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Abstract

As Autonomous Vehicles (AVs) navigate through dynamic and constantly changing environ-
ments, it is crucial that they take into account the impact of their actions on the decisions
of others for safe and efficient interaction with humans. In doing so, they need to anticipate
how humans will behave in different situations based on their intentions. This work aims
to address these challenges by proposing an expressive game-theoretic framework for mod-
eling the interactions between AVs and human drivers as a multi-agent dynamic game, in
which each agent seeks to optimize their respective objective. The optimization problem is
solved by obtaining the Nash equilibrium, which accounts for the potential non-cooperative
behavior of human drivers. To incorporate the notion of intention into the game-theoretic
formulation, we introduce for each agent a parameter known as Social Value Orientation
(SVO), reflecting the degree to which an agent is willing to prioritize the welfare of others
over its own. We then develop efficient methods to solve this nonlinear optimization problem
in a receding-horizon fashion given the agents’ SVOs. However, cluttered traffic scenarios are
typically characterized by uncertainty regarding the intentions of other traffic participants
due to noisy sensor data, and multiple equally admissible equilibrium strategies that humans
may adapt to achieve their objective. Therefore, an approximate Bayesian inference method
is developed to infer the intentions of the surrounding human participants by estimating the
likelihood of SVO based on newly received state observations. We then integrate the estima-
tion module into the game-theoretic planning module in a combined framework and evaluate
its predictive performance against algorithms that ignore these sources of uncertainty in two
simulated traffic scenarios; ramp-merging at a highway and crossing at uncontrolled intersec-
tions. Our results show that the proposed inference method exhibits superior performance
compared to all other approaches, with the average prediction error approaching zero. This
implies that dynamically changing the SVO values, while planning, effectively captures the
true intentions of the surrounding agents.
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Chapter 1

Introduction

This chapter aims to introduce some fundamental aspects around autonomous driving and
decision-making. It further outlines relevant works in the literature that tackle the issues
of intention estimation and motion planning in highly interactive scenarios. Finally, this
chapter summarizes the main objectives of this work and provides short explanations about
its structure.

1-1 Autonomous Driving

Autonomous Vehicles (AVs) are a maturing technology with the potential to reshape mobility
by enhancing the safety, accessibility, efficiency, and have an overall positive impact on the
environment. The application of intelligent transportation systems is significantly aiding
drivers, reducing some driving-associated tedious tasks. Specifically, for urban environments
systems like emergency braking with assistance of active suspension [7], automatic parking [8]
or blind angle vehicle detection [9] are contributing toward a safer driving in populated areas.

Driving on a highway has also become safer thanks to the development of the Adaptive
Cruise Control (ACC) and lately, the Cooperative ACC (CACC), where both longitudinal
actuators, namely the throttle and brake pedals, are controlled using a pre-defined gap with
the preceding vehicle [10]. Considering the interactions with surrounding obstacles, collision
avoidance systems either warn the driver about an imminent collision, like the Lane Change
Assist (LCA), or autonomously take action, such as the Automatic Emergency Braking (AEB)
or the Adaptive Cruise Control (ACC), hence helping the driver stay safe. These systems
improve safety, comfort, transport time and energy consumption and are known as Advanced
Driving Assistance Systems (ADAS).

Fully automated driving capabilities, that is, vehicles able to drive by themselves without hu-
man interventions are an extension of current partially automated ADAS [2,11]. To gauge the
level of autonomy of self-driving cars, the Society of Automotive Engineers (SAE) published
a classification system based on the amount of human driver intervention and attentiveness
required by them, in which the level of autonomy of a self-driving vehicle may range from
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Figure 1-1: Levels of Automation as defined by SAE [1].

Level 0 to Level 5, as illustrated in Figure 1-1. In this standard, Level 0 represents a vehicle,
where all driving tasks are the responsibility of a human driver. Level 1 includes basic driv-
ing assistance such as Adaptive Cruise Control, Anti-Lock Braking systems and Electronic
Stability Control [12]. Level 2 includes ADAS, such as hazard-minimizing longitudinal or
lateral control [13] or emergency braking [14, 15], often based upon set-based formal control
theoretic methods to compute “worst-case” sets of provably collision free (safe) states. At
Level 3 the system monitors the environment and can drive with full autonomy under certain
conditions, but the human operator is still required to take control, if the driving task leaves
the autonomous system’s operational envelope. A vehicle with Level 4 automation is capable
of fully autonomous driving in certain conditions and will safely control the vehicle, if the
operator fails to take control upon request to intervene. Lastly, Level 5 systems are fully
autonomous and no human intervention is required in any circumstance. At this point all
efforts are towards the achievement of Level 3 or higher. The interested reader is prompted
to the works of Badue et al. [16] and Yurtsever et al. [17] for a more comprehensive study on
the history and evolution of autonomous driving to this day.

1-2 Motivation

Autonomous Vehicles (AVs) drive through dynamic and constantly changing environments
and one of the primary challenges in introducing this technology into the public domain, is
ensuring that they interact safely and efficiently with human drivers. In order to navigate
complex driving scenarios, human drivers routinely predict what other drivers will do and
make driving decisions based on these predictions. Therefore, in order to safely share the
environment with humans and plan driving maneuvers effectively, the vehicle’s control system
must infer and predict how humans will behave based on their intentions and general social
behavior. Interactions in such shared environments are commonly referred to as multi-agent
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decision-making problems, where each agent may pursue different objectives according to its
social preferences.

One way of approaching this problem is by assuming a behavior model for all humans
and then choosing actions for the autonomous agent that minimize a cost function given this
model. Human reactions may then be modeled by hand-specifying a feedback policy [18, 19]
or by fitting behavior to data [20–22]. Furthermore, many works in the literature follow a
“pipeline” approach that generates predictions of the trajectories of the human-driven vehicles
and then feeds them to the planning module of the autonomous vehicle as unalterable moving
obstacles [23–26]. However, since an agent’s decisions depend not only on its own actions
but also on the actions of others, this can lead to excessively conservative and in some cases
unsafe behavior; a well-studied issue in the robotic navigation literature, known as the “Frozen
Robot” problem [27]. In this case, the robot comes to a complete stop because all possible
actions become unacceptably unsafe. If the robot does not come to a complete stop, it will
choose to follow highly evasive or arbitrary paths that are often not only sub-optimal, but
potentially dangerous for humans around them [28].

An alternative to specifying a behavior model directly is to model humans as rational agents
and specify or learn a cost function that captures their objectives and social behavior. Game
Theory provides such an expressive framework by accurately modeling the interactions
among agents, in which the explicit behavior model is the solution of an optimization problem
(equilibrium), where each agent seeks to minimize their respective cost function. Formally,
this choice of model corresponds to a dynamic game, played out between the robot and the
humans. However, humans will typically consider social interactions rather than their own
individual goals when making decisions. For instance, at intersections, human drivers engage
in socially-compliant behavior, where they prioritize the safety and well-being of all traffic
participants and are overall considerate of other drivers, pedestrians, and cyclists [29]. This
way humans attempt to coordinate their actions for safe and efficient joint maneuvers. There-
fore, to incorporate the notions of intention and social behavior into the game formulation,
certain works introduce into each agent’s cost function the so-called Social Value Orienta-
tion (SVO) [29–31]; a metric borrowed from the field of Social Psychology that indicates the
willingness of one agent to help another vehicle, and according to which each agent weights
its own welfare against the welfare of others.

Recognizing human intention is not an easy task, because of the diversity and subtlety of
human behaviors. To drive near humans safely and smoothly, autonomous vehicles must esti-
mate their unknown intentions and account for the uncertainty in the intention estimates,
in order to choose appropriate actions that are effective and robust. In principle, estimating
intention is similar to estimating other more common quantities, such as a vehicle’s position
and velocity. The true state is then inferred from sensor data with some uncertainty associ-
ated. In the case of recognizing intention, though, this task proves even more difficult due
to the lack of a powerful “intention sensor” [32], meaning there is no equipment that can
measure it directly but it can only be inferred by measuring other quantities, like velocity
and position. This is why intention is often described as an internal state of the system that
is latent or hidden. Therefore, it is an essential capability for autonomous vehicles to identify
accurately social behavior (intentions) and make interpretable decisions accordingly.
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1-3 Literature Review

To put this work into perspective, this section provides a brief description of the decision-
making modules present in any autonomous vehicle and an overview of related work that is
concerned with modeling and planning in multi-agent interaction scenarios.

1-3-1 Decision-Making in Autonomous Driving

The architecture of any autonomous system in self-driving vehicles is typically organized into
two main parts: the perception system, and the decision-making system. The perception
system is generally divided into many subsystems responsible for tasks such as autonomous
car localization, static obstacles mapping, road mapping, moving obstacles detection and
tracking, traffic signalization detection and recognition, among others [2]. The decision-
making system is responsible for navigating the vehicle from its initial position to a final goal
defined by the user, considering the current vehicle’s State and its internal representation of
the environment, as well as traffic rules and passengers’ safety and comfort. In contemporary
autonomous driving systems, the decision making is typically hierarchically structured into
4 layers: route planning, behavioral decision making, local motion planning and feedback
control. Figure 1-2 illustrates the hierarchy of the decision-making system.

Figure 1-2: Illustration of the hierarchy of decision-making system [2].

The route planner (or mission planner) considers high level objectives, such as assignment
of pick-up or drop-off tasks, and is responsible for planning an optimal route from a specific
starting point to the intended destination given the map of the area. In general, route
planning is performed through graph search over a directed graph network, which reflects
the connectivity of the real road network. This is a classic transportation problem and many
different approaches have been proposed to solve such problems efficiently. The most common
approach is Dijkstra’s Algorithm [33] and its variation, Bi-Directional Dijkstra [34]. There
are also the Label-Correcting Algorithms, like Bellman-Ford [35,36] and Heuristic Estimators
like A* [37]. For a more comprehensive survey and comparison of practical algorithms that
can be used to efficiently plan routes for both human-driven and self-driving vehicles, the
reader is referred to the work of Bast et al. [38].

The behavioral planner (or behavioral decision-making layer) is responsible for selecting an
appropriate driving behavior at any point in time based on the perceived behavior (intention)
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of other traffic participants, road conditions, and signals from infrastructure. Thereby, it gen-
erates local objectives, for instance to change lanes, overtake, or proceed through an intersec-
tion. The problems of intention estimation and motion prediction of future trajectories
of other road users (vehicles, bikes, pedestrians etc.) falls under this layer. One common way
to implement behavioral decision-making is through Finite State Machines (FSM) that are
either event-triggered or time-triggered. However, urban environments are inherently more
unpredictable and require alternative decision-making methods. A suitable decision-making
system should either be equipped with robust obstacle prediction and risk management ca-
pabilities or be based on a decision theory framework that supports interactive and behavior-
aware planning. There are different categories of algorithms for decision-making that can be
classified based on the methods used. These are further detailed in Section 1-3-2.

The motion planner (or local planner) is responsible for computing a safe, comfortable,
and dynamically feasible trajectory from the vehicle’s current configuration to the goal con-
figuration provided by the behavioral layer of the decision making hierarchy. This trajectory
must follow the path defined by the behavior planner as close as possible, while satisfying the
vehicle’s kinematic and dynamic constraints, avoiding obstacle collision and providing safety
and comfort to the passengers. Methods for motion planning can be mainly categorized into
four classes: Graph-Search based methods (like Dijkstra [39,40] and A* [41]), Sampling based
methods (like Rapidly-exploring Random Tree [42, 43]), Interpolating-Curve based methods
(like Clothoid Curves [44, 45], Bézier Curves [46, 47], Splines [48]), and Numerical Optimiza-
tion based methods (like Receding Horizon Control [49]). However, it should be noted that
this is not an exhaustive list of all algorithms used, as there is a vast number of algorithms
(and their variants) used in the literature. Great works that summarize and go into more
detail on the available motion planning techniques are the works by González et al. [11] and
Paden et al. [2].

Lastly, the role of the motion controller is to stabilize the vehicle to the reference trajectory
generated by the motion planner, even in the presence of modeling errors and other forms
of uncertainty. There are various techniques that can be employed in this low-level control
layer. One method involves using pure-pursuit controllers, which involve following a point on
the reference path at a specified distance, called look-ahead distance [50]. Another approach
is front and rear wheel-based position feedback control, which uses wheel position to stabilize
the nominal wheel path [51]. Control Lyapunov function based on the vehicle state is yet
another method that can provide local exponential stability [52]. Additional methods include
output feedback linearization [53] and PID-based approaches, while Model Predictive Control
(MPC) can also be implemented as a tracking controller at this layer [54].

1-3-2 Motion Prediction

Being a part of the behavioral planner, motion prediction is the task of predicting the future
physical states of the surrounding vehicles and is a necessary part of any autonomous driving
application that employs predictive planning techniques. According to the work of Lefèvre
et al. [55], the motion prediction approaches are classified into 3 large categories based on
the way they encode the level of interaction between traffic participants: physics-based (or
rule-based), maneuver-based (or behavior-based), and interaction-aware motion models.

Physics-based motion models assume that the vehicle’s motion depends only on physical
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equations of motion governed by the laws of physics. Future motion is predicted using dynamic
and kinematic models linking some control inputs (e.g. steering, acceleration), car properties
(e.g. weight) and external conditions (e.g. friction coefficient of the road surface) to the
evolution of the state of the vehicle (e.g. position, heading, speed). These models are more
or less complex depending on how fine the representation of the dynamics and kinematics
of a vehicle is, how uncertainties are handled, whether or not the geometry of the road is
taken into account etc. Typical examples include the Constant Velocity (CV) model [56, 57]
that assumes piecewise constant velocity with white noise acceleration, Constant Acceleration
model (CA) [58, 59] that assumes piecewise constant acceleration with white noise jerk, and
the Coordinated Turn (CT) [60] model that assumes constant turn rate and speed with
white noise linear and white noise turn acceleration. These models exhibit low computational
complexity and, as a result, their predictions are typically only reliable for a short horizon.

Maneuver-based motion models assume that the vehicle motion can be represented by
a series of maneuvers that have been acquired a priori, can be recognized from observed
partial agent trajectories and are executed independently of other vehicles. In other words,
these models are more advanced as they consider that the future motion of a vehicle also
depends on the maneuver that the driver intends to perform. Many cues can be used to
estimate the maneuver intention of a driver, for example the physical state of the vehicle
(position, speed, heading, acceleration, yaw rate, turn signal, etc.), information about the
road network (geometry and topology of the road, speed limit, traffic rules, etc.), driver
behavior (head movement, driving style, etc.). Thus, in contrast to the physics-based models
that work with basic motion primitives, the predictions of each vehicle are more reliable.
Some of the solution techniques used for road intersection scenarios are the Support Vector
Machines (SVM) [61,62], Hidden Markov Model (HMM) [63,64] and Multi-Layer Perceptrons
(MLP) [65].

Finally, interaction-aware motion models consider the reactive part of multiple vehicles,
namely they make joint predictions that account for inter-vehicle interactions, also consid-
ering that such interactions are regulated by traffic rules. Thus these models lead to more
accurate and realistic predictions, which come at the cost of increased computational com-
plexity. Previous works have addressed the problem of interaction using Learning-based
approaches [30,56,66], Probabilistic models [67,68], or Game-theoretic frameworks [69–71].

1-3-3 Intention Uncertainty

Real-world driving, especially in an urban setting, is characterized by uncertainty over the
intentions of other traffic participants and the environmental states are often partially ob-
servable and dynamic due to noisy sensor data. To tackle this uncertainty, previous decision-
making approaches have employed hand-tuned heuristics [72–74] as well as numerical opti-
mization methods [75–77].

In fact, It has been shown by Kirby et al. [78] that leveraging social conventions into the
optimization constraints could improve path planning and navigation performance. In ad-
dition, Sun et al. [79] introduced courteous planning to reduce the inconvenience of human
drivers and benefit both sides. By considering both rational and irrational social behaviors,
Hu et al. [80] presented a prediction framework to estimate the continuous trajectories of
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surrounding vehicles. Furthermore, probabilistic planning formalisms are commonly consid-
ered, such as Bayesian networks using Markov Decision Process (MDP) models and their
generalizations. Lately, most popular approach is to formulate them via a time-dependent
Partially Observable Markov Decision Process (POMDP) to improve naturalness and social
propriety [81–83]. In particular, Wei et al. [84] proposed a Bayesian-based social behavior
framework to predict other agents’ intentions, thus enabling more sociable decisions of the au-
tonomous system. However, due to their high computational complexity these works typically
use highly simplified models, like the Intelligent Driver Model (IDM) [85] and MOBIL [86],
for the behaviors of other players, which do not account for the coupled dynamic effects of
interacting traffic agents.

