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SUMMARY

In conventional marine acquisition surveys the time intervals

between the firing of successive sources are large enough to

avoid interference in time. To obtain an efficient survey, the

spatial source sampling is therefore often (too) large. How-

ever, much attention has been drawn recently to blended ac-

quisition designs, where sources are shot in an overlapping

fashion. Waiving the constraint of no overlap can potentially

lead to significantly improved quality or economics since more

sources can be utilized in a given time frame.

Deblending is the procedure of recovering data as if they were

acquired in the conventional, unblended way. A simple least-

squares procedure however, does not remove the interference

due to other sources, or blending noise. Fortunately, the char-

acter of this noise is different in different domains, e.g., it is

coherent in the common source domain, but incoherent in the

common receiver domain. Hence, a proper coherence-pass fil-

ter should be able to discriminate between signal and blending

noise. Furthermore, such a filter can be integrated into a reg-

ularized inversion scheme, where the separation is performed

in an iterative way. Three types of such coherence-pass fil-

ters, f − k, f − kr − ks, and τ − p, are presented here as part

of a steepest-descent type of algorithm. When applied to a nu-

merically blended field dataset, the τ − p filter outperforms the

other two.

INTRODUCTION

Methods to utilize more than one source simultaneously in

the field are common practice in land surveys, see Bagaini

(2006). In these methods, the resulting records do not suf-

fer from interference in space or time. A change in mindset

though is occurring the last few years with land surveys that do

not obey the constraint of no overlap, see Howe et al. (2009)

and Pecholcs et al. (2010). Such a paradigm of productivity

increase has not been realized for the marine case yet. The use

of simultaneous sources in marine surveys was introduced by

Beasley et al. (1998). This notion was extended to incoherent

shooting and blending by Berkhout (2008) in order to achieve

better illumination of the subsurface, see also Berkhout et al.

(2010). The blended data acquired by such a survey contain

interference or blending noise and can either be processed by

specially designed least-squares migration algorithms, see Dai

et al. (2010), or be first separated and then further processed

with conventional tools. In the current paper we focus on the

latter.

The separation process (deblending) for the marine case can be

regarded as a denoising problem, treating the interference due

to blending as noise. It has been reported by various authors -

e.g., Moore et al. (2008), Akerberg et al. (2008) - that by sort-

ing the acquired blended data into a different domain than the

common source domain, e.g., the common offset domain, the

blending noise appears as random spikes; thus, the separation

process turns into a typical random noise removal procedure.

Based on this property, Huo et al. (2009) use a vector median

filter after resorting the data into common mid-point gathers.

Kim et al. (2009) build a noise model from the data itself and

then adaptively subtract the modeled noise from the acquired

data. This algorithm is implemented in the common offset do-

main.

Deblending can also be formulated as an inversion problem

that estimates the unknown unblended data. Since this is an

ill-posed problem, a regularization term is required. Moore

(2010) uses a sparsity constraint in the radon domain in or-

der to regularize his inversion. A sparsity constraint is also

utilized by Abma et al. (2010) in order to minimize the en-

ergy of the incoherent events present in the blended data. An

inversion approach that is also based on coherence in some

domain was proposed by Mahdad and Blacquière (2010) and

Doulgeris et al. (2010b). This work was later extended to a

general framework that could integrate any multi-dimensional

coherence-pass filter, see Doulgeris et al. (2010a). In the present

work, three types of such coherence-pass filters are used inside

this inversion scheme and their results are evaluated.

METHOD

The matrix notation

Berkhout (1982) showed that seismic data can be arranged in

the so-called data matrix P. Each element Pkl is one temporal

frequency coefficient of the trace that contains the response of

the source array l as recorded by the detector array k. Hence, a

column of the matrix P describes a shot record, whereas a row

describes a common detector gather. In this context, blending

can be very easily written as a multiplication of the data matrix

with a blending matrix ΓΓΓ:

P′ = PΓΓΓ. (1)

The ΓΓΓ matrix describes how blending was performed in the

field and its elements are phase and/or amplitude terms. Each

column ΓΓΓl is related to one blended shot record and its ele-

ments Γkl are the source codes that can be phase and/or am-

plitude terms. For example, in the simple case of a marine

survey with random firing times, Γkl = e− jωτkl expresses the

time delay τkl given to source k in blended source array l.

