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Adaptive Risk-Tendency: Nano Drone Navigation in Cluttered
Environments with Distributional Reinforcement Learning

Cheng Liu1, Erik-Jan van Kampen1, Guido C.H.E. de Croon1

Abstract— Enabling the capability of assessing risk and mak-
ing risk-aware decisions is essential to applying reinforcement
learning to safety-critical robots like drones. In this paper,
we investigate a specific case where a nano quadcopter robot
learns to navigate an apriori-unknown cluttered environment
under partial observability. We present a distributional re-
inforcement learning framework to generate adaptive risk-
tendency policies. Specifically, we propose to use lower tail
conditional variance of the learnt return distribution as intrinsic
uncertainty estimation, and use exponentially weighted average
forecasting (EWAF) to adapt the risk-tendency in accordance
with the estimated uncertainty. In simulation and real-world
empirical results, we show that (1) the most effective risk-
tendency varies across states, (2) the agent with adaptive risk-
tendency achieves superior performance compared to risk-
neutral policy or risk-averse policy baselines. Code and video
can be found in this repository: https://github.com/
tudelft/risk-sensitive-rl.git

I. INTRODUCTION

Reinforcement learning (RL) is promising in solving se-
quential decision making problems such as robotic naviga-
tion with obstacle avoidance as it seeks long-term optimal
policies [1], [2]. Recent advances in deep reinforcement
learning (DRL), which combines deep neutral networks with
RL, have shown the capability of achieving super human
performance in diverse complex environments [3], [4], [5].
The majority of current DRL methods are designed for
maximizing the expectation of accumulated future returns,
omitting to consider the risk of rare catastrophic events.
However, when it comes to applying RL to safety-critical
robots like drones, instead of aiming at achieving a high
expected return, dealing with risks and making decisions
under uncertainty is crucial and remains a challenge.

A natural way to risk-sensitive RL is considering the
worst-case of the stochastic return rather than its expectation,
but this may lead to over-conservative policies [6]. Recent
works propose to model the distribution of the future re-
turn and to generate multiple policies with different risk-
sensitivities by changing levels of a risk metric [7]. While
[7] captures the stochasticity in accumulated returns by ap-
proximating the mean and variance of a gaussian distribution,
distributional RL reconstructs the true intrinsic distribution of
future returns [8], [9], [10]. A major merit of distributional
RL is that it can generate multiple policies with different
levels of risk-tendencies [11], [10], [12].

Distributional RL has been applied to safety-critical ap-
plications such as autonomous driving at occluded intersec-
tions [14] and mobile-robot indoor navigation [15]. These

1 Delft University of Technology, Email: c.liu-10@tudelft.nl,
e.vankampen@tudelft.nl, g.c.h.e.decroon@tudelft.nl.

Fig. 1: ART-IQN framework that combines IQN with in-
trinsic uncertainty estimation and risk-tendency adaption,
enabling a Crazyflie [13] nano drone navigating through a
cluttered environment safely and efficiently.

methods learn a policy that can vary its risk-tendency during
training, but they still rely on a fixed risk-tendency for each
deployment task. However, a proficient pilot would not be
as cautious while cruising in fair weather as when landing
in stormy weather. In other words, the ideal degree of risk-
tendency varies as a function of not only the task but also
the real-time feedback from the environment. A step towards
building intelligent robots is adapting risk-tendency on the
fly automatically.

To achieve this goal, we propose Adaptive Risk-Tendency
Implicit Quantile Network (ART-IQN) that can adapt risk-
tendency by reacting to the context. We propose to let
intrinsic uncertainty [16] (estimated by lower tail conditional
variance) set the way in which the agent acts - adapting
risk-tendency by forecasting the intrinsic uncertainty. The
effectiveness of ART-IQN is validated on safety-critical tasks
- autonomous drone navigation in cluttered environments
with constrained sensors (shown in Fig. 1). Both in simula-
tion and real-world experiments, our method shows superior
performance in the trade-off between navigation efficiency
and safety in comparison with risk-neutral and risk-averse
baselines. Our main contributions are:
• an automatic adaption in risk-tendency on the fly in

accordance with intrinsic uncertainty estimation;
• a drone navigation algorithm based on distributional RL,

that can learn a variety of risk-sensitive policies;
• a sim-to-real RL framework and a light-weight simula-

tion environment, enabling seamless policy generaliza-
tion from simulation to reality.

