants correspond to differences in the pavement
structure. As flights were performed in a short time span, temporal changes (e.g. subsidence) can be
neglected. Therefore this is an indicator of the systematic error between flights.

As the roughness is measured as an absolute number a zero-mean offset might be hidden in the data.
An Iterative Closest Point algorithm was run to determine the distance between the point clouds. The
vertical distance between the two point clouds was determined to be 7 cm. Above the expected zero-
mean with a standard deviation of 5 cm.
2This includes the following tiles of AHN2, that contain only ground points: 01CZ2, 07CN2, 11EZ2, 16HN2, 16DZ1 and 16DZ2.
The tile containing only non-ground points for 57EN2 is corrupt too.

3Especially: 16DN1, 16DN2, 16EN2, 16EZ1, 16EZ2, 16FN1, 16FN2, 25EZ1, 25EZ2, 25GN2, 25HN2, 26CZ1, 26CZ2 and 26DZ1.
4Only 25EZ1, 25EZ2, 25GN2, 25HN2, 26CZ1, 26CZ2 and 26DZ1.
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Figure 3.4: Normalized histogram of the surface roughness at the runways. The density function as required in the AHN tender
is shown in black and the fitted, empirical, density function in orange (dashed). Left: a combination of all flight lines. Right: only
roughness values from flight line 54048. The requirements on roughness are easily met on the runway, while for a single flight
line the roughness is no longer a half-normal distribution, suggesting that the noise is no longer normally distributed.

Figure 3.5: Top view of tile 25DZ1_09, which contains runway 18L/36R of Schiphol Airport. The white outline indicates the
tarmac runway area. For this area the surface roughness is shown (in meters), including a histogram, which is approximately
half-normal distributed with  = 0.03 m. The background image on the left: intensity from LiDAR data. On the right the flight
line the data originated from (dark blue, light blue or yellow), a breakdown of flight lines is shown in figure 3.7. Variations in
roughness show correspondence to flight line boundaries.
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Figure 3.6: Distance between flight line 54048 and 54049, approximated by local planes to reduce the effect of noise. The
non-zero mean indicates a systematic difference between the acquisitions. The offset is different for different patches of tarmac,
possibly related to differences in surface reflectance.

Figure 3.7: Intensity variations over the runway for seven different flight lines (first row: 54046, 54047, 54048, 54049; second
row: 54050, 54251, 54052), related to the incidence angle. No, or insufficient, intensity correction is applied.
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As the definition of the vertical error is unclear, given the requirements are not met, the pessimistic
scenario of the addition of both the stochastic and the systematic error is assumed for the error model.
This leads to the vertical error being defined as √0.05ኼ + 0.05ኼ ≈ 0.7 meter standard deviation for
calculations in this thesis.

Matching earlier observations by van Meijeren [2017], the large standard deviation and the infrequent
acquisition make AHN itself unsuitable for deformation monitoring at the millimeter level that is obtained
by InSARmonitoring. Furthermore not necessarily the same point is measured in each epoch, resulting
in apparent differences (false positives) or missed differences (false negatives).

Other errors
Some errors do not follow the defined error model. For example at the EEMCS faculty the bicycle
parking and porch in front of the building is projected into the building. As can be seen in figure 3.8
and 3.9 the projected interior of the building does not match the true interior. The resemblance with the
exterior objects is striking: these points are likely due to reflection on the glass facade (i.e. multipath).
Although no matching with the interior of a building is intended, false points could provide a (false)
match, introducing errors.

Figure 3.8: Interior entrance of the EEMCS building, as sampled in AHN3 and on a photo. Left: looking south east, right, interior:
looking north east. The large roof, shown in red at ground level in the point cloud, does not exist in reality, and is a reflection of
the exterior roof (compare figure 3.9).

Figure 3.9: Entrance of the EEMCS building, as sampled in AHN3 and on a photo. Both images looking approximately south
west, showing the roof erroneously duplicated inside the building (compare figure 3.8).

3.3. Data preparation
Two ’final’ products are created from the raw AHN point clouds: a colored point cloud for web visual-
ization and a tiled point cloud for data fusion. Data preparation is built around LAStools [Isenburg,
2018], PDAL [Bell et al., 2018] and GDAL [GDAL Development Team, 2018] and relies heavily on xargs
for parallelization. An accompanying series of commands and hints on data preparation can be found
in appendix B.
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Processing can be subdivided in the following steps, visualized in figure 3.10:

1. Merging ground and non-ground points in AHN2.

2. Coloring the point cloud with the areal photograph.

3. Creation of a spatial index.

4. Concession crop, cropping tiles by concession boundaries.

5. Conversion to the Potree format (for the web viewer).

6. Tiling into smaller sub-tiles.

7. Estimation of normals.

8. Combining AHN2 and AHN3, using AHN3 where available.

9. Creation of a Digital Elevation Model, including statistics.

Luchtfoto (2017)

AHN3

AHN2 (merged)

AHN2_C

AHN3_C

AHN2_R

AHN3_R

AHN2_T

AHN3_T

AHN2 (u, g)

Algorithm PoTreeConverter

Raw data Coloured Cropped
(by concession)

Tiled

Radar (PS)

(TLS/MLS)

AHN_TN

Combining
Normal estimation

Figure 3.10: Flowchart of AHN data preparation. Input data (green), intermediate products (orange), final products (cyan) and
software involved (purple). The raw point cloud data is prepared in various steps for visual presentation (merged, colored and
cropped) and for the combination with the PS-InSAR data (merged and tiled), for which the algorithm will be outlined in chapter 4.

AHN data is delivered on PDOK in LAZ-tiles of 5 × 6.25 km, based on the standard national tiling
scheme. An excerpt of this tiling schema and associated sub-tiles can be found in figure A.1. Availability
boundaries do not follow this tiling scheme but follow water board (Dutch: Waterschappen) boundaries
(figure 3.12).

Merging AHN2
Tiles for AHN2 are not delivered as classified LAZ-files but as two files: one file containing ground
points and one file containing all other points. These tiles are merged where all non-ground points
are marked as unclassified, rather than never classified. (Classification in accordance with ASPRS
[2013].) Thanks to this merging future operations can read a single tile (instead of two) and use the
ground classification in their process.

Coloring
In AHN2 data no intensity is available, as of AHN3 intensity attributes are available, but intensity values
vary greatly by incidence angle (this effect can be seen next to the runway in figure 3.7). As the scan
angle is provided with the scanning data, an intensity correction could be attempted. But to further ease
navigation of the point cloud, with or without intensity values, an aerial photograph is overlaid on the
points. This photo, provided by PDOK [2018], is downloaded using GDAL en overlaid on the point cloud
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using PDAL. For the particularities on downloading the aerial photograph, please refer to Van Natijne et
al. [2017]. PDAL is preferred over the previously used lascolor (provided with LAStools), as PDAL
is open source and providing a free alternative to the paid version of LAStools. This step results in a
copy of the raw (input) point cloud with added RGB values for each pixel.

Creation of a spatial index
A spatial index is used to speed up queries on the LAZ-files. Thanks to this index a full scan is no
longer required to extract points within a bounding box. The LASindex tool by Isenburg [2012] does
not reorder the points but lists where points within certain quadtree cells (a spatial indexing structure,
illustrated in figure 3.11) can be found in the file.

Figure 3.11: Example of a LASindex quadtree on top of a point cloud. The locations in the original source of the points are
stored at each cell, [Isenburg, 2012].

Concession crop
Tiling of the visualization is built around the border of the water boards. This allows the replacement
of all tiles of a water board once an update becomes available rather than updating tiles which overlap
neighboring regions. Updating tiles would require re-rendering of the full Potree structure, while inde-
pendent concessions can be replaced converting only this concession and pointing the webviewer to
another resource.

First the intersection of tiles and concessions is calculated. Tiles at the exterior boundaries of conces-
sions are split. This process is illustrated in figure 3.12.

Potree conversion
The concession, that includes the northern part of the province of Zuid-Holland, parts of Utrecht and
the region under control by air-traffic control from Schiphol Airport, was prepared for use in Potree
(figure 3.13). A total of 57 389 000 153 points was converted in 69 hours. Van Natijne et al. [2017]
showed that the processing time required by PotreeConverter scales linearly with the amount of
points processed (𝒪(𝑛)). This process was done on a consumer grade Intel Core i5-2400 with just 8
GB of RAM and two Seagate 4TB consumer (USB 3) expansion drives for reading and writing.
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Figure 3.12: AHN is distributed in tiles. Tiles may exist both for AHN2 and AHN3 and might overlap. The availability of
AHN2/AHN3 (figure 3.1) is shown here in the discretized tile pattern. Due to errors in the data some AHN3 tiles, overlapping
AHN2, were unavailable at the time of writing.

Given there are thirteen concessions of comparable size, processing the whole of the Netherlands
would take approximately 40 days. As each concession is completely independent, processing can
be parallelized based on concessions rather than the internal structure of the generated octree, as
proposed by Martinez-Rubi et al. [2015] (Massive-PotreeConverter). Although a maximum of
(only) 13 parallel threads is possible when the concessions are split based on the boundaries of the
(thirteen) water boards.

Disk requirements are large and have to be tailored to the storage of large quantities of small files.
For just this concession the generated structure contained 2 332 999 files and had a size of 1022
GiB.

Tiling

For algorithmic purposes both data sets are tiled in tiles of approximately 1 km2 (1 × 1.25 km, 4% of the
original tiles). These tiles are small enough to be processed in memory, and large enough for regular
file storage. For each LiDAR tile a buffer of 25 meters on all sides is included, this is to allow radar
measurements on the border of two tiles to match. Given the radar error model, such a buffer is large
enough to accommodate points on the border between tiles.

Tiling queries on the LAZ-files are elementary (axes aligned bounding boxes). This process is done
using las2las of LAStools (tiling) [Isenburg, 2018], greatly accelerated by the previously generated
spatial index. It created 55076 LAZ-files (tiles, 34777 AHN2, 20299 AHN3), with an average file size
of 58 MiB and 21 million points (average point density of 15 points per square meter).

Due to the 25meter overlap between tiles, the algorithmmay be run for each tile independently, allowing
horizontal scaling of the algorithm. That is, each tile can be processed independently, on a separate
CPU or even separate node. This enables us to combine the PS-InSAR points with massive numbers
of LiDAR measurements in a distributed manner, reducing the execution time required.

Normals
Normals are estimated for each point using PDAL [Bell et al., 2018], based on the eigenvectors of the
point set consisting of the eight point neighborhood of each point together with the point itself.
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Figure 3.13: Northern part of the province of Zuid-Holland, parts of Utrecht and the area under control of Schiphol Airport,
together form a single acquisition concession. Shown here using Potree, as a colored point cloud (AHN3). The 57 billion points
can be viewed in a regular web browser, on consumer hardware.

The ASPRS definition of the LAS-file does not allocate space for the storage of normals, [ASPRS,
2013]. As conversion to another (less compressed) format is undesirable, the normals are converted
to eight bit integers (int8) to maximize compression benefits and are added as ’Extra Bytes’ to the
points in a new LAZ-file.

Combining AHN2 and AHN3
A combined data set of AHN3 and AHN2 is created, AHN3 is used whenever available (figure 3.1),
otherwise AHN2 is used. This combination is made for computational purposes and therefore the sub-
tiles, including their overlap are used. Tiles that are fully within a concession or do not cross any other
concession (coastal tiles and tiles at the border with Germany and Belgium, for example) can be used
directly and a symlink (link to the original file) is used instead of making a full copy.

