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Directional Singularity-Robust Torque Control for

Gyroscopic Actuators
Andrew Berry, Daniel Lemus, Robert Babuška Member, IEEE, and Heike Vallery Member, IEEE

Abstract—Gyroscopic actuation is appealing for wearable ap-
plications due to its ability to impart free moments on a body
without exoskeletal structures on the joints. We recently proposed
an unobtrusive balancing aid consisting of multiple parallel-
mounted control moment gyroscopes (CMGs) contained within
a backpack-like orthopedic corset. Using conventional CMG
control techniques, geometric singularities result in a number
of performance issues, including either unintended oscillations
or freezing of the gimbals at certain alignments, which are
typically mitigated by the addition of redundant actuators or
by allowing errors in the generated moment; however, because
of the minimalistic design of the proposed device and focus on
accurate moment tracking, a new methodology is required.

In this paper, a control scheme is proposed for non-redundant
CMG systems in which oscillations at saturated states are avoided
and all remaining singularities are efficiently escaped by exploit-
ing the system geometry; due to its use of classification-specific
singularity proximity measures that account for the command
moment orientation, it is named the directional singularity-robust
(DSR) control law. The performance of this control law is assessed
in both simulations and hardware testing. The proposed method
is suitable for a wide range of CMG systems, including both
balancing and aerospace applications.

Index Terms—control moment gyroscope (CMG), torque con-
trol, fall prevention, wearable robotics.

I. INTRODUCTION

IN the past several years, parallel studies in humanoid

robotics and human rehabilitation technology have, on a

number of occasions, advocated using momentum exchange

devices (MEDs) to solve the problem of bipedal balancing.

These actuators, examples of which include reaction wheels,

momentum wheels, and control moment gyroscopes, have

the desirable ability of imparting a free moment on a body

without necessitating contact with an inertial frame; a recent

high-profile example employing reaction/momentum wheels

is the Cubli balancing robot [1]. For the design of human

balancing aids, MEDs provide an attractive alternative to bulky

exoskeletons on the legs. Like a reaction wheel, a control

moment gyroscope (CMG) consists of a rotating flywheel or

rotor, but the rate of rotation is typically much higher and

the mode of operation is fundamentally different: rather than

change the spin rate of the rotor to generate a moment, rotation

of an outer gimbal (Fig. 1) reorients the rotor and produces a

significantly larger gyroscopic moment. Because the generated
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Fig. 1. Schematic of a single-gimbal CMG showing the orientations of the
gyroscopic moment (Mgyr) and the reaction wheel moment (MRW) exerted
on the device in the case of variable flywheel speed. The gimbal-fixed frame
{ĝs, ĝt, ĝg} is oriented such that ĝs ∈ R

3×1 aligned with the rotor spin axis,
ĝg ∈ R

3×1 with the gimbal axis, and ĝt ∈ R
3×1 with the transverse axis.

The rotor and gimbal angular velocities are denoted by Ω and γ̇, respectively.

gyroscopic moment is orthogonal to the gimbal and rotor spin

axes, it is applied directly to the gimbal bearings, rather than

the rotor or gimbal motors; the implication of this is that, for

a relatively small gimbal motor torque, a considerably larger

output is possible. Exploiting this torque amplification effect,

a device can be constructed with smaller, less powerful motors

better suited to a wearable application.

Although other MEDs had previously been proposed for

human balance assistance devices (e.g. [2]), we described first

a device utilizing CMGs and harnessing the above benefits [3].

In this concept, a wearable backpack-like device (Fig. 1) would

contain multiple lightweight CMGs capable of imparting a

moment on the torso to provide balance assistance in any

fall direction. This concept was elaborated upon by Matsuzaki

and Fujimoto [4] and a simplified prototype was constructed

by Chiu and Goswami [5], consisting of a symmetric pair of

CMGs with a mechanical constraint to synchronize gimbal

motions and aid balancing in the sagittal plane only; however,

despite this progress, the control of such nonlinear actuators

remains challenging for wearable applications.

One such challenge is the handling of geometric singu-

larities in the gimbal angles, whereby the individual CMG

moment vectors Mgyr,i align such that their span loses rank,

thereby disrupting moment generation in certain directions

and incurring excessive gimbal rates. Singularity-robust CMG

control techniques have been extensively documented for

certain actuator layouts in the context of spacecraft attitude

control [6], but little detailed information is available on

other applications, in particular those involving non-redundant

actuator arrangements and the balancing of unstable systems;
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nevertheless, the basic solution framework remains similar.

