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Abstract—The large capacity of WDM optical networks facil-
itates the transportation of impressive volumes of traffic, which
make survivability schemes that can reroute traffic upon a failure
in the network highly important. Besides survivability, the signal
quality in optical networks, which degrades along its path due
to physical impairments, needs consideration. In this paper, we
consider the design problem of where to place regenerators in the
network such that both the primary and backup lightpaths for
a (predicted) traffic matrix obey the impairment constraints. We
study the survivable routing and regenerator placement problem
under dedicated and shared protection schemes, analyze the
complexity of both problem variants, and subsequently propose
efficient algorithms to solve or approximate them.

Index Terms—Survivability, Regenerator Placement, Optical
Impairments.

I. INTRODUCTION

In wavelength division multiplexing (WDM) optical net-
works, the quality of a signal degrades due to physical impair-
ments that accumulate along its path. This signal degradation
may lead to an unacceptable bit-error rate (BER). Hence, the
signal may need to be regenerated in order to regain its original
quality. We define a regeneration segment of a lightpath (an
optical point-to-point connection) to be a transparent (non-
regenerated) segment (i.e., one or more links) between two
consecutive regenerators (plus source and destination) of the
lightpath. The impairment level on a regeneration segment
is not allowed to exceed a given impairment threshold ∆.
In practice, signals are regenerated per wavelength (and not
per fiber), with optoelectronic regenerators and hence multiple
regenerators may need to be installed at a node. A node that
contains at least one regenerator is called a regenerator node.
The main costs in deploying optoelectronic regenerators are
equipment cost (CAPEX) and power consumption (OPEX),
which are both directly proportional to the total number of
regenerators in the network. Since regenerators are costly, it
is desirable to minimize the number of regenerators in the
network.

Lightpaths usually carry a large amount of data. Therefore,
survivability, which is the ability to reconfigure and resume
communication after link failure, is highly important in optical
networks. The main approach to achieve fast survivability
is through diverse routing, where link-disjoint primary and
backup lightpaths are precomputed for each request. For a
given request, the primary lightpath carries traffic during

normal operation, while the backup lightpath takes over as
soon as a failure is sensed on the primary lightpath. There
exist two types of protection: dedicated and shared protection.
In dedicated protection, the backup lightpaths do not share
resources. In shared protection, backup lightpaths may share
resources as long as their respective primary lightpaths do not
share links.

In this paper, our main focus is on the survivable routing
and regenerator placement problem where, given a (predicted)
traffic matrix reflected in a set of requests, our objective is to
allocate feasible link-disjoint primary and backup lightpaths
for each request, while minimizing the total number of re-
generators placed in the network. Each request is assumed to
represent a single lightpath request (otherwise, each lightpath
of a request is considered separately) and a lightpath has a
capacity requirement of a single wavelength. We consider the
problem of survivable routing and regenerator placement in
the following two scenarios:

1) We first assume that enough fibers are already laid
out to accommodate all the requests, and the main
cost is associated with the regeneration capacity in the
network. In this Routing and Regenerator Placement
(RRP) scenario we can analyze the complexity of the
regenerator placement problem independently from the
routing and wavelength assignment (RWA) problem.

2) Subsequently we jointly solve the RWA and Regenerator
Placement problems and call it the RWARP problem.

The RWA problem is NP-hard (cf. [5]) and usually solved
via integer linear programming (ILP), which we will also use
for scenario 2. This paper mainly focuses on scenario 1.

A. Regenerator Placement Context

Rai et al. [13] argued that most impairments can be modeled
by (additive) link metrics. Consequently, in [11], we have con-
sidered impairment-aware path selection for multiple additive
impairments. For a design problem, like placing regenerators,
a more conservative approach suffices, where we consider a
single impairment metric that represents the worst impairment
among all the impairments on a link. Alternatively, the metric
could reflect distance, which plays a key role in determining
the quality of a signal, or a specific impairment metric like
the Q-factor [1].



