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Influence of spatial distribution of sensors and observation accuracy on the
assimilation of distributed streamflow data in hydrological modelling
Maurizio Mazzolenia, Leonardo Alfonsoa and Dimitri Solomatinea,b

aIntegrated Water Systems and Governance, UNESCO-IHE Institute for Water Education, Delft, The Netherlands; bWater Resources Section,
Delft, Delft University of Technology

ABSTRACT
The aim of this study is to assess the influence of sensor locations and varying observation
accuracy on the assimilation of distributed streamflow observations, also taking into account
different structures of semi-distributed hydrological models. An ensemble Kalman filter is used to
update a semi-distributed hydrological model as a response to measured streamflow. Various
scenarios of sensor locations and observation accuracy are introduced. The methodology is tested
on the Brue basin during five flood events. The results of this work demonstrate that the
assimilation of streamflow observations at interior points of the basin can improve the hydro-
logical models according to the particular location of the sensors and hydrological model
structure. It is also found that appropriate definition of the observation accuracy can affect
model performance and consequent flood forecasting. These findings can be used as criteria to
develop methods for streamflow monitoring network design.
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1 Introduction

Water system models of different types and complexity
are used in flood early warning systems to predict
floods and reduce their impact on urbanized areas
(Todini et al. 2005). Since each model is a mathema-
tical schematization of some natural physical process, a
proper definition of the model structure and para-
meters is necessary in order to correctly represent the
behaviour of the catchment and reduce model uncer-
tainty (Pappenberger et al. 2006, Di Baldassarre and
Montanari 2009). In addition, even in the case of
perfect model structure and parameter estimation, an
uncertain and inadequate characterization of rainfall
inputs can produce imprecise runoff predictions
(Beven 2004). A growing number of studies have ana-
lysed the impact of rainfall uncertainty on flood event
prediction (Kavetski et al. 2006, Bárdossy and Das
2008, Moulin et al. 2009, McMillan et al. 2011).

Model updating techniques in hydrology are becom-
ing an important tool for integrating the real-time
observations of physical variables into water system
models and thus reducing uncertainty in flood predic-
tion (Liu et al. 2012). Hydrological observations, used
to update the water models, can include streamflow
(Pauwels and De Lannoy 2006, 2009, Weerts and El
Serafy 2006), snow cover (Andreadis and Lettenmaier
2006), soil moisture (Brocca et al. 2010, 2012) or water

level observations from in situ sensors (Madsen and
Skotner 2005, Neal et al. 2007) and remote sensing
(Giustarini et al. 2011).

Among model updating techniques, the methods
used most in hydrology are divided into sequential
and variational data assimilation (DA) methods (Liu
and Gupta 2007). Any DA technique attempts to find
the best new estimate of a system state on the basis of
the (noisy) observations (McLaughlin 1995, 2002).
Over recent decades, various DA approaches with dif-
fering complexity have been proposed.

For example, in direct insertion methods the obser-
vations are used to directly replace the model states
since they are assumed to be more reliable than the
model itself (Walker et al. 2001). In nudging techni-
ques an additional term related to the reliability of the
observations and model is used to update the model
states (Houser et al. 1998).

The Kalman filter (KF) is one of the most com-
monly used DA methods. This is a mathematical tool
that allows the assimilation, in an efficient recursive
way, of observed noisy data into a linear dynamic
system in order to update model states and thus
improve model predictions (Kalman 1960). Variants
of the Kalman filter for nonlinear systems, such as
the extended Kalman filter (EKF) (Aubert et al.
2003), the ensemble Kalman filter (EnKF) (Reichle
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2000, Evensen 2003, Komma et al. 2008, Mendoza et al.
2012, Rakovec et al. 2012) and the recursive ensemble
Kalman filter (McMillan et al. 2013), have been pro-
posed and applied in hydrology. Madsen and Cañizares
(1999) compared the performance of the EKF and the
EnKF in coastal area modelling. Their study showed
that the EnKF did not fail in the case of strong non-
linear dynamics; however, it was very time consuming.
Application of Kalman filtering methods to hydrody-
namic modelling was explored by Verlaan and
Heemink (1996), Verlaan (1998) and Cañizares (1999).

Yet another version of a nonlinear filter is the par-
ticle filter (PF) (Arulampalam et al. 2002) and this has
also been used in flood forecasting tasks (Moradkhani
et al. 2005, Salamon and Feyen 2009, Noh et al. 2014).
In the PF, the posterior density function is represented
by a set of random samples with associated weights
according to the full prior density and resampling
approach used (e.g. Arulampalam et al. 2002, Weerts
and El Serafy 2006). The computational requirements,
much higher than those of the KF, and problems with
nearly noise-free models are seen as the main disad-
vantages of the PF.

In contrast to the previous sequential methods, var-
iational assimilation methods have been widely used in
weather forecasting and coastal engineering applications
(Li and Navon 2001, Seo et al. 2003, 2009, Valstar et al.
2004, Fischer et al. 2005, Lorenc and Rawlins 2005, Lee
et al. 2011, 2012, Liu et al. 2012). In these methods, a cost
function that measures the difference between the error
in initial conditions and the error between model pre-
dictions and observations over time is minimized to
identify the best estimate of the initial state conditions
(Seo et al. 2009, Lee et al. 2011).

