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Abstract

Hip osteoarthritis is a widespread disease, with medical experts facing difficulties in this illness,
due to a lack of standard grading score. Nevertheless, the minimum joint space width remains
the most important score for osteoarthritis severity. Manual estimation of this metric is a tedious
task, which can greatly benefit from employing an automated tool. While some research has been
done in developing such a tool using deep learning methods, a novel and promising approach, most
lack annotated data to use for training, which can be hard to obtain. Thus, thus research aims
at developing a deep learning approach towards estimating the minimum joint space, while using
automatically labels produced with an existing algorithm.

1 Introduction

Hip osteoarthritis (hip OA or HOA) is a chronic
disease that affects the hip joint, causing pain
and stiffness [10]. The disease is characterised
by tearing of the joint cartilage and bone,
generally appearing with aging. Although there
is no permanent cure, there are treatments that
can reduce its impact such as medications and
physical therapy. In later stages of the disease, a
person may require a total hip replacement [10].
Early diagnosis of HOA can enable the patient
to start receiving treatment at earlier stages,
reducing the negative effects of the disease and
helping avoid the total hip replacement surgical
operation.

Hip OA is identified by means of a physical
examination, but medical imaging investigations
can provide further assistance by confirming the
presence of HOA, sometimes even in the absence
of symptoms, and allowing medical professionals
to observe its development over time [10]. One key
parameter used for identifying HOA and assessing
HOA progression is the “joint space width”
(JSW), describing the distance between the bones
of the joint on the radiograph [8][4]. Currently,
in the clinic, the estimation of JSW is done
manually, by visually identifying the narrowest
point across the joint space and measuring the
distance at that point as the minimal joint space
width (min-JSW or mJSW) [13]. The difficulty of
analysing HOA using medical imaging stems from
the lack of a standard radiological definition and
grading scale for OA, resulting in significant inter-
and intra-reader variability when classifying the
severity of OA or measuring the JSW [10][9][8][2].

One solution to the reader variability problem
is an automated tool to measure the JSW on
radiographs, thanks to the expected increase in
precision with this approach [4]. Some work
in designing an automated tool for diagnosing
hip osteoarthritis is presented in Andersen et
al. [2], showcasing an algorithm for finding the
minimum joint space width (mJSW) and bench-
marking the performance of this algorithm in
predicting mJSW against human experts. Several
impediments in predicting the mJSW are also
discussed, such as the lack of a ground truth when
measuring the mJSW and lack of a radiological
definition of hip osteoarthritis. Nevertheless, the
study revealed artificial intelligence methods to be
quite precise in measuring the mJSW. In general,
more research has been done in segmenting the
knee joint space rather than the hip joint space
[4], with high accuracies in predicting the bone
outlines [3].

Given the benefits of an automatic tool for
hip JSW estimation, the research question being
tackled in this publication is the following: How
accurate is a ResUNet based deep learning
approach for predicting the minimum joint
space width along the weight-bearing part
of the hip joint in a 2D image, in
comparison to ground-truth data generated
by the BoneFinder algorithm? More
specifically, the aim of this research is to
develop a pipeline for training a ResUNet model
and to analyse the performance of this deep
learning model in estimating the mJSW. One
important feature of this research is the usage
of automatically generated labels, as opposed to
manually annotated data which can be scarce.
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In addition to this, the study will discuss
key decisions in terms of how to preprocess
and label the data and what configuration of
hyperparameters (loss function, dataset sizes,
output activation functions etc.) for the U-Net
gives the best results in terms of estimating the
segmentation masks and the JSW.

2 Methodology

The experiments for calculating the JSW
presented in this research employ a deep
learning approach, wherein a deep network for
image segmentation is trained on automatically
generated labels to highlight the hip joint
components in X-ray images. Then, an
additional algorithm identifies the contours of the
segmented joint bones and computes the JSW.
The most important steps of our approach are
detailed below: label generation, deep network
architecture and JSW calculation.