A controller for a CMG array generally consists of two

(not necessarily distinct) components: an outer feedback law

responsible for converting the objective quantity (typically a

reference attitude) into a reference moment and compensating

for disturbances, and an inner model-based control allocation

scheme (often called a gimbal steering law) responsible for

generating the gimbal and rotor acceleration commands nec-

essary to track this moment. We describe in [7] an exemplary

outer control law in the form of a pre-parametrized moment

profile, and instead focus here on the latter element.

The control allocation law concerns inversion of the system

model to compute the control inputs and must contend with the

occurrence of singularities and manage them in such a way that

the actuator limitations are respected. If the system is modelled

sufficiently well, the gimbal trajectories can be precomputed

via optimization or search-based techniques [8]–[10] or calcu-

lated in real-time using model-predictive control [11], [12] to

minimize the cumulative tracking errors; however, due to the

high computational load, inherently unpredictable dynamics

of humans, and the corresponding gyroscopic disturbances

induced by the body motion, such a strategy is ill-advised

for the proposed application. Instantaneous methods use only

the current system state for control and typically consist of

analytical formulations with fixed structure, making use of a

particular (net-moment-producing) solution and, if a redundant

number of CMGs is available, also a homogeneous (non-

net-moment-producing) component. The particular component

is typically computed as the Moore-Penrose pseudoinverse

of the system Jacobian, yielding the minimum-norm gimbal

rates required to track the reference moment, yet on its own

it is ineffective at avoiding singularities. The homogeneous

component, derived from the nullspace of the Jacobian, can

be utilized at or near singular configurations to reorient the

gimbals without affecting the net output moment in a pro-

cedure known as null-motion; singularities may be avoided

by driving the system to a desired state [13] or modifying

the gimbal trajectory such that either a measure of proximity

to singularity is maximized or an arbitrary function of this

measure is used to impart a “non-directional” change of

trajectory [14]. The availability of such techniques (regardless

of their effectiveness) is dependent upon the use of excess

CMGs, but, to ensure the mass and volume of our device is

suitable for elderly users, it should contain no more actua-

tors than absolutely necessary for balancing in the coronal

and sagittal planes; hence, a non-redundant configuration of

N = 2 CMGs is used and null-motion is not possible. Rather

than strive for complete singularity avoidance, an alternative

approach is to use only the particular solution but strategically

inject moment tracking errors to moderate the gimbal rates

while passing directly through the singular configuration. Such

methods are based on the solution to the regularized (damped)

least-squares problem, which weighs tracking accuracy against

gimbal rates. Notable examples are the singularity-robust (SR)

inverse steering law of Bedrossian [14], adapted from the

works of Wampler [15] and Nakamura and Hanafusa [16] in

robotic manipulators, the singular direction avoidance (SDA)

inverse steering law of Ford and Hall [17], inspired by e.g.

Maciejewski and Klein [18], and the generalized singularity-

robust (GSR) inverse [19] and subsequent improvement [20]

by Wie et al.. Although the latter method constitutes the

current state-of-the-art, for the given application there remain

certain practical shortcomings that necessitate the design of

a new control allocation scheme. Existing methods result in

unnecessary tracking error, can become trapped in singular

states, and are incapable of stabilizing the system once the

gimbals have reached a “saturation” configuration, at which

point tracking is no longer possible and sustained destabilizing

oscillations are observed, all of which can have potentially

harmful consequences to the human subject in our application.

We propose a new control scheme that strategically in-

corporates moment tracking errors to facilitate singularity

escape or else stabilizes such singular configurations in which

escape is not possible; to accomplish this, a novel approach to

singularity taxonomy and proximity measurement is presented.

With our control scheme, it is possible to safely realize a

balancing device comparable to [3] for the case of N = 2
fixed-speed CMGs. This paper consists of a description of the

CMG model in Section II, a discussion of singularities and

their proposed measures in Section III, the proposition of a

new control law in Section IV, and, finally, evaluation of the

controller in simulations and physical testing in Sections V

and VI.

II. SYSTEM MODEL

A system composed of N CMGs can be modelled using

Newton-Euler equations as by Schaub et al. [21], but with

the distinction that the CMG subsystem dynamics are isolated

from the structure to which they are attached, the human body.