Regional statistics
To asses the differences in AHN on a national scale a Digital Elevation Model was created at 5 meter
resolution. Such a Digital Elevation Model (DEM) or Digital Terrain Model (DTM) is available from
PDOK. This product, created from the tiled products, is primarily used to get an overview of the regional
properties of AHN.

Furthermore the point density of each cell is calculated. These density figures, for example, show
different acquisition strategies and density differences over the various concessions. See figures 3.14
(AHN2), A.2 (AHN3), A.3 (AHN 2/3). From these images it is possible to detected the lack of data in
certain tiles in the north of the Netherlands, due to data errors.
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Figure 3.14: Point density of AHN2, sampled over a 35 meter radius (for 25×25 meter pixels). Large differences in point density
are visible. Very low (less than 10 points per square meter) densities indicate missing or corrupt data, this includes natural effects
such as large water bodies.
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3.4. Data volume
Although many intermediate products can be removed after completing the data preparation, the total
storage requirements are in the order of a few terabytes and can be covered with regular consumer
storage solutions. An overview of the storage requirements can be found in table 3.3. The concession
tiles are only stored for the most recent iteration of AHN.

Raw Colored Concessions Tiled DEM
AHN2 988 G 1.7 T 408 G 1.1 T 39 G 35 G (combined)AHN3 1.1 T 1.3 T 340 G 1.2 T 22 G

Table 3.3: Storage requirements for raw AHN, final and intermediate products. Due to overlap the tiled products are slightly
larger than the original point clouds. Colored versions are larger as each point now contains RGB values too.

Conclusion
The whole of the Netherlands was covered by multiple airborne LiDAR surveys over the last twenty
years. Point clouds from the last campaign (AHN2), and the currently running campaign (AHN3), can be
used in this study. Average density is approximately 17 points per square meter, with limited coverage
of vertical surfaces. Both campaigns have comparable statistical properties and missing data can be
mitigated by using data from previous campaigns.

The data over the test site, a runway at Schiphol Airport, meets the quality description for the stochastic
error. Furthermore it showed that the offset between flight lines was in the order of 5 centimeters,
indicating the flight line is a neglected parameter in the error model. No assessment of planimetric
error was made, due to the lack of a uncorrelated reference of high enough precision. Although the
AHN LiDAR surveys themselves do not give deformation estimates, the positioning precision per point
is such that it might aid in the improvement of the PS-InSAR geolocation estimates.

Data preparation is an elaborate process, merging the data in a uniform format and creating tiled ver-
sions of the point cloud for both visualization and matching purposes. For visualization color from an
aerial photograph is added to the point cloud and tiles are cropped to the extends of the concessions to
parallelize processing and ease replacement with new versions of the data. For the matching algorithm
the point cloud is split in smaller sub-tiles, which include an overlap with neighbouring tiles. Thanks
to this overlap, matching can be applied on all tiles independently. Each nationwide AHN point cloud,
including intermediate products, requires approximately 1 terabyte of storage.





4
Methodology

Themethodology is split into two parts: the visualization of the data, to aid the visual interpretation of the
deformation signal and the fusion of both data sets, attaching the deformation signal to the geometries
contained in the LiDAR data. After data preparation as discussed in chapter 3.3, the following five
methods to achieve these goals will be discussed here:

1. Common visualization of InSAR and LiDAR data
Interpretation is left to the operator, just as with traditional (online) 2D maps (such as figure 5.6).
The geolocation estimation is shown by an error ellipsoid in 3D. This enables improved interpre-
tation of the radar signal and scene geometry over traditional 2D maps.

2. Nearest Neighbor linking
The Nearest Neighbor in the LiDAR point cloud (single point), with respect to the radar geolocation
estimate, is assumed to govern the scattering behavior. This method is computationally efficient,
but may overestimate the distance on low density surfaces, as illustrated in figure 4.1. If no such
point is found within a (predefined) maximum range, matching is stopped, and no new coordinates
are determined.

3. Linking to a single surface
After Nearest Neighbor search, either up to a predefined number of points or all points up to a
maximum radius, a single plane is fitted to the points found. This plane approximation of e.g. a
facade makes the matching algorithm more robust in areas of low point density and exploits the
redundancy in the points for noise reduction.

4. Linking to multiple surfaces
For complex geometries the previous approach can be extended. Multiple locally linear (’flat’)
surfaces may exist in the neighborhood of the scatterer. This method was abandoned in favor of:

5. Linking to dihedral of trihedral geometries
Dihedral and trihedral surface configurations are known to act as good radar reflectors. These
geometric configurations might be extracted from the scene.

The difference between the methods is sketched in figure 4.1. A local linear surface approximation,
adds robustness in case of point density differences. On rough surfaces, or non flat surfaces this
approximation may not hold. Rough surfaces are approximated by an ’average’ surface and it might
be possible to approximate non-flat surfaces as linearly close to the point of intersection.

Reconstruction of the full (building) geometry is not part of this research. Although matching to a 3D
model would require less effort during matching, constructing the 3D model is no trivial task. Further-
more, similar attempts at matching between PS-InSAR and LiDAR point clouds showed that the level
of abstraction of a building model influences the quality of matches. By working on the raw point cloud,
reconstructing the surface area only locally, a high level of detail is achieved at low initial computa-
tional cost: only areas with permanent scatterers are reconstructed. Furthermore errors are reduced
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A B

Figure 4.1: Sketch of the effect of surface reconstruction on matching between a LiDAR point cloud (black/red dots) and a PS-
InSAR geolocation estimation (blue dot, including the error ellipsoid in gray). The match with the Nearest Neighbor in the point
cloud, shown in red, is further away than the actual surface (thin black line, point of intersection indicated by the magenta arrow).
Shown in a simple situation A; and a complex situation B. A: the distance, in terms of the size of the error ellipsoid () is indicated
as thin lines for both the closest point and the facade. The surface is closer, and therefore more likely than the closest point.
B: the distance to the closest points is indicated by a dashed line, the intersection with the surfaces with thin lines. Again the
surfaces are closer and more likely than the individual points. And although the horizontal surface is less likely than the vertical
surface, it could be considered an alternative match.

to a single point only, where errors in a building model influence all scatterers in the vicinity.

After matching, the resulting matching distances may be used to analyze the geolocation quality, for
example detection of biases and trends in the geolocation.

4.1. Common visualization of InSAR and LiDAR data
Web based visualization is built around Potree [Schütz, 2016, 2018] and Three.js [Cabello et al., 2018].
Potree is a WebGL based renderer for large point clouds in the web browser, built on top of the Three.js
3D library. WebGL is a 3D visualization technique for web browsers and online use. Previously the full
(nationwide) AHN2 data set has been successfully converted to be used in the Potree viewer [Martinez-
Rubi et al., 2015]. Other visual aids (such as the error ellipsoids and plane estimates) can be imple-
mented using Three.js.

Potree ensures a smooth viewing experience by loading the point cloud from a preprocessed octree
structure. Only the points in view at the client are downloaded and never more than a user-defined
maximum. Due to the 2ኻኼD nature of the radar data set this data is distributed using a quadtree tiling
scheme, loading only the tiles in view and removing those no longer in view frommemory. This process
is elaborated on by Van Natijne et al. [2017].

The viewer might be extended with synthesized point clouds, simulating the effects of the deformation.
These visual indicators aid the interpretation of the deformation signal, as the location of a subsidence
bowl is not only colored but visualized in 3D. Furthermore the visualization can be true to the line of
sight of the radar, without assumptions on the deformation behavior.

4.2. First Nearest Neighbor linking
Nearest Neighbor search should take the covariance matrix of each radar measurement into account.
Without, the nearest points are possibly not the most likely points. Use of thewhitening transformwill al-



4.2. First Nearest Neighbor linking 33

low any (conventional) Nearest Neighbor algorithm to be used on this problem [Stansbury, 2013].
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Figure 4.2: Effect of the whitening transform on the error ellipses of the PS-InSAR geolocation estimate and the point cloud. The
original situation is shown on the left, on the right the whitening transform is applied. The geometry is deformed such that the
error ellipses of the PS-InSAR geolocation estimates are reduced to circles The unit of the axes is transformed from meters to
standard deviations, , of the PS-InSAR geolocation estimate. As distance is measured in , the closest point or surface is the
most likely candidate too.

Using the whitening transform all points (LiDAR and radar) are projected on the eigenvectors of the
covariance matrix of the radar point (Qፄፍፔ, see section 2.1 and section 2.1) and scaled by the eigenval-
ues. This creates a new coordinate system where the Euclidean metric represents distances in 𝜎 rather
than meters. All radar errors are now standard normal distributed, as can be seen in figure 4.2.

This transformation works for a single, constant, error model only. As a consequence the transfor-
mation has to be calculated and applied for each unique viewing geometry (i.e. orbit). This includes
construction of a new search structure for each viewing geometry and/or error model. The Multiple
Spatial Transformation Technique by [Sakurai et al., 2001], based on preprocessed search structures
and approximate transformations may be used to speed up this process if required, but was not applied
in this work. The alternative, a weighted distance metric, does not allow for indexing of the point cloud
using traditional methods. The lack of an index reduces the search speed, to 𝒪(𝑛) in the worst case,
compared to 𝒪(log 𝑛) (on average) for a kD-tree, for 𝑛 number of points.

This transformation, W, [Kessy et al., 2018, Stansbury, 2013], is based on the eigenvalues (E) and a
diagonal matrix of the eigenvectors (D) of the covariance matrix of the radar measurements (Qፄፍፔ)
can be found using the equation:

W = EዅኻDዅ ᎳᎴEፓ . (4.1)

The effectiveness of this transformation,W, can be validated by transforming the covariance matrix of
the radar measurements (Qፄፍፔ) using the whitening transform to the identity matrix (Iኽ):

WQፄፍፔW
ፓ = Iኽ. (4.2)

In this coordinate system, Nearest Neighbors are nearest in a statistical sense. This search is op-
timal with respect to the radar, considering AHN as deterministic ground truth, without any statistical
variability. This assumption is justified due to the (relatively) small error of the LiDAR point cloud.

This search is implemented using pykdtree, a kD-tree implementation in Python [Nielsen et al., 2017,
Python Development Team, 2017].
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4.3. Linking to a single surface
The surface of AHN points in the neighborhood of a PS-InSAR location is locally approximated as a
single, three dimensional, plane of the equation:

𝑎�̂� + 𝑏�̂� + 𝑐�̂� = 𝑑, (4.3)

where coefficients (𝑎, 𝑏, 𝑐) represent a normal vector to the plane on the axes �̂�, �̂� and �̂�, and 𝑑 is a
constant.

Two approaches were chosen to approximate the surface:

• Using three LiDAR points, the coefficients are defined by the cross-product of the coordinates of
these points.

• Using all Nearest Neighbors found, employing Principal Component Analysis (PCA) to find the
coefficients of the plane.

The first method (cross-product) is computationally light but the plane is based on three points only
and does not exploit the redundancy in the LiDAR point cloud and does not provide a quality metric for
the fit. PCA requires more computational effort but exploits the redundancy in the data and provide a
quality metric for the fit.

