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Faculty of Georesources and Materials Engineering · RWTH Aachen University



Copyright © 2025 by IDEA League Joint Master’s in Applied Geophysics:

Delft University of Technology

All rights reserved.
No part of the material protected by this copyright notice may be reproduced or utilized
in any form or by any means, electronic or mechanical, including photocopying or by any
information storage and retrieval system, without permission from this publisher.

Printed in The Netherlands

http://www.tudelft.nl


IDEA LEAGUE
JOINT MASTER’S IN APPLIED GEOPHYSICS

Delft University of Technology, The Netherlands
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Abstract

In wideband Ground Penetrating Radar (GPR) forward modelling, a choice can be made
between time and frequency domains. With time-domain approach, efficient modelling and
testing with real-world cases has been done, especially through gprMax. With frequency-
domain approach, however, this level of applicability has not been reached. To take a step in
this direction, a 3D wideband-capable GPR forward simulation code has been developed.

A wealth of efficient discretization, modelling and inversion strategies exist that exploit the
nuances of frequency-domain simulations to enable rapid solutions, that a time-domain ap-
proach is inherently not capable of using. Hence, the simulation code developed in this thesis,
named elfe3D GPR, aims to provide the means to implement and test these strategies as
efficiently as possible. The development of this code is based on another open-source soft-
ware, elfe3D, which is a 3D electromagnetic fields forward solver using edge-based finite
elements developed for Controlled-Source Electromagnetism (CSEM) in Fortran. Its use of
the MUMPS direct solver and adaptive refinement makes elfe3D a very strong starting point
for the development of GPR simulation. Since CSEM solves for diffusive-field regime of elec-
tromagnetism, a few essential changes have been made in the boundary-value problem that
elfe3D GPR solves. Since the region of interest in GPR simulations is finite due to physical
and computational constraints and due to the wave nature of GPR fields, appropriate absorb-
ing boundary has also been implemented in elfe3D GPR by the means of Perfectly Matched
Layers (PML). The specific formulation of PML chosen is a Uniaxial-PML with an exact
decay function, due to their excellent absorption performance of outgoing waves.

Once these changes were implemented in elfe3D, the new simulation code elfe3D GPR has
been extensively tested for synthetic layered and anomalous subsurface models, along with
its potential for wide-band simulations. Validation has been performed against analytical
solution for layered models, and the results from empymod. The results show promising ap-
plicability of elfe3D GPR for generalized GPR forward problems, and should serve as a good
basis for implementing the many frequency-domain specific modelling and inversion strategies
that exist. As such, elfe3D GPR is also kept open-source.
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Chapter 1

Abstract

In wideband Ground Penetrating Radar (GPR) forward modelling, a choice can be made
between time and frequency domains. With time-domain approach, efficient modelling and
testing with real-world cases has been done, especially through gprMax. With frequency-
domain approach, however, this level of applicability has not been reached. To take a step in
this direction, a 3D wideband-capable GPR forward simulation code has been developed.

A wealth of efficient discretization, modelling and inversion strategies exist that exploit the
nuances of frequency-domain simulations to enable rapid solutions, that a time-domain ap-
proach is inherently not capable of using. Hence, the simulation code developed in this thesis,
named elfe3D GPR, aims to provide the means to implement and test these strategies as
efficiently as possible. The development of this code is based on another open-source soft-
ware, elfe3D, which is a 3D electromagnetic fields forward solver using edge-based finite
elements developed for Controlled-Source Electromagnetism (CSEM) in Fortran. Its use of
the MUMPS direct solver and adaptive refinement makes elfe3D a very strong starting point
for the development of GPR simulation. Since CSEM solves for diffusive-field regime of elec-
tromagnetism, a few essential changes have been made in the boundary-value problem that
elfe3D GPR solves. Since the region of interest in GPR simulations is finite due to physical
and computational constraints and due to the wave nature of GPR fields, appropriate absorb-
ing boundary has also been implemented in elfe3D GPR by the means of Perfectly Matched
Layers (PML). The specific formulation of PML chosen is a Uniaxial-PML with an exact
decay function, due to their excellent absorption performance of outgoing waves.

Once these changes were implemented in elfe3D, the new simulation code elfe3D GPR has
been extensively tested for synthetic layered and anomalous subsurface models, along with
its potential for wide-band simulations. Validation has been performed against analytical
solution for layered models, and the results from empymod. The results show promising ap-
plicability of elfe3D GPR for generalized GPR forward problems, and should serve as a good
basis for implementing the many frequency-domain specific modelling and inversion strategies
that exist. As such, elfe3D GPR is also kept open-source.
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Chapter 2

Introduction

2-1 Historic Overview

The Ground Penetrating Radar Imaging Method

Ground Penetrating Radar (GPR) is one of the key methods used for near-surface geophysical
imaging (Annan, 2002, 2005; Benedetto et al., 2016; Forte & Pipan, 2017; Lombardi et al.,
2022). It operates by transmitting radar frequency electromagnetic (EM) waves into the
ground and recording its response to infer details about the subsurface structure (Annan,
2005). These antennas usually work in the radio wave regime - for a GPR application that is
between 10 MHz and 2.5 GHz (Annan, 2005; Lombardi et al., 2022). This frequency range
has been empirically established due to the nature of media and environments that GPR can
be applied to, and its signal characteristics such as velocity of GPR wave, attenuation and
impedance of materials it encounters (Annan, 2005). This range of frequencies has allowed
GPR to be applied to many applications, such as geology, planetary science, civil engineering,
archaeology, agriculture, glaciology, among others (Benedetto et al., 2016; Lombardi et al.,
2022).

