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Abstract: Structural geological models are widely used to represent relevant geological interfaces and
property distributions in the subsurface. Considering the inherent uncertainty of these models, the
non-uniqueness of geophysical inverse problems, and the growing availability of data, there is a need
for methods that integrate different types of data consistently and consider the uncertainties quantita-
tively. Probabilistic inference provides a suitable tool for this purpose. Using a Bayesian framework,
geological modeling can be considered as an integral part of the inversion and thereby naturally
constrain geophysical inversion procedures. This integration prevents geologically unrealistic results
and provides the opportunity to include geological and geophysical information in the inversion.
This information can be from different sources and is added to the framework through likelihood
functions. We applied this methodology to the structurally complex Kevitsa deposit in Finland.
We started with an interpretation-based 3D geological model and defined the uncertainties in our
geological model through probability density functions. Airborne magnetic data and geological inter-
pretations of borehole data were used to define geophysical and geological likelihoods, respectively.
The geophysical data were linked to the uncertain structural parameters through the rock properties.
The result of the inverse problem was an ensemble of realized models. These structural models and
their uncertainties are visualized using information entropy, which allows for quantitative analysis.
Our results show that with our methodology, we can use well-defined likelihood functions to add
meaningful information to our initial model without requiring a computationally-heavy full grid
inversion, discrepancies between model and data are spotted more easily, and the complementary
strength of different types of data can be integrated into one framework.

Keywords: 3D modeling; model-based inversion; mineral exploration; airborne magnetics; proba-
bilistic inversion; uncertainty quantification

1. Introduction

In geophysical applications, inversions are popular tools to find properties within
media that we cannot access through direct observations. Often, data-driven approaches are
used where the subsurface is divided into grid cells to which petrophysical properties are
assigned. Especially in cases where a regular Cartesian grid is used for this discretization
step, the cell boundaries are not necessarily conforming to the geological contacts, but rather
are artifacts of the grid [1–3]. To avoid geologically unrealistic outcomes and to omit the
influence of the gridding, geophysical inversion can be naturally constrained by surface-
based modeling, where a rock property is assigned to a surface. By considering the
structural geological model as part of the inference, rock property and subsurface geometry
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can be integrated. This integration is essential to understanding mineral systems, where
there is a complex interaction of different physical processes. It is known that geological
structure plays an important role in this (e.g., [4–6]) and ideally geological, geophysical
and geochemical data would have to be considered together. Data integration, though not
straightforward in its implementation, becomes increasingly relevant as data acquisition is
getting cheaper and faster, and often large amounts of different types of data are available.
Additionally, despite the abundance of data and advances in increasingly sophisticated
geological modeling methods and geophysical inversion practices [7], another limitation of
common geoscience analysis remains too: the resulting model is often only one possible
representation of reality, and uncertainties are often inadequately handled.

A Bayesian viewpoint provides a way forward to address these issues [8,9]. In this
viewpoint, all information is expressed in the form of probabilities, representing a state of
information. New information on any type of data can be incorporated into the inversion
framework using likelihood functions. Likelihood functions provide a quantification of the
likelihood of the model parameters in the light of the observed data. Probabilistic inference
is used in different fields to analyze complex systems with incomplete data, and within
geosciences particularly gained ground in the field of geophysics since the pioneering
works of Tarantola and Valette [10], Mosegaard and Tarantola [11], and Sambridge and
Mosegaard [12]. Probabilistic inference in practice often relies on Markov chain Monte
Carlo (MCMC) algorithms to approximate the solution numerically [8,9]. In complex
problems, this process can become computationally costly. Fortunately, MCMC is used
in many different fields and the algorithms are getting increasingly sophisticated. Recent
developments of gradient-based algorithms [13] provide solutions for efficient computation
of higher dimensional problems.

Probabilistic inference inherently provides an uncertainty quantification as the solution
consists of an ensemble of models that all fit the data to a certain degree. This allows
us to consider inherent uncertainty in geological models and to use this information to
constrain the inverse problem and to address problems of incompleteness and noisiness of
geophysical data. The consideration of uncertainties in structural geological models has
been getting increasing attention [7,14–17] and applications to mineral systems have shown
relevance in both analysis and visualization [18–20]. There are promising results for the
integration of additional information to the geological model through the implementation
of a Bayesian modeling framework from synthetic studies [17,21], as well as application to
a mineral setting [22]. In this paper, we present a similar Bayesian modeling framework for
geological modeling, where we combine geophysical and geological data. The novelty of
this work is that we consider both the geologic structural model and the rock properties as
uncertain, and use an efficient, gradient-based MCMC algorithm for our joint inversion.

First, we cover some basic concepts behind probabilistic inversion and describe how
this method is extended to geological use cases. Subsequently, we describe the parameteri-
zation and our forward model, explaining both the geological and geophysical forward
modeling steps. We then describe the use of a MCMC methods to find the posterior dis-
tribution and eventually obtain an ensemble of geological model realizations. Finally, we
explain in detail how all of these concepts are applied to a case study of the Kevitsa Ni-Cu-
PGE deposit in Finnish Lapland, where we start with an initial 3D structural model based
on geological knowledge. We attempt to increase our understanding and to quantify the
uncertainties in this structural model through probabilistic inversion using magnetic and
additional geological data. The reason for using magnetic measurements is twofold. Firstly,
the magnetic method is commonly used in mineral exploration, and testing the validity
of the approach can provide relevant insights for practical implementations. Secondly,
though useful due to the cost and time efficiency, the magnetic method suffers from non-
uniqueness, meaning different sources can produce the same result [23,24]. Hence, results
of the magnetic method have inherent ambiguities of interpretation and we show here how
these ambiguities can be addressed with the implemented probabilistic viewpoint.
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2. Materials and Methods

We present a methodology to reduce the dimensionality of geophysical inversions by
introducing prior structural geological modeling as an informative constrain in a Bayesian
framework (see Wellmann and Caumon [7] for a recent overview on geological modeling
methods). On the basis of these structural models, we then calculate the geophysical for-
ward model and the magnetic response. In the following, we describe briefly the Bayesian
scheme as well as the specific implementation of the geological and the geophysical model
used throughout the paper.