The net moment M ∈ R
3×1 applied to the CMG system (or,

alternatively, the negative moment applied to the human) is:

M = Aγ̇ +Bγ̈ + d , (1)

where the control input is the vector of gimbal accelerations

γ̈ ∈ R
N×1, A ∈ R

3×N pertains to the gyroscopic moments

(in the local ĝt,i directions as shown in Fig. 1), B ∈ R
3×N

accounts for moments generated in the local ĝg,i directions

due to acceleration of the gimbals, and d ∈ R
3×1 represents

a component of the unintended parasitic gyroscopic moments

induced via motion of the torso. These matrices are:

A := [a1, ...,aN ]

ai := ĝs,i(JT,s − JT,t + JT,g)ωt,i

+ ĝt,i[(JT,s − JT,t − JT,g)ωs,i + JW,sΩi]

B := JT,g[ĝg,1, ..., ĝg,N ]

d := JW,s

N
∑

i=1

Ωi(ĝt,iωg,i − ĝg,iωt,i) ,

(2)

where JT,s, JT,t, JT,g are the combined gimbal and flywheel

moments of inertia about the ĝs, ĝt, and ĝg axes, and JW,s

is the ĝs-axis component of the flywheel only. The vector

ω ∈ R
3×1 denotes the angular velocity of the human torso,

with gimbal-fixed components ωs, ωt, and ωg. Finally, Ω
is the rotor angular velocity. For this model, it is assumed

that the human incorporates the device mass into their own



3

dynamics so all terms associated with the rigid-body motion

of the assembly are neglected. As balancing requires moment

generation in only the axial plane of the wearer, the gimbal

axes are oriented parallel with the wearer’s longitudinal axis

such that the gyroscopic moment is most effectively used.

The gimbal motor torque of the i-th CMG, ui, is [21]:

ui = JT,g(ĝ
T
g,iω̇ + γ̈i)− (JT,s − JT,t)ωs,iωt,i

− JW,sΩiωt,i ,
(3)

and the corresponding power is thus pi = γ̇iui.

III. SINGULARITY MEASURES

A. Classifications of singularities

Tracking performance may be disrupted if the range of

possible output moments loses a degree of freedom, occurring

whenever the moment-generating axes ĝt,i align such that the

gyroscopic Jacobian A in (1) loses rank and becomes singular.

The left null-space of A, consisting of null-vectors nl such

that nT
l A = 0, describes the space in R

3 in which no moment

can be generated. In the case of a system with parallel gimbal

axes, the gyroscopic moment nominally spans the axial plane

but encountering a singularity, in which ĝt,i align parallel or

anti-parallel (parallel with opposite sense), reduces this to a

single line of action; the projection of the set nl onto the axial

plane forms a line called the singular direction, ŝ.

Singularities pose the greatest threat to moment tracking

when ŝ is aligned with the parasitic-compensated reference

moment, τref = Mref − d; even if the vectors are slightly

misaligned, degradation of performance may be significant.

Conversely, performance may remain relatively unaffected if

ŝ is oriented normal to τref . Hence we propose to explicitly

consider the orientation of the singular direction with respect

to the commanded output direction as a basis for categorizing

singularities: cases in which ŝ is (anti-)parallel or nearly

(anti-)parallel to τref we will henceforth refer to as reference-

aligned (RA) singularities and the remaining singularities, in

which ŝ is not significantly projected in the direction of τref ,

as unaligned singularities. This categorization is not formally

made in the related literature, yet is implied by the concept of

singular directions and surfaces [22].

Any case in which all the rotor angular momentum vectors

hi are maximally projected in a given direction is an external

singularity, lying on the outer boundary of the envelope of

allowable net momentum states H =
∑N

i=1 hi(γi) ∈ R
3; the

external singularity in which all hi are maximally projected

in the direction of the command moment will be defined

here as the RA saturation singularity. All remaining singular

configurations lie within the momentum envelope and are

hence referred to as internal singularities. Of the 2N reference-

aligned singular configurations in our planar system, one is the

RA saturation singularity (Fig. 2a), one is another external

singularity defined here as the RA anti-saturation singularity

(Fig. 2b), and the remaining 2N−2 are internal singularities

(Fig. 2c and d), which, when relevant, may be further classified

by the applicability of null-motion for singularity escape [22].

The relevance of this for control is that, due to the differen-

tial relationship between hi and the generated moment, all hi

Singularities

Internal

Aligned Unaligned Aligned Unaligned

External

τrefτref

τref

τref

τref

τref

h1h1

h1

h1

h1

h1

h2

h2

h2

h2

h2

h2(a)

(b)

(c)

(d)

Fig. 2. Classifications of geometric singularities in a system of N=2 parallel
fixed-speed single-gimbal CMGs, showing the relative orientations of the rotor
angular momenta hi and compensated reference moment τref . Shown are all
2N (reference-)aligned singularities and examples of the unaligned case.

are ultimately driven towards τref (i.e. the RA saturation sin-

gularity). Under the influences of a moment-tracking control

law, this is an impassable state and represents the fundamental

limitation of the system to generate a moment in a given

direction. The remaining 2N−1 RA singularities behave as

unstable equilibria that instantaneously prohibit tracking, but

can be perturbed to resume a trajectory towards the saturation

singularity. In contrast, unaligned singularities do not behave

as equilibria and can be escaped without perturbation.