Simulating Electromagnetic Fields

Electromagnetic waves behave in complicated ways to media they encounter in their path of
propagation (Griffiths, 2023). For GPR applications, where the subsurface consists of numer-
ous different materials, each having a unique set of electric properties, it can easily become
challenging to understand what the recorded Earth’s response is informing us. Specifically, the
electric permittivity ε and the electrical conductivity σ are the material properties influenc-
ing the GPR responses. The magnetic permeability µ does also affect EM wave propagation,
however, there are usually no significant variations in it for geophysical media surveyed by
GPR (Annan, 2005).

To ease inference efforts, computer simulation programmes have been written to evaluate how
various geophysical media, or a combination thereof, respond to a multitude of GPR survey
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2-1 Historic Overview 3

configurations in two or three dimensions (Ding et al., 2025; Huber & Hans, 2018; Irving &
Knight, 2006; Warren, Giannopoulos, & Giannakis, 2016). These programmes are built on a
foundation of forward solvers - a family of computational algorithms that solve a system of
equations for the solution of a mathematical formulation of one or more physical phenomena.
They operate on a given discretized geometry corresponding to a region of interest, using the
material properties and their variations throughout the geometry, and any other information
that is known/required for the solution. For GPR, the forward solvers are built to evaluate
solution of the EM wave equation that is derived from the Maxwell’s equations (Ding et
al., 2025; Irving & Knight, 2006; Warren, Giannopoulos, & Giannakis, 2016), or they could
simplify the process based on assumptions to the wave propagation (Huber & Hans, 2018).
Naturally, the region of interest for GPR simulations include the volume of subsurface whose
GPR response needs to be understood.

There exist multiple approaches to forward simulations of wave problems, which can be
majorly classified into locally-supported and globally-supported methods (Atkinson & Han,
2005). This distinction arises from the way the simulation domain and governing physical
system operator are discretized. Locally-supported methods such as Finite Differences (FD)
(Cassidy & Millington, 2009; Davidson & Botha, 2007; Lampe et al., 2003; Sadiku, 2009;
Taflove, 1995; Warren, Pajewski, et al., 2016; Warren, Giannopoulos, & Giannakis, 2016) and
Finite Elements (FE) (Butler & Zhang, 2016; F. Cui et al., 2023; Jin, 2015; Jin & Riley, 2008;
Liu et al., 2019; Pelosi et al., 2009; Zarei et al., 2016) formulate their system operator with
a confined local dependence of an element on its immediate neighbors. Conversely, globally-
supported methods such as Integral Equations (IE) (W. Chew & Tong, 2022; Davidson &
Botha, 2007; Peng et al., 2011; Sadiku, 2009; Šušnjara et al., 2016; Van den Berg, 2021; War-
ren, Pajewski, et al., 2016) formulate its system operator where each element of simulation
domain depends on every other element in the domain. Hybrid methods that combine these
principles also exist (Casati et al., 2020).

Each of these methods has its own set of use cases and limitations. Due to global support
in IE methods, the system matrix is dense. However, Green’s function evaluations based on
homogeneous background and scattering sources in the subsurface allow fast EM field solutions
using iterative solvers (Peng et al., 2011; Warren, Pajewski, et al., 2016). Local-support
approaches have a large null-space in frequency domain that makes it difficult to use iterative
solvers for them. However, FD approach is the most physically direct translation of Maxwell’s
equations (Cassidy & Millington, 2009; Lampe et al., 2003) and FE approach recasts the
Maxwell’s equations into a variational form and can account for incredible complexities in
media with ease (F. Cui et al., 2023; Liu et al., 2019). Due to local support, their system
matrix is sparse allowing for unique solving strategies (Atkinson & Han, 2005; Sadiku, 2009).

Finite Elements in Frequency and Time Domains

Each of these approaches can work in time or frequency domain. To go from one domain to
another, the Partial Differential Equation (PDE) of wave equation needs only to be changed
using the time-frequency duality. This simply requires replacing the PDE terms consisting of
the partial derivative of time ( ∂

∂t(·)) with ±jω, or vice versa. t is time in SI unit [s], j =
√
−1

is the imaginary unit, ω is angular frequency with unit [rad/s], and the sign depends on
the complex phasor convention for time dependence used for simulation. Despite this simple
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4 Introduction

change in the PDE itself, there are significant differences to each domain when implementing
the program and interpreting simulation results.