2.1. Bayesian Framework

In the Bayesian inference framework, for a given a modelM, we update our prior
knowledge represented by the probability of the model parameters p(θ) by including
observed data y. This parameter estimation is formulated by Bayes’ theorem for probability
densities as follows:

p(θ|y) = p(y|θ)p(θ)∫
θ p(y|θ)p(θ)dθ

. (1)

This expresses how probable our unknown model parameters θ are, given the ob-
served data y. To quantify this, we weight the prior p(θ), which is an initial estimate of
the unknown model parameters independent of any observations, with likelihood func-
tions p(y|θ): a function that upon evaluation gives how likely the observations y are.
In the denominator is the evidence, which acts as a normalization factor. Virtually all
practical problems contain multiple unknown parameters and quickly become higher-
dimensional problems [8] in which cases the evaluation of this integral becomes intractable.
Approximation techniques like Monte Carlo methods can then be used to estimate the
posterior distribution.

The inference procedure typically consists of three main steps [25]:

1. Parameterization of the system: Developing a set of model parameters θ that describe
the system under study. An ideal parameterization should contain enough complexity
to explain the data, without over-fitting.

2. Forward model: Using mathematical modelsM that, given the model parameters θ,
allow us to simulate the measurements of the observable parameters or data y.

3. Inference: Using measurements of observable parameters y to find the model parame-
ters θ that are able to explain this data.

2.2. Parameterization

In geophysical inversions, there are two highly coupled components that we aim
to invert: the global geometry of the system and the regional petrophysics for each
individual domain. In Bayesian inference, the parameters we want to invert for are
the prior parameters θ. For the specific probabilistic model presented in this paper
(Figure 1), we split the prior parameters into two groups. The first group describes the
average susceptibility within a lithology or domain. The second group of priors is a set
of 3D points that describes the geometry of the volume of interest given an interpolation
function, for example orientations, or lithological interfaces of a borehole.
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Figure 1. The Bayesian system for our probabilistic model with prior model parameters (red);
governing equations (black) that relate model parameters and observations; likelihood functions
(blue); observations (blue), with y1 being observations from magnetic measurements and y2 from
core logs; and the posterior model parameters (purple). The governing equations and the likelihood
functions together form the mathematical modelM (grey area). Parameters are stochastic (dashed)
or deterministic (solid). The arrows indicate parent-child like hierarchies.

Once the parameters to be inferred have been defined, we must choose which direct
observations, y, we are going to use. In this probabilistic model, we use magnetic intensity
as measured by a scalar airborne magnetometer, as well as lithology observations from
core logs that are not used directly to describe the geometrical domains. These types of
observations are important to be included to validate the mathematical model without
increasing its complexity and hence risk overfitting.

2.3. Forward Model

The mathematical models relating the magnetic data and the geological observations
to the model parameters are the interpolator functions that form the basis of our geological
modeling step and the forward magnetic simulator. Essentially, this means that we consider
structural geologic modeling as a forward modeling step within the Bayesian inference
framework (a deeper explanation of these types of probabilistic models can be found in de
la Varga and Wellmann [21] and Wellmann et al. [22]). Such an implementation requires an
interpolation method that enables full automation of the geological modeling step so that a
model can be updated when relevant input parameters are changed [22]. Implicit geologic
modeling methods (e.g., Lajaunie et al. [26]) are well suited to represent complex geological
geometries with a reduced number of parameters, and developments in recent years have
shown how they can be applied to automatic model reconstruction for the evaluation of
error propagation [14–16].

2.3.1. Implicit 3D-Modeling

Implicit interpolation has the particularity of interpolating an auxiliary dimensionless
scalar field used to reconstruct the 3D spatial geometries in a post-processing step. In the
case of structural geology, a helpful analogy is to think of the scalar field as a proportional
field to the deposition date of an infinitesimal layer. By knowing the value of the scalar field
at the interface of each domain, we can easily evaluate if a given point in space belongs to
one specific domain (e.g., specific layer) or other.
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The first step of any interpolation is to find a function Z(x0) = ∑i wiz(xi) which,
upon evaluation, will yield the value of interest—the dimensionless scalar field in this case.
One proven method in structural geology to obtain the interpolation function is based on
surface interface points and orientation measurements using universal co-kriging [27]: C∂Z/∂u, ∂Z/∂v C∂Z/∂u, Z U∂Z/∂u

CZ, ∂Z/∂u CZ, Z UZ
U′∂Z/∂u U′Z 0

 λ∂Z/∂u, Z
λZ, Z
µu

 =

 c∂Z/∂u, Z
cZ, Z
f20

 (2)

where C∂Z/∂u is the gradient covariance-matrix; CZ, Z the covariance-matrix of the differ-
ences between each interface point and reference point in each layer; CZ, ∂Z/∂u encapsulates
the cross-covariance function; UZ andU′∂Z/∂u are the drift functions and their gradient,
respectively. The remaining terms correspond to the interpolation weights λ and drift
coefficients µ, and the covariance vector between the data and the point to be interpolated
x0 (see de la Varga et al. [28] Chapter 2.1.2. for a further analysis of the system of equations).