Even though a few technologies that allow for simultaneous
regeneration of several wavelengths have been developed, op-
toelectronic devices, which offer per-wavelength regeneration,
remain most practical and reliable [15]. In general, there
are two approaches suggested in the literature with respect
to regenerator placement: (1) designated regeneration sites
and (2) selective, i.e. per-wavelength, regeneration [16]. In
designated regeneration sites, regeneration can be performed
only at a subset of nodes and the main objective is to minimize
the total number of regenerator nodes. Moreover, it is assumed
that a regenerator node has the capacity to provide regeneration
for all lightpaths that need to be regenerated at that given
node. Even though minimizing the total number of regenerator
nodes has the advantage of reducing the number of active
nodes, it is less flexible and may require more regenerators.
This is even pronounced when add/drop equipment can be
reused for regeneration. In selective regeneration, which is
common practice (e.g., in combination with ROADMs [2]),
the decision whether to regenerate a lightpath and where to
perform regeneration is made on a per-wavelength basis and
any node could be equipped with regenerators. The main
objective in this scenario is to minimize the total number of
regenerators. In this paper, we focus on selective regeneration,
since it best reduces the cost of regeneration.

B. Related Work

Saradhi and Subramaniam [14] have provided a broad
overview of issues with respect to impairment-aware routing
and thereby also devoted a small section to regenerator place-
ment. Impairment-aware network planning and operation is
discussed in [17] and a corresponding tool has been proposed
by Azodolmolky et al. [1].

Most work on regenerator placement is for unprotected
lightpaths and assumes designated regeneration sites, e.g., [4],
[6], [7] and references therein. Chen et al. [4] have shown that
the unprotected regenerator placement problem that minimizes
the number of regenerator nodes is NP-hard, and have provided
heuristic algorithms. Flammini et al. [6] have considered
different variants (also NP-hard) of the same problem with
the assumption that all links have the same cost.

Fewer papers consider regenerator placement in the context
of selective regeneration. Kuipers et al. [11] and Mertzios et
al. [12] consider selective regenerator placement in a given
optical network, while Katrinis and Tzanakaki [10] combine
regenerator placement with network design, where only the
node locations are predetermined. Beshir et al. [3] minimize
the amount of transceivers for survivable impairment-aware
traffic grooming in WDM rings. However, none of these papers
considers provisioning per-wavelength regenerators in general
networks for accommodating backup routes (as proposed in
this paper) that need to be established in case of a link failure.

C. Contributions and Organization of the Paper

In Sec. II and Sec. III, we study survivable routing and
regenerator placement under dedicated and shared protection
schemes, respectively. We prove that the problem is NP-hard

Fig. 1. Example how to construct an instance of the regeneration problem
from an instance of the partition problem.

in both variants. We subsequently establish an approximation
algorithm for the dedicated protection scheme. In addition, we
provide a heuristic algorithm that outperforms this approxima-
tion algorithm and is close to the optimal solution in typical
scenarios. We also propose an efficient heuristic algorithm for
the shared protection scheme and demonstrate its performance
through simulations in Sec. IV. We conclude in Sec. V.

II. DEDICATED PROTECTION

We start with a formal definition of the problem considered
in this section.

Dedicated Survivable Routing and Regenerator Place-
ment (DSRRP) Problem: The physical optical network is
modeled as an undirected graph G(N ,L), where N is the
set of N nodes and L is the set of L links. Associated with
each fiber link (u, v) ∈ L is an impairment value r(u, v). A
set of requests is given, where request i is represented by a
source-destination pair (si, di), si, di ∈ N . Let ∆ represent
the impairment threshold. The problem is to place regenerators
and to find for each request two link-disjoint paths that
each satisfy the impairment threshold on their regeneration
segments, such that the total number of regenerators needed
by all the requests is minimized.

Since we are considering dedicated regeneration, the differ-
ent requests do not share regenerators. Thus, each request can
be considered individually as follows.