II. RELATED WORK

A. Risk and Uncertainty in RL-based Navigation

RL-based robot navigation methods surged recently due
to the capability of generalization and robustness[17], [18].

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 7198

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

60
32

4

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 06:42:48 UTC from IEEE Xplore.  Restrictions apply. 



Several navigation and obstacle avoidance algorithms based
on RL have also emerged to address risks and uncertainties
in the environment. For instance, [19] proposed to use a
neural network to predict collision probability at future steps
for obstacle avoidance tasks, utilizing MC-dropout [20] and
bootstrapping [21] to estimate the uncertainty of the model
prediction. Additionally, [22] enabled estimation of the re-
gional increase of uncertainty in novel dynamic scenarios by
introducing LSTM [23] to add memory of historical motion
of the robot. [24] resorts to a model-free policy network as
action selector, a GRU [25] to predict uncertainty in local
observation and uses the prediction variance to adjust the
variance of the stochastic policy.

However, these methods either use Model Predictive Con-
trol (MPC) [26] as action selector, which is still computation-
ally heavy for the micro controllers present on nano copters,
or they require an additional predictor model to estimate the
uncertainty. In our method, the risk measure and uncertainty
estimation are easily and efficiently implemented based on
distributional RL (more details in Section III), which requires
minimal additional computational resources. Besides, our
method can be applied to other tasks with more complex
objective functions and constraints while MPC will consume
much more resources.

B. Distributional Reinforcement Learning

Distributional RL has gained momentum recently, which
takes into account the whole distribution of value functions
rather than the expectation [7], [8], [9], [10]. Since the
whole distribution contains more information beyond the first
moment, one can utilize it to make more informed decisions
that lead to higher rewards. Recent literature shows that
similar mechanisms also exist in human brains [27].

A forerunner of distributional RL is categorical DQN [8],
which uses categorical distribution with fixed supports to
approximate the probability density function (PDF) of the
return. A more flexible way to approximate the distribution is
quantile regression [28]. For instance, the quantile regression
DQN (QR-DQN) algorithm [9] learns the distribution by
approximating the quantile function (QF) with fixed quantile
values. The implicit quantile network (IQN) algorithm [10]
further improved the flexibility and approximation accu-
racy compared to QR-DQN by learning quantile values
from quantile fractions sampled from a uniform distribution
U [0, 1]. This is achieved with a deep neutral network rep-
resenting the QF by mapping quantile fractions to quantile
values under Wasserstein distance [10], a loss metric which
indicates the minimal cost for transporting mass to make two
distributions identical.

There are also applications of distributional RL to safety-
critical environments in the literature. [14] incorporates IQN
to solve an autonomous driving task at intersections by
combing risk-averse IQN with safety guarantees. Based
on [12], [15] proposes a method enabling a mobile robot
navigating office scenarios with multiple risk-sensitivities.

Even though risk-tendency can be altered without retrain-
ing a policy, those methods require a fixed risk-tendency

for each deployment task. Our algorithm is able to adjust
its risk-tendency by reacting to dynamic uncertainty levels
rather than following a fixed manually set risk-tendency.

III. METHODOLOGY

A. Problem Statement

We formulate the drone navigation task as Partially Ob-
servable Markov Decision Process (POMDP) [29].

1) POMDP Setup: The POMDP can be defined as a tuple
(S,A,O,P, R, γ), where S, A and O represent the state,
action and observation spaces. The drone interacts with the
environment in discrete timesteps. At each timestep t, it
receives the observation ot ∈ O from the environment and
performs an action at ∈ A based on its policy function
πt(at|ot), which causes a transition of the state from st to
st+1 ∼ P(·|st, at), generating a reward rt = R(st, at) and
a new observation ot+1 ∼ O(·|st+1, at). Following policy
π, the discounted sum of future rewards is denoted by the
random variable Zπ(st, at) =

∑∞
k=0 γ

kR(st+k, at+k) with
γ ∈ (0, 1) as the discount factor. Standard RL aims at
maximizing the expectation of Zπ , which is known as the
action-value function Qπ(st, at) = E[Zπ(st, at)].