B. Candidate singularity measures

To devise a singularity-robust control law, it is useful to

define a measure of proximity to singular configurations. The

most common selections are the manipulability measure [23]

and square of the smallest singular value of A, often associated

with the SR and SDA gimbal steering laws, respectively. These

values are computed respectively at each time instance k as:

δSR(k) :=
√

det (A(k)AT (k)) , (4)

δSDA(k) := σ2
min(A(k)) , (5)

where each measure approaches zero as a singularity is en-

countered. A shortcoming of both is that they indicate only

when a loss of freedom has occurred without regard to the

direction of τref , fundamentally consequential for tracking.

In their derivation of a feedback law, Oh and Vadali [24]

defined an index that specifically considers the relationship of

τref with the singular direction by computing the projection

of τref onto the column space of A. Adding a regularization

value kO, their orthogonality index, δO, can be expressed as:

δO(k) :=
τT
ref(k)A(k)AT (k)τref(k)

τT
ref(k)τref(k) + kO

, (6)

which is zero when the requested moment is aligned with the

singular direction and a maximum when it is spanned by A.

The δSR, δSDA, and δO parameters are shown (normal-

ized) in Fig. 3 for a system beginning in the anti-saturation

singularity and ending in the saturation singularity, using a

controller similar to [3]. For computing these parameters,
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Fig. 3. Comparison of normalized singularity measures δ with plots of fall-
axis output moment Mv and gimbal angles γ for a system starting near the
singularity shown in Fig. 2b.

only the subspace of A that spans the axial plane of the

wearer is used, since a parallel gimbal alignment entails that

there will always be at least one dimension in which a net

moment cannot be generated (in this case, the vertical axis).

All three indices identify the initial singularity at t=0 s and

the saturation singularity at t≥0.33 s, but the SR and SDA

measures identify an additional unaligned configuration at

t=0.18 s, where the spin axes are anti-parallel (180◦ apart) but

normal to the command moment direction – although a loss of

freedom is incurred, no moment tracking error results. Thus,

δO allows us to isolate the more problematic RA singularities.

Because the saturation singularity and remaining unsatu-

rated external and internal singularities have distinct charac-

teristics, we propose here separate singularity measures, δsat
and δuns, respectively:

δsat(k) := 1 + p(δO(k)− 1) (7)

δuns(k) := 1 + (1− p)(δO(k)− 1) , (8)

where p is a binary scalar that is one when all projections

hT
i τref are non-negative and zero otherwise.

IV. CONTROL DESIGN

A. Nominal controller

We first design a nominal controller that closely tracks the

reference moment as long as no singularities are encountered.

Because solving for γ̈ directly in (1) results in undesirably

high gimbal accelerations, a desired future reference gimbal

velocity γ̇ref is instead specified and the acceleration is then

chosen such that this reference is asymptotically tracked [24]:

γ̈ = kγ̇(γ̇ref − γ̇) + γ̈ref , (9)

where kγ̇ is a positive scalar gain and γ̈ref is assumed small

and is neglected. Substituting this into (1) yields:

M = Aγ̇ref +Bkγ̇(γ̇ref − γ̇) + d , (10)

where γ̇ is the current (measured) gimbal velocity. To respect

actuator limitations and minimize power consumption, we

compute the reference gimbal rates as the minimizing solution

to a weighted cost function of moment tracking errors, gimbal

motor torques, and gimbal motor powers at each instance [3]:

J(k) = ǫTM (k)WMǫM (k) + uT (k)Wuu(k)

+ pT (k)Wpp(k)

= (f(k) −E(k)γ̇ref(k))
T
W(f(k)−E(k)γ̇ref(k)) ,

(11)

where the tracking error is ǫM = Mref−M and the weighting

matrices are expressed as WM = wMI3×3, Wu = wuIN×N ,

and Wp = wpIN×N , where wM , wu, and wp are all scalar

design parameters. Stacking all the terms together, the cost

function can be expressed with the following matrices:

E(k) :=





EM (k)
Eu

Ep(k)



 f(k) :=





fM (k)
fu(k)
fp(k)





∈ R
(3+2N)×N ∈ R

(3+2N)×1 (12)

W := diag (WM ,Wu,Wp) ∈ R
(3+2N)×(3+2N) ,

where the moment-tracking part is:

EM = A(k) +B(k)kγ̇

fM = Mref(k)− d(k) +B(k)kγ̇ γ̇(k) .
(13)

Upon substitution of (9) into (3), the gimbal motor torques u

can be expressed as u = Euγ̇ref − fu, where:

Eu := JT,gkγ̇IN×N

fu := [fu,1, ..., fu,N ]T

fu,i := JT,g(kγ̇ γ̇i − ĝT
g,iω̇)

+ [(JT,s − JT,t)ωs,i + JW,sΩi]ωt,i .