Single Request Survivable Routing and Regenerator
Placement (SRSRRP) Problem: Given an undirected graph
G(N ,L), impairment values r(u, v), a threshold ∆, and a
request represented by (s, d), the problem is to find a pair of
link-disjoint paths for the request, and to place regenerators
along these paths, while minimizing the total number of
regenerators needed for both paths.

There can be two variants of the problem: (i) Dedicated-
Dedicated: there is no sharing of regenerators between the two
link-disjoint paths and (ii) Dedicated-Shared: if the backup
path is used only after failure of the primary path, regenerators
on nodes that belong to both the primary and backup paths can
be shared. We now show that the SRSRRP problem is NP-hard
under both variants.

Theorem 1: Both dedicated-dedicated and dedicated-
shared variants of the SRSRRP problem are NP-hard.

Our proof makes use of the NP-hard partition problem [8]:
Given a set of weights ai ∈ A, ai ≥ 0 for i = 1, . . . , n, where
S =

∑n
i=1 ai. Is there a subset I ⊆ A such that

∑
ai∈I ai =∑

ai∈A\I ai = S
2 ?



Proof: Consider graph G in Fig. 1. For the weights
associated with the labeled links ai ∈ A, 0 < ai < S,
for i = 1, . . . , n, holds that S =

∑n
i=1 ai. Links without

labels have a cost of zero and ∆ = S. The objective is to
find a pair of link-disjoint paths such that the total number
of regenerators needed (shared or non-shared) for the two
paths is minimized. There should definitively be regeneration
at node t: one regenerator in case of regenerator sharing,
and two if there is no sharing. The next step is to decide
whether more regenerators are required at other nodes. Let the
two selected paths be P 1

s−t−d and P 2
s−t−d. The only scenario

where no more regenerators are required is when their two
corresponding segments have a cost r

(
P 1
s−t
)

= r
(
P 2
s−t
)

= S.
However, this involves equally partitioning the labeled links
ai ∈ A, i = 1, . . . , n between the two paths.

A min-sum link-disjoint paths algorithm that minimizes on
the total weight of the two paths, such as Suurballe’s algorithm
[18], is an approximation algorithm. To prove this, we begin
with two lemmas that relate to an unprotected path.

Lemma 1: The number of regenerators R required by any
simple path P of length r(P ) > 0 is bounded by⌈

r(P )

∆

⌉
− 1 ≤ R ≤ 2

⌈
r(P )

∆

⌉
.

Fig. 2. For a given path P of length r(P ), a representation of any regenerator
placement problem on a path.

Proof: The number of regenerators required by the given
path is minimized if each regeneration segment covers as much
length as possible. Hence, a best-case scenario for path P
occurs when each regeneration segment, except possibly one,
has a length exactly equal to ∆.

Without loss of generality, any placement of regenerators
over a simple path P can be described as in Fig. 2, where
there are 2k + 1 regeneration segments, and hence at most
2k regenerators needed. Furthermore, it is clear that for all i,
0 ≤ εi < µi; otherwise, the regenerator between the segments
of length ∆ − εi and µi could be omitted. Similarly, for all
i < k, µi > εi+1.

With β = mini(∆− εi + µi) > ∆ it follows that

kβ + δ ≤
k∑
i=1

(∆− εi + µi) + δ = r(P ),

or
k ≤ r(P )− δ

β
≤ r(P )

∆
.

For δ ≥ 0, the total number of regenerators, R, is at most
2k. It follows that

R = 2k ≤ 2r(P )

∆
≤ 2

⌈
r(P )

∆

⌉
.

Lemma 2: If the optimal path between nodes s and d
requires R∗ regenerators, then the shortest (in terms of impair-
ment) path from s to d requires at most 2(R∗+1) regenerators.

Proof: Let P be the shortest path from s to d, r(P ) be its
length, and R be its required number of regenerators. Let P ∗

be the path that requires the optimal number of regenerators
R∗. Hence, its length r(P ∗) ≥ r(P ).

Combining with Lemma 1,

R∗ ≥
⌈
r(P ∗)

∆

⌉
− 1 ≥

⌈
r(P )

∆

⌉
− 1.

