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A B S T R A C T

The continued development of improved algorithms and architecture for nu-
merical simulations is at the core of increased computational performance
and, therefore, the ability to perform more complex and precise numeri-
cal simulations in less time in areas such as Computational Fluid Dynam-
ics. Employing faster algorithms on more efficient processing units, such
as Graphics Processing Units (GPUs), can reduce not only the time spend
per simulation but also the energy required to perform these computations
as well. This will be of significant benefit to different areas of research and
engineering and through improvement achieved in these to society at large
as well.

As simulations grow in dimensions and accuracy the wall clock time is
bound to increase substantially, reaching days and potentially months de-
pending on the parameters and geometry of the chosen simulation. The
performance of different finite difference solvers with different degrees of
optimization on different types of compute hardware was investigated and
the achieved speedups assessed. Specifically, one serial CPU-based solver
was presented as a baseline, which was then transitioned to a GPU-based
solver. This in turn was then optimized further with regards to improved
memory redundancy. To make comparisons fairer all of the solvers used the
same temporal and spatial discretization techniques. Further, a benchmark-
ing scenario was proposed to be used for the different solvers across used
hardware, including the relevant geometry, gird, and initial and boundary
conditions.

The speedups between the different solvers were observed and contextu-
alized with regard to the effort that went into implementing the solvers and
the capability and cost of the used hardware. The speedups at different
problem sizes were investigated with the aim to establish how the perfor-
mance gain from parallelizing and optimizing solvers scales with the chosen
number of grid points and therefore the computational load.

Very significant speedups were achieved between the regular CPU solver
and its GPU implementation, clearly showing the possible performance gains
when moving from a serial to a parallel implementation running on an accel-
erator. The speedups between the two GPU-based solvers were more modest
but still significant when considering the possible time spend on one simu-
lation, depending on the chosen number of grid points.

Finally, an additional performance analysis was performed on two Navier-
Stokes, one of which was the optimized version of the other, to investigate
whether the performance increases were in line with prior findings and what
magnitude of a reduction of wall clock time was possible for a state-of-the-
art finite difference Navier-Stokes solver.
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1 I N T R O D U C T I O N

Computational Fluid Dynamics (CFD) is concerned with modelling and pre-
dicting the behaviour of fluids. The cornerstone of CFD are the Navier-
Stokes (NS) equations, which are used to model the flow of viscous fluids by
applying the conservation of momentum and conservation of mass to fluids.
To study the performance of different implementations of solvers for numer-
ical simulations, a sub-problem of the NS equations will be the focus of the
majority of this work: the heat equation.

The continued development of improved algorithms and architecture for
simulating fluids is at the core of increased computational performance and,
therefore, the ability to perform more complex and precise numerical simu-
lations in less time. Furthermore, faster algorithms on more efficient process-
ing units, such as GPUs, can reduce the energy required to perform these
computations. This will be of significant benefit to different areas of research
and engineering and through improvement achieved in these to society at
large as well.

As simulations grow in dimensions and accuracy the wall clock time is
bound to increase substantially, reaching days and potentially months de-
pending on the parameters and geometry of the chosen simulation. More-
over, memory requirements will increase as well with the size of the prob-
lem. This makes High Performance Computing (HPC) for CFD, through
the use of optimised parallel algorithms running on more capable hardware,
appealing in a bid to make the most demanding simulations more accessi-
ble. The main source of potential performance increase in the 21st century
are accelerators, purpose-build processing units designed with many more
computational cores compared to standard CPUs, which make speedups of
an order of magnitude or more for certain applications possible. The most
widely used of these is the Graphic Processing Unit (GPU), which was ini-
tially developed for efficient computer graphics processing and visualisation
in the 1970s. The highly parallel architecture found on GPUs makes them
very effective at solving problems for which large blocks of data may be
processed in a parallel fashion. Characteristically GPUs have a high floating-
point operations per second performance, implying that they are capable of
performing a large number of computations per second. This, in combina-
tion with GPUs being readily available in most computers, justifies an in-
vestigation into whether a significant speedup in research CFD simulations
can be achieved through the use of accelerators and how this speedup may
best be achieved. GPUs have become increasingly popular in the past ten
years due to their particular architecture lending itself to speeding up the
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1.1 thesis statement of purpose 2

parallel computations typically performed during Monte Carlo simulations
[36], machine learning [42], or molecular dynamics [43].

The programming framework of choice for accessing GPU computing is
Nvidia’s Compute Unified Device Architecture (CUDA), which allows pro-
grammers to write code directly on the GPU in a variety of languages, such
as Python or FORTRAN, with its default being a C-style language (simply
referred to as CUDA in the rest of this paper).

1.1 thesis statement of purpose

The primary aim of this thesis is to design, evaluate, and optimize a CUDA-
based solver for the three-dimensional heat equation which runs on a GPU
and provides a significant speedup over CPU-based methods. To accomplish
this, the solver must scale strongly with the parallelization offered when
GPUs are being used. The intended approach is build on a CPU-based solver
and involves designing an equivalent in CUDA, before trying to optimize
this approach further in order to increase performance, taking full advantage
of parallelizing an algorithm and the increase in computational power such a
system provides, while trying to minimise the performance bottlenecks that
come with a parallel solver run on an accelerator. Whether the project was
successful will be judged by the speedup achieved by the solvers, as well as
their ease of use, and whether insights can be obtained about how feasible
it is to parallelize different numerical simulations.

1.2 cpu vs gpu computing

The CPU can be viewed as the brain of the computer, it is in nature general-
purpose orientated and its key tasks include handling arithmetic calcula-
tions and logic operations, as well as input/output operations. Virtually all
operations a computer performs are build upon these building blocks. The
CPU has build-in memory it can access more quickly, similar to that of a
GPU in structure and operation, but is also connected to Random Access
Memory (RAM) which is installed separately in the computer. The build-in
memory, also known as cache, can be accessed significantly faster than the
separate RAM due to being located closer to the processing units. Much like
the GPU, the CPU’s caches are also divided into a memory hierarchy, with
some caches being closer to the processing units than others.

1.2.1 Serial Example

Beyond the difference in architecture, which will be explained in detail in a
later chapter, the main differentiating factor between the two categories of
computing hardware is the number of cores and the core clock frequency,
which is a measurement of how many operations the processor can perform
each second. It is typically faster for the cores of the CPU compared to those
of the GPU. A typical CPU core runs in the single digit GHz range, while
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Figure 1.1: Two vectors are summed at each index and their resulting value is
stored in a third vector. Each block represents one address of mem-
ory which holds the value of the corresponding vector. Figure courtesy
of Nvidia [39].

a typical accelerator core will have a clock speed in the low thousand MHz
range. This, in combination with the aforementioned differences in the num-
ber of available cores, results in the great possibility presented by optimizing
algorithms for the GPU to make use of these many cores. To illustrate the
differences between CPU and GPU (and in turn serial and parallel) comput-
ing more effectively, a series of algorithmic examples will follow, performing
vector addition purely algorithmically, in serial C++ implementation, and in
parallel CUDA code. While an understanding of C-style languages is bene-
ficial to understand the presented examples, it is not required to grasp the
underlying concepts. Vector addition is the most common, as well as one of
the simplest, examples to highlight the differences between serial and par-
allel computation. The following algorithms are loosely based on the book
CUDA by Example by Sanders and Kandrot of Nvidia [39]. Algorithm 1

outlines a simple vector addition through the use of pseudo code. Here the
vectors a and b get summed to vector c at each index i, where the index is
increased by one every iteration. The loop stops when the index is the size
of the predefined constant N. This is graphically represented in figure 1.1,
where each block represents the memory that holds a value of one of the
vectors mentioned above.

Algorithm 1 Pseudo code of straightforward vector addition.

while i < N do
c[i] = a[i] + b[i]
i += 1

This algorithm is serial in nature, with each iteration of the loop only
performed once the previous iteration has finished. Algorithm 2 shows a
very rudimentary implementation of this vector addition in C-style code, de-
signed to be executed on a CPU in serial fashion. Here, once the vectors
are declared and populated the add() function is called, where the summa-
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tion occurs until the loop is finished. The memory allocation and read and
write operations occur between the CPU and RAM and are managed by the
compiler.

Algorithm 2 Simple C++ code of serial CPU vector addition implementation.

1 # def ine N 10

2

3 void add ( i n t * a , i n t *b , i n t * c ) {
4 f o r ( i n t i =0 ; i < N; i ++) {
5 c [ i ] = a [ i ] + b [ i ] ;
6 }
7 }
8

9 i n t main ( ) {
10 i n t a [N] , b [N] , c [N] ;
11

12 // populate arrays a and b with chosen numbers in CPU memory
13 f o r ( i n t i = 0 ; i < N; i ++) {
14 a [ i ] = i ;
15 b [ i ] = − i ;
16 }
17

18 add ( a , b , c ) ;
19

20 // display the r e s u l t s
21 f o r ( i n t i = 0 ; i < N; i ++) {
22 p r i n t f ( ”%d + %d = %d\n” , a [ i ] , b [ i ] , c [ i ] ) ;
23 }
24

25 re turn 0 ;
26 }

1.2.2 Parallel Example

To implement the algorithm effectively in CUDA it must first be parallelized.
This will be done through build-in functions in this example, allowing the
programmer to split the problem into one sub problem to be run on a sin-
gle thread for each addition. This parallel CUDA version can be found in
algorithm 3.

While the syntax used for CUDA is similar to any C-style language, there
are some key differences. The global keyword preceding the add() function
identifies it as a global function, i.e. a function to be run on the GPU which
you can call from the host side using CUDA kernel call semantics. Separate
arrays have to be declared on the host side to be used on the device for the
vectors, where they receive the gpu prefix within this code to clearly label
them as such. The cudaMalloc() function is used to allocate memory on the
GPU side from the host and cudaMemcpy() can be used to copy memory
from the CPU to the GPU side or vice versa, which is crucial since the host
and device are not able to access each others memory directly. The kernel
for the add() function is launched on line 30 with the corresponding number
of blocks and threads allocated by the programmer, the details of which
will be explained later. The blocks each contain the number of specified
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Algorithm 3 CUDA implementation of parallelized vector addition for the
GPU.

1 # def ine N 10

2

3 g l o b a l void add ( i n t * a , i n t *b , i n t * c ) {
4 i n t t i d = threadIdx . x + blockIdx . x * blockDim . x ;
5 i f ( t i d < N) {
6 c [ t i d ] = a [ t i d ] + b [ t i d ] ;
7 }
8 }
9

10 i n t main ( ) {
11 i n t a [N] , b [N] , c [N] ;
12 i n t * gpu a , * gpu b , * gpu c ;
13

14 // a l l o c a t e memory on the GPU
15 cudaMalloc ( ( void * * )&gpu a , N * s i z e o f ( i n t ) ) ;
16 cudaMalloc ( ( void * * )&gpu b , N * s i z e o f ( i n t ) ) ;
17 cudaMalloc ( ( void * * )&gpu c , N * s i z e o f ( i n t ) ) ;
18

19 // populate arrays a and b on the CPU
20 f o r ( i n t i = 0 ; i < N; i ++) {
21 a [ i ] = i ;
22 b [ i ] = − i ;
23 }
24

25 // copy arrays a and b to from the CPU to the GPU
26 cudaMemcpy ( gpu a , a , N * s i z e o f ( i n t ) , cudaMemcpyHostToDevice ) ;
27 cudaMemcpy ( gpu b , b , N * s i z e o f ( i n t ) , cudaMemcpyHostToDevice ) ;
28

29 // c a l l CUDA kernel
30 add<<<1,N>>>( gpu a , gpu b , gpu c ) ;
31

32 // copy the array c back from the GPU to the CPU
33 cudaMemcpy ( c , gpu c , N * s i z e o f ( i n t ) , cudaMemcpyDeviceToHost ) ;
34

35 // display the r e s u l t s
36 f o r ( i n t i = 0 ; i < N; i ++) {
37 p r i n t f ( ”%d + %d = %d\n” , a [ i ] , b [ i ] , c [ i ] ) ;
38 }
39

40 // f r e e the memory a l l o c a t e d on the GPU
41 cudaFree ( gpu a ) ;
42 cudaFree ( gpu b ) ;
43 cudaFree ( gpu c ) ;
44

45 // and on the CPU
46 f r e e ( a ) ;
47 f r e e ( b ) ;
48 f r e e ( c ) ;
49

50 re turn 0 ;
51 }
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threads and each thread executes the function called through the kernel.
The syntax for launching a kernel is as follows, <<< M, T >>>, where M
represents the blocks allocated to the kernel and T the number of threads
per block. Once the kernel has finished, the results are copied back into CPU
memory before they are printed by the CPU. Finally, after printing the result,
the memory allocated on the GPU is freed. As many threads are launched
simultaneously, each thread performs a single call to the global function of
the kernel, summing the two values of the initial vectors and storing the
computed result in memory.

The memory for the reading of the initial values and for the final storing of
the results, as well as the individual thread responsible for the computation,
are determined via the appropriate global tid index. This index is computed
in line 4, using threadIdx.x, blockIdx.x, and blockDim.x, indicating the index of
the individual thread, the index of the block the thread is found in, and the
dimensions of this block. It is determined for each unique threads every time
the function which contains it is called. This unique index, corresponding
to a thread which is able to access a place in memory, makes it possible to
parallelize the code effectively without many changes, as it allows for each
thread across the different blocks to have a unique identifier. Through this
identifier, it becomes possible to run the same function, add() in this case, in
parallel through operating on different data stored in designated memory
addresses.

1.3 organization of this thesis

In chapter 2 the architecture of accelerators, specifically Graphics Processing
Units manufactured by Nvidia, is introduced and what makes them partic-
ularly suitable for the task at hand is described in detail. This includes both
hardware and software considerations that are necessary to be aware of in
order to utilize the full potential of accelerators to speed up CFD simula-
tions.

Chapter 3 presents a short literature review on general CFD research and
its history, before reviewing the specific aspects of CFD relevant to this thesis.
Finally, the use of accelerators in this field of research is reviewed.