2.1 The BoneFinder Algorithm for
Label Generation

Annotating X-ray images for segmentation
tasks is often a resource-consuming labour, as
it involves human experts to interpret the
radiography and to manually highlight the
different objects in the image to be segmented.

To this end, the segmentation masks used
as labels were generated with the BoneFinder
algorithm, a reliable automatic method for bone
segmentation [12][11]. Thus, a set of points
outlining the pelvic bones for each X-ray image
was generated using BoneFinder. From this set
of points, only a subset is selected, corresponding
to set of the bones to be segmented. Further,
the coordinates in this subset are used to draw a
polygon representing each bone in the image.

As opposed to an approach which would
estimate only the mJSW, the method presented
in this research not only estimates the mJSW,
but it can also display the region of the joint
space where the mJSW was identified using the
predicted segmentation masks.

2.2 Network Architecture

The Residual U-Net (ResUNet) architecture used
in this research is illustrated in figure 1. The
backbone modules of ResUNet are a variation of
the U-Net architecture [14] and modified residual
blocks of convolutional layers.

U-Net is based on the Fully Convolutional
Network (FCN) architecture, following the
encoder-decoder design. It is widely employed
in medical imaging applications, thanks to its
effectiveness in identifying object boundaries and
relatively fast training time, being able to reach
high accuracy with limited training data when
applying augmentation strategies [14].

In ResUNet, modified residual blocks replace
the convolution blocks in the U-Net. While
convolution blocks learn some output H(x) given
some input x, residual blocks learn the residual
F(x), where F(x) = H(x) − x. This is done
by including a shortcut connection which adds
the input x to the residual F produced by the
residual block (i.e., H(x) = x+F(x)). Very deep
networks generally suffer from the “degradation
problem”. Residual learning address this issue,
maintaining an increasing trend in accuracy when
having greater number of network layers [7].

Similarly to U-Net, the ResUNet architecture,
as shown in figure 1, is composed of a contracting
path (or encoding path; left side) and an
expanding path (or decoding path; right side).
Each path consists of 4 residual blocks, with
skip connections between homologous encoding
and decoding blocks, while a bridge block links
these two segments. The network receives a 2D
image of size 1 × 512 × 512 as input, with the
final output being a multi-class, one-hot encoded
segmentation mask of size N × 512 × 512, where
N is the number of classes.
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Figure 1: ResUNet architecture. The number
of feature channels, height and width of inputs
and outputs are displayed before and after each
block. Concatenation layers are used to combine
the low-level features in the decoding path with
high-level features received via skip connections
from corresponding blocks in the encoding path.

After each encoding unit, the number of
feature channels is doubled, while each decoding
unit halves this number. Each block generally
consists of two successive applications of the

following sequence of layers: convolution, instance
normalization and parameterized rectified linear
unit (PReLU). Furthermore, convolutions and
transposed convolutions with stride of 2 at
the beginning of each block are used for
downsampling and upsampling, respectively,
instead of max-pooling operations. Similarly, the
modified residual blocks in the encoding path use
convolution layers with stride of 2 as projections
in their shortcut connections, which downsample
the input to match the dimension of the residual.
As opposed to U-Net, only padded convolutions
with kernel size of 3 × 3 are used, to ensure that
the size of the output after each layer is an even
multiple of the initial input.

The PReLU and instance normalization layers
were omitted in the last upsampling unit.
Instead, the experiments in this research used
either the sigmoid or the softmax functions
as output layer activation. If using sigmoid
function, a thresholding transform is applied
on all pixels after the sigmoid activation, to
obtain the final one-hot encoded mask. Using
the softmax function requires applying the
argmax and one-hot encoding functions after
the softmax to produce the final mask. To
avoid backpropagating the discrete pixel labels,
thresholding, argmax and one-hot encoding are
not applied during training steps.