By multiplying both sides by 2 and adding 2,

2R∗ + 2 ≥ 2

⌈
r(P )

∆

⌉
.

According to Lemma 1, the number of regenerators required
by the shortest path P is at most 2

⌈
r(P )

∆

⌉
.

We are now ready to state our main result for the dedicated-
dedicated case.

Theorem 2: Given an instance of the dedicated-dedicated
SRSRRP problem, the min-sum (in terms of impairment) link-
disjoint pair of paths between s and d require at most 2(R∗+3)
regenerators, where R∗ is the optimal solution for the given
dedicated-dedicated SRSRRP instance.

Proof: Let P ∗1 and P ∗2 be the pair of link-disjoint paths
that give the optimal solution, and require R∗1 and R∗2 regen-
erators, respectively. Thus, R∗1 + R∗2 = R∗. Similarly, let P1

and P2 be the shortest pair of link-disjoint paths, and R1 and
R2 be their respective required number of regenerators.

Since r(P ∗1 ) + r(P ∗2 ) ≥ r(P1) + r(P2),⌈
r(P ∗1 ) + r(P ∗2 )

∆

⌉
≥
⌈
r(P1) + r(P2)

∆

⌉
.

Using the property of the ceiling function, dae + dbe ≥
da+ be ≥ dae+ dbe − 1, we obtain⌈

r(P ∗1 )

∆

⌉
+

⌈
r(P ∗2 )

∆

⌉
≥
⌈
r(P1)

∆

⌉
+

⌈
r(P2)

∆

⌉
− 1.

Multiplying both sides by 2 and adding 2, we get:

2

(⌈
r(P ∗1 )

∆

⌉
− 1

)
+ 2

(⌈
r(P ∗2 )

∆

⌉
− 1

)
+ 6 ≥

2

⌈
r(P1)

∆

⌉
+ 2

⌈
r(P2)

∆

⌉
.

Combining with Lemma 1 yields

2(R∗1 +R∗2 + 3) = 2(R∗ + 3) ≥ R1 +R2.

Similarly, we obtain the following result for the dedicated-
shared case.

Theorem 3: Given an instance of the dedicated-shared
SRSRRP problem, the min-sum link-disjoint paths between
s and d require at most 4R∗+6 regenerators, where R∗ is the
optimal solution for the dedicated-shared SRSRRP instance.



Proof: The best case for the dedicated-shared SRSRRP
problem occurs when all regenerators of one of the paths
are shared by the other path. Using the same notation as in
the proof of Theorem 2, we have that P ∗1 requires at least⌈
r(P∗1 )

∆

⌉
−1 regenerators and P ∗2 requires at least

⌈
r(P∗2 )

∆

⌉
−1

regenerators. W.l.o.g., assume that r(P ∗2 ) ≥ r(P ∗1 ). Hence, the
two link-disjoint paths require at least

⌈
r(P∗2 )

∆

⌉
− 1 regenera-

tors; otherwise P ∗2 is not feasible. Analogous to the proof of
Theorem 2, it follows that 4R∗ + 6 ≥ R1 +R2.

The above results can be strengthened in the case where
all links have equal cost. Several papers (e.g., [12], [6]) take
hopcount as the impairment metric and argue that a limit on
the maximum hopcount between regenerators provides a valid
placement strategy in practice. In such a case, each link has
a cost of 1, corresponding to one hop. We begin with the
following lemma.

Lemma 3: If all links in the network have equal cost, then
the number of regenerators required by any path P with length
r(P ) exactly matches the lower bound

⌈
r(P )

∆

⌉
− 1.

Proof: Let the cost of each link be r. We assume that
∆ = δr is a multiple of r, with δ ∈ N\{0}. Otherwise, since
all links have the same cost r, if a given segment satisfies
the threshold ∆, it also satisfies r

⌊
∆
r

⌋
. Therefore, ∆ can be

replaced by r
⌊

∆
r

⌋
. Thus, exactly

⌈
h(P )
δ

⌉
− 1 =

⌈
r(P )

∆

⌉
− 1

regenerators are required, where h(P ) is the hopcount of path
P and the −1 reflects that no regeneration is needed at the
destination.