(14)

Because the gimbal motor powers are quadratic in γ̇ref , a

first-order Taylor series expansion of γ̇◦2
ref is made about the

measured rate γ̇, where ◦ is the element-wise product:

γ̇◦2
ref = γ̇◦2 + 2γ̇ ◦ (γ̇ref − γ̇) +O(γ̇◦2

ref)

≈ 2γ̇ ◦ γ̇ref − γ̇◦2 .
(15)

The future gimbal motor powers can then be expressed as:

p = γ̇ref ◦ u

= Euγ̇
◦2
ref − fu ◦ γ̇ref

≈ Epγ̇ref − fp ,

(16)

where:

Ep := 2Eudiag(γ̇)− diag(fu)

fp := Euγ̇
◦2 .

(17)

The minimizing solution to (11) at each sample instance is

then computed as the weighted Moore-Penrose pseudoinverse:

γ̇ref(k) =
(

E
T (k)W(k)E(k)

)−1
E

T (k)W(k)f(k)

= E
+
W(k)f(k) .

(18)

Although tuning of the weights can limit the motor torques and

powers to within an acceptable range, adding hard inequality

constraints ensures optimality even in the presence of motor

saturation. For bounds on both the allowable torque and power,
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there are a total of 4N inequality constraints; because not all

can be active at the same time, it is necessary to check the

Karush-Kuhn-Tucker conditions at only 3N combinations of

equality constraints. Posing each combination as Gγ̇ = h such

that G has linearly independent rows, the constrained solution

γ̇ref can be expressed as a function of γ̇ref from (18):

γ̇ref = γ̇ref

− (ET
WE)−1

G
T
[

G(ET
WE)−1

G
T
]−1

(Gγ̇ref − h) .
(19)

B. Singularity robustness

Although the motor torque and power penalties prevent

E from becoming numerically singular, hence maintaining

a finite γ̇ref and performing a function similar to SR-type

methods, performance remains poor near aligned geometric

singularities – in particular, gimbal overshooting and oscilla-

tion occur at the saturation singularity, resulting in a fluctuating

output moment (Fig. 3, t≥0.33 s), and the controller cannot re-

solve indeterminism at the other aligned singularities, leaving

the gimbals in a locked state. There has been little mention of

the former issue in the related literature since, in aerospace

applications, the gimbal rates are relatively small and the

reference moment profile is adjusted to avoid the approach

of such configurations either by pre-manoeuvre momentum

management schemes or in real-time using thrusters [25]. Al-

though the indeterminism problem can in some cases be solved

by gradient-free null-motion algorithms, requiring redundancy,

the perturbation injection method of Wie et al. [19] is appli-

cable to all types of unstable singularities and any number

of actuators. The crucial feature of this method, adapted to

our framework, is the modulation of the off-diagonal elements

of WM to produce an error in the direction of the output

moment and perturb the gimbal states, after which the nominal

controller can function without issue. Using a modulation

function ǫi = ǫ0 sin (ωǫt+ φi), where ǫ0, ωǫ, and φi and are

all scalar design parameters, WM can be expressed as [19]:

WM (k) = wM





1 ǫ3 ǫ2
ǫ3 1 ǫ1
ǫ2 ǫ1 1





−1

. (20)

Although this method is very effective when the objective is

only moment tracking, when combined with other performance

criteria, such as minimal motor torque and power, such an

indirect approach can result in significant delay in escaping

singularities. Thus, to overcome performance issues at aligned

singularities, new control techniques are required.

Since moment tracking can no longer be reliably sustained

when approaching the saturation configuration, one solution

is to dynamically change the cost function penalties such

that tracking is abandoned in favour of stability. To achieve

this, a penalty Wsat = wsatIN×N on the gimbal rates γ̇ref

is proposed, such that gimbal damping is increased with

proximity to saturation and the output moment is gradually

arrested:

wsat(k) = ksat,1δ
−ksat,2

sat (k) , (21)

where ksat,1, ksat,2 > 0 are both scalar design variables and

δsat is the measure of proximity to the saturation singularity

as defined in (7). If the command moment direction changes,

the magnitude of damping declines and the gimbals are no

longer restricted in their motions. The parameters ksat,1 and

ksat,2 are tuned such that the damping grows large enough

to prevent oscillations and abrupt enough to avoid impacting

performance away from saturation.

