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Abstract
We propose to use diurnal temperature variations for nondestructive monitoring of
growing tubers and investigate the feasibility by numerically simulating the data
collected with a grid of passive thermal sensors placed in the ground and sampled at
regular time intervals. A qualitative linear imaging algorithm that produces an
approximate projected view of the tubers is proposed and an effective inversion
method is applied to recover the volume fraction of tubers. In particular, it is shown
that a correlation-based cost functional outperforms the usual least-squares metric,
although, requiring additional steps to deal with the non-uniqueness of the solution.

Keywords: Inverse problems; Agriculture; Subsurface imaging

1 Introduction
Phenotyping and yield prediction of tuberous and root crops such as potato, cassava and
yam require digging up, analyzing and discarding numerous plants at various times dur-
ing the season, which is time-consuming, laborious, destructive and wasteful. Attempts
to adapt existing non-destructive subsurface imaging techniques, such as ground pene-
trating radar [1], face obvious difficulties due to the above-ground leaves and branches
that deny direct access to the soil surface. If antennas are to be placed above the plants,
then one can expect significant reflection and distortion of probing electromagnetic and
acoustic signals, which can not be removed by simple subtraction as canopies grow and
change with time.

Natural diurnal air temperature variations create temperature “waves” that slowly prop-
agate into the subsurface and rapidly decay with depth [2]. Similar to the electromag-
netic waves of the ground-penetrating radar, these temperature waves are distorted by
the tubers, e.g., potatoes. The thermal contrast of tubers with respect to a typical soil is
high enough even in wet circumstances due to the difference in heat capacity. Therefore a
question emerges whether these natural temperature waves can be exploited to visualize
and measure the state of tubers at any given time, in particular, their number, size, shape
and location. Since temperature waves decay very rapidly, it is clear that sensors must be
placed sufficiently close to both the ground surface and the tubers. Where exactly should
these sensors be placed, what should be their sensitivity and sampling rate are some of
the open questions addressed in this paper. Previously, artificially excited thermal waves
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Table 1 Material parameters

k, W/(m K) ρ , kg/m3 Cp , J/(kg K)

Soil 0.3 1300 800
Potato 0.56 1079 4036

have successfully been applied for imaging of inhomogeneous solids [3, 4]. Natural diurnal
temperature waves, however, do not have a broad spectrum and may require a different
approach.

In the following sections realistic three-dimensional heat transfer simulations are em-
ployed to determine the characteristic temperature ranges and estimate the required spa-
tial/temporal resolution and sensitivity of temperature sensors. A simple imaging algo-
rithm is proposed to visualize the lateral distribution of tubers and an effective inversion
method is applied to nondestructively determine the tubers state over the season.

2 Modeling
The temperature distribution T(x, t) in the configuration depicted in Fig. 1 (left) is as-
sumed to satisfy the following heat transfer problem:

ρCp
∂T
∂t

– ∇ · (k∇T) = 0, x ∈ Ω, t ∈ (0, tend];

T(x, 0) = Tamb(0), x ∈ Ω;

n · (k∇T) = ϵσ (T4
amb – T4), x ∈ ∂Ωtop;

n · (k∇T) = 0, x ∈ ∂Ωbottom;

n1 · (k1∇T1) = –n2 · (k2∇T2); T1 = T2, x ∈ ∂Ωsides,

(1)

where the last boundary condition is periodic. The values of the material parameters for
soil and potatoes [5–7] have been set as in Table 1 and the surface emmissivity was set as
ϵ = 0.92 and the simulation time as tend = 192 h. The ambient air temperature Tamb(t) was
extracted from historical meteorological data for the period starting on June 1, 2016, in
Leeuwarden (Netherlands).

Geometry of the problem mimics a typical “ridge” structure where the seed potato is
planted in the center of an elevated ridge at the depth of 12.5 cm from the surface and the
new potatoes of different sizes and shapes emerge later at approximately the same average
depth and tend to remain within the ridge. Three stages in the growth of new potatoes
depicted as horizontal projections of Fig. 4 (top) have been modelled. Numerical solution
of the heat transfer problem (1) was obtained with the Finite Element Method (FEM) in
the Comsol Multiphysics 5.4 software package.

