
 
 

Delft University of Technology

Embedding Phylogenetic Trees in Networks of Low Treewidth

Van Iersel, Leo; Jones, Mark; Weller, Mathias

DOI
10.4230/LIPIcs.ESA.2022.69
Publication date
2022
Document Version
Final published version
Published in
30th Annual European Symposium on Algorithms, ESA 2022

Citation (APA)
Van Iersel, L., Jones, M., & Weller, M. (2022). Embedding Phylogenetic Trees in Networks of Low
Treewidth. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), 30th Annual European
Symposium on Algorithms, ESA 2022 (pp. 69:1-69:14). Article 69 (Leibniz International Proceedings in
Informatics, LIPIcs; Vol. 244). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl
Publishing. https://doi.org/10.4230/LIPIcs.ESA.2022.69
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4230/LIPIcs.ESA.2022.69
https://doi.org/10.4230/LIPIcs.ESA.2022.69


Embedding Phylogenetic Trees in Networks of Low
Treewidth
Leo van Iersel !

Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

Mark Jones !

Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

Mathias Weller !

CNRS, LIGM (UMR 8049), Champs-s/-Marne, France

Abstract
Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree
be embedded into the network? This problem, called Tree Containment, arises when validating
networks constructed by phylogenetic inference methods. We present the first algorithm for (rooted)
Tree Containment using the treewidth t of the input network N as parameter, showing that the
problem can be solved in 2O(t2) · |N | time and space.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases fixed-parameter tractability, treewidth, phylogenetic tree, phylogenetic
network, display graph, tree containment, embedding

Digital Object Identifier 10.4230/LIPIcs.ESA.2022.69

Related Version Full Version: https://arxiv.org/abs/2207.00574v2 [40]

Funding Leo van Iersel: Partially funded by Netherlands Organization for Scientific Research (NWO)
Vidi grant 639.072.602 and KLEIN grant OCENW.KLEIN.125.
Mark Jones: Partially funded by Netherlands Organization for Scientific Research (NWO) KLEIN
grant OCENW.KLEIN.125.

Acknowledgements We are extremely grateful to the anonymous reviewers for their many insightful
and helpful comments.

1 Introduction

1.1 Background: phylogenetic trees and networks

Phylogenetic trees and networks are graphs used to represent evolutionary relationships. In
particular, a rooted phylogenetic network is a directed acyclic graph with distinctly labelled
leaves, a unique root and no indegree-1 outdegree-1 vertices. The labels of the leaves can, for
example, represent a collection of studied biological species, and the network then describes
how they evolved from a common ancestor (the root). Here, we will only consider rooted
binary phylogenetic networks, which we will call networks for short. Vertices with indegree 2
in such a network are called reticulations and represent events where lineages combine,
for example the emergence of new hybrid species. A network without reticulations is a
phylogenetic tree.

© Leo van Iersel, Mark Jones, and Mathias Weller;
licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 69; pp. 69:1–69:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:L.J.J.vanIersel@tudelft.nl
mailto:markelliotlloyd@gmail.com
https://orcid.org/0000-0002-4091-7089
mailto:mathias.weller@u-pem.fr
https://orcid.org/0000-0002-9653-3690
https://doi.org/10.4230/LIPIcs.ESA.2022.69
https://arxiv.org/abs/2207.00574v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


69:2 Embedding Phylogenetic Trees in Networks of Low Treewidth

fdb ea c fe dcba

Figure 1 Left: a phylogenetic tree T . Middle: a phylogenetic network N displaying T (solid
lines indicate an embedding of T ; black nodes indicate reticulations). Right: the display graph
D(N, T ) of N and T (see Section 1.5) with the network part drawn on top and the tree part drawn
on the bottom. Note that vertices of the display graph are not labelled. In the figure, the leaves
(square vertices) are ordered in the same way as in N .

1.2 The Tree Containment problem
The evolutionary history of a small unit of hereditary information (for example a gene, a
fraction of a gene or (in linguistics) a word) can often be described by a phylogenetic tree.
This is because at each reticulation, each unit is inherited from only one parent. Hence, if
we trace back the evolutionary history of such a hereditary unit in the network, we see that
its phylogenetic tree can be embedded in the network. This raises the fundamental question:
given a phylogenetic network and a phylogenetic tree, can the tree be embedded into the
network? This is called the Tree Containment problem (see Figure 1). To formalize this
problem, we say that a network N displays a tree T if some subgraph of N is a subdivision
of T .

Input: phylogenetic network Nin and tree Tin, both on the same set of leaf labels
Question: Does Nin display Tin?

Tree Containment (TC)

1.2.1 Motivation
Apart from being a natural and perhaps one of the most fundamental questions regarding
phylogenetic networks, the Tree Containment problem has direct applications in phylo-
genetics. The main application is the validation of phylogenetic network inference methods.
After constructing a network, one may want to verify whether it is consistent with the
phylogenetic trees. For example, if a heuristic method is used to generate a network for a
genomic data set, and tree inference methods are used to generate trees for each gene, then
the quality of the produced network can be assessed by computing the fraction of the gene
trees that can be embedded into it. In addition, one may want to find the actual embeddings
for visualisation purposes and/or to assess the importance of each network arc.

However, our main motivation for studying Tree Containment is that it is a first step
towards the wider application of treewidth based approaches in phylogenetics (see Sections 1.4
and 1.5). The techniques we develop are not exclusively designed for Tree Containment
but intended to be useful also for other problems such as Network Containment [31] and
Hybridization Number [8, 41, 42, 43]. The former is the natural generalization of Tree
Containment in which we have two networks as input and want to decide whether one can
be embedded into the other. It can, in particular, be used to decide whether two networks



L. van Iersel, M. Jones, and M. Weller 69:3

are isomorphic. In the latter problem, Hybridization Number, the input consists of a set
of phylogenetic trees, and the aim is to construct a network with at most k reticulations that
embeds each of the input trees. Although this will certainly be non-trivial, we expect that at
least part of the approach we introduce here can be applied to those and other problems in
phylogenetics.