Fig. 2: A Crazyflie with 4 lasers to detect obstacles. [Picture
by Guus Schoonewille, reprinted TU Delft]

2) States and Observations: We use Crazyflie nano
quadrotor as our experiment platform. As shown in Fig. 2, the
Crazyflie is equipped with four lasers in the drone’s positive
and negative x and y axis to detect obstacles. It also has an
optical flow camera to estimate velocity for low-level flight
control. Given a navigation task, S contains information
about the drone itself, the goal and obstacles. The state can be
parameterized as st = 〈p, dg,do〉, where p is drone’s global
position, dg = ||p − pg||2 is the distance from the drone
to the goal, do is a vector consisting of distances from the
drone to surrounding obstacles.

Due to the constrained sensors onboard, S is not fully
observable to the drone. Instead, the drone receives a partial
observation which is formulated as a tuple ot = 〈p, dg,dl〉
where dl denotes laser reflections. The laser detects obstacles
at a maximum range of 4 meters. p and dg are given by a
global motion capturing system in real-world experiments.

3) Action Space: To incorporate our algorithm, A con-
sists of discretized velocities with multiple magnitudes and
directions. The velocity magnitudes that can be chosen are
m discretized values exponentially spaced in (0, vm], in
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which vm is the maximum velocity. Since only obstacles
that intersect with the laser beams will be detected, there are
4 possible moving directions evenly spaced between [0, 2π).

4) Reward Function: The reward function is manually
designed to award the drone for reaching the goal as fast
as possible, while penalizing for collisions or getting close
to obstacles:

R(st, at) =


50 dg < df
5(do − ds) rd < do < ds
−25 do < rd
−0.1 otherwise,

(1)

where df is the goal-reaching threshold, do is the distance
from drone to the closest obstacle, ds is the safety margin,
rd represents the radius of drone.

B. Adaptive Risk-Tendency Implicit Quantile Network

To adjust the risk-tendency on the fly dynamically, we pro-
pose the Adaptive Risk Tendency Implicit Quantile Network
(ART-IQN) algorithm. We introduce the key components
of ART-IQN as shown in Fig. 1, which are (1) the risk-
sensitive IQN, (2) the intrinsic uncertainty estimation and
(3) the EWAF uncertainty forecasting.

1) Implicit Quantile Network: In distributional RL, the
distributional Bellman equation [8] can be defined as

Zπ(s, a)
D
= R(s, a) + γZπ(s′, a′), (2)

where D
= denotes equality in distribution, state s′ and ac-

tion a′ at next timestep are distributed according to s′ ∼
P(s, a), a′ ∼ π(·|s′).

We represent Zπ(s, a) implicitly by its quantile function
as in IQN [10] because of the easiness to combine IQN
with risk metrics to adapt risk-tendency, which will be
further explained in Section III-B.2. Concretely, the quantile
function is approximated by a neural network with learnable
parameters θ. We express such implicit quantile function
as Zπθ (s, a; τ), where τ ∈ [0, 1] is the quantile level. To
optimize θ, quantile regression [28] is used with quantile
Huber-loss as a surrogate of the Wasserstein distance [10].

A neural network with parameters θ′ is used as the target
distribution approximator and the temporal difference (TD)
at sample (s, a, r, s′) is computed as

δτ,τ ′ = r + γZπθ′(s
′, a′; τ ′)− Zπθ (s, a; τ), (3)

for τ , τ ′ independently sampled from the uniform distribu-
tion, i.e. τ, τ ′ ∼ U [0, 1].

The τ -quantile Huber-loss is defined as

ρκ(δ; τ) = |τ − I{δ < 0}|Lκ(δ)
κ

,with

Lκ(δ) =
{

1
2δ

2 if|δ| ≤ κ
κ(|δ| − 1

2κ) otherwise,

(4)

where I is an indicator operator. The threshold κ provides
smooth gradient-clipping. We approximate the quantile loss
by sampling N independent quantiles τ and N ′ independent
targets τ ′. The loss function to update θ is

L(θ) = 1

N ·N ′
N∑
i=1

N ′∑
j=1

ρκ(δτi,τ ′
j
; τi). (5)

By backpropagating L(θ) with respect to θ, the Wasser-
stein distance is minimized between the current return dis-
tribution Zπ(s, a) and the target R(s, a) + γZπ(s′, a′).