A snapshot of the resulting temperature wave can be seen in Fig. 1 (right), where on the
soil surface the temperature has already reached its daily maximum (red color), whereas
the minimum of the preceding night (blue color) is still propagating downwards into the
subsurface. It is also clear that the wave diminishes very rapidly with depth as no dis-
cernible temperature variations can be seen below the first wave cycle. Nonetheless, it is
also clear that the first wave cycle covers the typical potato depths (down to 40 cm).

Figure 2 shows temperature variations at several points in the configuration. Namely,
T1 is at the surface above an empty (no potatoes) spot, T2 is exactly below the location of
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Figure 1 Three-dimensional configuration with the generated mesh (left) and the computed temperature
distribution snapshot showing the subsurface temperature wave (right)

Figure 2 Top: temperature without potatoes as a function of time; T1 – at the surface, T2 – at 20 cm depth.
Bottom: temperature difference at 20 cm due to the presence of large and small potatoes (spheres of 10 cm
and 8 cm diameters with centers at 12.5 cm depth). Initial parts of the plots (up to 75 hours) correspond to
the transient period in simulations

T1, but at 20 cm depth, T3 and T4 are the temperatures measured at 20 cm depths below
a large (10 cm diameter) and small (8 cm diameter) potatoes, respectively. Note that the
bottom plot of Fig. 2 shows the differences T3 – T2 and T4 – T2. The transient period
up to 75 h is an artefact of the wrong initial condition T(x, 0) = Tamb(0) and should be
disregarded. The top plot of Fig. 2 shows an oscillating signal in time, typical for a quasi-
harmonic wave, that diminishes in amplitude with depth and undergoes a phase shift. The
amplitude of variations reduces from approximately 4 degrees at the surface to just one
degree at 20 cm depth. As can be seen in the bottom plot of Fig. 2, the influence of potatoes
on the signal at 20 cm are in the order of 0.1 degrees. This means that, if one would like to
detect potatoes, then the amplitude resolution should be at least 0.01 degrees. It is well-
known that achieving 0.01 degree absolute accuracy in temperature measurements is a
very difficult task. Therefore, any viable imaging or inversion algorithm should rely on the
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relative stability and high (amplitude) resolution of the measurements rather than absolute
accuracy.

In particular, a relative calibration procedure of temperature sensors should be imple-
mented. For example, if the data are to be collected by a horizontal wire-mesh of ther-
mistors, then all thermistors should be (numerically) calibrated to give the same readings
and slopes in an environment with controlled spatially uniform temperature. The high-
frequency electronic noise should not be a problem as the data may be collected at hourly
intervals, leaving enough time for signal averaging.

3 Imaging
Comparing the top plot (blue, solid curve) with the curves in the bottom plot of Fig. 2
one can notice the expected phase shift between the background temperature and the
temperature-difference signals. A very basic imaging algorithm can be applied to convert
this local phase shift into a two-dimensional image of potatoes.

Let the input data be collected over a doubly uniform grid {(xi, yj) | i = 1, . . . , 20; j =
1, . . . , 20} with 2 cm spatial step located at 20 cm depth, approximately covering the base
of the ridge. Specifically, assuming discrete data measured at 1-hour intervals T(xi, yj, tm),
m = 1, . . . , M; and the corresponding background temperature Tb(xi, yj, tm), m = 1, . . . , M;
measured at the same depth in an area free from potatoes, the image I(xi, yj, tM), can be
computed as follows:

I(x, y, tM) = L(x, y)

[︄ M∑︂
m=1

[︁
T(xi, yj, tm) – Tb(xi, yj, tm)

]︁
Tb(xi, yj, tm)

]︄
, (2)

where L(x, y) denotes the interpolation operator for locations (x, y) that fall between the
grid points (xi, yj). Images obtained with different choices of tM are shown in Fig. 3, and
the 24-hour interval consisting of M = 25 time samples per sensor and containing the full
temperature-wave cycle appears to provide the best contrast.

The phase shift of the temperature-difference signals with respect to the background
signal results in locally negative values of the function I(x, y, tM). This negative contrast
is, however, not uniquely determined by the size of tubers alone and is also influenced
by potato’s proximity to the measurement plane. The relatively good lateral resolution of
the images stems from the exponential decay of temperature perturbations away from
their origin, i.e., tubers, in the present case. At the same time this exponential decay leads
to the “disappearance” of potatoes situated too far away from the measurement plane.
This is a well-known drawback of all imaging algorithms based on diffusive fields [3, 4].
Nevertheless, one can easily detect the presence of at least five (out of six) tubers in the
images of Fig’s 3–4.