In chapter 4 all the relevant theory of this thesis is introduced, starting
with the Navier-Stokes equations followed by their relation to the heat equa-
tion. Following this, the heat equation is discretized in the spatial and tem-
poral domains, using finite differences and Runge-Kutta 3 respectively, to
achieve equations that can be implemented computationally. Finally, the
used boundary conditions are introduced.

Chapter 5 first introduces the different solvers to be used in the simula-
tions. Here, initially the CPU-based solver is introduced before explaining
the structure of a similar GPU-based solver and finally the optimized GPU-
based solver. Following this, the validation scenarios are explained and the
results for all three solvers are analyzed in order to fully validate all three
solvers.

Chapter 6 begins with the benchmark case employed across all three solvers
being introduced, including the chosen initial and boundary conditions,
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grid, and other relevant parameters. Then the used hardware of the dif-
ferent workstations is discussed and contextualized. Finally, the results of
all three solvers are shown and their performance is compared and studied.

In chapter 7 a further performance analysis is performed to contextualize
the previously studies solvers. This is based on a different GPU-based solver,
which does not focus on the sub-problem of the heat equation, but rather the
entirety of the Navier-Stokes equations.

Chapter 8 summarizes the work presented throughout the different chap-
ters, assessing what the key takeaways are, before giving some recommen-
dations for further work on this topic.



2 L I T E R AT U R E R E V I E W

This chapter aims to gather and summarise the previous work done that is
relevant to this project. More specifically, the previous work which focuses
on CFD, the numerical schemes and problems thematized in this work, and
these being implemented on GPUs. An uninitiated reader will be provided
with a choice of past publications needed to gain a deeper understanding of
the relevant topics, while simultaneously selecting those that are relevant to
put the findings later encountered in this work into context. Section 2.1 gives
a general overview of CFD literature, including the application of the finite
difference method and the heat equation, and previous work on DNS. Sec-
tion 2.2 outlines how GPUs have been used more recently to tackle compu-
tationally intensive simulations, including CFD. Finally, section 2.3 gives an
overview of different performance analysis related to CFD, including across
different hardware and schemes, as well as some of the achieved speedups.

2.1 the origins of cfd research

Computers have been used as an aid in solving fluid dynamics problems
almost since the inception of programmable computers in some shape or
form, with the first exploration specifically into Navier-Stokes based CFD
numerical methods occurring in the 1950s at Los Alamos National Labora-
tory [17]. Today, CFD is a well established and active field with a plethora
of documented use-cases beyond fundamental research, ranging from aero-
dynamics [23] to the food industry [52].

The concepts and assumptions which lie at the base of CFD and fluid
dynamics have been validated through experimental tests and are well doc-
umented in literature. Further, the different approaches and ideas used in
CFD to solve partial differential equations, such as finite volume methods
and numerical dissipation, have been studied extensively in other fields deal-
ing with numerical modeling [26] [49].

Beyond this, Moin and Mahesh wrote on how DNS is a key tool of accu-
rately modelling turbulence in CFD, focusing on potential numerical issues
such as boundary conditions and the importance of accurate spatial and
temporal discretization [29]. The authors also went into detail on how DNS
has been used in CFD research to gain a better understanding of the physics
underlying turbulent flows.

A great way to see the progress in performance of CFD, and therefore the
increase in the usability of CFD when applied to problems with increased
complexity, can be found in the body of work by Moser et al. [31] [22] [30]

8
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[25]. This revolves around DNS of turbulent single phase channel flow and
was carried out over the span of over four decades. The hydraulic Reynolds
number (Reh) they were able to resolve has increased from a value of 11,960

in their earliest work in 1984 to a value of 500,000 in 2015, using the hydraulic
channel diameter as their characteristic spatial scale.

2.1.1 Finite Difference Method

The finite difference method is a tool that leverages finite differences for solv-
ing differential equations by way of approximating derivatives. It makes it
possible to solve partial differential equations computationally by turning
them into a system of linear equations to be solved. According to Gross-
mann [15], the finite difference method is widely employed when trying to
find the numerical solution to partial differential equations, whether that
be in one, two, or three dimensions. The finite difference method has been
computationally applied to three dimensional fluid dynamics problems for
decades at this point [38]. More detail regarding the exact chosen implemen-
tation of the finite difference method will be given in a later chapter.

Beyond fluid dynamics, where applications of high-order finite difference
schemes are plentiful, such as [21] and [40], finite differences have been used
in a range of different areas, such as finance [51], where finite difference
approximations of derivatives are required.

2.1.2 Heat Equation

The heat equation is a partial differential equation which was initially devel-
oped by Fourier in 1822, which describes a volume at a specific point and
determines whether it will increase or decrease in temperature, due to this
being proportional to the difference in temperature to the surrounding vol-
ume [50]. The heat equation is often applied to idealise the modelling of heat
flow in a one dimensional rod in applied mathematics [7], but can also be
extended to higher dimensions easily to model a three dimensional volume.
The heat equation is a key part of fluid dynamics and is often simulated
computationally. There exist plenty of use cases where the heat equation
was applied computationally, such as modeling heat transfer in pipes [44]
and for air heat exchangers [53].

The diffusion equation, another partial differential equation, can be used
interchangeably with the heat equation when the diffusion coefficient of the
diffusion equation is constant.

2.2 numerical simulations on gpus

The CFD community was an early adopter of GPU computing, with Corri-
gan et al. [10] implementing a Runge-Kutta based unstructured grid solver
for the 3D compressible Euler equations, which are a simplification of the
NS equations, as early as 2009 and reporting speedups by a factor of 9.5 for
the single GPU implementation compared to a parallelized CPU implemen-
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tation and of 33 when compared to a serial CPU implementation. They also
used Nvidia GPUs and CUDA as their programming framework of choice.

Nvidia, the largest manufacturer of GPUs, was promoting GPU comput-
ing for fluid simulation applications using its in-house programming lan-
guage as early as 2009 as well [8]. There they laid out a road map to transi-
tion from legacy CFD code to parallel GPU code. Further, they benchmarked
FORTRAN code for a Rayleigh-Bénard Convection, with a 384 by 384 by
192 grid, for double precision and second order accuracy, where they were
able to achieve a speedup of factor 8.5. This benchmark was performed on
equally priced CPU and GPU computational nodes.

Niemeyer and Sung reviewed the progress and challenges for GPU com-
puting for CFD in 2014 [32]. Within this review, they presented comparisons
between CPU- and GPU-based solvers for the incompressible NS equations.
Further, GPU implementations of the Lattice Boltzmann method, laminar
and turbulent solvers, and Laplace equations were discussed. Finally, rec-
ommendations for parallelizing CFD code for GPU computing are given
and potential opportunities in the field were discussed.

As CFD on GPUs became more established and grew in scale, the potential
of optimizing CPU-GPU systems to improve performance became clear, es-
pecially in HPC and large cluster applications. Posey wrote on parallel CFD,
co-processing between CPUs and GPUs, and achieving high throughput on
nodes with up to 8 GPUs in 2013 [35].

Finally, there are also plenty of examples of finite difference methods be-
ing run on GPUs, such as [6] and [48], as well as of the heat equation being
solved on a GPU [5].

2.3 cfd performance analysis

There have been many scaling analyses and benchmarks related to acceler-
ators used for CFD purposes in the last ten years. While they cover many
different solvers and configurations, it is still useful to study them to obtain
a complete view of the research area.

For CFD, there are ample comparisons of CPU-based solvers against acc-
elerator-based ones, such as the one by Antz et al. comparing performance
for conjugate gradient routines through looking at runtime against problem
size, though only small problem sizes and a small number timesteps were
investigated [3]. Beyond this, Horvátha and Liebmann undertook a perfor-
mance analysis of CPUs and GPUs for the Euler equations on unstructured
meshes [19]. Janßen et al. compared different CFD solvers based on the
Lattice Boltzmann Method and on the fully-nonlinear Boussinesq equations
with finite volume and finite difference methods, run on CPU and on GPU,
for two dimensional grids of size 105 [20]. Crespo et al. undertook a perfor-
mance analysis for a mesh-free particle method on single processors across
a range of accelerators and CPUs [11]. Here, they achieved a speedup of 64

for their fastest accelerator when compared to their slowest tested processor.
Aissa et al. benchmarked a solver for non-linear partial differential equa-

tions using an explicit or an implicit scheme, comparing time per iteration
for two CPUs and two GPUs. This implementation based around a RANS
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simulation across a range of number of cells. They achieved speedups of
up to 136.4 between their slowest hardware (Intel Xeon E5-2640 CPU) using
an implicit solver and their fastest hardware (Nvidia GTX 780 GPU) and an
explicit solver. For their slower GPU (Nvidia K40) a speedup of only 6.09

was recorded when comparing implicit methods, at a grid size of 5 · 105 [1].
A benchmark of the two-dimensional heat equation was undertaken by

Belhaous et al. comparing the C++ library SkelGis and a CUDA-based GPU
implementation of a finite difference approach to the heat equation. They
achieved only a moderate speedup of 12 based on a similar amount of com-
pute [4].

There are also industry standard benchmarks for the testing of GPU clus-
ters with multiple nodes, such as the Himeno CFD benchmark [34], which
has been benchmarked for both GPU- and CPU-based systems by Matsuoka
et al. for single units, as well as clusters [27].



3 C O M P U T I N G W I T H A C C E L E R ATO R S
A N D G P U S

Hardware accelerators are made for a unique purpose, which is the aim to
perform specific computations in a more effective manner than the Central
Processing Unit (CPU). The CPU is designed with a broad spectrum of ap-
plications in mind, seeing as it has to handle virtually all tasks performed
by different applications on computers build for different purposes, thus
sacrificing performance in some areas for breadth of use. Accelerators, on
the contrary, are designed from the ground up with specific computations
in mind, making to possible to achieve a higher degree of performance in
targeted tasks. Examples of hardware accelerators include the Graphics Pro-
cessing Unit (GPU), used for graphics rendering and image processing, and
more recently the Tensor Processing Unit (TPU), an application-specific inte-
grated circuit to be used specifically for machine learning software libraries.
The reason GPUs have been so successful at tasks within and beyond graph-
ics is that their architecture was not designed with general computations
in mind, but rather for the parallel computations required during graph-
ics rendering. This particular architecture lends itself to CFD simulations,
which are not exactly embarrassingly parallel, i.e. an algorithm in which the
tasks can be divided between different processes without the need for them
to communicate at any time during the execution of the program, due to
boundary conditions and halo communication, but do greatly benefit from
parallelization.

This property makes it possible to use the strengths of the GPU, namely
its large number of cores intended to perform many similar smaller com-
putations in parallel, to speed up CFD simulations once the algorithm has
been altered to create many parallel tasks which can be run concurrently, in-
stead of performing all tasks in a serial nature. Even though the cores, and
specifically the arithmetic logic units (ALUs) they contain and which are

Figure 3.1: Conceptual representation of CPU (left) and GPU (right) for Control,
ALU, Cache, and DRAM elements. Figure courtesy of Nvidia [33].
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responsible for the actual computations, of a CPU have significantly faster
clock frequencies, the cores of the GPU are multiple orders of magnitude
more numerous. This difference is shown conceptually in figure 3.1. To
summarize: while the CPU is optimized for flexibility, the GPU is optimized
for throughput of parallel computations.

This chapter will initially outline the possible benefits and drawbacks of
using GPUs for scientific computations like CFD, before moving on to de-
scribe the software and hardware architecture of Nvidia accelerators. Finally,
some performance considerations will be highlighted and the opportunities
of multi-GPU systems will be explained.

3.1 cuda and gpgpus

Throughout their continued development over the past decades, graphics
processing was the main area GPUs were applied to. The GPU has more
recently been successfully employed to tasks beyond graphics as well, such
as CFD and machine learning. These areas outside of graphics are in the
domain of General Purpose GPUs (GPGPU), where the thousands of cores
of a GPU can be used to perform other computational tasks provided that
the task is parallelizable, which is the case for CFD. Previously, program-
ming GPUs was achieved through shader languages, which had very few fea-
tures and did not support many important aspects needed for wide-ranging
GPGPU operation. Key aspects, such as floating point data for example,
were missing. Today, this can more easily be achieved through the use of
a programming language tailored to making the architecture of the hard-
ware more accessible. The main language used for this purpose is Compute
Unified Device Architecture (CUDA) which is developed by Nvidia and is
exclusively available for their GPUs. There exist less popular alternatives
to CUDA, such as the open source OpenCL, which can be used on any
hardware platform irrespective of manufacturer. The default CUDA pro-
gramming language is very similar to C-style languages - in both syntax
and operation - with some GPU specific features. Furthermore, CUDA im-
plementations of other common languages, such as FORTRAN and Python,
with similar features to the default CUDA language exist. CUDA is build
on the Single Program Multiple Data (SPMD) paradigm, where different
threads of the GPU perform the same calculations on different sets of data.
CUDA code can largely be separated into two kinds, host-side code which
is run on the CPU and device-side code which is run on the GPU. Here, the
host is responsible for the commands send to the device and allocating and
copying memory, while the device runs kernels, which perform the actual
calculations. These kernels may need to be invoked by the CPU initially. It
should be noted that the memory of the host and the device are completely
separate, both physically and computationally, i.e. the CPU cannot access
the GPU memory directly and vice versa. Thus if some data stored in the
memory of either the CPU or GPU is needed by the other it must copied
over, which can be a bottleneck when trying to speed up the computation.
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Figure 3.2: Schematic of GPU architecture (left) and how kernels from the host
execute on the device in the grid/block/thread configuration (right).
Figure courtesy of Nvidia [33].

3.2 gpu architecture

In order to get the highest possible performance increase out of using accel-
erators for scientific computations some level of knowledge of how the used
accelerator is structured on an architectural level, i.e. how the hardware is
organized and how instructions are executed, is required.