1.3 Previous work
Tree Containment was shown to be NP-hard [32], even for tree-sibling, time-consistent,
regular networks [29]. On the positive side, polynomial-time algorithms were found for other
restricted classes, including tree-child networks [17, 18, 22, 24, 29, 44]. The first non-trivial
FPT algorithm for Tree Containment on general networks had running time O(2k/2n2),
where the parameter k is the number of reticulations in the network [32]. Another algorithm
was proposed by [23] with the same parameter, but it is only shown to be FPT for a
restricted class of networks. Since the problem can be split into independent subproblems
at non-leaf cut-edges [29], the parameterization can be improved to the largest number of
reticulations in any biconnected component (block), also called the level of the network.
Further improving the parameterization, the maximum number t∗ of “unstable component-
roots” per biconnected component was considered and an algorithm (working also in the
non-binary case) was found with running time O(3t∗ |N ||T |) [44]. Herein, a parameterization
“improves” over another if the first is provably smaller than (a function of) the second in any
input network.

Several generalizations and variants of the Tree Containment problem have been
studied. The more general Network Containment problem asks to embed a network
in another and has been shown to be solvable in polynomial time on a restricted network
class [31]. When allowing multifurcations and non-binary reticulations, two variants of
Tree Containment have been considered: In the firm version, each non-binary node
(“polytomy”) of the tree has to be embedded in a polytomy of the network whereas, in the
soft version, polytomies may be “resolved” into binary subtrees in any way [2]. Finally, the
unrooted version of Tree Containment was also shown to be NP-hard but fixed-parameter
tractable when the parameter is the reticulation number (the number of edges that need
to be deleted from the network to obtain a tree) [28]. While this version of the problem is
also known to be fixed-parameter tractable with respect to the treewidth of the network [30],
the work does not explicitly describe an algorithm and the implied running time depends on
Courcelle’s theorem [10] which makes practical implementation virtually impossible.

Since the notion of “display” closely resembles that of “topological minor” (with the
added constraint that the embedding must respect leaf-labels), Tree Containment can
be understood as a special case of a variant of the well-known Topological Minor
Containment (TMC) problem for directed graphs. TMC is known to be NP-complete
in general by reduction from Hamiltonian Cycle and previous algorithmic results focus
on the undirected variant, parameterized by the size h of the sought topological minor H

(corresponding to the input tree for Tree Containment). In particular, undirected TMC can
be solved in f(h)nO(1) time [21, 15]. In the directed case, even the definition of “topological
minor” has been contested [19] and we are aware of little to no algorithmic results. In Tree
Containment, part of the embedding of the host tree in the guest network is fixed by the
leaf-labeling. If the node-mapping is fixed for all nodes of the host, then directed TMC
generalizes the Disjoint Paths problem [16], which is NP-complete for 2 paths or in case
the host network is acyclic. Indeed, one can show Tree Containment to be NP-hard in a
similar fashion [32].

ESA 2022



69:4 Embedding Phylogenetic Trees in Networks of Low Treewidth

1.4 Treewidth
From the overview presented in Section 1.3, we see that the parameters that are most heavily
used are the reticulation number and the level. This is true not only for Tree Containment
but more generally in the phylogenetic networks literature. Although these parameters are
natural, their downside is that they are not necessarily much smaller than the input size.
This is why we study a different parameter here.

The treewidth of a graph measures its tree-likeness (see definition below), similarly to
the reticulation number and level. In that sense, it is also a natural parameter to consider
in phylogenetics, where networks are often expected to be reasonably tree-like. A major
advantage of treewidth is that it is expected to be much smaller than the reticulation number
and level. In particular, there exist classes of networks for which the treewidth is at most
a constant factor times the square-root of the level (see [33] for an example). Moreover,
a broad range of advanced techniques have been developed for designing FPT algorithms
for graph problems when the parameter is the treewidth [4, 12, 6, 13]. For these reasons,
the treewidth has recently been studied for phylogenetics problems [30, 34, 33, 38] and
related width parameters have been proposed [3]. However, using treewidth as parameter for
phylogenetic problems poses major challenges and, therefore, there are still few algorithms in
phylogenetics that use treewidth as parameter (see Section 1.5).

It will be convenient to define a tree decomposition of a graph G = (V, E) as a rooted
tree, where each vertex of the tree is called a bag and is assigned a partition (P, S, F ) of V ,
where S is a separator between P and F . We will refer to S as the present of the bag. The
set P is equal to the union of the presents of all descendant bags (minus the elements of S)
and we refer to it as the past of the bag. The set F = V \ (S ∪ P ) is referred to as the future
of the bag. For each edge of the graph, there is at least one bag for which both endpoints
of the edge are in the present of the bag. Finally, for each v ∈ V , the bags that have v in
the present form a non-empty connected subtree of the tree decomposition. The width of a
tree decomposition is one less than the maximum size of any bag’s present and the treewidth
tw(G) of a graph G is the minimum width of any tree decomposition of G. The treewidth of
a phylogenetic network or other directed graph is the treewidth of the underlying undirected
graph.

