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Figure 1: Our system takes an image along with user annotations to compute an editable spine-rib system. Based on detected
edges and a user-defined spine, it generates a 3D model, extruding a user-defined cross-section (here, the cross-section was
chosen to be circular). Our solution addresses inherent problems of image-based systems (like missing edges and occluded
regions), and users can modify the geometry locally (Image from PixaBay - www.pixabay.com).

Abstract

3D artists (professionals and novices alike) often take inspiration
from sketches or photos to guide their designs. Yet, existing mod-
eling systems are not tailored to fully make use of such input.
Consequently, significant effort and expertise are needed when cre-
ating model prototypes or exploring design options. In this work,
we introduce a system to support the exploratory modeling pro-
cess by enabling the transformation of 2D image elements into
geometric 3D objects. Our solution relies on a novel dy distance
function, supporting a region-based lofting process, and delivers
easily-editable 3D geometric "spine-rib" representations. The user
draws a spine, and the system generates and modifies a general-
ized cylinder around it, considering image edges. The proposed
approach, driven by simple user-defined scribble definitions, can
robustly handle various image sources, ranging from photos to
hand-drawn content.
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1 Introduction

Sketch-based modeling has gained much attention since it is typi-
cally easier to sketch in 2D than directly working on a 3D object.
A sketch can guide an artist during modeling, and it is even com-
mon to start with a 2D concept sketch, often involving existing
image sources for inspiration. Still, there is a separation between
the 2D information and the actual 3D modeling step. Our approach,
SpineLoft, will bring these two domains closer together by allowing
artists (professionals or novices) to transform 2D regions, even if
coarsely defined in a sketch or partially occluded, into a 3D element
to be used in their model design, relying only on simple user anno-
tations. To make our solution effective, we address the following
questions:

o Selection: How to easily support selecting regions of interest
from image references?

e Robustness: How to handle adverse conditions (occluded,
missing or ambiguous boundaries)?

o Editing: How to provide the possibility to influence the cre-
ation of 3D geometry in an intuitive manner?
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Input 3-Sweep [10]

(b)Edited edges (c) Resulg of 3-sweep

(a)Input image

(d)Edited result

Our Method

(f)Resulting 3D model

(g)Another 3D view

Figure 2: Comparison with the state-of-the-art method (3-sweep [10]). 3-sweep tends to fail on shapes with ambiguous edges,
such as this mug with a jagged shape profile (b), requiring the user to edit the input image extensively (c). In contrast, our
method based on a spine-rib representation (e) is more robust and generates a more plausible and smoother shape (f, g)

To address region selection, we present a novel distance function
to create a hull. The user provides a scribble (spine), for which we
generate a set of outgoing edges around it (ribs), which, together
with user-defined cross sections, results in a 3D representation, con-
ceptually similar to an endoskeleton. All annotations can be loose
as SpineLoft automatically optimizes them following the image con-
tent. To achieve robustness, we rely on a rib length optimization to
handle partial occlusion or noisy boundaries, which are especially
common in hand-drawn content and photographs. Specifically, our
procedure follows an optimization that targets a smooth variation
of the ribs while trying to respect the region boundaries from the
image.

To address editing, we do allow user interaction to change the
rib length (either individually or as a group). Similarly, SpineLoft
supports user-defined cross sections (either drawn or selected from
a predefined set), which help influence the volumetric aspect of an
object inspired by traditional "lofting" techniques. Finally, we enable
spine deformations to ease the composition of different elements;
an existing spine-rib representation can be copied to a new spine.
This action can also be used to drive animations.

The main objective of SpineLoft is to aid novice users who are
new to 3D modeling. Traditional 3D modeling systems based on
polygonal modeling (i.e., as used in the popular software Blender)
require users to interact with a 3D scene and to understand the un-
derlying 3D shape representation (polygons), which is challenging
for novices. In SpineLoft, we aim to alleviate these difficulties by
enabling users to create 3D models with simple 2D interactions that
are quick to perform. From these simple 2D interactions, we create
a spine-rib system that helps bootstrap the creation process yet re-
tains editability over the final 3D shape. While the focus of SpineLoft
is to encourage creativity and exploration among novice users, it
can also be used by advanced users. It can serve for rapid proto-
typing before refining the results further in advanced modeling
software. In summary, our work makes the following contributions:

e A novel explicit dy distance function to compute non-
intersecting gradient lines from a user-drawn spine. This
explicit computation is both easy to implement and efficient,
making it readily reusable for various interactive tasks, of-
fering advantages over the widely used Euclidean distance
function.

e A region extraction algorithm relying on user annotations,
which can address noisy or missing edges in the input, mak-
ing it useful in creating interactive image cut-out tools simi-
lar to Lazy Snapping [35].

o A related lofting method built on a rib length optimization
to quickly create 3D shapes from erroneous images.

o An interface to define/interact with the spine-rib representa-
tion (a novel representation for 3D modeling), handling dis-
crepancies, like occlusion/noise/missing data, with respect
to the reference image. Additionally, it prioritizes editability,
recognizing that novice users are more likely to make errors.

2 Related Works

The related work for SpineLoft can be classified into two categories:
Sketch-based 3D modeling and Playful Interfaces.

Sketch-based 3D modeling: Sketch-based 3D modeling literature
is too vast to cover completely in this paper, which is why we restrict
ourselves to the most-related solutions and refer the interested
reader to various existing surveys [5, 6, 31, 41, 62].

Teddy [23] is a seminal system where a fixed input boundary
is inflated to create a 3D shape. The method can be extended to
support general input images [8], relighting [43] and animation [7].
The latter papers, RigMesh [7] and MonsterMash [16], generate
3D models by assembling parts created in a single-view model-
ing interface. While these two approaches rely on circular cross-
sections, NaturaSketch [40] proposes a simple inflation mechanism
that involves a user-defined distance function to modify the object’s
cross-section. Andre et al.[1] use a user-drawn boundary stroke and
scaling factor to define a sweeping surface. Yet, the input has to be
drawn from a fixed viewpoint - making it difficult for novice users.
Peng et al. [45] introduced a sculpting-based system with a focus
on animation, but it is mainly useful for repetitive spatiotemporal
tasks.

CreatureShop [61] allows users to define regions in an input
image but uses simple inflation. Bernhardt et al. [2] use painted 2D
regions in an implicit-based 3D modeling approach, giving control
over the blending, depth, and thickness.