The above-mentioned DA methods require signifi-
cant real-time data on hydrological variables in order
to update model states and subsequent flood forecasts.
Nowadays, physical sensors of water level are increas-
ingly available and in use by river basin authorities.
However, it is important to assess the influence of
sensor locations on the results of DA procedures
since location affects hydrological model performance.
Blöschl et al. (2008) proposed streamflow assimilation
in a grid-based operational flood forecasting system;
however, they did not analyse the effect of varying
distributed streamflow observations within the river
basin. Recently, authors have assessed the effect of
interior discharge gauges on hydrological forecasts. In
particular, Lee et al. (2011) assimilated streamflow and
in situ soil moisture observations in a distributed
hydrological model, showing that integration of
streamflow observations at interior locations, in addi-
tion to those at the outlet, improves soil moisture and

streamflow prediction along the channel network. Xie
and Zhang (2010) and Chen et al. (2012) investigated
the performance of a distributed model in the case of
assimilation of distributed streamflow observations,
concluding that the assimilation of runoff observations
can significantly update the model states and para-
meters. Rakovec et al. (2012) analysed the sensitivity
of EnKF to the updating frequency and number of
distributed discharge gauges using a grid-based distrib-
uted hydrological model. They pointed out how hydro-
logical forecasts can be improved by assimilating
streamflow observations at interior points of the
basin. However, analysis of the effect of sensor location
on the DA performance is limited. Lee et al. (2012)
considered various fixed spatiotemporal adjustment
scales to update different spatial distributions of
model states using a variational assimilation method.
They demonstrated the sensitivity of model results to
the spatial distribution of sensors. Mendoza et al.
(2012) evaluated the performance of a distributed
hydrological model in the case of assimilation of
streamflow observations in a sparsely monitored catch-
ment and pointed out that the upper basin contains the
major source of uncertainty in hydrological process
representation.

In addition to the impact of sensor locations on
DA performance, another issue is the correct evalua-
tion of the uncertainty affecting streamflow measure-
ments (observation accuracy). In such observations,
errors can be related to inappropriate water level
(WL) measurement, or to the wrong assessment of
the rating curve used to transform values of WL into
discharges (Clark et al. 2008). Di Baldassarre and
Montanari (2009) proposed a procedure for quantify-
ing uncertainty of streamflow data, with particular
focus on the analysis of rating curve uncertainty,
neglecting however the uncertainty in the water level
measurements. They found that estimation of river
discharge using the rating curve method is affected
by an overall error, at the 95% confidence level, equal
to 25.6% of the observed river discharge for the con-
sidered case study on the River Po, Italy. Usually,
uncertainty in streamflow measurements is assumed
to have normal or lognormal distribution
(Moradkhani et al. 2005, Weerts and El Serafy 2006,
McMillan et al. 2013) coming from an uncertain
estimation of the rating curve. Clark et al. (2008)
proposed a version of the EnKF by transforming
observed and modelled streamflow to log space before
computing the Kalman gain. Fowler and Jan Van
Leeuwen (2013) investigated how relaxation of the
Gaussian assumption affects the observation impact
(measured considering the sensitivity of the analysis
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to the observations, the mutual information and the
relative entropy) within the assimilation process.

Although methods for DA and uncertainty analysis
have evolved recently, studies on the influence of sen-
sor locations and their accuracy on DA procedures and
model performance are still limited, yet there is a need
to research these issues more deeply. Therefore, the
main objectives of this work are to analyse the effects
of (a) different sensor locations and (b) uncertainty
bounds of the observed data on the assimilation of
distributed streamflow observations in semi-distributed
hydrological models. The standard EnKF is used to
integrate the distributed streamflow observations and
the hydrological models, and it is tested on the Brue
basin located in the southwest of England.

Although it is not intended to provide an optimal layout
of sensor locations, the results of this study can be used to
draw new criteria for streamflow network design, and the
study complements other recent research (Alfonso et al.
2010, Kollat et al. 2011, Alfonso and Price 2012).

The structure of the paper is as follows: firstly, the
general methodology proposed to evaluate the effects
of the sensor distribution and accuracy of streamflow
observations is reported. Secondly, the case study in
which the method is developed is presented. Thirdly,
the results obtained for different sensor locations and
observation accuracy are discussed. Finally, the main
conclusions of this study and recommendations for
future work are presented.

2 Methodology

The proposed methodology consists of four elements:
hydrological modelling, data assimilation, sensor location

and observation uncertainty. Such methodology could be
applied in any basin and during any flood events.

2.1 Hydrological modelling

A semi-distributed hydrological model is used to assess
the flood hydrograph at the outlet section of the basin
and to represent the spatial variability of the uncertain
streamflow observations. Two different structures of a
semi-distributed Kalinin-Milyukov-Nash model
(Szilagyi and Szollosi-Nagy 2010) with Muskingum-
type routing are implemented (Fig. 1). In the first
model structure (MS1) the sub-basin lumped models
are connected in series, so that the hydrograph of an
upstream sub-basin is propagated along the successive
downstream sub-basins. In the second model structure
(MS2), a common structure in many semi-distributed
and distributed hydrological models, the sub-basins are
connected in parallel. This means that the hydrograph
of a sub-basin is directly propagated through the model
to the basin outlet where it is aggregated with the
outputs of all the other sub-basin models.

The hydrological modelling framework implemented
in each sub-basin, together with the data assimilation
approach, is described in Mazzoleni et al. (2015).
Evaluation of the direct runoff in each sub-basin is car-
ried out using the Soil Conservation Service curve num-
ber (SCS-CN) method. The calibration of the average CN
value within the basin is performed by comparing the
observed and simulated volume of the quickflow at the
outlet section using the SCS-CN method.