Every accelerator manufactured by Nvidia is given a compute capability
rating, which is a two-digit number. For the GPU used later on in this thesis,
the compute capability is 8.6. Here the first number, known as the major
revision number, denotes the micro-architecture of the card, which in this
case is the latest Ampere architecture, while the second number denotes the
minor revision which is the version within that micro-architecture. Different
architectures come with different features and compatibility in regards to
the version of CUDA used, thus it is key to be aware of the corresponding
compute capability of the used device.

GPUs are made up of a number of streaming multiprocessors (SMs), the
exact number of which varies by card. SMs act independently from one an-
other and are connected to the Dynamic Random Access Memory (DRAM)
of the GPU. These SMs contain multiple cores each, which act in lock-step,
i.e. they perform the same instructions on changing data in accordance with
SPMD and are, therefore, parallel. The architecture of such SMs for Nvidia
GPUs can be seen in figure 3.2. Each SM contains multiple streaming pro-
cessors (SPs), which are the ALUs, or the actual part of the accelerator re-
sponsible for performing the computations. These SPs can be compared to
the cores typically found in a CPU and their number varies across compute
capabilities. The SM is made up of many different components beyond just
SPs, most notably many different arrays of memory at different places of the
memory hierarchy and the warp scheduler (also known as an instruction
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unit) which is responsible for scheduling the order and timing of compu-
tation of different warps of threads, which will be introduced later in this
section. Accelerators with a more recent compute capability have two of
these warp schedulers per SM, one dedicated to odd threads and one dedi-
cated to even threads.

3.2.1 CUDA Execution

Figure 3.2 provides a more detailed look at the grids which exist in the
CUDA execution model on the SMs (which are hardware) and the memory
and processing units they are made up of. The CUDA execution model at
its core is made up of computational threads which can be grouped into
blocks which, in turn, then exist together in a grid. As the device executes
a kernel for the host, it is passed to a grid which contains the threads re-
quired to perform the computations. The concept of a kernel was previously
introduced in algorithm 3 and is fundamentally a C function making it pos-
sible to communicate from the host to the device exactly what instructions
should be followed how many times. This is then allocated to the number of
threads specified in the call to the kernel. A thread is a CUDA concept and
constitutes what makes up the executions for the kernel, where every thread
has a corresponding subset of the data to work with, tied to its identification,
known as a thread index.

Within CUDA both threads and blocks can be grouped into one-, two-,
or three-dimensional structures which may be more difficult to implement
but can come with performance benefits. During our previous example in
chapter 1.2, we simply used a one dimensional thread and block structure,
denoted by the .x added to the end of threadIdx.x, blockIdx.x, and blockDim.x.
Where a one-dimensional implementation puts all of these into a long 1D
array, a two-dimensional implementation would split them into a matrix
and use .x and .y suffixes. Doing such a restructuring allows for the data to
match the computations according to whether they are a 1D array, matrix,
or volume. During this work one- and two-dimensional structures will be
investigated in CUDA.

The available number of threads for each block is not unlimited due to
memory restrictions, as all threads are part of the same SP and therefore
draw from the same pool of available memory. It is therefore desirable to
choose blocks of equal dimensions to run on other SPs in parallel, which
reside in a grid and are distributed to available SMs. A key factor when
aiming for increased performance is to design the threads, blocks, and grid
in a way that multiple threadblocks can be run without having to wait for
others to complete their computation, making it possible to parallelize the
program effectively. This is illustrated in figure 3.3.

Thread warps are the way CUDA allocates threads to perform computa-
tions and these warps are typically made up of 32 threads each, which are
computed in parallel. They are the units executed in Single Instruction Mul-
tiple Threads (SIMT) fashion and their execution is managed by the warp
scheduler of the SMs, where the warp scheduler chooses consecutive thread
indexes and schedules these threads for execution. Multiple warps can run
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Figure 3.3: Schematic on how different blocks are distributed among SMs over time.
Figure courtesy of Nvidia [33].

concurrently on a SM the exact number of which is dependent upon the
computing capability of the accelerator.

As the device executes a kernel, it is passed to a grid, which contains
the threads which perform the computations. The kernel is finished when
all blocks have completed their assigned computations. The unique type of
memory available to each thread are registers, as well as a general purpose
cache, also known as local memory.

Since threads may not be perfectly in sync within a block, i.e. they finish
their computation at not precisely the same time, the syncthreads() com-
mand can be used to synchronize all threads that belong to the same block.

3.2.2 Memory

The memory found on the GPU is made up of a many different kinds of
memory, each with their own purpose, size, and speed as can be seen in
figure 3.2. There it is also indicated what parts of the grid are able to access
what parts of the memory located on the GPU directly, which is commonly
referred to as memory hierarchy.

The most high-level and largest memory is the global memory, to which
all threads can write and from which all threads can read data, as well as the
read-only constant memory and texture memory. It can be accessed by all
SMs, and therefore all SPs, for read and write operations. Access latency is
the largest out of all types of memory and the size usually is in the range of
several GB. Beyond this, each SM is equipped with multiple other kinds of
memory. There is the read-only constant cache and texture cache, which is
available to all blocks and their threads for each SM. Each block has its own
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shared memory, usually up to 48 KB, which is completely managed by the
programmer that can also be accessed by the threads of that block. Shared
memory often is used when looking to increase performance of a solver, as
it sits in a sweet spot between latency and size. The unique type of memory
available to each thread are registers, with each register corresponding to a
single thread. Registers have the lowest latency out of all memory but are
significantly smaller in memory size compared to other forms of memory.
Generally speaking, the larger the memory is, the further it is located from
the processing units, and therefore the longer is the latency to access this
memory. For example, threads accessing global memory comes with a two
orders of magnitude larger latency compared to shared memory, with the
size of global memory being in the order of Gigabytes and that of shared
memory in the order of Kilobytes.

There are some specific hardware features which must be kept in mind
when programming a GPU using CUDA. When considering the paralleliza-
tion of the code and how to allocate the computational load, it is key to
understand the execution and memory limitations outlined above. The key
numbers to consider can be found in table 15 of the CUDA Programming
Guide (available freely through Nvidia) and can depend on the technical
specification for the compute capability. As a rule of thumb, for every GPU
a block can be made up of a maximum of 1024 threads and the maximum
number of registers per thread is 255. The maximum number of registers per
SM is 65536. The maximum amount of local memory per thread is 512 KB
and the amount of constant memory is 64 KB. All of these limitations are set
by the hardware and must not be violated by the programmer. If, for exam-
ple, the number of registers for an SM has reached 65536, then no additional
blocks can be scheduled to it for the time being. Code should be designed
with the most frequently accessed data being stored in the low-level mem-
ory, such as registers, with care being taken to use as much of the available
memory as possible. Operations on non-gird located memory should be
limited as they come with a higher time cost. For example, constant mem-
ory, which is cached, should be used for declaring constants at the start of
a program. At the time of programming, each kernel must be individually
invoked with the chosen number of threads per block and the number of
blocks needed. The values specified should be within the previously stated
hardware limitations.

3.3 improving performance through cuda

In order to understand how to properly improve performance using CUDA,
the distributed memory model is used, which is usually applied to dis-
tributed computer systems but can also be applied here to outline the com-
munication that happens inside a GPU during a simulation. The time taken
to perform a parallel computation can be stated as

ttotal = tcomp + tcomm, (3.1)
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where ttotal is the total time spend on the solution, tcomp represents the
time dedicated to pure computation, and tcomm denotes the entirety of the
parallel overheads, i.e. the time taken to communicate information within
the system. These parallel overheads can be further broken down into

tcomm = a + bN, (3.2)

where a is the latency cost of information and is a constant factor for each
transmission operation, b is the inverse bandwidth cost which grows linearly
with the size of the transmitted data, and N is the number of the pieces of
data transmitted. Note that in practice a > b.

Using this information as well as information from previous sections of
this chapter on memory and architecture, a few guidelines can be outlined
that should be followed in order to design a CUDA program that allows
for the best possible speedup of over a CPU-based one for numerical simu-
lations. As tcomp is limited by hardware and cannot be improved, our goal
is to minimise tcomm as much as we can, which is done through eliminat-
ing as much data being copied inside the accelerator as possible, through
correct and lean allocation. This ties in with the maximum possible use of
fast memories, such as shared memory or preferable registers, removing as
much latency as possible. Finally, all data transfer between the device and
the host should be kept to a minimum, as it is the most time consuming
of all data transfers. The parameters that require copying from one to the
other should be carefully chosen and the time data is transferred should be
limited (ideally to two transfers, one initial one from the host to the device
and one final one with the results back to the host).

3.4 gpus and scientific computing

Scientific computing, as well as CFD simulations, often boil down to solv-
ing a system of equations, in the CFD case usually discretized governing
equations, at successive timesteps. Memory reads and writes pose the ma-
jor obstacle for scientific GPU computing at a reasonable scale. These take
away from the main strength of a GPU which is its ability to perform many
floating point operations per second in parallel. This advantage makes them
particularly suitable for CFD simulations, as these usually require equations
to be solved for a large amount of data as the problem size increases and
thus can take advantage of the GPUs ability to perform more operations per
second than a CPU under the right conditions.

GPUs, due to their history of being used for graphics processing, are
mostly focused on single precision (32-bit) operations, whereas scientific
computing usually requires double precision (64-bit) accuracy. Depending
on whether a consumer-grade GPU or a data center-focused GPU is used,
there may be a focus on single or double precision in the architecture, respec-
tively. Double precision operations can still be performed on a consumer-
grade GPU, though this comes at a performance penalty. The simulations
performed in this thesis will be of double precision accuracy.
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3.5 multi-gpus and supercomputers

To capitalise more on these strengths, the next step is to divide the computa-
tional load over even more cores. This can be done through using multiple
GPUs simultaneously within a multi-GPU system. Such multi-GPU systems
combine many GPUs (and usually also CPUs) into connected computational
clusters. One can easily judge how successful this approach is by observing
the TOP500, a list which aims to rank the most powerful supercomputers
around the world. The majority of the systems on the list, and especially
those at the top, are based on clusters of CPUs and many GPUs working
together. The TOP500 ranking aims to test supercomputers using high per-
formance LINPACK benchmarks for double-precision floating-point opera-
tions [46]. Accelerators are especially prevalent at the top of the list. Of the
current top ten ranked supercomputers, seven use some form of accelerator
to complement the present CPUs, while of the entire list, 353 systems do not
use accelerators of any kind. The Tesla V100 accelerator by Nvidia is the
single most popular across the list, being used in 90 different supercomput-
ers. Another area accelerators excel in is energy efficiency, with GPUs being
up to 10x more energy efficient compared to CPUs, due to energy consump-
tion rising rapidly with the need to sustain the increased clock speeds of
CPUs [14]. The organisation which publishes the TOP500 also publishes the
Green500 list, an efficiency ranking of supercomputers by GFLOPS per Watt
using the same benchmarks as those used for the main ranking [45]. In the
most recent ranking at the time of writing, eight of the top ten most efficient
supercomputers are based on accelerators and 37 out of the top 40 systems
using some kind of accelerator.

The main bottleneck in multi-GPU systems is usually not the comput-
ing power, measured in Floating Point Operations per Second (FLOPS), but
rather the inability for the GPUs to make full use of memory and communi-
cate with one another or the CPU effectively when compared to the possible
computational throughput of the system. All data transfer usually occurs
through the CPU, with memory instructions transferred through standard
PCIe connectors, thought more recently, Nvidia has introduced NVLink to
connect multi-GPU systems directly.



4
T H E O R E T I C A L B A C KG R O U N D :
N AV I E R -S TO K E S , H E AT E Q U AT I O N ,
A N D D I S C R E T I Z AT I O N

In this chapter the equations and theory relevant to the simulations which
will be performed later are introduced. Here, the governing equations for the
problem are initially introduced, followed by the spatial and temporal dis-
cretization that are required to implement them on a CPU or GPU. Further,
the applied boundary conditions are discussed at the end of this chapter.

4.1 navier-stokes equations and sub-problem of
unsteady heat equation

According to Kundu et al. [24] compressible flow occurs where changes
in momentum within a flow produce important variations in pressure and
density of a fluid, and the thermodynamic characteristics play a direct role in
the development of the flow. In compressible flows, the sound speed in the
fluid becomes an important parameter and cannot be treated as infinite (as
done in the incompressible flow limit). This branch of fluid dynamics deals
with flows at large velocities. These include external flows such as flows
around projectiles, rockets, re-entry vehicles, and airplanes; and internal
flows in ducts and passages such as nozzles and diffusers used in jet engines,
rocket motors, and compressed gas systems.

The Mach number is commonly used to determine whether a flow can be
treated as compressible or incompressible and is a dimensionless quantity
given by

Ma =
U
c

, (4.1)

where U is the local velocity of the fluid and c is the local speed of sound,
given by

c2 =

(
∂P
∂ρ

)
s

, (4.2)

where P denotes the pressure and ρ the density of the fluid and the s
subscript alludes to the fact that the partial derivative is taken at constant
entropy.

Incompressible flow occurs at a Ma = 0, where the density is independent
on the changes of pressure in the flow (though in practice, at a value of
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Ma < 0.3 the flow may still be considered incompressible if it is quasi-steady
and isothermal). Beyond that limit, compressible flow takes place at all
Mach numbers, with a further characterisation into subsonic flow occurring
at Ma < 1, followed by supersonic flow at Ma > 1, and finally hypersonic
flow at Ma > 3.

4.1.1 Direct Numerical Simulation

Turbulence within a flow is represented by a complicated and unsteady so-
lution of the Navier-Stokes equations. There are no analytical solutions to
turbulent flows, hence a complete description of a turbulent flow, where flow
variables such as velocity and pressure are known as a function of space and
time, can only be obtained by numerically integrating the NS equations [29].
This is known as Direct Numerical Simulation (DNS) and requires a great
amount of computational resources since the NS equations describing the
flow must be resolved for all scales in space and time, which, depending on
the problem, can be quite complex numerically. DNS does not use a separate
turbulence model, unlike the previously mentioned RANS and LES, where
turbulence modelling assumptions are essential to the method.