Our dynamic programming works with nice tree decompositions, in which the root is
assigned (V,∅,∅) and each bag assigned (P, S, F ) has exactly one of four types: Leaf bags
have P = S = ∅ (hence F = V ) and have no child, Introduce bags have a single child
assigned (P, S \ {z}, F ∪ {z}) for some z ∈ S, Forget bags have a single child assigned
(P \ {z}, S ∪ {z}, F ) for some z ∈ P , and Join bags have two children assigned (L, S, F ∪ R)
and (R, S, F ∪L) respectively, where (L, R) is a partition of P . When the treewidth is bounded
by a constant, [5] showed that a minimum-width tree decomposition can be found in linear
time and [36] showed that a nice tree decomposition of the same width can be obtained in
linear time. Regarding approximation, it is known that, for all graphs G, tree decompositions
of width O(tw(G)) can be computed in time single-exponential in tw(G) [11, 7, 37] and tree
decompositions of width O(tw(G)

√
log tw(G)) can be computed in polynomial time [14].

1.5 Challenges
One of the main challenges of using treewidth as parameter in phylogenetics is that the
central goal in this field is to infer phylogenetic networks and, thus, the network is not
known a priori so a tree decomposition cannot be constructed easily. A possible strategy to
overcome this problem is to work with the display graph (see Figure 1). Consider a problem



L. van Iersel, M. Jones, and M. Weller 69:5

taking as input a set of trees, such as Hybridization Number. Then, the display graph of
the trees is obtained by taking all trees and identifying leaves with the same label. Now we
have a graph in the input and hence we can compute a tree decomposition. Moreover, in
some cases, there is a strong relation between the treewidth of the display graph and the
treewidth of an optimal network [20, 33, 30].

A few instances of exploiting (tree decompositions of) the display graph of input networks
for algorithm design have been published. Famously, Bryant and Lagergren [9] designed
MSOL formulations solving the Tree Consistency problem on display graphs, which have
been improved1 by a concrete dynamic programming on a given tree decomposition of the
display graph [1]. Kelk et al. [34] also developed MSOL formulations on display graphs for
multiple incongruence measures on trees, based on so-called “agreement forests”. For the
Tree Containment problem, MSOL formulations acting on the display graph have been
used to prove fixed-parameter tractability with respect to the treewidth [30]. Analogously to
the work of Baste et al. [1] for Tree Consistency, we develop in this manuscript a concrete
dynamic programming algorithm for Tree Containment acting on display graphs.

Tree Containment is conceptually similar to Hybridization Number in the sense
that the main challenge is to decide which tree vertices correspond to which vertices of the
other trees (for Hybridization Number) or network vertices (for Tree Containment).
However, Hybridization Number is even more challenging since the network may contain
vertices that do not correspond to any input vertex [41]. Therefore, Tree Containment is a
natural first problem to develop techniques for, aiming at extending them to Hybridization
Number and other problems in phylogenetics in the long run.

That being said, solving Tree Containment parameterized by treewidth poses major
challenges itself. Even though the general idea of dynamic programming on a tree decompos-
ition is clear, its concrete use for Tree Containment is severely complicated by the fact
that the tree decomposition does not know the correspondence between tree vertices and
network vertices. For example, when considering a certain bag of the tree decomposition,
a tree vertex that is in the present of that bag may have to be embedded into a network
vertex that is in the past or in the future. It may also be necessary to map vertices from the
future of the tree to the past of the network and vice versa. Therefore, it will not be possible
to “forget the past” and “not worry about the future”. In particular, this makes it much
more challenging to bound the number of possible assignments for a given bag. We will do
this by bounding the number of “time-travelling” vertices by a function of the treewidth. We
will describe these challenges in more detail in Section 2.2.

1.6 Our contribution

In this paper, we present an FPT-algorithm for Tree Containment parameterized by
the treewidth of the input network. Our algorithm is one of the first (constructive) FPT-
algorithms for a problem in phylogenetics parameterized by treewidth. We believe that this
is an important development as the treewidth can be much smaller than other parameters
such as reticulation number and level which are easier to work with. We see this algorithm as
an important step towards the wide application of treewidth-based methods in phylogenetics.

1 Commonly, MSOL formulations are used to classify problems as FPT but are considered impractical
since the resulting running times are dominated by a tower of exponentials of size bounded in the
treewidth.

ESA 2022



69:6 Embedding Phylogenetic Trees in Networks of Low Treewidth

2 Preliminaries

2.1 Reformulating the problem
A key concept throughout this paper will be display graphs [9], which are the graphs formed
from the union of a phylogenetic tree and a phylogenetic network by identifying leaves with
the same labels. Throughout this paper we will let Nin and Tin denote the respective input
network and tree in our instance of Tree Containment. The main object of study will be
the “display graph” of Nin and Tin. For the purposes of our dynamic programming algorithm,
we will often consider graphs that are not exactly this display graph, but may be thought of
as roughly corresponding to subgraphs of it (though they are not exactly subgraphs; see [40,
Appendix A.1]). In order to incorporate such graphs as well, we will define display graphs in
a slightly more general way than that usually found in the literature. In particular, we allow
for the two “sides” of a display graph to be disconnected, and for some leaves to belong to
one side but not the other.

▶ Definition 1 (display graph). A display graph is a directed acyclic graph D = (V, A), with
specified subsets VT , VN ⊆ V such that VT ∪ VN = V , satisfying the following properties:

The graph T := D[VT ] is an out-forest;
Every vertex has in- and out-degree at most 2 and total degree at most 3;
Any vertex in VN ∩VT has out-degree 0 and in-degree at most 1 in both T and N := D[VN ].

Herein, we call T the tree side and N the network side of D and we will use the term D(N, T )
to denote a display graph with network side N and tree side T .