Time domain GPR simulations are bounded by a time stepping limit that depends on how
fast the EM waves are expected to propagate, known as the Courant-Friedrich-Levy stability
criteria (Courant et al., 1928; Davidson, 2010). Moreover, to account for high-order time-
varying effects, time integration schemes like Runge-Kutta, Cranck-Nicholson and others
increase the computational requirements of simulations (Gottlieb & Ketcheson, 2016). These
constraints are absent in frequency domain simulations, where one simulation solves for a
singular frequency of the source. To account for the complete bandwidth of the radar sources
would involve multiple such simulations at frequencies of key interest, whose results are then
taken together as per inference requirements (Feng et al., 2020; Lavoué et al., 2014).

Implications of Time and Frequency-Domain Simulations for Wideband GPR

For wideband GPR, time-domain forward simulations have been conventionally more
favoured, especially with the arrival and open-source development of gprMax (Warren, Gi-
annopoulos, & Giannakis, 2016). Using FD in time-domain (FDTD), it allows computation
of GPR wave fields with several broadband sources. These have such a large frequency range
that they require numerous frequency-domain simulations to cover the complete bandwidth.
In contrast, one FDTD simulation can model the entire spectrum, provided that the time-
stepping scheme and the spatial and temporal discretization are sufficiently fine to resolve the
shortest wavelength present in the signal. This does imply requiring much smaller time steps
compared to the requirement according to sampling theory (Mulder et al., 2008). However,
with extensive research and efficient programming of forward solver kernels, gprMax has made
these wideband simulations in time-domain very efficient.

Nevertheless, there are many reasons to perform wideband simulations in frequency-domain.
A geological region of interest can be sampled with varying spatial discretization according
to frequencies of interest. This allows coarse discretization for low frequencies (Jin & Riley,
2008). On the opposite end of the spectrum, high frequencies have lower penetration depth
and smaller fresnel zones (Annan, 2005). Hence, in both ends of the spectrum, different ef-
ficient meshing strategies can be performed, which cannot be implemented in time-domain.
Moreover, simulations per each frequency can be done in parallel without requiring informa-
tion transfer between them (Jin & Riley, 2008). In addition, a robust frequency interpolation
algorithm and reduced-order modelling (Jin & Riley, 2008) would make wideband simulations
in frequency-domain much more efficient and practical.

Another significant reason for choosing frequency domain forward simulations lies in the fact
that they offer the possibility to apply smart inversion strategies (Feng, Wang, & Zhang, 2019;
Feng et al., 2020; Lavoué et al., 2014; Sun et al., 2017). Of a wideband GPR source, not
all frequencies have significant information of subsurface structure and materials, owing to
their frequency-independent behavior (Annan, 2005). Using spectral analysis, inversions can
be made much quicker by selecting few frequencies of high interest (Feng et al., 2020; Lavoué
et al., 2014). Otherwise, multi-scale inversions exist, which use low frequency information
first with coarse meshing to obtain preliminary qualitative information of regions of interest
(Feng, Wang, & Zhang, 2019), after which the higher frequency data can be inverted. All of
these strategies utilize the frequency-domain behavior of GPR responses effectively, making
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2-2 Problem Statement and Research Questions 5

it quite an attractive endeavour to pursue wideband forward GPR simulations in frequency
domain.

2-2 Problem Statement and Research Questions

To use all aforementioned frequency-domain specific wideband GPR modelling and inversion
strategies, a high-performing wave-regime EM forward solver is needed. It should be able to
simulate complex subsurface model responses with high accuracy. Achieving this with optimal
computational cost requires several aspects of simulation to be studied, implemented as com-
puter code, and tested against reference solutions. Some of these aspects include: choosing a
discretization approach, converting the physical problem to a system of linear equations that
are suited for the approach, handling element-wise, material and truncation boundaries of the
simulation model, establishing meshing constraints, and so on. How is EM wave propagation
accurately modelled in a finite simulated geophysical model? What comprises an efficient
discretization and truncation strategy for the GPR forward problem using first-order edge-
based FEM with an unstructured mesh? What are the modelling constraints for a wide-band
frequency-domain simulation? These are some of the questions I have attempted to address
in this thesis.

2-3 Proposed Method of Solution and Objectives

In my thesis, I aim to develop a frequency-domain wideband-capable EM wave equation
forward solver using FE in 3D. The goal is to achieve a powerful combination of the benefits
of frequency-domain simulations with the ability to model complex geophysical media using
3D FE and unstructured meshing. Moreover, the resulting software is aimed to be a strong
candidate for unique inversion strategies, as discussed previously.

The development for the program presented in this thesis has not been from scratch. I
have worked with elfe3D (Rulff, 2023; Rulff et al., 2021), which is an open-source 3D FE
software for low-frequency EM applications in geophysics, specifically for Controlled-Source
EM (CSEM). It is written in Fortran, which takes unstructured mesh input generated by
tetgen (Si & TetGen, 2009), solves the FE system via the parallel sparse direct solver MUMPS
(Amestoy et al., 2000), and supports adaptive refinement and parallelization using OpenMP.
I used this open-source code as the basis of 3D FE frequency domain simulation framework,
and modified and extended parts of it to make it work for GPR simulations. I call this new
program elfe3D GPR, which will also be open-source. Completing this solver would not be
possible without implementing an absorbing boundary, for which Perfectly Matched Layers
(PML) has also been implemented and tested.