The error model of both data sets is taken as the starting point of the fusion. To estimate the plane, first
the covariancematrix,Q፩፥ፚ፧፞, of the point coordinates x is calculated for the LiDAR points found,

Q፩፥ፚ፧፞ =
(x− 𝜇x)ፓ ⋅ (x− 𝜇x)

𝑛 − 1 , (4.4)

with 𝜇x the mean of the coordinates (x) and 𝑛 the number of points (≥ 3). The whitening transform
(Wፀፇፍ) based on the covariance matrix of AHN (Qፀፇፍ) is calculated based on equation 4.1. The
covariance matrix (Q፩፥ፚ፧፞) is then transformed using the whitening transform found to Qፖ,

Qፖ =WፀፇፍQ፩፥ፚ፧፞W
ፓ
ፀፇፍ . (4.5)

Subsequently the eigenvectors and eigenvalues of the covariance matrix (Qፖ) are determined. The
eigenvector corresponding to the smallest eigenvalue of the covariance matrix represents the normal
vector (𝑎, 𝑏, 𝑐). The ratio between the eigenvalues is an indicator for the planarity of the surface, for
flat surfaces the smallest eigenvalue is much smaller than the other two, [Hackel et al., 2016]. This
results in a ratio, 𝛾, between the eigenvalues (𝜆ኻ,ኼ,ኽ) close to 1,

𝛾 = 𝜆ኼ − 𝜆ኽ
𝜆ኻ

, with 𝜆ኻ ≥ 𝜆ኼ ≥ 𝜆ኽ ≥ 0. (4.6)

The constant 𝑑 of the plane equation (4.3) is found by solving the equation for the mean of the coordi-
nates of the points (𝜇፱, 𝜇፲ and 𝜇፳), with constants 𝑎, 𝑏 and 𝑐 from the normal vector,

𝑑 = 𝑎𝜇፱ + 𝑏𝜇፲ + 𝑐𝜇፳ . (4.7)

To determine the point of intersection, the PS-InSAR whitening transform (W) is applied to the PS-
InSAR point (y) and the surface normal vector (v = [𝑎 𝑏 𝑐]ፓ) found,

yፖ = yWፓ , (4.8)

vፖ =
vWዅኻ

‖vWዅኻ‖ . (4.9)

The yፖ and vፖ found represent the PS-InSAR measurement and the normal vector of the plane in the
whitened space.
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The PS-InSAR point, yፖ, is projected orthogonal on the surface, the distance found, 𝑑(y,v), is the
distance in 𝜎 of the radar error model,

𝑑(y,v) = yፖvፖ − 𝑑, (4.10)

with 𝑑 the plane constant, determined in equation 4.7.
The point to plane projection, yፏᑎ , is then found based on the distance, 𝑑(y,v), and the normal vector
of the plane, vፖ:

yፏᑎ = yፖ − 𝑑(y,v)vፖ , (4.11)

where both point and plane are still in the whitened space. Only after application of the inverse of the
whitening transform, Wዅኻ, the point of intersection in world coordinates, yፏ, is found:

yፏ = yፏᑎWዅኻፓ . (4.12)

4.4. Linking to multiple surfaces; dihedral and trihedral geome-
tries

Detection of multiple surfaces can generate a top-3 list of candidate intersections, such as the horizontal
surface slightly further away in figure 4.1B. Detection of multiple surfaces was planned to be based
on RANSAC (random sample consensus) and only to be applied if the surface estimated using the
single surface estimating technique indicated a non-flat area. Initial testing showed that RANSAC was
unsuitable for the varying point densities of the point cloud. Successful matches could only be made on
two (or more) horizontal surfaces, such as the small height difference between a street and a pedestrian
walkway. The vertical surface in between would not lead to a plane estimate.

In practice ensembles of multiple surfaces exhibit joint scattering behavior, with each surface contribut-
ing to the final scattering pattern. For dihedral and trihedral configurations this behavior is well defined
and consistent, even with slightly varying satellite positions, and therefore constant over time. The
dihedral and trihedral configurations of surfaces can be found in the point cloud. To respect the radar
scattering behavior of dihedral and trihedral structures the source of the deformation signal should
be placed at the intersection of the surfaces rather than at the surfaces themselves [Richards et al.,
2010].

Due to the low vertical coverage of AHN, structures have to be fitted based on a limited amount of
points in either of the planes. Methods like RANSACwould suffer from the low point density on facades,
making the chances of finding the vertical surface ’at random’ low. Attempts at using a Gauss map (a
projection of the normals on a half-sphere) were unsuccessful due to the smoothing effect of the low
point density during the calculation of the normals, creating non distinctive clusters. One such example
can be seen in figure 5.15.

As a compromise a method for the detection of right angles was constructed based on an iterative so-
lution, where the density difference between the planes is exploited. The (horizontal) ground plane will
match many points and only few points are necessary to match the vertical surface(s). If an orthogonal
structure is present, the eigenvectors of the covariance of the points will align this structure. Those
eigenvectors are used to simplify this problem to 2D, and improve redundancy of the data.

The fitting procedure is as follows:

1. For each geolocation estimate the closest 100 points within 2 meters are found. This is done in
world coordinates, without taking the covariance properties of either point cloud in consideration.
As this procedure is on the reconstruction of the feature, rather than statistical proximity.

2. The eigenvectors of the covariance of the point coordinates are determined and the data is pro-
jected on the two last eigenvectors (smallest eigenvalues).

3. Two orthogonal lines are initialized, intersecting at themean coordinates of the cloud. Initialization
with the original geolocation estimate would be possible, but this prevents all points from being
closest to a single plane on initialization.
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4. Iteratively the planes are moved with the mean offset of the points they are closest too and sub-
sequently rotated to come closest to the neighboring points. These steps repeated 5 times (5
translations and 5 rotations). Stopping the iteration on stabilization is possible, and currently not
implemented, as this solution is only to be run if the others were unsuccessfully.

5. The point of intersection resulting after the iterations is transformed back to world coordinates
and returned. The distance in sigma is calculated by transforming both the original coordinates
and the point of intersection using the whitening transform and calculating the Euclidean distance
between the two.
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Figure 4.3: Iterative algorithm to find the corner of a dihedral or trihedral reflector. Points are projected on the eigenvectors to
reduce the dimensionality of the problem and to mitigate the effect of sampling density differences. A corner is matched in a
K-Means like approach: a corner model, with a straight angle, is translated and rotated iteratively to match the inliers (blue or
yellow) with the shortest possible distance.

This procedure is illustrated in figure 4.3. The input data can be found in figure 5.15, including the
(estimated) normals as vectors and in a Gauss map. Due to the smoothing at the edge (line of inter-
section) the normals do not show a straight corner. Nevertheless the iterative method is able to find
this line.

4.5. Quality attributes and indicators
Although automatic quality assessment will filter gross outliers, a quality estimate of the intersection
should be shown to the user. Quality indicators include the distance to the point of intersection and the
properties of the plane. These indicators can be a combination of Euclidean and covariance metrics.
Furthermore derived units, such as the orientation of the plane with respect to the satellite viewing
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geometry, indicative of the likelihood of a strong reflection, could be implemented. These metrics might
be used in aggregate products to, e.g. the detection of a regional offset or offsets for specific types of
scatterers.

The matching process itself might be validated based known reflectors, with known position (e.g. cor-
ner reflectors with accurate GNSSmeasurements). Although new reference reflectors will not available
in AHN3, as acquisitions are finished for most areas. It is easier to validate on facades, at the intersec-
tion of the facade with the street forms a natural dihedral reflector. These positions can be validated
afterwards or compared with maps from different sources.

This methods works best when the facade faces the radar (figure 2.1, RCS as function of aspect).
Cross-facade alignment might prove difficult with this method, as the dihedral reflector shows similar
behavior over the full length. To validate this last dimension trihedral reflectors are preferred.

Assessment of the scattering behavior might be done by the addition of photographs to the 3D point
cloud. Such combination shows the facade as an easy to interpret photo rather than a full point cloud,
with high vertical density. As an alternative high resolution scans from terrestrial or mobile platforms
might be added as comparison or included in the input data to improve performance on small features.
The classification present in AHN, might be used to asses the type of object the plane or geolocation
matched to. Combinations of ground and building are likely, while a persistent scatterer on the interface
between a facade and water is unlikely to be consistent over time.
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5.1. Web viewer
A screenshot is shown in figure 5.1, a zoomed in version in figure 5.2. A live demonstration can be found
at http://dev.fwrite.org/radar/. The determined intersection is shown as the intersection of
the ellipsoid with the estimated (single) plane, as can be seen in figure 5.2.

Figure 5.1: Delft University of Technology campus, shown in an adapted version of the Potree viewer, as a colored point cloud
(AHN3) overlaid with TerraSAR-X PS-InSAR trend estimates shown as ኻ error ellipsoids around the expected position, colored
by their deformation signal.

Figure 5.2 and the image on the cover can be compared to a regular photo in figure 5.9. As only
orthophotos were used instead of a combination with oblique images facades are colored as either
roofs or surrounding ground surfaces. Facades may be added to the viewer as photographs. An
example can be seen in figure 5.3. Photos were taken by the author and perspective corrected. No
correction for lens distortions was applied.

Another example of the combined visualization of the point cloud with deformation data is the visualiza-
tion of a dike in the Eemshaven, as can be seen in figure 5.4. In this image the PS-InSAR deformation
signal from the dike is interpolated, exaggerated and applied to the existing AHN2 point cloud. The
true line of sight deformation can be shown in a 3D point cloud, unlike in 2D maps.

39
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Figure 5.2: Part of the 3ME faculty on the Delft University of Technology campus, shown in an adapted version of Potree, as a
colored point cloud (AHN3) overlaid with TerraSAR-X PS-InSAR trend estimates. Indicated are the ኻ error ellipsoids around
the expected position, colored by their deformation signal and the planes of intersection estimated from the point cloud.

5.2. Matching
To improve the geolocation estimate of PS-InSAR measurements the original geolocation estimates
are matched to the point cloud. Various steps in this integration were introduced in chapter 4. To asses
the differences between them all methods were applied to all points, therefore the results of all methods
can be compared.

Comparison between matching techniques
A comparison between the various matching techniques of the distance from the original geolocation
estimate to the point or intersection found in the point cloud is given in the histograms of figure 5.5.
Local reconstruction of the geometry, by surface approximation, leads to lower distances between the
original geolocation estimation and the surface found, as sketched in figure 4.1. The intersection with
the surface is on average ኻ

ኼ𝜎 closer than the first Nearest Neighbor. Due to the anisotropy of the
problem this distance can not be uniformly expressed in meters.

The improvement in location can be seen in figure 5.7. Compared to figure 5.6 stable points are now
attributed to the facade while subsiding points remain on the street. This subdivision is to be expected
given the stable foundations of the building but had to be made manually by a skilled operator on
traditional maps. Another example can be found in figure 5.8.

Of the total of 3.1 million PS-InSAR points, less than 20% of the points did not match a Nearest Neighbor
within 2ኻኼ𝜎. For surfaces the results are slightly better: 85% of the points were linked to a nearby surface
within 2ኻኼ𝜎. These results are summarized in tables 5.1 and 5.2. Results further away are very unlikely,
given the validity of the error model. Missing links are generally due to occlusions in the point cloud,
for example on facades and in narrow streets, resulting from the different viewing geometries between
the sensors. Some of them are due to faulty interpretation of the geometry, leading to plane estimates
that do not provide a realistic point of intersection.

Corner reflector results

Matching aimed at dihedral and trihedral structures showed poor results, with unrealistic error esti-
mates. A full comparison between the methods can be seen in figure 5.10, which shows planes outper-
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Figure 5.3: Faculty of Electrical Engineering, Mathematics and Computer Science. Shown as a (regular) photograph in 3D space
in Potree, together with the TerraSAR-X PS-InSAR geolocation estimates. A regular scattering pattern can be distinguished at
the intersection of the floors and the vertical profiles. Such visualization aids in the interpretation of the physical properties of
radar scattering.