In order to escape from an unstable unsaturated aligned

singularity, the system states must be perturbed in some

manner, which can be as simple as adding noise to the

state measurement, or it can be in the form of a deliberate

deterministic perturbation, as in (20). A more direct approach

is to exploit the symmetry of the system in question and force

the gimbals apart in predetermined directions. To do this, the

reference gimbal velocities can be computed as if each gimbal

is perturbed by some angle ∆γi > 0 from singularity – for

example, by neglecting B from (10) and ignoring the parasitic

moment terms in the A matrix, the i-th gimbal rate near the

unsaturated singularity can be computed approximately as:

γ̇uns,i(k) = αi

||τref(k)||2
NJW,sΩi(k) sin(∆γi)

, (22)

where, for simplicity, it is assumed that each CMG equally

contributes to the output moment. The perturbation from

singularity can be selected as an arbitrary small nonzero angle,

such as ∆γi = 5◦, for instance. The variable αi = {−1, 0, 1}
determines the desired direction of rotation of each gimbal,

based on some pre-defined criteria; for a system of two

CMGs, a logical choice would be [α1, α2] = [−1, 1] such

that the gimbals are driven in opposite directions. Because

such a perturbation would, in reality, be only very local and

accurate modelling is not necessary, an alternative would be

to amalgamate the expression into a single scalar unsaturated-

singularity-escape design parameter kuns,τ :

γ̇uns,i(k) = αikuns,τ ||τref(k)||2 . (23)

To disengage the evasive action once the states have been suf-

ficiently perturbed, the associated weighting should decrease

with increasing singularity measure δuns and gimbal inertia:

Wuns(k) = e−(kuns,δδuns(k)+kuns,γ̇ γ̇
T (k)γ̇(k))

IN×N , (24)

where kuns,δ and kuns,γ̇ are additional non-negative scalar

design variables that determine the sensitivity to singularity

proximity and gimbal inertia, respectively.

Amending (12), the system becomes:

E(k) :=





E(k)
IN×N

IN×N



 f(k) :=





f

0N×1

γ̇uns(k)





∈ R
(3+4N)×N ∈ R

(3+4N)×1 (25)

W(k) := diag
(

W,Wsat(k),Wuns(k)
)

∈ R
(3+4N)×(3+4N) ,

which can be solved as in (18). To avoid computing an infinite

damping penalty as in (21), we can define its analytic inverse

as w#
sat = k−1

sat,1δ
ksat,2

sat and reformulate (18) to the following:

γ̇ref = E
∗f + β∗γ̇uns (26)
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where:

E
∗ = ΛE

T
W , β∗ = ΛWuns

Λ = w#
sat

(

w#
sat(E

T
WE+Wuns) + IN×N

)

−1

.
(27)

Replacing (ET
WE)−1 with Λ, (19) can again be used to

account for motor constraints.

Because different singularity handling techniques are used

depending on the gimbal orientations with respect to the

reference moment direction, we name this the directional

singularity-robust (DSR) control allocation law.

C. Stability analysis

Regardless of whether the current objective is moment

tracking or stabilization of the gimbals at the saturation

singularity (or some intermediate combination of the two), we

can pose the problem as one of tracking a desired gimbal rate

γ̇ref . First we consider a constant or slowly-varying Mref .

Selecting the following Lyapunov function [24]:

V (γ̇) =
1

2
(γ̇ref − γ̇)T (γ̇ref − γ̇) , (28)

differentiating with respect to time, taking γ̈ref ≈ 0, and

substituting (9) for γ̈ yields:

V̇ (γ̇) = (γ̇ref − γ̇)T (γ̈ref − γ̈)

= −kγ̇(γ̇ref − γ̇)T (γ̇ref − γ̇) .
(29)

Thus, asymptotic tracking of the reference gimbal rate is

guaranteed for any kγ̇ > 0 and any γ̇ref that does not

result in sustained motor saturation. Away from the saturation

singularity and in the absence of modelling errors, γ̇ con-

verging to γ̇ref together with (10) implies that M converges

to Mref . As the saturation singularity γsat is approached, a

transition to damping of the gimbals occurs once σmax(E) <
(wMw#

sat)
−

1

2 , where σmax denotes the maximum singular

value; by designing w#
sat such that it decays to zero at γsat,

then Λ and γ̇ref will correspondingly decline to zero and

the gimbals will come to rest. Although such issues were

not encountered during our simulations or experimentation,

it cannot be guaranteed that the gimbals will remain within

this high damping region in the presence of significant motor

saturation or poor tracking of γ̇ref . If this issue cannot be

solved via tuning, it is also possible to design a w#
sat that

remains zero in some continuous neighbourhood of γsat such

that an equilibrium manifold exists, or else implement a

supervisor that blocks subsequent mode switching.