The lumped conceptual model used to estimate the
quickflow Q is based on the continuous Kalinin-
Milyukov-Nash (Szilagyi and Szollosi-Nagy 2010)

Figure 1. Hydrological conceptual model and proposed model structures.
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equation as a convolution of the input, direct runoff I,
with the impulse-response function h:

Q tð Þ ¼
ðt
t0

h τð Þ � I t � τð Þdτ

¼ 1
k

1
ðn� 1Þ!

ðt
t0

τ

k

� �n�1
e�τ=k τð Þ � I t � τð Þdτ (1)

where n is the number of storage elements in each sub-
basin t is time, tau is the integration variable and k is the
storage constant. In this study, the parameter k is a linear
function between the time of concentration, assessed
using the Giandotti equation (Giandotti 1933), and the
calibration coefficient c. In order to apply the data assim-
ilation approach, Equation (1) is expressed as a discrete
state-space system:

xzt ¼ Φzxzt�1 þ ΓzIzt þ wz
t wz

t 0; Szt
� �

(2)

Qz
t ¼ Hzxzt þ vzt vzt,N 0;Rz

t

� �
(3)

where z is the considered sub-basin, x is the model state
vector, H is the output matrix and Q is the model dis-
charge value at the time step t. The noises of the system
and measurements are represented by the system and
observation noises, wt and vt, which are normally distrib-
uted with zero mean and covariance S and R, respectively.
The state-transition and input-transition matrices, Φ and
Γ, estimated by Szilagyi and Szollosi-Nagy (2010), are:

Φ ¼

e�Δtk 0 0 . . . 0
Δtke�Δtk e�Δtk 0 . . . 0
Δtkð Þ2
2! e�Δtk Δtke�Δtk e�Δtk 0 ..

.

..

. ..
. . .

. . .
.

0
Δtkð Þn�1

n�1ð Þ! e
�Δtk Δtkð Þn�2

n�2ð Þ! e
�Δtk . . . Δtke�Δtk e�Δtk

2
6666664

3
7777775

(4)

Γ ¼

1� e�Δtk
� � � k�1

1� e�Δtk 1þ Δtkð Þ� � � k�1

1� e�Δtk 1þ Δtkþ Δtkð Þ2
2

� �h i
� k�1

..

.

1� e�Δtk Pn�1

j¼0

Δtkð Þj
j!

 !
� k�1

2
6666666664

3
7777777775

(5)

where Δt is the model time step. Finally, the flow
hydrograph of each sub-basin is propagated down-
stream using the Muskingum channel routing method
(Cunge 1969).

2.2 Data assimilation

Data assimilation techniques are used to update model
states as a response to real-time observations of signif-
icant hydrological variables. In this study, the states of
the conceptual model are updated using the well-
known and widely used ensemble Kalman filter
(EnKF) (Evensen 2003, Mazzoleni et al. 2015). The
forecasted probability density distribution (pdf) can
be represented by an ensemble of model realizations
computed using a Monte Carlo method:

Xz
t ¼ xzt;1; x

z
t;2; � � � xzt;i; xzt;N

� �
(6)

where x is the forecasted matrix of the model state in
the sub-basin z, N is the number of ensemble realiza-
tions, and i is an element (realization) of such an
ensemble. The model error covariance matrix can be
calculated as proposed by Evensen (2003):

Pz
t� ¼ 1

N � 1
EzEzT (7)

where E is the ensemble anomaly for each ensemble
member calculated as:

Ez
t ¼ xzt;1 � �xz; xzt;i � �xz; � � � ; xzt;N � �xz

� �
(8)

where �xz is the ensemble mean of the forecasted state
matrix. When an observation becomes available in a
sub-basin z at time step t, each member of the per-
turbed normally distributed measurement vector Qobs

is assimilated with a member of the forecasted matrix
of the model state to generate an updated estimate of
the model pdf. The update equation is:

x̂zt;i ¼ xzt;i þ Kz
t Qobs

z
t;i �Hxzt;i

� �
(9)

where the Kalman gain K, a weighted factor between
model and observations error, is defined as:

Kz
t ¼ Pz

tH
zT HzPz

tH
zT þ Rz

t

� ��1
(10)

where x̂is the update (or analysis) model state matrix. In
the EnKF the efficiency of the filter is closely dependent
on the ensemble size (Pauwels and De Lannoy 2009).
The ensemble is estimated by perturbing the forcing data
and the parameters using a uniform distribution:

Iper tð Þ ¼ I tð Þ þ U �εI � I tð Þ;þεI � I tð Þð Þ (11)

cper ¼ cþ U �εp � c;þεp � c
� �

(12)

where I is the forcing value (direct runoff) at the time
step t, c is the only perturbed model parameter, εI is the
fractional input error and εp is the fractional parameter
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error. Based on the results obtained by Mazzoleni et al.
(2015), we decided to set nens to 65, and εI and εp equal
to 0.2 and 0.9 for MS1, and 0.1 and 0.5 for MS2,
respectively.

In this study, the ensemble of synthetic streamflow
observations Qobs, for each single sub-basin z, normally
distributed with the mean Qtrue and covariance Rt, is
generated as:

Qobs;t ¼ Qtrue;t � γþ vt ¼ Qtrue;t � γþ N 0;Rtð Þ (13)

where γ is a parameter that accounts for the uncertain
(biased) estimation of the discharge observations (see
next sections).