Figure 5.4: Deformation of a dike near Eemshaven, interpolated and exaggerated deformation of the AHN2 point cloud, based on
the PS-InSAR deformation trend estimates. Left: close-up of the dike section showing the strongest deformation signal. Right:
overview of the surrounding fields and part of the dike.
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Figure 5.5: Distance to the closest object with various matching techniques. Plane estimation outperforms the Nearest Neighbor
(NN) search, which shows a bias due to the sampling distance of the points. The Nearest Neighbor is on average at least half
the sample spacing away from the initial estimate. Corner matching (CR) performs the worst of all methods in terms of distance
and bias. Nearest Neighbor search is stopped at ኼ ᎳᎴ. No points further away than 2 m are included in the search for a corner
reflector.

Descending Nearest Neighbor Plane Dihedral
𝜇 1.01 0.89 4.75
% 80 (≤ 2ኻኼ𝜎) 91 (≤ 2ኻኼ𝜎) 84 (≤ 2m)

Table 5.1: Comparison of matching results, for the descending orbit PS-InSAR data. The average distance (᎙ᒗ, measured in  of
the PS-InSAR geolocation estimates) is shown together with the percentage of points that could be matched. Planes outperform
the other methods in number of matched points (within cut-off) and the distance to the nearest feature.

Ascending Nearest Neighbor Plane Dihedral
𝜇 1.13 1.11 5.28
% 75 (≤ 2ኻኼ𝜎) 89 (≤ 2ኻኼ𝜎) 76 (≤ 2m)

Table 5.2: Comparison of matching results, similar to table 5.1, but for the ascending orbit. Again planes outperform the other
methods in number of points matched (within cut-off) and the distance to the nearest feature, although the difference is less than
with the descending orbit.
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Figure 5.6: Traditional PS-InSAR deformation map of the
TU Delft campus, colored by deformation velocity. Misalign-
ment occurs at the building facades. (Background: Open-
StreetMap.)

Figure 5.7: PS-InSAR geolocation estimates and velocities
after matching between the data sets. Improvement is mainly
visible at facades. (Background: OpenStreetMap)

Figure 5.8: Geolocation estimates, mapped in 2D, on the 3ME faculty (compare also figure 5.2), before (left) and after (right)
matching between the data sets. Improvement is visible at the facades, changes on the roof are related to the roofing structure.

Figure 5.9: Regular photos of the Mekelpark (left) and the 3ME faculty (right). The same scenes are featured in the PS-InSAR
deformation velocity maps in figures 5.6, 5.7 and 5.8.
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forming the nearest neighbor (NN) in proximity when measured in standard deviations of the original
geolocation estimate. Corner matching (CR) never outperforms plane estimation, not even for very
non-flat surfaces.
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Figure 5.10: Distance (in ) between the original geolocation estimate and the nearest neighbor (NN), plane or modelled corner
reflector (CR). Shown in red is a 1:1 relation, points under the line are closer to the method listed on the y-axis, points over the
line are closer to the method on the x-axis. Left: plane matching outperforms the Nearest Neighbor (NN) mostly at close range,
where the sampling distance of the point cloud is of influence. Middle and right: the corner matching (CR) may outperform the
Nearest Neighbor at short distance, but will never outperform the plane estimate.

Two natural corner reflectors can be seen in the staircases highlighted in figure 5.11. Although (very)
similar their representation in the point cloud is different, as shown in figure 5.14 and figure 5.15. Both
are poorly present in the point cloud, with only some points on the vertical walls, illustrating the problems
encountered in corner matching.

Figure 5.11: An example of large natural dihedral and trihedral reflectors on the Stevin 3
laboratory of the CEG faculty, formed by the stairwell and attached floors. (Image:
Google Maps) Their representation in the AHN3 point cloud is shown in figures 5.14
and 5.15.

Figure 5.12: Roof of the Aula, with non
straight corners that may falsely be
identified as dihedral reflectors. (Im-
age: Google Maps)

Another example is the roof in figure 5.12, that contains many persistent scatterers but does not con-
sist of dihedral reflectors. The roof segments (figure 5.13) are not at straight angles. The matching
algorithm is not capable of matching those structures.

Comparison with error estimation
Over the whole data set biases are in the order of decimeters, with standard deviations of multiple
meters, as can be seen in figure 5.16. When expressed in radar coordinates the uncertainty in match-
ing corresponds to the expected geolocation error, estimated by Dheenathayalan et al. [2016]. The
expected geolocation standard deviation was 0.128/0.256/2.816 meter in range/azimuth/cross-range
(section 2.1). As can be seen in figure 5.17, the standard deviations are of the same order of magnitude
as the original estimations. In range and azimuth the error is overestimated, while the cross-range es-
timate is of the same order as the original estimate. Covariance between the components is one order
of magnitude lower than the variance of the range, azimuth and cross-range. The initial assumption
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Figure 5.13: An example of a non straight angle, on the roof of the Aula (see figure 5.12), analyzed using a Gauss Map and
projected on the eigenvectors. Left: the points used as input to the angle estimation (red) and some surroundings (blue). Thanks
to the high point density on the surface, representative normals could be estimated. Middle: a Gauss map of the direction of
the normals, showing, first, that the surfaces are not at 90 degrees angles and, second, the clutter introduced by the normal
estimation at the corners. Right: a projection along the eigenvectors, clearly showing the angle.
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Figure 5.14: Natural trihedral reflectors on the Stevin 3 laboratory of the CEG faculty (see figure 5.11), southern staircase.
Analyzed using a Gauss Map and projected on the eigenvectors. Left: the points used as input to the corner estimation (red)
and some surroundings (blue), due to the low point density on the facades the normals are strongly influenced by the horizontal
surface. Middle: a Gauss map, showing that very few normals represent a (near) vertical surface. Right: the corner as projected
on the eigenvectors. Unfortunately projecting on the eigenvectors did not provide a better analysis of this angle.
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Figure 5.15: A view of the northern staircase of the Stevin 3 laboratory. Even with poor normals (left and middle), the projection
on the eigenvectors is successful in detecting the corner (right). The dihedral matching algorithm (section 4.4, figure 4.3) was
demonstrated on this data.
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that the covariance can be neglected, is therefore a reasonable simplification. This is all under the
assumption that the first Nearest Neighbor is the origin of the backscattered signal.
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Figure 5.16: Offsets (biases) in matching, in x, east; y, north
and z, up, for both ascending and descending orbits, based
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top is a fitted normal distribution.
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Figure 5.17: Same as figure 5.16, but in radar coordinates:
range, azimuth and cross-range. Matching performs better
than the fitted normal distribution, which is in turn better than
expected from the original estimates used as input for the
matching.

Figure 5.18: Examples of the regional offset visible in the radar data, shown over The Globe in The Hague (north) and on the
industrial estate ’Ruyven’ in Delfgauw (south). (Background: OpenStreetMap.) Due to the trend in the data, points on the street
are attributed to the building in The Hague, while points on the building are projected on the street in Delfgauw.

Quality estimation
Various quality estimates result from the matching procedure. For each point the distance from the
original estimation is known, both measured in standard deviation (𝜎) and in world coordinates (meters).
Furthermore for the surface estimation quality metrics are available, such as the flatness of surface
(quality of the approximation), that indicate the quality of the fit for each individual surface.

The solution can be compared visually in the point cloud, possibly aided by the addition of a high
resolution photograph. In figure 5.3 a regular scattering pattern can be seen on the facade, most
persistent scatters seem to reside where the floors intersect with the glass facade.

Processing
Matching 1.4 million SAR points to 3 billion LiDAR points (122 tiles) using the Nearest Neighbor ap-
proach takes 15 minutes with three threads on a quad-core Intel i7-3630QM 2.4 GHz laptop computer
with 24 GB of RAM. Approximately 95% of this time is spend on opening the compressed LAZ-files,
transforming the points (using the whitening transform) and building the kD-tree. As the current script
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is written in python 3.5, higher performance is expected to be achieved by using more optimized pro-
gramming languages. The addition of more complex methods will slow the process down. The iterative
detection of corners took 45 minutes to complete on all points. Plane estimation took almost 1:15 hour,
due to the necessity of a double search in two kD-trees (transformed and original coordinates). As no
intermediate results are stored, processing of the other orbit (ascending/descending) will take approx-
imately as long, and effectively double the processing time. Typically more complex methods are only
necessary after their faster counterparts had insufficient results, integrating the steps would require
reading and indexing the data only once, speeding up the process.

With the research area spanning 122 tiles of a total of 30137 tiles, processing the nationwide data set will
take around sixty hours on this laptop. Given that the program can be scaled over many nodes the com-
putation time can be reduced to the duration desired by the addition of more computing power.

5.3. Regional trends
Although the average offset is almost zero (figure 5.16), subsets of the data may be biased. By com-
paring the difference between the point of intersection or Nearest Neighbor and the original geolocation
estimate with respect to location, trends become visible.

In figure 5.19 the median offsets between the geolocation estimation and Nearest Neighbor are shown
(NN - estimation), binned in 100 × 100 meter bins. The same offsets are shown in radar coordinates
in figure 5.20. A clear north-south trend can be distinguished in the descending orbit, while in the ge-
olocation of the ascending track the offset increases in the southern part. Due to this trend geolocation
estimates are off by 2 to 3 meters at the borders of the radar image. In figure 5.18 two examples at a
local (building) scale can be seen.

These offsets and trends, that can be converted to radar coordinates too, may help to improve the radar
processing.

5.4. Discussion
This research is focused on the geometric alignment of the PS-InSAR measurements with a point
cloud, physical processes governing the radar behavior were not studied in detail. Another approach
to the improvement of PS-InSAR geolocation estimates would be to take the physical behaviour as a
starting point of the alignment. Nevertheless the visualization and large scale geometric alignment of
data aid the interpretation by radar professionals of both deformation behaviour and physical processes
influencing the radar signal.

The following other topics, related to the geometric approach, were addressed in this thesis, but require
some elaboration.

Error model
Numerical work in this thesis is based on two assumptions:

1. There is only one error model for the radar data;

2. The error introduced by AHN can be neglected.

These assumptions might oversimplify the problem, the consequences will be discussed.

Single error model

In this thesis the geolocation error model is taken as constant over the whole region of the radar image
and for all scatterers. This assumption is incorrect, as indicated by Dheenathayalan et al. [2016]. In
reality each point has its own geolocation precision estimate. The incidence angle ranges from 20 to
45 degrees over the image and reflectors vary in type: from (round) lamp posts to trihedral reflectors,
each with different properties and associated (different) geolocation error estimations. Unfortunately
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Figure 5.19: Regional trends (100 × 100 meter median) in the offset between the geolocation estimation and the Nearest
Neighbor (NN - estimated) for both ascending and descending orbits. Offsets in X (North) direction are largest, showing ± 2 to
3 meters offset at the boundaries.
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Figure 5.20: Similar to figure 5.19, but offsets shown in radar coordinates. Although the matching is unbiased, a trend with
correlation between the axes can be seen.
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this information was not available in this study. Therefore a single error model of a lamp post was
assumed for all scatterers.

Applicability of the whitening transform

The decorrelation method, chosen for matching LiDAR and PS-InSAR, the whitening transform, is only
suitable for a single covariance matrix. Different scattering regimes, with different statistical regimes,
would each require the transformation of the original point cloud data and the subsequent creation of
a search structure.

For regional variations, such as the incidence angle, the transformation can be parameterized. Al-
though no longer linear, it is still be approximately valid given that variations that only occur at a regional
scale do not influence close range approximations, a traditional nearest neighbor search could still be
applied then.

A solution would be to use a search structure independent of the covariance structure. Either brute
force, using all points in a sphere around the estimated position, or by querying small parts of the point
cloud, approximating the (ellipsoidal) shape of the covariance structure. For this application a search
structure such as a space filling curve could be used to query the point cloud with irregular and changing
patterns.