2) Risk-sensitive Policy and Risk Metric: Distributional
RL is inherently risk-sensitive by combining risk metrics [6]
to create a distorted expectation [12] on the return distribu-
tion. A distorted expectation is a risk weighted expectation
of the distribution under a specific distortion function -
which indicates a non-decreasing function β : [0, 1]→ [0, 1]
satisfying β(0) = 0 and β(1) = 1. The distorted expecta-
tion of Z under β is defined as Qβ =

∫ 1

0
F−1Z (τ)dβ(τ),

where F−1Z (τ) is the quantile function or cumulative density
function. According to [10], any distorted expectation can
be represented as a weighted sum over the quantiles. A
corresponding sample-based risk-sensitive policy is obtained
by approximating Qβ by K samples of τ̃ ∼ U [0, 1]:

πβ(s) = argmax
a∈A

1

K

K∑
k=1

Zβ(τ̃k)(s, a). (6)

Altering the sampling principle for τ creates various
risk-sensitive policies. Specifically, we consider Conditional
Value-at-Risk (CVaR) [30], a coherent risk metric [6] as
our distortion function for its convenience and diversity in
generating risk-tendency levels. CVaR is applied to IQN by
modifying τ̃ ∼ U [0, 1] to τ̃ ∼ U [0, α], where α is the CVaR
value. We get risk-averse policies as α decreases to near zero
and reduce back to risk-neutral when α = 1.

3) Lower Tail Conditional Variance for Intrinsic Uncer-
tainty Estimation: One major source of risk comes from
intrinsic uncertainty, which is due to stochasticity of the
environment or partial observability. Opposite to epistemic
uncertainty [16], intrinsic uncertainty is independent of the
agent’s knowledge about the task.

In distributional RL, a more or less spread out return
distribution indicates the level of intrinsic uncertainty [31].
Inspired by [32], where the decaying upper tail conditional
variance of the return distribution is used for more efficient
exploration, we use the lower tail conditional variance as the
intrinsic uncertainty estimation for risk-tendency adaption.
The lower half tail conditional variance is equivalent to the
right truncated variance (RTV):

RTV =
2

N

N
2∑
i=1

(F−1Z (τi)− F−1Z (τN
2
))2, (7)

in which τi are i
N -th quantile levels. Intuitively, RTV is

biased towards negative returns. We calculate RTV with
respect to the median rather than the mean due to its sta-
tistical robustness [32], [33]. Note that F−1Z (τ) is implicitly
approximated by Zπθ (; τ) in our method.
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4) EWAF for Risk-Tendency Adaption: In our framework,
the risk-tendency can be cast in the choice of CVaR. To
formulate CVaR as a function of RTV, we propose to model
CVaR by an exponentially weighted categorical distribution.
Specifically, consider a categorical distribution C with two
logits: Ci = exp (wi)/

∑
i exp (wi), in which wi ∈ R, i =

1, 2. By letting α = C1, the CVaR is restricted to a range
of (0, 1) and can be adjusted by altering the logit weights.
Concretely, at each timestep t, the CVaR is adapted by
updating wi with feedback f by a step size η: w1 =
w1 − ηf, w2 = w2 + ηf . We set f = RTVt − RTVt−1 as
an indicator of intrinsic uncertainty feedback. To avoid the
CVaR approaching zero, an additional term:

∑
i exp(wi)/b

is added both to the denominator of Ci for i = 1, 2 and
to the numerator of C1, which results in a CVaR range of
( 1
b+1 , 1). For example, α ∈ (0.1, 1) when b = 9.
The overall ART-IQN that can adapt its risk-tendency by

reacting to intrinsic uncertainty variations is explained in
Algorithm 1. In principle, when RTV is increasing and the
current CVaR is relatively large, the agent will behave more
risk-unwillingly by choosing smaller CVaR.