2.3 Spatial distribution of sensors within the basin

The correct evaluation of interior streamflow sensor
positions is fundamental in properly predicting the
flood hydrograph, which may lead to better decisions
that reduce flood risk. For this reason, in order to

assess the effect of assimilation of distributed stream-
flow observations within hydrological modelling we
followed a general three-step approach (see Fig. 2)
applicable for any flood event.

Step 1: A preliminary analysis to assess the perfor-
mance of the models when assimilating distributed
discharge observations from a set of locations in the
basin (called “groups”) is carried out. Group 1: in all
the sub-basins; Group 2: in the sub-basins with Horton
order 1; Group 3: in the main river reach (Horton
order 3); Group 4: in the sub-basins on the main
channel without those located next to the outlet sec-
tion; and Group 5: in the sub-basins located close to
the outlet cross-section (see Fig. 2).

Step 2: In order to assess the responsiveness of
additional measurements in a single location, stream-
flow observations are assumed to be available at any
moment only in a single sub-basin. The model accu-
racy is evaluated using the Nash-Sutcliffe efficiency
(NSE) index, which compares the simulated and the
observed discharge hydrographs at the basin outlet.

Figure 2. Representation of the three-step method used to assess the effect of sensor location on the DA performance. The NNSE
values and locations of sensors shown in steps 2 and 3 are hypothetical.
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The single NSE values of each sub-basin are then
normalized resulting in a normalized NSE (NNSE):

NNSEz ¼ NSEz

max NSE1;NSE2; � � � ;NSEZ
� � (14)

where Z is the total number of sub-basins. The NNSE is
used to compare the results for different flood events
since the magnitude of NSE can vary. Therefore, the
NNSE are grouped into four classes for different flood
events. In this way, the sub-basins that induce a signifi-
cant improvement in the flood hydrograph are identi-
fied for both MS1 and MS2 and a given flood event.

Step 3: Based on the class and the NNSE value of each
sub-basin, different scenarios of sensor locations that
would give the best model improvement are introduced
for the specific flood event. The procedure used in this
study to assess such scenarios—applicable to case studies
having two main reaches—is schematized as follows:

Scenario 1: Two sensors, in one of the main river
branches, located in the sub-basins with the highest
class and with the corresponding highest NNSE;

Scenario 2: Two sensors, in the other main river
branch, located in the sub-basins with the highest
class and with the corresponding highest NNSE;

Scenario 3: Two sensors, in the two opposite river
branches, located in the sub-basins with the highest
class and with the corresponding highest NNSE;

Scenario 4: Sensors located in the sub-basins con-
sidered in scenarios 1 and 2;

Scenario 5: Two additional sensors to those consid-
ered in Scenario 4, located in the sub-basins having
high class but lower NNSE values than those in
Scenario 4, towards the downstream. In this way, it is
possible to assess the responsiveness of downstream
sub-basins in the streamflow assimilation; and

Scenario 6: Three additional sensors to those con-
sidered in Scenario 4, located in random sub-basins
having high class but lower NNSE values than those
in Scenario 4. This scenario is included in the proce-
dure in order to assess the influence of the total num-
ber of sensors.

In the description of the different scenarios, we
referred to “in the sub-basin” since we assumed that a
measurement taken at the outlet of the sub-basin
would provide the same information as an observation
at a random location inside the sub-basin. It is worth
noting that this procedure does not aim to search
exhaustively for all M possible sensor location combi-
nations, or replace traditional optimization methods,
but only those related to the classes that show signifi-
cant model improvement at the outlet section of the
basin.

2.4 Sources of uncertainty in the streamflow data
quality

In order to represent observation accuracy, different
sources of uncertainty that might affect the quality of
the observed streamflow data are introduced. As
pointed out by Clark et al. (2008), the uncertainty
coming from discharge observations can be due to (a)
incorrect estimation of water level at a given location,
or (b) inaccurate (uncertain) transformation of water
level into discharge (rating curve). As reported by Di
Baldassarre and Montanari (2009), the uncertainty
induced by imperfect measurement of river stage can
be negligible when using a static physical sensor. For
this reason, in most of the data assimilation applica-
tions in hydrology, only the errors caused by an inac-
curate rating curve are considered. However, we
considered this source of uncertainty in order to assess
its effect on the DA procedure. Under these assump-
tions, Weerts and El Serafy (2006) and Clark et al.
(2008) assumed that the error in the streamflow obser-
vations should be quantified as a noise term, normally
distributed, with zero mean and given covariance:

Rt ¼ α � Qtrue;t
� �2

(15)

where α is a parameter usually assumed to be equal to
0.1 (Weerts and El Serafy 2006, Clark et al. 2008,
Rakovec et al. 2012). In order to assess the effect of
observation accuracy on DA performance, different
sources of uncertainty are considered, assuming a per-
fect forecast. Figure 3 illustrates various types of obser-
vational error, which can be characterised as follows:

– Uncertain rating curve (ErrRC): Uncertainty
comes from an inadequate estimation of the rat-
ing curve used to transform water level into dis-
charge, whereas the uncertainty induced by
imperfect measurements of water level is assumed
to be negligible. A normal distribution of the
observational error is assumed, with a value of
αRC equal to 0.1, as usually proposed in hydro-
logical data assimilation applications (Weerts and
El Serafy 2006, Clark et al. 2008). This type of
observational error is used in this study to assess
the effect of sensor distribution.