Lastly, the default loss function is the Dice
loss. This research also experiments with the
Cross-Entropy and Dice-Cross-Entropy losses, the
latter being a linear combination of Dice and
Cross-Entropy (i.e., DiceCrossEntropy = Dice+
CrossEntropy). Tthe Dice metric is used to
evaluate the the ResUNet performance.

2.3 JSW Calculation

As mentioned in the Introduction section 1, the
currently most common score used in clinics for
grading HOA is the mJSW, denoting the distance
at the narrowest section of the hip joint. This
research is centered on estimating the mJSW
based on segmentation masks of the joint space
predicted by a deep learning model.
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To compute the mJSW, hip articulation bones
are first segmented using the ResUNet. Then,
using the predicted segmentation mask, the joint
space pixels neighbouring the hip articulation
bones (acetabular roof and femoral head; see
figure 4) are identified as the upper and lower
borders of the joint space. Finally, the mJSW
is calculated as the minimum point-to-point
distance between these borders. It is assumed
that the pelvic radiograph is displayed vertically
(i.e., from a standing position of the patient).

3 Experimental Setup

The aim of the experiments in this research
was to develop an approach to calculate the
mJSW, based on image segmentations obtained
using the ResUNet model. To this end, five
components were created: data preprocessor,
data splitter (performs train-validation-test
split), model trainer, model evaluator, JSW
calculator, as illustrated in figure Figure 2.
The main advantage of this approach is that
the enumerated components can be executed
sequentially without having to run all previous
steps when re-executing a certain component.
For instance, the training step can be executed
multiple times, without having to preprocess the
data with every training session.

3.1 Data Acquisition

The data used in this research are represented
by 2D X-ray images stored using the DICOM1

standard. The total number of images available
for this research is 14994, collected from the
CHECK (3703 images) [15] and OAI (11291
images) datasets [6].

The ground truth data used for creating
the segmentation masks as labels for each
sample is represented by a fixed number of
160 pixel coordinates (expressed in millimeters)
used to highlight the borders of the various
hip bones. These points were generated using

the BoneFinder algorithm [12] and they were
provided together with the X-ray images.

To ensure protection of patient sensitive data,
the images and the BoneFinder points are stored
on the servers of the DelftBlue supercomputer
[1] and the experiments were executed on this
supercomputer.

Figure 2: Modules of the experiment pipeline.

Figure 3: Data preprocessing pipeline.

3.2 Data Preprocessing

The preprocessing phase is concerned with
processing the X-ray images and creating the
segmentation masks based on the BoneFinder

1https://www.dicomstandard.org/
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points. Figure 3 highlights the main steps for
preprocessing.

3.2.1 Image Processing

After reading the image DICOM files from the
data directory, several image processing steps are
applied on each X-ray. Firstly, image resolution
is rescaled to an isotropic target pixel spacing of
0.9 mm/pixel, reducing the size of each image
and preserving the outlines of the X-ray objects.
The target resolution value of 0.9 mm/pixel was
chosen to later minimize the amount of padding
needed to reach the target shape. Secondly, pixel
intensities are scaled by applying the Percentiles
and Min-Max normalization transforms, in this
order. Percentiles normalization removes outlying
pixel values, by bounding the interval of
intensities to the 5th and 95th percentile values,
as lower and upper bound, respectively. Min-
Max normalization standardizes the range of
intensities for all images by scaling pixel values to
the interval [0, 1]. Finally, each image is padded
until reaching a target shape of 512× 512 pixels.

The preprocessing module also discards
images that do not satisfy certain properties.
Thus, each X-ray must be stored in a DICOM
file as a monochrome image, with colors ranging
from black to white (i.e., background is darker,
while bone features are brighter). Each image file
must specify an isotropic pixel spacing, and those
that cannot be rescaled to a target pixel spacing
or cannot be padded due to large size are also
dropped. Lastly, there must be a corresponding
BoneFinder points file for each DICOM file.