We then obtain the following improved approximation
bound for the dedicated-dedicated case.

Theorem 4: For a given instance of the dedicated-dedicated
SRSRRP problem, if all links in the network have equal cost,
the min-sum link-disjoint paths between s and d require at
most R∗ + 1 regenerators, where R∗ is the optimal solution
for the given dedicated-dedicated SRSRRP instance.

Proof: From the proof of Theorem 2, we have⌈
r(P ∗1 )

∆

⌉
+

⌈
r(P ∗2 )

∆

⌉
≥
⌈
r(P1)

∆

⌉
+

⌈
r(P2)

∆

⌉
− 1.

Subtracting 1 on both sides,(⌈
r(P ∗1 )

∆

⌉
− 1

)
+

(⌈
r(P ∗2 )

∆

⌉
− 1

)
+ 1 ≥(⌈

r(P1)

∆

⌉
− 1

)
+

(⌈
r(P2)

∆

⌉
− 1

)
.

Combining this with Lemma 3 yields

R∗1 +R∗2 + 1 = R∗ + 1 ≥ R1 +R2.

Similarly, we obtain the following improved result for the
dedicated-shared case.

Theorem 5: For a given instance of the dedicated-shared
SRSRRP problem, if all links in the network have equal cost,
the min-sum link-disjoint pair of paths between s and d require
at most 2R∗+1 regenerators, where R∗ is the optimal solution
for the given dedicated-shared SRSRRP instance.

A. Heuristic Algorithm

While the algorithmic scheme based on Suurballe’s algo-
rithm provides proven (worst-case) performance guarantees,
performance in typical scenarios could be improved. To that
end, we present the following heuristic, termed DEdicated
Survivable Regenerators Algorithm (DESRA), for solving the
SRSRRP problem. Later, in Sec. IV, we will show through
simulations that DESRA performs better than Suurballe’s
algorithm (and, when operated in tandem, the same proven
worst-case guarantees can be established).

Algorithm 1 DESRA(G, s, d,∆)

1) Make a graph G
′
(N ,L′), where L′ = {(u, v) |

r(P ∗u−v) ≤ ∆} and P ∗u−v is the shortest path between
u and v. Assign a cost of 1 to each link in G

′
.

2) Find the shortest path P
′

s−d from s to d in G
′
.

3) Substitute all the links (u, v) of P
′

s−d with the corre-
sponding subpaths P ∗u−v in G to obtain Ps−d.

4) Remove all loops of Ps−d in G to obtain path Ps−d;1.
5) Redirect all links in Ps−d;1 from d to s to obtain

G
′′
(N ,L′′) and assign a cost of 0 to these links.

6) On graph G
′′

repeat steps 1− 4 to obtain path Ps−d;2.
7) Remove links that are both in Ps−d;1 and Ps−d;2 to

obtain two link-disjoint paths.
8) Place regenerators (shared or not shared depending on

what is needed) for each path.

In Step 1 of algorithm DESRA, graph G
′

is constructed
by connecting all directly reachable nodes (i.e., within ∆).
The links in graph G

′
represent subpaths in graph G. Once

the shortest path is obtained in Step 2, the path is transformed
to its equivalent path Ps−d in graph G. Since this path is
made of a concatenation of path segments, it may not be a
simple path in G. Loops are removed in Step 4 and the links
along the loopless path Ps−d;1 are redirected from d to s to
obtain graph G

′′
in Step 5. In Step 6, the same procedures

are repeated in graph G
′′

to find the second loopless path
Ps−d;2. The directed links in G

′′
may result in cases where

P ∗u→v 6= P ∗v→u, in which case the graph obtained from G
′′

may contain two directed links between nodes u and v, one
in either direction. Once the second path Ps−d;2 is computed,
the interlacing links between Ps−d;1 and Ps−d;2 are removed
to obtain the solution. Finally, the regenerators are placed on
these paths. For the shared variant, the regenerators for the
primary lightpath are placed first, followed by those of the
backup lightpath, while reusing the regenerators of the primary
path at the shared nodes, if any.