In complex interaction problems where uncertainty exists around an agent’s intentions, a
common solution is to create a controller that models these agents as adversaries in a game-
theoretic framework. This involves treating the planning problem as a zero-sum1 game and
considering the worst-case decisions that other players may make. Researchers such as Bacsar
et al. [87] and James et al. [88] have used this approach, from a robust control perspective,
treating other players as bounded disturbances to the system. While this approach is suitable
for problems where safety is the main focus, it can be overly conservative and unable to
exploit the reactions of others, since it ignores the fact that other players follow individual
objectives, which in general may not be adversarial to the planner. For example, a robot using
this approach in a navigation problem cannot impose a tight bound on the human worst-case
decision sequence and thus may conclude that all of its goal directed strategies are unsafe. This
problem has been previously described as the “Frozen Robot” problem [27]. For this reason,
researchers Speidel et al. [89] proposed a planning framework to avoid being too aggressive,
by defining the Optimal Control Problem (OCP) and formulating the appropriate algorithm.
In order to avoid the issue of overly conservative strategies, interaction problems can be
formulated using general-sum2 formulations that take into account the true objectives of all
players, which may not necessarily be adversarial. However, finding solutions for these types
of differential games is only possible for problems of complete information [90]. Even in cases
where the game is fully observed, the computational challenge arises due to the dependence of
each player’s actions on the decisions of others. Therefore, a common approach is to simplify
the problem by establishing a leader-follower hierarchy among players, converting it to a
Stackelberg dynamic game [91]. Such approaches have been demonstrated in the context
of autonomous driving by researchers Sadigh et al. [92,93] and Yoo et al. [94], but they have
been reported to yield undesirably aggressive behavior from the leader [70].

Alternative methods avoid this pure leader-follower structure and aim for more symmetric
roles for all players, converting the problem to a Nash dynamic game. In their work of
Fisac et al. [70] modeled the interaction in a hierarchical approach that solves a fully coupled
dynamic game to inform a low-level controller. However, this approach solves the high-level
Nash game through discretization of the state and input space and thus does not easily scale
to multiple players. To avoid the curse of dimensionality, while maintaining symmetric roles
of different players, recent work has focused on local approximations to Nash equilibria in

1Special case of games, where the objective functions of two players (or groups of players) always add up
to zero and thus players are complete adversaries.

2The objective functions for different players are not constrained to a special structure but may encode
arbitrary objectives that may be fully or partially competitive. Specifically, the sum of gains and losses of all
payers may be unequal to zero.
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differential games [19,95,96]. For example, Spica et al. [96] employ an Iterated Best Response
(IBR) algorithm that successively updates each player’s strategy by locally solving an Optimal
Control Problem (OCP), in which the strategies of other players are fixed. Fridovich-Keil et
al. [95] propose a method akin to differential dynamic programming that approximates a Nash
solution by solving successive Linear-Quadaratic (LQ) approximations of the game. On the
other hand, Ren et al. [97] proposed a Model Predictive Control (MPC) method to tackle the
two-player game, allowing autonomous vehicles to learn more social behaviors based on social
grace. Finally, Schwarting et al. [31] borrowed the Social Value Orientation (SVO) from the
field of social psychology to quantify the degree of selfishness or altruism, which provides the
basis for solving dynamic games in a socially acceptable way.

1-4 Thesis Outline

The main objectives of this work are, firstly, to create a planning approach that takes into
account intention uncertainty under a game-theoretic framework and, secondly, to evaluate
its effectiveness against alternative methods.

Chapter 2 presents the theoretical background required for developing game-theoretic plan-
ning algorithms in this work. This chapter provides an overview of the fundamental concepts
in Game Theory and discusses the solution approaches to such problems. Furthermore, it
introduces Model Predictive Control (MPC) as an optimal control strategy that can handle
constrained control problems effectively.

Chapter 3 incorporates the notion of intention into the problem formulation through Social
Value Orientation (SVO) and proposes several efficient methods for solving it. This chapter
also examines the effects of various intention values on solution trajectories and associated
costs across all simulated scenarios. Finally, this chapter includes remarks on the performance
and accuracy of the proposed approaches. It is worth noting that in this formulation, the
Autonomous Vehicle (AV) has full knowledge of all players’ objectives, and therefore no
uncertainty in the players’ intentions is considered.

Chapter 4 considers scenarios in which the AV has incomplete knowledge of the human
intentions. Here, the approach proposed in Chapter 3 is extended to infer human intentions
based on past observations. In this chapter, an algorithm is proposed that combines the
estimation and planning modules into a single framework and its predictive performance is
evaluated across a predefined set of simulated scenarios.

Finally, Chapter 5 summarizes the main results and provides an outlook towards future
work.
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Chapter 2

Fundamental Concepts

This chapter provides the relevant theory used throughout this work to develop algorithms
for game-theoretic planning. Section 2-1 introduces some fundamental concepts around game
theory and discusses solution approaches to such problems. Section 2-2 gives a brief introduc-
tion to Model Predictive Control as an optimal control strategy that can handle constrained
control problems in an effective way.

2-1 Game Theory

While Game Theory has been studied predominantly as a modeling paradigm in the math-
ematical social sciences, there is a strong connection to control systems in the sense that
a controller can be viewed as a decision-making entity. In fact, Game Theory has gained
increasing interest in a wide range of applications, from hybrid system control [98] to smart
grids control [99]. From a control theory perspective, Game Theory can be viewed as the
study of conflict and cooperation between interacting controllers. Next we will mathemati-
cally formalize those definitions and relate them to the field of autonomous driving.

In essence, Game Theory is a conceptual framework that deals with the strategic interaction
among a finite set of multiple decision-making agents P, called players.

P = {1, 2, ...,M} (2-1)

Each player’s future behavior is captured, i ∈ P, by its state dynamics ẋi = fi(xi,ui), where
xi ∈ Rn is the state vector that consists of quantities that fully describe the state of a system,
for example in the context of autonomous driving these can be the position, velocity and yaw
angle among others. Also for each player there is a set of all possible actions (or decisions)
ui ∈ Ui ⊆ Rm that this particular player can choose from. For instance, these actions can
be the steering angle and the vehicle’s acceleration taking values within a certain range.
Hence, the joint action set U for all players can be formulated as a Cartesian product of each
individual set Ui.

Master of Science Thesis Ilias Seferlis
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U = U1 × · · · × Ui × · · · × UM (2-2)

Taking certain decisions out of each individual action set Ui results into a joint action vector
u ∈ U represented as a tuple

u = (u1,u2, . . . ,uM ) (2-3)

Sometimes it is helpful to represent a joint action from the perspective of a specific player,
i ∈ P , as follows

u = (u1,u2, . . . ,uM ) = (ui,u¬i) (2-4)

where the index ¬i (pronounced as "not i") denotes the set of actions of all players other than
the specific player i. Similarly, the set of individual state vectors for every player is denoted
as Xi with elements xi ∈ Rn, while the joint state space for all players is represented as the
Cartsesian product X = X1×· · ·×Xi×· · ·×XM . Also, in game theory we define the strategy
(or otherwise known as policy) of a player as a function that assigns an available decision u
to the information about the current state of the game x, which then the player takes into
account, namely it holds si : X 7→ Ui. In this work, we often use the term strategy to refer to
the corresponding actions considered by the player, since they are related with ui = si(t,x).
Finally, for each player, i ∈ P, there is an objective function Ji : X × U 7→ R – sometimes
called cost function in a minimization problem or utility function in a maximization problem.
This function captures the player’s preferences over joint actions u and for a non-trivial game,
the objective function of a player Ji depends not only on its own choices ui, but also on the
decisions of other players u¬i. Also for any two joint actions, u,u′ ∈ U , player i strictly
prefers u to u′, if and only if it holds

Ji(x,u) < Ji(x,u′) (2-5)

meaning that following the joint action u results into a lower cost Ji than the joint action
u′ for this specific player i. In the case that both actions result in the same cost value, i.e.
Ji(x,u) = Ji(x,u′), then player i is indifferent between the joint actions u and u′. Then, the
vector of objective functions of all players is denoted by J,

J = (J1, J2, . . . , JM ) : X × U 7→ RM (2-6)

In the context of an optimization problem, each player is tasked with minimizing its own
objective function, but this mutual dependence of objective values through the joint actions
of all players induces a coupling between the different players. In general, there exist multiple
different notions of optimal play that are commonly referred to as "solution concepts" or
"equilibrium concepts" that approximate the notion of a global optimal solution.

2-1-1 Equilibrium Concepts

Various types of equilibria can be defined depending on the degree of cooperation between
the players and on the information structure of the game, namely the assumptions about the
information that players can access at different stages of the game. There are two distinct
equilibrium concepts; the so-called Stackelberg Equilibrium and Nash Equilibrium.
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Stackelberg Equilibrium

In the Stackelberg equilibrium, there exists a leader, and a follower and the leader can enforce
his strategy on the follower. It is assumed that the follower plays rationally, in the sense that
he plays the best response with respect to the strategy of the leader. Thus, the leader chooses
the strategy which maximizes his payoff given the best response of the follower.
A common approach is to simplify the optimization problem by establishing a leader-follower
hierarchy amongst players. By establishing this kind of leader-follower information structure,
the problem is converted to a Stackelberg dynamic game and the corresponding solution
concept is commonly known as Stackelberg equilibrium. In a two-agent game, for example,
the leader chooses its control policy u∗

1 based on the assumption that the follower minimizes
their control given the leader’s optimal policy, meaning u2(u∗

1). This problem can be written
in the following nested form

u∗
1 = arg min

u1
J1 (x,u1,u∗

2(u1))

s.t. ẋ1 = f1(x1,u1)
g1(·) ≤ 0

u∗
2(u1) = arg min

u2
J2(x,u1,u2)

s.t. ẋ2 = f2(x2,u2)
g2(·) ≤ 0

(2-7)

where fi(·) is the state dynamics of each player and gi(·) are the respective concatenated
inequality constraints, which, for example, could be the collision avoidance constraints or the
road boundaries.
From this formulation, it becomes clear that a Stackelberg game introduces a bilevel optimiza-
tion; an optimization on the higher level (leader), which contains a lower level optimization
(follower). That means that for every optimization step on the higher level an optimization
problem on the lower level needs to be solved. A simple interpretation is that agent 1 opti-
mizes its own actions, given that agent 2 optimizes their own actions depending on the actions
of agent 1. This formulation of course it can be extended in the multi-agent case, where there
are multiple nested optimization problems, resulting in a recursion of dependencies for the
control actions u. That creates an optimization problem with as many sublevels as the total
number of agents, which proves to be even more computationally challenging to solve than a
bilevel optimization. Another limitation of a Stackelberg game is that it is inherently asym-
metric, since it imposes a recursive hierarchy of leaders and followers. This assumes that
the leader has indirect control over the other agents and direct access to their control poli-
cies, which limits the follower’s ability to negotiate and compromise on decisions [31]. Such
approaches do not completely define socially-compliant behavior and have been reported to
yield an overly conservative behavior on behalf of the follower and an undesirably aggressive
behavior on behalf of the leader [70].
For these reasons, there is a strong need for a more realistic model that assumes a fully
symmetric information pattern and solves a simultaneous decision-making game, meaning
with no clear preference of one agent’s policies over the rest. Hence, this type of information
model results into the so-called Nash Equilibrium.
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Nash Equilibrium

As it was mentioned previously, Nash Equilibrium models games without hierarchy among
players. Each player’s strategy is the best response to the other players’ strategies. They
seem to capture the game-theoretic interactions observed in some multi-agent non-cooperative
problems. In non-cooperative games, decisions cannot be made collectively or with full trust
that others may follow an a-priori negotiated joint strategy that is beneficial for all players.
As such players must aim for solution points, at which no player is unilaterally incentivized to
change its strategy. This non-cooperative equilibrium concept is known as Nash equilibrium.

Formally, given the objective functions (costs) Ji for all players, a Nash Equilibrium is at-
tained, if each player follows an optimal strategy u∗

i (u¬i), such that the overall strategy profile
u∗ = (u∗

1, . . . ,u∗
M ) satisfies for all agents simultaneously

J∗
1 (x,u∗) ≤ J1(x,u) (2-8)
J∗

2 (x,u∗) ≤ J2(x,u)
...

J∗
M (x,u∗) ≤ JM (x,u) ∀ agent i = 1, ...,M

where u ∈ U is any other non-optimal actions in the joint action set U .

For a general game, multiple Nash equilibria may exist, especially when the problem is non-
convex, as is the case with autonomous driving due to collision avoidance constraints. Addi-
tionally, finding Nash equilibria is known to be computationally intractable [100], meaning the
solution usually requires numerical algorithms, whose computational complexity makes them
still not well suited for online robot control. Therefore, several alternative approaches have
been proposed to approximate this problem. A common relaxation is to restrict the search
to a local Nash equilibrium; that is, only requiring the conditions in Equation 2-8 to hold for
each player i in a local neighborhood of the optimal strategy u∗

i [101]. Further simplification
can be achieved by constraining the strategy space. This may be done by considering only
open-loop strategies [102]. For open-loop strategies, the only information that the player
takes into account at each stage of the game is time [103], however, for closed-loop strategies
the player also takes into account the current state of the system x.

All thing considered, depending on the application domain, certain equilibrium concepts are
more suitable than others to model the behavior of agents. For example, in the domain
of Human-Robot Interaction (HRI) for navigation and collision avoidance problems, Stack-
elberg solutions have been reported to yield overly aggressive behavior of the leader [70].
Nash solutions, on the other hand, model symmetric roles and information structures and
may be considered more suitable for this application domain, as they encode shared respon-
sibility for collision avoidance. Similarly, local approximations to Nash equilibria have been
demonstrated to yield highly interactive strategies that qualitatively resemble global Nash
strategies [95], [102], [104]. Therefore, this work has focused on local approximations to Nash
equilibria by considering open-loop strategies. To solve such a problem, Spica et al. [96]
employ an Iterated Best Response algorithm (IBR) that successively updates each player’s
strategy by locally solving an Optimal Control Problem (OCP), in which the strategies of
other players are fixed. This will be further detailed in the next chapter.
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2-2 Model Predictive Control (MPC)

Model Predictive Control (MPC) is an optimal control method used to handle constrained
control problems in an effective way. It uses a dynamic model to predict the future system
behavior optimizes the control inputs over a discrete-time prediction horizon N. The opti-
mization problem consists of an objective function to be optimized and a set of constraints,
which represent the limits on the system states and inputs.

The solution of the optimization problem is a sequence of control inputs u∗
i =

[
ut

i,ut+1
i , . . .

,ut+N−1
i

]
for each player i corresponding to the prediction steps over the prediction horizonN .

However, only the first optimal control input ut
i at current time t is applied to the system and

it is held constant during the interval [t, t+ 1], while the remaining inputs are discarded. The
optimization problem is solved at every sample time to account for mismatches between the
predicted and the actual states, due to model inaccuracies or unmeasured disturbances. The
fundamental idea of MPC lies in its iterative computation (receding horizon) that introduces
feedback control, whose role is to stabilize to the reference trajectory in the presence of a
modeling uncertainties. Furthermore, MPC incorporates feedforward control, because the
integration of a model makes it possible to take future states into account in the current
time step [3]. Figure 2-1 demonstrates the workings of an MPC scheme in two consecutive
iterations, where t describes the current time step.

(a) Iteration 1 (b) Iteration 2

Figure 2-1: The working of MPC at 2 consecutive iterations [3]. The prediction starts from the
current time t and generates a sequence of optimal control inputs over the prediction horizon
(here denoted as Hp).

There is a wide variety of MPC algorithms, for example depending on the model being used,
MPC can be linear and nonlinear, while based on the convexity of the optimization problem,
MPC can be divided into convex and non-convex. The focus of this thesis is on non-convex
and nonlinear MPC for the field of autonomous driving. In the next few sections, the essential
elements of MPC, like the dynamic model, the objective function, and the constraints will be
further detailed.
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14 Fundamental Concepts

2-2-1 Dynamic Model

At its core, MPC utilizes a dynamic model to predict the future system behavior. Complex
models provide better representations of the system behavior, but they also lead to high
computation times of the optimization problem. On the other hand, simplified models provide
good approximations in specific regions and are computationally less expensive. As MPC is an
iterative process and the prediction horizon is limited, it can sustain some model inaccuracies
that might be introduced through linearization or simplifications made during the modeling
process. In general, a discrete-time model can be expressed as:

xt+1
i = Fi

(
xt

i, ut
i

)
(2-9)

yt
i = qi

(
xt

i, ut
i

)
for each player i = 1, 2, . . . ,M

with states xi ∈ Rn, control inputs ui ∈ Rm, controlled (observable) outputs yi ∈ Ro, state
evolution function Fi : Rn×Rm 7→ Rn and output function qi : Rn×Rm 7→ Ro. In this work,
a continuous-time nonlinear kinematic bicycle model is used. Further details will be provided
in the next chapter.