From a total of 14994 DICOM images,
14721 were successfully preprocessed. The
remaining 273 images were discarded during
preprocessing for the following reasons: 134
lacked a corresponding BoneFinder points file,
136 were too large to be padded, 2 DICOM file
did not specify the pixel spacing, and 1 image
was not stored as a DICOM file. Omitting these
samples is considered to have a negligible impact
on the training process, given the large amount of
available data.

3.2.2 Segmentation Masks Generation

The image segmentation task in this research
was concerned with segmenting the following hip
structures: the femoral head, the acetabular roof,
and the joint space. Training the ResUNet model
required labels represented by multi-class, one-hot
encoded segmentation masks of the enumerated
pelvic structures. In other words, each mask
combines multiple submasks (i.e., 2D binary
arrays), one for each of the enumerated pelvic
components. Submasks classify image pixels
as 1 if they are part of their associated hip
component and 0 otherwise. The background can
optionally be included as an additional submask,
depending on the model setup to be trained (i.e.,
softmax activation in the output layer requires
the background mask, whereas sigmoid does not).
Consequently, the shape of each mask is either
4 × 512 or 3 × 512 × 512, where the size of the
first channel denotes the number of class labels,
which in turn depends on whether the background
is included. Figure 4 shows an example of a
segmentation mask.

The combined masks are generated separately
for the right and left hip. The preprocessing
step first outputs the image and the right hip
mask. Then, for the same sample, it outputs
the image again and the left hip mask, but both
horizontally flipped. This approach simplifies
training by focusing on segmenting the right side
of the hip, while providing more training data.
In the end, from the total of 14721 successfully
processed images, a total of 29442 samples were
obtained after preprocessing, by including both
the flipped and unflipped images and by having
separate masks for the right and left hips.

5



Figure 4: Segmentation mask as a combination of
submasks.

3.3 Model Training and Evaluation

Before the training and evaluation steps, the
preprocessed data samples are first shuffled, then
partitioned into training, validation and testing
datasets, generally with ratios of 80%, 10% and
10%, respectively, from the total amount of
samples.

The ResUNet model is trained on the training
and validation datasets, using a loop which
iterates over batches of training data for a
specified number of epochs. The training process
is combined with a validation step occurring after
each epoch. The validation step evaluates the
model obtained after the each epoch using the
metric function and the validation dataset, saving
the model state with the maximum metric score
across all epochs. Finally, the trained model is
evaluated on the testing dataset, expressing the
model performance using the metric function.

A first batch of experiments for training
and evaluating ResUNet models with different
hyperparameter setups was established, with the
aim of determining the best configuration. First,
a baseline model format was defined, as described
in table 1. Then, a standard testing dataset was
created, consisting of 10% of the total amount of
samples available (the same test dataset is used
to evaluate all model configurations).

Ultimately, in the second batch of
experiments, the best model configuration is
trained on all available data, then it is used to

analyse its behaviour in estimating the mJSW.

Baseline model:
Network architecture: ResUNet
Output layer activation: softmax
Loss function: Dice
Metric function: Dice
Optimizer: Adam
Learning rate: 10−3

Weight decay: 10−5

Training dataset size: 1600
Validation dataset size: 200
Batch size: 20
Number of epochs: 50

Table 1: Baseline model configuration.

3.4 Implementation Details

For the experiments in this research, the pipeline
shown in figure 2 was implemented in the
Python (version 3.9.8) programming language,
due to its ease of development and support for
Machine Learning libraries. The Pydicom library
was used to read the DICOM files, whereas
the HDF5 framework, intended for storage of
big data, was used to write the preprocessed
images and segmentation masks to a single HDF5
file. The Scikit-Image library was used for
image processing. PyTorch (version 2.3.0 +
cu121) was used for data splitting and for the
training and evaluation loops. The MONAI
framework (version 1.4.dev2418) [5], specialized
in medical image segmentation and compatible
with PyTorch, provided the implementations
for ResUNet, loss and metric functions. All
experiments were executed on the DelftBlue
supercomputer [1].