The complexity of algorithm DESRA is dominated by con-
structing graphs G

′
and G

′′
(e.g., using Dijkstra’s algorithm

N times). Thus, the total complexity of algorithm DESRA
is O(N2 logN +NL).

III. SHARED PROTECTION

Shared Survivable Routing and Regenerator Placement
(SSRRP) Problem: Given the input to DSRPP, the SSRRP



problem is, for each request, to find a pair of link-disjoint paths
that satisfy the impairment threshold on their regeneration
segments. The objective is to place a minimum number of
regenerators needed by all requests such that backup lightpaths
can share regenerators as long as their primary lightpaths do
not share links.

Unlike the dedicated case, sharing regenerators between
backup paths prevents sharing between primary and backup
paths. The problem SSRRP is NP-hard, since it contains the
SRSRRP problem (shown to be NP-hard in Sec. II) when
only one source-destination pair exists. Hence, we provide a
heuristic algorithm.

A. Heuristic Algorithm

Our algorithm is named ShAred Survivable Regenerators
Algorithm (SASRA). We employ an active-path-first ap-
proach where the primary path is computed first and then its
links are dropped before the backup path is computed, because
it is easier to determine the sharing of resources among backup
paths when the primary paths are already in place.

Algorithm 2 SASRA(G,∆)

For each request i,
1) In G, find the shortest paths {P ∗u−v} between all nodes

u, v ∈ N , for which r(P ∗u−v) ≤ ∆.
2) Create a graph G

′
(N ,L′), where L′ = {(u, v) |

r(P ∗u−v) ≤ ∆} and assign a cost of 1 to each link.
Find the shortest path P

′

si−di from si to di in G
′
.

3) Substitute the links of P
′

si−di with the corresponding
subpaths P ∗u−v in G to obtain Psi−di .

4) Remove all loops of Psi−di in G to obtain path Psi−di;1.
Place the necessary regenerators for Psi−di;1.

5) Remove all links in Psi−di;1 to obtain G
′′
(N ,L′′).

6) For each primary path that does not share a link with
Psi−di;1, set the cost of each link incident to the
regenerator nodes of its backup path to zero.

7) Repeat Steps 1−4 to obtain Psi−di;2. Place the necessary
regenerators for Psi−di;2.

For each request, a graph G′, containing links between all
reachable nodes in graph G is obtained in Steps 1 and 2 of
SASRA. The shortest path between the source and destination
nodes of the request in G′ is transformed to its equivalent
path in graph G in Step 3. Then, its loops are removed and
the necessary regenerators are placed in Step 4. The links of
this path (Psi−di;1) are removed in Step 5 and the cost of
links incident to shareable regenerator nodes are set to zero
in Step 6 to encourage the re-use of regenerators in those
nodes, before similarly computing the second path in Step 7.
Per request, SASRA has the same complexity as DESRA,
namely O(N2 logN +NL).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
heuristics, namely DESRA and SASRA. We first provide

simulation results that show the average number of regenera-
tors needed per request on a typical carrier backbone network.
As can be seen in [7], [10], [11], [13], often (a variation
on) the NSFNET, ARPANET, or USANET is chosen as a
typical network. We choose the larger of the three, namely
the USANET network of 28 nodes and 45 links [9]. In our
simulations, we use scaled impairment values, which are ran-
domly and uniformly generated in the range (0, 1], impairment
threshold values ∆ in the range [1, 2], and randomly selected
source and destination nodes. The simulation results represent
an average of 10 iterations, each for a traffic matrix consisting
of 100 requests. Fig. 3(a) shows a comparison of Suurballe’s
algorithm, DESRA and an exact solution (obtained via an
ILP formulation given in the Appendix) for the dedicated-
dedicated problem variant, while Fig. 3(b) shows the same for
the dedicated-shared problem variant. These results show that
DESRA always outperforms Suurballe’s algorithm (which on
its turn performs better than the worst-case bounds derived in
Sec. II) and performs close to the exact solution, especially
for the dedicated-dedicated variant.