Once we have a function capable of evaluating the value of the scalar field—and in
turn its lithology and associated petrophysics—the next step is to interrogate the area
of interest depending on the specific question we are trying to answer. Naturally, for a
first visualization of the structures and general insights, regular grids could provide the
simplest alternative to start understanding the geometries. However, it is important not to
forget that implicit interpolations are meshless and therefore we can take advantage of this.

Magnetic responses decline following an inverse cube law with distance, making the
contribution of zones further apart from the measurement device less and less significant.
For this reason, it is more important to capture variations in the subsurface in the areas close
to the device rather than further away. Since computing the forward magnetic response is a
costly operation that scales super-linearly with the number of used prisms, we can optimize
the location of the prisms by exploiting the flexibility that implicit interpolation enables.
Instead of evaluating the structural model on a regular grid, we will create semi-spheres
around the devices used for the Bayesian interpolation (i.e., the observation locations
where we evaluate the likelihood of the observations y1). This semi-sphere will be in turn
formed by prisms that will be used for the subsequent forward geophysical calculation
(Figure 2). Furthermore, the density of the prism will be reduced proportionally to the
distance, making the prisms bigger and bigger as they are further away from the source in
the interest of keeping the contribution of each individual prism somewhat similar.

After the 3D space has been discretized and each prism has been assigned a rock unit
(i.e., lithology), we can map to each lithology its correspondent petrophysical unit—the
magnetic susceptibility for the model here described.

Figure 2. A 2D representation of the grid where the forward magnetics are built on. The observation
point (purple) is at the center of the grid. From here, the grid spacing increases with a distance squared
relationship. The magnetic field decreases cubically with distance as shown by the blue hemispheres.
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2.3.2. Magnetic Forward Modeling

Additionally, the forward magnetic computation is a required step for a coupled
geophysical–geological inversion. By embedding this step into a Bayesian inference,
the initial input data for the model will be conditioned to the final magnetic response. Each
observation that we add to our model, encapsulated by a likelihood function, will require
an additional call to the forward model in each iteration step. This forward computation
is a computationally expensive task. Depending on what we want to resolve and the
nature of the used data, different forward model(s) will be employed (Figure 1). If we only
invert for the petrophysical rock property, we only require magnetic data and the magnetic
forward model. In a similar way, we can proceed when only considering parameters of the
geological model as uncertain. But if we consider both, the geological input parameters
and petrophysical properties as stochastic, we automatically employ both the magnetic
and structural forward model since variability in geologic input parameters changes the
geological model, which influences the magnetic response of the model.

For the computation of the magnetic forward simulation, we use a voxel-based numer-
ical implementation of the magnetic response as described by Talwani [29], which starts off
with the magnetic scalar potential ϕi of an element volume ∆x∆y∆z:

ϕi =
1

4π

~J ·~r
R3 ∆x∆y∆z, (3)

where~J is the magnetization in SI units [24], a sum of induction due to an external magnetic
field ~Ji, and remanent magnetization due to the history of the material ~Jr;~r = xî + yĵ +
zk̂ is the displacement vector from the volume to the observation point; and R = ‖~r‖.
By considering an infinitesimal volume, ∆x∆y∆z → 0, the summation transforms into an
integral:

ϕ =
1

4π

∫∫∫
V

~Jx · x + ~Jy · y + ~Jz · z
R3 dxdydz. (4)

Assuming that currents are absent at the location of observation the magnetic field
can be expressed by −∇ϕ, and the three orthogonal components of the magnetic field of
an anomalous body are [29]:

∆X =
1

4π
(~JxV1 + ~JyV2 + ~JzV3)

∆Y =
1

4π
(~JxV2 + ~JyV4 + ~JzV5)

∆Z =
1

4π
(~JxV3 + ~JyV5 + ~JzV6),

(5)

where variables V1 to V6 represent volume integrals [29]. The solutions of the volume
integrals for the case of a prism are given by Plouff [30] (see Güdük [31] Section 4.2.3. for a
more detailed documentation on their implementation).

Assumptions in this expression are:

1. Magnetization~J is only due to induction, so that ~Jr = 0 and~J = ~Ji = k~B, where ~B is
the magnetic induction and k is the magnetic susceptibility.

2. Susceptibility k of each modeled lithological unit in the geological model is known,
and homogeneous and anisotropic throughout the lithological unit.

3. The anomalous magnetic field due to local subsurface conditions is small compared
to the Earth’s natural magnetic field so that the direction of the total field is said to
be in the same direction as the geomagnetic field, a general assumption in magnetic
prospecting [24].

With this numerical implementation the intensity of the magnetic anomaly, ∆T, can
be approximated by the sum of the projections of components ∆X, ∆Y and ∆Z along the
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direction of the Earth’s magnetic field as expressed by the declination D and inclination I
[24,29,32]:

∆T = ∆X cos D cos I + ∆Y sin D cos I + ∆Z sin I. (6)

2.4. Bayesian Inference

When setting up a Bayesian inference problem with N unknowns, we implicitly create
an N-dimensional model space for the prior and posterior distributions to exist in [33].
As mentioned before, with increasing dimensions computing the evidence quickly becomes
intractable and Equation (1) needs to be approximated.