2-2-2 Objective Function

The objective function in an MPC scheme includes the cost to be minimized and it consists
of the running cost and the terminal cost. The running cost is usually a weighted function
penalizing the deviation of the predicted states from the reference trajectory over the pre-
diction horizon, while considering minimal control efforts. On the other hand, the terminal
cost is the weighted tracking error between the predicted states and the reference at the final
prediction step of the horizon N . In general, an objective function at current time t looks
like the following

Ji =
N−1∑
k=0

(
x̃t+k

i

)T
Wq

(
x̃t+k

i

)
+

N−1∑
k=0

(
ut+k

i

)T
Wr

(
ut+k

i

)
︸ ︷︷ ︸

Running Cost

+
(
x̃t+N

i

)T
WN

(
x̃t+N

i

)
︸ ︷︷ ︸

Terminal Cost

(2-10)

where Ji is the objective value, x̃t+k
i = xt+k

i −
(
xt+k

i

)ref
signifies the tracking error between

the predicted trajectory and the reference trajectory at k time steps into the future from the
current time t. The weight matrices Wq ⪰ 0 (positive semi-definite) and Wr ≻ 0 (positive
definite) can put different emphasis either on tracking the reference trajectory or on limiting
the control efforts ui applied by the actuators, and hence prevent large controls leading to the
saturation or damage of the actuators. On the other hand, the positive semi-definite weight
matrix WN ≻ 0 is utilized at the last step of the prediction horizon to enforce convergence
to the target states.
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2-2-3 Constraints

One powerful feature of MPC that distinguishes it from other prominent optimal control
strategies, is its ability to incorporate system constraints in the optimization problem. For
example, constraints can be formulated on the control inputs, which often represent physical
limits that if the controller does not respect them, then the physical system enforces them,
leading to saturation of the actuators. In contrast, constraints on the states or the outputs
are usually desired constraints such that certain design requirements are met. In the context
of autonomous driving and game theory, there are additional constraints on safe and com-
fortable driving, like the collision avoidance constraints between players or the road boundary
constraints that enable the modeling of complex environments. In general, the constraints
can be expressed as elements of sets as follows

xt+k
i ∈ Xi ⊂ Rn for k = 1, ..., N (2-11)

ut+k
i ∈ Ui ⊂ Rm for k = 0, ..., N − 1

yt+k
i ∈ Yi ⊂ Ro for k = 1, ..., N

Thus, a general MPC optimization problem can look like as follows

u∗
i = arg min

ui

Ji (xi,ui)

s.t. xt+1
i = Fi

(
xt

i,ut
i

)
gi

(
xt

i,ut
i

)
≤ 0

¯
x ≤ xt

i ≤ x̄

¯
u ≤ ut

i ≤ ū

(2-12)

where the function gi(·) encapsulates all inequality constraints, and
¯
x, x̄,

¯
u, ū are the lower

and upper bounds on states and controls respectively.
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Chapter 3

Game Theoretic Planning

This chapter formulates the Generalized Nash Equilibrium Problem (GNEP) and proposes
several approaches to solve it efficiently. We implement these approaches in two simulated
scenarios; the highway ramp-merging and the four-way uncontrolled intersection. To incor-
porate the notion of intention into the problem formulation, we introduce a useful way to
quantify intention through Social Value Orientation (SVO). For each scenario, we examine
the effects of various intention values to the solution trajectories and the associated costs.
Finally, we make remarks on the performance and accuracy of the two approaches.

3-1 Generalized Nash Equilibrium Problem (GNEP)

The Nash equilibrium problem (NEP) was first defined by John F. Nash in 1950 [105]. It
describes a problem with M competing players, where each player i aims to minimize their
objective Ji(x,u) : X × U 7→ R, by choosing to play a strategy (or policy) si : X 7→ Ui from
a predefined strategy space Si. Note that in this work, to make the optimization problem
tractable, open-loop strategies will be considered, that is, we consider that the strategies
only depend upon time t, and not the current state of the system x, namely it holds that
ui = si(t). Therefore, throughout this work the term strategy is often used to refer to
the corresponding actions. Moreover, x and u are the concatenated vectors of joint states
and actions respectively over all players, namely x = (x1, . . . ,xM ) ∈ X ⊆ RMn and u =
(u1, . . . ,uM ) ∈ U ⊆ RMm, where is n is the number of states and m is the number of controls
(or inputs).
In the NEP the strategy spaces of each player Ui are independent of the decisions of all
the other players U¬i, that is there are fixed sets for all strategies u ∈ U and all players
i = 1, ...,M . So the optimization problem would look like this

min
ui

Ji(x,ui,u¬i) s.t. ui ∈ Ui (3-1)

where here we have used the alternative notation u = (ui,u¬i) to represent the vector of
joint actions over all players. The solution to this problem is called Nash Equilibrium (NE)
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18 Game Theoretic Planning

and describes a point in the combined strategy space S of all players, where no player can
unilaterally change their strategy to improve their objective [106].

Generalized Nash Equilibrium Problems (GNEPs) were first considered in [107], where their
solutions were termed social equilibria, because they were considered to resolve social conflicts.
The Generalized Nash Equilibrium Problem (GNEP) is an extension of the standard Nash
Equilibrium Problem to additionally include problems that allow the strategy set of one player
to depend on the strategies of all other players as well as on his own strategy [108]. Thus, for
each player this problem can be formulated as an optimization problem as follows

min
ui

Ji(x,ui,u¬i) s.t. ui ∈ Ui(u¬i) (3-2)

The combined strategy set of all players can be defined using the Cartesian product of their
individual strategy spaces

U(u) = U1(u¬1)× . . .× UM (u¬M ) (3-3)

It is generally known that GNEPs usually have infinitely many solutions. The following
definitions are based on the work of Dreves [108].

Definition 1. A vector u∗ = (u∗
i ,u∗

¬i) ∈ U(u∗) is called a Generalized Nash Equilibrium
(GNE), or a solution to the GNEP, if

J∗
i (x,u∗

i ,u∗
¬i) ≤ Ji(x,ui,u∗

¬i) (3-4)

holds for all players i = 1, ....,M simultaneously. Where ui ∈ Ui is any strategy that the
player i can possibly take.

Simply the above definition means that an equilibrium has been reached, when no player is
incentivized to decrease its cost function by unilaterally deviating from its own strategy. In
more concrete terms, this means that given the optimal strategies of all other players u∗

¬i any
change ui ∈ Ui from its optimal solution u∗

i will incur a higher cost Ji.

For this, we assume that the feasible sets are defined by inequality gi and equality hi constraint
functions

Ui(u¬i) := {ui ∈ Rm | gi(x,ui,u¬i) ≤ 0 and hi(xi,ui,u¬i) = 0} (3-5)

where x is the concatenated state vector over all players, since some constraints, like the
collision avoidance constraints for example, may couple the states (e.g. position) between
players, while others like the state dynamics constraints depend only on the states of each
player. In general, these constraints can depend not only on each player’s own control variables
ui but also on variables controlled by all other players u¬i.

Summarizing the optimization problem that each player i needs to solve in its general form,
is the following
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3-2 Solving GNEPs 19

u∗
i = arg min

ui

Ji(x,ui,u¬i)

s.t. hi(xi,ui,u¬i) = 0
gi(x,ui,u¬i) ≤ 0

¯
xi ≤ xi ≤ x̄i

¯
ui ≤ ui ≤ ūi

(3-6)

where
¯
xi, x̄i are the lower and upper bounds on the states,

¯
ui, ūi are the equivalent bounds on

the controls, hi are the equality constraints that usually ensure that the states of the players
evolve in a certain way (hi = ẋi − f(xi,ui) = 0), and gi are all the inequality constraints,
which in the context of autonomous driving can be the collision avoidance constraints and
the road boundary constraints that ensure safe driving.

3-2 Solving GNEPs

There are several ways to reformulate GNEPs, or some subclasses of them, as optimization
problems, fixed-point problems or (quasi-) variational inequalities. Many algorithms that
are used to solve the resulting problems only find a special solution, whereas there are often
multiple (typically infinitely many) solutions of the GNEP. Therefore, beside algorithms that
can find one special solution, also methods characterizing the entire solution set are of interest.

3-2-1 Iterated Best Response (IBR)

The most straightforward way to solve the system of problems of Equation 3-6 simultaneously
was used by Spica et al [96] and it is called the Iterated Best Response (IBR for short). This
is a numerical method to compute a Nash equilibrium game, by successively solving each
player’s problem, producing its optimal strategy u∗

i , given the strategies of all the other
players u¬i from the previous iteration (optimal values computed in the previous iteration).
When the stationarity condition ||u − uprev|| < ϵ (where ϵ is an arbitrarily small number) is
satisfied, a Nash equilibrium is reached by definition (see Definition 1). Thus, by sequentially
solving each individual problem, we solve a simultaneous Nash game in the sense that the
players reach a consensus in a negotiation process about what decisions they should take.
The algorithm is summarized in 1.

Algorithm 1: Iterated Best Response
1 Initialize u, uprev;
2 while ||u− uprev|| > ϵ do
3 forall agents i = 1,...,M do
4 u∗

i := Solve Problem 3-6 using a nonlinear solver
5 end
6 Update: uprev = u,u = u∗

7 end

Since this formulation of the game contains M separate optimizations dependent on each other
across iterations, in theory it can take infinitely many iterations to converge to an equilibrium,
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20 Game Theoretic Planning

which of course can restrict its use in even simple driving scenarios and environments. This
approach will be explained later on.

3-2-2 KKT-based Formulation

Instead of solving for the Nash equilibrium in an iterative fashion, we can reformulate the
set of optimization problems in Equation 3-6 as a single problem by introducing the Karush-
Kuhn-Tucker (KKT) constraints [108] to enforce optimality for each player’s optimization
problem. This way possibly unnecessary many iterations of the IBR algorithm that may
perhaps make its use prohibitive in certain complex applications, could be avoided.

To recast the problem as one single optimization problem, first the cost function is redefined
as a sum of each player’s individual cost function Ji, namely J =

∑
i Ji. Then, we formulate

an additional stationarity constraint for every player, which enforces optimality for each
optimization subproblem. This formulation can be handled easier than resolving a separate
subproblem optimization and all players have symmetrical roles, since there is no hierarchy
or ordering among them, which adheres to the very definition of a Nash game.

Firstly, the Lagrangian function is defined by augmenting the cost function with all the
inequality constraints as additional terms

Li(x,u) = Ji(x,u) + λT
i gi(x,u) + µT

i hi(x,u) for every player i = 1, ...,M (3-7)

where λi ∈ R|gi| are the vectors of Lagrange multipliers of each player i for the inequality
constraints gi with length the number of inequality constraints |gi|, while µi ∈ R|hi| are the
corresponding multipliers for the equality constraints hi of size |hi|.

The most important condition is the stationarity (or optimality) conditions that ensures each
of the subproblems of players of Equation 3-6 are accounted for and solved. This is done by
setting the gradient of the Lagrangian with respect to the respective design variables (xi,ui)
to zero.

∇(xi,ui)Li(x,u) = 0 → ∇(xi,ui)Ji(x,u) + λT
i ∇(xi,ui)gi(x,u) + µT

i ∇(xi,ui)hi(x,u) = 0
(3-8)

In this work, it is assumed that the equality constraints hi in the context of autonomous
driving are the discrete state dynamics, that is hi = xk+1

i −Fi(xk,uk) = 0. As such, additional
multipliers µi are introduced for each equality constraint hi into the Lagrangian function Li.
These multipliers together with the λi multipliers constitute additional design variables and
would further increase the design space. However, they make the optimization problem more
sparse, which is a nice property to have for large-scale nonlinear problems, when computing
gradients, since we can perform linear algebra operations with linear complexity in the horizon
length N [109]. The alternative is to solve these equations with respect to the states xi and
substitute them back into the cost function Ji, hence we have functions with just the controls
ui. This greatly simplifies the problem as it removes this set of constraints and reduces
the size of the design space, namely the number of design variables, from Rn+m (states and
controls) to just Rm (controls). In this thesis, it was noticed that introducing the additional
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3-3 Vehicle Dynamics Modeling 21

µi multipliers was more beneficial as far as performance and convergence are concerned, as it
will be understood later on.

For the inequality Lagrange multipliers λi it must hold that

λi ≥ 0 (3-9)
λT

i gi(x, u) = 0 for every player i = 1, ...,M

The constraints in Equation 3-9 are called complementarity constraints, which along with
the requirement that the multipliers are always non-negative, ensure the feasibility of each
player’s subproblem. For the equality multipliers there are no restrictions to which value they
can take, that is µi ∈ R|hi|.

Summarizing the new optimization problem looks like as follows

(x∗,u∗,λ∗,µ∗) = arg min
x,u,λ,µ

M∑
i=1

Ji(x,u)

s.t. hi(xi,u) = 0
gi(x,u) ≤ 0
∇(xi,ui)Ji(x,u) + λT

i ∇(xi,ui)gi(x,u) + µT
i ∇(xi,ui)hi(x,u) = 0

λT
i gi(x,u) = 0

¯
xi ≤ xi ≤ x̄i

¯
ui ≤ ui ≤ ūi

λi ≥ 0, µi ∈ R|hi| for every player i = 1, ...,M

(3-10)

According to the work of Dreves [108], to find a solution for the general (non jointly con-
vex) GNEP, the existing approaches may be divided into three groups; methods based on
Quasi-Variational Inequality formulations, Penalty-type methods, and Interior Point methods.
Among these methods, the Interior Point methods or otherwise known as barrier methods,
are proven to be the most efficient for large nonlinear optimization problems by generat-
ing a sequence of points (x,u,λ,µ) at each simulation step in the interior of the feasible
space [108], [110]. In this work, as a solver a public library in Python is used that is called
IPOPT. More information about the inner workings of the solver can be found in the work
of Wachter [111].

3-3 Vehicle Dynamics Modeling

To be able to focus this work on the implementation of an algorithm that can successfully
solve a GNEP, a nonlinear kinematic bicycle model is used to predict the vehicles’ motion
within a prediction horizon framework, as described in Section 2-2 under an MPC scheme.
The corresponding equations for this model for every player i are given by [4] and the notation
can be better understood from Figure 3-1.

The state space of each vehicle is comprised of the position coordinates of the Center of
Mass (COM) px and py in the inertial frame (X,Y ) respectively, the inertial heading angle
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ψ or otherwise known as yaw angle, the steering angle δ and finally the vehicle’s body-frame
velocity v. On the other hand, the control inputs ui are the body-frame acceleration α of the
COM in the same direction as the velocity and the steering angular velocity ω of the front
wheels. In this work, the reason the steering angle δ was selected as a state instead of as
a control input, is that we can easily bound not only the steering angle δ, but also its rate
of change ω through box constraints, namely

¯
xi ≤ xi ≤ x̄i and

¯
ui ≤ ui ≤ ūi respectively.

Alternatively, other works have used the steering angle δ as control input and bounded its rate
of change ω by introducing a corresponding term in the cost function that penalized large
deviations from its bounds. This approach of course introduces more complexity into the
formulation of the cost function and therefore the more simplistic formulation was preferred.

ṗx

ṗy

ψ̇

δ̇

v̇


︸ ︷︷ ︸

ẋi

=



v cos(ψ + β)

v sin(ψ + β)
v

ℓf + ℓr
tan(δ)

0

0


+



0 0

0 0

0 0

1 0

0 1



ω
α


︸︷︷︸
ui

︸ ︷︷ ︸
fi(xi,ui)

with β = tan−1
(

ℓr
ℓf + ℓr

tan(δ)
)

(3-11)

Furthermore, ℓf and ℓr represent the distance from the COM of the vehicle to the front and
rear axles respectively, while β, commonly known as slip angle, denotes the angle between the
vehicle’s velocity v at its COM and the vehicle’s longitudinal axis. Since in most vehicles the
rear wheels cannot be steered, we further assume that δr = 0, thus it holds δ = δf , meaning
that the steering comes only from the front wheels. Lastly, since only planar motions are
considered, pitch and roll dynamics as well as their corresponding load changes are neglected.
Forces, like rolling resistance and aerodynamic drag are also neglected.

Figure 3-1: Kinematic bicycle model expressed in the inertial frame [4].

To make the problem tractable, we discretize the planning horizon and we assume piecewise
constant control inputs for all players, i.e. ui(t) = uk

i ∆t = const, ∀t ∈ [t0, t0 + k∆t], where
∆t is the constant sampling interval. By applying an Euler discretization scheme, the state
evolution for each player i can be expressed as follows
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xk+1
i = xk

i +
∫ k+∆t

k
fi (xi(t),ui(t)) dt = Fi

(
xk

i ,uk
i

)
(3-12)

3-4 Objective Function

We now turn to the question of how to design each player’s cost function Ji that encodes
desirable properties and denotes the preference of each player for a specific strategy. These
properties for example could be that the generated trajectory for each vehicle across the
planning horizon adheres to a reference trajectory (usually the centerline of the lane) or that
each vehicle eventually reaches its respective destination (target or goal).

To follow a reference trajectory is achieved by penalizing the difference between the vehicle’s
current position pk

i = (px, py) and orientation ψ at every time step k of the horizon N from
the target (or sometimes called reference) position and orientation, which is captured by the
difference |xk

i − xtar
i |. On the other hand, to ensure that each vehicle reaches its destination,

we introduce a terminal cost WN at the very last step of the horizon k = N , thus penalizing
its deviation from its dedicated final position xtar

i .