Despite the difficulty in interpreting the images the algorithm is sensitive enough to
capture the emergence and growth of new potatoes as illustrated in Fig. 4. The noise in
the first image is of numerical origin due to a relatively rough FEM mesh and very weak
temperature-difference signals produced by the 2 cm potato tubers. The colorbars show
that the negative contrast increases with the size of tubers. Note that the surfaces of grow-
ing tubers move closer to the detector plane as well.
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Figure 3 Top-left: horizontal two-dimensional projection (shadows) of 6 potatoes (see Fig. 1) with color
coding indicating the distance from the measurement plane (dark means close). Rest: Images I(x, y, tM)
obtained with Eq. (2) for different tM

Figure 4 Images of three growth stages, each based on 24 h data

4 Effective inversion
Another approach that works with limited and noisy data is called effective inversion
[8–10]. The basic idea is to fit the data with an easy to interpret low-dimensional model
that captures the essence of the object-data relation. When dealing with inhomogeneous
targets, such as a group of tubers, the effective model is typically homogeneous and cov-
ers the domain where one expects the tubers to be present. The material parameter of
this homogeneous model, thermal diffusivity D = k/(ρCp), that produces the best fit to the
measured data is denoted as Deff and is called the effective diffusivity.
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Figure 5 Schematics of the original (left) and effective (right) two-dimensional models. The growing
potatoes are modelled as the time varying diffusivity of a homogeneous effective domain

The actual thermal diffusivities of soil and potatoes assumed here, see Table 1, are
Ds = 2.88 × 10–7 m2/s and Dp = 1.29 × 10–7 m2/s, respectively. Hence, the effective dif-
fusivity of the homogeneous model is expected to be somewhere between these values,
depending on the amount and sizes of potatoes within the effective domain. During the
season, as potatoes emerge and grow, the effective diffusivity Deff will start off as Ds and
then gradually approach a smaller value closer to Dp, thus indicating the amount and the
rate of growth of potatoes.

Numerical experiments in this Section have been performed on the two-dimensional
configuration depicted in Fig. 5. The growth of potatoes is modelled on a fine temporal
scale with the radius of each tuber increasing at the rate of 0.86 mm/day, reaching the
final radius of 6 cm at the end of the 70-day season. The boundary conditions and material
parameters are the same as in Eq. (1) and Table 1 with the exception of emissivity, which
was set to ϵ = 0.8. The corresponding heat transfer problem is solved numerically with the
Finite-Element Method using the Fenics (dolfin) module in Python. There are 12 randomly
placed potatoes in the particular numerical experiments presented below.

Let T(xi, tm) be the simulated data generated by the forward heat transfer model of grow-
ing potatoes with diffusivity Dp, where xi, i = 1, . . . , N , are the locations of thermal detec-
tors uniformly placed at 1 cm intervals along a horizontal 60 cm line segment situated
45 cm below the top of the ridge. We denote as Teff (xi, tm, D) the temperature that would
have been measured at the same locations and at the same times if instead of potatoes
there would be a homogeneous block with diffusivity D as shown in Fig. 5 (right). The dif-
fusivity of the soil Ds, the ambient temperature Ta(t), and the background (no potatoes)
temperature Tb(xi, tm) at the detector line are considered to be known and the same in
both models. The goal is to match the data T(xi, tm) and the temperature Teff (xi, tm, D) by
tuning the diffusivity D of the effective model. The value of D that provides the best match
is the effective diffusivity Deff . Since potatoes grow, the effective diffusivity will depend on
time.

Matching data to the model output requires defining a cost functional, which is not
trivial in the case where data depend on both space and time. The most natural choice
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would be the following least-squares functional:

FLS [D] =
∑︁N

i=1
∑︁M

m=1 [T(xi, tm) – Teff (xi, tm, D)]2∑︁N
i=1

∑︁M
m=1

[︁
T(xi, tm) – T(xi)

]︁2 , (3)

where T(xi) = (1/M)
∑︁M

m=1 T(xi, tm), which provides for a better normalization. Numerical
experiments reveal, however, that the effective diffusivity reconstructed with this func-
tional fails to capture the growth of potatoes. Namely, Deff remains in the neighborhood
of the soil diffusivity Ds during most of the growing season, see Fig. 6.