Formal error propagation

Currently no overall error model is implemented. The quality of the surface fit and the quality of the
intersection are defined and estimated independently as two separate metrics. An integrated metric
could provide, for example, a new quality metric for the point of intersection found. The complexity of
such metric is illustrated in figure 5.21, where there are areas of equal, maximum, probability, rather
than single points. The same holds for the probability of the intersection with surfaces, where the
surface is not uniquely defined and crosses the error ellipse of the PS-InSAR geolocation estimate at
various points.
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Figure 5.21: Adapted figure 4.2, to include the effects of noise on the point cloud. Single points have an area of equal probability
rather than a single point. There is no longer a single, unique, surface estimate, creating a complex shape of equal probability.
The image is not to scale with the error description of AHN or the PS-InSAR geolocation estimates.

A more formal approach to error estimation would provide more information on the quality of the match.
Given the different matching techniques, theremight not be one single error model, and the error models
are unlikely to be normal distributed. This makes it difficult, if not impossible, to compare between
matching techniques.
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Iterative bias correction
The radar ellipsoidal confidence interval is a simplification, based on the assumption that the processing
parameters where correct. In reality this confidence interval has a more complex shape. Assessment
of alignment could be integrated to improve the assumptions in the radar processing too.

To improve the matching results the algorithm could be re-run with the biases obtained from the first
run after initial matching. After correcting for the bias or trend in the initial geolocation the results of
the second geolocation matching algorithm may find a different (possibly better) point of intersection.
Quality assessment for this iterative process will be difficult, as the new geolocation will be the result
of multiple transformations of the original data set.

Size of persistent scatterers
In this thesis persistent scatterers are linked to single points or coordinates, this implies the assumption
of an infinitely small scattering object. In practice this assumption holds for the apex of a trihedral
reflector and to a lesser extend for the corner of dihedral reflector. Other reflectors, such as planes, do
not have such a point.

The minimum length of the sides of a trihedral reflector is only 50 cm for X-band radar (such as
TerraSAR-X) to be strong enough to be used in deformation measurements, [Garthwaite et al., 2015].
Many natural scatterers are formed by larger features and can be detected in the point cloud, but this
high level of detail may not be conveyed in the AHN point cloud, as points on all three surfaces are
necessary to reconstruct the trihedral shape. Addition of other, high resolution, point cloud data, such
as from terrestrial or mobile scanners might improve this detection at the cost of increased processing
requirements associated with matching such small features.

Matching applicability estimation
’Normal maps’ could be created from the point cloud, showing the orientation of the surfaces repre-
sented. This data could help in the assessment of the usefulness of this matching technique before
radar images are commissioned or to determine where an extra LiDAR survey would be most efficient.
Novellino et al. [2017], for example, used a DEM, land cover and other constraints to predict the ef-
fectiveness of Sentinel 1 for deformation monitoring purposes. In the built environment maps could
provide a resource on the (expected) orientations of facades. An example of such analysis is shown
in figure A.4, that shows the direction distribution of streets (and likely parallel facades) is strongly
dependent on the city.
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Conclusions

This thesis was written around the main question:

How to improve geolocation of InSAR point scatterers using detailed 3D point clouds?

Various options exist for the improvement of the geolocation estimation using point clouds, using ge-
ometric linking of the two data sets. The implemented methods are based on geometry only and may
not represent the underlying (physical) radar processes. Nevertheless they improve the geolocation
estimate, aid in the attribution of the radar signal to real world objects, support in the assessment of
the source of the deformation signal and the validation of the radar processing. This process can be
applied at a national scale, as the computations are fast and scaleable across machines.

6.1. Conclusions
This main question was subdivided into the following sub-questions:

1. What aspects of PS-InSAR deformation assessment can be improved by linking to 3D surface
geometry?

The techniques introduced enable the efficient attribution of the InSAR deformation signal to real-
world objects and features, allowing a spatial join at a higher scale: linking individual signals to
objects. The 3D visualization will allow for better communication with the greater public, as less
interpretation is required with respect to the traditional deformation maps. For professionals it
allows better interpretation of the radar signal, and the processing of artifacts contained therein.

For 85% of the persistent scatterers could be attributed to a nearby surface in the point cloud. This
improves positioning, classification and quality assessment (’trustworthiness’) of the PS-InSAR
data.

2. What statistical model applies to the data, and how was it defined?

The statistical model for the PS-InSAR measurements is defined in radar coordinates, as the
precision of range and azimuth follow directly from the sensor and processing properties. Formal
error propagation is used to estimate the precision along those axes. The estimated precision of
the cross-range follows from the geolocation estimate and is dependant on the time-series and
properties of the scatterer. Therefore statistical properties vary per sensor and per scatterer and
may change when new radar images are added. No covariance was assumed.

For AHN the error model used is based on the requirements set for the survey, not on values
found empirically by analysis of the data. The precision is defined along the three axes of the
RD coordinate system as unbiased and normal distributed. Furthermore the vertical precision is
simplified by combining the stochastic and systematic errors. This step simplified processing and
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accounted for errors between overlapping flight lines. No covariance is assumed between axes
or measurements (time).

• Is the statistical model valid?

The PS-InSAR model was validated in literature using corner-reflectors and a lamp post
measured using the same sensor (TerraSAR-X) as used in this study. After alignment the
model is validated against the offset from the initial alignment. The distribution found is
unbiased and of the same order of magnitude as the initial estimate, but contains a regional
trend is not described in the model. Covariance of the matching offset is limited and an order
of magnitude lower than variance of the principal axes.

For AHN the error estimate was validated on a runway of Schiphol Airport. Over the flat area
the data outperformed the error model, although the offset between flight lines is larger than
expected. All data was validated before publication by third companies, and were necessary
remeasured. Although notable, this result might not be characteristic for the whole data set.
Unfortunately the validation reports are not publicly available and the validation methods
used unknown.

• Is the data suitable for the planned application?

Yes, given the high precision of the initial PS-InSAR geolocation estimate most (> 85%)
scatterers can be attributed to a distinct object in the LiDAR point cloud. However, some
particularities are not covered in the error model. The unexpected trend in the PS-InSAR
measurements may lead to assignment errors as the distance between the point clouds is
no longer described by the error models. Furthermore the point density is not covered in the
statistical model, especially on vertical surfaces the density of AHN might be so low that no
candidate matches are present. Suitable data is not necessarily successful data.

3. How are PS-InSAR and LiDAR point clouds best spatially joined?

• How to represent the point cloud in segments of similar features?

When the point cloud describes a single, flat, surface it can be considered locally 2D. More
complex geometries, such as corners, are represented as multiple locally 2D environments,
i.e. planes. This plane approximation circumvents problems related to point density.

Geometries important to radar scattering, for example dihedral and trihedral configurations,
can be matched as objects too, although point cloud density differences have to be ac-
counted for in the matching algorithm.

• How to join a persistent scatterer to the surface outlined by LiDAR point cloud data?

The intersection between the plane and the smallest possible error ellipsoid is considered the
point of maximum likelihood. Projection is done in the whitened space of the radar sensor,
so that the projection is a generic point-to-plane problem. The (orthogonal) projection of the
point on the plane is the closest point as measured in the standard deviation of the radar
geolocation estimate.

For dihedral and trihedral reflectors the new geolocation estimate is in the corner, or apex, of
the reflector. Again the distance from the original solution can be expressed in the standard
deviation of the original estimate.

• How to represent the uncertainties of this match?

Multiple sources of uncertainty have to be represented: uncertainty in the PS-InSAR location,
uncertainty in the LiDAR point cloud and uncertainty in the approximation of the geometry.
Uncertainty is only expressed with respect to the PS-InSAR location, as the uncertainty in
especially the cross-range component is much higher than the other uncertainties. Uncer-
tainties are represented in standard deviations from the estimated position of the scatterer,
ergo they can be neglected.

4. What is the quality of the alignment between the data sets and can the alignment be improved?
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• Is there a constant offset or another bias between data sets? Is this offset local or regional?

Initial alignment is unbiased (zero mean), although a regional trend is present of up to ± 3
meters in the horizontal plane (± 2 meters in cross-range). This regional offset is present in
both ascending and descending orbits of the case study, and on average zero in the centre
of the data set.

• Can this offset be mitigated, based on the spatial join?

Both a constant offset (given small enough not to match other buildings, etc.) and a trend
might be modelled. The model found can be used to mitigate the offset. Matching can be
incorporated in various stages of the workflow too: as final (refining) step or iterative within
the process to check and adjust the assumptions made during the radar processing.

5. How to scale the matching process to regional or national scale?

Initial matching is an independent process that can be performed for each PS-InSAR geolocation
estimate individually. Therefore the process can be scaled horizontally, allowing for many parallel
search operations. Data preparation is tailored to this, splitting the data in many chunks that can
be distributed over the processing nodes.

The current implementation of the whitening transform is very efficient but requires regeneration of
the search structure for each iteration. Although the search structure can be saved, it would only
be valid for a single radar viewing geometry. The application of a space filling curve, indexing and
ordering the data based on location, will allow a uniform search index that can be stored efficiently
and be used by all viewing geometries. The current algorithm can be run in approximately 60
hours for the whole of the Netherlands, on a consumer laptop, including generation of the search
structure. Therefore the need for a more efficient algorithm is currently limited, while processing
time scales approximately linear (𝒪(𝑛)) with the number of PS-InSARmeasurements and𝒪(log 𝑛)
with the number of points in the point cloud.

Data prepared for the point cloud viewer is split by concession. This allows for incremental re-
placement as new areas become available, reducing the computational cost of updates and al-
lowing parallel creation of the structure.

6.2. Recommendations
Apart from the topics discussed in the discussion (section 5.4) further research could benefit from the
following recommendations:

• Use of space filling curves, sorting the data instead indexing, such as with kD-trees or similar
methods, might be a faster search method than a single index in multiple satellite or error model
configurations.

• Current focus is on airborne LiDAR, due to its nation wide availability. Mobile laser scanning might
prove to be a valuable asset. Such scans provide better coverage on the sides of buildings, in
recesses (e.g. roofed balconies) invisible to an airborne survey with a low incidence angle, and
at the intersections between facades and streets.

• Given the classification provided with the LiDAR point cloud and the free availability of digital
topographic data in the Netherlands, it is possible to link deformation behaviour to outlines of
buildings, enabling the detection of differential deformation and the conversion from coordinate
to addresses (geocoding). Furthermore it would be possible to detect differential deformation on
buildings. This would open opportunities for automated early warning systems.

• Augmented reality (and virtual reality) could assist in the analysis of the radar signal. As exten-
sions of the pictures in the 3D viewer, these techniques can help reveal the scattering character-
istics of objects.

• Cut-off values could be determined for each matching technique, resorting to a more complex
technique only when the previous technique was unable to find a satisfactory solution to the
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problem. This would save time and resources.

• Currently no combination is made between AHN2 and AHN3. A combination would require a
more advanced error model, including possible deformation. But a combination may give better
coverage on low density surfaces, such as facades, as both acquisitions will complement each
other. An algorithm could be made to detect major changes (demolition, construction) and only
combine the point clouds there where differences are small.
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Figure A.1: Tile index over Delft and surroundings, including full tile names and numbers of sub-tiles. (Background: Van Aalst
[2018].)
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Figure A.2: Point density of AHN3, sampled over a 35 meter radius (for 25×25 meter pixels).
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Figure A.3: Point density of a combined AHN2 and AHN3 product, sampled over a 35 meter radius (for 25×25 meter pixels).
The gaps in the data correspond to the missing data in AHN3, these could be filled with AHN2.
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Figure A.4: Orientations of Dutch streets, as analyzed from OpenStreetMap by Kappenburg [2018]. With the assumption that
facades are parallel to the street and AHN acquisitions are perpendicular to the flight direction, the facade point density can
be predicted. The orientation towards the radar satellite may give information on the radar signal to be expected. (Caption:
”Orientations of streets in Dutch (provincial) capitals.”)
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Actueel Hoogtebestand Nederland
Each step discussed in section 3.3 is represented here by a section of the same name that lists some
commands or hints on the use of LAStools [Isenburg, 2018], PDAL [Bell et al., 2018] and GDAL [GDAL
Development Team, 2018] for data preparation.