The main reason not to use DNS instead of some type of approximation
is limited computational power. Just a few decades ago it was only rarely
possible to carry out a full DNS; through recent increases in computational
resources and algorithmic efficiency DNS have been increasingly used in re-
search [47] [12] [13]. While the numerical algorithms underpinning DNS of
incompressible flows have been established in previous decades, the formu-
lations of compressible DNS are still evolving, as different formulations are
possible [18] [9]. An advantage of DNS over real-world experiments is the
ability to freely change parameters while offering more degrees of control
over the flow conditions [37].

4.1.2 Compressible Navier-Stokes Equations

To adequately model a flow, the fully compressible NS equations have to be
solved, which use the conservation of mass, momentum and energy princi-
ples to describe a flowing fluid. These equations can be expressed as

∂ρ

∂t
+

∂ρui

∂xi
= 0, (4.3a)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂P

∂xi
+

∂σij

∂xj
+ f δi1, (4.3b)

∂ρE
∂t

+
∂ρujH

∂xj
=

∂qj

∂xj
+

∂σijui

∂xj
+ f u1, (4.3c)

where t is time, ui = (u, v, w) denotes velocity in the x, y, and z directions,
respectively, and xi = (x, y, z) denotes the corresponding coordinate direc-
tion in three dimensions. The energy per unit mass of the fluid, E, can be
obtained by E = cvT + uiui/2, where cv is the specific heat at constant vol-
ume and T is the temperature of the fluid. The f terms denote the forcing
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term and σ is the stress tensor. The total enthalpy, H, can be determined
using H = E + P/ρ. Further, the heat flux vector is given by

qj = −k
∂T
∂xj

, (4.4)

where the thermal conductivity k is given by k = cPµ/Pr. Here cP is the
specific heat capacity and µ is the dynamic viscosity of the modelled fluid.
Pr is the non-dimensional Prandtl number, which gives an indication about
which form of heat transfer is dominant in the flow, either heat transfer
by convection when the momentum diffusivity is dominant and Pr > 1
or by conduction when the thermal diffusivity is dominant and Pr < 1.
When Pr > 1 in a boundary layer of the flow, then the velocity boundary
layer is more prominent then the thermal boundary layer, which indicates
momentum dissipation exceeding heat dissipation. The viscous stress tensor
σ may be expressed as

σij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
(4.5)

and describes the viscous stress, i.e. the rate of change of deformation in
time, at a point of the fluid.

4.1.3 Heat Equation from Navier-Stokes

Instead of treating the entirety of the Navier-Stokes equations here, we will
instead focus on the sub-problem of the three-dimensional heat transfer
equation. It is connected to the equations above through the diffusion term
of the Navier-Stokes equations. Namely, we will use equation 4.3c and make
use of its diffusion term. To arrive at the heat equation we will make the as-
sumption of the velocity, u, being zero. This simplification will make it
possible to write the equation with only two remaining terms, which did
not contain the velocity, as

∂ρE
∂t

=
∂

∂xj
k

∂T
∂xj

. (4.6)

Since the energy per unit mass, E did contain the velocity, it can now be
simplified as well due to the absence of the velocity, resulting in

E = ρe, (4.7)

where e is the internal energy and can be stated as

e = cvT. (4.8)

These expressions can then be substituted in to rewrite the equation 4.6 as

∂ (ρcvT)
∂t

=
∂

∂xj
k

∂T
∂xj

, (4.9)
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which can finally be rearranged and written out as the heat equation in
three dimensions

∂T
∂t

=
k

ρcv

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
, (4.10)

where k/ρcv is the thermal diffusivity.

4.2 discretization

To benchmark the solver we will simulate the heat equation in three dimen-
sions, assuming a medium which is both isotropic and homogeneous. The
heat (or diffusion) equation governs the temperature distribution within a
medium, i.e. it is a partial differential equation (PDE) describing how tem-
perature changes in both space and time. Now, we will introduce the heat
equation in differential form, followed by discretizations in both space and
time.

4.2.1 Differential Heat Equation

The heat equation can be stated as a PDE, which relates a function of two or
more variables to its partial derivatives, and is of the form

∂φ

∂t
= α∆φ, (4.11)

where φ is temperature as a function of space and time, α is a positive
coefficient which represents the thermal diffusivity of the medium, and ∆
denotes the Laplacian for n dimensions

∆ =
n

∑
i=1

∂2

∂x2
i

, (4.12)

which for this three dimensional problem becomes

∆ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (4.13)

Therefore the three dimensional heat equation for modeling heat propaga-
tion in an isotropic and homogeneous medium in differential form is

∂φ

∂t
= α

(
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2

)
, (4.14)
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4.2.2 Spatial Discretization Heat Equation

To make the above stated equations usable for our simulations, they must
first be discretized. This discretization implies changing continuous equa-
tions into discrete ones, which can be used for numerical evaluation. For
spatial discretization, this means calculating the solution for a limited num-
ber of points rather that in the entire domain.

Here, the finite difference spatial discretization approach is used to dis-
cretize the continuous equations above in space. This finite difference ap-
proach uses an approximation of the derivative at each given grid point.
This approximation is achieved through summation of values at adjacent
grid points to the one for which the new value is calculated. This summa-
tion is governed by a set of coefficients, which depend on both the order
of the employed scheme and the order of the derivative. One of the most
intuitive implementation to understand this for the heat equation, which
requires the second derivative, is the second-order finite difference scheme
with a Taylor expansion which can be stated as

∂2φ

∂x2 xi ,tn
'

∂2φ
∂x2 xi+1/2,tn

− ∂2φ
∂x2 xi−1/2,tn

∆x
' φi−1,n − 2φi,n + φi+1,n

(∆x)2 , (4.15)

where the aforementioned finite difference coefficients are 1, −2, and 1, as
can be seen in equation 4.15 above, to obtain the new value.

The same second derivative for an eight-order scheme can be calculated
with the coefficients −1/560, 8/315, −1/5, 8/5, −205/72, 8/5, −1/5, 8/315,
−1/560 and can be written as

∂2φ

∂x2 xi ,tn
' Z

(∆x)2 , (4.16)

where

Z = − 1
560

φi−4,n +
8

315
φi−3,n −

1
5

φi−2,n +
8
5

φi−1,n . . .

− 205
72

φi,n +
8
5

φi+1,n −
1
5

φi+2,n +
8

315
φi+3,n −

1
560

φi+4,n.

The number of adjacent points used here, and therefore also the number of
coefficients, dictates the order of the scheme. For different orders of schemes,
different stencil sizes have to be used. Stencils are a geometric arrangement
of a number of nodes, here assumed to be a one dimensional array, which
relates to the point of computation. For an eight-order scheme, such as
the one above, this results in stencil = 4, indicating the use of four points
on each side from the center point in the x-, y-, and z-directions. This is
demonstrated in a simplified two-dimensional view in figure 4.1, where in
order to obtain the value at point (x, y), a number of nodes equal to stencil
are taken into consideration in each direction up to and including (x, y± 4)
and (x ± 4, y). Here, h is the step size between any two nodes of the same
axis and is constant, as the nodes are equidistant, both between points on the
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Figure 4.1: Two dimensional representation of the evenly-spaced grid used for
stencil = 4.

same axis and between different axes. A higher order scheme, which takes
more points into consideration, can be expected to be more accurate, but
will increase the computational load as more points are considered during
the computation.

4.2.3 Temporal Discretization Heat Equation

For temporal discretization the Runge-Kutta 3 (RK3) time stepping scheme
is used to obtain approximations for the solutions to the previously stated
differential equations. Runge-Kutta methods use more than one point to
extrapolate the value to be calculated for the following timestep. The Runge-
Kutta family of iterative methods are used for numerically estimating solu-
tions to differential equations of the form dy

dt = f (t, y), which can be used
for temporal discretization and are here used for time stepping. The RK3

scheme can be written in the form

yi+1 = yi +
1
6
(k1 + 4k2 + k3) h, (4.17)

ti+1 = ti + h, (4.18)

where h is the size of the timesteps, also called the step-size, and h > 0.
This can be used to calculate the next following time ti+1 using the time at the
previous step ti. Further, yi+1 represents the RK3 approximation of y(t + 1),
i.e. the approximation of the function value at the following timestep. This
new value is determined by the present value yi in addition to a weighted
average of three increments, here represented by k1, k2, and k3 respectively,
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each of which results from the estimated slope given by function f on the
right-hand side of the differential equation and the step-size, h. These used
increments can be described as follows: k1 is the slope at the beginning of
the interval, using y, k2 is the slope at the middle of the interval, using y
and k1, and k3 is the slope at the end of the interval, using y, k1, and k2.
It can be seen that the weight given to the slope at the middle increment is
four times the magnitude of the other increments, therefore this increment is
more impactful for determining the result of that timestep. These intervals
for n = 0, 1, 2, 3, ... are given by

k1 = f (tn, yn) , (4.19)

k2 = f
(

tn +
h
2

, yn +
k1

2

)
, (4.20)

k3 = f (tn + h, yn + 2k2 − k1) . (4.21)

The local truncation error (LTE), which is the error that is induced at every
time-step, of the second order Runge-Kutta method is O(h3), while the LTE
of the RK3 method is O(h4), and the LTE of the RK4 is O(h5), where h is
the used step size, which is assumed to be constant. Therefore, as the order
of the RK method is increased, the LTE changes. Evidently, a higher order
method will result in a lower LTE for the same h. As the order of the RK
method is increased, the LTE is reduced (provided a step size < 1), result-
ing in a more accurate simulation, while the time to compute is increased
significantly. This presents the researcher with an important balance to find,
the chosen method has to be accurate enough for the simulation’s needs
while also keeping computational constraints in mind to achieve good per-
formance. This LTE is different from the total global error, which is defined
as the absolute value of the difference between the true solution and the
computed solution. If the exact solution is unknown then the global error
cannot be evaluated. However, if we neglect the round off errors, it is rea-
sonable to assume that the global error at the n-th time step is n times the
LTE, since n is proportional to 1/h, the global error should be proportional
to LTE/h. This implies that for a k-th order method, the global error scales
with kh.

Different temporal approaches have different benefits and drawbacks, with
Runge-Kutta methods providing the right balance between accuracy and per-
formance for this work. For example, compared to one of the most common
time stepping techniques, known as Forward Euler, it provides far greater
accuracy, as Forward Euler has an LTE of O(h2) due to being a first order
method.

4.3 boundary conditions

In this work there were two types of boundary conditions used in conjunc-
tion with the equations above: Periodic and Dirichlet boundary conditions.
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Periodic boundary conditions, which impose the same value on two sides,
can be stated for the x-direction as

φi = φi+Nx , (4.22)

φi+Nx+stencil = φi+stencil , (4.23)

where Nx is the number of points in the x-direction and stencil is the
used stencil size appropriate for the used scheme. Dirichlet, or prescribed
temperature, boundary conditions directly prescribe a value at the boundary
of the problem when applied to a PDE and can be stated for the x-direction
as

φ(x) = f (x), (4.24)

where f () is the function that dictates the value applied at x.



5 M E T H O D S A N D VA L I DAT I O N

This chapter will begin with explaining the three different solvers which
share some characteristics and have key differences. The reasoning behind
the choice of these approaches, their structure, as well as the differences and
similarities between them are discussed in this chapter. Beyond that, this
chapter outlines the methods used to simulate the theory introduced in the
previous chapter, namely the governing equations of the heat equation in dis-
cretized form introduced in chapter 4.2.1, in order to validate the presented
solvers. Here the selected benchmark scenarios are solved numerically us-
ing the spatial discretization shown in chapter 4.2.2 while the RK3 scheme
shown in chapter 4.2.3 is used for time stepping.

5.1 solver implementations

Three different solvers were implemented to solve the governing equations
numerically. Of these, one solver runs exclusively on a CPU and two solvers
make use of an accelerator. From here on, the CPU-based solver may be
referred to as the first solver, while the GPU-based implementation of that
solver may be referred to as the second solver, and the optimized GPU-
based solver may be referred to as the third solver.

Comparison of the three solvers

First Solver Second Solver Third Solver

Main Hardware CPU GPU GPU
Computation Serial Parallel Parallel

Stencil 1D 1D 3D
Spatial Scheme 8th-Order FD 8th-Order FD 8th-Order FD
Time Stepping RK3 RK3 RK3

Optimization Effort Simple Difficult More Difficult

Table 5.1: Summary of the characteristics of the three different solvers.

While the three solvers will be introduced separately in detail in the fol-
lowing sections, table 5.1 offers a quick summary to aid the reader in remem-
bering which solver is which and what characteristics they may have.

28
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5.1.1 CPU Solver (or First Solver)

The implementation which was first investigated in order to establish a base-
line for performance was a standard CPU implementation of a finite differ-
ence solver, which does not take advantage of parallelization and accelera-
tors. It was written in C++ due to the performance the language offers, as
well as it being close in syntax to CUDA, which was used for the approaches
that were investigated afterwards and will be presented in the following
chapters 5.1.2 & 5.1.3.