This aspect of modifying an existing low-frequency EM code to high-frequency EM is also a
part of the motivation to choose to work with elfe3D as the basis for numerical implementa-
tion. It could provide unique insights into the differences in solving for both regimes of EM,
or validate known ones.
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2-4 Outline of the Thesis

This thesis is organized into chapters pertaining to specific theory and numerical aspects that
I have studied and implemented. Chapter 3 discusses the forward problem in both CSEM and
GPR applications, FE framework and the specific implementation in elfe3D, as well as the
theory and development of PML. Chapter 4 covers the complete methodology that was used
over the course of this project that has led to the current version of elfe3D GPR. Chapter 5
presents all key tests of elfe3D GPR, their results, and a discussion on capabilities of the
software that can be inferred from these results. Chapter 6 concludes my work and presents
future directions this line of research and scientific code development can lead to.
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Chapter 3

Theory of Electromagnetic Fields and
the Finite Element Method

3-1 Diffusive and Wave Regimes of Electromagnetic Fields

James Clerk Maxwell presented the complete mathematical theory of EM in his most widely
known work, “A Treatise on Electricity and Magnetism”, in 1873 (Maxwell, 1873). Here, he
presented systematically all important electromagnetic quantities and their relation to each
other, in a set of 20 equations, amongst other topics. The compact vector form of these
equations that we know now was worked out by Oliver Heaviside in his influential set of
books, “Electromagnetic Theory” (Heaviside, 1893–1912). In the time-harmonic form with a
complex phasor notation of e+jωt, these equations are expressed in terms of the Electric and
Magnetic fields (E of unit [V/m] and H of unit [A/m] respectively) as (Balanis, 2012):

∇×E = −jωµH, (3-1a)

∇×H =

(
1

ρ
+ jωε

)
E+ Jp, (3-1b)

∇ · (εE) = q, (3-1c)

∇ · (µH) = 0, (3-1d)

Here, µ is the magnetic permeability [H/m], ε is the electric permittivity [F/m], ρ is the
electrical resistivity [Ωm], Jp is the impressed (source) current density [A/m2], and q is the
volume electric charge density [C/m3] related to Jp by the continuity equation (Equation (3-
2)).

The Right-Hand-Side (R.H.S.) of Ampere’s Law (Equation (3-1b)) can be re-written as a
sum of total current density in the field, namely, the displacement current density Jd =

jωεE, the conduction current density Jc =
1

ρ
E, and the source polarization current Jp. The
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8 Theory of Electromagnetic Fields and the Finite Element Method

electric charge density q is related to the conduction and polarization current densities by the
continuity equation:

∇ · (Jc + Jp) = −jωq. (3-2)

3-1-1 Boundary Value Problems for Electromagnetism

To solve the Maxwell’s equations in complex media using FE in frequency domain, the forward
problem is expressed in terms of a Boundary Value Problem (BVP) (Jin, 2015). BVPs arise
when a physical system is described by a differential equation over a spatial domain Ω, subject
to conditions specified on the boundary Γ of the domain. The general form of the differential
equation of a BVP can be written as:

Lϕ = f in Ω. (3-3)

Here, L is a linear operator consisting of derivatives and medium parameters of the system
that acts on the unknown field variable ϕ, and f is a known source function. Equation (3-3)
needs to be accompanied by a set of boundary conditions on Γ, along material interfaces
and between the discretized elements of the simulation domain to complete the BVP. These
conditions are useful to explicitly constrain how the field values are evaluated within the
limits of finite truncation and finite points of evaluations in a computer, both of which do not
exist in physical space. BVPs have long been established before the rise of computation by
(d’Alembert, 1747) and Euler between 1747-1750. Since then, they are thoroughly researched
for FE computation of EM problems (Monk, 2003; Silvester & Ferrari, 1996).

3-1-2 The CSEM Boundary Value Problem

For CSEM problems, as in elfe3D (Rulff, 2023), the BVP is derived from Maxwell’s equations
Equation (3-1) to express the problem entirely in terms of the electric field E. This leads
to a second-order partial differential equation known as the curl-curl equation solved in the
simulation domain Ω. It is accompanied with a homogeneous Dirichlet Boundary Condition
(DBC) on the simulation boundary Γ. Explicitly, the BVP used in elfe3D is:

∇×
(
1

µ
∇×E

)
+ jω

1

ρ
E− ω2εE = −jωJp in Ω, (3-4a)

n̂×E = 0 on Γ, (3-4b)

where n̂ represents the vector normal to the boundary Γ. In open space configurations, Γ
is located at infinity with a radiation condition applied to it (Monk, 2003). However, in
geophysical simulations with a limited region of interest, Γ is always a finite distance away
from the source. Physically, Equation (3-4b) models a Perfect Electric Conductor (PEC) on
the boundary of the domain of simulation (Griffiths, 2023), which ensures that all energy of the
field stays in the domain. For geophysical EM problems where layers of different media exist
with varying electromagnetic parameters, the continuity of the field components at interfaces
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3-1 Diffusive and Wave Regimes of Electromagnetic Fields 9

between these media also arise from the Maxwell’s equations Equation (3-1). Specifically for
the electric field, its tangential component must be continuous across the interface (Griffiths,
2023). This is represented by:

n̂× (E+ −E−) = 0, (3-5)

where the electric field right above the interface is represented by E+ and the electric field
right below the interface is represented by E−, and the n̂ here represents the vector normal
to the interface between the media. The normal component of the electric experiences a jump
discontinuity, arising from Equation (3-1c), according to the relation:

n̂ ·
((

1

ρ+
+ jωε+

)
E+ −

(
1

ρ−
+ jωε−

)
E−

)
= 0, (3-6)

where, similar to the electric field representations, ε+, ρ+ represents electric permittivity and
electrical resistivity right above the interface respectively, and ε−, ρ− represent the same ma-
terial parameters right below the interface. The R.H.S. here is usually zero for the subsurface
models that do not have free charges. This implies that the material interfaces are source-free.

The continuity condition of tangential electric field (Equation (3-5)) and the discontinuity in
the normal electric field (Equation (3-6)) complete the description of the physical BVP of
CSEM. After solving it over the domain to find the electric field distribution, the magnetic
field information is extracted using Faraday’s Law (Equation (3-1a)) on the electric field data
at the receiver sites (Rulff, 2023), giving a complete set of measurement information.

3-1-3 Physical Considerations with CSEM

For the low frequency regime of CSEM methods, it is evident that the displacement currents-
based term in the curl-curl equation (ω2εE) does not contribute to the solution of the BVP
due to second-order frequency scaling to the field. Hence, this term is dropped in CSEM
simulations (Ren et al., 2013; Rulff et al., 2021). This resulting PDE describes the diffusive
behavior of EM fields. (Zhdanov, 2009) states that it closely resembles Fick’s equation that
describes diffusion of chemical species, which has given it the name of diffusion equation of
EM.

It is important to note that diffusive field EM has a non-trivial attenuation factor determined
by the skin depth with units [m]. At one skin depth below the subsurface, the field strength
decays to 1/e ≈ 0.367879 times the field strength at the surface, and this decay repeats
with multiples of skin depth till the field strength approaches zero (Zhdanov, 2009). In
diffusive-field regime for non-magnetic Earth, the skin depth is approximated by the following
expression:

δe ≈ 503.3

√
ρ

f
, (3-7)

where f is the frequency of the field emitted by the source. This parameter is useful to
determine how large a CSEM simulation and/or survey domain needs to be before the nat-
ural attenuation in the subsurface medium makes the field decay to negligible values, where
the domain can be truncated by the simple boundary condition (Equation (3-4b)). It also
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10 Theory of Electromagnetic Fields and the Finite Element Method

highlights the effect of source frequency, where lower frequencies will have a larger depth of
penetration and lower conductivity makes fields attenuate less.

The transition from diffusive-field behavior to wave-field behavior occurs when the displace-
ment current contributions dominate the conduction current contributions to the field. Hence,
it is determined by the ratio of σ/ωε (Annan, 2005). When it is much higher than one, the
field is diffusive, and when it is much lower than one, the EM field is a wave-field. As such,
a transition frequency ft can be determined for any media which indicates where the field
shifts from one regime to another (Section 3-1-3).

Figure 3-1: Velocity and attenuation curves over a range of frequencies, showing the transition
frequency between diffusive and wave behavior.

Here, c is the speed of light, Z0 is the electromagnetic impedance of free space, and κ is
the dielectric constant of the medium, equal to relative permittivity κ = εr = ε/ε0. From
this figure, it is apparent that the velocity and attenuation become frequency-independent
after crossing the ft, which is a characteristic of wave propagation. The wavenumber and
impedance are explained in the next section, as they are wave-regime quantities pertaining
to GPR.

3-1-4 The Wave Regime Boundary Value Problem for GPR

From Section 3-1-3, it is evident that when the frequency of the source used for EM geophysi-
cal imaging exceeds that of ft, the EM field starts behaving like a wave. This is the domain of
GPR surveys, where the displacement current term ω2εE dominates the EM-field behavior.
For implementing GPR simulation in elfe3D GPR, I have defined two complex parameters: ef-
fective permittivity εeff and wavenumber k. The effective permittivity is a material parameter
defined by (Annan, 2005; Ding et al., 2025).:

εeff = ε− j
σ

ω
, (3-8)

The wavenumber is defined by k = ω
√
µεeff with SI units of [rad/m]. Its real component

represents spatial frequency of a wave and is inversely proportional to its wavelength, while its
imaginary component is proportional to the attenuation of a wave in a medium. For free space,
the wavenumber evaluates to k0 = ω