2.4.1. Markov Chain Monte Carlo

Monte Carlo methods numerically approximate integrals that are not tractable analyti-
cally, but for which evaluation of the function being integrated is tractable [34]. The goal is
to reconstruct the posterior (i.e., the target distribution) by going through a large number
of samples, without affecting the distribution through the sampling process. To do so,
a Markov chain Monte Carlo (MCMC) can be used. A Markov chain describes a sequence
of points in the model space while preserving the target distribution [35]. By increasing the
complexity of a given model, the number of unknowns in the model grows. The resulting
high-dimensional model spaces tend to be mostly empty, and regions with high probability
occupy small volumes [36] with a characteristic geometry [37]. Typical MCMC algorithms
explore the model space randomly and often require small changes between each sampling
step. This becomes highly inefficient in high-dimensional problems.

2.4.2. Gradient-Based MCMC Sampling

Hamiltonian Monte Carlo (HMC) efficiently explores the target distribution, by ap-
proximating the integral in the areas of interest rather than throughout the whole model
space [35]. HMC is a gradient-based MCMC algorithm that abolishes random walk behav-
ior, reduces sensitivity towards correlated input parameters, and takes advantage of the
geometry of the target distribution [37]. HMC takes a series of steps informed by first-order
gradient information of the input parameters called Hamiltonian trajectories [38]. These
steps are combined with random walks where the next parameter values are selected
via multinomial sampling with a bias towards the latter half of the taken steps in the
trajectory [35]. Where HMC’s sampling efficiency is highly sensitive to the selected tuning
parameters, the novel No-U-Turn Sampler (NUTS) is an extension to HMC that requires
no hand-tuning [38]. NUTS is thereby currently the most efficient sampler available (for
a precise definition of the NUTS algorithm see Homan and Gelman [38]). In this paper,
for the first time in geological inversion, we use NUTS to analyze our coupled model.

2.4.3. Automatic Differentiation

The efficiency of NUTS allows for the use of more complex models compared to other
samplers. However, since NUTS uses first-order gradient information to obtain information
about the direction of the target distribution, the computation of the first-order derivative
of our model is required at each sampling step. For this purpose, we use automatic
differentiation (AD). AD allows efficient and accurate evaluation of derivatives of complex
numeric functions with a large number of parameters, expressed as computer programs [39].
It decomposes these programs in a sequence of elementary arithmetic operations and uses
the chain rule to find the model’s derivative with respect to its initial parameters. Effectively
we thus need to compute the derivatives of our model with respect to all its input variables
in a single flow. This requires a differentiable, fully-coupled Bayesian network. Typically
in structural modeling, transitions between different geological formations—and with that
their assigned (petrophysical) properties—are modeled as sharp transitions. To obtain
gradient information, however, we require continuous model parameters. Therefore we
smooth these transitions slightly to guarantee continuity of the gradient. By providing non-
zero gradients, we can integrate the fully-coupled structural geological and geophysical
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model into a Bayesian inverse framework and we can utilize NUTS to efficiently sample
the posterior distribution.

3. Application to the Kevitsa Deposit

We investigate the Kevitsa instrusive complex, a Nickel (Ni), Copper (Cu), and
Platinum-group elements (PGE) mineralization-containing deposit located approximately
140 km North of the Arctic circle in Finnish Lapland. The deposit has a large economic
significance with a proven 160 million tons of Nickel. This has led to the acquisition of
extensive geophysical and geological data sets spanning several decades, yet the geometry
of the intrusive body is still not well recovered. This makes it an excellent showcase for
our methodology.

3.1. Geological Setting

Since its discovery in 1987 and after a first extensive study [40], numerous studies
have focused on different aspects of the deposit, including geochemical modeling [41],
seismic interpretation [42], and remanent magnetization assessment [43]. The Kevitsa
intrusion is located within the Central Lapland greenstone belt (CLGB), which consists of
several volcano-sedimentary stratigraphic groups that have undergone multiple episodes
of folding and thrusting and contain ultramafic intrusives [44]. A detailed description
of the regional geology is provided by Hölttä et al. [45]. The ore body is hosted in the
center of the main ultramafic unit of the Kevitsa layered intrusion, which mainly consists
of olivine pyroxenite and its derivatives grouped as ultramafic pyroxenite (UPX). It has
an arcuate shape at the surface with a Southwest dip (Figure 3). Analysis of 2D and 3D
seismic data [42] as well as borehole data suggest a deeper continuation of the Kevitsa
intrusion toward the South–Southwest where it is expected to extend to over 1.5 km in
depth. Here gabbroic rocks (IGB) overlay the intrusion. The thickest drill core intersection
of the gabbroic rocks gives a thickness of circa 800 m. The grouped IGB unit includes
magnetite gabbro, which may contain abundant equant magnetite [40]. A dunite body
(UDU) crops out in the central part of the intrusion.

Figure 3. (Left) Geological surface map of the Kevitsa deposit with the described units (after Fournier [46]), and the location
of Kevitsa in Finland and in the Central Lapland greenstone belt (CLGB) (in green). (Right) Original airborne magnetic data
with the measured total magnetic intensity.