The structure of this CPU-based solver can be summarised as follows: i)
initially the memory is allocated through the CPU, where the needed num-
ber of bytes is allocated by the C++ language’s malloc() function, ii) then the
initial state of the system is defined, after which, iii) for each time step, the
RK3 scheme is employed to solve the discretized equations to find the result
of the heat equation for a corresponding node before moving to the next one,
iv) before finally the data is saved and memory is freed again.
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Algorithm 4 Pseudo code for the simplified structure of the serial first solver.
Input: Arrays initialized with initial condition, boundary conditions, as well

as relevant constants
Output: Phi
for tstep← 0 to nstep do

/* RK Step 1 */

deriv2x(rhsx,phi,x) // second derivative in x

deriv2y(rhsy,phi,y) // second derivative in y

deriv2z(rhsz,phi,z) // second derivative in z

for i← 0 to Nx ∗ Ny ∗ Nz do
rhs1[i] = (rhsx[i] + rhsy[i] + rhsz[i]) * alpha;

for i← 0 to Nx ∗ Ny ∗ Nz do
phi[i] = phi[i] + rhs1[i]*dt;

/* RK Step 2 */

deriv2x(rhsx,phi,x) // second derivative in x

deriv2y(rhsy,phi,y) // second derivative in y

deriv2z(rhsz,phi,z) // second derivative in z

for i← 0 to Nx ∗ Ny ∗ Nz do
rhs2[i] = (rhsx[i] + rhsy[i] + rhsz[i]) * alpha;

for i← 0 to Nx ∗ Ny ∗ Nz do
phi[i] = phi[i] + rhs2[i]*dt/4;

/* RK Step 3 */

deriv2x(rhsx,phi,x) // second derivative in x

deriv2y(rhsy,phi,y) // second derivative in y

deriv2z(rhsz,phi,z) // second derivative in z

for i← 0 to Nx ∗ Ny ∗ Nz do
rhs3[i] = (rhsx[i] + rhsy[i] + rhsz[i]) * alpha;

for i← 0 to Nx ∗ Ny ∗ Nz do
phi[i] = phi[i] + rhs3[i]*dt;

/* Finally the output Phi array is updated for the current iteration */

for i← 0 to Nx ∗ Ny ∗ Nz do
phi[i] = phi[i] + dt*(rhs1[i]+4*rhs2[i]+rhs3[i])/6;

The simplified version of the applied computational scheme can be seen
in algorithm 4, where an outer loop iterates for every timestep and the RK3

scheme is performed with second derivatives in every direction. The called
function used to calculate the derivative is shown in simplified from in al-
gorithm 5 with deriv2x() serving as the example for the x-direction. The
structure of the general solver loop is similar for all three solvers and is al-
most identical between the first and second solver, with the difference that
all for-loops except the most outer one are foregone due to the paralleliza-
tion of the routine, where the computational load is distributed using the
globalIdx instead of performing serial loops.
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Algorithm 5 Pseudo code of functions used for index and second derivative
by first solver.

Function idx(i, j, k):
return (((i) + (j)*Nx + (k)*Nx*Ny);)

Function deriv2x(rhs, phi, x, i, j, k):
d2x = 1 / ((x[1] - x[0]) * (x[1] - x[0]))
for k← 0 to Nz do

for j← 0 to Ny do

for i← stencil to Nx + stencil do
phiBound[i] = phi[idx(i-stencil,j,k)]

/* Periodic boundary conditions */

for i← 0 to stencil do
phiBound[i] = phi[idx(i+Nx-stencil,j,k)]
phiBound[Nx+stencil+i] = phi[idx(i,j,k)]

for i← 0 to Nx do
/* rhs is phi derivative in x */

rhs[idx(i,j,k)] = coeffS[stencil] * phiBound[i+stencil]*d2x
for idx ← 0 to stencil do

rhs[idx(i,j,k)] = rhs[idx(i,j,k)] + (coeffS[idx] *
(phiBound[i+idx] + phiBound[i+stencil*2-idx]))*d2x

The main limitation of this solver lies in the fact that each node is cal-
culated one after another. Each step of the above described procedure is
performed in a serial manner, with the calculation of new values, obtained
through the solving of the discretized equations and timestepping schemes,
occurring node by node. The solvers presented in the following subsections
aim to improve upon this.

5.1.2 GPU CUDA Solver (or Second Solver)

The concept of serial versus parallel computing was already introduced in
chapter 1.2 and its details will not be restated here. This first parallel ap-
proach using CUDA and GPGPU computing is similar in nature to the finite
difference approach outlined in the previous subsection 5.1.1, with it being
able to perform the same simulations while using the same general struc-
ture and timestepping scheme, for example. The main difference between
them consists of how the calculations are performed. For the CPU-based
solver, each point within the grid is iterated over one after the other for
each timestep, effectively requiring three nested loops used to iterate over
points in all three directions one by one. Meanwhile, the parallel solver pre-
sented here performs computations for multiple points simultaneously, by
distributing the calculations out across the GPU architecture, as described in
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3.2. It is key to split up the computation efficiently for each direction into
appropriately sized chunks allocated to a number of threads per block and
number of blocks, the exact number of which can be determined using the
the number of grid points in the x−, y−, and z−directions with

THREADSi = Ni, (5.1)

BLOCKSi = NjNk, (5.2)

where i is the direction of interest and j and k are the two other directions.
Memory is allocated on both the CPU- and GPU-side by the CPU before the
computation begins and the required data must be copied over from the host
to the device before the full computation is started and from the device to
the host once it is completed. Provided suitable hardware is used, this move
from many nested loops to a parallel implementation is expected to produce
a significant speedup in the time taken to perform the complete simulation.

The implementation of this solver can be summarised as follows: i) the
memory is allocated on the host and device through the CPU, through mal-
loc() on the host and cudaMalloc() on the device, ii) then the initial state of
the system is defined, after which, iii) the data required for computation is
copied from the host to the device, iv) for each timestep the RK3 scheme
is employed to solve the discretized equations to find the result of the heat
equation for a corresponding node, v) data to be recorded is copied back
from the device to the host, vi) before finally the data is saved and memory
is freed again.

Algorithm 6 Pseudo code of function used for second derivative by second
solver.
Function deriv2x(rhs, phi, x, globalIdx, i):

d2x = 1 / ((x[1] - x[0]) * (x[1] - x[0]))
shared phiBound[Nx + stencil * 2]

phiBound[i + stencil] = phi[globalIdx]

/* Periodic boundary conditions */

if i < stencil then
phiBound[i] = phiBound[i + Nx]
phiBound[Nx + stencil + i] = phiBound[i + stencil]

temp = (coeffS[stencil] * phiBound[i + stencil]) * d2x
for idx ← 0 to stencil do

temp = temp + (coeffS[idx] * (phiBound[i + idx] + phiBound[i + sten-
cil * 2 - idx])) * d2x

rhs[globalIdx] = temp;

The called function used to calculate the derivative for the GPU-based
implementation is similar in structure but was adapted to work with CUDA
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and is shown in simplified from in algorithm 6 with deriv2x() serving as
the example for the x-direction. The differences between the same function
for the first and second solver are clear, as the number of loops are greatly
reduced in favor of using a globalIdx to distribute the computation across
threads.

5.1.3 Optimized GPU CUDA Solver (or Third Solver)

Finally, a third approach, which is another GPU-based parallel implemen-
tation with a focus on minimising data access redundancy, i.e. minimising
the amount of times a data point is loaded into memory, was investigated.
This approach is based on an implementation of Micikevicius of Nvidia [28].
The core idea of this optimized approach is to streamline the use of memory
bandwidth, and therefore improve total computational throughput, by re-
ducing memory data access between iterations to remove this bottleneck as
far as possible. This is done through improving memory access redundancy,
which is defined as the ratio of elements loaded into memory for the current
computation to the number of elements used for the computation.

Given a stencil of size k (i.e. for an 8th order stencil k = 8), as well as
output tiles of dimension nxm, then the number of elements required of
a shared memory array needed to accommodate the entirety of the data,
can be calculated by (n + k)(m + k). Since halo elements are read by at
least two threadblocks, the read redundancy, or memory access redundancy
(MAR), of loading the input data into shared memory arrays can be obtained
through

MAR =
nm + kn + km

nm
, (5.3)

while the redundancy for writing is simply one in this instance. Further,
unlike the simpler 1D implementation used in the previous approach, a 2D
grouping is used for threadblocks to effectively match the slice of data in
memory, assigning one thread to each node of the tile.

This implementation also utilizes a stencil of the 8th order, though it is
then used in 3D. This type of stencil is displayed in figure 5.1, where memory
redundancy is visualised, with different colors indicating which elements in
a stencil are only accessed by a single unique thread (typically found along
the slowest direction), while those accessed by multiple threads are indicated
in white and are found exclusively along the faster x- and y-directions. Here,
only four threads are sufficient to cover the entirety of the two-dimensional
slice of the visualized elements, while the elements along the slower z-axis
would be stored in the corresponding thread’s registers. Threads of a given
threadblock coherently traverse the volume along the slowest direction, com-
puting the output for each slice. Most elements in the current slice are used
for computation by more than one thread, while elements in the slices pre-
ceding and succeeding the current z-position are used only by the threads
corresponding to the elements’ position in the x- and y-directions. So, four
different threads would access all 32 elements in the 2D slice in shared mem-
ory, while the elements along the z-direction would be stored in correspond-
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ing thread’s registers. When an entire threadblock’s threads complete their
computation and finish their write operation a shift occurs for the values in
the registers, reading in a new element at distance k/2 + 1, where the reg-
isters and shared memory are used as a queue. The previous, naive GPU
approach loads an entire stencil worth of new data points into memory for
every single computed output value.

Figure 5.1: Visualisation of 3D stencil with indication of elements without reuse.
Figure courtesy of Nvidia [28].

The resulting redundancy achieved for this approach is 3 when loading
a 16 by 16 slice into memory with a halo of four to each side, while the
redundancy for the previous naive approach is 26. This improvement in
memory access redundancy should help reduce a bottleneck of the naive
solver and therefore improve overall performance.

As we have established earlier, the real advantage of GPUs is their po-
tential for increased computational throughput compared to CPUs, but in
order to achieve this potential we have to eliminate the main bottlenecks,
which are usually related to memory read or write operations, wherever
possible. This approach makes increased use of the faster shared memory,
as well as registers, while also minimising data redundancy, with the hope
of improving performance compared to the naive parallel implementation
described above. The performance of both approaches will be compared
against one another through a common benchmark in chapter 6 to study
whether the increased complexity of this approach yields an increase in per-
formance at all through alleviating some of the bottlenecks encountered in
the naive implementation and whether these improvements are worth the
extra effort needed to omit using a standard finite difference approach in
favor of this optimized version. It should be noted that only the memory
loads and writes during the computation are optimized here and that the
initial memory allocation and copying process for this approach is identical
to the that outlined for the other parallel method in the previous subsection.
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Algorithm 7 Pseudo code of functions used for third solver.

Function kernelFD(rhs, phi, x, globalIdx, i):
/* Advance local values (or slice), move threadfront forward in registers */

behind4 = behind3

behind3 = behind2

behind2 = behind1

behind1 = current
current = front1
front1 = front2
front2 = front3
front3 = front4
front4 = input[inIdx] // Only global memory access

stride = Nx*Ny

/* Update indexes for global memory accesses */

inIdx += stride
outIdx += stride
/* Check if top or bottom halo */

if threadIdx.y < radius then
slice[ty][tx-1] = input[outIdx – radius * Nx]
slice[ty][tx+1] = input[outIdx + 16 * Nx]

/* Check if left or right halo */

if threadIdx.x < radius then
slice[ty][threadIdx.x] = input[outIdx – radius]
slice[ty][threadIdx.x+16+radius] = input[outIdx + 16]

/* 16x16 internal data slice, update in shared memory so neighbors can use data */

slice[ty][tx] = current

div = coeffS[0] * current * d2x
/* In computation two values from registers, four from shared memory */

div += coeffS[1] * (front1 + behind1 + slice[ty-1][tx]+ slice[ty+1][tx]+
slice[ty][tx-1]+ slice[ty][tx+1]) * d2x

div += coeffS[2] * (front2 + behind2 + slice[ty-2][tx]+ slice[ty+2][tx]+
slice[ty][tx-2]+ slice[ty][tx+2]) * d2x

div += coeffS[3] * (front3 + behind3 + slice[ty-3][tx]+ slice[ty+3][tx]+
slice[ty][tx-3]+ slice[ty][tx+3]) * d2x

div += coeffS[4] * (front4 + behind4 + slice[ty-4][tx]+ slice[ty+4][tx]+
slice[ty][tx-4]+ slice[ty][tx+4]) * d2x

dphi[outIdx] = div

A simplified pseudo code implementation of the main kernel of this solver
is given in algorithm 7.
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5.1.4 Similarities and Differences Between Approaches

The most obvious difference between the solvers is the used hardware and
the language they were implemented in, with the first solver being written in
C++ due to running on a CPU and the second and third solvers were written
in CUDA due to running on a GPU. The CPU and naive GPU solvers both
use a 1D stencil, while the optimized GPU approach uses a 3D stencil for its
computations.

All three of the approaches to be presented utilize RK3 as the timestepping
scheme of choice, due to it striking the balance between accuracy, stability,
and performance for our purposes. This also makes it easier to compare
the performance between the methods, as this is kept constant, reducing
variation. Further, all three solvers use the same finite difference approach
for spatial discretization, with an 8th-order scheme being utilized.

5.2 validation with benchmark scenario

In order to validate the previously introduced solvers against one another, a
single scenario will be simulated and the results will be compared. To do
this, an initial condition in the form of a Gaussian function will be imposed
on the volume and the corresponding values along a single axis will be
studied. This function will diffuse through the volume over time according
to the heat equation, which for the y-direction in the 1D case becomes

∂φ

∂t
= α

∂2φ

∂y2 , (5.4)

eventually resulting in a final state with a constant value for φ dependent
on the initial condition along the entirety of the axis of interest, when no
Dirichlet boundary condition is applied. The chosen initial Gaussian func-
tion has the form of

φ = a · exp
(
− (y− b)2

2c2

)
, (5.5)

where the coefficients used in the equation were chosen to be a = 1, b =

0.5, and c = 0.1. The chosen boundary conditions were periodic boundary
conditions. This initial condition progressively diffuses, finally reaching a
steady state equal along the entire axis. The time it takes for this steady
state to be reached depends on the thermal diffusivity, α from equation 6.1,
which describes the rate of diffusion through the volume.

5.2.1 Validation of Serial Implementation

First, the serial CPU solver, or first solver, was validated using the scenario
described above. To start, at t = 0 the initial condition is applied, as is shown
by the dotted line in figure 5.2. Diffusion occurs as time progresses, leading
to a reduction at the grid points where there previously were higher values
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of φ compared to the average and an increase at the grid points where there
previously was a smaller than average value, as the all values approach the
steady state value. This transition state can be seen with the dash-dot line
of figure 5.2 at 500 times steps of 0.000488 s each. Finally, after, in this case,
8000 total timesteps, a steady state is reached as expected, where all grid
points have the same value of φ, as is shown by the flat dashed line of figure
5.2.