Given a phylogenetic network Nin and phylogenetic tree Tin with the same leaf-label set,
we define Din(Nin, Tin) to be the display graph formed by taking the disjoint union of Nin
and Tin and identifying pairs of leaves that have the same label. We note that, while the
leaves of Nin and Tin were originally labelled, this labelling does not appear in Din(Nin, Tin).
Labels were used to construct Din(Nin, Tin), but in the rest of the paper we will not need to
consider them. Indeed, such labels are relevant to the Tree Containment problem only
insofar as they establish a relation between the leaves of Tin and Nin, and this relation is
now captured by the structure of Din(Nin, Tin).

We now reformulate the Tree Containment problem in terms of an embedding function
on a display graph. Unlike the standard definition of an embedding function (see, e.g., [29]),
which is defined for a phylogenetic network N and tree T , our definition of an embedding
function applies directly to the display graph D(N, T ). Because of our more general definition
of display graphs, our definition of an embedding function will also be more general than that
found in the literature. The key idea of an embedding function remains the same, however:
it shows how a subdivision of T may be viewed as a subgraph of N .

▶ Definition 2 (embedding function). Let D be a display graph with network side N and tree
side T , and let P(N) denote the set of all directed paths in N . An embedding function on D

is a function ϕ : V (T ) ∪ A(T ) → V (N) ∪ P(N) such that:
(a) for each u ∈ V (T ), ϕ(u) ∈ V (N) and, for each arc uv ∈ A(T ), ϕ(uv) is a directed

ϕ(u)-ϕ(v)-path in N ;
(b) for any distinct u, v ∈ V (T ), ϕ(u) ̸= ϕ(v);
(c) for any u ∈ V (T ) ∩ V (N), ϕ(u) = u;
(d) the paths {ϕ(uv) | uv ∈ A(T )} are arc-disjoint;
(e) for any distinct p, q ∈ A(T ), ϕ(p) and ϕ(q) share a vertex z only if p and q share a vertex

w with z = ϕ(w);



L. van Iersel, M. Jones, and M. Weller 69:7

Note that the standard definition of an embedding of a phylogenetic tree T into a phylogenetic
network N (see e.g. [29]) coincides with the definition of an embedding function on D(N, T ).
Property (e) ensures that, while the embeddings of arcs uv, vw1, vw2 can all meet at ϕ(v),
the embeddings of different tree arcs cannot otherwise meet. (In particular, the path ϕ(uv)
cannot end at a reticulation that is also an internal vertex of ϕ(u′v′), something that is
otherwise allowed by properties (a)–(d).)

▶ Lemma 3. A phylogenetic network N displays a phylogenetic tree T if and only if there is
an embedding function on D(N, T ).

In light of Lemma 3, we may henceforth view Tree Containment as the following problem:

Input: phylogenetic network Nin and phylogenetic tree Tin with the same leaf-label set
Task: Find an embedding function on Din(Nin, Tin).

Tree Containment (TC)

2.2 Overview of our approach
We study Tree Containment parameterized by the treewidth of the input network Nin. A
key tool will be the following theorem.

▶ Theorem 4 ([30]). Let N and T be an unrooted binary phylogenetic network and tree,
respectively, with the same leaf-label set. If N displays T then tw(D(N, T )) ≤ 2tw(N) + 1.

By Theorem 4, we suppose that the display graph Din(Nin, Tin) has treewidth at most 2k + 1,
where k is the treewidth of the underlying undirected graph N of Nin as, otherwise, N does
not display the unrooted version T of Tin, implying that Nin does not display Tin.

As is often the case for treewidth parameterizations, we will proceed via a dynamic
programming on a tree decomposition, in this case a tree decomposition of Din(Nin, Tin).
Recall that we view a bag (P, S, F ) in the tree decomposition as partitioning the vertices
of Din(Nin, Tin) into past, present and future. A typical dynamic programming approach
is to store, for each bag, some set of information about the present, while forgetting most
information about the past, and not yet caring about what happens in the future. The
resulting information is stored in a “signature”, and the algorithm works by calculating which
signatures are possible on each bag, in a bottom-up manner. This approach is complicated by
the fact that the sought-for embedding of Tin into Nin may not map the past/present/future
of Tin into the past/present/future (respectively) of Nin. Vertices from the past of Tin may
be embedded in the future of Nin, or vice versa. Thus, we have to store more information
than we might at first think. In particular, it is not enough to store information about which
present vertices of Tin are embedded in which present vertices of Nin (indeed, depending
on the bag, it may be that none of them are). As such, our notion of a “signature” has
to track how vertices from the past of Tin are embedded in the present and future of Nin,
and which vertices from the past of Nin contain vertices from the present or future of Tin.
Vertices of the past which are mapped to vertices of the past, on the other hand, can mostly
be forgotten about.

2.3 An informal guide to (compact) signatures
Roughly speaking, a signature σ for a bag (P, S, F ) in the tree decomposition of Din(Nin, Tin)
consists of the following items (see Figure 3 for an example):

ESA 2022



69:8 Embedding Phylogenetic Trees in Networks of Low Treewidth

F

P

Nin

Tin

future

future

past

Figure 2 Left: An example of a display graph Din(Nin, Tin) for which Nin displays Tin as witnessed
by the embedding function ϕ that is indicated by bold edges. Highlighting with dashed border
represents the sets P and F , for some bag (P, S, F ) in a tree decomposition of Din(Nin, Tin). Right:
A representation of the (compact) signature for (P, S, F ) derived from this solution. Vertices labelled
past or future are highlighted in gray without border.