PDAL works with pipelines, series of commands that are subsequently executed, including reading,
filtering and writing of various file types, like raster representations of the point cloud. LAStools is a
set of more traditional command line tools, accepting arguments to process from and to (mostly) LAS-
or LAZ-files. LAStools is renowned for being highly efficient, Van Oosterom et al. [2015].

Merging AHN2
This process is two fold, with a single intermediate file. First all non-ground points are set from never
classified to unclassified, using the las2las [Isenburg, 2018] (examples for tile 01CZ1):

las2las -i u01cz1.laz -set_classification 1 -olas -o u01cz1_1.las

The result should be stored in temporary storage, preferably on a fast SSD or in memory. The sec-
ond step is merging the file with the ground-points, for which the classification will be set from never
classified to ground.

las2las -i u01cz1_1.las -i g01cz1.laz -merged
-change_classification_from_to 0 2 -olaz -o 01cz1.laz↪

Coloring
The following pipeline can be used to instruct PDAL to combine input.laz and aerial photograph
img.tiff into out.laz.

{
”pipeline”:[

{
”type”:”readers.las”,
”filename”:”input.laz”

},
{

”type”:”filters.colorization”,
”raster”:”img.tiff”

},
{
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”type”:”writers.las”,
”forward”:”scale,offset”,
”pdal_metadata”:true,
”a_srs”:”EPSG:28992”,
”dataformat_id”:3,
”filename”:”out.laz”,
”compression”:true,

}
]

}

The LAS-format requires adjustment to add the RGB values to each record in the file. For AHN2
dataformat_id has to be set to 2, as no time attribute is available. A dataformat_id of 3 indicates
that for each point color and time should be stored, 2 indicates only color, [ASPRS, 2013].

Creation of a spatial index
A spatial index of the LAS or LAZ file can be generated with the following command:

lasindex -i C_16EZ2.LAZ

Although only the paid option of LASindex offer multithreading support, multiple instances of the open
source version can be run simultaneously. For example, split the processing of a full directory into four
instances using xargs:

find . -iname '*.LAZ' -print0 | xargs -P 4 -0 lasindex -i

Concession crop
A simple PDAL pipeline can be used to crop the tiles to the concession boundaries found:

{
”pipeline”:[

”in.las”,
{

”type”:”filters.crop”,
”polygon”:”WKT”

},
”out.las”

]
}

For every iteration the input (in.las), output (out.las) and bounding polygon (defined in the Well-
Known-Text, WKT, format) are replaced.

Potree conversion
The following command is used to start the conversion process, a detailed description of the options is
available in Van Natijne et al. [2017].

PotreeConverter \
~/AHN3_R/AHN2014_RegioZuidHolland_inclSchiphol/ \
-o ~/AHN3_PoTree \
--material RGB \
-p RegioZuidHolland_inclSchiphol \
--show-skybox \
--projection ”+proj=sterea +lat_0=52.15616055555555

+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000
+ellps=bessel +units=m +no_defs” \

↪

↪
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--edl-enabled \
-a RGB CLASSIFICATION INTENSITY \
-d 1024 \
--format LAZ

Tiling
Depending on the position of the sub-tile it might be necessary to include neighboring tiles in the tiling
process to provide the required 25 meter buffer (see figure A.1). Together with the new bounding box a
las2las command is constructed to crop the input tiles andmerge the resulting points into a single new
file. Although the process itself is single threaded, multiple operations can be run simultaneously.

To create sub-tile 37EN2_16 from tiles 37EN1 and 37EN2 at the TU Delft campus (see figure A.1) the
following command is used:

las2las -i ~/AHN3/C_37EN1.LAZ -i ~/AHN3/C_37EN2.LAZ -merged -o
~/AHN3_T/T_37EN2_16.LAZ -inside 84975 444975 86025 446275↪

This process benefits greatly from the previously generated spatial index.

Normals
First the normals are estimated based on the eight closest points, the output is then mapped to a small
python program that scales the values to the range available in eight bits (-127 to +127). This last
step is only necessary to benefit from the integer compression capabilities of the LAZ-format. This is
accomplished with the following PDAL pipeline:

{
”pipeline”: [

{
”filename”: ”/home/adriaan/AHN3_T/T_37EN2_10.LAZ”,
”type”: ”readers.las”

},
{

”type”: ”filters.normal”
},
{

”type”: ”filters.python”,
”script”: ”normal.py”,
”function”: ”scale”,
”module”: ”anything”

},
{

”filename”: ”/tmp/normal.laz”,
”type”: ”writers.las”,
”pdal_metadata”: true,
”compression”: true,
”forward”: ”scale,offset”,
”dataformat_id”: 0,
”a_srs”: ”EPSG:28992”,
”extra_dims”: ”NormalX=int8_t,
NormalY=int8_t,NormalZ=int8_t,Curvature=int8_t”

}
]

}

This pipeline is used in conjunction with the following small python function (normal.py), which sole
purpose is to scale the values ([-1, 1]) to the maximum range of int8 ([-127, 127]):
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import numpy as _np;

def scale(ins, outs):
outs['NormalX'] = ins['NormalX'] *127;
outs['NormalY'] = ins['NormalY'] *127;
outs['NormalZ'] = ins['NormalZ'] *127;

outs['Curvature'] = ins['Curvature'] *127;

return True;

Combining AHN2 and AHN3
For sub-tiles that are on the boundary of AHN2/AHN3 availability, the AHN2 sub-tile is cropped to
the area where AHN3 is not available, based on concession boundaries. The resulting sub-tile is
subsequently merged with the AHN3 tiles using the following PDAL pipeline, reading both files, cropping
them based on the AHN2/AHN3 boundary and merging them into a single file:

{”pipeline”: [
{”type”: ”readers.las”,
”filename”: ”AHN2_f”,
”tag”: ”AHN2”
},
{”type”: ”readers.las”,
”filename”: ”AHN3_f”,
”tag”: ”AHN3”
},
{”type”: ”filters.crop”,
”polygon”: ”WKT”,
”tag”: ”AHN2_C”,
”inputs”: [”AHN2”]
},
{”type”: ”filters.crop”,
”polygon”: ”WKT”,
”tag”: ”AHN3_C”,
”inputs”: [”AHN3”]
},
{”type”: ”writers.las”,
”filename”: ”AHN_f”,
”compression”: true,
”inputs”: [”AHN2_C”, ”AHN3_C”]
}

]}

The WKT references are replaced with the boundaries of both AHN2 and AHN3 availability. Both layers
are cropped to prevent unexpected overlap if points exist outside of the concession boundary.
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ABSTRACT:

Build on soft soil, close to sea level the Netherlands is at high risk for the effects of subsidence and deformation. Interferometric

Synthetic Aperture Radar (InSAR) is successfully used to monitor the deformation trends at millimetre level. Unfortunately the InSAR

deformation trends suffer from poor geolocation estimates, limiting the ability to link deformation behaviour to objects, such as build-

ings, streets or bridges. A nationwide, high resolution, airborne LiDAR point cloud is available in the Netherlands. Although the

position accuracy of this LiDAR point cloud is to low for deformation estimates, linking the InSAR location to the geometries outlined

by the LiDAR point can improve the geolocation estimates of the InSAR trends. To our knowledge no such integration is available as

of yet. In this article we outline methods to link deformation estimates to the LiDAR point cloud and give an outlook of possible

improvements. As a test we link 3.1 million TerraSAR-X InSAR Persistent Scatterers to 3 billion LiDAR points, covering the city of

Delft and surroundings.

1. INTRODUCTION

1.1 Subsidence

Subsidence in the Netherlands, and deformation in general, is

threatening building integrity, damaging infrastructure and low-

ering the land with respect to sea-level. Deformation occurs at

all scales, from single pillar failure at the ’t Loon shopping mall

in 2011 (Chang and Hanssen, 2014) to complete regions suffer-

ing from effects such as subsidence relative to the water table

(Boersma, 2015).

Deformation processes include: peat compaction in the west and

north of the country (Boersma, 2015); induced subsidence (and

seismic activity) due to gas extraction in the Groningen area

(Ketelaar et al., 2006); land uplift and cavity formation due to the

flooding of old mine works in Limburg (Bekendam and Pottgens,

1995).

1.2 PS-InSAR deformation monitoring

Interferometric Synthetic Aperture Radar (InSAR) is used to

monitor deformation from satellites. Millimetre per year ac-

curacy can be achieved in deformation trend estimation. Un-

fortunately the source of the deformation signal is, in general,

less accurately known: geolocation estimates of PS-InSAR are

known with metres precision at best, depending on the sensor

(Dheenathayalan et al., 2016).

Although this will allow for deformation estimates up to street

level (Ketelaar et al., 2006), the deformation signal can not be at-

tributed to a single geometric feature. Persistent scatterer InSAR

(PS-InSAR) measurements are commonly dominated by a single

scatterer. The location of this scatterer is of key importance in the

understanding and interpretation of the deformation behaviour: a

subsiding garden house or street will require different precautions

than a subsiding bridge pillar.

∗Corresponding author

1.3 Combination with LiDAR

To find and improve the estimated location of the dominant scat-

terer it is beneficial to combine radar measurements with a (high

resolution) point cloud. This will allow for linking scattering be-

haviour to a geometric feature in the scene.

An example of a traditional (2D) InSAR deformation map can be

seen in figure 2. A 3D visualisation aids this interpretation of the

PS-InSAR signal, over the classical 2D mapped interpretation.

Geometric 3D linking of PS-InSAR geolocation estimates to 3D

LiDAR point cloud data will give a quantifiable improvement of

the geolocation.

Geometric (3D) linking of the datasets will provide:

• Assessment of differential deformation, as a deformation

signal can be attached to a building geometry.

• Linking of the deformation signal to specific parts of the

infrastructure, for maintenance planning and early warning.

• Detection and mitigation of (regional) errors and trends in

the radar processing.

This article explains how to create this missing link by truly in-

tegrating both data sources. Given the (free) availability of a na-

tionwide airborne LiDAR dataset (Actueel Hoogtebestand Neder-

land), and the available TerraSAR-X InSAR data, the Netherlands

form a perfect test bed for this integration of datasets. Further-

more existing online point cloud viewers, such as Potree (Schütz,

2018), can be extended to visualise this link between the laser

point cloud and radar data.

Currently no such combination of datasets is known to us. The

combination of optical images and SAR is more common and
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aimed at the texturing, classification or 3D reconstruction of SAR

point clouds (Tupin, 2010, Schmitt et al., 2017). Although suc-

cessful, (Wang et al., 2017) suffered from poor InSAR geoloca-

tion accuracy.

2. DATA

2.1 TerraSAR-X

The German (DLR) TerraSAR-X Synthetic Aperature Radar

(SAR) mission, was launched in 2007 and delivers high resolu-

tion radar imagery ever since. As a Public-Private Partnership the

mission combines scientific and commercial interests of X-band,

land oriented monitoring applications. With an 11-day repeat cy-

cle and resolutions up to 3× 3 m the mission can provide defor-

mation data of high spatial and temporal resolution (Werninghaus

and Buckreuss, 2010).