Figure 5.2: Visualisation for validation of CPU solver, or first solver, of all three
chosen states.

5.2.2 Validation of Parallel Implementation

The parallel GPU solver, or second solver, was also validated with the same
method described above. Similarly, at t = 0 the initial condition is applied,
as can be seen with the dotted line in figure 5.3. Diffusion occurs as time
progresses, leading to a reduction at the grid points where the previous
values of φ were above the average value and an increase at the grid points
where there previously was a smaller than average value, as the all values
approach the steady state value across the volume. This transition state can
be seen with the dash-dotted line of figure 5.3 at 500 times steps of 0.000488 s
each. Finally, after, in this case, 8000 total timesteps, a steady state is reached
as expected, where all grid points have the same value of φ, as can be seen
with the flat dashed line of figure 5.3.
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Figure 5.3: Visualisation for validation of GPU solver, or second solver, of all three
chosen states.

5.2.3 Validation of Parallel Implementation with Redundancy

The optimized parallel GPU solver, or third solver, was also validated with
the method described above. To start, at t = 0 the initial condition is ap-
plied, as can be seen with the dotted line in figure 5.4. Much like for the
previous two solvers’ validation, diffusion occurs as time progresses, lead-
ing to a reduction at the grid points where previous values of φ were above
the average and an increase at the grid points where there previously was a
smaller than average value, as the all values approach the steady state value.
This transition state is shown by the dash-dotted line of figure 5.4 at 500

times steps of 0.000488 s each. Finally, after, in this case, 8000 total timesteps,
a steady state is reached as expected, where all grid points have the same
value of φ, as can be seen by the flat dashed line of figure 5.4.

5.2.4 Verifying Validation Across Solvers

Finally, the results at the three different previously defined states were com-
pared across solvers. The purpose of this is to verify that each solver de-
livers the same expected results accurately for every time step. This cross-
verification can be seen in figure 5.5, where the corresponding data is over-
laid, with the data for the first solver taking the form of the previously used
dotted, dash-dotted, and dashed lines, while the data for the second and
third solvers is overlaid at the same timesteps using blue and white dots,
respectively.
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Figure 5.4: Visualisation for validation of optimized GPU solver, or third solver, of
all three chosen states.

5.3 validation with analytical solution

In order to validate the previously introduced solvers not just against one
another but also against an analytical solution, a single scenario will be sim-
ulated and the outputs will be compared for which the solution is known.
To do this, an initial condition will be imposed on the volume, as well as
a constant set of boundary conditions. The initial condition is φ = 0 at all
grid points and the imposed set of boundary conditions are of the Dirichlet
variety and can be stated as

φ =

{
1 at y = 0,
0 at y > 0.

(5.6)

Then, the corresponding values along a single axis were be studied, sim-
ilarly to the prior validation method, with the y-axis being used again. As
time progresses, the value imposed at the boundary condition will lead to
diffusion through our area of interest, according to the heat equation, which
for the y-direction was stated above in equation 5.4.

To validate the simulations performed for the three solvers, we compare
our obtained results to the analytical solution of this problem, which, accord-
ing to Slingerland and Kump [41], can be stated as

φ = φ0

[
∞

∑
n=0

er f c (2nη1 + η)−
∞

∑
n=0

er f c (2(n + 1)η1 + η)

]
, (5.7)
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Figure 5.5: Validation for first (S1), second (S2), and third (S3) solver for the first,
500th, and final timestep. S1 is shown with lines, S2 with solid blue
circles, and S3 with solid white circles. The circles of S2 and S3 can be
observed to overlap with each other and the lines of S1.

where φ0 is value of the imposed boundary condition. Here, er f c is the
complementary error function for each element of z and is defined by

er f c(z) = 1− er f (z), (5.8)

with er f being the error function. The complementary error function can
further be stated as

er f c(z) =
2√
π

∫ ∞

z
e−t2

dt. (5.9)

Further, η1 and η in equation 5.7 above can be substituted for

η1 =
h

2
√

αt
, (5.10)

η =
y

2
√

αt
, (5.11)

where h is the length scale of the problem and y is the positions of grid
point along the y-axis.



5.3 validation with analytical solution 41

5.3.1 Validation of Serial Implementation with Analytical Solution

First, the serial CPU implementation was compared with the analytical so-
lution described above in order to validate this particular solver. To do this,
the results of the implementation were compared to the analytical solution
at three points in time: at the start of the simulation (t = 0) when only the
initial condition is present, after 500 timesteps of 0.000122 seconds, a transi-
tion state between the initial and final solution, and finally at a large number
of timesteps which guarantees that the final steady state of the problem has
been reached, in this case 8000 timesteps. In figure 5.6 the simulation results
represented by lines with a color corresponding to the time of the simula-
tion the values were taken from are overlaid on the analytical solution, here
represented as black dots.

Figure 5.6: Visualisation for validation of CPU solver, or first solver, of all states
against analytical solution.

5.3.2 Validation of Parallel Implementation with Analytical Solution

Subsequently, the parallel GPU implementation was also compared with the
same analytical solution described above in order to validate the second
solver. To do this, the results of the implementation were compared to the
analytical solution at three points in time, the same three points that were
chosen for the validation of the previous solver. In figure 5.7 the simulation
results represented by lines with a color corresponding to the time of the
simulation the values were taken from are overlaid on the analytical solution,
here represented as black dots.
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Figure 5.7: Visualisation for validation of GPU solver, or second solver, of all states
against analytical solution.

5.3.3 Validation of Optimized Parallel Implementation with Analytical So-
lution

Finally, the optimized parallel GPU implementation was compared with the
same analytical solution described above in order to validate the solver. To
do this, the results of the implementation were compared to the analytical
solution at three points in time, the same three points that were chosen
for the validation of the previous two solvers. In figure 5.8 the simulation
results represented by lines with a color corresponding to the time of the
simulation the values were taken from are overlaid on the analytical solution,
here represented as black dots. Just like for the two previous solvers, a match
between the two sets of results can be seen at the different chosen timesteps
and therefore the solvers can be considered to be fully validated.
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Figure 5.8: Visualisation for validation of optimized GPU solver, or third solver, of
all states against analytical solution.



6 B E N C H M A R K R E S U LT S A N D
C O M PA R I S O N S

This chapter proposes a common scenario to be used as a benchmark to
which the previously introduced and validated solvers can be applied. Fur-
ther, the measured wall clock time to fully simulate this outlined scenario
for each solver is investigated to yield a statistically valid overview of perfor-
mance. Once performance has been determined for each solver individually,
comparisons will be drawn between them. These comparisons between per-
formances are also drawn in the context of the used hardware to give a more
complete picture. The goal is to determine if a speedup can be achieved and,
should this be the case, how significant such a speedup would be and if it
justifies the undertaken optimizations and increased spending on additional
hardware.

6.1 benchmark case

The chosen test case is used for all simulations performed in this chapter and
is based on a simple geometry and a set of boundary and initial conditions
to be outlined in the following subsections. The chosen geometry is covered
in an equidistant grid with an equal number of gird points in each direction,
which can be altered to simulate more demanding meshes for benchmarking
purposes.

6.1.1 Geometry

Due to the emphasis of this work being the study of solver performance, a
simple geometry was chosen. The geometry for the used scenario, which is
used across all solvers, consists of a shape with three equal lengths in each
direction for each side, Lx = Ly = Lz = 1, resulting in a three-dimensional
object bounded by six square faces, with three of these meeting at each ver-
tex, or as it is more commonly known: a cube.

6.1.2 Grid

The chosen scenario was benchmarked on a variety of grid sizes to ob-
serve how the speedup achieved between solvers differed for number of
grid points. Here, the expectation was that the speedup should increase
as the gird size used for the computations increases, since the main advan-
tage of high throughput GPU-based solvers lies in the ability to perform the

44
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Dirichlet Boundary Condition

Figure 6.1: Chosen geometry including measurements and location of applied
Dirichlet boundary condition. Figure courtesy of Malu Kawasaki.

iterations of the simulation more quickly, while the main drawback is the
increased time required to transfer the data between host and device. So,
as the time spend on computation increases, the speedup factor should in-
crease as well. All chosen grids employed an equal number of grid points
in each direction to give equidistant coverage of the above outlined geome-
try. The number of grid points in each direction will always be of the form
2n to better align with architecture constrains outlined in chapter 3, with
chosen values being, for example, 64 or 256 points in each direction, which
would result in a total number of 262,144 or 16,777,216 grid points for the
three-dimensional problem space, respectively. The grid points found at
index = 0 and index = Nk, for direction k, represent the boundary of the
problem, to which appropriate conditions may be applied.

6.1.3 Initial and Boundary Conditions

The three-dimensional test case makes use of different conditions, either
applied at the beginning of a simulation or for all simulated timesteps. At
time t = 0, before the first iteration of the solver is performed, the chosen
initial condition applied to the test case is defined by the equation

φ = sin(πx) sin(πy) sin(πz), (6.1)
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for all values of x, y, and z within the geometry. Starting from the first
iteration performed by the respective solver, two different kinds of boundary
condition were used for this test case, one being of the Dirichlet variety, im-
posed at y = 0 and carrying a magnitude of φ = 1, with periodic boundary
conditions used at all surfaces of the geometry beyond that. Over time, the
initial condition becomes less dominant in determining the observed pro-
file of φ, as the impact of the imposed boundary condition starts diffusing
through the medium. Here, the observed profile will be composed of the
remnants of the initial condition, which will be mixed with the uniform pro-
file diffusing from the imposed boundary condition. Eventually, a steady
state will be reached, which will be made up of a profile that is determined
entirely by the distance of the node of interest from the imposed Dirich-
let boundary condition. Visually, this results in a smooth gradient profile,
steadily decreasing in magnitude away from y = 0.

6.1.4 Chosen Parameters

For all simulations performed in this chapter, the values presented in table
6.1 are used throughout. A key problem to keep in mind when running the
test case is the choice of an appropriate timestep size, in order to ensure
stability in the calculations during simulation. The time step was calculated
as the result of the chosen Courant–Friedrichs–Lewy (CFL) number multi-
plied by the distance between the grid spacing between two adjacent points
in any direction, which ensures that the resulting timestep size scales with
the chosen fineness of the grid.

Used Parameters

Distance in x (Lx) 1 Boundary Condition in x Periodic
Distance in y (Ly) 1 Boundary Condition in y Dirichlet
Distance in z (Lz) 1 Boundary Condition in z Periodic

Thermal diffusivity α 0.1 Number of timesteps n 2000

CFL number 0.4 Size of stencil 4

Table 6.1: Common parameters used across all three solvers.

Other parameters will be changed directly, such as the number of grid
points in each direction, and their chosen value will be indicated where ap-
propriate. Further, additional parameters will change as a result of another
change, as their exact values are depended on some other parameter which
is not identical for each simulation, such as the timestep size dt.

6.1.5 Context of Test Case and Performance Analysis

This test case relates to real world scenarios where heat transfer or diffusion
occurs and the medium moves from an initial state to a new steady state.
Here, the initial state, which wanes over time, and the imposed Dirichlet
boundary condition at y = 0 which introduces heat into the volume both
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approximate plausible scenarios one might encounter in the real world ap-
plications where a medium without an internal source is heated from below.

Having a strong understanding of the required computational power and
expected scaling performance will allow researchers to accurately assess
their needs and possibilities when performing similar simulations to the
same or greater level of accuracy. Further, by exploring the possible opti-
mization by using a specialized solver it is possible for researchers to gauge
whether spending an extended period of time optimizing elements of their
own solvers when performing lengthy computations will be worth it.

6.2 hardware

This section will outline all the hardware used to benchmark the solvers,
including individual specifications. The CPU-based and GPU-based solvers
will be run on their respective workstations, as outlined in table 6.2. This
table is intended to guide the reader with respect to the performance of the
hardware each solver is run on to make later drawn comparisons more mean-
ingful, as differences in hardware specification are a given when comparing
CPU- and GPU-based solvers. As previously explained in chapter 3, a large
discrepancy between number of cores on a CPU and GPU can be observed,
as well as a difference in achieved processor frequency. It should be noted
that the GPU-related hardware on the CPU workstation is not used during
computations and is just listed for completeness sake.

Used Hardware Specifications

Component CPU Workstation GPU Workstation
CPU Intel Core i7-9750H Intel Core i5-9600K
CPU Frequency 2.6 GHz Base & 4.50

GHz Boost
3.70 GHz Base & 4.4
GHz Boost

CPU Cores 6 6

RAM 16 GB 2666 MHz
DDR4

16 GB 3000 MHz
DDR4

GPU AMD Radeon Pro
5300M

Nvidia GeForce RTX
3070

GPU Frequency 1 GHz Base & 1.25

GHz Boost
1.50 GHz Base & 1.73

GHz Boost
GPU Cuda Cores - 5888

GPU Architecture Navi RDNA Ampere
GPU Memory 4 GB GDDR6 8 GB GDDR6

GPU Bandwidth 192 GB/s 448 GB/s
CUDA Version - 11.2
C++ Compiler G++ 9.2.0 G++ 9.2.0

Table 6.2: Details of used hardware for different workstations. It should be noted
that the GPU information for the CPU workstation is stated for complete-
ness only.
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6.3 a note on performance

There are two main indicators of performance which will be assessed here
to understand whether there is an actual improvement and whether mov-
ing from a serial CPU implementation to a parallel GPU implementation or
to a more optimized GPU implementation can be justified. The first being
throughput efficiency, which is the time it takes to complete an iteration. It is
clearly favourable to reduce the time per iteration for any solver, so we will
compare the time to complete the chosen number of iterations across solvers
and quantify the achieved improvements. Secondly, assessing the scalability
of the new approach is key to understanding where a solver can bring the
greatest increases in performance. Scalability is the expected increase in per-
formance as more computational power is added on the hardware side. Scal-
ability is usually measured for a single piece of hardware, as more pieces of
additional hardware are added, such as in a Multi-GPU computational clus-
ter. There is no straightforward way to compare scalability when different
types of hardware are involved, as is the case here, so to compare the solvers
we shall take their price points into consideration to get a estimate of how
performance scales with cost. The CPU used for the serial solver individu-
ally retails for $395, while the used GPU retails for $499. These individual
retail prices of the main pieces of hardware used for computation are obvi-
ously not everything that should be considered concerning hardware, as a
GPU still relies on its host, a CPU, to perform some parts of the simulations
required and beyond this a CPU still requires RAM and other components
to function. Further, the specifications of these additional components can
impact the achievable computational throughput, as they may bottleneck
the computation. Thus, comparing individual components and their price
points is not an exact science but brings us an additional piece of the puzzle
needed to draw conclusions on the effectiveness of accelerating a simulation
using a GPU and optimized solvers.