Additionally, regularization terms for the control inputs ui = (ω, α) for the angular velocity
and the longitudinal acceleration respectively are utilized to produce more realistic as well
as comfortable and safe trajectories without sudden jerks and movements. Finally, a term
is added that penalizes close proximity of each vehicle i to all other surrounding vehicles j,
thus ensuring that the vehicles not only do not violate the collision avoidance constraints,
but also they can keep a large enough distance among them to make maneuvers and perform
emergency braking, if necessary. However, in order to avoid the case, where the vehicles incur
very high costs for being far apart, we activate this penalty term only when the vehicles are
sufficiently close by introducing an indicator function 1(·) that takes the value 1, if and only
if, the given condition inside its argument holds true,

1
(
||pk

i − pk
j ||2 < dprox

)
≡


1 if ||pk

i − pk
j ||2 < dprox

0 otherwise
(3-13)

where dprox denotes the distance threshold at which proximity cost is activated. The resulting
objective function for each player to minimize is then

Ji(x,u) =
N−1∑
k=0

∣∣∣∣∣∣xk
i − xtar

i

∣∣∣∣∣∣2
Wq︸ ︷︷ ︸

Reference Cost

+
N−1∑
k=0

∣∣∣∣∣∣uk
i

∣∣∣∣∣∣2
Wr︸ ︷︷ ︸

Controls Cost

+ (3-14)

+
N∑

k=0

M∑
j¬i

1
(
||pk

i − pk
j ||2 < dprox

) ∣∣∣∣∣∣||pk
i − pk

j ||2 − dprox

∣∣∣∣∣∣2
Wp︸ ︷︷ ︸

Proximity Cost

+
∣∣∣∣∣∣xN

i − xtar
i

∣∣∣∣∣∣2
WN︸ ︷︷ ︸

Terminal Cost

where Wq,Wr,Wp,WN are matrices that weight the importance of the respective compo-
nents of the cost function for player i (see Section 2-2 on MPC). It is worth noting that at
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first this cost function might seem quadratic, but it is nonlinear and nonconvex due to the
nonlinear vehicle dynamics xk+1

i = Fi(xk
i ,uk

i ), but most importantly due to the proximity
term that introduces the current position of all other surrounding vehicles pk

j = (px, py) into
the player’s i cost function. As a last step, having formulated each player’s individual cost
function Ji, we can then incorporate the intention of each player into the final formulation of
the objective function of Equation 3-10.

3-4-1 Incorporating Intention

In the context of autonomous driving, understanding the intention of surrounding vehicles can
lead to better prediction of their trajectories and subsequently to safer decision-making. To
quantify intention, a term from the field of Social Psychology is utilized, called Social Value
Orientation (SVO) [112], [113]. This is a value that describes how much a person values other
people’s welfare in relation to their own. Each individual can be modeled as an agent that
selects actions so as to maximize their own utility function, or equivalently to minimize their
own cost function. Each individuals’ social preferences are modeled by expressing their own
cost function as a combination of two terms, the ego agent’s selfish cost Ji and a term that
captures all other agents’ cost Jj for all players j that are not player i [114].

Gi(x,u, ϕi) = cos(ϕi)

 1
M − 1Ji


︸ ︷︷ ︸
Cost to Self

+ sin(ϕi)

 1
M − 1

M∑
j¬i

Jj


︸ ︷︷ ︸
Cost to Others

(3-15)

where ϕi is the SVO value of the player i. It is an angle, whose value affects the weights of
the two cost terms, and therefore the balance between selfish and altruistic rewards.This way
the personality of each individual can be characterized using the appropriate SVO value. For
example, in the simple three-agent case an SVO value of 90◦ corresponds to fully altruistic
behavior by considering only the effect of strategies on the cost of others, since

G1(x,u, ϕ1 = 90◦) = (1/2) cos(90◦) J1︸ ︷︷ ︸
Cost to Self

+ (1/2) sin(90◦) (J2 + J3)︸ ︷︷ ︸
Cost to Others

= 1
2(J2 + J3) (3-16)

whereas an SVO value of 0◦ corresponds to an individualistic (egoistic) agent, where G1 =
J1/2. A more comprehensive overview of the behavior classification according to the SVO
value is illustrated in Figure 3-2. In that figure, it becomes clear that angles between 0 and 90
degrees are considered more prosocial, meaning that the players tend to sacrifice some of their
own welfare for the benefit of others, while the opposite is true for angles between 0 and -90
degrees, where the behavior is considered more competitive and egoistic. Here, we are mostly
interested in SVO values between 0 and 90 degrees, as it is desirable the AV (Autonomous
Vehicle) to exhibit prosocial behavior, which tends to be the case in real-life scenarios, where
drivers do not act competitively or aggressively by risking their safety. From here onwards,
we will consider the reformulated cost functions Gi, instead of the costs Ji, when we solve the
GNEP of Equation 3-10.
All things considered, Social Psychology has shown that each individual has personal prefer-
ences on how to value their utility in relation to that of the others and this can be quantified
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Figure 3-2: Behavior characterization according to the SVO value (angle) of each player.

using SVO values. SVO has been found to affect cognitions and account for behavior across
a range of interpersonal decision making contexts, specifically in the domain of negotiation
settings [115] and resource dilemmas [116], [117]. This way SVO can predict effectively nego-
tiation strategies and cooperation motives in games involving multiple individuals [118], [119].

3-5 Constraints

To represent physical limitations of the Autonomous Vehicles (AVs) in the real world, a
number of constraints have to be imposed on the optimization problem. First, the area, in
which the AVs are allowed to drive, needs to be restricted to match the given road layout. This
is achieved by formulating appropriate road boundary constraints depending on the given
setting. Next, to ensure safe driving at all times we need to formulate collision avoidance
constraints for all players. Both aforementioned classes of constraints are inherently non-
convex, since they define areas that the vehicles must not occupy.

In general, the set of constraints that keep the player i inside the track boundaries Wlane

(width of the lane) at each time step k is given by

− Wlane

2 ≤ n(pk
i )T

[
pk

i − τ(pk
i )
]
≤ Wlane

2 (3-17)

where n(·) and τ(·) are the unit normal and tangent vectors respectively of the track’s cen-
terline computed at the player’s current position pk

i . The above equation further simplifies,
when the track is composed of straight lines, meaning there is no road curvature, as is the
case with this work, where we consider scenarios, like lane-merging on a highway and inter-
section crossing. If one considers a curved track, like in race track, then the interested reader
is prompted to the work of Spica et al [96], where the track needs to be parameterized by its
arc length.

On the other hand, in order to avoid potential collisions, each vehicle must maintain at all
times a minimum distance R with respect to all other surrounding vehicle, so the collision
avoidance constraints for each player i are formulated as follows
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∣∣∣∣∣∣pk
i − pk

j

∣∣∣∣∣∣
2
≥ R for every j¬i (3-18)

In this work, we have modeled the vehicle’s shape as disks with radius R, as this is the
simplest formulation of the constraints in terms of computation time, but it is certainly not
the most accurate, since the true shape of a vehicle resembles more a rectangle than a circle.
The reason we do not consider rectangular shapes is, that there is no closed form solution
to compute the minimum distance between two rectangles. Other works tackle this issue by
considering multiple smaller disks in series with each other, thus capturing better the shape
of a rectangle (see Figure 3-3) [120], while other works consider ellipsoids in conjunction with
disks [121].

Figure 3-3: Vehicle as a series of linked discs. All three discs collectively represent the vehicle.

Finally, the last the set of constraints are the KKT conditions and the bound constraints for
the states and control inputs. These are formulated for each player individually, as described
in Equation 3-10 and following the above definitions of the cost function and constraints. To
be more precise, gi(·) is the concatenated vector of inequality constraints containing the road
boundary constraints of Equation 3-17 and the collision avoidance constraints of Equation
3-18.

3-6 Numerical Simulations

In this work, for our simulations we will consider two different settings; a ramp-merging
scenario in a highway presented in Section 3-6-1, and an uncontrolled four-way intersection
presented in Section 3-6-2.

In our implementation, we solve the GNEP game once for all players simultaneously using
the KKT-based formulation in a receding horizon fashion and give the resulting actions to all
players. This means we assume full knowledge over the objective functions of each vehicle Ji

and their respective intentions ϕi, namely we assume full knowledge over the function Gi of
Equation 3-15. Note that in the problem formulation of Equation 3-10, we use the sum of each
player’s reformulated cost Gi as the objective function to be minimized, that is G =

∑M
i=1Gi.

Lastly, we set up the optimization problem with CasADi [122], a symbolic software frame-
work for nonlinear optimization and optimal control, including automatic differentiation for
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gradient computation. We then employed IPOPT [111], a widely used interior point solver, to
solve the resulting nonlinear optimization problem. All simulations were conducted in Python
and on a single core of an Intel i7-6600U @ 2.6 GHz.

3-6-1 Highway Ramp-Merging

The ramp-merging scenario consists of a three-lane road, where one of the vehicles (au-
tonomous vehicle, sometimes called ego or robot) will be required to perform a maneuver in
order to merge into the nearby lane. This might seem simple at first, but even if we consider
dense traffic, like in Figure 3-4, the decision-making problem becomes more complicated. In
a merging scenario, the vehicle must identify a gap in the highway traffic that is safe for
merging and complete the merging maneuver, before the ending of its current lane. Vehicles
driving in the target lane may choose either to let the merging vehicle (robot) merge behind
them, commonly referred to as proceed, or choose to yield, that is to let the robot to pass
in front of them. Choosing to proceed or to yield depends not only on the traffic situation,
namely the relative position and velocity between the vehicles, but also on the driver behavior
(e.g. aggressive, prosocial, altruistic etc.). For instance, in a similar situation, an aggressive
driver may tend to proceed, while a cautious driver may tend to yield. In such a case, it is
important for the merging vehicle to identify the cooperation intents (either to proceed or to
yield) of the interacting vehicles and to assess whether a gap is safe for merging.

Figure 3-4: Ramp-merging in a highway under dense traffic [5].

First, we consider a simple ramp-merging scenario with two agents and we will examine
how the solution trajectories of each player change when their SVO value ranges from 0
degrees (egoistic) to 90 degrees (altruistic). Then, we will continue to progressively add more
players to observe the changes in decision-making of the merging vehicle and the surrounding
vehicles. In Table 3-1, we present the bounds on states and controls, while in Table 3-2, the
game parameters are summarized, including the cost function’s weights of every player, where
the diag(·) function assigns each argument in the diagonal of a square matrix.

Table 3-1: Bounds on states and control inputs.

Variable Symbol Value

Steering angle δ [−180◦, 180◦]
Steering rate ω [−50, 50] deg/s
Acceleration α [−5, 3] m/s2
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Table 3-2: Parameter values for the ramp-merging scenario.

Parameter Symbol Value

Prediction Horizon N 20
Simulation Time T 7 s
Sampling Time ∆t 0.2 s
Reference cost weight Wq diag(3, 2, 100, 100, 0) for (px, py, ψ, δ, v)
Proximity cost weight WP 0.7
Controls cost weight Wr diag(5, 5) for (ω, α)
Goal cost weight WN 4
Radius of collision R 1 m
Lane width Wlane 3 m
Vehicle length ℓ 2 m

2-Agent Game: Egoistic Behavior

In this case we consider that both players behave selfishly, meaning both their SVO value is
set to 0. This way we can examine their behavior, when their actions are not affected by the
actions of the other, since each player considers only its own cost (see Equation 3-15).

In Figure 3-5, the resulting optimal trajectories of both players are illustrated. From this fig-
ure, it is worth noticing that Agent 1 does not deviate from his reference trajectory (centerline
of his lane), which is to be expected, since he has no incentive to momentarily increase his
own cost, in order to decrease the cost of Agent 2. This can also be corroborated by Figure
3-6, where the penalties incurred to each agent are depicted by taking the first set of actions
[u∗]0i at k = 0 of every player i out of optimal sequence [u∗]0:N−1

i over the entire prediction
horizon N, as it was explained in the MPC scheme (see Section 2-2). From that figure, the
penalties of Agents 1 related to lateral control and orientation control (deviation of its head-
ing angle from 0 degrees), clearly indicate that Agent 1 is not incentivized to deviate even in
the slightest from its reference trajectory to allow Agent 2 to merge. However, in Figure 3-7,
from the velocity and acceleration profiles it can be observed that Agent 1 is decelerating,
not because it is in his interest to further increase his cost on "control efforts" for the benefit
of the other player, rather he does so to avoid a possible collision with Agent 2 and to leave
sufficient distance between them due to the proximity penalty.

On the other hand, Agent 2 considering exclusively its own cost, tries to compete with Agent
1 and to perform the merge, so as to better adhere to his reference trajectory and decrease his
"lateral control" penalty. This leads to Agent 2 accelerating, hence forcing Agent 1 to brake
to avoid any collision and also incur a higher proximity penalty. All this results in the merge
being completed, when Agent 2 has almost reached the boundary and the two vehicles seem
to be competing with one another as to which one will prevail. At this point it should be
noted that the initial velocity for Agent 1 is set slightly higher than Agent 2 (merging vehicle),
since vehicles as part of the oncoming traffic in a highway setting tend to move faster than
the ones just entering the highway. Also a higher velocity of Agent 1 might highlight more
clearly his intentions, that is, whether he accelerates or decelerates to allow the other player
to merge.
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Figure 3-5: Optimal trajectories for ϕ = (0, 0). Solid lines denote actual trajectories for every
player, while doted lines denote the predicted trajectories across the planning horizon N at a
specific simulation step k.

Figure 3-6: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step. The "control efforts"
penalties indicate the costs associated with the control inputs (acceleration and steering rate).
The "lateral" and "orientation control" costs indicate the deviation from the reference trajectory
(centerline of the lane). Finally, the "proximity" costs indicate the vicinity of the vehicles without
violating the collision avoidance constraints.
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Figure 3-7: State (velocity and steering angle) and control input (acceleration and steering rate)
profiles for ϕ = (0, 0).

2-Agent Game: Altruistic Behavior

Next we consider the case where one of the players is altruistic, i.e. values of SVO close to 90
degrees, meaning that for the most part one of them considers the welfare of the other player
while trying to minimize its own cost.

In Figure 3-8, we present the solution trajectories, where Agent 1 behaves altruistically (ϕ =
80◦), while Agent 2 is egoistic (ϕ = 0◦), although he could take any value between 0 and 45
degrees without changing the outcome. We can observe that Agent 2 successfully merges in
front of Agent 1. The reason is that Agent 1 decelerates greatly to create enough space for
Agent 2 to merge, as we can notice from the velocity profile in Figure 3-10, not purely to avoid
collision, as it was the case previously. On the other hand, the velocity of the Autonomous
Vehicle (AV) changes slightly to perform the merging manoeuver, since it considers only its
own cost. Finally, in Figure 3-9, we can observe a slight increase in the "lateral control"
penalty of Agent 1 and a large increase in the control penalty. That means that Agent 1, not
only slows down to accommodate the robot, but also is willing to alter its course and incur
a higher cost. This is the result from having a high SVO value, where the behavior of the
vehicle is considered more altruistic, hence sacrificing a bit of its own welfare for the benefit
of the others.
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Figure 3-8: Optimal trajectories for ϕ = (80, 0). Solid lines denote actual trajectories for every
player, while doted lines denote the predicted trajectories across the planning horizon N at a
specific simulation step k.

Figure 3-9: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step. The "control efforts"
penalties indicate the costs associated with the control inputs (acceleration and steering rate).
The "lateral" and "orientation control" costs indicate the deviation from the reference trajectory
(centerline of the lane). Finally, the "proximity" costs indicate the vicinity of the vehicles without
violating the collision avoidance constraints.
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Figure 3-10: States and control inputs evolution for ϕ = (80, 0).

Now if we reverse the behaviors of the two agents, such that the merging vehicle (Agent 2)
is altruistic (ϕ = 80), while Agent 1 is being egoistic (ϕ = 0), we observe a very different
outcome as we might expect. In Figures 3-11 and 3-12, Agent 2 merges behind the oncoming
vehicle (Agent 1), while it decelerates slightly to allow Agent 1 to pass by him. Also by
observing the steering angle of the AV, we notice that the AV performs large maneuvers
attempting to merge. All this suggests that the AV incurs a high cost on its control inputs
to accommodate Agent 1.

Figure 3-11: States and control inputs evolution for ϕ = (0, 80).
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Figure 3-12: Optimal trajectories for ϕ = (0, 80). Solid lines denote actual trajectories for every
player, while doted lines denote the predicted trajectories across the planning horizon N at a
specific simulation step k.

Finally we consider the cases where one or all agents behave in a prosocial manner, meaning
that the SVO values range from about 30 to about 60 degrees. Players that take on these
SVO values tend to assign the same level of significance both to their own welfare as well as
to the welfare of all the other players. It has been observed that in the simple 2-agent case
with no other surrounding vehicles, the result of this is usually in the favor of the merging
vehicle, where it is allowed to complete successfully the merge.

3-Agent Games

We continue to further understand how a social conflict can be resolved by adding more players
and subsequently more complexity into the problem. Here, we have two non-autonomous
players (leader and follower scheme) on the same lane, while the third one is the autonomous
vehicle that will attempt to merge either between them or behind the follower.