4 Results

4.1 Hyperparameter Tuning

The first experiment trained the baseline model
with training and validation datasets of various
sizes, revealing that medium size datasets (1600
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training and 200 validation samples) can give
a testing score similar to large datasets (23554
training and 2944 validation samples) with the
same amount of epochs, whereas smaller datasets
(160 training and 20 validation samples) required
more epochs to converge; see figure 5. Having
smaller batches helped the training on smaller
datasets to converge faster with the same number
of epochs, in a similar fashion to medium
size datasets; see figure 6. However, figure 7
reveals that training with medium size training
dataset produced a higher test score and faster
convergence than a small size one, for the same
number of training steps (i.e., number of epochs
× number of batches in the dataset).

Secondly, in figure 8, comparing various
loss functions indicated that the Dice function
performed the best in terms of test score and
progression of the validation metric. While
Dice-Cross-Entropy showed a similar performance
to Dice, Cross-Entropy resulted in a slightly
unstable progression of the validation score.

Thirdly, having softmax as the output layer
activation function resulted in faster convergence
of the validation curve, as opposed to the sigmoid
function, even though differences in test metrics
were negligible; see figure 9. Moreover, the
validation curve for sigmoid activation converges
towards a local maximum after 10 epochs, then
after the 20th epoch it converges again towards a
greater maximum. This might be caused by the
small learning rate in the incipient steps of the
training and may suggest using a larger learning
rate in the first epochs which decays towards a
smaller value in later steps. Another sensible
reason for choosing softmax over sigmoid is that
the latter may assign more than one class label for
the same pixel, whereas softmax assigns exactly
one label to each pixel. Lastly, the sigmoid
function requires a thresholding operation which
uses a manually selected threshold, an additional
parameter.

In the end, the baseline model trained on all
available data was chosen as the best-performing
configuration.

4.2 Calculating the min-JSW

The second batch of experiments trained the
baseline model on all available data, with ratios
of 0.8, 0.1, 0.1 for the training-validation-testing
dataset split, producing a test score of 0.9136.
Ultimately, the final model and the test dataset
were used to compute and analyse the predicted
masks and the min-JSW scores. Table 2 describes
the mean standard deviation of the differences
between the mJSW scores calculated for real (i.e.,
generated by BoneFinder) and predicted masks of
the test samples, where one sample was dropped
due to failed segmentation (see figure 11). Figure
10 shows a typical predicted label (left), but also a
failed segmentation (right). Figure 11 illustrates
differences in mJSW estimation between the
real and predicted labels, but also pixel-to-pixel
differences between the two labels.

Mean mJSW mJSW standard deviation
0.0763 0.0874

Table 2: Mean and standard deviation of min-
JSW, calculated for the same test dataset used to
evaluate the final model.

5 Responsible Research

As the deep learning tool of this research uses
privacy sensitive medical data, the experiments
presented in this research were performed on
the DelftBlue supercomputer [1], to keep the
sensitive images contained only within the remote
storage space of DelftBlue. Furthermore, several
samples were dropped during preprocessing and
evaluation steps, an account of which is given
in sections 3 and 4 (i.e., 273 images discarded
during preprocessing and 1 sample discarded
during mJSW calculation). It was assumed that
the pelvic X-rays were displayed vertically, that is,
the patient was in a standing position. The code
used in the research experiments can be found in
the following repository: https://github.com/

iDragos1234/Research-Project.
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6 Discussion and Conclusions

The insights presented in the section 4 firstly
compared the baseline model to several modified
configurations of itself, proving that the baseline
performed the best from the selected setups. The
second batch of experiments showed that the
model generally performed well in segmenting
the X-rays and calculating the mJSW, when
compared to BoneFinder labels.

6.1 Segmentation Masks

While the final model produced a large test
score and plausible segmentations, there are some
important remarks to consider.