6.3.1 Amdahl’s Law

A more formal way of assessing increases in performance is Amdahl’s Law
[2]. This gives the theoretical speedup, SP, which is achievable when compar-
ing the performance of a serial implementation to a parallel implementation
of the same algorithm. Fundamentally, it aims to compare the execution
time of the best possible serial implementation of the algorithm, tS, to the
execution time of the best possible parallel implementation of the algorithm,
tP, which in idealised form can be summarised as

SP =
tS

tP
. (6.2)

There exists a theoretical limit to increasing SP, as the possible increase in
throughput efficiency of a parallel system is limited by the time needed for
the serial portion of the program to execute, assuming such a portion exists.
Assuming that there are no memory reads and writes or any other practical
hardware limitations, we can define the fraction executed in parallel as f and
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further assume P processing units are used to speed up the computation,
then the speedup is given by

SP =
tS

f t1
P + (1− f ) tS

=
1

f
P + (1− f )

. (6.3)

When considering the fact that most parallel applications have a signifi-
cant serial part in their computations, as do the ones outlined in this work,
then equation 6.3 implies that the achievable speed up is limited by f and
utilising more processing units will get us closer to that limit, though the ef-
ficiency will drop with each processor added. For example, if the fraction of
the computation we can parallelize is 0.95, then the maximal possible speed
up is 20 and each added processor gets us closer to approaching this limit.

If we assume an idealised problem, then equation 6.3 can be expressed as

SP ≤
1

1− f
, (6.4)

indicating that the possible speedup is merely a function of the fraction of
the problem that is possible to compute in parallel.

Another view on this problem was put forward by Gustafson [16], who
argued that the sequential fraction of a problem decreases as problem size in-
creases. Therefore parallel computing is most suitable for solving problems
of increasing size.

6.4 results of simulations using serial imple-
mentation

Before considering any GPU-based implementations, we will consider the
CPU-based serial implementation to establish a baseline for performance we
can compare the following results to. This serial solver was used to simulate
the test case elaborated on above and was run on the CPU workbench, the
details of which are given in table 6.2. For the simulation, initially a grid
of 128 by 128 by 128 grid points was chosen, resulting in a timestep size
of 0.000122 s. The initial and boundary conditions introduced in section
6.1.3 are used. The results of these performed simulations are visualized in
figures 6.2 - 6.5, at four distinct points in time, at the initial condition, at
one third of the way to the final timestep or timestep 660, at one third of the
way to the final timestep, namely timestep 1320, and at the final timestep
2000. This spacing between timesteps was chosen to visualize to the reader
the progress of diffusion which occurs during the simulation as the initial
condition ceases to be the dominant force determining the profile of φ in
favor of the applied boundary condition.

Figure 6.2 shows the volume sliced in half along the y-axis, where the
value of φ across the volume is entirely determined by the initial condition,
resulting in a spherical profile with the maximum value of 1 being found at
the centre of the cube. Here φ decreases as the observer moves away from
the center of the cube in the x-, y-, or z-direction, reaching a value of 0 at the
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boundary. After 660 timesteps the initial profile has begun defusing outward,
as can be seen in figure 6.3, resulting in the value observed at the center
of the cube decreasing below 1. Further, the Dirichlet boundary condition
has begun impacting the profile of φ in a noticeable way, as diffusion away
from y = 0 occurs. This trend continues and after 1320 timesteps the initial
profile has become less prominent while the applied boundary condition has
resulted in more diffusion occurring along the y-axis, resulting in a smoother
transition in the observed profile from the bottom of the cube towards the
center. This is visualized in figure 6.4. Finally, the final timestep is reached,
which can be seen in figure 6.5, where the initial profile is barely still visible
and the observable profile is dominated by the Dirichlet boundary condition.

6.5 results of simulations using parallel imple-
mentation

The parallel GPU-based solver was run on the GPU workbench, the details
of which are given in table 6.2. For the simulations, initially a grid of 128 by
128 by 128 grid points was chosen, resulting in a timestep size of 0.000122

s. The initial and boundary conditions introduced in section 6.1.3 are used.
The same behaviour can be observed for this solver as in the simulations
of the same test case using the serial CPU solver, as can be seen in the
visualization of figures 6.6 - 6.9, with the displayed images representing φ at
the same timesteps as the ones of the CPU-based solver.

6.6 results of simulations using optimized par-
allel implementation

Finally, the parallel GPU-based solver with memory redundancy was run on
the GPU workbench, the details of which are given in table 6.2. Similarly to
the previous parallel implementation, initially a grid of 128 by 128 by 128

grid points was also chosen, resulting in a timestep size of 0.000122 s. The
initial and boundary conditions introduced in section 6.1.3 are used. Again,
the same behaviour can be observed as in the simulations of the same test
case using the previous solvers, as can be seen in figures 6.10 - 6.13, with
the displayed images representing φ at the same timesteps as the ones of the
CPU-based solver.

6.7 performance comparison

Multiple comparisons were performed in accordance with the principles out-
lined in earlier sections of this chapter in order to assess the possible perfor-
mance gains between solvers. This section aims to contextualise the obtained
results as well as visualise them in an intuitive way.

First, the efficiency gains which can be materialised were investigated be-
tween solvers, starting with a relatively small gird of 64 nodes in each di-
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Figure 6.2: CPU solver, or first solver, at initial timestep.

Figure 6.3: CPU solver, or first solver, at timestep 660.

Figure 6.4: CPU solver, or first solver, at timestep 1320.

Figure 6.5: CPU solver, or first solver, at timestep 2000.
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Figure 6.6: GPU solver, or second solver, at initial timestep.

Figure 6.7: GPU solver, or second solver, at timestep 660.

Figure 6.8: GPU solver, or second solver, at timestep 1320.

Figure 6.9: GPU solver, or second solver, at timestep 2000.
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Figure 6.10: Optimized GPU solver, or third solver, at initial timestep.

Figure 6.11: Optimized GPU solver, or third solver, at timestep 660.

Figure 6.12: Optimized GPU solver, or third solver, at timestep 1320.

Figure 6.13: Optimized GPU solver, or third solver, at timestep 2000.
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rection. Each solver was run ten times on the benchmark scenario outlined
in section 6.1 and the resulting mean and standard deviations for the time
taken by each solver are plotted in figure 6.14 in seconds for a relatively
coarse grid of 64 by 64 by 64 points, with the error bars indicating the stan-
dard deviation. The goal of this comparison is to visualise the speedup in ex-
ecution time achieved between the implementations as throughput efficiency
improves. As can be seen, there is speedup of over ten for the execution time
between the first and second solver (10.5 to be precise) with the second and
third solvers achieving similar times. The encountered standard deviations
are 3.67, 2.08, and 2.15, respectively. Recalling Amdahl’s Law, this is still
a relatively low speedup considering how much of the computation we are
able to parallelize. To capture more of that possible upside, we need to focus
more on the area where our GPU-based solvers have the advantage: the ac-
tual calculation part of our simulations. The less time we spend on anything
but computing, the more of an advantage our GPU-based solvers will have.
Thus, we should target problems of greater size by increasing the grid size
and observing if the difference between the achieved wall clock times of the
solvers increases, decreases, or remains the same.

Figure 6.14: Wall clock time and error bar graph for timings of ten runs of each
solver for a 64 by 64 by 64 grid.

For a computationally more intensive grid of 128 grid points in each di-
rection the results for all three solvers are shown in figure 6.15. Here, a
speedup of 18.3 was achieved between the first and second solver, a signifi-
cant improvement over the previous more coarse grid, almost doubling the
speedup relative to the previous grid. The encountered standard deviations
were 5.44, 2.75, and 3.01, respectively. This confirms that as the size of the
problem space grows, an increased speedup can be achieved as more time
is spend on performing computations. Again, the difference in execution
time between the two GPU-solvers was small, amounting to just a few sec-
onds, though the difference was slightly larger than the one seen during
simulations of the previous more coarse grid.
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Figure 6.15: Wall clock time and error bar graph for timings of ten runs of each
solver for a 128 by 128 by 128 grid.

Observing the drastic increase in achieved speedup between these two
grids, one might pose the questions of how performance across all three
solvers scales as the used grid size becomes more computationally demand-
ing. Will the speedup continue to increase as we keep increasing the number
of grid points used or will we reach a point beyond which the increase will
be negligible before stopping completely, as predicted by Amdahl’s law? To
explore this further, the remainder of this chapter will be split into two parts:
a performance scaling comparison between the first and second solver and a
comparison between the second and third solver. The comparison between
the first and second solver is intended to show the possible speedup gains
when comparing two very similar, equally optimized solvers, with one run-
ning on a CPU and the other on a GPU. This should give us the clearest un-
derstanding of how performance scales with problem size for our particular
applications between serial and parallel implementations. Next, two GPU-
based solvers with different levels of optimization are compared, namely
the second and third solvers. Here, the goal is to see how the achievable
gains differ when a more efficient solver is used across different numbers
of gird points. So far, the difference in execution times between them was
limited, thus we are hoping to see if the optimized of the third solver will be
rewarded with an increased speedup relative to the non-optimized second
solver as the size of the used grid is increased.

6.7.1 Comparison Between Solver 1 and 2

As previously explained, the second solver is a GPU implementation almost
identical in structure and approach to the first solver, which runs on a CPU.
Thus a direct performance comparison between the two should show what
difference in wall clock time simulating on a GPU really makes.

The achieved speedups, taken by comparing the wall clock time obtained
when executing the same simulation, for grid of 64 and 128 grid points in
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each direction were given in the previous section. Figure 6.16 directly com-
pares the two solvers across a range of grid sizes in order to answer the
question posed at the end of the previous section. Here, grid sizes of 32, 64,
128, 256, 512, and 1024 grid points in each direction were considered, cov-
ering a wide range range of execution times, from just a few seconds when
considering the coarsest grid to taking multiple days when considering the
CPU-based solver and the finest grid.

Figure 6.16: Comparison of wall clock speedup between CPU solver and regular
GPU solver.

Initially, there are very large increases in achieved speedup between grid
sizes, which can be seen in the steepness of the graph, due to moving away
from simulations that spend a large portion on copying data between mem-
ory and other tasks not directly related to the computations to solve the
discretized equations. As the time spend on calculations for each loop in-
creases, the achieved speedup increases as well due to the advantage par-
allel implementations have over serial ones. Once we get to a grid size of
256 points in each direction there is a slowdown in increase in speedup, as
we move from 18.3 to 25.6 when comparing the CPU to the GPU implemen-
tation. While speedup does continue to increase between 256 and 512 grid
points in each direction, to a value of 31.9, the relative increase levels off
further, indicating that we are spending less and less time of the computa-
tion on non-parallelizable tasks as the problem size grows and that we are
therefore approaching the maximum achievable speedup for our simulation.

Finally, the increase in speedup for the two solvers between the largest two
employed grid sizes is relatively moderate, only increasing to 34.7 at 1024

grid points. This indicates that the possible speedup limit is approaching, as
the vast majority of the time spend is now focused on computing in parallel.
Relative performance gains will be sparse beyond this point.

It should be noted that even thought the change in the achieved speedup
between the second largest and largest grids was not that significant in rela-
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tive terms, due to the long times involved in performing simulations at this
point, the increase in total time savings is still very high.

Overall, there is a significant performance increase when parallelizing
such a finite difference solver and moving it to appropriate hardware, es-
pecially once the problem size grows large enough that a significant part of
the simulation is devoted to loops solving the discretized equations.

6.7.2 Comparison Between Solver 2 and 3

The second and third solvers are both GPU-based solvers, with the third
solver being more optimized in regards to memory redundancy during com-
putation. A direct performance comparison between the two will allow us to
judge whether the optimizations undertaken will yield a measurable benefit,
depending on number of used grid points.

Just as in the previous section, the achieved speedup in wall clock time for
a chosen number of grid points was studied, which can be seen in figure 6.17.
Initially, at a low number of grid points, there is only a slight difference of a
few percent in wall clock time between the solvers leading to a speedup of
1.17, as the actual time spent on the simulation is very short and operations
such as copying memory from the host to the device still take up a majority
of wall clock time.

Figure 6.17: Comparison of wall clock speedup between GPU solver and optimized
GPU solver.

As computations become more demanding due to an increase in grid size,
the optimized solver continues pulling ahead, albeit only approximately a
third at 128 grid points. Beyond this the achieved speedup continues to
increase but at a progressively slower rate.

Finally, between the last two grid sizes the increase in speedup slows from
1.51 to 1.56, approaching the limit of how much the simulation can be sped
up. For large grid sizes the maximum achievable speedup will not go far
beyond 1.6, as the increase in speedup starts leveling off, which is not as
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significant of a speedup as when comparing CPU-based against GPU-based
solvers, but still is a significant performance increase for the undertaken
optimizations.

Again we can observe how the achieved speedup increases as the prob-
lem size grows, though the difference is not as drastic as the one between
the similar CPU and GPU solvers, due to running on equal hardware. This
confirms that the more the memory redundancy optimizations can be uti-
lized, the higher the performance gains. Seeing as the the graph has a sim-
ilar shape to the one discussed in the previous section, it can be observed
that the increase in achievable speedup will only continue rising up to a
point, which is approached as the number of used grid points increases and
therefore more time is spend on computation alone compared to other tasks
during the simulation.