√
µ0ε0, where, µ0 and ε0 are the magnetic permeability

and electrical permittivity of free space, respectively. For other media, relative material
parameters are introduced, namely µr which is the relative magnetic permeability and εr,eff
which is the relative effective electric permittivity These are related to the corresponding true
values of parameters by relations εeff = εr,effε0, µ = µrµ0. Similarly, the wavenumber k can
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3-2 Finite Elements for Simulating Wideband GPR in Frequency-Domain 11

be re-written as:

k = k0
√
µrεr,eff (3-9)

= k0

√
µr

(
εr − j

σ

ωε0

)
. (3-10)

Re-writing the curl-curl equation using wavenumber and effective permittivity, the BVP Equa-
tion (3-4) changes to:

∇×
(

1

µr
∇×E

)
− k20εr,effE = −jk0Z0Jp in Ω, (3-11a)

n̂×E = 0 on Γ, (3-11b)

where Z0 is the impedance of free space given by Z0 =

√
µ0

ε0
≈ 377Ω, and the other terms hold

the same meaning as before. Here, again, the interface conditions Equations (3-5) and (3-6)
hold.

Unbounded Radiation of Wave Phenomena

In unbounded free-space, EM fields travel to infinity (Griffiths, 2023). Physically, this can be
expressed as the Sommerfeld radiation condition (Jin & Riley, 2008; Monk, 2003). However,
for computations within a finite region of interest, this needs careful consideration, as the
homogeneous DBC applied as the boundary (Equations (3-4b) and (3-11b)) can make the
field reflect from it.

For low-frequency geophysical simulations with finite space, a simple approach is to place the
computational boundary sufficiently far from the source, dictated by the skin depth. After
the field travels multiples of skin depths, it will effectively have zero strength, making a simple
homogeneous Dirichlet BC sufficient (Zhdanov, 2009). This is also the approach with elfe3D

(Rulff, 2023).

For computation of GPR fields in a finite region of interest, however, artificial absorption
of outgoing field needs to be enforced. This is a long-researched problem for all types of
wave problems. Absorbing boundary conditions (ABCs) have been implemented for domain
truncation for wave problems since 1977 (Engquist & Majda, 1977). There are several ways
to implement them, as given in (Jin & Riley, 2008; Monk, 2003). The most successful type
of absorbing boundary is a finite-thickness artificial absorber appropriately called Perfectly
Matched Layers (PML), introduced by Jean-Pierre Bérenger (Berenger, 1994). The subject
of PML and their implementation has been one of the major themes of my thesis. As such, I
have discussed them in complete detail in Section 3-3.

3-2 Finite Elements for Simulating Wideband GPR in Frequency-
Domain

The finite element method (FEM) is one of the leading numerical methods to solve BVPs
by locally-supported approximation of the unknown field (Jin, 2015). The method gets its
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12 Theory of Electromagnetic Fields and the Finite Element Method

name from its characteristic representation of the domain of solution with a set of smaller
subdomains called the finite elements. There are various approaches to convert a PDE into a
linear discrete matrix-vector problem that all use different versions of FE spatial discretiza-
tion, such as the Ritz method, the Galerkin method, the Discontinuous Galerkin method,
etc. (Jin, 2015; Monk, 2003; Silvester & Ferrari, 1996). These methods can be classified into
variational and weighted residual approaches, or combinations and derivatives from them.
Depending on the physical phenomena, one method would be more tractable and efficient
than the other. The derivation and analysis of the FEM framework for EM fields is covered
extensively in (Hiptmair, 2002; Jin, 2015; Langer et al., 2019; Monk, 2003; Silvester & Ferrari,
1996). For elfe3D and hence for elfe3D GPR, the main reference for the FE framework has
been the work by (Jin, 2015), from which the weighted residual approach of the Galerkin
method has been implemented.

3-2-1 The FEM Framework

The FEM framework for EM wave problems typically consists of the following steps:

Figure 3-2: The general FEM framework for EM wave problems with adaptive refinement using
error estimation from a dedicated numerical approach or comparison with a reference
solution.

I will now briefly mention these steps for EM wave simulation for GPR.

Find the Weak Form of the BVP

To allow continuously defined BVPs such as Equations (3-4) and (3-11), referred as ”strong-
form” problems, to be evaluated over a discretized truncated simulation domain, a ”weak”
form of the BVP must be determined (Monk, 2003). This need arises from the fact that
the curl-curl terms in the strong forms require solutions to have sufficiently smooth second
derivatives. Such smooth field solutions are difficult to estimate for non-trivial EM problems,
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3-2 Finite Elements for Simulating Wideband GPR in Frequency-Domain 13

if they exist, since the discretization creates numerous inter-element boundaries. Hence, the
strong-form PDE is weakened such that its solution regularity requirements are more relaxed
to conform to the piecewise description of the computational domain including the boundary.