In Figure 3-13, the two players behave selfishly considering only their own costs, hence the
follower (Agent 1) does not create enough space for the AV (Agent 3) to safely merge. In fact,
as we can see from Figure 3-14, Agent 1 slightly accelerates, bridging any gap between him
and the leading vehicle (Agent 2), while Agent 3 slows down and merges behind all vehicles.

On the other hand, if we consider a more prosocial attitude on the part of the non-autonomous
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Figure 3-13: Optimal trajectories for ϕ = (0, 0, 50). Solid lines denote actual trajectories for
every player, while doted lines denote the predicted trajectories across the planning horizon N.

Figure 3-14: States and control inputs evolution for ϕ = (0, 0, 50).
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vehicles, it will lead to a successful merge within the gap, as we can notice in Figure 3-17
from the simulated trajectories. In Figure 3-15, the follower (Agent 1) can be clearly seen to
decelerate greatly in just a few time steps to create enough space for the AV to merge. The
impact of that action can be observed from its cost function in Figure 3-16, where Agent 1
has incurred the highest penalty for control efforts, while on the lateral and orientation costs
we also observe a slight increase, indicating that this player attempted to deviate slightly
from its course, to accommodate the AV.

Figure 3-15: States and control inputs evolution for ϕ = (80, 80, 0).

Figure 3-16: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step. The "control efforts"
penalties indicate the costs associated with the control inputs (acceleration and steering rate).
The "lateral" and "orientation control" costs indicate the deviation from the reference trajectory
(centerline of the lane). Finally, the "proximity" costs indicate the vicinity of the vehicles without
violating the collision avoidance constraints.
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Figure 3-17: Optimal trajectories for ϕ = (80, 80, 0). Solid lines denote actual trajectories for
every player, while doted lines denote the predicted trajectories across the planning horizon N.

4-Agent Games

Last but not least, we explore the case with 4 players, three of which are on the same lane
(one leader and two followers) and the other of course is the merging vehicle. That way, we
can distinguish different behaviors on whether the vehicle manages to merge in the first gap
created by the leader and one of the followers, or in the second gap between the two followers,
or even to merge behind all vehicles.

For instance, one such social equilibrium is illustrated in Figure 3-18 by considering that all
players behave selfishly. This results in the autonomous vehicle to merge behind all vehicles,
although he could be allowed to merge either between Agent 3 and Agent 2 (rightmost gap)
or between Agent 2 and Agent 1 (leftmost gap). Clearly, the other agents considering their
own welfare, did not create enough space for the robot to safely merge. Therefore, by looking
at their velocity and acceleration profiles in Figure 3-19, we can notice that the robot senses
that the other agents accelerate and it slows down abruptly to avoid any possible collisions.
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Figure 3-18: Optimal trajectories for ϕ = (0, 0, 0, 0). Solid lines denote actual trajectories for
every player, while doted lines denote the predicted trajectories across the planning horizon N.

Figure 3-19: State and control input profiles for ϕ = (0, 0, 0, 0).

Master of Science Thesis Ilias Seferlis



38 Game Theoretic Planning

Figure 3-20: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step.

Conversely, if we consider one of the non-autonomous agents to be more prosocial or even
altruistic, then a successful merge is possible. This can be seen in Figure 3-22, where Agent
2 exhibits an altruistic behavior by decelerating just enough to allow the robot (Agent 4) to
merge in front of him, while the robot has accelerated slightly to complete the merge. In
fact, in Figure 3-21 it is noteworthy that at times around 2-3 seconds Agent 2 and Agent
4 have essentially swapped speed. When the merge is complete, Agent 2 starts accelerating
again so that Agent 1 behind him will not have to brake heavily. Finally from Figure 3-
23, we can observe the penalty that Agent 2 incurs due to his deviation from the reference
trajectory ("lateral" and "orientation" control), which highlights the sacrifice Agent 2 makes
to accommodate Agent 4 and decrease his cost function.

Figure 3-21: State and control input profiles for ϕ = (0, 80, 0, 0).
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Figure 3-22: Optimal trajectories for ϕ = (0, 80, 0, 0). Solid lines denote actual trajectories for
every player, while doted lines denote the predicted trajectories across the planning horizon N.

Figure 3-23: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step.
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Finally, we can observe similar behavior, when we consider Agent 1 to have an altruistic
behavior (ϕ = 80◦) as in Figure 3-24. In fact, we can notice that, by allowing the agents to
switch to any lane freely, Agent 1 even switches to the adjacent top lane in order to create
enough space for Agent 4 to merge. Naturally, Agent 1 can execute this maneuver with
greater ease than the other agents, given that there are no other vehicles in close proximity
or occupying the adjacent lane. In addition, sometimes braking suddenly may cause some
discomfort to the passengers, which in this case can be resolved by switching to another lane.
Thus, from Figure 3-25 it is evident that Agent 1 is willing to incur high orientation and
lateral control costs to accommodate Agent 4. However, the costs are significantly mitigated
once it successfully switches to the top lane.

Figure 3-24: Optimal trajectories for ϕ = (80, 0, 0, 0). Solid lines denote actual trajectories for
every player, while doted lines denote the predicted trajectories across the planning horizon N.
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Figure 3-25: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step.

3-6-2 Uncontrolled Intersection

Next we consider a four-way uncontrolled intersection scenario, where there are no traffic
signals or signs of any kind that can give priority to one vehicle over another. For this scenario,
it is intuitively clear that the interaction admits multiple solutions, since the vehicles need
to determine on their own which will cross first. This is a more complicated scenario in the
sense that all vehicles need to anticipate which solution the other vehicles are aiming for to
safely navigate the intersection. In Game Theory, this multimodality of behavior manifests
as a multiplicity of solutions, that is, a situation in which the problem admits multiple Nash
equilibria.

In this scenario, it seemed relevant that we should focus more on a 4-agent game instead
of a 2-agent or 3-agent game, because it will showcase more clearly the interactions among
the vehicles. We have kept the same game parameters as presented in Table 3-2, with the
exception that we have reduced the prediction horizon to N = 10, since it was deemed
adequate to simulate the vehicles close to the intersection and a longer horizon did not offer
greater performance or accuracy benefit. Here, we distinguish two distinct social equilibria
according to the SVO value of all players.

First possible outcome is illustrated in Figure 3-26, where all players behave selfishly consid-
ering only their own welfare. From this we can observe that Agent 1 passes before Agent 2,
where the former accelerates and the latter decelerates. We also observe a similar behavior
and outcome between Agents 3 and 4, in which Agent 4 passes before Agent 3. Of course these
deviations from the reference trajectory, especially for Agents 1 and 3 that incur the highest
"lateral control" penalties (see Figure 3-27), are the result of collision avoidance intentions
and not the manifestation of some degree of cooperation or of social behavior.
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Figure 3-26: Optimal trajectories for ϕ = (0, 0, 0, 0). Solid lines denote actual trajectories for
every player, while doted lines denote the predicted trajectories across the planning horizon N.

Figure 3-27: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step.
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Second social equilibrium is depicted in Figure 3-28, in which we observe that by assigning
a higher SVO value for Agent 2 (ϕ = 60◦), it crosses sooner the intersection than Agent
1. In this case, we can notice from Figure 3-29 that Agent 2 is more prone to deviate
slightly from its lane and accelerate to resolve the social conflict with Agent 1, as a result
of it being more prosocial. This outcome differs from what we might expect in the highway
lane-merging scenario, in which increasing one’s SVO value has the effect of yielding to the
neighboring vehicle. Here, increasing one’s SVO value seems to have the effect that the player
tends to sacrifice more of its own comfort to reach a negotiation strategy, even if that means
accelerating and making more aggressive maneuvers incurring higher costs (see Figure 3-30
on penalties incurred).

Figure 3-28: Optimal trajectories for ϕ = (0, 60, 0, 0). Solid lines denote actual trajectories for
every player, while doted lines denote the predicted trajectories across the planning horizon N.
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Figure 3-29: State (velocity and steering angle) and control input (acceleration and steering
rate) profiles for ϕ = (0, 60, 0, 0).

Figure 3-30: Penalties incurred by taking the first actions [u]0i of every player i out of the optimal
sequence [u]0:N−1

i (where N is the planning horizon) at each simulation step.
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3-6-3 Discussion on Performance

In this section, we will compare the different methods presented previously with respect to
their computational cost and performance of the solution. To better quantify the performance,
we ran the algorithms against several variations of SVO preferences (games), as well as against
a non-interactive baseline algorithm. For the baseline algorithm, each agent computes their
policy as a single agent, and does not consider the interactions and rewards of the other agents
in the system. Instead, all other agents are seen as simple dynamic obstacles, with simple
lane-keeping actions and no predictions about their changes in acceleration and steering angle.
We refer to this algorithm as “Non-Interactive”, since it does not solve any game-theoretic
problem (GNEP). We can, thus, directly observe the benefits provided by an interaction-
aware approach, such as game-theoretic planning.
To better visualize the results, we show in Figure 3-31 the solve times, gathered by solving
multiple games under various known SVO values for the multiagent cases. In that figure, we
can observe fast computation times for the non-interactive algorithm with a mean around
0.1 s. There is a slight increase in its mean solve time with the number of agents, but
it is considered quite trivial in comparison. This result is to be expected, since no strong
interactions among agents are considered and no resolution of social conflicts is taking place,
hence the optimization problem is greatly simplified. This approach might be fast, but it
leads to conservative and possibly competitive and aggressive trajectories on the part of the
autonomous vehicle that can jeopardize the comfort and safety of all traffic participants.

Figure 3-31: Solve times for the highway ramp-merging scenario over different solvers.

IBR also shows superior computational performance over KKT, since in the highway ramp-
merging scenario it converges in just 2 iterations. This means that our initial guess is very
close to the optimal solution found by the algorithm. This is also to be expected, since in
that scenario the trajectories of all agents are mostly linear across the entire simulation, with
the exception of the autonomous vehicle that performs the merging maneuver and slightly
deviates from its current lane. However, as it was explained in Section 3-2, this performance
is not guaranteed in other more complicated scenarios, involving more complex road settings
with many obstacles and curved boundaries. In those cases, IBR may take an unacceptable
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number of iterations to converge to a local solution, especially if the initial guess is chosen very
poorly, where it might not converge at all. Conversely, potential reasons the KKT algorithm
is considerably slower than the IBR formulation among others, are its much larger design
space and its significantly smaller feasible space due to more constraints present. To be more
precise, the KKT formulation considers as optimization variables both states x ∈ RM×n×N

and controls u ∈ RM×n×N over the entire prediction horizon N and over all M players,
as well as the Lagrange Multipliers λ ∈ RM×|gi|,µ ∈ RM×|hi|. In comparison, the IBR
formulation, when solving each individual optimization problem, considers only the controls
of each player over the prediction horizon N, namely ui ∈ Rm×N . Another reason for KKT’s
inferior computational performance is its total number of constraints that further restrict the
feasible space of the optimal solution. In particular, the stationarity constraints that ensure
the optimality of each subproblem with respect to its design variables (xi,ui) are in total over
all M players, ∇(xi,ui)Li = 0 ∈ RM×N×(n+m). Moreover, the road boundary constraints are
in total groad ∈ R2×N×M for the top and bottom boundaries, while the collision avoidance
constraints are gcollision ∈ RM×(M−1)×N . Lastly, we must enforce the state dynamics equality
constraints h ∈ RM×n×N and the complementarity constraints λT g = 0 ∈ RM×|g|. Instead,
the IBR formulation enforces per optimization problem (i.e. per player) the road boundary
constraints groad ∈ R2×N and the collision avoidance constraints gcollision ∈ R(M−1)×N . To
conclude, we observe that in IBR the number of design variables remains the same irrespective
of the number of players M involved, whereas in the KKT formulation it grows linearly
with the number of agents. Similarly, in both formulations the number of constraints grows
quadratically with the number of players due to the presence of collision avoidance constraints,
however, the KKT formulation is further burdened with the additional KKT constraints.

Table 3-3: Average Root Mean Squared Error (RMSE) between the optimal states and controls
and their respective target values, averaged over multiple games and SVO values.

RMSE 2 Agents 3 Agents 4 Agents
NonInt IBR KKT NonInt IBR KKT NonInt IBR KKT

Position [m] 1.662 1.781 1.711 1.695 1.762 1.705 1.726 1.641 1.619
Steering angle [rad] 0.008 0.02 0.01 0.009 0.014 0.009 0.057 0.015 0.013
Acceleration [m/s2] 0.226 0.177 0.056 0.214 0.258 0.118 0.716 0.335 0.261

On the other hand, the KKT algorithm, albeit slower, utilizes gradient information to converge
to a local equilibrium solution and it is considered to be a more reliable and efficient method
to resolve a social conflict. In fact, in Table 3-3, we present the average RMSEs (Root Mean
Squared Errors) between the optimal states and controls computed and their respective target
values, averaged over multiple games and SVO values. We first notice that the position
errors, on average, for the deviation from the reference trajectory of the Autonomous Vehicle
are higher for the IBR and the Non-Interactive (NonInt) methods, which means that the AV
performs the merge, in general, much slower into the lane, perhaps even very close to the ramp
boundary. This can be also indicative of how much weaker are the interactions among vehicles
compared to the KKT-generated trajectories. For the non-interactive approach this conclusion
might seem self-evident, but for the IBR method, it seems sensible, after considering the
iterative nature of the method, where at each internal iteration each separate optimization
problem regards the other players momentarily as static objects with fixed strategies. This
leads to more conservative trajectories than the ones proposed by KKT, under the same
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cases examined. Moreover, by looking at the errors on steering angle and acceleration, we
observe that KKT also has smaller, on average, errors on the steering angles, generating
smoother trajectories by turning smoother and at an earlier time towards its intended lane,
accompanied with less control efforts (acceleration penalties). Therefore, KKT exhibits a
strong ability to generate more efficient trajectories in terms of achieving goals with minimal
effort and increased safety and comfort for the passengers.

Master of Science Thesis Ilias Seferlis



48 Game Theoretic Planning

Ilias Seferlis Master of Science Thesis



Chapter 4

Planning under Intention Uncertainty

In the previous chapter, we established how to interactively plan and predict given an agent’s
SVO by solving a GNEP. If the Autonomous Vehicle (AV) does not know the other agents’
SVO, it will need to estimate this quantity to act accordingly. In this chapter, we give a brief
introduction to state estimation and exact Bayesian inference, then we present a tractable
Bayesian inference technique based on a Taylor series approximation of the measurement
function to estimate the likelihood of an agent’s SVO. We integrate this approximation into
a non-parametric recursive filter, like the histogram filter, to achieve good estimation results.
Finally, we present an algorithm that combines the estimation and planning modules into a
single framework and study its performance in two simulated scenarios; the highway ramp-
merging and the uncontrolled intersection.

4-1 Introduction

As it was demonstrated in the previous chapter, there exist many local equilibrium solutions to
a GNEP, that each represents a different solution to the social conflict among players. Incor-
porating intention in the GNEP through the Social Value Orientation (SVO) helps determine
the behavior of each player, and hence it facilitates the convergence to one such local equilib-
rium solution. This shared agreement among humans can be thought of as the result of the
innate ability of humans to communicate through subtle cues that are difficult for robots to
perceive and interpret. However, humans cannot be expected to be able to communicate with
robots with similar clarity. Therefore, it is an essential capability for Autonomous Vehicles
(AVs) to identify accurately social behavior (intentions) and make interpretable decisions.

In this work, we extend our definition of the term states and we consider the SVO values
to be estimated as complete or Markovian states. The Markov property entails that future
states are conditionally independent of all past states given the current state. Hence, a
Markovian state is the best predictor for the future evolution of the state. However, as we
mentioned earlier, we cannot directly observe the intentions of the other players. Instead, the
Autonomous Vehicle (AV) may receive observations in the form of the states x of all players,
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that are emissions of the latent state ϕk
i at the current time k for every player i. Using

this data, the AV can infer information about the SVO value of all players. The aggregate
information that the AV recovers from observations x0:k, is commonly represented by the
belief at the current time k.

bk
i

(
ϕk

i

)
≜ p

(
ϕk

i

∣∣∣x0:k
)

for every player i = 1, 2, ...,M (4-1)

which corresponds to the conditional probability of the current state ϕk
i given all observations

x0:k received up to the current time k. In the case of a Markovian state, the belief is a sufficient
statistic to compute an optimal decision at time k. Therefore, being able to accurately
maintain this belief is crucial to solving problems characterized by state uncertainty [123]. A
suitable model for these inference problems with Markovian state is the Hidden Markov Model
(HMM) and the process of maintaining the belief is commonly referred to as state estimation.
In the following few sections, we will present the exact Bayesian update for recursive state
estimation, and then present an approximation to the Bayesian update – the histogram filter.

4-2 Exact Bayesian Inference

This section briefly outlines the idea of Bayesian inference for HMMs to provide better un-
derstanding of the inference strategy developed. A thorough discussion of fundamentals of
probability theory and statistics can be found in [6], [124] and will not be further discussed
in this work.