7 P E R F O R M A N C E A N A LY S I S O F D N S
N AV I E R -S TO K E S S O LV E R S

This chapter will focus on a performance analysis similar to the one per-
formed in the prior chapter, in order to contextualize these previous findings
further by comparing them to the types of speedups achieved over a broad
range of grid sizes for a state-of-the-art numerical solver for the Navier-
Stokes equations, developed my Dr. Simone Silvestri, and its optimized
version, developed by Asif Hasan. The implemented solver is a more com-
plex performance-orientated DNS numerical solver compared to the ones
used in the previous chapter, focusing on the compressible Navier-Stokes
equations. This comparison is especially relevant to the speedup previously
achieved between the second and third solver, as they were also two simi-
lar solvers which differ by the degree of optimization and run on the same
hardware, and will also give some insight into what kind of speedups can be
achieved with available academic numerical solvers running on a GPU when
properly optimized and see whether the findings agree with the results put
forward in the prior chapters.

This chapter will initially give a short overview of the used solvers, their
characteristics, and what differentiates them, before examining the results of
the undertaken analysis and comparing it to the one from last chapter.

7.1 used solvers

There were two solvers used for the simulations in this chapter: the baseline
Navier-Stokes solver, the code for which is publicly available1, which is a
high-performance DNS code for the compressible Navier-Stokes equations,
which lacks some of the features utilized to minimize memory redundancy
and other performance-critical aspects of computation, and the optimized
version of this solver. This optimized version makes use of different tech-
niques to minimize global memory accesses and utilizes further changes in
the computation procedure to improve performance.

The baseline DNS Navier-Stokes solver is for compressible flows in 3D
running on a CUDA-capable GPU and uses the same timestepping scheme,
RK3, as the previously introduced solvers and the same spatial discretiza-
tion, also at 8th-order. This baseline solver, much like the second solver from
last chapter, already makes use of shared memory and some GPU-related
optimizations. The optimized Navier-Stokes solver has the same character-
istics as the baseline solver as far as structure and discretization techniques

1 https://github.com/simone-silvestri/cuda-solvers

59

https://github.com/simone-silvestri/cuda-solvers


7.1 used solvers 60

are concerned but builds on this with further optimizations. These improve-
ments include but are not limited to:

• Coalesced memory transfer by utilizing a tiling approach that uses
shorter and wider two-dimensional tiles (or slices) for global memory
accesses

– When some data is accessed more data is read then is really
needed, leading to a bottleneck and high redundancy

– Cover one warp of threads in as few memory reads as possible

– Use tiling approach to get 2D slice that reads as much relevant
data as possible, instead of 1D array, to minimize reads per warp,
i.e. minimize data read redundancy

– Here, coalesced memory transfers of the optimized solver are nec-
essary for making use of the most possible memory bandwidth
available by reducing the number of memory loads for the re-
quired data and thus increasing the possible speedup, as per Am-
dahl’s law

• Moving additional computations inside the x-, y-, and z-kernels that
were previously outside them

– These kernels are the part of the solver, running on the GPU, re-
sponsible for the computation for the respective direction

– More speedup can be achieved through offloading additional op-
erations onto the GPU

• Implementation of Flipping Block algorithm to coalesce shared mem-
ory access and minimize tendency of shared memory bank conflicts

and are intended to alleviate bottlenecks during the simulation to reduce
wall clock time.

Used Parameters

Distance in x (Lx) 2.0 Boundary Condition in x Non-Uniform
Distance in y (Ly) 3.0 Boundary Condition in y Periodic
Distance in z (Lz) 10.0 Boundary Condition in z Periodic
Reynolds Number 7500 Adiabatic Constant 1.4
Prandtl Number 0.70 Number of timesteps n 500

Mach Number 0.7 Viscous Fluxes Stencil 2

CFL number 0.75 Size of stencil 4

Table 7.1: Parameters used across all simulations for both solvers.

The used parameters needed to reproduce the simulations are given above
in table 7.1.
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7.2 results of performance study

Again, a performance analysis was undertaken regarding changing grid
sizes, similar to what was done in the previous chapter, to give some in-
sight into the scaling of the selected solvers and whether they behave sim-
ilarly to those analysed previously. The used grid sizes were made up of
between 4 · 105 to 2 · 107 grid points, giving a similar range to the one used
for previous analyses, though they were not evenly spaced. The solvers were
benchmarked for a common three-dimensional scenario with all parameters
kept constant across simulations.

The GPU workstation outlined in chapter 6 was used for the simulations
and therefore a single GPU was utilized, even though the solvers presented
in this chapter are capable of being run on a multi-GPU system. The same
hardware was used for both solvers and all parameters aside from the num-
ber of grid points was kept constant across simulations, similarly to when
the second and third solvers were compared in the prior chapter.

The results for the speedups achieved across the used grid sizes are shown
in figure 7.1. Here, similarities to the development of the speedups from
last chapter, particularly those between the second and third solver, can be
observed, with an initial rapid increase in speedup which slows over time
as the maximum possible gain from the optimizations is approached. The
initial speedup value is close to one, indicating that still a significant part of
the computation is not devoted to calculation at such as small problem size.
A maximum speedup of 1.49 was observed for a problem size of 2 · 107 grid
points.

Figure 7.1: Relative speedup between Navier-Stokes solvers for different grid sizes.
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It should be noted that larger speedups may be possible on larger prob-
lem sizes, as the speedup is still increasing slightly towards the end of the
tested range of grid points. A larger problem size could not be simulated
due to memory limitations of the GPU of the workbench. Beyond this, a lim-
itation that comes with a consumer-grade graphics card is a lower memory
bandwidth, which for the accelerator in this work is 448 GB/s, while server-
based graphics cards can have memory bandwidths up to four-times that.
This can lead to a memory bottleneck that will lower the achieved speedups
when comparing solvers.

7.3 comparison to previous solvers

The performance analysis in this chapter resulted in similar findings to those
of last chapter. This strengthens the view that for certain optimizations re-
lated to memory access on a GPU there is a predictable performance gain
that scales with the problem size when applied to numerical simulations.
Further, these performance gains are only fully realized at appropriate prob-
lem sizes, when significant parts of the time spent on the simulation are
devoted to computations on the GPU within the kernels. On the contrary,
when smaller problem sizes with lower expected wall clock times are to be
simulated, then there is little reward for wide ranging optimizations of the
used solvers.

The decease in wall clock time for both optimized solvers, when consid-
ering the time required for a full simulation of a problem with a significant
number of grid points, represents a large cost reduction. This reduction
of cost is quite significant when considering the price of GPU compute for
problems with more grid points, as a 50% reduction of needed compute time
can be seen as a significant pay off for the time invested into optimizing the
solver, if the solver is to be run extensively for research purposes.

A maximum speedup of 1.49 was achieved between the baseline and op-
timized Navier-Stokes solvers, which is similar to the value observed for
the speedup between the second and third solvers at a comparable prob-
lem size. Even though the two optimizations were not identical, they both
focused mainly on improving memory access redundancy in order to mini-
mize memory read and write bottlenecks and therefore make better use of a
GPUs superior computational throughput.



8 D I S C U S S I O N & C O N C L U S I O N

In this chapter the previously presented findings are summarised and rec-
ommendations for relevant further work are made.

8.1 summarising conclusions and discussion

The purpose of this work has been to investigate the performance of different
finite difference solvers with different degrees of optimization on different
types of compute hardware and assess the achieved speedups. Specifically,
the move from a CPU-based to a GPU-based solver and optimization with
regards to improved memory redundancy were investigated.

After supplying the reader with a short literature review, this work fo-
cused on explaining the relevant hardware and software architecture which
ones needs to be aware of to tackle the problem that was the focus of this
thesis. Following this, the relevant theory for the chosen problem was intro-
duced, before the methods used for the computational implementation were
stated. These included a detailed explanation of the three separate solvers
used, as well as other relevant information, such as the used temporal and
spatial discretization schemes and the chosen validation scenarios.

A benchmarking scenario was proposed to be used for the different solvers
across used hardware, including the relevant geometry, gird, and initial and
boundary conditions. This aforementioned hardware was also introduced,
including how to quantify performance beyond the achieved speedups with
the cost of the used hardware and the complexity of the undertaken opti-
mizations to make it possible to form a judgement on whether the resources,
namely time and money, spent on them can be justified. Then, the obtained
results were introduced and visualized for the three solvers, before mov-
ing onto the performance comparisons. The first performance comparison
showed the time to complete the previously mentioned benchmark on two
grid sizes, made up of 64 or 128 grid points in each direction, for all three
solvers, showing a very significant speedup between the CPU- and GPU-
based solvers and a moderate difference between the two GPU-based solvers.
Beyond this, a comparison between the two solvers similar in structure but
run on different hardware, the first and second solvers, and the two solvers
run on the same hardware but optimized to different degrees, the second
and third solvers, was undertaken in order to give a better overview of the
achievable speedups for different types of hardware and degrees of opti-
mizations in isolation. For the first and second solver, the speedup was
measured over a range of different grid sizes, starting from 32 grid points
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in all directions up to 1024 grid points, resulting in speedups of less than
five all the way to 34.7. Here, one was able to observe that the increase in
achieved speedup slowed as the problem size increased, indicating that the
improvements from parallelization were approaching full utilization, where
less time was spent on computation. For the second and third solver a simi-
lar comparison across different grid sizes was undertaken, painting a similar
picture of decreasing improvements in speedup as the problem size grows,
though the achieved speedups were more modest, reaching a speedup of
below 1.6 for 1024 grid points in each direction. This smaller speedup can
still be considered significant when remembering the wall clock time of the
simulations that treat large problem sizes and the cost of compute.

Very significant speedups were achieved between the first and second
solver, clearly showing the possible performance gains when moving from
a serial to a parallel implementation. The achieved speedups can justify the
increased cost of the used hardware for the different workstations, as well
as the time spent on the GPU implementation, given that a problem with a
larger number of grid points is simulated.

The difference between the second and third solver was not as significant
as the one between CPU and GPU implementations, but there still was a
significant speedup, especially at larger grid sizes, which may justify the
resources spent on undertaken optimizations. Whether spending time op-
timizing a solver is truly worth it also depends on the complexity of that
solver, as more complex solvers may take additional care so that increased
performance can be achieved.

It should be noted that these speedups are very dependent on problem
size, as was shown in chapter 6. When considering the largest grid with
over one billion nodes for the first and second solver, then the speedup is
significant and the reduction in wall clock time clearly justifies the move
from a CPU-based to GPU-based implementation, as many days of comput-
ing time can be saved. Though when considering the smallest tested grid
size of 32 grid points in each direction, even though the wall clock time
spend on the simulation can be decreased, the actual savings are not very
significant since the simulation does not take an extended amount of time
in the first place. Therefore, the effort would not be worth it considering the
gains would be negligible.

Beyond this, two DNS Navier-Stokes solvers were compared against one
another, one being an optimization of the other, to observe what kind of
speedups can be achieved when a more complex research-orientated solver
is optimized and run on the same hardware and whether these findings were
in line with previously undertaken analyses. Speedups of similar magnitude
were observed for comparable problem sizes.

Something that was mentioned earlier in this work but not investigated
in detail is the move from double precision to single precision accuracy for
the solvers. While using single precision accuracy will undoubtedly im-
prove performance, especially on a consumer-grade GPU, it is nonetheless
not applicable for most scientific applications, as they require a high level
of accuracy, and therefore is not a viable alternative when considering the
intended purpose of this work. Further, as the relative speedup was a key
measure, the move from double to single precision would speed up all the
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different solvers, though, admittedly, to a different degree. Therefore, the
relative speedup would not be impacted as much as the move from double
to single precision would suggest.

8.2 recommendations for future work

Finally, through conclusion of this work new possible areas have been iden-
tified that could be investigated to further contextualize the findings pre-
sented here. What follows are three suggestions for further continuation of
this work.

8.2.1 Benchmarking Further Optimized Solvers

The solvers presented in this work follow an obvious progression from a sim-
ple CPU-based solver to a GPU-based solver of a similar structure to a GPU-
based solver that has been optimized. To offer a more complete overview of
the possible performance increases between CPU- and GPU-based solvers, as
well as not optimized to optimized solvers, a broader range of solvers could
be implemented and benchmarked. Comparing GPU-based solvers could
help identify the currently existing solvers with the most promising perfor-
mance, though care would have to be taken to standardize all parameters
and other key factors such as discretization techniques to ensure a compari-
son that is as fair and representative as possible. Finally, research into new,
more effective solvers could give a sizable performance increase and thus
further research into this area could yield better performance compared to
existing solvers on current hardware.

8.2.2 Considering a Wider Range of Accelerators

Only a small sample size of hardware was considered in this work. To gain
further insight into the performance of the presented solvers additional ac-
celerators could be used for the simulations in the future to measure perfor-
mance as the compute of the hardware and the iteration of the architecture
increases or decreases. What makes this increasingly relevant is the fact
that a consumer-grade GPU from the GeForce line of Nvidia products was
used for this work, instead of the server-based accelerators with a scientific
computing focus, such as the Nvidia A100. This would make it possible
to recommend the optimal configuration for price to performance for such
simulations.

Beyond this, using GPUs with increased memory would make it possible
to use grids even larger in scope then the ones used in this work. Using an
accelerator like the Nvidia Titan RTX with 24 GB of memory, or the afore-
mentioned server-based A100 with 80 GB of memory, would greatly increase
the possible problem size on a single GPU. These would also alleviate the
memory bandwidth bottleneck discussed in the last chapter.
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8.2.3 Multi-GPU Systems

To further increase performance, a multi-GPU system could be employed,
where the computation is not only parallelized across a single accelerator,
but across multiple connected GPUs working together to share one com-
putational load. Breaking down simulations in this way could lead to a
further increase in performance, similar to the one found between simula-
tions run on CPUs and GPUs. Making a CUDA-based solver ready to be
run on a multi-GPU system takes a significant amount of optimization to
ensure the maximum performance can be achieved when the computation
is distributed across the system. Suitable hardware also has to be available,
including the GPUs and NVLink communication bridges, which may come
at a large cost.
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