To obtain the weak form of the GPR BVP Equation (3-11), a test vector-valued function
v, is multiplied to the governing PDE, and the resulting equation is integrated by parts
formally over the computational domain Ω (Jin, 2015; Rulff et al., 2021). Using the Galerkin
approximation, which is characteristic of the Galerkin method, both v and E belong to the
same locally-supported Sobolev space. For the total field formulation of Maxwell’s Equations
(or wave equation for GPR), the Sobolev space is H0(curl,Ω) (Monk, 2003). It is defined as:

H0(curl,Ω) := {u ∈ H(curl,Ω) | n̂× u = 0 on Γ} , (3-12)

where,
H(curl,Ω) :=

{
u ∈ [L2(Ω)]3

∣∣ ∇× u ∈ [L2(Ω)]3
}
. (3-13)

Here, L2(Ω) represents the Hilbert vector space of square-integrable functions with defined
integral L2-norms for volumes and surfaces:

∥v∥L2,Ω =

√∫∫∫
Ω
∥v∥22 dV and ∥v∥L2,Γ =

√∫∫
Γ
∥v∥22 dS, (3-14)

where ∥v∥2 denotes the standard Euclidean norm of the vector field.

Now, I can write the complete weak form for the EM wave-regime BVP Equation (3-11) as:
Find E ∈ H0(curl,Ω) such that∫∫∫
Ωmodel

1

µr
(∇×v)·(∇×E) dV−

∫∫
Γmodel

1

µr
(v×∇×E)·n̂dS− k20

∫∫∫
Ωmodel

εr,eff v·EdV = −jk0Z0

∫∫∫
Ωmodel

v·Js dV,

(3-15)
∀ v ∈ H0(curl,Ω), and satisfying the boundary condition Equation (3-11b) as well as the
continuity constraints Equations (3-5) and (3-6).

This solution is sought for using the FE discretization strategy described below.

Discretize the Domain Using Finite Elements

With FEM, a region of interest bounding the physical system is divided into multiple small
parts, referred to as elements. Depending on dimensions of simulation and modelling require-
ments, different elements are used for discretization. Even in the field of EM, a lot of variety
exists (Demkowicz, 2006; Jin, 2015).

To highlight the vast variety that is possible with discretization used in FEM, I now mention
the characteristics that the discretized elements posses in three dimensions:

1. Points of an Element (Nodes): Each element requires a definition of coordinates
of its vertices. These are the nodes of an element. Since the mesh usually consists
of a set of connected elements, it is natural that a significant number of nodes are
shared between elements. An element can also have more nodes than just at its vertices
(Demkowicz, 2006). These are higher-order elements.
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14 Theory of Electromagnetic Fields and the Finite Element Method

2. Line Segments of an Element (Edges): Edges connect the nodes of various ele-
ments. These edges are usually shared between different elements. These should be
defined such that the original geometry of the input domain is preserved. For geophys-
ical regions, this becomes essential for describing layers of subsurface, boundaries of
anomalous bodies, faces of the domain and faces of the same element, etc.

3. Faces of an Element (Surface Area): Connecting the edges in a way that makes the
mesh elements closely resemble a sphere as well as adhere to the material boundaries is
an important factor in discretization. Faces are also interconnected between elements,
which affect how the simulation system matrix is assembled. Neighbouring faces enforce
boundary or interface conditions between different media and between each element, and
help account for how the source field propagates through the region of interest.

4. Volume of an Element: Based on how the faces are defined, different 3D shapes can be
used for meshing. Some classical FE shapes include triangles and quadrilaterals in 2D,
tetrahedra and cuboids in 3D. Their volume is a very important parameter that defines
how fine or coarse a mesh is. Different physical phenomena have different constraints
that their FE mesh should satisfy. I will illustrate this in more detail in Chapter 5.

In fact, FEM modelling codes usually benefit from employing dedicated meshing software
that specifically handle the discretization of a simulation region. This becomes essential
especially with complex geometry or accuracy requirements, that require special algorithms
based on computational geometry to calculate precise placement, size, and other aspects of
these elements. FEM accuracy depends heavily on the mesh characteristics it is used on (Jin,
2015), which has also been quite apparent during the progress of this thesis.

In reasoning so, elfe3D, and hence, elfe3D GPR depends on discretized region input from
the tetgen software composed of tetrahedra. It uses input information of the geophysical
simulation region, and outputs a set of mesh files that contains all essential information
about the discretized simulation domain.

Choose Proper Interpolation Functions

Once the simulation domain is adequately discretized, the weak form is made discrete by
approximating the solution E and test v vectors by utilizing a set of interpolation functions.
Also referred as shape or basis functions, these interpolation functions are defined per element
of the mesh (Polycarpou, 2022). Using the information from element geometry, they define
a smooth continuous function within the element. Depending on the function order, element
geometry, and type of BVP, a set of coefficients are assigned to each element (Jin, 2015). Per
element, the number of coefficients is referred to as the degrees of freedom (DOF). When these
coefficients are multiplied with the interpolation function value, at any coordinate, it gives the
value of the unknown vector field E. Hence, the continuum solution can be approximated as
according to the weak form and the order of basis functions. Mathematically, in the domain
Ω that has been discretized into M finite elements, each element m ∈ {1, 2, . . . ,M} has d
associated DOFs. The solution vector field E is now approximated, for each element via
shape functions using edge-based vector elements as:
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3-2 Finite Elements for Simulating Wideband GPR in Frequency-Domain 15

Ẽm(x, y, z) =
d∑

j=1

Nm
j (x, y, z)Em

j . (3-16)

Here, Ẽm denotes the FE approximation of the solution vector at any point (x, y, z) in 3D
space. The functions Nm

j (x, y, z) ∈ R3 are vector-valued edge-based shape functions, and the
coefficients Em

j ∈ R are scalar DOFs assigned to each edge of a tetrahedral element.