3.2. Field Data

As geophysical observations, we use airborne magnetic data. This contains fewer
effects from temporal variations and near-surface geologic sources than ground magnet-
ics [24]. Since we are interested in recovering the geometry of the intrusion, smaller-scale
variations are considered irrelevant. The dataset is acquired with a scalar magnetometer
which measures the total magnetic intensity (i.e., the geomagnetic field plus anomalous
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field). The raw dataset is corrected for the acquisition configuration and diurnal variations
and is micro-leveled. The obtained data (Figure 3) show small-scale variations within
the intrusion, as well as a strong anomaly at the center of the central dunite (UDU). Core
samples from this location indicate strong remanent magnetization with an unknown direc-
tion [43]. Since our forward magnetic model calculates the anomalous field (Equation (6)),
we need to remove the regional field from the total-field measurements. Different methods
exist for this correction [47,48] and in the absence of a general trend within the survey area,
we choose to remove a direct current (DC) offset by selecting a zone where the anomalous
field is expected to be zero based on geologic knowledge. Lastly, we upward-continued the
data 200 m to obtain a smoother field over the intrusive body.

We represent the geology on the intrusion scale by modeling the overburden (OVB),
the main intrusive body (UPX), and the host rock. The reason for this simplification is
twofold: Firstly, it is uncertain which lithologies would have to be grouped without exten-
sive petrophysical analysis of the units. The petrophysical analysis done by Fournier [46]
provides a good guide but does not include all defined geological names. Secondly, we
expect that all lithologies but the intrusive have little to no significant magnetic properties,
except for the areas showing remanent magnetization. However, since there is no clear
consensus about the direction of the remanent magnetization, the remanence cannot be
captured by our forward model and the remanent regions will have to be discarded to
decrease their influence on the inversion.

To build the 3D geological model, we use information from cross-sections (for the
intrusive body) and core logs (for the overburden). Since there are no data regarding
orientation measurements available, we are limited to a rough estimate of dips and
azimuths from cross-sections. We extend our geological model further than the area
of interest to avoid boundary effects in the forward magnetic calculations. We find
the study-specific parameters for the geomagnetic field at the time of acquisition to be
B0 = [A : 53 349.7 nT, D : 10.1407◦, I : 77.4063◦] [49] and use these in our forward
calculations (Equation (6)). Lastly, we assign a susceptibility to each of modeled lithology
to simulate the magnetic response of our geological model. We use downhole susceptibility
measurements along 279 boreholes and couple them to the defined lithologies from core
logs at the measurement intervals. We recognize that this is error-prone and poses high
uncertainties and take this into account in the analysis. We remove outliers and all values
smaller than a susceptibility of 10−5. The lithologies are then grouped again according to
the grouping by Fournier [46] to find representative susceptibilities for the intrusion and
the host rock (Figure 4). For the overburden we consider zero susceptibility.

3.3. Defining the Probabilistic Model

We start with our initial geological model and include uncertainty in the subsurface
structure. Due to the highly structurally deformed geological setting, we expect significant
uncertainty in all spatial directions. We define the x, y, z-coordinates of all interface points
for our geological model as stochastic parameters, with normal distributions around the
initially modeled contact points. We allow for large standard deviations for the intrusive
body, in order to explore a wide variety of structural models. From our prior model
(Figure 7a–c), we see a significant discrepancy between the observed magnetic response
and the forward modeled response (Figure 7b). To understand this better, we first invert
for the susceptibility of the intrusion keeping the structural geometry fixed.

With our surface-based model set-up, we assume that the susceptibility is homoge-
neous within each modeled lithology. By simplifying the model, we can initially assume a
significant correlation among nearby observation points. To maximize the amount of infor-
mation per observation, we identify points that are less correlated with each other (Figure 5).
When selecting observations to recover the susceptibility of the intrusion, we consider that
the measurements should represent the susceptibility variety of the intrusion without being
significantly influenced by other geological structures (e.g., the central dunite and the sur-
rounding rocks). Nor should the inversion be solely controlled by the high-mineralization
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zone within the intrusion. For the likelihood functions, we use a normal distribution with
the mean at the forward calculated magnetic response of our geological model, which is
evaluated against the measured magnetic intensity at the observation point.

Figure 4. Probability density function (pdf) of downhole measured susceptibilities representing the
modeled lithologies ultramafic pyroxenite (UPX) and host rock. Note the logarithmic x-axis.

Figure 5. Processed magnetic data showing the anomalous magnetic field intensity, with the cross-
section location (line) at which we evaluate our results; the locations where we evaluate the magnetic
likelihood functions (filled dots); and the geological likelihood (star). We use the locations with an
extra circle to invert for the susceptibility of the intrusion.

Due to the large discrepancy between the observed magnetic response and the initial
forward model (Figure 7b), we can state that we have no reasonable initial guess of the
susceptibility of the intrusion. Therefore, we assign a uniform distribution to it, indicating
that all values within the specified range are equally probable. We can analyze the joint
ensemble from all three observations by looking at the prior (and posterior) predictive
distributions. These are constructed by passing samples from the joint prior (or posterior)
parameter distribution through the forward model and simulating data given those param-
eters. This allows us to quantify how likely it is that we can simulate the measured data
given our prior (or posterior) parameters. We can see from Figure 6 that kUPX is recovered
well, as its posterior distribution provides forward simulated magnetic responses that
match the observed response.
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Figure 6. (Left) Pdf with prior and posterior distribution of kUPX , and the mean of the downhole measured susceptibility
for kUPX (dashed line). (Right) Pdf with prior and posterior predictive distribution as simulated at one of the observation
locations, and the measured magnetic intensity at that observation location (dashed line).