Gingold et al. [19] used a generalized cylinder fitting based on
user annotations to create the desired model. Shtof et al. [51] in-
troduced an interactive geometric snapping tool relying on a sim-
ple drag-and-drop modeling interface. 3-Sweep [10] extends the
method to extract and manipulate objects in a single photograph.
While being an inspiration, 3-Sweep is limited with respect to edits
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Figure 3: Comparison of the dw, and d; gradient lines asso-
ciated with a spine represented in dark blue. Isolines show
equal distance values. d; results in more smoothness and
avoids merges inside concavities. Whereas, the do, function
leads to singular gradients at some points in space and thus
would yield intersecting ribs.

and control over cross-sections. Further, the effect of occlusions
or missing edges can lead to undesired artifacts (Figure 2). It is
worth noting that these methods often rely on a Euclidean distance
function, which, as explained in Section 3.1, might not always give
the desired results.

Some solutions are less general, requiring 3D skeletons [3], or
focusing on particular content, like garments [18, 48], or trees [11],
animals in a side view [17], or animal heads [37]. Other similar
works that are worth mentioning include the use of 3D scaffolds
[25, 26] and reference RGB-D images [34] to create 3D models, but
are typically targeting expert users, take much time and effort, or
are designed only for initial prototyping.

Deep learning has had a major impact on 2D-to-3D modeling
tasks. Including sketch-based retrieval [59], single-view automatic
3D modeling [21], single-view interactive 3D modeling [32], normal
estimation techniques [22] and multi-view modeling [15]. However,
user control and related editing are limited for these cases.

Mesh deformation is a well-studied topic in 2D [9] and 3D [24],
including advanced deformation techniques using multistroke con-
tour drawings [28] or pose/gesture drawings [4, 20]. Nevertheless,
few of these techniques are integrated directly into the creation
process, which is crucial for prototypical modeling as targeted in
this work.

Different from traditional interactive modeling techniques [16,
19, 40, 61], which take images as a reference over which the user has
to trace the desired shape (a time-consuming task), our objective
is to utilise cues extracted from the input photograph (from the
wild) to ease the modeling process. Further, it is worth mentioning
that though sketches act as an intuitive and simple medium for
3D modeling, it is not restricted to these alone. Many systems
combine user inputs with computer-vision techniques to create 3D
models from various sources, such as multi-view stereo [46], multi-
view images [60], unordered photo collections [53] and videos [57].
Another important direction involves using geometric constraints
[36] or interactive sculpting [14, 54] to iteratively refine a basic
shape into the desired 3D model.

Playful Interfaces: Thanks to the tools that enhance user en-
gagement and enjoyment in a playful exploratory manner [47], the
concept of "Playful Interfaces" has gained attention in HCI research.
Not only are such interfaces accessible to novice users (including
children),but they also improve user experience by providing an ap-
pealing and intuitive interaction. While the literature has explored
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Figure 4: Result of Segment Anything Model (SAM) [27] on
the image shown in Figure 2. (a) The automatic segmentation
and (b-e) different steps of interactive segmentation.

such interfaces for a variety of tasks, such as creative design [30],
sketch processing [42], color interaction [52], and programming
[38], their application in the context of sketch-based modeling for
novice users remains a promising direction. Such playful inter-
faces can lower the entry barrier for 3D modeling, making it more
enjoyable and less intimidating while potentially increasing user
motivation, encouraging experimentation and, ultimately, leading
to improved learning outcomes. In contrast to works in this direc-
tion [23], our main objective is to further simplify the modeling
process by providing users with the support to draw inspiration
from existing images/photographs. It is worth noting that these
images/photographs serve only as references while giving complete
creative freedom to the user. They are supported in conceptualiz-
ing their ideas while being encouraged to explore and experiment
(please refer to Section 4).

3 Spine-rib based modeling
3.1 Design Rationale

Inspired by skeletal systems widely seen in many organic shapes,
we adopt such a structure for our intuitive approach to sketch-
based 3D modeling. Our spine-rib system allows users to easily
conceptualize 3D shapes by focusing on a central axis (spine) and
its associated cross-sections (ribs). The simplicity of this represen-
tation makes it accessible to novice users with little to no modeling
experience, enabling them to create 3D models with minimal input.
The modeling process starts with the user drawing an approximate
spine of the object to be modeled (an easy task to do, thanks to
the flexibility to draw imprecise spines and the natural ability of
users to infer spines). Once the spine is drawn, the system can then
compute the corresponding ribs - automating a significant portion
of the modeling process.

Though ribs can be imagined as line segments orthogonal to
the spines, automatically computing them is not trivial. The simple
solution for computing ribs would be to follow the gradient of
a simple Euclidean distance function, which, while intuitive, is
not differentiable everywhere (because the function min is not).
Its gradient discontinuities correspond to the local maxima of the
distance function. Consequently, multiple points that follow the
gradient from different starting positions can converge to the same
discontinuity, causing intersections (as shown in Figure 3). Yet,
more complex distance functions based on heat equations, while
avoiding intersections, can be computationally expensive.

To address these challenges, we introduce a dz function that is
differentiable and has continuous gradients to provide a smoother
and more stable gradient field. Using our d3 distance function w.r.t.



CHI ’25, April 26-May 01, 2025, Yokohama, Japan

the user-drawn spine, we can define ribs as the two points ascend-
ing the gradient that will follow parallel paths when approaching
each other, preventing intersections. This function allows for the
automatic computing of non-intersecting ribs, making the model-
ing process more accessible and less error-prone for novice users.
During modeling, these ribs can then act as a guide for a lofting
surface. As the ribs are just lines projecting out of the spine, we de-
termine endpoints based on their intersection with reference image
edges. However, due to occlusions or variations in image intensity,
accurately identifying correct rib endpoints can be challenging.
Even powerful segmentation tools like SAM (Segment Anything
Model) [27] may struggle to consistently and precisely identify the
required boundaries, as shown in Figure 4.

To overcome these challenges posed by the inconsistencies in
the input reference image, we implement a rib length optimization
technique to eliminate noisy or erratic ribs. As a consequence, we
can reduce the need for manual corrections and create a cleaner
and more coherent 3D model. Nevertheless, we also provide an
interactive rib editing functionality where the users can click and
drag individual ribs or edit multiple ribs simultaneously to provide
flexibility. With this balance of an automatic approach and inter-
active editing, we ensure that the final 3D model aligns with the
user’s intentions.

3.2 Overview

The overview of SpineLoft is illustrated in Figure 1. The user selects
an input image, which can be photos, illustrations, or sketches.
Then, a region of interest, which is to be converted, is selected by
having the user draw a scribble (referred to as spine - in the spirit
of curvy skeletons [3]) along the region. From the spine, outgoing
edges (referred to as ribs) are generated that respect the boundary
of the region but can be user-adjusted. From this input, the method
follows a lofting procedure to derive a corresponding 3D shape of
the modeled part.

SpineLoft has been built with ease of use in mind. Therefore, we
need to robustly process the image input, handling missing edges
or noise. Further, imperfect user input will be common and should
still lead to a successful lofting process, which requires the spine to
be adapted and the generated ribs to be constructed carefully.