The USANET network provides a benchmark, but confines
the study to one network. Therefore, we have extended our
simulations to 1000 networks (using the same settings as for
USANET, except that we use 1 instead of 10 iterations) in the
classes of lattices (two-dimensional square grids) and Erdős-
Rényi random networks. Since it is too time-consuming to
iterate the ILP 1000 times, we compare the performance of
SASRA to DESRA in Fig. 3(c) and (d). As one might
expect, sharing of regenerators among backup lightpaths de-
creases the number of regenerators needed. Within the consid-
ered threshold range, this improvement remains fairly constant
for lattice networks, while it diminishes with increasing thresh-
old in random networks, where the average hopcount of a path
is smaller than that of lattice networks, thereby decreasing the
need for regenerators (and also sharing) at higher thresholds.

V. CONCLUSIONS

We have studied the survivable regenerator placement prob-
lem, where the objective is to minimize the total number of
regenerators placed in an optical network such that feasible
primary and backup lightpaths can be assigned to the requests
of a given traffic matrix. We have considered two protection
schemes: dedicated and shared protection. These schemes
have been studied in two scenarios, namely 1) routing and
regenerator placement, and 2) routing, wavelength assignment,
and regenerator placement. For the latter an ILP has been
formulated, while for the first we have shown that the problem
is NP-hard in both schemes. For the case of dedicated protec-
tion, we established a constant-factor approximation based on
Suurballe’s algorithm. Furthermore, we provided a heuristic
algorithm that, based on simulations, was shown to outperform
the approximation scheme and was close to optimal in typical
scenarios. For the case of shared protection, we have provided
a heuristic algorithm, and demonstrated its good performance
through simulations.
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(c) Lattice network
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(d) Random network

Fig. 3. Comparison of the average number of regenerators needed per request for the (a) dedicated-dedicated variant in USANET, (b) dedicated-shared
variant in USANET, (c) in Lattice networks of 49 nodes, and (d) in random networks of 50 nodes and link density p = 0.2.
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APPENDIX

We provide an exact integer linear programming (ILP)
formulation using network flow equations to solve the RWARP
problem (see Sec. I). Since this is a design problem, all the
requests should be accommodated. Hence, we assume that
there are enough wavelengths to optimally and feasibly route
all the lightpaths; otherwise the problem is infeasible. The
same ILP formulation can be used for solving the SRSRRP
problem of Sec. II by setting F = 1 and W = 1.

Indices:
i = 1, . . . , F ID of requests.
λ = 1, . . . ,W ID of wavelengths.
L−(u)/L+(u) Incoming/outgoing links of node u.

Variables (binary):
xi,l,u,λ is 1 if the primary lightpath of request i uses

wavelength λ on link l, and node u is its last
regenerator node (or the source node) before
encountering link l; 0 otherwise.

yi,l,u,λ is 1 if the backup lightpath of request i uses
wavelength λ on link l, and node u is its last
regenerator node (or the source node) before
encountering link l; 0 otherwise.

τi,u,v,λ is 1 if the primary lightpath of request i uses
a regenerator at node u directly followed by
a regenerator at node v on wavelength λ; 0
otherwise. Node u can also be the source node.

ψi,u,v,λ is 1 if the backup lightpath of request i uses
a regenerator at node u directly followed by
a regenerator at node v on wavelength λ; 0
otherwise. Node u can also be the source node.

αi,u (Only for the shared variant) is 1 if a regen-
erator (shared or not) is needed at node u for
request i; 0 otherwise.

Objective:
Minimize the total number of regenerators needed by the

primary and backup lightpaths.