To investigate the behaviour under arbitrary dynamic ref-

erence moments Mref , we can analyze stability in terms of

passivity with respect to Mref by finding a positive semidefi-

nite storage function S(x) that shows that the rate of energy

accumulation is less than that supplied, closely linked to L2

stability. We select the kinetic energy of all flywheel-gimbal

assemblies as our storage function candidate, where ω = 0
for simplicity and xT = [γT , γ̇T ]:

S(x) =
1

2

(

JT,gγ̇
T γ̇ + JW,sΩ

T
Ω
)

. (30)

Inserting Ω̇ = 0 and using (9), this has the time derivative:

Ṡ(x) = JT,gγ̇
T γ̈

= JT,gkγ̇ γ̇
T (γ̇ref − γ̇) .

(31)

For convenience, we also define fref = Eγ̇nom, with γ̇nom

a virtual reference gimbal rate that results in close moment

tracking (exact if wu, wp = 0), yet grows excessively near

singularities. We then obtain:

Ṡ(x) = JT,gkγ̇
(

γ̇T
E

∗
Eγ̇nom + γ̇Tβ∗γ̇uns − γ̇T γ̇

)

≤ JT,gkγ̇
(

γ̇T γ̇nom + γ̇T γ̇uns

)

.
(32)

where the bottom line is the (transformed) supply rate and

both eig(E∗
E)i, eig(β

∗)i ∈ [0, 1] go to zero ∀i ∈ [1, N ]∩Z as

γsat is approached and w#
sat → 0. Thus, we can guarantee that

the system never stores more energy than would be injected

by tracking the reference. As the saturation singularity is

approached, the rate of energy accumulation decays, while the

final term of the top line ensures that energy is dissipated to

bring the gimbals to rest. Finally, we also see the role that γ̇uns

plays to inject energy into the system to escape unsaturated

aligned singularities.

V. CONTROLLER EVALUATION

A. Simulation study

The focus of this assessment is on the singularity handling

of the DSR controller in (25) in relation to the static-weight

(SW) controller in (12), rather than the nominal tracking

performance. It is assumed that the person falls rigidly with a

fixed point of rotation about one foot and can be modelled as

an inverted pendulum with three degrees of rotational freedom

and moment of inertia JH = diag(JH,u, JH,v, JH,w) as in [3],

where u, v, and w pertain to the directions of the wearer’s

anterior, left, and longitudinal axes, respectively (Fig. 4a). The

attitude of the human is expressed in Euler 3-2-3 rotations as

denoted by [θ1, θ2, θ3]. The person is assumed to be initially

leaning forward by θ2=5◦ when a loss of balance is detected,

followed by a free fall from rest. The gimbals begin in the anti-

saturation singularity shown in Fig. 2b. The moment profile

begins with a ramp of 2800 Nm/s and is sustained at the

maximum value of 100 Nm such that the system eventually

encounters the saturation singularity. It is assumed that all

states can be measured accurately and detection of loss of

balance is reliably performed. The controller was simulated

at 500 Hz and the human states were integrated using the

MATLAB function ode45 to approximate continuous time.

All model and control parameters are listed in Table I.

Because the SW controller would otherwise have no abil-

ity to escape the initial unstable singularity, the method of

Wie et al. was incorporated by using the moment-tracking

penalty matrix in (20) with wM=100Nm−1, ωǫ=100Hz, and

φi=i · 2π/3 rad. To eliminate unnecessary tracking error away

from singularity, ǫ0 was scaled with δuns as ǫ0 = e−104δuns .

B. Experimental study

A similar test was performed with a single CMG mounted

to an inverted pendulum with one rotational degree of freedom
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(a) (b)

A êx
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êz êx′
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êv
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Gimbal
motor

Revolute
joint

End-stops

Fig. 4. (a) Schematic showing mapping from inertially-fixed frame N :
{êx, êy, êz} to body-fixed coordinates B : {êu, êv, êw} using Euler 3-2-3
coordinates. (b) Test apparatus consisting of a single CMG on a single-degree-
of-freedom inverted pendulum.

TABLE I
SIMULATION (SIM) AND EXPERIMENT (EXP) PARAMETERS.