– Uncertain WL estimation (ErrWL): Uncertainty
comes from the imperfect measurements of
water level, and not from the rating curve estima-
tion. In this case, two different probability distri-
butions, namely normal (WL1) and uniform
(WL2), are used to characterize the vector of
observations. It is worth noting that EnKF pro-
vides optimal results only if the distribution of the
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measurement vector is Gaussian (however, it can
be used with any distribution). For these reasons,
the results that are obtained in the WL2 case can
be considered as “sub-optimal” with respect to the
EnKF assumptions. In addition, due to the fact
that errors in the measurements are negligible (Di
Baldassarre and Montanari 2009) and smaller
than the error in the rating curve estimation, the
coefficient αWL is assumed equal to 0.02.

– Uncertain static sensors (ErrRC+WL). The errors
coming from an uncertain rating curve and
uncertain WL measurements are considered
together. In this case, the value of the coefficient
α in Equation (15) is assumed equal to the sum of

the two previous coefficients αRC (ErrRC) and
αWL (ErrWL1), resulting in an observational
error normally distributed with zero mean and
standard deviation of α·Qtrue with α set to 0.12.

– Uncertain estimation of the discharge observation
(ErrSD). In this case it is assumed that the value
Qtrue might be biased and different from the real
one. For this reason, the parameter γ (usually set
to 1) is considered as a random uniform number
between −0.3 and +0.3 in order to account the
uncertainty in estimation of Qtrue.

A graphical representation of the methodology pro-
posed in this study is shown in Figure 4 and Table 1.

Figure 3. Representation of main sources of uncertainty in streamflow measurement.

Figure 4. Values of α and γ according to the different types of source of uncertainty.
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3 Case study and model set-up

The case study is located in the Brue basin, in
Somerset, southwest UK. It has a drainage area of
about 135 km2 at Lovington, the basin outlet. The
time of concentration, estimated by the equation pro-
posed by Giandotti (1933), is about 10 hours. The
streamflow network is derived from the DTM (SRTM
dataset with 90 m resolution). The hourly precipitation
and streamflow data used in this study are supplied by
the British Atmospheric Data Centre from the NERC
(Natural Environment Research Council) Hydrological
Radar Experiment Dataset. The average precipitation
value in each sub-basin is estimated using ordinary
kriging, which allows optimal interpolation of point
data from the 49 rainfall stations available in the Brue
basin (Matheron 1963).

In order to represent the spatial variability of
streamflow observations, the Brue basin is divided
into 68 sub-basins each having a small drainage area
(on average around 2 km2). This makes it possible to
assume that any observation assimilated within a given
sub-basin provides the same information as an obser-
vation at the outlet of same sub-basin, and that in this
way distributed streamflow is considered (Mazzoleni
et al. 2015). Due to the fact that real streamflow obser-
vations are not available in each sub-basin, synthetic
values of Qtrue are estimated following the approach
used in Mazzoleni et al. (2015), i.e. adding a white
noise to the time series of input rainfall and model
parameter.

The model parameters c and n are calibrated by
minimizing the difference (NSE) between the simulated
and observed values of discharge at the outlet point of
the Brue basin during the flood event that occurred
between 16 December 1995 and 1 January 1996. The
resulting optimal values of c and n for MS1 and MS2

are found to be c = 1.1, n = 1 and c = 0.8, n = 10,
respectively. The basin is relatively small, so these
values are assumed to be the same for all sub-basins.

The hydrological model and the EnKF approach are
validated by comparing the results obtained for five
different flood events that occurred between 28
October and 7 November 1994 (flood event A),
between 8 and 16 November 1994 (flood event B),
between 4 and 8 January 1994 (flood event C), between
6 and 9 December 1994 (flood event D) and between
31 January and 3 February 1995 (flood event E). The
validation analysis shows that flood event A is repre-
sented by the semi-distributed hydrological model
quite well for both the models, while for other flood
events neither model structure provides satisfactory
results.

4 Results

4.1 Effect of sensor positioning

Figures 5 and 6 show the results obtained when assim-
ilating streamflow observations in the location groups
described in Section 2.3 during the five considered
flood events. It is worth noting that the analyses pre-
sented in this section are carried out considering only
the uncertainty in rating curve (ErrRC), i.e. α = 0.1.
Overall, even with different intensities, assimilation of
streamflow observations tends to improve the model
results. In particular, MS1 tends to provide greater
model improvements than MS2 (e.g. flood events C
and D). As expected, assimilation from all the sub-
basins (Group 1) provides the best model performances
for both MS1 and MS2. In contrast, it can be observed
that assimilation from upstream sub-basins (Group 2)
does not provide a relevant improvement in the accu-
racy of the outflow hydrograph. Availability of sensors

Table 1. Summary of simulations as a combination of distribution of sensor locations (groups and
scenarios) with different types of observation errors (Err) for the considered flood events. ErrRC:
uncertain rating curve; ErrWL: uncertain water-level estimation; ErrRC+WL: uncertain static sensors;
ErrSD: uncertain estimation of the discharge observation.