For this article radar data from two TerraSAR-X orbits is avail-

able, descending and ascending orbits over the same region, cov-

ering Delft, surrounding fields, Rijswijk and parts of The Hague

(the Netherlands), marked in red on figure 3 and shown in more

detail in figure 1.

A total of 72 radar images were acquired between 2016-01-06

and 2018-01-01, 36 for each orbit. SAR Interferometry (InSAR)

was applied to extract deformation signals by analysing the time

series of phase changes. Pixels that can be tracked consistently

over multiple acquisitions are Persistent Scatters (PS). These co-

herent pixels denote the deformation behaviour of the same scat-

terer over longer periods of time. (Hanssen, 2001) A linear de-

formation trend (in time, mm
yr

) is estimated for those points.

Data of the descending orbit contains 1.7 million PS-InSAR

points, the ascending data contains 1.4 million points. For all

points a geolocation estimation is provided in WGS84 coordi-

nates and a height above NAP (Normaal Amsterdams Peil). Both

datasets span the same area of 123 km2, of which 60 km2 is over

urban (built) terrain, where the highest density of persistent scat-

terers is to be excepted (Hanssen, 2001, CBS, 2017).

2.1.1 Error model The ratio of the error ellipsoid in range

(direction of radar signal), azimuth (direction of flight) and cross-

range (perpendicular to signal and flight direction) was estimated

to be 1/2/22 for typical consistent scatterers (figure 4, not to

scale). With an estimated standard deviation of 0.128 m, the axes

of the error ellipsoids are 0.128 m (range, σr), 0.256 m (azimuth,

σa), 2.816 m (cross-range, σcr) (Dheenathayalan et al., 2016).

The direction of flight was defined to be 192
◦ for the descending

and 350
◦ for the ascending orbit, with a elevation angle of 65.9◦

for both orbits.

2.2 Actueel Hoogtebestand Nederland

Actueel Hoogtebestand Nederland (AHN) is a nationwide Li-

DAR elevation model. AHN was first recorded in 1996 and is

licensed as open data since march 2014. The raw point cloud data

is published via Publieke Dienstverlening Op de Kaart (PDOK)

(Kadaster and Geonovum, 2018).

AHN was acquired from an airborne platform, from which laser

pulses were fired at the ground below. Given the known propa-

gation velocity of light in air, the time interval between transmis-

sion and receiving the reflected signal (echo) is proportional to

the distance from the aircraft to the ground. Multiple returns are

possible, for example in vegetated areas, where parts of the pulse

reflect on different surfaces in the scene. The position and ori-

entation of the aircraft are recorded simultaneously using GNSS

and inertial motion sensors to record the position from where the

measurement was acquired and in which direction (Vosselman

and Maas, 2010).

New iterations are acquired approximately once every ten years,

as can be seen in table 1. Acquisition of both AHN1 and AHN2

is finished: AHN2 supersedes AHN1. AHN3 is yet only par-

tially available, and is used where available (figure 3). A com-

bination is made between AHN2 and AHN3 to create a single

dataset with the highest possible point density. The higher point

density allows for better detection of small objects and improved

reconstruction of facades that are badly aligned with respect to

the viewing angle of the laser scanner.

A summary of the data volume involved is given in table 2. The

file size increase of AHN3 is due to the addition of extra at-

tributes, such as classification, intensity and acquisition time.

Recording Density (
pt

m2 )

AHN1 1996 - 2003 0.06 - 1

AHN2 2008 - 2012 16.8

AHN3 2014 - 2018 18.2

Table 1. Acquisition years and average data density of the three

available iterations of AHN. Point densities for AHN2 and

AHN3 were determined over the study area (9 tiles).

Area (km2) Points Size

AHN2 35 997 640 billion 988 GiB

AHN3 16 249 252 billion 1.1 TiB

Combined 1.7 TiB

Table 2. Coverage, point count and dataset size of AHN2,

AHN3 and a combination of both.

AHN is defined in Rijksdriehoekscoördinaten with height rela-

tive to NAP, ’RDNAP’, the Dutch national coordinate system

(EPSG:7415). This Cartesian coordinate system is used as the

basis for this project.

To ease navigation in the web application (section 3.1) the point

cloud is coloured based on the publicly available aerial photo-

graph of 2016 (Kadaster and Geonovum, 2018). This photograph

shows small differences to the point cloud, as it was not recorded

simultaneously.

2.2.1 Error model For AHN (iteration 2 and 3) the accuracy

is defined as maximum 5 cm systematic (1σ) and a 5 cm stochas-

tic error (1σ) in the vertical direction. Requirements for hori-

zontal accuracy are 50 cm (1σ, both x and y) for objects larger

than 2× 2 m. In reality this is often outperformed (van Meijeren,

2017).

The large standard deviation and the infrequent acquisition make

AHN itself unsuitable for deformation monitoring at the milime-

tre level that is obtained by InSAR monitoring (van Meijeren,

2017).

2.3 Data preparation

For the massive visualisation a combined dataset of AHN3 and

AHN2 is created, AHN3 is used whenever available (figure 3).
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Figure 1. Left: PS-InSAR data from both ascending and descending orbits. The city of Delft is hidden below the points. The Hague

can be seen in the north and the northern part of Rotterdam in the south. (Backgroud: OpenStreetMap) Right: digital surface model

extracted from AHN3 of the same region.

Figure 2. Traditional PS-InSAR deformation map, showing the

TU Delft campus. Misalignment can be seen at the building

facades. (Background: OpenStreetMap.)

AHN data is delivered in LAZ-tiles of 5 × 6.25 km, based on the

standard national tiling scheme. Both datasets are tiled in tiles of

approximately 1 km2 (1× 1.25 km, 1

25
of the original tiles). For

each LiDAR tile a buffer of 25 metres on all sides is included,

this is to allow radar measurements on the border of two tiles to

match. Given the radar error model, such a buffer is large enough

to accommodate points on the border between tiles.

This process is done using pdal (colouring and clipping) and

las2las of LASTools (tiling) (Bell et al., 2018, Isenburg, 2018).

It created 30137 LAZ-files (tiles), with an average filesize of 58

MiB and 21 million points (average point density of 15 points

per square metre). These tiles are small enough to be processed

in memory, and large enough for regular file storage. Queries on

the LAZ-files are elementary (axes aligned bounding boxes) and

do not require a point cloud database (van Oosterom et al., 2015).

Due to the 25 metre overlap between tiles, the method may be run

for each tile independently, horizontal scaling of the algorithm is

possible. That is, each tile can be processed independently, on

25 0 25 50 75 100 km
Study area

AHN Availability

AHN2

AHN3

Legend

Figure 3. Map of the Netherlands, showing the availability of

AHN2 and AHN3 respectively. Shown in red is the extent of the

TerraSAR-X data available to this study.

a separate CPU or even separate node. This enables us to com-

bine the PS-InSAR points with massive numbers of LiDAR mea-

surements in a distributed manner, reducing the execution time

required.

Due to the small size, the radar dataset is not tiled. Small datasets

(such as the TerraSAR-X dataset discussed here) are tiled in

memory. Larger datasets are converted to HDF5 first, which al-

lows efficient querying during processing.

3. METHOD

To aid the interpretation of the deformation signal contained in

the PS-InSAR data we want to visualise the available data and

link the data to the geometry known from the LiDAR point cloud.

The following five steps to achieve this will be discussed here:
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1. Common visualisation of InSAR and LiDAR data

Interpretation is left to the operator, just as with traditional

(online) maps (such as figure 2). Unlike traditional 2D maps

the geolocation estimation is shown with the error ellipsoid

in 3D. This enables improved interpretation of the radar sig-

nal and scene geometry.

2. First Nearest Neighbour linking

The Nearest Neighbour in the LiDAR point (single point),

with respect to the radar geolocation estimate, is expected

to govern the scattering behaviour. This method is compu-

tationally efficient, but may overestimate the distance on low

density surfaces, as illustrated in figure 4.

3. Linking to a single surface

After Nearest Neighbour search, either up to a predefined

number of points or all points up to a maximum radius, a

single plane is fitted on the points found. This plane approx-

imation of e.g. a facade makes the matching algorithm more

robust in areas of low point density.

4. Linking to multiple surfaces

For complex geometries the previous approach can be ex-

tended. Multiple locally linear (’flat’) surfaces may exist in

the neighbourhood of the scatterer.

5. Linking to dihedral of trihedral geometries

Dihedral and trihedral surface configurations are known to

act as better radar reflectors. These geometric configura-

tions might be extracted from the scene. This is currently

not implemented.

The difference between the methods is sketched in figure 4. Ap-

proximating locally linear surfaces as 2D planes adds robustness

in case of point density differences. On rough surfaces, or non

flat surfaces this approximation may not hold. Rough surfaces

are approximated by an ’average’ surface and it might be possi-

ble to approximate non-flat surfaces as linearly close to the point

of intersection.

A B

Figure 4. Sketch of the effect of surface reconstruction on

matching between a LiDAR point cloud (black/red dots) and a

PS-InSAR geolocation estimation (blue dot, including error

ellipsoids). The match with Nearest Neighbour in the point

cloud, shown in red, is much further away than the actual surface

(thin black line). Shown in a simple situation A; and a complex

situation B. Although the horizontal surface is further away, it

could be considered a candidate match.

After matching, the resulting matching distances may be used to

analyse the geolocation quality, for example detection of biases

and trends in the geolocation.

3.1 Common visualisation of InSAR and LiDAR data

Web based visualisation is built around Potree (Schütz, 2016,

Schütz, 2018) and Three.js. Potree is a WebGL based renderer for

large point clouds in the web browser, built on top of Three.js 3D

library. Previously the full (nationwide) AHN2 dataset has been

successfully converted to be used in the Potree viewer (Martinez-

Rubi et al., 2015). Other visual aids (such as the error ellipsoids

and plane estimates) can be implemented using Three.js.

Potree ensures a smooth viewing experience by loading the point

cloud from a pre-processed octree structure. Only the points in

view at the client are downloaded and never more than a user-

defined maximum. Due to the 2
1

2
D nature of the radar dataset

this data is distributed using a quadtree tiling scheme, loading

only the tiles in view and removing those no longer in view from

memory.

3.2 First Nearest Neighbour linking

Nearest Neighbour search should take this covariance into ac-

count. Use of the Whitening Transform will allow any (conven-

tional) Nearest Neighbour algorithm to be used on this problem

(Stansbury, 2013).

The viewing geometry of the radar satellite can be expressed as a

rotation matrix relative to the world coordinates (RDNAP). This

rotation (RSAR) can be combined with the quality model of the

radar geolocation (σr , σa, σcr) to a covariance matrix relative to

world coordinates:

QSAR = RSAR





σr

σa

σcr



R
T

SAR (1)

Using the Whitening Transform all points (LiDAR and radar)

are projected on the eigenvectors of the covariance matrix of the

radar point (QSAR) and scaled by the eigenvalues. This creates

a new coordinate system where the Euclidean metric represents

distances in σ rather than metres. All errors are now standard

normal distributed, as can be seen in figure 5.

The transformation found works for a single, constant, error

model only. As a consequence the transformation has to be cal-

culated and applied for each unique viewing geometry (ie. or-

bit). This includes construction of a new search structure for

each viewing geometry and/or error model. The Multiple Spa-

tial Transformation Technique by (Sakurai et al., 2001), based on

pre-processed search structures and approximate transformations

may be used to speed up this process if required.