1. a display graph D(N, T ), some of whose vertices correspond (isomorphically) to S ⊆
V (Din(Nin, Tin)), and the rest of which are labeled past or future (which we may think
of as vertices corresponding to some vertex of Din(Nin, Tin) in P or F , respectively). We
use a function ι on V (D(N, T )) to capture both this correspondence and labelling, where ι

maps each vertex to an element of S or a label from {past, future}.
2. an embedding ϕ of T in N such that, for no arc uv, all of V (ϕ(uv)) ∪ {u, v} have the

same label y ∈ {past, future} under ι.
Signatures may be seen as “partial embedding functions” on parts of Din(Nin, Tin) in a
straightforward way. In particular, we call σ valid for (P, S, F ) if, roughly speaking, ϕ corres-
ponds (via ι) to something that can be extended to an embedding function on the subgraph
of Din(Nin, Tin) induced by the vertices P ∪ S introduced below (P, S, F ). In our dynamic
programming algorithm, we build valid signatures for a bag x from valid signatures of the
child bag(s) of x (in particular, validity for x is implied by validity for the child bag(s)).

Since iterating over all signatures for a bag (P, S, F ) (in order to check their validity)
exceeds FPT time, we will instead consider “compact” signatures, whose number and size
are bounded in the width |S| of the bag (P, S, F ). If Din(Nin, Tin) admits an embedding
function ϕ∗, then a compact signature corresponding to this embedding function exists. In
the following, we informally describe the compaction process for this hypothetical solution ϕ∗,
thus giving a rough idea of the definition of a “compact” signature. At all times, the
(tentative) signature will contain a display graph D(N, T ) (initially D(N, T ) = Din(Nin, Tin)),
and an embedding function of T into N (initially ϕ∗). For a more complete description of
our approach, see Appendix A in [40], for the proofs and remaining details, see Appendix B,
and for an illustration, see Figure 2.

Step 1 After initiallization with ϕ∗, we assign a label future to all vertices of F , and a
label past to all vertices in P (Observe that no vertex labeled past will be adjacent
to a vertex labeled future, since S separates P from F in Din(Nin, Tin)). Then, we
“forget” which vertices of Din(Nin, Tin) the vertices labelled past or future correspond
to. Our preliminary signature now contains (1) a display graph D(N, T ) whose vertices
are either labelled future or past or correspond (isomorphically) to vertices in S ⊆
V (Din(Nin, Tin)) (we refer the reader to [40, Appendix A.1] for a more formal description),
as well as (2) an embedding function for D(N, T ) into N .



L. van Iersel, M. Jones, and M. Weller 69:9

Nin

Tin

N

T

ι

ϕ

past

past

future

Figure 3 Example of a signature of a bag (P, S, F ). The S-part of D(Nin, Tin) is solid while the
non-S part is faded. The embedding ϕ (right, indicated with gray edge-highlight) maps T into N .
The dotted arcs labelled ι show the isomorphism between part of D(N, T ) and S ⊆ V (D(Nin, Tin)).
Note that the part of D(N, T ) that is not mapped to S is not necessarily isomorphic to anything in
D(Nin, Tin).

Step 2 We now simplify the structure of the preliminary signature. The main idea is that,
if a is an arc of T with both endpoints labelled past and all vertices in the path ϕ(a)
are also labelled past, then we can safely forget a and all the arcs in ϕ(a). Intuitively,
the information that a will be embedded in ϕ(a) does not have any effect on the possible
solutions one could construct on the part of Din(Nin, Tin) that is “above” the bag (P, S, F ).
Similarly, we can forget any arc a of T whose endpoints, as well as every vertex in ϕ(a),
are assigned the label future. Intuitively, this is because this information should have
no bearing on whether a solution exists with this signature for Din(Nin, Tin) restricted to
P ∪ S. In a similar way, we forget any vertex u ∈ V (T ) and its embedding ϕ(u) if they
are assigned the same label, provided that all their incident arcs can also be forgotten.
We will call the vertices and arcs fulfilling these conditions “redundant” and we remove
them from our tentative signature. We can also safely delete the vertices and arcs of N

that are labelled y ∈ {past, future} but are not part of the image of ϕ. As a result, we
now have that for any remaining vertex u ∈ T , either one of {u, ϕ(u)} is labelled past
and the other labelled future, or some vertex element of S must appear either one of
{u, ϕ(u)}, a neighbor of u, or a vertex in the path ϕ(a) for an incident arc a of u. Thus,
we have “forgotten” all the aspects of the embedding except those that involve vertices
from the present in some way, or those where the embedding “time-travels” between the
past and future (see [40, Appendix A.3] for a more formal description of this process).

Step 3 Finally, we may end up with long paths of vertices with in-degree and out-degree 1
that are labelled past or future in N (for example, if u and v are labelled past, then
ϕ(uv) may be a long path in N with all vertices labelled future). Such long paths do not
contain any useful information to us, we therefore compress these by suppressing vertices
with in-degree and out-degree 1 (This gives the compact signature, see [40, Appendix A.8]).

ESA 2022



69:10 Embedding Phylogenetic Trees in Networks of Low Treewidth

2.4 Bounding the number of signatures
We now outline the main arguments for why the number of possible (compact) signatures
for a given bag (P, S, F ) can be bounded in |S|. Such a bound on the number of signatures
ensures that the running time of the algorithm is FPT, because the number of calculations
required for each bag is bounded by a function of the treewidth.

The main challenge is to bound the size of the display graph D(N, T ) in a given signature
for (P, S, F ). Once such a bound is achieved, this immediately implies upper bounds (albeit
quite large) for the number of possible display graphs and the number of possible embeddings,
and hence on the number of possible signatures. We will focus here on bounding the size of
the tree part T . Once a bound is found for |T | it is relatively straightforward to use that to
give a bound on |N | (because the arcs of N that are not used by the embedding of T into N

are automatically deleted, unless they are themselves incident to a vertex in S, and because
isolated vertices are deleted and long paths suppressed).