Iterative Deblending

In order to restore the unblended data from the measured data,

an inversion process has to be carried out on equation 1. A

first approach is to compute the pseudoinverse of ΓΓΓ. It can

be shown that in the case of phase encoding this is a scaled

version of the complex conjugate transpose:

〈P〉 = P′
ΓΓΓ

H (2)

where 〈P〉 is the so-called pseudodeblended data matrix and

the superscript H denotes the complex conjugate transpose.
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From the physics point of view, this process corrects for the

time delays introduced in the field. However, it does not sepa-

rate the responses from the different sources resulting in con-

tamination of the pseudodeblended result with blending noise.

Such a separation process will now be discussed.

Since the operation of blending is exactly known -in terms

of time delays- the interference introduced to the pseudode-

blended data could be computed exactly if the unblended data

P were known. However, the initial unblended data are not

available and obviously, if they were there would be no need

of such a deblending method. Suppose though, that part of P

could be extracted from the pseudodeblended data 〈P〉. Then,

an iterative estimation - subtraction process could be initiated

where more of the blending noise could be removed at each

iteration. Such a method is depicted in figure 1 and can be

mathematically formulated using the matrix notation:

Pi+1 = P′
ΓΓΓ

H −Pi(ΓΓΓΓΓΓ
H − I), (3)

where Pi+1 is the deblended estimate on iteration i + 1 and

Pi is the deblended estimate on iteration i processed in such a

way that only unblended data are contained. The second term

on the right hand side of equation 3 transforms the estimated

unblended data Pi into blending noise. This is achieved by

blending and pseudodeblending Pi by applying the term ΓΓΓΓΓΓ
H

while making sure that the initial signal is removed by sub-

tracting PiI. This noise estimate can then be subtracted from

the pseudodeblended data, providing a better estimate of the

unblended data for the new iteration. Repeating this process

leads to the gradual removal of blending noise from the pseu-

dodeblended data, until no further improvement is achieved.

It is interesting to notice the resemblance of equation 3 with

the steepest descent method. A steepest descent iteration in

matrix notation would be

Pi+1 = Pi +α
i+1(P′−Pi

ΓΓΓ)ΓΓΓH
, (4)

with P0 = 0 and α being the step length. In the absence of

noise in the forward model, i.e., when the blending parameters

are known precisely, the blending matrix ΓΓΓ can be chosen such

that the diagonal of the ΓΓΓΓΓΓ
H matrix is populated with ones. In
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Figure 1: The flowchart of the deblending algorithm.
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Figure 2: (a)-(b) f −k spectra of an unblended and a pseudode-

blended common offset gather respectively, (c)-(d), the ks = 0

slice of the f − kr − ks spectra of an unblended and a pseudo-

deblended dataset respectively, and (e)-(f), an unblended and

a pseudodeblended common offset gather in the τ − p domain

respectively.

this case, the parameter α should be equal to 1. Equation 4 can

then be written as

Pi+1 = P′
ΓΓΓ

H −Pi(ΓΓΓΓΓΓ
H − I). (5)

In order to regularize this inversion an extra constraint is in-

troduced that will lead the inversion to the most coherent so-

lution. For this reason, a projection of the current estimate

onto the feasible set is required, i.e., the set of coherent signals

in the model space. This projection can be implemented as a

coherence-pass filter. If we denote the projected Pi as Pi, then

equation 3 is obtained.

Coherence-pass filters

The estimate of the unblended data Pi can be obtained by a

processing step. Any kind of process capable of distinguish-

ing between coherent and incoherent events can be integrated

in this step. Three implementations of a coherence filter are



Separation of blended data

studied in this paper. All of them consist of a filter in some

domain followed by a thresholding process.

f −k filter

The blending noise present in pseudodeblended data is not

continuous in the lateral sense when the data are sorted in

common detector, common offset or common mid-point gath-

ers. Hence, transforming such a gather in the f − k domain,

i.e., perform a 2D Fourier transform, reveals that the blend-

ing noise has a white spectrum in the spatial frequency direc-

tion whereas the signal resides in a cone-shaped area. Figures

2a and 2b illustrate the f − k spectrum of an unblended and

a pseudodeblended common offset gather respectively. This

property can be exploited by rejecting the parts of the spec-

trum where no signal is expected. In this way the incoherent

blending noise is partly suppressed whereas the signal remains

unaffected. Transforming back to the x− t domain, the sig-

nal -being coherent- is now expected to have larger amplitude

than the blending noise, hence a simple thresholding process

can help keep only (part of) the coherent events of the gather.