MS1 MS2

ErrRC ErrWL ErrRC+WL ErrSD ErrRC ErrWL ErrRC+WL ErrSD

Group 1 X – – – X – – –
Group 2 X – – – X – – –
Group 3 X X X X X X X X
Group 4 X X X X X X X X
Group 5 X X X X X X X X
Scenario 1 X – – – X – – –
Scenario 2 X – – – X – – –
Scenario 3 X – – – X – – –
Scenario 4 X – – – X – – –
Scenario 5 X – – – X – – –
Scenario 6 X X X X X X X X
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along the main river channel (Group 3) gives good
model results, comparable with the results of Group
1, for both MS1 and MS2. It is interesting to note that,
in the case of MS1, assimilation of observations from
Group 5 (sensors closed at the basin outlet) results in
better model performance than assimilation of obser-
vations from Group 4 (sensors located at the upstream
part of the main river channel). Opposite results are

achieved in the case of MS2. These results are summar-
ized in terms of NSE in Table 2.

Based on the previous results and considerations, a
three-zone map of sensor locations for both model
structures is given in Figure 7. Zone C corresponds to
observations that do not affect the outflow hydrograph.
Overall, observations coming from Zone A lead to the
best improvement of model output. In particular, Zone
A corresponds to groups 5 and 4 for MS1 and MS2,

Figure 5. Comparison between observed hydrograph, model results and data assimilation results considering different sensor
locations within main basin groups during all flood events in MS1.

Figure 6. Comparison between observed hydrograph, model results and data assimilation results considering different sensor
locations within main basin groups during all flood events in MS2.
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respectively. Zone B indicates those sub-basins that do
provide a noticeable improvement of model results but
still lower than that achieved in Zone A.

The next step is to assess the model performance
considering available streamflow observations in each
sub-basin. Figure 8 shows the NNSE values obtained
from the assimilation of streamflow observations in a
single sub-basin per time for the two model structures
during the five flood events. The results show that
locations of the sub-basins that provide high NNSE
values change from MS1 to MS2. As previously stated,
these sub-basins are located mostly along the main
river channel (Horton order greater than 3).
However, such locations, for a given model structure,
are very similar when changing the type of flood event.
Overall, MS2 provides lower NNSE values than MS1.

Table 2. Results, expressed in terms of NSE, for different spatial
distributions of static sensors during the five considered flood
events.

Event A Event B Event C Event D Event E

MS1 MS2 MS1 MS2 MS1 MS2 MS1 MS2 MS1 MS2

Group 1 0.93 0.90 0.79 0.87 0.95 0.86 0.73 0.62 0.78 0.85
Group 2 0.90 0.86 0.46 0.38 0.51 0.44 0.56 0.47 0.53 0.58
Group 3 0.93 0.91 0.77 0.81 0.95 0.86 0.73 0.58 0.76 0.76
Group 4 0.92 0.90 0.69 0.82 0.92 0.86 0.72 0.59 0.68 0.75
Group 5 0.93 0.91 0.75 0.64 0.91 0.82 0.72 0.51 0.76 0.65

Figure 7. Indication of the ideal location of the uncertain streamflow observations to assimilate according to the improvements
produced by the two proposed model structures.

Figure 8. Indication of the responsiveness of each sub-basin, in terms of NNSE, according to the locations of the uncertain
streamflow observations considering the two proposed model structures during the five flood events.
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In the case of MS2, few sub-basins give high NNSE
values, while for MS1 high NNSE values are spread
over a larger number of sub-basins.

Figure 9 shows the four classes obtained for flood
events A, B and C for MS1 and MS2. Similar results are
achieved for flood events D and E. As may be seen,
analogous locations of the sub-basins having classes 3
and 4 are obtained for the three considered flood
events for each structure.

Knowing the NNSE values in each sub-basin, it is
possible to assess the six sensor location scenarios for
both MS1 and MS2. In Table 3, the total number of
sensors used in the different scenarios is reported.
Figure 10 shows the locations of sensors for the six
different scenarios in four flood events. Overall, sensor
location does not vary much for the different flood
events. For example, in MS1 and scenarios 3 and 4
the sensors are located in the same sub-basins (repre-
sented by light blue) during the four analysed events.
Interestingly, in MS1 the sensors are located in the
downstream part of the basin, which corresponds to
Group 5 or Zone A analysed previously. In MS2, sen-
sors are mainly located in the upstream part of the
Brue basin, as previously shown in Zone A of this
model structure.

Figure 11 shows the Taylor diagram for the five
different events, six scenarios and two model

structures. Taylor diagrams graphically summarize
similarities between simulations and observations
expressed in terms of root mean square error, correla-
tion and standard deviation. The closer the simulation
result is to the observations (cross, ×), the better. The
simulation results in the case of flood event A are very
close to each other due to good model performance
without update. As expected, the best model improve-
ment is achieved for a high number of sensors (i.e.
Scenario 6) for all the flood events. However, similar
improvements can be also observed with scenarios 4
and 5. In the case of flood events B and E, MS2
provides better model results than MS1. However, in
the case of flood events C and D, MS1 outperforms
MS2. Good correlation values are achieved in all flood
events. The low standard deviation values are due to
the underestimation of simulated discharge values
without model update.

Figure 12 shows the relative NSE (RNSE) expressed
as the difference between the NSE values of each
given scenario and that of Scenario 6, i.e. the one
that provides the best model results, during the five
flood events. Overall, in both structures, high RNSE
values are achieved with scenarios 1, 2 and 3. Such
values decrease for scenarios 4 and 5. The main dif-
ference between MS1 and MS2 is that, on average, the
RNSE values of Scenario 4 are higher in MS2 than
MS1. This means that MS2 is more sensitive to the
total number of sensors than MS1. Low RNSE
improvements are shown in the case of flood event
A due to the already high NSE value without model
updates.