It can be seen that a vertex u ∈ V (T ) is redundant (and so would be deleted from the
signature) unless one of the following properties holds:
(1) u ∈ S,
(2) ϕ(u) ∈ S,
(3) u is incident to an element of S

(4) for some arc a incident to u, the path ϕ(a) contains a vertex from S or
(5) u and ϕ(u) have different labels from {past, future}.
Essentially if none of (1)–(4) holds, then all the vertices mentioned in those properties have
the same label as either u or ϕ(u), using the fact that S separates the vertices labelled past
from the vertices labelled future. If u and ϕ(u) have the same label, then all these vertices
have the same label, which is enough to show that u is redundant. It remains to bound
the number of vertices satisfying one of these properties. For the first four properties, it is
straightforward to find a bound in terms of |S|. The vertices satisfying the final property
are “time-travelling” (in the sense that either u is labelled past and ϕ(u) future, or u is
labelled future and ϕ(u) past). Because of the bounds on the other types of vertices, it is
sufficient to provide a bound on the number of lowest time-travelling vertices in T .

To see the intuition why this bound should hold: consider some full solution on the
original input, i.e. an embedding function on Din(Nin, Tin), and suppose u ∈ V (Tin) is a
lowest tree vertex for which u ∈ P, ϕ(u) ∈ F (thus in the corresponding signature, u has
label past and ϕ(u) has label future). Let x ∈ V (Nin) ∩ V (Tin) be some leaf descendant of
u. Then there is path in Tin from u to x, and a path in Nin from ϕ(u) to ϕ(x) = x. Thus
Din(Nin, Tin) has an (undirected) path from u to ϕ(u). As this is a path between a vertex in
P and a vertex in F , some vertex on this path must be in S (since S separates P from F ).
Such a path must exist for every lowest time-travelling vertex u, and these paths are distinct.
The existence of these paths can then be used to bound the number of lowest time-travelling
vertices.

3 Algorithm and running time

The final algorithm first computes (or constant-factor approximates) the treewidth of the
display graph Din(Nin, Tin) and concludes non-containment if this computation already
implies tw(Din(Nin, Tin)) > 2tw(Nin) + 1. Otherwise, we proceed with a bottom-up dynamic
programming on a nice low-width tree-decomposition, which computes for each bag x =
(P, S, F ) a set CVx of “compact-valid signatures” for x (see Section 2.3 for a rough definition).
We use “compact-restrictions” to convert a compact signature of one bag into a compact



L. van Iersel, M. Jones, and M. Weller 69:11

signature for a different bag. Basically, such a restriction works by mapping certain vertices
to a label past or future, removing redundant parts of the display graph and collapsing
long paths (see Section 2.3; also see [40, Appendix A.3] for the formal definition).
Leaf bag. If x is a leaf bag, then P = S = ∅ and all compact signatures σ = (D(N, T ), ϕ, ι)

for x with ι−1(past) = ∅ are valid for x (and, thus, included in CVx).
Introduce-z bag. If x is an introduce bag with child y = (P, S \ {z}, F ∪ {z}) in T , then all

compact signatures σ for x whose compact-{z → future}-restriction is valid for y (that
is, contained in CVy) are valid for x.

Forget-z bag. If x is a forget bag with child y = (P \ {z}, S ∪ {z}, F ) in T , then all
compact-{z → past}-restrictions of compact-valid signatures σ for y are valid for x.

Join bag. For join bags, we use “reconciliations” which are, basically, 3-way analogues
of signatures, using labels {left, right, future} instead of {past, future} (see [40,
Appendix A.7]). In particular, if x is a join bag with children yL = (L, S, R ∪ F ) and
yR = (R, S, L∪F ), then we compute all compact reconciliations µ for x and check whether

the compact-{left → past, right → future}-restriction of µ is valid for yL and
the compact-{right → past, left → future}-restriction of µ is valid for yR.

Then, the compact-{{left, right} → past}-restriction of each µ verifying these condi-
tions is valid for x.

Correctness

The correctness of the computation of the sets CVx follows from [40, Lemmas 15–17 and 19].
After having computed CVx for the root bag r of the decomposition, we conclude that Nin
displays Tin if and only if there is a compact-valid signature (D(N, T ), ϕ, ι) for the root bag
with ι−1(future) = ∅. The correctness of this follows from [40, Lemma 10].

Running Time

To show that the running time is bounded in a function in the treewidth of N , the main
challenge is to bound the number of compact signatures for a bag (P, S, F ) by a function
of |S| (which, by Theorem 4, we may assume is at most 2tw(N) + 1). In order to do this,
we first bound the size of the display graph D(N, T ) in a signature by a function of |S|,
straightforwardly implying bounds on the number of possible display graphs, embedding
functions and isolabellings. Full details are given in [40]; to give a flavor of the proofs, we
present the argument bounding the number of arcs in T .

▶ Lemma 5. Any compact signature (D(N, T ), ϕ, ι) for a bag (P, S, F ) has |A(T )| ≤ 6|S|.

Proof. Let AS contain all arcs uv of D(N, T ) with ι(u) ∈ S or ι(v) ∈ S. As there is only
one vertex u with ι(u) = s for each s ∈ S and every vertex in D(N, T ) has total degree at
most 3, we have that |AS | ≤ 3|S|. As ϕ(uv) and ϕ(u′v′) are arc-disjoint for any distinct tree
arcs uv and u′v′, there are at most |AS ∩ A(N)| arcs uv of T for which ϕ(uv) contains an arc
in AS . Further, at most |AS ∩ A(T )| arcs in T are incident with a vertex in ι−1(S). Thus,
there are at most |AS | arcs uv in T for which {u, v} ∪ V (ϕ(uv)) contains a vertex of ι−1(S).