First, we consider the Dynamic Bayesian Network (DBN) representation of the HMM depicted
in Figure 4-1. In this representation, shaded nodes correspond to the observed data, here x0:k,
while the other variables remain unobserved (hidden), here the sequence of latent states, ϕ0:k

i .
For this statistical model, the recursive belief update may be expressed as follows:

bk
i

(
ϕk

i

)
≜ p

(
ϕk

i

∣∣∣x0:k
)

=
p
(
ϕk

i ,x0:k
)

p (x0:k) (4-2)

In this expression, we introduce the state at a previous time step ϕk−1
i by marginalizing the

augmented joint probability p
(
ϕk

i , ϕ
k−1
i ,x0:k

)
to obtain

bk
i

(
ϕk

i

)
=

∫
p
(
ϕk

i , ϕ
k−1
i ,x0:k

)
dϕk−1

i

p (x0:k) (4-3)

Finally, we expand the numerator into a product of conditional probabilities and recover

bk
i

(
ϕk

i

)
=

∫
p
(

xk
∣∣∣ϕk

i , ϕ
k−1
i ,x0:k−1

)
p
(
ϕk

i

∣∣∣ϕk−1
i ,x0:k−1

)
p
(
ϕk−1

i

∣∣∣x0:k−1
)
dϕk−1

i

p (xk|x0:k−1) (4-4)
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Figure 4-1: Visualization of a Hidden Markov Model (HMM). Shaded nodes in the graph corre-
spond to observed variables xk, while the rest correspond to the SVO states ϕk

i .

By recognizing that xk is conditionally independent of all past observations x0:k−1 and states
ϕ0:k−1

i given the current ϕk
i , and that ϕk

i itself only depends upon the previous state ϕk−1
i by

exploiting the Markov property, then we can further simplify Equation 4-4 to

bk
i

(
ϕk

i

)
=

∫
p
(

xk
∣∣∣ϕk

i

)
p
(
ϕk

i

∣∣∣ϕk−1
i

)
p
(
ϕk−1

i

∣∣∣x0:k−1
)
dϕk−1

i

p (xk|x0:k−1) (4-5)

Note that in this expression the denominator, p(xk|x0:k−1), does not depend on the state ϕk
i

at all time steps and thus it takes on the role of a normalizing constant. Therefore, Equation
4-5 to update the current belief may alternatively be written as

bk
i

(
ϕk

i

)
∝
∫
p
(

xk
∣∣∣ϕk

i

)
︸ ︷︷ ︸

Sensor

p
(
ϕk

i

∣∣∣ϕk−1
i

)
︸ ︷︷ ︸
Transition

p
(
ϕk−1

i

∣∣∣x0:k−1
)

︸ ︷︷ ︸
Prior bk−1

i

dϕk−1
i (4-6)

Intuitively, the Bayesian update, alternatively called posterior distribution, may be under-
stood as propagating the prior belief at the previous time step bk−1

i (ϕk−1
i ) through the state

dynamics p(ϕk
i |ϕ

k−1
i ) (transition model), and weighting the propagated belief with the ob-

servation model (otherwise known as sensor or measurement model) p(xk|ϕk
i ). Given initial

information b0
i

(
ϕ0

i

)
, this rule can be applied recursively to update the belief with new obser-

vations at every time step k.

We can modify the expression in Equation 4-6 to include a subset of the past measurements
up to the current time step. In other words, we start from the classical filtering problem
and formulate the nonlinear filtering equations over r state measurements xk−r:k, instead of a
single state measurement xk. Then, to update our belief about the SVO state, we can write

bk−r
i

(
ϕk−r

i

)
= p

(
ϕk−r

i

∣∣∣x0:k
)

(4-7)

∝
∫
p
(

xk−r:k
∣∣∣ϕk−r

i

)
︸ ︷︷ ︸

Sensor

p
(
ϕk−r

i

∣∣∣ϕk−r−1
i

)
︸ ︷︷ ︸

Transition

p
(
ϕk−r−1

i

∣∣∣x0:k−1
)

︸ ︷︷ ︸
Prior bk−r−1

i

dϕk−r−1
i
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where the measurement function p(xk−r:k|ϕk−r
i ) is evaluated over the last r state measure-

ments xk−r:k instead of a single state measurement xk to generate a likelihood of the SVO
ϕk−r

i . The authors of [31] have found this modification to be necessary to generate accurate
SVO estimates. How this can be integrated into a recursive filtering framework along with
the solution to the GNEP will be further understood later on.

Finally, the exact update rule presented in Equation 4-7 provides a theoretical formalism
to perform Bayesian inference on HMMs. However, computing the exact update (poste-
rior distribution) often remains intractable, except for a few special cases, for instance in
problems with Gaussian noise and linear dynamics that allow exact inference via a Kalman
filter [6]. More complicated problems usually require marginalization over high-dimensional
state spaces or exhibit stochastic dynamics that are not easily represented by parametric
probability distributions, like the Gaussian distributions. These cases typically require some
form of approximation to the Bayesian update.

4-3 Approximation of Bayesian Inference

A popular alternative to Gaussian techniques are nonparametric filters. Nonparametric filters
do not rely on a fixed functional form of the posterior distribution, such as Gaussians. Instead,
they approximate posteriors over continuous spaces by a finite number of values, each roughly
corresponding to a region in state space. In general, we distinguish two such nonparametric
approaches.

Particle Filters This approach replaces the exact integral for marginalization with Monte
Carlo integration, thus it approximates the state space by random samples, called particles,
that are drawn from the posterior distribution. This class of inference methods are the so-
called particle filters or Sequential Monte Carlo (SMC) methods. Although particle filters
are the most versatile of all Bayes filter algorithms across the literature, we need to ensure
that the particles always cover the entire state space, otherwise we run the risk of sample
impoverishment. There are several resampling strategies to tackle this problem, but they
further increase the computational complexity. Therefore, in this work we prefer the histogram
filter, as it is easier to implement and sufficient for the purpose of approximating the belief
update of the SVO values. More information on particle filters can be found in the work of
Thrun [6].

Histogram Filters This approach decomposes the entire state space into finitely many con-
vex regions, called bins, and represents the posterior by a histogram. A histogram assigns
to each region a single cumulative probability and tracks how much probability mass is in
each bin. They are best thought of as piecewise constant approximations to a continuous
density. This is typically used when the number of states is relatively low and the range of
values that the state can take is also not too large. Figure 4-2 illustrates how a histogram
filter represents a posterior distribution p(y) by projecting a discretized Gaussian p(x) prior
through a nonlinear transformation y = g(x) (this could be the measurement or likelihood
function for instance).
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Figure 4-2: Histogram representation of a continuous random variable X. In the lower right plot,
the gray shaded area shows the prior density of the continuous random variable X. The histogram
approximation of this density with 10 discrete bins is overlaid in light-gray. The random variable
is passed through the measurement function y = g(x) displayed in the upper right graph. The
density and the histogram approximation of the resulting distribution Y (posterior) are plotted
in the upper left graph. The histogram of the transformed random variable Y was computed by
passing multiple points from each histogram bin of X through the nonlinear function y = g(x) [6].

Both types of techniques, histograms and particle filters, do not make strong parametric
assumptions on the posterior density, and hence they are well-suited to represent complex
multimodal beliefs. Multimodality is a desirable property in the context of autonomous driv-
ing, since the actions and intentions of a player cannot always be interpreted unambiguously.
Moreover, the quality of the approximation depends on the number of parameters used to rep-
resent the posterior. As the number of parameters goes to infinity, nonparametric techniques
tend to converge uniformly to the correct posterior under specific smoothness assumptions.
The representational power of these techniques, however, comes at the price of added com-
putational complexity.
We can now formulate a histogram filter as described step-by-step below and summarized in
Algorithm 2.

1. Initialize weights: We can initialize the weights (or probability masses) for each bin
any way we like. If we have no idea what the prior distribution looks like, we can
initialize the weights so that they can all be equal (Line 2).

2. Transition Update: Line 5 propagates the state dynamics of the SVO values forward,
distributing probability mass from each histogram bin to all other histogram bins, ac-
cording to the dynamics p

(
ϕk−r

i

∣∣∣ϕk−r−1
i , σ2

ϕ

)
.

3. Measurement Update: Line 6 distributes probability mass from each histogram bin
to all other bins when receiving the observations xk−r:k, according to the measurement
likelihood function p

(
xk−r:k

∣∣∣ϕk−r
i

)
.
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4. Normalize weights: Line 8 ensures that all the probability masses (weights) of the
posterior distribution add up to 1.

5. Compute Mean and Variance: Lines 9 and 10 calculate the mean µϕ,i and variance
σ2

ϕ,i of the posterior distribution, such that the next time step a game is solved with the
mean estimates.

On an abstract level, the filter simulates the stochastic evolution of all bins — each a hy-
pothetical true state of the SVO values — and evaluates the likelihood of the observations
under each hypothesis to update the weights. The algorithm is summarized in Algorithm 2
and an example is illustrated in Figure 4-2.

Algorithm 2: SVO Histogram Filter (Estimator)
1 Input: ϕk−r−1, weights wk−r−1, observed states xk−r:k for all agents
2 Initialize weights: wk−r for all agents and all bins
3 for each agent i = 1, 2, ...,M do
4 for each bin j = 1, 2, ...., B do
5 Transition Update:

[
wk−r

i

]
j
←
[
wk−r−1

i

]
j
× p

(
ϕk−r

i

∣∣∣ϕk−r−1
i , σ2

ϕ

)
▷ see Eq. 4-8

6 Measurement Update:
[
wk−r

i

]
j
←
[
wk−r

i

]
j
× p

(
xk−r:k

∣∣∣ϕk−r
i

)
▷ see Eq. 4-12

7 end

8 Normalize: wk−r
i ← wk−r

i

/ B∑
j=1

[
wk−r

i

]
j

9 Compute Mean: µϕ,i ←
B∑

j=1

[
wk−r

i

]
j
× ϕk−r

i

10 Compute Variance: σ2
ϕ,i ←

B∑
j=1

[
wk−r

i

]
j
×
(
ϕk−r

i − µϕ,i

)2

11 end
12 Output: µϕ, σ

2
ϕ, ϕk−r, wk−r for all agents

4-4 Process and Measurement Models

The histogram filtering framework requires two pieces to be properly defined: the transition
(or process) model and the measurement model, namely the dynamics update of the SVO
states and the likelihood of new observations.

For the process model, we assume that the ground-truth SVO states follow a random walk
model with relatively small process noise covariance, which means that the agents’ objectives
are nearly constant, but may change slightly over the course of the estimation. This is a
reasonable assumption, as for many robotics applications, an agent’s objective corresponds
to its long-term goal and thus varies over time scales far larger than the estimator’s update
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period, which is typically in the scale of milliseconds. Moreover, we have no prior knowledge
on the dynamic evolution of the SVO states, hence we must not make strong assumptions that
will lead to inaccurate predictions. This results into a simple process model that corresponds
to an identity map with additive white Gaussian noise and is defined as follows

ϕk+1
i = ϕk

i + ϵk with ϵk ∼ N (µϕ, σ
2
ϕ) for every player i = 1, 2, ...,M (4-8)

Therefore, the transition probability matrix for the evolution of the SVO states is the same
as the identity matrix p

(
ϕk+1

i

∣∣∣ϕk
i

)
= I.

However, the crucial part of the estimation algorithm is the measurement model. In our
case, we take inspiration by the Maximum Entropy Method, which is popular in the Inverse
Reinforcement Learning (IRL) literature [125]. The main idea is that human decision-makers
are reasonably modeled as utility-maximizing agents. In general, following this direction, the
Maximum Entropy Method models the probability of actions or controls ui of each player i to
be proportional to the exponential of its rewards Ri encountered along the trajectory, given
the actions of all other players u¬i, that is

p (ui|u¬i, ϕi) ∝
1
Z

exp (Ri(x,u, ϕi)) (4-9)

In this scheme, this means that less rewarding actions ui are exponentially less likely to ex-
plain the hypothetical SVO state, represented by a bin in the histogram filter. Here, Z is the
normalization function, which poses a practical challenge due to high computational com-
plexity, especially for long time horizons and high dimensional systems. It will be explained
later on how we could overcome this problem. Moreover, it should be noted that this scheme
can be modified to account for costs Gi instead of rewards Ri by simply reversing the sign,
such that actions that result into low costs are more likely to be associated with the correct
hypothesis for the SVO state. Finally, the observed actions uk−r:k, consisting of steering rate
and acceleration inputs, are actually not directly observable for other vehicles, hence they
have to be inferred from the state trajectories xk−r:k, since they are correlated through the
state dynamics xk+1 = F (xk,uk). Therefore the measurement likelihood function can be
formulated as follows

p
(

xk−r:k
∣∣∣ ϕk−r

i

)
∝ p

(
uk−r:k(xk−r:k)

∣∣∣ ϕk−r
i

)
(4-10)

∝ exp
(
Gi

(
uk−r:k, ϕk−r

i

)) [∫
exp

(
Gi

(
ũ, ϕk−r

i

))
dũ
]−1

Here, we use the notation Gi(u, ϕi) to refer to the sum of individual costs Ji of each player
over the entire planning horizon N, as defined in Equation 3-15 along the trajectory defined by
(x,u). To approximate the computationally intractable normalization function in Equation
4-10, the authors in [125] apply the Laplace transform, which corresponds to performing
a local optimization when choosing the actions u [31]. A local approximation of the cost
function Gi(u, ϕi) as a second-order Taylor expansion around u yields

Gi(ũ) ≈ Gi(u) + (ũ− u)T ∂Gi

∂u︸ ︷︷ ︸
Di

+ 1
2(ũ− u)T ∂2Gi

∂2u︸ ︷︷ ︸
Hi

(ũ− u) (4-11)
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where the Jacobian (first-order derivatives) with respect to the observed controls u over all
agents is denoted by Di, while the Hessian (second-order derivatives) by Hi. Inserting the
approximation of Equation 4-11 into the exponent in Equation 4-10, allows us to evaluate the
integral of the normalization factor in closed form. This yields a tractable way of evaluating
the likelihood including the normalization factor.

p
(

xk−r:k
∣∣∣ ϕk−r

i

)
∝ exp

(1
2DT

i H−1
i Di

)
|−Hi|1/2 (2π)−dim(u)/2 (4-12)

where dim(u) denotes the total number of observed actions for all agents. This practically
means that if we consider the r past measurements of the state trajectories xk−r:k then the
corresponding observed controls will be uk−r:k with dimension dim(u) = 2 × r ×M , where
we have assumed 2 controls per agent (the steering rate and acceleration) and M is the total
number of agents.

Intuitively, this approximation of the measurement likelihood indicates that cost functions,
under which the example paths have small gradients and large negative Hessians, are more
likely. The magnitude of the gradient corresponds to how close the example is to a local opti-
mum in the total cost function landscape, while the Hessian describes how steep this optimum
is [125]. The inverse of the Hessian can be computed in linear time with respect to the num-
ber of past measurements r considered [125]. Nonetheless, care needs to be taken, since the
second-order Taylor expansion employed to make the evaluation of the likelihood tractable, is
only valid close to the ground-truth value. Finally, the superiority of this approximation lies
on its low computational complexity, as it does not require any dynamic game (GNEP) to
be solved, such that the gradients and Hessian to be computed. Instead, the derivatives are
symbolically computed once at the start of the simulation, and then at each iteration they
are numerically evaluated.

4-5 Combining Estimation and Planning

This section briefly outlines an algorithm to integrate the estimation method described previ-
ously, into the decision-making process of the autonomous vehicle. This algorithm is inspired
by the work of Le Cleac’h et al. [126] and exploits the information gained via the estimator
to inform the decision-making of the robot.

First, we assume that all other agents except for the robot, are modeled as ideal players in
the game, meaning that they have access to the ground-truth SVO states and subsequently
to the ground-truth objective functions of all the players in the game. They take their control
decisions by solving for an open-loop Nash equilibrium joint strategy (GNEP, see Equation
3-10) based on these true objective functions and execute them in a receding-horizon loop,
as it was detailed in Chapter 3. This assumption is necessary to generate a human driver
model that is reactive to the robot’s actions and that maintains coupling between planning
and trajectory prediction for the robot [126]. Moreover, this assumption is required to avoid
the complexity of the robot having to ”estimate the estimates” of the other agents. On the
other hand, the robot jointly plans for itself and predicts the other agents’ trajectories by
solving a dynamic game (GNEP) using the current state of the system xk and the current
mean estimates µk

ϕ of the SVO states over all agents (Line 3 of Algorithm 3). Using the
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optimal strategies obtained by solving the two games, we concatenate them into a combined
strategy u∗

k as in Line 4 and then apply this strategy to propagate the state forward in time
through the state dynamics (Line 5). Note that initially the estimation starts only after
enough observations (measurements) have been collected, since we have an interest to look
r times into the past to better inform our estimation (Line 7). Otherwise we set the next
step estimates equal to the previous ones. Further, the estimation process assumes that the
starting states of all agents are xk−r at time step k−r and applies the concatenated vector of
observed controls û up to the current time step k. This way the estimator can generate new
mean estimates µk+1

ϕ (Line 8) that will be used in the next iteration to solve the GNEP for
the robot. Finally, the joint estimation and control procedure is summarized in Algorithm 3.