Figure 9. Estimated classes of each sub-basin considering the two proposed model structures during the flood events A, B and C.

Table 3. Number of sensors according to the six sensor loca-
tion scenarios within the Brue basin.
Scenario 1 2 3 4 5 6

Number of sensors 2 2 2 4 5 7
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Figure 13 shows the relation between NSE and lead-
time values for MS1 and MS2 during flood events C, D
and E. It can be observed that MS2 tends to the NSE
values without model update faster (after 4 h) than MS1.
In all flood events, Scenario 6 provides the best model
performances. It can also be seen that Scenario 4 gives
similar model results to Scenario 6 in MS1 for different
lead times, as previously demonstrated. Lowest perfor-
mances are obtained with scenarios 1, 2 and 3.

4.2 Effect of observation accuracy

In this analysis, the effects of different observation
accuracies on model performance are assessed.
Firstly, we consider the assimilation of streamflow
observation within the main Brue basin groups in
the case of only MS1, and then within Scenario 6 for
both MS1 and MS2 during the flood events C, D
and E.

Figure 10. Sensor locations in the six scenarios for MS1 (light blue) and MS2 (magenta) during events B, C, D and E. The dark blue
areas indicate the same sensor locations for both MS1 and MS2.
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From Figure 14 it can be seen that the best model
improvement is achieved by assuming only the
error coming from the measurements, i.e. ErrWL1
with normal or ErrWL2 with uniform distribution,
in all the considered flood events for sensors located
in the sub-basins of Group 3. It can be seen that
better results are obtained for uncertain biased
streamflow values (ErrSD) compared to considering
only ErrRC. Overall, the smallest model improve-
ments are achieved when considering ErrRC+WL.
An important result is that MS2 seems to be more

sensitive to the proper definition of observational
error than MS1.

Figure 15 shows the NSE values for MS1 and MS2
for the definition of different observational errors dur-
ing events B, C, D and E. Sensors are assumed to be
located in groups 3, 4 and 5. For events C and D, MS1
gives higher NSE values than MS2. As previously
demonstrated, the variability of NSE values is higher
in MS2 than MS1 for different observational errors. In
addition, small differences between the NSE values are
obtained with ErrWL1 and ErrWL2.

Figure 11. Taylor diagrams comparing observations with simulations obtained with MS1 and MS2 for all flood events and different
sensor location scenarios.

Figure 12. Relative NSE between sensor location scenarios 1, 2, 3 4 and 5 compared with Scenario 6 for MS1 and MS2 and all flood
events.
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Figure 16 shows the prediction of flood events C, D
and E with sensors located according to Scenario 6 for
MS1 and MS2. The results obtained for shorter lead
times are in agreement with those shown in Figure 15
for different sensor locations. Overall, MS1 seems to be

less sensitive to the observational errors compared to
MS2, also for long lead times. However, large variabil-
ity of NSE is obtained during flood event E using MS1.
The best predictive efficiency is obtained for both
model structures in the case of ErrWL, as previously

Figure 13. NSE obtained for different values of lead time in the assimilation of streamflow observations for the six sensor location
scenarios and flood events C, D and E.

Figure 14. Outflow hydrographs obtained for four Group 3 spatial sensor locations in the case of MS1 (upper row) and MS2 (lower
row) considering different types of observational error in the DA procedure.
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Figure 15. NSE for different observational errors obtained for flood events B, C, D and E considering sensors located in groups 3, 4
and 5.

Figure 16. Relationship between NSE and different lead times for diverse types of observational error during flood events C, D and E
considering Scenario 6 for both MS1 and MS2.
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described in Figures 14 and 15, with a lead time of 1 h.
On average, ErrRC+WL provides the lowest NSE
values. Small differences between NSE obtained
for ErrRC and ErrSD are shown for both MS1 and
MS2. Moreover, the difference between ErrRC and
ErrRC+WL is greater for MS2 than for MS1 for low
lead time. It is interesting to observe that NSE values
simulated with ErrWL for flood event C and MS2 are
lower than those obtained with the other observational
errors for 1 h lead time. However, for longer lead
times, ErrWL1 and ErrWL2 give the best model
improvements. The difference between NSE obtained
using different observational errors tends to be negli-
gible in both MS1 and MS2 for long lead times. In
particular, for lead times comparable with the time of
concentration of the basin, the NSE values obtained
with the different observational errors tend to the one
achieved without model update.

5 Discussion

Assimilation of distributed streamflow observations
was performed in the Brue catchment for five flood
events considering two different structures of a semi-
distributed hydrological model.

In general, assimilation of discharge measurements
located in a river channel with Horton order equal to
or greater than 3 tends to better represent the outflow
discharge. For all the flood events, model structure
MS2 was influenced by both the total number of sen-
sors and their locations (Group 4). In contrast, MS1
was not affected by the total number of sensors, but
only by their locations (Group 5). Based on these
results, a three-zone map of sensor locations for the
Brue basin is proposed. In Zone A are those sub-basins
that contribute to generating high model results, while
sub-basins in Zone C do not affect model performance.
In particular, for MS1, Zone A corresponds to the sub-
basins of Group 5, located in the downstream area,
which is very often an urbanized area for which timely
flood warnings could be especially important. The
observations of discharge from this zone might indeed
improve the model results in terms of outflow, but at
the same time they do not provide enough time to react
in the downstream areas where floods could be very
damaging. However, assimilation of observations from
Zone B (Group 4) might induce an insubstantial
improvement in model accuracy if compared to
Group 5, but it would give enough warning time before
the estimated (high) flow reaches the downstream.