Every remaining arc uv in T has ι({u, v} ∪ V (ϕ(uv))) ⊆ {past, future}. Further, we
may assume the signature to be “well-behaved” (see [40, Sections A.4 and B.4]), which
implies among other things that vertices mapped to past and future cannot be adjacent
in D(N, T ), and that no arcs or vertices are redundant. Then we have ι(u) = ι(v) and
ι(u′) = ι(v′) for every arc u′v′ in the path ϕ(uv). Then, for all but at most |AS | ≤ 3|S|
arcs uv of T , we have ι(u) = ι(v) ∈ {past, future} as well as one of ι(V (ϕ(uv))) = {past}

ESA 2022



69:12 Embedding Phylogenetic Trees in Networks of Low Treewidth

and ι(V (ϕ(uv))) = {future}. If ι(u) = ι(v) = past and ι(V (ϕ(uv))) = {past}, then uv is
redundant w.r.t. {past}, a contradiction, and, similarly in case ι(u) = ι(v) = future and
ι(ϕ(uv)) = {future}. So, for all but at most 3|S| tree arcs uv, either ι(u) = ι(v) = past
and ι(ϕ(uv)) = {future} or ι(u) = ι(v) = future and ι(ϕ(uv)) = {past}. In particular,
we have that ι(ϕ(v)) ̸= ι(v), and for such vertices we may assume v has out-degree 2 (see
Definition in [40, Appendix A.2]). Hence, any lowest arc uv in T is one of the at most |AS |
many arcs uv for which {u, v} ∪ V (ϕ(uv)) contain a vertex of ι−1(S). Thus, in total, T has
at most 2|AS | ≤ 6|S| arcs. ◀

▶ Theorem 6. Tree Containment can be solved in 2O(tw(Nin)2) · |A(Nin)| time.

4 Future work

Before implementing our dynamic programming algorithm, one should first try to reduce
the constant in the bound on the number of possible signatures as much as possible. Such
reductions may be possible for instance by imposing further structural constraints on the
signatures that need to be considered. If this constant can be reduced, possibly including
heuristic improvements, it would be interesting to implement the algorithm and test it on
practical data.

From a theoretical point of view, there are many opportunities for future work. First,
there are multiple variants and generalizations of Tree Containment that deserve attention:
non-binary inputs, unrooted inputs and inputs consisting of two networks. Indeed, in order
to decide if a network is contained in a second network, our approach would have to be
extensively modified, since our size-bound on the signatures heavily relies on Tin being a tree.

Second, a major open problem is whether the Hybridization Number problem is FPT
with respect to the treewidth of the output network. Again there are different variants:
rooted and unrooted, binary and non-binary, a fixed or unbounded number of input trees. For
some applications, the definition of an embedding has to be relaxed (allowing, for example,
multiple tree arcs embedded into the same network arc) [26, 25]. Other interesting candidate
problems for treewidth-based algorithms include phylogenetic network drawing [35], orienting
phylogenetic networks [27] and phylogenetic tree inference with duplications [39].

Finally, we believe that the approach taken in this paper (applying dynammic program-
ming techniques on a tree decomposition of single graph representing all the input data, with
careful attention given to the interaction between past and future) could potentially have
applications outside of phylogenetics, in any context where the input to a problem consists
of two or more distinct partially-labelled graphs that need to be reconciled.

References
1 Julien Baste, Christophe Paul, Ignasi Sau, and Scornavacca Celine. Efficient FPT algorithms

for (strict) compatibility of unrooted phylogenetic trees. Bulletin of Mathematical Biology,
79:920–938, 2017.

2 Matthias Bentert, Josef Malík, and Mathias Weller. Tree containment with soft polytomies.
In SWAT’18, volume 101, pages 9–1, 2018.

3 Vincent Berry, Celine Scornavacca, and Mathias Weller. Scanning phylogenetic networks is
NP-hard. In SOFSEM’20, pages 519–530. Springer, 2020.

4 Hans L Bodlaender. Dynamic programming on graphs with bounded treewidth. In ICALP’88,
pages 105–118. Springer, 1988.

5 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996.



L. van Iersel, M. Jones, and M. Weller 69:13

6 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015.

7 Hans L Bodlaender, Pål Grønås Drange, Markus S Dregi, Fedor V Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016.

8 Magnus Bordewich and Charles Semple. Computing the minimum number of hybridization
events for a consistent evolutionary history. Discrete Applied Mathematics, 155(8):914–928,
2007.

9 David Bryant and Jens Lagergren. Compatibility of unrooted phylogenetic trees is FPT.
Theoretical Computer Science, 351(3):296–302, 2006. Parameterized and Exact Computation.

10 Bruno Courcelle. The expression of graph properties and graph transformations in monadic
second-order logic. In Handbook Of Graph Grammars And Computing By Graph Transforma-
tion: Volume 1: Foundations, pages 313–400. World Scientific, 1997.

11 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

12 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Joham MM van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. In FOCS’11, pages 150–159. IEEE, 2011.

13 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. Journal of Computer and System
Sciences, 121:57–75, 2021.

14 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–
657, 2008.

15 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting Topological Minors is FPT, pages 1317–1326. Association for Computing Machinery,
New York, NY, USA, 2020.

16 Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111–121, 1980.

17 Philippe Gambette, Andreas D. M. Gunawan, Anthony Labarre, Stéphane Vialette, and Louxin
Zhang. Solving the tree containment problem for genetically stable networks in quadratic
time. In IWOCA’15, pages 197–208, 2015.