As was discussed in the previous Section, phase shift of the temperature signal due to
potatoes appears to be rather significant. The following correlation-based functional is
aimed at equalizing phase shifts:

FC [D] =
∑︁N

i=1 [Ci(T) – Ci(Teff )]2∑︁N
i=1 [Ci(T)]2 , (4)

where Ci(T) measures by how much the data or the effective model are shifted with respect
to the background temperature signal, i.e.,

Ci(T) =
∑︁M

m=1
[︁
T(xi, tm) – T(xi)

]︁ [︁
Tb(xi, tm) – Tb(xi)

]︁
σi(T)σi(Tb)

,

σi(T) =

[︄ M∑︂
m=1

⃓⃓
T(xi, tm) – T(xi)

⃓⃓2
]︄1/2

.

(5)

Figure 6 demonstrates the shapes of FLS and FC functionals at different days of the simu-
lated growth season. It is clear that FC is both more sensitive to the changes in potatoes
and has a “deeper” minimum that is easier to detect.

Figure 7 shows the evolution of Deff throughout the season, where the effective diffusiv-
ity has been determined by finding the global minima of FLS[D] and FC[D] (solid lines).
To this end the effective model has been run for a range of 100 values of the diffusivity D
uniformly distributed between Dp and Ds, and the corresponding temperature data were
saved and reused to produce functionals FLS/C for each day of the season. There exist much
more efficient reduced-order approaches to this kind of problems, e.g. [9], which are not
discussed in the present proof of the principle study.

The functional FC is clearly not unimodal and its second minimum happens within the
interval of interest. Moreover, sometimes the minimum that corresponds to physically ac-
ceptable effective diffusivity is not a global minimum. Thus, finding a global minimum is
not necessarily a good strategy in effective inversion. In Fig. 7, Deff (t) at the global mini-
mum is shown with a solid line. While it features an almost linear decline with time after
day 30, prior to that it demonstrates sporadic growth, which is caused by the right mini-
mum in Fig. 6 being somewhat deeper than the left one. Fortunately, in the present case
it is quite easy to decide which of the two minima to choose by incorporating the a pri-
ori dynamic information that potatoes grow rather than become smaller with time. This
means that whenever Deff (t) tends to increase one should choose the second minimum
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Figure 6 Shapes of least-squares and correlation-based cost functionals based on 24-hour data sampled at
hourly intervals at three days during the growth season (t1 = 3, t2 = 35, and t3 = 70 days). Actual configuration
consists of 12 circular growing “potatoes” randomly placed within the boundaries of the effective domain

Figure 7 Left: effective diffusivity Deff (t) as a function of time in days during the growth season reconstructed
by minimizing FLS and FC cost functionals over 24 hour intervals. Dotted lines show the regularized results.
Right: analytical approximations based on the mixing formulas (8) and (9)

of the functional. In cases where the second minimum can not be detected, the value of
Deff (t) obtained at the previous day is retained. The result of this simple regularization
strategy is shown in Fig. 7 with dotted lines.
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Computing an effective constitutive parameter for a medium consisting of inclusions
in a homogeneous host material is the subject of effective medium theory [11]. Accord-
ing to the steady-state Bruggeman theory the effective parameter depends on the volume
fraction of inclusions. In the present two-dimensional case Deff is expected to satisfy the
following equation:

Ãp
Dp – Deff

Dp + Deff
+

(︂
1 – Ãp

)︂ Ds – Deff

Ds + Deff
= 0, (6)

where Ãp(t) = Ap(t)/Aeff , Ãp(0) = 0, Ãp(t = 70 days) = 0.382 is the relative area of inclu-
sions (potatoes) at day t and Aeff = 0.355 m2 is the area of the effective domain depicted
in Fig. 5 (right). Under the natural assumption that Dp, Ds, Deff , and Ãp are all positive the
Bruggeman equation simplifies to

D2
eff – (2Ãp – 1)(Dp – Ds)Deff – DpDs = 0, (7)

and admits the explicit solution:

Deff (t) =
1
2

[︃
(2Ãp(t) – 1)(Dp – Ds) +

√︂
(2Ãp(t) – 1)2(Dp – Ds)2 + 4DsDp

]︃
. (8)

Figure 7 (right) shows that neither the least-squares nor the correlation-based functional
produce Deff that follows Bruggeman’s law. The fact that FLS[D] shows a lack of decrease
in effective diffusivity with the growth of low-diffusivity inclusions in a high-diffusivity
host medium is difficult to explain. Of course, the present configuration, characterized by
small particle numbers in a finite and relatively small host domain, makes the applicability
of effective medium theories highly questionable. In addition, the 24-hour time interval
used in the daily minimization problems may be too short to capture the instantaneous
properties of growing tubers and the heat transfer on a given day is influenced by the state
of tubers and temperature distribution of the previous day.

The correlation-based functional FC[D] is, on the other hand, much more sensitive to
the tuber size and leads to DC

eff (t) which is well approximated by the following simple linear
mixing formula:

DC
eff (t) = Dp

√︂
Ãp(t) + Ds

(︃
1 –

√︂
Ãp(t)

)︃
. (9)

Notice that the effective diffusivity is determined here by the relative “diameter”
√︂

Ãp of
the potato domain rather than its relative area Ãp. Subsequently, this expression can be
used to infer the temporal evolution of Ãp(t) from Deff (t) as

Ãp(t) =
(︃

DC
eff (t) – Ds

Dp – Ds

)︃2

. (10)

5 Conclusions
Numerical experiments presented in this paper show that diurnal temperature waves may
be used to visualize the growth of tubers, such as potatoes. To this end a sparse array of
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thermal sensors can be placed below the seed tubers at the time of planting and mon-
itored throughout the season at hourly intervals. While the amplitude of relevant tem-
perature variations is expected to be in the order of 0.1 degrees, an imaging algorithm
is proposed that relies on the relative synchronization rather than absolute precision of
sensors. An effective inversion algorithm describing growing tubers in terms of effective
time-dependent diffusivity has been demonstrated as well. The effective diffusivity recon-
structed from time-domain data depends on the choice of the cost functional. It has been
shown that neither the least-squares nor the correlation-based functional leads to an effec-
tive diffusivity that follows Bruggeman’s mixing formula. The correlation-based functional
is more sensitive to the changes in the relative volume of potatoes, but requires additional
regularization due to the presence of the second minimum. A simple linear mixing formula
is proposed that allows to reconstruct the relative volume of potatoes from the effective
diffusivity obtained by minimizing the correlation-based cost functional.

While we did not perform targeted simulations with artificial additive noise, the “noise”
in our numerical experiments was still introduced by the numerical truncation errors and
mesh changes in the FEM numerical solver used to produce synthetic data. It appears
that the proposed imaging algorithm is robust against such noise since, by construction,
it does not involve any ill-conditioned operations on the data. The images become noisy
only when the signal from the tubers is very small as in Fig. 4 (bottom, left). The effec-
tive inversion algorithm, on the other hand, requires finding the minimum of a relatively
smooth function, which is a potentially ill-conditioned mathematical procedure, generally
sensitive to noise in the data. The usual least-squares loss (cost) functional appears to have
a unique minimum but is smooth around the minimum point, making it more sensitive to
noise. An alternative, correlation-type loss functional has a more pronounced minimum,
i.e., is less sensitive to noise, but suffers from the presence of the second (false) minimum
at the early growth stage (small tubers).

The practical applicability of the proposed imaging algorithm depends on the feasibil-
ity of measuring the two-dimensional temperature distribution on the soil surface. We
suggest that these measurements are performed with a thermistor network [12], which
requires a limited number of connecting wires, little electric power, and is easy to control.
For the effective inversion algorithm, a simpler vertically positioned linear array of ther-
mal sensors can be employed [13]. With both sensor types, it is crucial to account for the
factory differences in the temperature-resistance characteristics of thermistors. This cal-
ibration is usually performed in a well-controlled spatially uniform thermal bath. As our
simulations indicate, the background temperature readings required by both the imaging
and the effective inversion algorithms can be obtained from the sensors that are located
some distance away from the tubers.
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