On one hand, the BoneFinder labels do not
cover the entire segmented bones and the model
may be wrongfully penalized during training due
to the arbitrariness with which BoneFinder placed
the landmarks outlining the bones. For example,
the lower margin of the femur is usually placed
well above the region where the femur shaft ends
in the images, which is unrelated to the inherent
structure shown in X-rays. This problem can be
addressed in further work by generating weight
maps that avoid loss computation in certain
regions of the labels (i.e., loss is non-zero only
for pixels with weights of 1 in their binary weight
maps).

On the other hand, the central portion of a
segmented object contributes with a large portion
to the Dice score, whereas the bordering region
has less impact. To this end, future research
could use the Hausdorff distance as loss and
metric functions, which computes the distance
between the currently predicted shape and the
target shape.

In the end, using the BoneFinder algorithm to
automatically generate labels considerably more
training data, as opposed to a manual approach
in annotating the data,

6.2 mJSW Scores

The ResUNet approach presented in this research
produced plausible scores for the mJSW, with

small differences between scores computed based
on the BoneFinder masks and the predicted
masks. As opposed to an approach which would
estimate only the mJSW, the current method
not only estimates the mJSW, but also displays
the region of the joint space where the mJSW
was identified using the predicted segmentation
masks. While the ResUNet is a black-box
model in itself, visualizing the region where the
narrowest part of the joint space was identified
provides a greater degree of explainability. Thus,
medical experts can compare the min-JSW
computed using the automated tool in this
research with their own manual estimations of
this score. Additionally, a visualization of the
min-JSW region can help with monitoring the
HOA progression, as the narrowest region can
vary across medical visits for the same patient
[13]. Moreover, the human expert may find that
the narrowest point of the joint space is located
in a different region than the one estimated
by the automated tool [13], as the BoneFinder
labels do not span the entire joint space. A
metric which provides even more detail about
the severity of HOA than the min-JSW is the
multiple-JSW (or JSW(x)), representing the JSW
at an arbitrary position along the articular space
while also including the min-JSW. While metric
is not in the scope of this research, as min-
JSW already provides a clinically relevant score
for HOA severity, the segmentation component
can be re-used to estimate the JSW(x) in future
research.
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Testing
dataset size

Validation
dataset size

Test mean
Dice metric

23544 2944 0.9136
1600 200 0.8877

Figure 5: Training the baseline model with
different sizes for training and validation datasets,
with batches of size 20.

Testing
dataset size

Validation
dataset size

Test mean
Dice metric

1600 200 0.8925
160 20 0.8546

Figure 6: Training the baseline model with
different sized datasets and batches of 2.

Testing
dataset size

Validation
dataset size

Test mean
Dice metric

1600 200 0.8877
160 200 0.7717

Figure 7: Training the baseline model with same
number of steps and equal size datasets for testing
and validation, but different sizes for the training
one.

Loss function Test mean Dice metric
Dice 0.8877
Dice + Cross-Entropy 0.8790
Cross-Entropy 0.8672

Figure 8: Training the baseline model with
different loss functions. Top: progression of the
validation Dice metric per epoch. Bottom: test
Dice scores.
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Output layer activation Test mean Dice metric
Softmax 0.8877
Sigmoid 0.8859

Figure 9: Training the baseline model with
different activation functions in the output layer.
Top: progression of the validation Dice metric per
epoch. Bottom: test Dice scores.

Figure 10: Contrast between a plausible predicted
mask (left) and a failed prediction (right). The
failed prediction is likely caused by inverted
intensities (i.e., background is bright whereas
objects are dark).

Figure 11: Images a) and b) show a noticeable
difference in mJSW between the BoneFinder
mask and the predicted mask: 0.2986 mm and
0.9658 mm, respectively. Images c) and d)
illustrate the pixel-by-pixel difference between the
BoneFinder mask (cold colours) and the predicted
mask (warm colours).
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