Algorithm 1: ART-IQN for Drone Navigation
Input: Post-training IQNθ; A,K,N,w1, w2, b, η
Initialize state s, CVaR α
while dg > df and t ≤ H do

Observe ot ← 〈p, dg,dl〉 from st
Get quantile function Zθ(ot, a; τ) = IQNθ(ot; τ)
Distorted sampling τ̃k ∼ U [0, α], k = {1, . . . ,K}
Take action at = argmax

a∈A

1
K

∑K
k=1 Zθ(ot, a; τ̃k)

Calculate right truncated variance:
RTVt = 2

N

∑N
2
i=1(Zθ(ot, at; τi)−Zθ(ot, at; τN

2
))2

Obtain feedback ft = RTVt − RTVt−1
Forecasting w1 = w1 − ηft, w2 = w2 + ηft
Adapt CVaR α = (b+1) exp (w1)+exp (w2)

(b+1)
∑

i exp (wi)
, i = 1, 2

end

C. Training and Evaluation Pipelines

1) Environment: We design an OpenAI gym [34] like
2D environment for training with state, observation and
action spaces defined in Section III-A.2. To achieve fast
simulation, the drone is modelled as a point mass and the
velocity command is assumed to be immediately executed.
The state is updated every T = 0.1s in simulation time. We
utilize domain randomization [35] to train policies that can
generalize to diverse scenarios. Specifically, the goal distance
is uniformly sampled dg ∼ U [5, 7](m) with drone initialized
at a fixed start point for each training episode. The number
of obstacles, the shape and position of each obstacle are
randomly generated for each episode as demonstrated in Fig.
3. Laser beams and obstacle outlines are modelled as line
segments for simplicity. Gaussian noise N (µ, σ) with mean
µ = 0.0 and standard deviation σ = 0.01 is added to the
measurement of each laser to simulate a noisy sensor.

2) Training Process: We follow curriculum learning to
train the agent - the complexity of the environment increases

as training process goes on. The first stage of training
is implemented with relative small number of randomized
obstacles, nobs ∈ [0, 5]. After training several episodes (until
a navigation success rate of 0.8 is reached), the complexity
of the environment is increased by adding more obstacles,
nobs ∈ [6, 12]. To make sure the agent accumulates a diverse
range of experiences under a variety of risk-tendencies, the
CVaR value is uniformly sampled α ∼ U(0, 1] at each
episode. An episode is terminated after a collision or if the
goal is not reached within H timesteps. The whole training
process is ended after the average return is empirically
converged. It took ≈ 3.5 hours on a 2.2 GHz Intel i7 Core
CPU, achieving a success rate of 0.88.

Fig. 3: Randomly generated environments for training.

The agent is modelled as a fully connected network that
has 3 hidden layers with 512 units per layer. Each fully-
connected layer is followed with a ReLU [36] activation
function except the output layer. Adam [37] is used as our
optimizer with lr as the learning rate. At each update step
for every D episodes, a batch size of B samples are drawn
from the experience replay buffer with size E. The hyper-
parameters used are listed in Table I.

TABLE I: HYPER-PARAMETERS

Hyper-parameter symbols and values
lr 2× 10−4 vm 1 [m/s] D 5 N,N ′ 16
E 5× 104 rd 0.05 [m] K 64 m 3
γ 0.99 df 0.1 [m] B 32 b 9
T 0.1 [s] ds 0.2 [m] H 200 η 0.5

3) Evaluation in Simulation: To show the efficacy of our
algorithm, ART-IQN is compared with IQN with multiple
risk-tendencies α = {0.1, 0.25, 0.5, 0.75, 1.0}. In addition,
we also trained a DQN [3] agent as our baseline following
the same training procedure. The average episodic return,
success rate, collision rate and average navigation time
are compared among agents across various environments.
Specifically, the evaluation is executed on three sets of
environments with nobs = {2, 6, 12} for each agent. Each
set has 100 diverse randomized environments.