With the updated knowledge about the magnetic susceptibility, we assign the obtained
posterior distribution of kUPX (Figure 6) as the prior distribution for further model analysis.
We use the measured values for the host rock (khost = 0.0038) and define kOVB = 0, both as
constant values. To update our prior model in the light of observed data, well-defined like-
lihood functions are needed. We initially only use geophysical likelihood functions using
the measured (and processed) magnetic data. Since the forward computation is expensive,
we limit our inversion to selected uncorrelated observations rather than considering all
points on the entire grid. The selection of meaningful measurement points is based on
expert knowledge by selecting magnetic measurement locations that will minimize the
correlation and maximize the objective of the inversion, i.e., the retrieval of the geometry.
Most observations points are therefore chosen around the magnetic anomaly (Figure 5,
filled dots).

At greater depths, the magnetic field becomes too weak to provide a meaningful and
informative likelihood function. To estimate the geometry at these depths, we can use other
constraints that are more informative at greater depths. To illustrate this, we extend our
inference framework by adding a geological likelihood based on interpreted core logs at
a location where the seismic data analysis expected the bottom of the intrusion to reach
approximately 1500 m [42]. The geological likelihood is incorporated to the inference by
adding the x, y, z-coordinates of the borehole where the bottom of the intrusion is logged
as the observation. We define the likelihood by using a normal distribution, with the mean
value being the forward modeled geological unit at the grid point.

3.4. Analysis of Model Uncertainties

Figure 7 shows the different components of our analyses. The first column corresponds
to our initial model. The rows show (from top to bottom) a cross-section; the difference
in magnetic response between the magnetic measurements and the forward model; the
same cross-section where we visualize the uncertainties in our initial geological using
information entropy [19]. The uncertainties in our initial structural model are based on
expert knowledge, and within these assigned ranges, different structural models can be
realized. We realized 500 different geological models.
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Figure 7. (a) Cross-section of the initial model; (b) difference map between the forward modeled magnetic response of
the initial model and the magnetic measurements; (c) calculated entropy from all realized models based on assigned
uncertainty in the initial model, where zero (white) corresponds to locations with no uncertainty (i.e., locations that have
the same outcome in all realizations). (d) Cross-section of the Maximum A Posteriori (MAP) geological model based on
magnetic constraints; (e) difference between the forward modeled magnetic response of the MAP model and the magnetic
measurements; (f) calculated entropy from all realized models in the probabilistic inversion using only magnetic likelihoods.
(g) Cross-section of the MAP model based on magnetic and additional geological constraints; (h) difference between the
forward modeled magnetic response of the MAP model and the magnetic measurements; (i) calculated entropy from all
realized models in the probabilistic inversion using magnetic and geological likelihoods.

By using information entropy we can consider all these realized models and objectively
visualize them. We apply this concept by slicing a 2D section from our 3D model and
dividing this cross-section into cells. It is important to note here that this cell splitting does
not affect the realized geological models or inversion results and only affects the resolution
of this figure. We compute the probability of each modeled lithology to occur in a particular
cell by combining all 500 models. The obtained scalar value at each cell represents the
uncertainty at that point in space. In analogy to entropy in thermodynamics, high entropy
indicates high disorder and thus larger uncertainties. Zero entropy implies no uncertainty:
in all realized models the same lithology occurred at that point in space. On the other hand,
when all modeled lithologies are equally likely to occur at a point, we have maximum
entropy log2(n), where n is the number of modeled formations.

The second column shows the results of our inversion with magnetic likelihood
functions, where we used the obtained posterior susceptibility distribution to update our
prior (Figure 6). To show a cross-section and magnetic difference map from a model out
of the realized model ensemble, we use the Maximum A Posteriori (MAP) estimation.
This provides the model that statistically fits the observed data best. The difference in
the structural model is very small (Figure 7d compared to a), but the magnetic difference
map is significantly different than our prior model with the measured susceptibility values
(Figure 7e compared to b). In our initial difference map we mostly see an effect of the
susceptibility, but the better estimate of the susceptibility makes a structural effect visible
in the updated difference map. For the computation of the entropy (Figure 7f) we use the
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similar resolution as before, and again analyze 500 realized geological models. These are
constructed using posterior model parameters from samples after (expected) convergence
to the target distribution.

From geological knowledge, it is expected that the body extends deeper than it does
in our geological model. For this purpose, we included the geological likelihood. The
results are shown in the third column. We see that the MAP model does not change
the magnetic response noticeably (Figure 7e,h) and the structural MAP model shows no
noticeable change (Figure 7d,g compared to a). When we consider the ensemble of all
realized models, we do see differences in the structural models ((Figure 7c,f,g). The prior
model shows high uncertainty towards the East and regions with increased entropy at
larger depth. In Figure 7f, entropy has overall decreased, particularly in the East where
magnetic forward predictions show a better fit to the data as well (Figure 7e compared to b).
However, the effects of some increased entropy at depth remain. It looks like these regions
show individual bulbs, disconnected from the main intrusive body. Based on geologic
knowledge, it is not expected that these features are representative of the subsurface
structures and that they violate the expected topology in the domain [50]. We therefore
interpret these effects as possible artifacts. We see in Figure 7i that adding a geological
likelihood poses indeed a better constraint at this depth and removes the artifacts, even
though the added borehole data are approximately 700 m South of this section. Overall the
uncertainty in the section has increased, due to an increased uncertainty to the East. This is
expected to be due to competing prior and likelihood functions (see Discussion).