Parameter Value (sim) Value (exp) Units

N 2 1 -
Ω 1650 419 rad/s

θ(t0) [0, 5, 0] - deg
ω(t0) [0, 0, 0] - rad/s

JW,s 3.60 · 10−3 2.00 · 10−2 kgm2

JT,s 3.60 · 10−3 4.00 · 10−2 kgm2

JT,t 1.80 · 10−3 2.24 · 10−2 kgm2

JT,g 1.8 · 10−3 3.97 · 10−2 kgm2

umax 10 10 Nm
pmax 80 150 W

JH,u = JH,v 69.0 - kgm2

JH,w 3.15 - kgm2

mH 70 - kg
hH 0.85 - m

kγ̇ 500 378 s−1

wM 100 100 Nm−1

wu 10 10 Nm−1

wp 1 1 W−1

ksat,1 1 1 s/rad
ksat,2 2 2 -
[α1, α2] [−1, 1] 1 -
kuns,τ 5 5 s/rad

kuns,δ 104 104 -

kuns,γ̇ 0 0 (s/rad)2

as described in [26] (Fig. 4b). Due to the diminished degrees

of freedom, only the moment projected along a single axis

is tracked. The moment profile is the same as in simulations,

but with the ramp rate and maximum value decreased by a

factor of ten. Friction and gear backlash are neglected in the

modelling and, because of the current lack of motor current

sensors and force sensors, the motor efforts and output moment

are estimated from the system states and the model.

Because (20) is not applicable for tracking in a single

dimension, separate tests were performed for comparing un-

saturated and saturated singularity handling – the former with

the gimbals oriented γ(0)=π rad from the external singularity,

and the latter with γ(0)=π/2 rad. For safety, the pendulum

was constrained in the vertical position. As in the simulations,

the sampling frequency is 500 Hz. The experiment parameters

and measured apparatus properties are shown in Table I.
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Fig. 5. Simulation results for the SW and DSR controllers for gimbals
initially at the anti-saturation singularity. Shown are the moments projected
onto the human-fixed axes (Mu,Mv,Mw), the human attitude (θ), the gimbal
angles (γ), the gimbal motor torques (u), the gimbal motor powers (p), and
singularity measures (δ).

C. Results

The simulation results in Fig. 5 reveal that the proposed

unstable singularity escape procedure results in approximately

80% shorter delay, and, consequently, does not incur the

same tracking errors as the method of Wie et al. for this

system; furthermore, the oscillations imposed by the latter

method prior to escape are noticeable and may result in either

discomfort or destabilization of the subject. It is also observed

that gimbal overshooting at the external singularity (∼0.3 s) is

successfully avoided by the the damping action of the proposed

DSR scheme, contributing to greater stability of the controller.

The experimental results in Fig. 6, beginning from the anti-

saturation singularity, show that the DSR singularity escape

procedure is successful, but poor tracking of the gimbal rates

due to unmodelled power supply dynamics results in visible

oscillations; conversely, the system without escape function-

ality remains locked, despite the presence of sensor noise.

Beginning instead at π/2 rad from the saturation singularity

(Fig. 7), it is again observed that the DSR law successfully

damps the gimbal swinging at 1 s.

VI. DISCUSSION

Both simulation and experiment results indicate that, for

the present application, the proposed DSR controller effec-

tively reduces tracking performance degradation at all aligned
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Fig. 7. Experimental results for the SW and DSR controllers for the spin
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singularities while not significantly altering the nominal per-

formance. For the proposed application, this signifies great

progress towards the safe use of CMGs as wearable actuators.

These results suggest it is possible to sustain a 100 Nm output

for up to 0.25 s using a device projected to weigh less than

3 kg and consume on average 16 W of power when the gimbals

are active or 5 J per manoeuvre (not accounting for losses or

the power required to maintain flywheel speed). Further work

in this study must be directed towards designing a control

scheme that is passive with respect to ω to ensure the safety

of the wearer under any scenario.

Although specifically designed for a non-redundant system,

these control techniques may still be applicable to impassable

singularities in redundant systems in which null-motion is

ineffective. This controller may also be relevant for a growing

number of terrestrial balancing applications such as unstable

vehicles including scooters (e.g. C-1 electric scooter, Lit Mo-

tors, USA), bicycles [27], unicycles [28], other personal trans-

portation devices (e.g. the EMBRIO, Bombardier, Canada, and

the eniCycle, eniCycle, Slovenia), single-wheel robots [29],

and underwater vehicles [30], in addition to micro satellites

and space manipulators [31], [32].

VII. CONCLUSION

By adding cost function penalties that scale with proximity

to the relevant classes of singularities, we demonstrated that,

with the proposed directional singularity robust (DSR) con-

trol law, adverse moment tracking behaviour of CMGs near

internal and external singularities can be reliably mitigated,

thereby improving the ability of a wearable CMG assembly

to successfully stabilize an unbalanced subject. We showed

that our method escapes unstable singularities up to 80%

faster than the state-of-the-art, while successfully damping

oscillations at the saturation configuration.
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