Algorithm 3: Combined estimator and planning module
1 for each simulation step k = 1, 2, ... do
2 Solve Game for Ideal Agents: [u∗

k]¬ robot ←− GNEP(xk,uk,ϕk) ▷ see Eq. 3-10

3 Solve Game for Robot: [u∗
k]robot ←− GNEP(xk,uk,µ

k
ϕ) ▷ see Eq. 3-10

4 Combined Strategy: u∗
k ←−

[
[u∗

k]robot , [u∗
k]¬ robot

]T
5 Propagate States: xk+1 ←− Dynamics (xk,u∗

k) ▷ see Section 3-3

6 if k ≥ number of measurements r then
7 Collect Measurements: û←− [u∗]k−r:k

8 Estimate: µk+1
ϕ , σk+1

ϕ ←− Estimator(û,wk,ϕk) ▷ see Algorithm 2
9 else

10 µk+1
ϕ , σk+1

ϕ ←− µk
ϕ, σk

ϕ

11 end
12 end

4-6 Numerical Simulations

As in the previous chapter, we apply our algorithm to autonomous driving problems involving
a high level of interactions among agents. Specifically, we test the estimation and planning
modules in two driving scenarios; one involving ramp-merging in a highway setting, and the
other involving crossing in an uncontrolled four-way intersection. In each scenario, we assume
the same game parameters as in Tables 3-1 and 3-2 of the previous chapter, with the only
exception that here the SVO values are not fixed but estimated by the AV.

4-6-1 Highway Ramp-Merging

2-Agent Games

Working similarly as in the previous chapter, we will first start from the simple 2-agent case
and progress to more complex cases, involving more agents. In the 2-agent case, we distinguish
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two possible local equilibrium solutions to the GNEP that resolve the social conflict between
the agents; either the autonomous vehicle merges in front of the oncoming vehicle or behind
it. The outcome of this interaction will strongly depend on the intention of the oncoming
vehicle, but more importantly on the estimation of its intention on the part of the robot.

We can showcase one of the equilibria by considering the oncoming vehicle as egoistic, while
the robot as altruistic. This means that we set the ground-truth values of the respective SVO
states to ϕground = [0◦, 80◦]. With these values we expect that the robot will merge behind the
other agent. In Figure 4-3 is depicted the evolution of the SVO estimation across the simula-
tion time (here about 7 seconds). Starting from an initial estimate of ϕ0 = [20◦, 60◦], in just
a few iterations the estimation process converges very close to the ground-truth values with
small variance. This variance would asymptotically converge to zero, if the merge was allowed
to continue for the entire simulation span. Instead, the agents seem to strongly interact up
to about 2 seconds, where they effectively resolve the social conflict and agree upon the local
equilibrium, in which the robot merges behind. In the remaining time they attempt to keep
their course and respect the collision avoidance and road boundary constraints. Moreover, it
should be noted that for the first few time steps the SVO estimates remain unchanged. That
is because we need to collect enough observations (measurements), which we denote by r, be-
fore the estimator updates our belief about the SVO state estimates. The more observations
we collect, the faster the estimator seems to converge to the ground-truth values, since we
can infer more accurate predictions by utilizing information farther into the past.

Figure 4-3: Estimation of the SVO states with ground-truth values ϕground = [0◦, 80◦] and
initial estimates ϕ0 = [20◦, 60◦] using the past r = 4 observations.

Next, we consider the social equilibrium, where the robot merges in front of other agent.
The result from this estimation process is illustrated in Figure 4-4. Here, we have chosen
ground-truth values, where they would render the oncoming vehicle to behave altruistically
by slowing down, hence allowing the robot to merge in front. By choosing the initial estimates
sufficiently close to the ground-truth values, we observe fast convergence to true values with
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relatively small variance in just one iteration. Similar remarks as in the previous case can be
made about the variance and the convergence of the estimation process.

Figure 4-4: Estimation of the SVO states with ground-truth values ϕground = [80◦, 0◦] and
initial estimates ϕ0 = [60◦, 20◦] using the past r = 4 observations.

To better visualize how the histogram filter updates our beliefs for the SVO states based
on the past r = 4 observations (actions taken), we present in Figures 4-5 and 4-6 the prior
and posterior distributions for the two cases above. According to Algorithm 2, our prior
belief is propagated through the SVO dynamics and the measurement likelihood function,
evaluated under each hypothesis (bin). In these figures, it becomes more clear the convergence
towards the true SVO values across consecutive iterations. We can, finally, notice that the
variance of the updated posterior distribution is significantly decreased compared to the prior
distribution.

Figure 4-5: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [0◦, 80◦].
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Figure 4-6: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [80◦, 0◦].

3-Agent Games

Following the same reasoning as before, we add one more agent to examine the effects on the
estimation and planning processes. Here, the two non-autonomous agents (leader and follower
scheme) are on the same lane and the robot will attempt to merge either in the gap between
them or behind the follower. In Figure 4-7 we present the results from the estimation in the
case, where the robot merges in front. The robot (Agent 3) is able to successfully estimate
the intentions of the other two agents with high accuracy compared to their true values and
complete the merge in the gap between the agents. The estimation of Agent 2 (leader) quickly
converges in just one iteration, while for Agent 1 (follower) it takes considerably longer. That
is because Agent 1 is mainly responsible for changing his behavior, partly due to his proximity,
hence has stronger interaction with the AV (see Figure 4-8) and partly due to his prosocial
attitude that allows him to take into account the other agent’s welfare.

Figure 4-7: Estimation of the SVO states with ground-truth values ϕground = [40◦, 0◦, 20◦] and
initial estimates ϕ0 = [60◦, 20◦, 10◦] using the past r = 8 observations.
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Figure 4-8: Simulated Trajectories. Solid lines represent the optimal executed trajectories for
ground-truth intentions ϕground = [40◦, 0◦, 20◦]. Dotted lines denote the corresponding predicted
trajectories over the planning horizon N at specific time instants.

Figure 4-9: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [40◦, 0◦, 20◦].

Now we consider the case where the robot merges behind all vehicles. For this we set the
behavior of the oncoming vehicles to be more selfish (ϕ = 0◦), while the autonomous vehicle
to behave altruistically (ϕ = 80◦). The result of the estimation is depicted in Figure 4-
10. We notice that all SVO estimates quickly converge to their true values after just one
iteration. On one hand, this can be explained by the number of past measurements collected
(here r = 7), which significantly informs our belief of the estimates. However, this result
can also be reasoned by the fact that the non-autonomous agents behave egoistically, hence
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they show only interest in their own costs and welfare, which greatly simplifies the planning
problem and the subsequent convergence to a local social equilibrium. Selfish behavior, in
general, generates conservative inflexible trajectories that change only slightly, if at all, from
the reference trajectory to accommodate the other agents. That might also be one of the
reasons why both the planning and the estimation module quickly converge.

Figure 4-10: Estimation of the SVO states with ground-truth values ϕground = [0◦, 0◦, 80◦] and
initial estimates ϕ0 = [10◦, 20◦, 60◦] using the past r = 7 observations.

4-Agent Games

Finally, as the last case for the ramp-merging scenario, we add one more agent on the same
lane effectively creating two possible gaps between the non-autonomous agents, where the
robot can merge into. Here, we will not examine the case, where the robot merges behind
all vehicles, since we deem that this equilibrium has been extensively covered in the previous
cases.
First, we consider the occurrence, where the robot merges in the first gap, created by the
two leading vehicles (Agents 2 and 3). The resulted trajectories are illustrated in Figure
4-11, while the corresponding SVO estimates are depicted in Figure 4-12. Here, most of
the agents behave selfishly except for the robot. So it is no surprise that our belief for the
SVO states quickly converges to their ground-truth values, for the same reason detailed in
the 3-agent case. However, in this case we can also observe an almost gradual decrease in
the corresponding variances across the entire simulation span, instead just for the first few
seconds, as in the 2-agent games. That decrease hints on the level of interaction among agents,
since here there are more players occupying the same space. Therefore, their proximity forces
them to exhibit strong interactions and it further limits the possible actions they can take
due to safety constraints (collision avoidance and road boundary constraints).
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Figure 4-11: Simulated Trajectories. Solid lines represent the optimal executed trajectories
for ground-truth intentions ϕground = [0◦, 0◦, 0◦, 80◦]. Dotted lines denote the corresponding
predicted trajectories over the planning horizon N at specific time instants.

Figure 4-12: Estimation of the SVO states with ground-truth values ϕground = [0◦, 0◦, 0◦, 80◦]
and initial estimates ϕ0 = [10◦, 15◦, 20◦, 60◦] using the past r = 10 observations.
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Figure 4-13: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [0◦, 0◦, 0◦, 80◦].

Now we turn our attention to the occurrence, where the robot merges into the second gap,
formed between the last two players on the lane (Agents 1 and 2). The final trajectories are
depicted in Figure 4-14, while the corresponding estimation results are shown in Figure 4-15.
Here, just changing the behavior of the autonomous vehicle from altruistic to a more selfish
behavior, forces the other players to not allow the robot to merge into the first gap, rather
to resort to merging into the second one. As expected, the estimated SVO states quickly
converge to their true values, except for Agent 2 (middle vehicle) that is the one deciding
whether or not the robot should be allowed to merge in front. At first, his SVO estimate
increases, exhibiting more prosocial behavior, but as the time progresses it slowly changes to
a more egoistic attitude. Lastly, Figure 4-16 portrays the update of our belief under the past
r = 7 observations, namely the actions executed by each player. In each bin (hypothesis), the
prior belief is updated by evaluating the measurement likelihood under that hypothesis.
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Figure 4-14: Simulated Trajectories. Solid lines represent the optimal executed trajectories
for ground-truth intentions ϕground = [0◦, 0◦, 0◦, 0◦]. Dotted lines denote the corresponding
predicted trajectories over the planning horizon N at specific time instants.

Figure 4-15: Estimation of the SVO states with ground-truth values ϕground = [0◦, 0◦, 0◦, 0◦]
and initial estimates ϕ0 = [30◦, 20◦, 30◦, 40◦] using the past r = 7 observations.
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Figure 4-16: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [0◦, 0◦, 0◦, 0◦].

4-6-2 Uncontrolled Intersection

Now we test the performance of the estimation and planning modules in a fourway intersection,
where there are no traffic control signals or traffic signs that can give priority to one player
over another to safely cross. This is particularly challenging task that can lead to many
possible social equilibria, as it was demonstrated earlier in Chapter 3. Here, we will consider
2-agent and 4-agent games and for each pairwise encounter of two players the involved agents
need to decide on which side they pass each other. This will showcase more clearly which
agents are willing to yield and allow the other vehicle to cross first and which will keep their
course regardless. As previously, we first introduce the much simpler 2-agent case and then
we continue to the more complex 4-agent case.

2-Agent Games

In the 2-agent case, there are two possible outcomes; either one agent crosses first or the other,
as illustrated in Figure 4-17. To capture these equilibria, we set the ground-truth values to be
selfish for the player that crosses first, and altruistic for the player that yields. In Figure 4-18
we can see the result from the estimation, where we notice quick convergence with relatively
large variance that we can attribute to the short interval the two vehicles had to interact (a
little under 1 second).
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Figure 4-17: Simulated Trajectories. Solid lines represent the optimal executed trajectories for
ground-truth intentions ϕground = [60◦, 20◦].

Figure 4-18: Estimation of the SVO states with ground-truth values ϕground = [60◦, 20◦] and
initial estimates ϕ0 = [40◦, 10◦] using the past r = 8 observations.
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If they were allowed to interact longer, then the variance of the SVO estimates would asymp-
totically decrease to zero. Similar remarks can be made for the case where Agent 1 crosses
first, as seen in Figure 4-19.

Figure 4-19: Estimation of the SVO states with ground-truth values ϕground = [0◦, 80◦] and
initial estimates ϕ0 = [10◦, 70◦] using the past r = 8 observations.

On the other hand, in Figures 4-20 and 4-21 for both cases, one could clearly discern the
non-Gaussian shape of the posterior distributions, where there are multiple peaks (modes),
with the most likely one to be close to the ground-truth value. In this multimodality of the
posterior distribution lies the superiority of the non-parametric filters over the Gaussian filters,
as detailed in Section 4-3. Since the actions of a player cannot be interpreted unambiguously,
we would expect many hypotheses about its intentions to be more likely than others (peaks).
On that occasion, we usually choose that hypothesis that is most likely (maximum) to explain
that particular behavior.

Figure 4-20: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [60◦, 20◦].
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Figure 4-21: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [0◦, 80◦].

4-Agent Games

We continue adding two more players to further evaluate the performance of the estimation
and planning modules. The Autonomous Vehicle in this scenario that performs the estimation
process can be any arbitrary player. So in this work, it is chosen to be Agent 4. Here, we
will focus on one noteworthy social equilibrium, since the rest have been extensively covered
in the previous chapter.

Figure 4-22: Estimation of the SVO states with ground-truth values ϕground = [60◦, 20◦, 0◦, 80◦]
and initial estimates ϕ0 = [50◦, 10◦, 10◦, 70◦] using the past r = 8 observations.

In Figure 4-22 we show the results from the estimation, which indicate that by starting
with an initial guess close to the ground truth value, the SVO estimates gradually converge
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towards them. In fact, between 1.5 and 2 seconds we observe an increase in the uncertainty of
our beliefs, indicating that this is the time interval, where strong interactions occur and the
players are deciding whether to yield or not. In this case, we have chosen Agents 1 and 4 to
be prosocial and Agents 2 and 3 to be selfish. That leads into the the generated trajectories
of Figure 4-23, where Agents 1 and 4 yield and give priority to the other two vehicles.

Figure 4-23: Simulated Trajectories. Solid lines represent the optimal executed trajectories for
ground-truth intentions ϕground = [60◦, 20◦, 0◦, 80◦]. Dotted lines denote the corresponding
predicted trajectories over the planning horizon N at specific time instants.
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Finally, we examine the equilibrium where Agents 1 and 4 cross first past Agents 2 and
3 respectively. This is illustrated in Figure 4-24 by considering ground-truth values ϕ =
[0, 0, 0, 0] to be selfish for all players. As we might expect, the estimation converges fast, as
illustrated in Figure 4-25, with satisfactory convergence to the true values and relatively small
variance. As have mentioned before, selfish behavior is, in general, much easier to identify,
since the trajectories generated barely deviate from the reference trajectory.

Figure 4-24: Simulated Trajectories. Solid lines represent the optimal executed trajectories
for ground-truth intentions ϕground = [0◦, 0◦, 0◦, 0◦]. Dotted lines denote the corresponding
predicted trajectories over the planning horizon N at specific time instants.
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The corresponding distributions are seen in Figure 4-26, where we can observe almost Gaus-
sian shapes around the true value. This might suggest that selfish behavior, in general,
eliminates other modes for our updated belief about the SVO state. In other words, it may
eliminate alternative explanations for the generated solution trajectories, since prosocial and
altruistic behaviors have usually more complex trajectories than egoistic trajectories.

Figure 4-25: Estimation of the SVO states with ground-truth values ϕground = [0◦, 0◦, 0◦, 0◦]
and initial estimates ϕ0 = [10◦, 20◦, 15◦, 20◦] using the past r = 8 observations.

Figure 4-26: Prior and posterior distributions of our belief for the SVO states with ground-truth
values ϕground = [0◦, 0◦, 0◦, 0◦].
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4-6-3 Concluding Remarks

In this section the prediction performance of the proposed inference method is examined. As
in the previous chapter, to put the performance of the inference algorithm into perspective, we
choose to compare it against several known variations of SVO preferences, as well as against
a non-interactive baseline algorithm.
For the baseline algorithm, each agent does not consider the interactions and costs of the
other agents in the system. Instead, all other agents except for the AV, are seen as simple
dynamic obstacles, with simple lane-keeping actions and no predictions about their changes in
acceleration and steering. This results into straight-line predicted trajectories with constant
velocity. On the other hand, the AV is the only player that solves a simplified optimization
problem, where it is assumed to behave selfishly (ϕ = 0◦), since the other players do not have
a cost function to be accounted for. This approach can showcase more clearly the benefits
of a game-theoretic interaction-aware method that actively reasons about the intentions of
all players involved. We refer to this approach as non-interactive. For other benchmarks,
we compare our estimated SVO algorithm, which dynamically updates the SVO values of
other agents, against the algorithm with SVO preferences held static (i.e. fixed) throughout
the interaction. This comparison highlights how the performance of the multi-agent game-
theoretic formulation increases with better SVO prediction. We refer to this approach as
static. Finally, estimated refers to the dynamically online estimated SVO based on the
estimation technique presented in this work.

Figure 4-27: Average trajectory prediction errors obtained by the AV for the highway ramp-
merging scenario over 3 different approaches. Shaded regions correspond to one standard deviation
from the mean.