In the following, we will describe the steps of our solution in
detail. We first explain how to produce ribs in an iterative process.
We take steps from the spine along a suitable path (Sec. 3.3.1) until
reaching a region boundary, as indicated by an edge detector. To
handle occlusions and imperfections in the input image, we rely
on a rib length optimization procedure (Sec. 3.3.2). To allow for
larger expressiveness, the user can also interact with the resulting
rib-spine system (Sec. 4). Finally, the original spine is improved
based on the computed extent of the ribs, and a final 3D shape is
generated. The latter is obtained by weaving a cross-section along
the spine, following its orientation and using the ribs to determine
the scale (Sec. 3.4).

3.3 Technical details

3.3.1 Generating Ribs. The rib construction starts with the user
drawing an initial spine on top of the reference image (without
self-intersections or loops, and approximately going through the
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center of the required region). The spine consists of points that are
defined by 2D-pixel coordinates along the curve. Yet, it would be
insufficient to simply extend the ribs orthogonally outward from
these spine points, as it could lead to intersections that will not
result in a valid lofted geometry.

Instead, we offset these k spine points only by a value of € in
both normal directions (for our experiments, € is set to half the
minimum distance between two consecutive spine points), which
allows us to construct a hull Hy composed of 2 * k points around
the spine (the blue polygon in the center of Figure 3). To avoid rib
crossings, we will define a distance function to Hy in image space.
The gradient of this distance function will be used to drive the rib
generation (where each ‘rib’ is associated with a single distance
value). Starting from the hull Hy, we iteratively follow the gradient,
using an Euler method with an adaptive step size depending on
the gradient’s magnitude. This trajectory will define gradient curve.
Naturally, following the gradient will avoid rib intersections and
make them initially orthogonal to Hy’s boundary.

Unfortunately, using a standard distance function between a
point x and surface M [44], defined as:

d(x,M) = inf |x —
(x, M) ylngx yl

where y represents points on M, does not provide an explicit so-
lution in 2D. Related alternatives [58] typically result in coarse
distance approximations, which leads to a significant loss of small-
scale spine features. Instead, we define a natural generalized dis-
tance function between a point x and a polygon P, consisting of
vertices Py to Pr_1, with perimeter A = Zi-:ol [|Pi+1 — Pi]l.

The distance function of degree n between x and P is then defined
as an integral on the contour of P [44]:

-1/n
dn(x,P) = A" (/P llx =yl ™" dy)

which when n = 2, evaluates to:

-1/2
dy(x,P) = \/Z(fp flx - y||—2dy)

Different from Peng et al. [44], which used a d3 function (in a 3D
configuration), we use n = 2, as it results in an explicit formulation
while yielding good results and being efficient/easy to use.

In this section, we explain the discrete formulation of our d
function, and we redirect the reader to Appendix A for the complete
derivation. When the user draws a spine, we consider it a polyline
with an ordered set of points p;, with i ranging from 0 to n. We
aim to compute the d distance between a point x and the curve
(user-drawn spine). Due to the discrete nature of the curve, we use
a discrete sum:

VA .
- -1
\/./(-Iurve llx =yl 2 dy. \/Zgl:o Int[Pi,Pm]

da(x) =
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D
(b)Heat diffusion

(a) Convolution (c)Ours
Figure 5: Distance functions computed using (a) convolution,
(b) heat diffusion (with a grid size of 300x300 and a diffu-
sion time of 20000) and (c) our d; function - computed in
0.0046s, 75.0918s, and 9.3727s respectively. Note the sharp
convergence of hulls in the result of convolution, making it
undesirable for our application. In comparison, heat kernel
and our d; function give smooth hulls, but the computation
of hulls using heat kernel is comparatively costly.

where for each segment:
Pix1 _
Intlp, pia] = / llx =yl ™" dy
pi

T
= / llgo — tq1ll"2dt after integrating by substitution
0

(qo and q; are calculated from p; and p;41)
=I(X, T, segment i) — I(X, 0, segment 1)

I(X, t, segment i) is the primitive of ||go — tq1 || =2 with respect to t,
and T is the length of the segment.

When integrating, ||go — tq1|| is the Euclidean distance between
x and the point y along the segment. We rewrite ||qo — tq1||* as a
quadratic function:

llgo — tqull* = ¢* + 2tb(x) + c(x)

which simplifies the integral calculation.

Expressing it as (t + b(x))? +0(x) (with o(x) > 0), we can easily
find the primitive of m and compute the integral. We
denote this primitive by I.

Since the integral is linear, the integral of ||x — y|| =2 over the

broken line is the sum of the integrals over each segment:
/ ||x—y||_2 = Z (I(X, T, segment i) — I(X, 0, segment 7)) .
broken line 7

Thus, the final expression for the function d of a segment is:

VA
2= .
V2 (I(X, T, segment i) — I(X, 0, segment i))
Using the linearity of the sum operator and applying the gradient
operator, we get the gradient of function da:
Vi. i (VI(X, T, segment i) — VI(X, 0, segment i))
2(2; I(X, T, segment i) — I(X, 0, segment i))3/2
Figure 5 shows the hulls created using convolution surfaces [50]
and the heat equation [12] on a polyline with 2000 vertices. Though
much faster, with a running time of 0.0046 seconds, the convolution-

based approach could not capture important features of the input
curve. The solution using heat diffusion could satisfactorily capture

Vd, = -
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Figure 6: An illustration showing our d; function used for
sketch stroke inflation.

the important features, but it took around 75.0918 seconds to com-
pute. Moreover, the precision of heat diffusion heavily depends on
the grid size, diffusion time, and chosen time step. With our explicit
solution, we could get similar but precise results in 9.3727 seconds.
Also, compared to the heat diffusion, our dz function is simpler
and more efficient as it provides a closed-form expression for both
the distance and its gradient at any given point; the heat diffusion
requires running a simulation for every point on the grid, for a the-
oretically indefinite amount of steps. In contrast, our method does
not require a discrete domain definition. Finally, the calculation
of the dy distance and gradient is solely dependent (and linearly
so0) on the number of sections in the shape, making it especially
well-suited for our application involving strokes and polylines.

Another alternative would be to work with kernel-based meth-
ods, but truncated kernels with a small time step cannot evaluate
gradients far off the spine. However, large kernels require the use of
an FFT to remain efficient, which has higher theoretical complexity.
In addition, it is unclear whether kernels provide stable estimates
for the gradient everywhere. For example, when a spine gets close
to itself, a large time step might fuse structures numerically.