The high entropy at the interface between intrusion and the overburden in all sections
is a result of the small thickness of the overburden in combination with the resolution of
the grid on which the entropy is calculated. Since the overburden is so thin (and stochastic),
the occurring formation in a cell in these zones interchanges quickly per sample, and hence
both the overburden and UPX have a probability to occur in a particular cell and the
resulting entropy is high.

3.5. Numerical Implementation

In this study, we used programs written in the high-level programming language
Python (3.6). We built the geological model using GemPy [28], a 3D geological modeling
tool based on the implicit modeling methodology discussed in Section 2.3.1. We coupled
this to our implementation of the magnetic forward modeling step, as described in Section
2.3.2. We computed the gradients of our coupled geological and magnetic forward model
via AD from library Theano [51]. For the inference, we used the probabilistic program-
ming framework PyMC3 [52], which contains efficient gradient-based MCMC samplers,
including NUTS. PyMC3 also relies on Theano for AD and is therefore compatible with
our forward model. For reputability of the entire modeling workflow, we made the en-
tire processing workflow available on GitHub (https://github.com/cgre-aachen-papers/
probabilistic-inversion-magnetics-kevitsa/ accessed on 22 January 2021) .

4. Discussion

Bayesian inference enables information integration and uncertainty quantification
in one framework: a necessity for modeling the subsurface where uncertainties are of-
ten significant and data should be considered in context. Considering geological infor-
mation in combination with geophysical measurements in an inverse framework is not
new [14,53–57], nor is the idea of explicitly considering geological models as uncertain
[14–16,58]. Our method of including geological modeling as part of the Bayesian inference
framework [21,22], and implementing geophysical information to the geological model
in the form of likelihood functions has also been tested before [22]. The novelty here is
that we used the most efficient MCMC sampler (NUTS) currently available by computing
the gradient of our coupled geological-geophysical model. This implementation allows
increasing the complexity of a model and thereby opens up interesting possibilities. In our
application we also, different from previous work, consider both the structural model and

https://github.com/cgre-aachen-papers/probabilistic-inversion-magnetics-kevitsa/
https://github.com/cgre-aachen-papers/probabilistic-inversion-magnetics-kevitsa/


Geosciences 2021, 11, 150 14 of 19

the relevant petrophysical rock property as uncertain. We applied this to a case study of
the Kevitsa intrusion in Finland. Through the use of our model-based Bayesian inference
framework, we found discrepancies in the data that otherwise might have gone unnoticed.
Additionally, we show that in contrast to conventional inversions that require a regular grid,
our method improves the selection of observation locations—for a given model— because
of the constraints set by the prior geometry. It thereby allows us to allocate computational
resources effectively.

We would also like to emphasize the difference between the model-based geological
and geophysical joint inversion implemented here to other approaches. The conceptual
idea behind the use of geological models in geophysical inverse approaches is described in
detail in Wellmann and Caumon [7]. In our case, the geological model is a fully integrated
part of the Bayesian inference workflow. We can therefore obtain posterior probability
distributions for the initial parameters of the geological model, and we can guarantee that
all realizations fulfill the initial considerations of the geological interpolation approach.
This approach is different from widely used methods where the geological model is an
input to the geophysical inversion (e.g., [55,56,59]), or more recent approaches that consider
uncertainties in the geological model through a pre-computation of cell-based lithological
probabilities [60,61]. Another important difference is in how the different approaches deal
with is the natural spatial correlation in geological and geophysical data [21]. Inverting on a
regular (dense) grid and considering the rock property in each cell as a separate parameter
is a high-dimensional problem with a high correlation between parameters, where each
one in itself is relatively uninformative. In such solely data-driven geophysical inversion
approaches, it is often necessary to use regularization [46,62–64]. In our implementation,
regularization is not needed, and with the geological model as the basis of the inversion,
we have a relatively low-dimensional model parameterization and, ideally, only a small
correlation between parameters. The choice between these more geophysical data-driven
approaches compared to the geomodel-based inversions clearly depends on the focus of
the study and the available prior information. A more integrated combination of both
viewpoints is an interesting aspect for further research.

In our case study, we simplified the geology considerably. In the results, we observed
that the geological model was partly too simplified to capture the data complexity. The thick
gabbroic layer that overlays the intrusion towards the Southwest has significantly different
magnetic properties than the intrusion. To capture the structures there, the gabbroic rock
has to be considered too. The complexity in including the gabbro lies in the heterogeneity of
the formation. It contains significant amounts of magnetite gabbro with stronger magnetic
properties than the rest of the rock. Similarly, the intrusive body itself shows considerable
heterogeneity in rock properties. This is also observed from seismic data [42] and is
expected to be due to internally differentiated olivine pyroxenite pulses. Since geophysical
measurements reflect rock property contrasts, our model could be improved by extending
to a heterogeneous inversion. However, this would require an extensive petrophysical
study, and even then it would be complicated to capture the individual pulses within the
intrusion [42].