In the course of this iterative method, the threshold level is de-

creased until no further improvement is achieved. It is worth

noticing that this type of filter can be coupled with a thresh-

olding process in the f − k domain. This process will keep

only the major contributions of coherent events, resembling a

POCS solver, see Abma and Kabir (2006).

f −kr −ks filter

In this type of filter the whole data cube is treated simulta-

neously rather than treating different gathers separately. A

three-dimensional Fourier transform is used to compute the

f −kr−ks spectrum of the dataset where kr and ks stand for the

receiver and source wavenumber direction respectively. Simi-

larly to the case of an f −k transformed common offset gather,

the blending noise extends outside the signal bandwidth. Fig-

ures 2c and 2d show the ks = 0 slice of an f − kr − ks trans-

formed data cube. Passing only certain source and receiver

wavenumbers means that only certain angles of incidence and

reflection angles are allowed. Under the horizontally layered

earth assumption, such a filter imposes Snell’s law to the data.

Given that the interfering sources are not spaced very closely

together, this can be a powerful tool for distinguishing between

signal and blending noise since the interfering source illumi-

nates a point in the subsurface from different angles than the

signal source. As in the case of the f − k filter, a thresholding

process in either the frequency domain or the physical domain

can follow in order to boost this coherence filter.

τ − p filter

A filter in the linear radon domain in combination with a thresh-

olding process can also be used as a coherence-pass filter. Such

a filter can be applied in any type of gather; here we apply it on

common offset gathers. Figures 2e and 2f display a common

offset gather in the τ − p domain. By choosing a certain range

of ray parameters for the computation of the transformed data

we are actually choosing the range of slowness values. This

is essentially equivalent to the cone-shaped filter used in the

f − k domain. On top of that, this transform, in contrast to the

previous two, offers control over the time axis. This allows for

windowing in the time direction, hence focusing in areas which

display high signal-to-blending noise ratio locally, i.e., the am-

plitude of the signal is significantly larger than the amplitude

of the interference. This property can prove very beneficial es-

pecially during the first iterations of this deblending process.

A thresholding process in the τ − p or the x− t domain can

follow in order to make sure that (almost) no blending noise

leaks in the output.

EXAMPLE

A 2D blended dataset has been simulated based on unblended

field data acquired at the Haltenbanken field in Norway. The

dataset was acquired with spatial and temporal sampling inter-

vals of 25 m and 4 ms, respectively. The sources were blended

per two and they fire with small pseudo-random time delays.

Figure 3a shows an unblended shot record. A shot record of

the simulated blended survey, after pseudodeblending, can be

seen in figure 3b. Notice the two different shot records that

have been blended into one. The signal-to-blending noise ratio

of this shot record is approximately 0 dB, i.e., the power of the

signal is equal to the power of the blending noise.

The deblending procedure is carried out utilizing each time one

of the three coherence filters presented in the method section.

In order to facilitate a fair comparison between these three al-

ternatives, the number of iterations was kept constant. The

f − k filter acted in the common offset domain and scored an

overall improvement of 9.79 dB, see figure 3c. The f −kr −ks

filter scored 14.37 dB, see figure 3c, while the τ − p filter with

an implementation in the common offset domain scored 18.11

dB, see figure 3e.

DISCUSSION AND CONCLUSIONS

An iterative deblending algorithm based on a coherence-pass

filter was discussed. The three types of coherence-pass filters,

f −k, f −kr −ks, and τ − p, that were used inside the iterative

deblending algorithm scored considerably different results. In

this way the dependency of the method on the filter used was

made clear. The τ − p filter outperformed the other two in the

current example. However, claiming that it is the best choice

for every type of deblending task is premature and more re-

search and tests on different types of data need to be carried

out to confirm this claim.
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Figure 3: Unblended shot record 79, (a). The same shot record after blending and pseudodeblending, (b), deblending using the

f − k filter, (c), deblending using the f − kr − ks filter, (d), and deblending using the τ − p filter, (e). 15 iterations were performed

for all three cases.
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