The versatility of the proposed explicit da function extends be-
yond its immediate application in 3D modeling. For example, this
dy function can be used in applications such as computing curve
offsets [56], rasterization [33], animation [13], and vector art [39].
Figure 6 illustrates the result of a prototype that uses our dy function
to inflate hand-drawn strokes. As can be seen, while the thickness
increased, the sketch grew without merging nearby features. In ad-
dition, it is worth noting that the dy function possesses an important
property that allows for incremental updates when a segment of
the spine is moved, making it particularly useful for 2D animation
applications.

3.3.2  Rib length Optimization. The previous section described how
ribs grow following a gradient. We perform this iterative process
and stop when an edge in the input image is reached. These edges
stem from a Canny edge detector. Using all ribs directly might result
in incorrect shapes due to edges generated by unwanted occlusions
or noise in the input. To make the process more robust, we employ a
rib length optimization algorithm, relying on symmetry constraints
and edge information available on either side of the user-drawn
spine as outlined in Algorithm 1.

The algorithm selects a set of ribs with a minimal penalty (de-
fined below), and its endpoints are then interpolated to produce
ribs for gradient curves that were not selected. In case the candi-
date list is empty, we would have to restart the function with an
increased maximum distance dyqy. In practice, the algorithm can
be implemented without a candidate list but by tracking a mini-
mum. Similarly, sorting the ribs by length would make the selection
according to dyjgx very simple.
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Algorithm 1 Rib Length Optimization Algorithm

1: procedure RIBLENGTHOPTIMIZE(RIBS R, dyrqx)
2 Candidates = ()
3 for 100 iterations do
4: Let random Rg C R with Vr in Rg: length(r) < dpiax
5 for g € {R — Rs} with length(g) < dprax do
6 if Penalty(Rs U {g}) < 1.0 then
7 Rs U {g}
if SIZE(Rs)> Threshold then
Candidates = Candidates U Rg
10: for ¢ € Candiates do
1 ¢ = completeVialnterpolation(c)

© ®

return argmingccandidates Penalty(c)

Figure 7: Superposition of the gradient curves of a user-drawn
spine and the blurred detected edges used to evaluate the
proximity of a point to a detected edge. Intersections are
highlighted in red. The algorithm tries to choose as many
points as possible in these red areas while satisfying other
smoothness constraints.

Penalty Energy. We define the penalty energy as the simple sum
of three terms:

o Distance Penalty: This penalty ensures that the rib endpoints
stay close to the image edges. To compute this, we first blur
the Canny edge image with a normalized box filter (kernel
size: 1% of the image width - resulting in a figure similar to
Figure 7). Depending on the pixel color p at the endpoint of
the rib, we define the distance penalty as 0 if the pixel color
is between 200 and 255 (close to the edges), or 1 — p/200
otherwise (pixel far from the edges).

o Neighbor Penalty: This penalty ensures that neighboring
ribs have a similar length (distance to the spine) - or in
other words, maintains consistency between adjacent ribs.
Let the ribs be separated by distance s on the hull Hy,
for corresponding steps Z; and Z, along the ribs, while
following the gradient, the penalty energy is defined as
3xmax(0, |d2(Z1) —d2(Z2)|/s—1/4). This penalizes large dif-
ferences in rib lengths relative to their separation, ensuring
smooth transitions between neighboring ribs.

o Opposite Penalty: This penalty ensures that the ribs have their
respective step points located at similar distances w.r.t. the
spine (trying to maintain symmetry). Given the associated
points Z; and Z; from the stepping points on both sides of
the spine, the penalty energy is defined as 0.25 X |d2(Z1) —
d2(Z2)|/d2(Z1).
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Figure 8: Effect of different terms in the penalty energy. (a)
User-drawn spine (in red color - please note that this is the
only user interaction in this example), (b) Penalty energy
with only distance to edge, (c) with distance to edge and sim-
ilarity to previous rib, (d) with distance to edge, similarities
to previous and next ribs, (e) with all our penalty criteria
(Image courtesy: PixaBay).

In case no direct neighboring or opposite ribs exist, we inter-
polate Z» from the nearest already added neighboring ribs. The
trade-off between these penalty measures was empirically chosen.
The effect of the penalty criteria are shown in Figure 8. As can be
seen, the rib-length optimization on distance criteria alone resulted
in ribs that are jutting out of shape on one side (Figure 8(b)), as
the algorithm tried to find a smooth solution where edges were
missing (joint between the hind leg and tail). Having constraints
on neighboring ribs leads to stretched or contracted ribs (Figure
8(c-d)). Once we used all the penalty criteria, as demonstrated in
Figure 8(e), we could get the desired rib structure.

The result of using this rib optimization can be seen in Figure
9. It can handle not only missing edges but also noisy boundaries
(typical when the user chooses the edge detection option over a
natural image). The efficiency of our rib length optimization on
a sample input is shown in Figure 10. Our solution automatically
generated a decent set of ribs despite the presence of noise and
missing data near and around the beak. Even if the automatically
computed ribs do not match the user’s expectations, they can be
easily edited, as explained next. Figure 10(f-g) shows a result after
rib adjustment.

3.4 Lofting

The final step of conversion transforms the rib-spine combination
into a 3D mesh based on a provided cross-section. The cross-section
can be chosen from a predefined set (containing simple shapes, such
as circles, rectangles, triangles, etc.) or sketched out by the user.

Once a cross-section is provided, the spine is first centered by
taking the midpoint along opposing ribs. The center of the cross-
section is then aligned with this midpoint (Figure 11) and scaled to
match the length of the ribs. Consequently, the shape’s borders will
coincide with the rib endpoints and, thus, with the edges detected
in the input image. The cross-section is then rotated and connected
with the cross-sections corresponding to the neighboring ribs. If
there is no neighbor, we triangulate the interior of the cross-section
to create a closed shape. Because the distance function is smooth
and the spine is centred with respect to the ribs, robustness is
increased, and a certain imprecision in the user annotations is
acceptable (see Figure 12).

The process is very fast and fluid in terms of interaction, as the
mesh is generated swiftly. Upon sweeping the spine, each pair of
ribs adds a new boundary piece to the 3D shape until it is complete.
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Figure 9: Effect of our rib length optimization. (a) User-drawn spine (in red color) (b) Spine-rib system automatically generated
using our system without rib length optimization, (c-d) Corresponding 3D model, (¢) Spine-rib system automatically generated
using our system with rib length optimization, (f-g) Corresponding 3D model.

4 User Interaction

The main interactions made available by our system, as demon-

strated in Figure 13, include:
e Rib editing: The presence of large occlusions or noise typi-
cally ends up in ribs that do not match the user’s expectation,

Figure 10: Effect of rib length optimization on input with
noisy edges. (a) Input image, (b) Result of Canny edge detec-
tion, (c) User drawn spine (in red color), (d) Spine-rib system
generated using our method, (e) Spine-rib system after edit-
ing, (f-g) Final 3D model generated by our method.