Figure 4-27 shows the mean ℓ2-distance of the trajectories over the 4-second moving prediction
horizon averaged over multiple games and SVO values on the highway ramp-merging sceanrio.
Average prediction errors were computed over the 6 simulations studied previously for all
multiagent cases and SVO preferences, starting from the simulation time instant at t = 2 s
and measuring the error ||ppredicted

AV − pground
AV ||2 between the 4-second trajectory predictions
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(N ×∆t = 20×0.2 = 4 s) and the corresponding ground-truth trajectories of the AV. Here, p
denotes the vector of the position coordinates of the AV, p = [px, py]. In this figure, the non-
interactive approach has an increasing average prediction error over the prediction horizon,
which suggests that the predicted trajectory diverges at each point from the ground-truth
trajectory, hence failing to capture the true intentions of the other players and account for
them. On the other hand, the average error for the static approach is considerably smaller,
since the fixed SVO values were arbitrarily assumed to be relatively close to the ground-truth
values. Instead, if the SVO values were chosen to be farther from the ground-truth values,
the error would of course be correspondingly larger. Lastly, the inference method proposed in
this work outperforms all other approaches with mean error very close to zero, which means
that dynamically changing the SVO values succeeds in capturing the true intentions of the
surrounding players.

Figure 4-28: Predicted trajectories at time instant t = 2s over the prediction horizon N = 20
for the 3-agent highway ramp-merging scenario. Ground-truth is the trajectory generated by
considering fixed SVO values of ϕ = [0◦, 0◦, 80◦]. Static corresponds to the trajectory generated
by considering fixed incorrect SVO values of ϕ = [10◦, 20◦, 60◦].

To provide further insight into the prediction performance, Figure 4-28 shows the predicted
trajectories obtained by one of the data sets that were considered when averaging the pre-
diction errors earlier. It depicts the 4-second predicted trajectories for all three methods for
the 3-agent highway ramp-merging scenario. Here, the ground-truth trajectory is generated
by solving the GNEP and considering fixed SVO values ϕ = [0◦, 0◦, 80◦]. Conversely, the
static approach corresponds to the trajectory created by considering static SVO values of
ϕ = [10◦, 20◦, 60◦] that are relatively close to the respective ground-truth values. In that fig-
ure, we can observe more clearly the differences in the trajectories predicted by the AV. The
non-interactive trajectory is the most conservative one, by trying to force a merge without
considering the impact on the surrounding vehicles. The shape of the static approach resem-
bles the one from the ground-truth trajectory but even with close to the ground-truth values
the generated trajectory is noticeably different. Again the proposed inference method pro-
duces a trajectory that resembles the most the trajectory that accounts for the true intentions
of all players involved.
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Chapter 5

Summary and Future Work

This chapter provides a summary of the main contributions of this work and draws conclusions
from the presented results. It further discusses the limitations of the current implementation,
along with recommendations for future work.

5-1 Summary and Contributions

In order for an Autonomous Vehicle (AV) to safely and efficiently interact with environments
that are shared with humans, it must consider the impact of its actions on the decisions of
others. These interactions are best captured by a general-sum multi-agent game, where each
agent aims to optimize its objective, resulting into a variety of solution concepts (equilibria)
depending on the degree of cooperation among players.

This work focuses on the Nash instead of the Stackelberg equilibria, as it aims for a more
realistic model that assumes a fully symmetric information pattern among players. This ap-
proach avoids imposing any hierarchy among the players, thus accounting for any potential
non-cooperative behavior of some players. The Nash equilibrium, often termed as social equi-
librium since it resolves social conflicts, is the result of the Generalized Nash Equilibrium
Problem (GNEP), in which the decisions of one player depend on the actions of others. In
Chapter 3, we presented a formal definition of the problem and proposed two methodologies to
solve a nonlinear GNEP efficiently in a receding-horizon fashion; the Iterated Best Response
(IBR) and a reformulation based on the Karush-Kuhn-Tucker (KKT) conditions. The first
approach successively updates each player’s strategy by locally solving an Optimal Control
Problem (OCP) with the strategies of the other players fixed, until convergence is reached at
a stationary point that represents a mutually agreed-upon solution among all agents. Con-
versely, the KKT approach transforms the set of individual optimization problems into a
single optimization problem by introducing the KKT conditions into the GNEP formulation
and restructuring the objective function of the problem as the sum of each player’s individual
objectives. This way possibly unnecessary many iterations of the IBR algorithm, which may
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perhaps make its use prohibitive in certain complex applications, could be avoided. Our imple-
mentation solves the resulting nonlinear optimization problem using the interior-point solver
IPOPT within the CasADi symbolic framework, which is well-suited for nonlinear optimal
control and features efficient automatic differentiation techniques to compute gradients.

In addition, the AV needs to be capable of identifying the intentions of the surrounding traffic
participants, so as to make better predictions about their future positions and take appropriate
actions to navigate itself in cluttered dynamic scenarios, like those found in urban settings.
To incorporate the notion of intention, we introduce a parameter for each player called Social
Value Orientation (SVO) into the game-theoretic formulation. This value represents an angle,
ranging from 0 to 90 degrees, and encodes the degree of selfish and altruistic behavior of that
specific player. Selfish behavior, in general, prioritizes the need of the player to reach their
objective over the interests of the group, whereas prosocial and altruistic behaviors consider
also the welfare of others and contribute to the collective benefit of the group. Subsequently,
to better emphasize the impact of game-theoretic reasoning on trajectory performance, we
evaluated the two proposed methodologies by solving multiple games with various known
SVO values and compared them against a non-interactive baseline algorithm in two simulated
scenarios: the highway ramp-merging and the four-way uncontrolled intersection.

However, cluttered scenarios are typically characterized by uncertainty regarding the inten-
tions of other traffic participants, since environmental states are often partially observable
and dynamic due to noisy sensor data, while in the context of game-theoretic planning there
can be multiple equally admissible solution strategies (i.e. Nash equilibria) that humans may
adapt to achieve their objective. To tackle this issue, the uncertainty over the intentions
comes down to a problem of estimation over the SVO states. This work proposes an efficient
method for the AV to update its belief on the human SVO estimates at each simulation step,
based on past measurements of their position. This approach is an approximation to the
exact Bayesian inference, which is often computationally intractable over high-dimensional
state spaces. In particular, this approach decomposes the entire state space into finitely
many convex regions, called bins, and represents the posterior distribution by a histogram.
This nonparametric histogram filter is well-suited to represent complex multimodal posteri-
ors, where the intentions of a player cannot always be interpreted unambiguously. We further
propose a tractable approximation to the measurement model that estimates the likelihood
of an agent’s SVO state, based on observed data, using a modified variant of the Maximum
Entropy Model and a second-order Taylor series approximation to the objective function.
Finally, the estimation module together with the planning module is integrated into a single
combined framework, where the AV generates its trajectories according to its belief in the SVO
estimates of the human players, while the human players are assumed to have full knowledge
of their ground-truth SVO values. This combined framework is evaluated for its predictive
performance against a non-interactive algorithm that ignores these sources of uncertainty and
against an algorithm with fixed SVO values in the two previously defined scenarios; the high-
way ramp-merging and the four-way uncontrolled intersection. The next section summarizes
the main conclusions drawn from the presented results.
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5-2 Conclusions

To investigate the impact of incorporating intention into the game-theoretic formulation, we
initially considered scenarios, in which SVO values were assumed to be fixed and known a
priori throughout the entire simulation horizon. As mentioned previously, in a GNEP multiple
social equilibria can exist, representing different agreements among the players that address
the same social conflict. The nature of the social conflict can vary depending on the specific
scenario considered. In this work, the conflict arises from the decision of whether to give
priority to the autonomous vehicle to pass first at an uncontrolled intersection or to merge
into the oncoming traffic at a highway. Therefore, by manipulating the SVO values of the
players, it is possible to converge to a different local Nash equilibrium.

In Chapter 3, we explored such equilibria under different SVO values and varying number
of players, so as to observe the changes in the decision-making of the autonomous vehicle.
Our findings indicate that as the number of players in the same region of space increases,
the problem becomes more complex and the merging occurs much later, since the human
players need more time to adjust their course or decelerate to make sufficient space for the
autonomous vehicle. Moreover, this work demonstrates that players who prioritize their
personal objectives over group interests tend to have low SVO values and exhibit an overall
selfish behavior, by avoiding to deviate from their intended path. Conversely, players with high
SVO values (prosocial behavior) are more considerate of the welfare of others and are willing
to undertake actions that incur high costs if it benefits the group as a whole. Conversely,
we have shown that players with high SVO values are more considerate of the welfare of
others and are willing to undertake actions that incur high costs, provided that these actions
contributed to the collective benefit of the group.

Subsequently, the IBR and the KKT implementations were then compared to a non-interactive
baseline algorithm. This way we can directly assess the impact of game-theoretic reasoning on
the computational cost and on the performance of the solution trajectories. The solve times,
gathered by solving multiple games under various SVO values and number of players, showed
the computational superiority of the non-interactive baseline and of the IBR formulation
over the KKT formulation. Regarding the non-interactive baseline algorithm, this result
is expected, since the optimization problem is greatly simplified when no interactions are
considered. Meanwhile, the fast computation times of IBR can be attributed to the fact that,
in both scenarios considered, the generated trajectories for the human players are mostly
linear across the entire simulation with slight deviations from their course. Therefore, the
initial guess for the predicted trajectory is very close to the optimal local solution and the
algorithm converges much faster than expected. Note that the main shortcoming of the IBR
algorithm is that it offers no formal guarantees of convergence in a finite number of steps,
especially if the initial guess is chosen very poorly, where it might not converge at all. On the
other hand, the KKT algorithm, albeit slower, utilizes gradient information to converge to a
local equilibrium solution and it is considered to be a more reliable method to resolve a social
conflict. Furthermore, comparing the solution trajectories of these two methods revealed that
KKT exhibits a strong ability to generate more efficient trajectories in terms of achieving
goals with minimal effort and increased safety and comfort for the passengers. In contrast,
IBR appears to generate more conservative trajectories with weaker interactions, assuming
the strategies of other players are fixed at each optimization step until convergence. All things
considered, the KKT approach is preferred over the IBR method, particularly when applied
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to more complex scenarios.

Finally, in Chapter 4 we extend our analysis by considering the uncertainty of SVO values in
cluttered driving scenarios, where human drivers’ intentions are generally unknown a priori.
To evaluate the prediction performance of the proposed inference method that dynamically
updates the SVO values of other agents using the KKT algorithm, we compared it against
several variants of fixed SVO preferences and a non-interactive baseline algorithm. This
comparison highlights more clearly the benefits of a multi-agent game-theoretic interaction-
aware formulation that actively reasons about the intentions of all players involved. By
looking at the average prediction errors, our findings show that the prediction error of the non-
interactive approach grows linearly with the prediction horizon, leading to overly conservative
trajectories that completely disregard their impact on the surrounding vehicles. In contrast,
the accuracy of predictions by fixing the SVO values can vary greatly depending on how
closely the selected values match the ground-truth values. As a result, the proposed inference
method exhibits superior performance compared to all other approaches, with the average
prediction error approaching zero. This implies that dynamically changing the SVO values
effectively captures the true intentions of the surrounding players.

5-3 Limitations and Future Work

There are many promising directions for future work to proceed from the results presented in
this thesis.

One potential direction for future research is to evaluate the performance of the proposed
planning approach when interacting with actual human behavior. In this work, it is assumed
that human behavior can be approximately modeled as a local Nash equilibrium of a dynamic
multi-agent game. However, it is not yet clear to what degree actual human behavior differs
from this equilibrium concept, and further experiments are required to assess the robustness
of the inference-based planning approach, when interacting with such behavior in a closed-
loop system. To that end, the objective functions of the players could be learned from a
real-world dataset using efficient Reinforcement Learning techniques and further validated
on a hardware setup. In addition, this approach has the potential to simplify the objective
function to a linear combination of features and parameters to be trained, thus decreasing the
computational cost of the KKT algorithm and enhancing its scalability when dealing with
multiple players.

Another promising future direction could be to explore a more precise inference method for the
intentions of the human drivers. Although this work demonstrates an efficient approach that
has the potential for online inference, it relies on a second-order Taylor series approximation
for the measurement model. As a result, only initial estimates that are sufficiently close to
the true SVO values will yield accurate results. However, acquiring ground-truth labels for
the SVO preferences of human drivers is difficult, if not impossible. This is due to the fact
that SVO preferences can change over time and are challenging to interpret visually, even if
they are consistent. As a result, a more robust approximation is required to overcome this
limitation.

Finally, further research should aim to improve the accuracy of the vehicle motion model.
Nonlinear kinematic bicycle models are limited in that they disregard the forces causing
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the vehicle’s motion and are only valid at low speeds. Instead, bicycle dynamics could better
capture the motion under real conditions by accounting for forces such as friction, aerodynamic
drag, and inertia. Moreover, the collision avoidance constraints, in this work, assume circular
representation of the vehicle’s shape, which may lead to overly conservative trajectories. A
more precise representation, such as ellipsoids or a series of smaller overlapping disks, is
needed to capture the nearly rectangular shape of typical vehicles.
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Appendix A

Predicted Trajectories under Various
SVOs

This section provides supplementary material illustrating the predicted trajectories of the
Autonomous Vehicle (AV) in response to varying SVO values of the human drivers in a
4-agent merging scenario. Our aim is for the reader to gain a deeper understanding of the
influence of human intentions on the decisions of the merging vehicle. As explained in Chapter
3, in the 4-agent ramp-merging scenario, we distinguish two possible solution strategies; either
the AV merges in the first gap created by the leader and one of the followers, or in the second
gap between the two followers.

A-1 Merging in the First gap

Here, two cases are presented, where the Social Value Orientation (SVO) of the Autonomous
Vehicle (AV) is fixed at a certain value, while the SVO of Agent 1 (ϕ1) varies from 0 to
80 degrees. The first case considers a prosocial behavior (ϕAV = 45◦), and the second an
altruistic behavior (ϕAV = 80◦). All other agents are considered to behave egoistically. The
results are illustrated in Figures A-1 and A-2 respectively.

A-2 Merging in the Second gap

Here, three cases are presented, where the Social Value Orientation (SVO) of the Autonomous
Vehicle (AV) is fixed at a certain value, while the SVO of Agent 2 (ϕ2) varies from 0 to 80
degrees. The first case considers an egoistic behavior of the AV (ϕAV = 0◦) , the second a
prosocial behavior (ϕAV = 45◦), and the last an altruistic behavior (ϕAV = 80◦). All other
agents are considered to behave egoistically. The results are illustrated in Figures A-3, A-4
and A-5 respectively.
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Figure A-1: Predicted Trajectories of the merging AV with fixed SVO value ϕAV = 45◦ as a
response to varying SVO values of Agent 1 (ϕ1).

Figure A-2: Predicted Trajectories of the merging AV with fixed SVO value ϕAV = 80◦ as a
response to varying SVO values of Agent 1 (ϕ1).

Figure A-3: Predicted Trajectories of the merging AV with fixed SVO value ϕAV = 0◦ as a
response to varying SVO values of Agent 2 (ϕ2).
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Figure A-4: Predicted Trajectories of the merging AV with fixed SVO value ϕAV = 45◦ as a
response to varying SVO values of Agent 2 (ϕ2).

Figure A-5: Predicted Trajectories of the merging AV with fixed SVO value ϕAV = 80◦ as a
response to varying SVO values of Agent 2 (ϕ2).
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Glossary

List of Acronyms

ADAS Advanced Driving Assistance Systems
AV Autonomous Vehicle
SAE Society of Automotive Engineers
SVO Social Value Orientation
MPC Model Predictive Control
OCP Optimal Control Problem
GNEP Generalized Nash Equilibrium Problem
IBR Iterated Best Response
KKT Karush-Kuhn-Tucker

List of Symbols

Lowercase Letters
α Vehicle’s acceleration
β Vehicle slip angle
λ Lagrange multipliers vector for inequality constraints
µ Lagrange multipliers vector for equality constraints
δ Steering angle
ℓ Wheelbase
ϵ Noise
u Joint control vector for all players
w Probability mass vector
x Joint state vector for all players
µ Mean
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ω Steering rate
ϕ SVO value
ψ Yaw or heading angle
σ Standard deviation
k Discrete time
m Number of controls/inputs
n Number of states
px Position x of the vehicle’s Center of Mass
py Position x of the vehicle’s Center of Mass
t Continuous time
v Vehicle’s velocity

Uppercase Letters
∆t Sampling time
D Jacobian matrix
H Hessian matrix
WN Weight matrix for terminal states
Wq Weight matrix for reference tracking
Wr Weight matrix for control penalties
U Action set
U Joint action set
X State set
M Number of players/agents
N Prediction (or planning) horizon
R Radius of collision
T Simulation time
Z Normalizing constant

Subscripts
(·)¬i All players except player i
(·)i Player i

Superscripts
(·)∗ Optimal quantity
(·)0:N Range from time instant 0 to N
(·)k Time instant k
(̄·) Upper bound

¯
(·) Lower bound

Functions
b(·) Belief
F (·) Discrete state dynamics
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f(·) Continuous state dynamics
G(·) Cost function considering SVO value
g(·) Inequality constraints
h(·) Equality constraints
J(·) Cost function
L(·) Lagrange function
p(·) Probability
R(·) Reward function
s(·) Strategy
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