This transformation, based on the eigenvalues (E) and a diagonal

matrix of the eigenvectors (D) of the covariance matrix of the

radar measurements (QSAR), can be found using:

W = E
−1

D
−

1

2E
T

(2)

The correctness of this transformation can be checked by trans-

forming the covariance matrix using the Whitening Transform to

the identity matrix:

WQSARW
T
= I3 (3)
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Figure 5. Effect of the Whitening Transform.

In this coordinate system, Nearest Neighbours are nearest in a

statistical sense. This search is optimal with respect to the radar,

considering AHN the ground truth, without any statistical vari-

ability. This assumption is justified due to the (relatively) small

error of the LiDAR point cloud.

This search is implemented using pykdtree, a kD-tree imple-

mentation in Python (Python Development Team, 2017, Nielsen

et al., 2017).

3.3 Linking to a single surface

The surface is locally approximated as a single, three dimen-

sional, plane of the equation:

ax̂+ bŷ + cẑ = d (4)

Coefficients (a, b, c) equal a normal vector of the plane and d is

a constant.

Two approaches were chosen to approximate the surface:

• Using three LiDAR points, the coefficients are defined by

the cross-product of the coordinates of these points.

• Using all Nearest Neighbours found, employing Principal

Component Analysis (PCA) to find the coefficients of the

plane.

The first method (cross-product) is computationally light but the

plane is based on three points only and does not exploit the redun-

dancy in the LiDAR point cloud and does not provide a quality

metric for the fit. PCA requires more computational effort but

exploit the redundancy in the data and provide a quality metric

for the fit.

The error model of both datasets is taken as the starting point

of the fusion. To estimate the plane, first the covariance matrix

of the coordinates is calculated for the LiDAR points found. This

covariance matrix is then transformed using the Whitening Trans-

form based on the covariance matrix of AHN (QAHN , formula

2). The eigenvector corresponding to the smallest eigenvalue of

the covariance matrix represents the normal vector. The ratio be-

tween the eigenvalues is an indicator for the quality of the fit,

for flat surfaces the smallest eigenvalue is much smaller than the

other two. The constant d of the plane equation (4) is found by

solving the equation for the mean point.

To determine the point of intersection, the PS-InSAR Whitening

Transform is applied to the PS-InSAR point and the surface nor-

mal found. The PS-InSAR point is projected orthogonal on the

surface, the distance found is the distance in σ. After the applica-

tion of the inverse Whitening Transform the point of intersection

in world coordinates is found.

3.4 Linking to multiple surfaces; dihedral and trihedral ge-

ometries

Detection of multiple surfaces can generate a top-3 list of candi-

date intersections, such as the horizontal surface slightly further

away in figure 4B. Detection of surfaces is based on RANSAC

(random sample consensus) and is only applied if the surface es-

timated using the single surface estimating technique indicates

the area as non-flat.

Furthermore it will allow the detection of more advanced struc-

tures, such as dihedral and trihedral configurations of multiple

surfaces. To respect the radar scattering behaviour of dihedral and

trihedral structures the source of the deformation signal should be

placed at the intersection of the surfaces rather than at the surfaces

themselves (Richards et al., 2010).

4. RESULTS

4.1 Webviewer

A screenshot is shown in figure 6. A live demonstration can be

found at http://dev.fwrite.org/radar/.

4.2 Matching

A comparison between the various matching techniques can be

seen in the histograms of figure 7. Local reconstruction of the

geometry, by surface approximation, leads to lower distances be-

tween the original geolocation estimation and the surface found

(orange), as sketched in figure 4. The intersection with the sur-

face is on average 1

2
σ closer than the first Nearest Neighbour

(blue).

Over the whole dataset biases are in the order of decimetres, with

standard deviations of multiple metres, as can be seen in figure

8. When expressed in radar coordinates the uncertainty in match-

ing corresponds to the expected geolocation error. The expected

geolocation standard deviation was 0.128/0.256/2.816 metre in

range/azimuth/cross-range (section 2.1.1). As scan be seen in fig-

ure 9, the standard deviations are of the same order of magnitude

as the original estimations. In range and azimuth it is overesti-

mated, while the cross-range estimate is of the same order as the

original estimate. This is all under the assumption that the first

Nearest Neighbour is the origin of the backscattered signal.

The improvement in location can be seen in figure 10. Compared

to figure 2 stable points are now attributed to the facade while

subsiding points remain on the street. This subdivision is to be

expected given the stable foundations of the building but had to

be made by a skilled operator on traditional maps.

Of the total of 3.1 million PS-InSAR points, less than 20% of

the points did not match a Nearest Neighbour within 2
1

2
σ. For

surfaces the results are slightly better: 85% of the points was

linked to a nearby surface within 2
1

2
σ. Results further away are

very unlikely, given the validity of the error model. Missing links

are generally due to occlusions in the point cloud, for example on

facades and in narrow streets, resulting from the different viewing

geometries between the sensors. Some of them are due to faulty

interpretation of the geometry, leading to plane estimates that do

not provide a realistic point of intersection.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-1137-2018 | © Authors 2018. CC BY 4.0 License.

 
1141



Figure 6. Delft University of Technology campus, shown using an adapted version of Potree, as a coloured point cloud (AHN3)

overlaid with TerraSAR-X PS-InSAR trend estimates (shown as 1σ error ellipsoids around the expected position, coloured by their

deformation signal).
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Figure 7. Distance to the closest object using various matching

techniques. Blue: first Nearest Neighbour, orange: plane

estimation. Nearest Neighbour search is stopped at 2 1

2
σ.

4.2.1 Quality estimation Various quality estimates result

from the matching procedure. For each point the distance from

the original estimation is known, both measured in standard de-

viation (σ) and in world coordinates (metres). Furthermore for

the surface estimation quality metrics are available, such as the

flatness of surface (quality of the approximation). Indicating the

quality of the fit for each individual surface.

4.3 Regional trends

Although the average offset is almost zero (figure 8), subsets of

the data may be biased. By comparing the difference between the

point of intersection or Nearest Neighbour and the original geolo-

cation estimate with respect to location, trends become visible.

In figure 11 the median offsets between the geolocation estima-

tion and Nearest Neighbour are shown (NN - estimation), binned

in 100× 100 metre bins. A clear north-south trend can be distin-

guished in the descending orbit, while in the geolocation of the

ascending track the offset increases in the southern part. Due to
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Figure 8. Offsets (biases) in matching, based on the first Nearest

Neighbour.

this trend geolocation estimates are off by 2 to 3 metres at the

borders of the radar image.

These offsets and trends, that can be converted to radar coordi-

nates too, may help to improve the radar processing.

4.4 Processing

Matching 1.4 million SAR points to 3 billion LiDAR points (122

tiles) using the Nearest Neighbour approach takes 15 minutes

with three threads on a quad-core Intel i7-3630QM 2.4 GHz lap-

top computer with 24 GB of RAM. This includes opening the

compressed LAZ-files and building of the transformed kD-tree.

As the current script is written in python 3.5, higher performance

is expected to be achieved by using more optimised programming

languages.
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Figure 9. Offsets (biases) in matching, based on the first Nearest

Neighbour, in radar coordinates.

Figure 10. Point locations (mapped in 2D), after matching

between the datasets. Compare to figure 2. (Background:

OpenStreetMap)

With the research area spanning 122 tiles of a total of 30137 tiles,

processing the nationwide dataset will take around sixty hours

on this laptop. Given that the program can be scaled over many

nodes the computation time can be reduced to the duration de-

sired by adding more computing power.

5. DISCUSSION

In this article the geolocation error model is taken as constant

over the whole region of the of the radar image and for all dif-

ferent scatterer types. This assumption is likely incorrect, as in-

dicated by (Dheenathayalan et al., 2016). The incidence angle

ranges from 20 to 45 degrees over the image and reflectors vary

in type: from (round) lamppost to trihedral reflector. Each with

different properties and likely different geolocation error estima-

tions. When parameterised, regional variations in the error model

can be included.

To improve the matching results the algorithm could be re-run

with the biases obtained from the first run after initial matching.

After correcting for the bias or trend in the initial geolocation the

results of the second geolocation matching algorithm may find a

different point of intersection. Quality assessment for this itera-

tive process will be difficult, as the new geolocation will be the

result of multiple transformations of the original dataset.

Given the classification provided with the LiDAR point cloud and

the free availability of topographic maps in the Netherlands, it is

possible to link deformation behaviour to outlines of buildings.

Allowing the detection of differential deformation and the con-

version from coordinate to addresses (geocoding).

Currently no single error model is implemented. The quality of

the surface fit and the quality of the intersection are defined and

estimated independently as two separate metrics. An integrated

metric could provide, for example, a new quality metric for the

point of intersection found.

6. CONCLUSION

The techniques introduced enable the efficient attribution of the

InSAR deformation signal to real-world objects and features, al-

lowing the next spatial join at a higher scale: linking individ-

ual signals to objects. The 3D visualisation will allow for better

communication with the greater public, as less interpretation is

required with respect to the traditional deformation maps.

Various options exist for the geometric linking of the two

datasets. Implemented methods are based on the geometry and

may not represent the underlying (physical) radar processes.

Nevertheless they improve the geolocation estimate and aid in

the attribution of the radar signal to real world objects.
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Walking with your head in the (point) cloud
Object recognition using combined InSAR and LiDAR data

A.L. van Natijne, L. Chang, R.C. Lindenbergh, P. Dheenathayalan, R.F. Hanssen
Delft University of Technology

Orientation and shape (ratio) of the ellipsoidOrientation and shape (ratio) of the ellipsoid
vary for different satellite sensors.vary for different satellite sensors.

Intersection, most likely target, is marked.Intersection, most likely target, is marked.
Facade is approximated as a plane.Facade is approximated as a plane.

Cross-Range

Azim
uth

Ran
ge

Positioning precision varies strongly in range, azimuth and 
cross-range and is dependent on the satellite, scatterer and 
processing. For TerraSAR-X the ratio of the error ellipsoid varies 
between 1/2/22 (r/a/cr) to  1/3/200 for corner reflectors. 
[Dheenathayalan et al., 2016]
This anisotropy of the error is accounted for in the spatial join. 
Both deformation behaviour (colour of the ellipsoid) and 
information on the match (colour of the plane of intersection) can 
be visualised in the viewer. Distance to the closest surface can 
be used as a quality indicator for the match.

Shown is AHN3, airborne laser scanning data,Shown is AHN3, airborne laser scanning data,
coloured with an aerial photograph.coloured with an aerial photograph.

Coloured AHN3 plus a mobile scan of the train track.

InSAR deformation monitoring suffers from relatively poor 
geolocation, making it difficult to attribute the deformation 
signal to a physical object.
Using the covariance structure of the geolocation (estimation), 
the dataset can be joined to a high density LiDAR point 
cloud. Results are shown in a web-portal, able to show vast 
amounts of information.

This approach provides:
● Improved geolocation;
● Ability to link deformation signal to objects, under the 

assumption that a single scatterer dominates the signal,
● Visual feedback on quality of results, both of the 

geolocation
estimate as of the link between the data sources.

Possible applications
● Deformation measurements

Attributing signal to distinct objects, such as distinction between 
streets and buildings.

● Railway infrastructure
Early warning system for individual components of the rail 
infrastructure.

● Improvement of PS-InSAR processing, enabling 'in-situ' 
analysis.

In short
Goal: Improvement of geolocation of PS-InSAR by combining 
with LiDAR point clouds.
Which allows:

● Attribution of deformation signal to object(s);
● Visual and numerical detection of biasses and other errors.

Reference
Dheenathayalan, P., Small, D., Schubert, A. et al. “High-precision 
positioning of radar scatterers” Journal of Geodesy (2016) 90:403

For a (live) demo, please visit:
https://dev.fwrite.org/radar
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