&,

Figure 11: User-drawn spine (a), spine rearranged after com-
puting ribs (b), and corresponding 3D model (c-d).

(SIS T o]

Figure 12: Top: User-drawn approximate spines, Bottom: Ribs
and updated spines computed by our system. The original
image is taken from PixaBay.

or sometimes the user uses the photograph just as a guide
and has to locally update the shape. In such cases, our inter-
face allows the users to directly manipulate the rib endpoints
in two ways: either by simply dragging and dropping a rib
endpoint or by drawing strokes - to which the nearby ribs
will grow or shrink, thus, adjusting their lengths.

e Spine reposing: The operation that allows the reorientation
of a spine (e.g., to match a part to the rest of a created object).
Here, the user selects a spine and draws a new stroke to
which the spine is aligned. Specifically, the user-drawn stroke
will be considered a new spine, but instead of computing
gradient-edge intersections and then applying the rib-length
optimization, we copy the ribs from the original reference
spine, scaled by the relative stroke length.

o Cross-section editing: During the lofting phase, our interface
provides a dictionary of common cross-section shapes. In
addition, a user can sketch and define custom cross-sections.

The supplementary video provides a demonstration of these
interactions in use.

5 Results and Discussion

Several results generated with SpineLoft using sketches (taken
as bitmaps) and photographs as reference images can be seen in
Figures 14 and 15. In several examples, object parts are generated
and composited (Figure 16) using several spines to define parts,
and defining appropriate cross-sections enables the creation of
complex objects. It has to be noted that SpineLoft supports shapes,
which do not lend themselves well to inflation or approximation
by generalized cylinders. Please note that the results can be further
smoothed as post-processing.

5.1 Comparison of Functionalities

In this section, we compare various key features of SpineLoft to
existing work and summarize the findings in Table 1.

o Type of input - Are general images supported as input? Many
sketch-based modeling methods, e.g., [1], [23], [7], [51], re-
quire an input sketch, whereas, SpineLoft uses images as
input.

o Ability to select parts - Can a user pick and selectively model
parts of an object? Inflation-based methods such as Ink-and-
Ray [55] and NaturaSketch [40] inflate complete boundaries
and lack a clear part definition. CreatureShop [61] and Andre
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(a) (b) (© i (d)

Figure 13: Spine reposing and rib deformation operations. (a) User-drawn spine in red color, (b) Corresponding 3D model, (c)
New user-drawn stroke in red color for reposing, (d) Resulting reposed 3D model, (e) User-drawn stroke in green color for
deforming spines, (f) Resulting 3D model.
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Figure 14: Various results generated by our interface on sketch inputs. Each tuple shows the input sketch (along with the
spine-rib systems) and the resulting models.

Figure 15: Various results generated by our interface on image inputs. Each tuple shows the input image and the resulting model
overlayed on the appropriate part of the image. To illustrate the flexibility of our approach, we used low-polygon cross-sections.
Images are taken from PixaBay.
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Figure 16: Models generated by combining multiple spine-rib
systems and appropriate cross-sections

et al. [1] also require the user to define required boundaries
explicitly. In contrast, SpineLoft provides the freedom to
select the required parts alone.

e Editable - Is the resulting shape directly editable? Only
RigMesh [7], MonsterMash [16], and Ours have this func-
tionality. RigMesh enables modifying a 3D pose, which is
somewhat reflected by our method’s spine reposing. In ad-
dition, we support local edits like MonsterMash. Thanks to
the spine-rib system, the results of SpineLoft can be easily
edited.

e Arbitrary cross-section - What cross-sections can be used?
Many existing methods use circular inflation, which results
in blobby shapes. NaturaSketch and 3-Sweep [10] define a
particular and limited set of cross-section choices. Andre et
al. [1] uses arbitrary cross-sections but requires them to be
drawn from a fixed viewpoint. SpineLoft enables arbitrary
cross-sections.

e Requires a clean boundary - Can noise and missing edges
be handled? 3-Sweep handles some small degree of miss-
ing/noisy boundaries but fails for larger occlusions and inac-
curacies. Thanks to the rib length optimization algorithm,
qualitative comparisons indicate that SpineLoft is more ro-
bust (see Figure 17).

e Riggable representation - Can the result be rigged? Though
not made explicit, some methods could be similarly suited
as ours, such as 3-Sweep, Gingold et al. [19], and a modified
MonsterMash in the spirit of RigMesh.

e Precise input - How precise do user annotations have to
be? Precise input is time-consuming and requires careful
interaction. The use of the smooth distance function and the
centering of the spine enables a degree of inaccuracy in the
user scribbles. It has to be noted that this functionality is
unique to SpineLoft.

5.2 Comparison of Results

We compared our results with those generated by 3-Sweep [10]
and two variants of SpineLoft: Case 1 (with the d function and
without rib editing) and Case 2 (with the dy function, without rib
length optimization, and without rib editing), and are shown in
Figure 17. We concentrate our comparison on 3-Sweep because it
is the only method, like ours, that uses an image as input and is
based on a spine-like stroke. For a more detailed comparison with
other sketch-based modeling tools, please refer to the Appendix B.

The 3-Sweep method employs a sweeping technique that can
handle minimal inconsistencies in the input image/sketch. However,
it is difficult to control the sweeping when there is bending in the
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sweeping profile (as seen with the banana shape in Figure 17). Addi-
tionally, significantly missing edges present further difficulties (for
example, the copter in Figure 17), and non-circular cross-sections
often result in undesirable results (for a fair comparison, we used
circular profiles for most examples). In comparison with our easily
editable spine-rib system, the 3-Sweep method offers more limited
editing capabilities for the extracted 3D objects. It should be noted
that compared to our solution, 3-Sweep can better handle open
boundaries in sketches, as demonstrated in Figure 18.

In contrast, using the de function resulted in self-intersecting
meshes (evident in the blobby shape and banana examples in Figure
17), while the dy function without rib length optimization and rib
editing produced erroneous shape boundaries (as seen in the jar
and copter examples in Figure 17).

5.3 Limitations

While the SpineLoft is effective in easily creating a variety of shapes,
it lacks the flexibility to model complex geometries. These limita-
tions arise mainly due to the fact that SpineLoft essentially creates a
loft surface along a single 2D spine with orthogonal ribs. As shown
in Figure 19, some shapes that it cannot create include :

1. Multi-curvature surfaces - As SpineLoft computes ribs as line
segments orthogonal to the spine, it cannot represent sur-
faces with complex curvatures in multiple directions, such
as hyperbolic paraboloids (e.g., the shape shown in Figure
19(a)), as this requires simultaneous positive and negative
curvatures in different directions instead of simple orthogo-
nal ribs.