The patterns of NNSE values obtained for MS1 and
MS2, similar for different flood events, indicate low
sensitivity of the model structures to sensor location

during these events. This is reflected in similar sensor
locations for the six proposed scenarios for both MS1
and MS2. However, from Figure 10, it can be seen that
sensor locations vary more for MS2 than MS1 in
Scenario 6. As expected, a high number of sensors
(Scenario 6) gives the highest NSE values for both MS1
and MS2. However, the difference between model results
obtained with scenarios 4 and 6 with MS1 is smaller
than that for MS2. This leads to the conclusion that, as
already stated, MS1 is more sensitive than is MS2 to the
specific location of sensors (Scenario 4) than to their
total number (Scenario 6) (see Figs. 11 and 12).

In general, for long lead times, MS1 outperforms
MS2. Considering MS1, Scenario 4 provides the best
compromise between NSE and number of sensors
(four) for lead times shorter than the time of concen-
tration of the basin. However, as shown in Figure 13,
there is a significant difference between NSE values
obtained in scenarios 4 and 6 with MS2. Model results
tend to those obtained without updating for lead times
similar to the time of concentration of the basin (10 h).

The analyses carried out for different observational
errors demonstrated that less uncertainty in the water
depth estimation (ErrWL) produces greater improve-
ments in model performance for both low and high
lead times. It is interesting to note that, in both results
coming from the probability distributions WL1 and
WL2, a similar trend in the outflow hydrographs can
be observed (see Figs. 14 and 15). These considerations
lead to the conclusion that the “non-optimal” results
provided by the EnKF in the case of a uniform dis-
tribution are comparable to the optimal solution for
1 h lead time. In problems of assimilation of distribu-
ted streamflow observations, using a semi-distributed
hydrological model, the uncertainty in rating curve
estimation (ErrRC), as expected, has more influence
than uncertainty of incorrect estimation of water level
made by physical sensors. It can be seen that similar
results are obtained for uncertain rating curve estima-
tion and uncertain biased streamflow values (ErrSD).
This may be due to the fact that the biased value of
Qtrue might be compensated because of the semi-dis-
tributed nature of the hydrological model. As expected,
the lowest model results are obtained in the case of
errors in both water depth and rating curve estimation
(ErrRC+WL). Finally, MS2 is more sensitive to the
proper definition of the observational error than MS1
for both low and high lead times.

6 Conclusions

The main goals of this study were to evaluate the effects
of different sensor locations and observation accuracy
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on the assimilation of distributed streamflow observa-
tions in hydrological modelling, with the aim of
improving flood forecasting. Two different model
structures (MS) of a semi-distributed hydrological
model were considered. In order to assimilate stream-
flow observations, an ensemble Kalman filter was
implemented in each model structure.

From the results of this study it can be concluded
that the assimilation of distributed observations in the
main river channel induces the best model improve-
ment for both model structures. Overall, flood predic-
tion with MS2 was influenced by the total number of
sensors and by their locations, while that with MS1 was
only affected by the sensor locations and not by the
total number of sensors. One of the main conclusions
is that the sensor locations which generate highest NSE
and NNSE values at the basin outlet do not signifi-
cantly change according to the given flood event and
model structure. However, when only MS2 was con-
sidered, it was demonstrated that the locations of a
high number of sensors (more than four) changed
according to the given flood event. Therefore, design-
ing flow sensor networks considering a longer time
series of flood events might be inappropriate since the
effect of the single flood event is diminished. For this
reason, additional efforts towards the development of
techniques to design networks of dynamic low-cost
sensors should be carried out. In the case of flood
prediction, MS1 tends to outperform MS2 for high
lead-time values. It is worth noting that the results we
obtained are valid only in the considered case study
and for five different flood events

This study indicates the importance of the proper
definition of observation accuracy in DA performance.
In fact, considering only the accuracy in the water-level
measurements (ErrWL) has significant effects on the
improvement of outflow hydrograph prediction—if
compared to the results obtained when error in biased
streamflow observations (ErrSD) and rating curve
uncertainty (ErrRC) are considered. Both MS1 and
MS2 are influenced by the different types of observa-
tion accuracy only for short lead times, while for long
lead times NSE tends to be similar in all the assumed
observation errors. However, MS2 is more sensitive
than MS1 to different types of observation accuracy
for short lead times.

It is important to mention certain limitations of this
study. Firstly, only five flood events were considered, so
additional experiments are recommended to generalize
the conclusions in different case studies. In fact, the
results should be considered valid only for basins with
characteristics similar to those of the Brue basin.
Moreover, the value of the coefficient α of Equation

(15), in the case of ErrRC+WL, is assumed equal to the
sum of the two previous coefficients αRC and αWL.
Additional studies should be carried out to consider
the combined error in both measurements and to use a
joint probability distribution to characterize the rating
curve uncertainty.

For future studies it is also recommended to (a)
carry out a more detailed analysis using a higher num-
ber of events to further validate the results, (b) employ
other types of hydrological models to explore how the
internal model structure affects the filter performance,
and (c) pose and solve a fully-fledged optimization
problem aimed at identifying the best sensor topology
for typical flood forecasting problems. A specific chal-
lenge is of course introducing the proposed methodol-
ogy in real management practice.
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