IV. RESULTS

A. Simulation Results

1) Quantitative Analysis: Table II gives quantitative re-
sults by comparing: (1) DQN, (2) IQN with different risk
tendencies and (3) ART-IQN. For all the environments, DQN
performs similar to risk-neutral IQN. For nobs = 2, all the
agents finish the navigation task at a high success rate and
a low collision rate since the environment is comparatively
easy. For nobs = 6, while IQN agent with a lower CVaR
value maintain a lower collision rate compared to the one
with a higher CVaR value, the task finishing time is longer
and the timeout rate is higher. In contrast, ART-IQN achieves
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TABLE II: QUANTITATIVE SIMULATION RESULTS

CVaR Average episodic return (mean ± std) Success rate Collision rate Navigation time [s]
nobs - 2 6 12 2 6 12 2 6 12 2 6 12

DQN[3] - 37.45 ± 9.01 25.60 ± 13.91 17.16 ± 15.85 0.85 0.65 0.56 0.13 0.31 0.39 5.23 8.11 8.34
0.1 39.42 ± 7.28 33.49 ± 12.16 20.42 ± 12.43 0.87 0.74 0.59 0.09 0.15 0.17 5.41 12.52 18.52

0.25 40.36 ± 8.07 32.37 ± 12.02 21.61 ± 12.88 0.88 0.72 0.67 0.10 0.17 0.25 5.31 10.23 13.23
IQN[10] 0.5 38.47 ± 8.56 29.90 ± 13.98 19.76 ± 14.72 0.87 0.73 0.66 0.11 0.19 0.28 5.30 8.46 09.46

0.75 37.62 ± 9.23 25.72 ± 13.71 18.32 ± 14.22 0.84 0.69 0.62 0.13 0.22 0.31 5.25 8.57 08.60
1.0 38.70 ± 7.89 23.39 ± 14.86 16.29 ± 15.47 0.86 0.67 0.57 0.12 0.30 0.41 5.12 7.89 08.05

ART-IQN - 39.85 ± 7.23 36.43 ± 13.51 24.88 ± 12.31 0.87 0.77 0.70 0.11 0.17 0.15 5.32 8.26 11.76

Fig. 4: Drone behavior and navigation time comparison
between agents with different risk-tendencies.

a success rate of 0.77, maintains low collision rate and an
average navigation time of only 0.37s longer compared to
risk-neutral policy. For nobs = 12, the average return and
success rate of all the agents decrease. This drop can be
explained by the severe partial observability the agents face.
While there are more cases of timeout with lower CVaR
values and more collisions with a higher one, ART-IQN
performs best in success rate and collision rate with a decent
navigation time.

2) Qualitative Analysis: We demonstrate the behavior
of agents in Fig. 4 by considering a typical environment

Fig. 5: RTV and adaptive CVaR. ART-IQN can adapt its
CVaR value accordingly with RTV as an estimation of
intrinsic uncertainty in the environment.

encountered in evaluation. In Fig. 4 (a), risk-neutral IQN
achieves the goal as fast as possible, ignoring the risk of
getting too close to obstacles that leads to a higher rate of
collision. On the other hand, risk-averse policies, especially
the one with α = 0.1 as shown in Fig. 4 (e), generate safer
policies but sacrifice in navigation efficiency. In contrast, as
shown in Fig. 4 (f), ART-IQN acts adaptively - avoiding
obstacles cautiously in the middle area where there is more
uncertainty encountered, and flying at a higher speed when
it’s more certain about the current observation.

Fig. 5 shows the RTV and adaptive CVaR along the
trajectory in Fig. 4 (f). The drone starts with CVaR α = 1.0,
which is risk-neutral when it does not get to know the
environment. During 0s to 2s, the drone flies at its maximum
speed risk-neutrally as the current uncertainty is low. Around
2s to 8s, the intrinsic uncertainty estimated by RTV increases
and stays at a high level, resulting a decrease in CVaR
values, which corresponds to the risk-averse behavior in
the middle area of Fig. 4 (f). When the RTV drops and
maintains a low level from 8s until the episode ends, the
CVaR increases, achieving a risk-neutral policy to reach the
goal point efficiently. It is clear that, as the drone navigates
through the environment, it adjusts its risk-tendency to be
risk-averse when the uncertainty increases and to be risk-
neutral when there is less uncertainty in the environment.