2. Rotational interpolation - As the ribs are in 2D and are or-
thogonal to the spine, it cannot create twisted structures
like pasta shapes (e.g. the shape shown in Figure 19(b)). Gen-
erating such a shape with high torsion or non-linear twist
would require ribs to rotate along the spine and, hence, re-
quire complex interactions and expertise, which our current
system does not support.

3. Non-uniformly scaled objects - As in other sweeping-based
interfaces (e.g., 3-sweep [10]), our method is not designed for
non-uniform scaling along the spine. Though SpineLoft al-
lows varying rib sizes along the spine, complex non-uniform
scaling operations cannot be performed using the current
interface, making it difficult to model objects like toothpaste
shown in Figure 19(c) - whose cross-section transforms from
a circle to an ellipse along the spine.

4. Shapes with non-planar spines - To make the interactions
accessible to novice users, we assume that the spines are
in 2D, making it difficult to generate 3D shapes like helical
structures (for e.g. the shape shown in Figure 19(d)) which
requires a 3D spine.

In addition to the shapes it can generate, our current interface
implementation has two minor shortcomings: it trims the user-
drawn scribbles on both ends while computing normals, which
leads to users drawing scribbles slightly longer than needed. In
addition, we do not add caps to the generated objects (Figure 3).
One could always close the shapes by trimming the appropriate
ribs if desired.
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Properties

Method Image as | Ability to . Arbifrary Require a . Precise

. Editable ? . Riggable? | .

input? | select parts? cross-section? | clean boundary? input?
Teddy [23] No NA No No Yes No NA
Gingold et al. [19] As Ref Yes No No NA Yes Yes
Andre et al. [1] No Yes No Yes* Yes No Yes
NaturaSketch [40] As Ref No No Yes* Yes No NA
RigMesh [7] No NA Yes* No Yes Yes NA
3-Sweep [10] Yes Yes No No Yes Yes Yes
Snapping [51] No Yes No No Yes No Yes
Ink-and-Ray [55] No No No No Yes No NA
MonsterMash [16] As Ref NA Yes* No Yes Yes Yes
CreatureShop[61] As Ref Yes No No Yes No Yes
Ours Yes Yes Yes* Yes No Yes No

Table 1: Comparison of different methods. Many works support images as a reference (marked as "As Ref"), but only 3-sweep
and SpineLoft are designed to benefit algorithmically. Only our method is able to handle images with incomplete contours or

occlusion (compare Figure 2).
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d, function Spine-rib system
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Input Sketch 3-Sweep Our result
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i
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Figure 17: Comparison of our method w.r.t. 3-Sweep, dw function and d; function without rib length optimization.
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Figure 18: An example of a sketch drawn with open and mul-
tiple strokes where 3-sweep works better. (a) Input sketch,
(b) Result of 3-sweep, (c) Our result without rib length op-
timization, (d) Our result with rib length optimization, (e)
Spine-rib system after editing, (f) Our final result.

5.4 Preliminary User Evaluation

We conducted a user evaluation of SpineLoft through three distinct
studies, each targeting different aspects of the system. The first

Figure 19: A few representative failure cases of our system.
Our system cannot model (a) Saddle-shaped surface with
double curvature, (b) Shapes with twisted/rotating profiles,
(c) Shapes with non-uniform scaling, and (d) Helical structure
from a single sketch.

study focused on novice users with little to no prior 3D model-
ing experience to evaluate the usability and intuitiveness of the
interface. The objective was to measure the learning curve and
initial user experience of novice users. The second study focused
on obtaining in-depth feedback from experienced users about the
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capabilities and limitations of the system compared to existing pro-
fessional 3D modeling tools. The third study focused on users with
varying levels of modeling experience and was intended to explore
the creative potential of the system. The details of the study are as
follows:

Novice user study: Ten participants aged between 12 (with par-
ent’s consent) and 43 with little to no prior experience in 3D model-
ing volunteered to try our system. The users were shown the video
of our demo (as in the supplementary video) and were allowed to
familiarize themselves with our system for 10-15 minutes. After
this phase, they were asked to complete three tasks of increasing
complexity: creating a cylinder (from a simple image of a rectangle),
a bird neck (using the reference image shown in Figure 1) and then
a mug from an image with occlusion (using the reference image
shown in Figure 2). We measured the task completion times and
conducted a post-study usability survey on 1-5-point Likert scale.
The survey focused on various aspects of our system - task un-
derstanding, user-friendliness, feeling of control, task completion
efficiency, helpfulness of spine-rib system, intuitiveness of spine
drawing, and satisfaction with the final 3D shape.

The results of the survey were highly encouraging. The mean
scores across all the usability metrics ranged from 4.0 to 4.5 (with
an average magnitude of deviations from the mean: 0.4 to 0.64)
- suggesting that our interface is intuitive and user-friendly for
beginners. In addition to the usability metrics, we also included
questions to understand the overall experience and intentions for
future engagement. The questions were about the enjoyment of
the user while using the system, future use for creative tasks, con-
fidence in using the system and the user’s willingness to create
more models. The responses to these questions were also encour-
aging, with mean scores varying from 4.3 to 4.5 (with an average
magnitude of deviations from the mean: 0.5 to 0.56). These high
scores, especially for enjoyment and intention for future use, were
particularly promising as they suggest that our system effectively
engages novice users and develops their interest in 3D modeling
activities. It is also worth noting that the average modeling time for
cylinder, bird neck and mug were 67s, 71s, and 162s, respectively -
demonstrating the ability to quickly create 3D models. To gain a
deep understanding of user perception, we also asked the partici-
pants two open-ended questions: "What did you like most about the
system?" and "What further improvements would you suggest?".
A thematic analysis of the answers to the question "What did you
like most about the system?" reaffirmed various strengths of our
system:

e Intuitiveness - users appreciated the ability to create 3D
models from 2D images with simple inputs.

e Editable ribs - the ability to manipulate ribs for fine-tuning
3D shapes was frequently mentioned as a positive feature.

o Ease of use for novice users - many participants, especially
those doing 3D modeling for the first time, found the system
accessible and enjoyable.

e Spine-rib metaphor - users found the spine drawing and rib
editing metaphor intuitive and useful for creating 3D models.

Participants also provided suggestions for future improvements,
including the recommendation to add color-coded feedback for
different modes (for example, a different color for ribs that will get
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affected while deforming ribs) and an improved rib computation to
reduce the required edits and the time.