We try to take the heterogeneity in susceptibility within the intrusion into account,
by considering it as a stochastic parameter. Considering the mismatch in magnetic response
between our initial forward simulation and the observed data (Figure 7b), we can conclude
that our initial (measured) estimate of the susceptibility of the intrusion could not describe
the magnetic measurements. Since our inversion will mainly depend on magnetic likeli-
hoods, we stress the importance of an appropriate initial estimate of the susceptibility to be
vital for the success of our inversion. Therefore we inverted for the susceptibility using a
completely uninformative prior distribution and very informative likelihoods, rather than
directly combining it within a more complex probabilistic model. We verified the obtained
mean value (kUPX = 0.12) by forward modeling over the intrusion using the commercial
software package ModelVision [65] (kUPX = 0.11). The mismatch with the mean borehole
measured susceptibility is an order of magnitude (kUPX,meas = 0.014). Although the large
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dispersion in the susceptibility data (Figure 4) suggests that there is at least some effect of
uncertainties due to core logging and upscaling, it is unlikely that alone would cause such
a significant difference. A study by Adams and Dentith [66] provides a more likely expla-
nation. The authors compare susceptibility measurements from conventional hand-held
susceptibility instruments, like our measurement device, to measurements with a tool that
considers natural remanent magnetization and conclude that the exclusive use of these
measured susceptibilities for the interpretation of magnetic data is questionable. Their
study shows that conventional hand-held devices under-report susceptibility values in
remanent rocks with discrepancies up to several orders of magnitude. Other studies with
hand-held susceptibility meters show considerable effects due to self-demagnetization [67],
thermal conditions [68], and rock heterogeneity [69]. Considering these sensitivities in
conventional susceptibility measurements, the complex setting of our case study, and the
known occurrence of remanent magnetization, we assume that the susceptibility data were
incorrect and consider it justified to continue our analysis with the inverted susceptibility.

We initially also attempted to invert for the susceptibility of the host rock in a similar
way. The obtained posterior gave a mean value close to the susceptibility found from mea-
surements (khost = 0.0030 and 0.0038 respectively); however, inversion statistics indicated
that the MCMC algorithm did not converge, which is likely due to the oversimplification
in defining the host rock. Due to the poor understanding of the actual distribution, it was
decided to not include the susceptibility of the surrounding rock as a stochastic parameter.
This is justified by considering (1) the small magnetic effect of the host rock relative to the
intrusion due to the two-order-of-magnitude larger kUPX, (2) the aim of our case study
to focus on the intrusion, and (3) the defined likelihood functions: the selected magnetic
observation are all in the vicinity of the intrusion.

An interesting feature from our analysis is that adding more constraints (i.e., likelihood
functions), does not necessarily reduce the uncertainty in our model (comparing Figure 7f,i).
This result is also observed by Wellmann [22] and is in line with the concept of integrating
information through additional information. Additional information can lead to an increase
in uncertainty due to a lack of prior knowledge in combination with a poorly-defined
likelihood, or due to incompatibility between priors and likelihoods. We expect that our
geological likelihood was well defined, but was possibly incompatible with our prior
model. It is entirely possible, or in fact expected, that our initial structural model was
incorrect at greater depths, and that the magnetic likelihoods could not resolve this aspect.
We expect that the incorrect initial model was only adjusted at these depths through the
geological likelihood, capturing the uncertainty there. This localized higher uncertainty to
the East is also in-line with findings from seismic studies where interpretation becomes
more ambiguous towards the East [42]. More informative geological likelihoods could be
added in this way. We limited our geological likelihood to one since this was currently
the only borehole available that exited the intrusion at greater depths in this area and thus
could provide the constraint that our model required.

It is important to note that we aimed to use different data types and combine their
respective strengths. The used data should be considered in light of what we want to
gain from the inversion. When we are interested in geological structures, potential field
data do not provide enough information. The inherent non-uniqueness of potential fields
is due to the physical inability to distinguish between different geometries at different
depths. More meaningful geophysical constraints could be imposed by using e.g., seismic
data. The complexity here is that seismic data are often not well understood in mineral
exploration settings. Although seismic data from Kevitsa are available, it suffers from
problems commonly seen in these settings: the data are within an extremely high-velocity
environment and the velocity is also extremely variable [42]. A better understanding
of the data and proper processing is needed before it can be used in our framework.
The ambiguity in its interpretation (dips and spatial positions of the interpreted surfaces)
due to a lack of suitable velocity model [42] is also why we decided to build our initial
geological model on cross-sections rather than the seismic interpretation.
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Lastly, we want to state the importance of using a balanced palette of observations
in the probabilistic inference, while also balancing geological reality and data fitting in
the implementation. This is best illustrated by computing the MAP and obtaining the
model that maximizes the joint posterior distribution. Since we mostly used magnetic
likelihoods in our application, the susceptibility had a dominant contribution in our model.
This was clear from the MAP models (Figure 7f,i), which gave us a geological model that
statistically fitted best because effectively, the susceptibility fit was maximized. The MAP,
in this case, did not provide any information about the weaker spatial parameters and the
structural model remained close to the initial model. It should also be mentioned that in
high-dimensional problems the maximized joint posterior distribution is often not where
the probabilistic mass is accumulated, and the obtained MAP models are therefore not
exclusively representative for the target ensemble of models [35]. We can conclude that:
(1) to fully make use of the strengths of different sources we should aim for the use of
different likelihoods where no parameter is dominating the inversion; (2) a statistical fit
does not necessarily give a result that represents the geology. Following Occam’s razor, we
should aim to keep the model as simple as possible while trying to fit the data, rather than
adjusting the model to fit the data.

To summarize, we aim to provide a step forward on data integration and quantitative
analysis to unravel the subsurface. Both geological modeling and geophysical interpre-
tation are subjective practices influenced by the expert, and the same holds for building
a Bayesian model. Yet quantifying uncertainties in input parameters and measurements
enables communication and consideration of our subjective choices and the encountered
uncertainties, which we can then represent in the final geological model.
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