For the dedicated-dedicated variant:

Minimize :
∑
i

∑
λ

∑
u∈N

∑
v∈N

(τi,u,v,λ + ψi.u,v,λ) (1)

For the dedicated-shared variant:

Minimize :
∑
i

∑
u∈N

αu,i (2)

Constraints:
Flow Conservation constraints:
At the source node of each request there are exactly two

flows leaving the source node: one for the primary and another
for the backup lightpaths.∑

λ

∑
l∈L+(si)

(xi,l,si,λ + yi,l,si,λ) = 2 ∀i (3)

For each request, at its intermediate nodes:
If a given node v is not the source or the destination node,

then the flow related to the primary/backup lightpath that
enters v has to leave it after being regenerated (τi,u,v,λ = 1 for
the primary and ψi,u,v,λ = 1 for the backup lightpath) or not
(τi,u,v,λ = 0 for the primary and ψi,u,v,λ = 0 for the backup
lightpath).

∑
l∈L−(v)

xi,l,u,λ −
∑

l∈L+(v)

xi,l,u,λ = τi,u,v,λ and (4)

∑
l∈L−(v)

yi,l,u,λ −
∑

l∈L+(v)

yi,l,u,λ = ψi,u,v,λ

∀i;∀v ∈ N\{si, di};∀u ∈ N\{v};∀λ

If a lightpath is regenerated at node v, the last regenerator
node in the new segment should be node v.

∑
l∈L+(v)

xi,l,v,λ −
∑

u∈N\{v}

τi,u,v,λ = 0 and (5)

∑
l∈L+(v)

yi,l,v,λ −
∑

u∈N\{v}

ψi,u,v,λ = 0

∀i;∀v ∈ N\{si, di};∀λ



Disjointedness constraints:
The primary and backup lightpaths of a given request should

be link disjoint.

∑
λ

∑
u∈N

(xi,l,u,λ + yi,l,u,λ) ≤ 1 ∀i;∀l ∈ L (6)

Wavelength constraints:
A wavelength on a given link can only be used by a single

lightpath.

∑
i

∑
u∈N

(xi,l,u,λ + yi,l,u,λ) ≤ 1 ∀l ∈ L;∀λ (7)

Simple path constraints:
Lightpaths should not contain loops. At the source node

of each request, there should not be a flow of the request
associated with any of its incoming links.∑

λ

∑
l∈L−(si)

∑
u∈N

(xi,l,u,λ + yi,l,u,λ) = 0 ∀i (8)

In addition, any flow of a request that exits its source node,
other than the one originating at the source node, should
explicitly be set to 0.

∑
λ

∑
l∈L+(si)

∑
u∈N\{si}

(xi,l,u,λ + yi,l,u,λ) = 0 ∀i (9)

Similarly, for any intermediate node, there can at most be
one flow of the primary or backup lightpath entering the node.∑

λ

∑
l∈L−(v)

∑
u∈N

xi,l,u,λ ≤ 1 and (10)

∑
λ

∑
l∈L−(v)

∑
u∈N

yi,l,u,λ ≤ 1 ∀v ∈ N\{si};∀i

Impairment constraints:
The physical impairment of any transparent segment should

be less than the threshold.∑
λ

∑
l∈L

r(l) · xi,l,u,λ ≤ ∆ and (11)∑
λ

∑
l∈L

r(l) · yi,l,u,λ ≤ ∆ ∀u ∈ N ;∀i

Only for the dedicated-shared variant:∑
λ

∑
u∈N

(τu,v,λ,i + ψu,v,λ,i) ≤ 2 ·αv,i ∀v ∈ N ;∀i (12)

The aforementioned equations are for directed networks.
For undirected networks, we first replace each link with
two directed links in either direction. Let for each directed
l = (u, v) ∈ L, its corresponding oppositely directed link
be l

′
= (v, u) ∈ L. Then, replace Eq. 6 with the following

equation.

∑
λ

∑
u∈N

(xi,l,u,λ+yi,l,u,λ+xi,l′ ,u,λ+yi,l′ ,u,λ) ≤ 1 ∀i;∀l ∈ L

(13)
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