Expert user study: To gain insights from an experienced user
point of view, we asked four experts with over two years of 3D
modeling experience to evaluate our system. They were shown
the demo of our system and asked to model the faucet shown in
Figure 16. In addition, in the second part, they were asked to edit the
faucet to modify the shape as they wanted. The experts successfully
recreated the model in less than 3 minutes and could easily modify it
to match their imagination. Once satisfied with the modeling, they
provided valuable qualitative feedback about the system. Thanks to
the ability to model directly from a reference image and the easy-
to-edit spine-rib representation, all of them unanimously agreed
that Spineloft would be a compelling alternative to their current
preferred 3D modeling software - ranging from Blender to Autodesk
Inventor.

e The workflow in itself seems pretty innovative. It would
be nice to use it for prototyping but not for very precise
modeling.

e It would be nice to have an automatic merging of individ-
ual parts and an option to edit the ribs long after its cre-
ation, whereas the current system, after creating a new spine,
makes the previous 3D model uneditable.

e It would be nice to have it as a plugin for some software,
such as Blender, so that I can build over the prototypes I
create.

e Having an option to manually add or delete ribs would be
beneficial (especially while using it for CAD modeling).

Study exploring creative potential: Our third user study ex-
plored the creative potential of the system. To round up our model-
ing tool, we added simple inflation tools - using Delaunay inflation
[43] - and planar-sheet extrusion to craft elements like spheres,
antlers, and wings. The composition of all parts created is done via
Meshmixer [49], which fuses the components.

We tested SpineLoft with 12 users aged between 15 (with parent’s
consent) to 46 years, of which only two had some prior modeling
experience. We showed them the demo of our system and allowed
them to explore it for 30 minutes. After that, we asked them to
model some imaginary characters by mixing and matching parts
from different images. Figure 20 shows a few models they created,
and it took 10 to 20 minutes for them to create the complete model
(including the time for spatial arrangement and web-searching for
the appropriate images). After each modeling session, we collected
feedback from the users about the overall modeling experience. The
feedback was overall positive, and the obtained fast prototyping
results illustrate the strength of our solution. Users mentioned
that "it is easy and enjoyable" to work with the system and that
"the entire process was a lot of fun". In several cases, especially
the inexperienced users were surprised that they "had complete
control” and "could do whatever I want".

We also asked the users to rate the interface based on the over-
all experience and the fun they had during the modeling process,
from Very bad to Excellent. All the users rated it as Very Good or
Excellent and unanimously gave positive feedback, such as: "the
entire process was a lot of fun, and we enjoyed it a lot".
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Figure 20: Some imaginary characters modeled using our interface by novice users (without prior modeling or designing
experience) during the user study in less than 20 minutes (including the time for searching and finding appropriate images,
drawing sketches wherever required, modeling parts using our interface and assembling them together).

In conclusion, our user studies indicate that SpineLoft provides
an intuitive framework for 3D modeling. The positive feedback
across all three studies suggests that our approach has the potential
to lower the entry barrier for 3D modeling, making it accessible
and enjoyable for novice users.

5.5 Future Work

We envision future work in two primary directions. The first fo-
cuses on improving the current user interface to provide an en-
riched set of modeling options - making SpineLoft more suitable
for intermediate/expert-level users. This includes implementing 3D
rotational interpolation for cross-sections, enabling the creation
of 3D cross-sections to model complex surfaces, and developing a
more sophisticated rib length optimization framework. In addition
to this, the ability to model hollow objects, such as the interior
of the mug shown in Figure 2, could be envisioned. As typically
done in Constructive Solid Geometry (CSG) modeling, this could be
easily done by adding a mesh difference operation, which subtracts
one solid from another.

The second direction involves extending the system into full 3D
space. This includes developing a system similar to Skippy [29]
to sketch 3D spines from a 2D view, facilitating the generation of
complex 3D shapes like helices. This extension to 3D interactions
would allow editing of spines, ribs, and cross-sections in 3D, making
it possible to create a variety of shapes, including those with non-
uniform scaling profiles.

Additionally, developing a plugin of SpineLoft for established
3D sculpting platforms like ZBrush or Blender would enable users
to leverage SpineLoft for rapid abstract shape creation, which can
then be refined using the advanced tools available in these sculpting
systems - enhancing productivity for artists and designers in various
fields.

6 Conclusion

We introduced a simple yet powerful, interactive spine-rib-based so-
lution, SpineLoft, allowing users to create 3D models from sketches
or images rapidly. The proposed method uses a novel dz function
and a rib length optimization algorithm to create easily editable
ribs from a user-drawn approximate spine. The proposed method is
easy to use for novice users, as it does not require perfect precision.
It helps develop rapid prototypes and base meshes (which can be
refined further using specialized tools like Zbrush). The user study
confirms that the proposed method is accessible even for first-time

users and enables them to generate complex models (which pre-
viously they never knew they could) in a fun and playful manner.
Finally, our specialized distance function, which can be easily com-
puted in an explicit way, can open up avenues for applications
beyond shape modeling, such as vectorization and animation.
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A Detailed derivation of the d, function We then derive the gradient of this distance function, in respect
We define a natural generalized distance function between a point to x.
x and a polygon P, consisting of vertices Py to P_;, with perimeter We define I(x; t):
A= 35 Piss = Pill e if o(x)=0

The distance function of degree n between x and P is then defined I(x,t) = L arctan ( t+u(x) ) _arctan(w(x,t)) it o(x) %0
as an integral on the contour of P [44]: a-e(x) e®) )T Vaoln)

i, P) = Aln (/ eyl d )‘1/" with o(x) = a- €*(x) and w(x, t) = a(t#/%))) (w(x) is only defined
e P Y Y . for v(x) # 0)
When n = 2, it is evaluated as: Hence, we have:
A VI(x,dist) — VI(x,0
dy(x) = Yy (x) = —A (x, dist) — VI(x,0)

VIGLT) —1(x,0) 2(I(x, dist) — I(x, 0))3/2

Using the same notation, we can derive the gradients of the

-1/2
dz(x,P)=\/Z(/P IIX—yII_zdy) .

Calculating the integral directly would be costly. Having con- variables we use as:
centrated on one line segment of the polygon at a time, we can
rewrite qo(x) =X — i ,S0 qu(x) =1
L= [ -yl
P [pis1.pi] b(x) = =2(qo(x) - q1 ,50 Vb(x) = =2(Vqo(x) - q1) = —2q1
pei=pill =
_ . Pi+1 — Pi -2
= /0 Ik (Pt AR pin) I de ¢(x) = qo(x) - g0 (x) .50 Ve(x) = 2(qo(x) - Vo (x)) = 240 (x)
Let T = ||pi+1 — pill, go(x) = x — p;, and q; = ﬁ The (x) @
equation can be expressed as: u(x) = ;50 Vu(x) = .
T , T -
-/0 llgo — tqal|~“ dt = /0 (||QO —tqll ) dt o(x) = c(x) — au®(x), ,50 Vo(x) = Ve(x) — 2au(x)Vu(x)
. = 2q0(x) +2q1u(x)
With a = [|q1]|%, b(x) = ~2(go(x) - q1), and ¢(x) = [|qo(x) 1%, the
equation can be rearranged as:
a(t +u(x)) aVu(x) a(t+u(x))V(y/av(x))

w(x,t) = ———— ,s0 Vw(x,t) =

/T(atz +b(x) - t+c(x))"Ldr. Vav(x) Vao(x) av(x)
0

Changing Vu(x) and Vo(x) by their expression, we get the fol-
Note that the polynomial at® + bt +cis always greater than 0 lowing.
and thus can be written as:
Q1 w(x, t)Vo(x)

T -1 Vw(x,t) = — +
a_I/ ((t+u(x))2+e2) dt Vav(x) 20(x)

0 In these calculations, ¢ is the variable of the integrand and x is
with u(x) = % and €%(x) = L:) — u%(x). Finally, the position of the point on the image.