18 Philippe Gambette, Andreas DM Gunawan, Anthony Labarre, Stéphane Vialette, and Louxin
Zhang. Solving the tree containment problem in linear time for nearly stable phylogenetic
networks. Discrete Applied Mathematics, 246:62–79, 2018.

19 Robert Ganian, Petr Hliněný, Joachim Kneis, Daniel Meister, Jan Obdržálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? Journal of Combinatorial
Theory, Series B, 116:250–286, 2016.

20 A Grigoriev, S Kelk, and L Lekic. On low treewidth graphs and supertrees. Journal of Graph
Algorithms and Applications, 19(1):325–343, 2015.

21 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In STOC’11, pages 479–488, 2011.

22 Andreas DM Gunawan. Solving the tree containment problem for reticulation-visible networks
in linear time. In AlCoB’18, pages 24–36. Springer, 2018.

23 Andreas DM Gunawan, Bingxin Lu, and Louxin Zhang. A program for verification of
phylogenetic network models. Bioinformatics, 32(17):i503–i510, 2016.

24 Andreas DM Gunawan, Hongwei Yan, and Louxin Zhang. Compression of phylogenetic
networks and algorithm for the tree containment problem. Journal of Computational Biology,
26(3):285–294, 2019.

25 Katharina T Huber, Simone Linz, and Vincent Moulton. The rigid hybrid number for two
phylogenetic trees. Journal of Mathematical Biology, 82(5):1–29, 2021.

ESA 2022



69:14 Embedding Phylogenetic Trees in Networks of Low Treewidth

26 Katharina T Huber, Vincent Moulton, Mike Steel, and Taoyang Wu. Folding and unfolding
phylogenetic trees and networks. Journal of Mathematical Biology, 73(6):1761–1780, 2016.

27 Katharina T Huber, Leo van Iersel, Remie Janssen, Mark Jones, Vincent Moulton, Yukihiro
Murakami, and Charles Semple. Rooting for phylogenetic networks. arXiv preprint, 2019.
arXiv:1906.07430.

28 Leo van Iersel, Steven Kelk, Georgios Stamoulis, Leen Stougie, and Olivier Boes. On unrooted
and root-uncertain variants of several well-known phylogenetic network problems. Algorithmica,
80(11):2993–3022, 2018.

29 Leo van Iersel, Charles Semple, and Mike Steel. Locating a tree in a phylogenetic network.
Information Processing Letters, 110(23):1037–1043, 2010.

30 R. Janssen, M. Jones, S. Kelk, G. Stamoulis, and T. Wu. Treewidth of display graphs: bounds,
brambles and applications. Journal oof Graph Algorithms and Applications, 23:715–743, 2019.

31 Remie Janssen and Yukihiro Murakami. On cherry-picking and network containment. Theor-
etical Computer Science, 856:121–150, 2021.

32 Iyad A Kanj, Luay Nakhleh, Cuong Than, and Ge Xia. Seeing the trees and their branches in
the network is hard. Theoretical Computer Science, 401(1-3):153–164, 2008.

33 Steven Kelk, Georgios Stamoulis, and Taoyang Wu. Treewidth distance on phylogenetic trees.
Theoretical Computer Science, 731:99–117, 2018.

34 Steven Kelk, Leo van Iersel, Celine Scornavacca, and Mathias Weller. Phylogenetic incongruence
through the lens of monadic second order logic. Journal of Graph Algorithms and Applications,
20(2):189–215, 2016.

35 Jonathan Klawitter and Peter Stumpf. Drawing tree-based phylogenetic networks with
minimum number of crossings. arXiv preprint, 2020. arXiv:2008.08960.

36 Ton Kloks. Treewidth: computations and approximations. Springer, 1994.
37 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In

FOCS’21, pages 184–192, 2021.
38 Celine Scornavacca and Mathias Weller. Treewidth-based algorithms for the small parsimony

problem on networks. In WABI’21, 2021.
39 Leo van Iersel, Remie Janssen, Mark Jones, Yukihiro Murakami, and Norbert Zeh. Polynomial-

time algorithms for phylogenetic inference problems involving duplication and reticulation.
IEEE/ACM transactions on computational biology and bioinformatics, 17(1):14–26, 2019.

40 Leo van Iersel, Mark Jones, and Mathias Weller. Embedding phylogenetic trees in networks of
low treewidth. arXiv preprint, 2022. arXiv:2207.00574v2.

41 Leo van Iersel, Steven Kelk, Nela Lekic, Chris Whidden, and Norbert Zeh. Hybridization
number on three rooted binary trees is ept. SIAM Journal on Discrete Mathematics, 30(3):1607–
1631, 2016.

42 Leo van Iersel, Steven Kelk, and Celine Scornavacca. Kernelizations for the hybridization
number problem on multiple nonbinary trees. Journal of Computer and System Sciences,
82(6):1075–1089, 2016.

43 Leo van Iersel and Simone Linz. A quadratic kernel for computing the hybridization number
of multiple trees. Information Processing Letters, 113(9):318–323, 2013.

44 Mathias Weller. Linear-time tree containment in phylogenetic networks. In RECOMB CG’18,
pages 309–323. Springer, 2018.

http://arxiv.org/abs/1906.07430
http://arxiv.org/abs/2008.08960
http://arxiv.org/abs/2207.00574v2

	1 Introduction
	1.1 Background: phylogenetic trees and networks
	1.2 The Tree Containment problem
	1.2.1 Motivation

	1.3 Previous work
	1.4 Treewidth
	1.5 Challenges
	1.6 Our contribution

	2 Preliminaries
	2.1 Reformulating the problem
	2.2 Overview of our approach
	2.3 An informal guide to (compact) signatures
	2.4 Bounding the number of signatures

	3 Algorithm and running time
	4 Future work