B. Real-World Experiments

1) Hardware Setup: The Crazyflie nano drone we used
for real-world experiments is shown in Fig. 2. It has di-
mensions 92 × 92 × 29mm and weighs 27.5g. Policy is
performed on a laptop, which gives velocity command and
communicates with Crazyflie via a radio-to-USB dongle,
and then followed by a an onboard closed-loop attitude
controller on the Crazyflie. The velocity sample period T
is set to be the same as in simulation as shown in Table

7202

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 06:42:48 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: REAL-WORLD EXPERIMENT RESULTS

CVaR # Success / # Collision Navigation time (mean ± std) [s]
Environment - 1 2 3 1 2 3

IQN 0.1 9 / 0 3 / 0 3 / 0 14.41 ± 3.67 16.73 ± 0.49 21.52 ± 1.76
1.0 8 / 1 2 / 1 0 / 3 10.12 ± 3.29 12.54 ± 0.58 -

ART-IQN - 9 / 0 3 / 0 3 / 0 12.32 ± 3.46 13.37 ± 0.47 17.95 ± 1.85

(a) Environment 1: ART-IQN (b) Environment 1: Risk-averse (CVaR=0.1) (c) Environment 1: Risk-neutral

(d) Environment 2 (e) Environment 3 (f) Adversarial environment: ART-IQN

Fig. 6: Image frames for real-world experiments. The trajectory is plotted by the blue LED on the drone. For environment
2 and 3, the trajectories generated by different agents are distinguished with recolored LEDs.

I. The drone navigation task is implemented in 3 different
10 × 10m cluttered environments. As shown in Fig. 6, we
put artificial trees, boards and cylinders as obstacles in the
environment that the agent has not seen in simulation to
testify the generalization ability of our method. Reflective
markers are attached on four propeller hubs to let the motion
capturing system track the global position of the drone.

2) Evaluation Results: We test IQN with α = {0.1, 1.0}
and ART-IQN for comparison. In environment 1, each agent
is initialized at 3 different starting points for 3 runs, re-
sulted a total number of 27 runs. In environment 2 and
a more complex environment 3, the drone takes off at
the same starting point. As shown in Table III, all runs
succeeded except risk-neutral policies. Although risk-neutral
IQN achieves fastest navigation in succeeded runs, it ignores
the risk in the environment causing the drone to collide
with obstacles. Risk-averse IQN succeeds in all experiments
without collisions, but with a loss of navigation efficiency.
In contrast, ART-IQN navigates through all the environments
safely and efficiently.

Fig. 6 (a)-(e) demonstrate diverse behaviors among dif-
ferent risk-tendencies. Unlike risk-neutral IQN, both ART-
IQN and risk-averse IQN keep a safe distance to obstacles
to avoid collisions. The advantage of ART-IQN compared to
risk-averse IQN is mainly reflected in the shorter navigation
time as in Table III. In addition, we designed a more difficult
environment to study if IQN agents could generalize to
adversarial situations. However, all agents including ART-

IQN stick around in the corner of the U-shape obstacle
as shown in Fig. 6 (f). It is highly possible that U-shape
obstacles have not been seen often by the agent and can be
solved by generating similar situations during training.

V. CONCLUSION

In conclusion, focusing on the autonomous drone navi-
gation under partial observability, we propose an adaptive
risk-tendency algorithm based on distributional RL to adapt
risk-tendency accordingly with the estimated intrinsic un-
certainty. Our algorithm uses EWAF to adjust risk-tendency
represented by the CVaR, with lower tail conditional variance
as an estimation of the intrinsic uncertainty. We show the
effectiveness of our algorithm both in simulation and real-
world experiments. Empirical results show that our algorithm
can adaptively balance the efficiency-safety trade-off.

However, the step size η to update CVaR is currently pre-
specified, it would be worthy to optimize it. Furthermore, the
navigation task can be performed more fluidly by combining
adaptive risk-tendency with other RL methods like DSAC
[12] to deal with continuous action spaces. Despite that,
ART-IQN could serve as a first step to develop risk-tendency
adaptation methodologies for distributional RL applications
especially in risk-sensitive settings.
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