; With this, we can finally derive the gradient of I(x, t). The case

-1 — 0 is aui .
o / ((t +u()?+ ez(x)) dt o(x) = 0 is quite easy, we ﬁnd.q
0 —q1 .
VIi(x,t) = ———  if o(x)=0

evaluates to: (a(t +u(x)))?

We now calculate VI(x, t) in the case v(x) # 0.
Let us define P and Q:

T
-1 __1 1 ; —
[a(t+u(x))]0 = 2u@ ~ aTru@) if e(x)=0 )
1 t+ru(0)\1T 1 T+u(x) (x) .~ P(xt) = arctan(w(x,t)) and Q(x)=
[a.dx) arctan( eb(lx’)( )]0 = Zem) (arctan( e?x;( ) - arctan(z(i) )) if eéx) 0 /av(x)

We have the following:
It can be shown that (Pythagorean trigonometric identity)

VI(x,t) = VP(x, P(x,t)V
@ = Igllgol’ ~ (q0 - q0)* = llg1 x g0l (1) = QEIVE( D PEHVRC0)

With:
Since a is supposed non zero (we exclude the case p; = pi+1 ),
e(x) = 0 is true if and only if pgp;1 and pgx are parallel, i.e. if x lies VP(x,1) = Vw(x,t) and VO(x) = - aVo(x)
on the line formed by p; and pj41. 1+w(x, 1) 2(av(x))3/2
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Input sketch Teddy RigMesh 3-Sweep MonsterMash ~ CreatureShop ~ doo function — Spine-Rib system OQur result

Figure 21: Comparison on a simple closed boundary (Top: Blobby shape) and a simple closed boundary with varying cross-
sections (Bottom: Banana) Left to Right: Input sketch, Outputs of Teddy [23], RigMesh [7], 3-Sweep [10], MonsterMash [16],
CreatureShop [61], dw function, Our Spine-Rib system and the resulting 3D model

Input sketch Teddy RigMesh 3-Sweep MonsterMash CreatureShop ‘1(2 fkl{&CSLAigﬂ Spine-Rib system Our result

Figure 22: Top to Bottom: Comparison on an occluded boundary (Cross shape), object with missing boundaries (Plane), Noisy data
(Noisy Jar) and Image (Streetlight); Left to Right: Input sketch, Outputs of Teddy [23], RigMesh [7], 3-Sweep [10], MonsterMash
[16], CreatureShop [61], d2 function without rib length optimization, Our Spine-Rib system and the resulting 3D model
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1 Vw(x, t) B
av(x) 1+ Wz(x, t)

aVo(x) arctan(w(x, t))
(2(av(x)))%/2

This gives us the final expression of VI(x;, t):

VI(x,t) =

—q1 if o(x)=0
if o(x)#0

(a(t+u(x)))?
1 Vw(x,t) aVo(x) arctan(w(x,t))

(2(av(x)))3?

VI(x,t) =

Vao(x) +w2(x,0)
As a reminder,
VI(x, dist) — VI(x,0)

Vdz(x) = —Az( I(x, dist) — I(x, 0))3/2

B Comparison with other sketch-based
modeling systems

In this section, we compare our results with those generated by
five other methods (whose codes are available) and two variants of
SpineLoft (Case 1: with do, function and without rib-editing, Case 2:
with dy function, without rib length optimization and without rib-
editing). It should be noted that only 3-sweep is designed to work
similarly to SpineLoft by taking images and user-drawn spine-like
structures as input. All other methods are sketch inflation-based
techniques that inflate a user-drawn closed boundary with little to
no control over the shape, as they are not designed to take editability
into account. To help readers understand how our methods differ
from other sketch-based modeling tools, we list the main differences
below.

e Teddy [23]: Teddy uses a simple inflation based on a con-
strained Delaunay triangulation. A drawback is the lack of
support for image-based content. Instead, one needs to man-
ually draw closed outlines. The results are typically blobby
shapes. Missing boundaries or noisy sketches are not sup-
ported.

e RigMesh [7]: Similar to Teddy, RigMesh also creates blobby
objects from user-drawn closed-curve sketches. It shares
the drawbacks of Teddy, and complex curves with multiple
branches do not lead to the desired result (compare plane
in Figure 22). The same holds for the skeleton, which might
differ from the expectations (noisy jar in Figure 22).

e 3-Sweep [10]: It uses a sweeping methodology and can han-
dle minimal inconsistencies on the input image/sketch. Yet,
it is difficult to control the sweep, especially when the pro-
file requires bending (banana in Figure 21), and shape edits
are locally not supported. Occlusion and missing edges also
pose challenges, and non-circular cross-sections often lead
to unwanted results (for a fair comparison, we used circular
profiles for most results). It should be noted that compared
to our solution, 3-Sweep can handle open boundaries in
sketches, as shown in Figure 18.

e MonsterMash [16]: This approach uses blobby inflation, re-
stricting the variety of possible results, but it does enable
local boundary edits. Further, additional strokes can influ-
ence the inflation process (e.g., noisy jar in Figure 22). Nev-
ertheless, it requires a closed boundary, making inputs, as in
Figure 18, unsuitable.
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o CreatureShop [61]: Following upon Teddy and RigMesh, it
can actually handle images as inputs and relies on a Grabcut
algorithm while the user traces the required boundaries as
in Teddy/RigMesh. Arbitrary cross-sections or local editing
are not supported.

e Our Method (Case 1): Our dz function results in smooth sur-
faces (especially when the spine is bent), while a do, function,
which we implemented for comparison, does not result in a
suitable output. The blobby and banana examples in Figure
21 show the results generated using the do, function.

e Our Method (Case 2): Using dy, the importance of rib length
optimization can be shown. To be fair, no edits were applied
to the ribs. As can be seen in the cross, plane and noisy jar
examples, the resulting ribs without rib length optimization
extend to the region boundary (or hull in Figure 18), resulting
in distorted and unexpected shapes.
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