For clarity, equation (3-16) can be re-written in matrix-vector form as:

Ẽm
x (x, y, z)

Ẽm
y (x, y, z)

Ẽm
z (x, y, z)

 =
[
Nm

1 (x, y, z) Nm
2 (x, y, z) · · · Nm

d (x, y, z)
]

Em

1

Em
2
...

Em
d

 , (3-17)

which highlights how using higher-order elements can improve the accuracy of the approx-
imated field. Higher order of elements will have more coefficients per element and hence
associated number of shape functions, making the solution capable of capturing higher order
variations in the field with greater accuracy. With elfe3D, as in many other FEM codes using
tetrahedral elements (open-source (Anderson et al., 2021; Arndt et al., 2019) and commercial
(ANSYS, Inc., 2025; COMSOL AB, 2024; Dassault Systèmes, 2023)), first-order shape func-
tions work well with correspondingly small elements to account for these field variations with
sufficient accuracy.

Figure 3-3: Vector field of the first-order edge-based Nédélec basis function associated with the
marked edge (1).

The edge-based first-order Nédélec basis functions have been used in both elfe3D,

elfe3D GPR, which are explicitly defined for tetrahedral elements by (Jin, 2015). These basis
functions are locally-supported, and designed to be constrained in H0(curl,Ω) space and com-
ply to the continuity of tangential electric field components Equation (3-5). They are defined
by finding piecewise polynomials that lie in H0(curl,Ω), extracting an even smaller subset of
functions possible in the solution space that satisfy the BVP. The vector field associated with
one edge is illustrated in Figure 3-3 (Scroggs et al., 2025). Similar vector fields are defined
for all six edges of the tetrahedra. Mathematically, they are defined by:

Ne
i = Le

i1∇L
e
i2 − Le

i2∇L
e
i1 l

e
i . (3-18)
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Here, subscripts i1 and i2 are the two end points of an edge i and element e. Le
i1

is a term

based on linear Lagrange polynomial defined on the ith1 node belonging to the ith edge, and
Le
i2

is a term based on linear Lagrange polynomial defined on the ith2 node belonging to the

ith edge, and lei is the length of the edge. Component-wise, the basis functions are defined as:

Ne
i =



(
Le
i1

∂

∂x
Le
i2
− Le

i2

∂

∂x
Le
i1

)
lei(

Le
i1

∂

∂y
Le
i2
− Le

i2

∂

∂y
Le
i1

)
lei(

Le
i1

∂

∂z
Le
i2
− Le

i2

∂

∂z
Le
i1

)
lei

 (3-19)

Upon applying the basis functions to the weak form, it has become discrete, which now allows
defining it in terms of a matrix-vector linear system of equations.

Obtain Local Element-Wise Matrices

All integrals in Equation (3-15) will be evaluated over all elements in the simulation domain.
Since v,E ∈ H0(curl,Ω), the boundary integral term in Equation (3-15) vanishes on Γ.
Moreover, between each element of the discretized mesh, due to the tangential continuity of
the electric field (Equation (3-5)), the boundary integral term also vanishes throughout the
domain. The other two terms in the Left-Hand-Side (L.H.S.) of Equation (3-15) and the R.H.S
are evaluated per element. To approximate their values, the interpolation functions are used
as discussed in Section 3-2-1. Upon substituting these in the weak form, the L.H.S volume
integrals take the form of the characteristic stiffness and mass matrices that arise in many
FEM applications. For first-order tetrahedral elements with Nédélec basis, each element has
six degrees of freedom, one on each edge (Jin, 2015). Hence, the stiffness and mass matrices
have six different basis functions per element, resulting in local matrices of size (6× 6). For
an element m ∈ {1, 2, . . . ,M}, they have the form:

Km
ij =

∫∫∫
Ω
(∇×Nm

i ) · (∇×Nm
j ) dV, (3-20a)

Mm
ij =

∫∫∫
Ω
Nm

i ·Nm
j dV, (3-20b)

where i, j ∈ {1, 2, . . . , 6} denoting the edges of the element. Combining these to form the
complete local L.H.S for Equation (3-15) gives:

Am
ij =

1

µr
Km

ij − k20εr,effM
m
ij . (3-21)

The source element array is now given by:

bmi = −jk0Z0

∫∫∫
Ω
Nm

i · Jm
s dV. (3-22)

Form Global System Matrices by Assembly of All Elements

After evaluating all element-wise local matrices Am (Equation (3-21)), they are assembled
into one global system matrix A based on what index of each local matrix corresponds to
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3-2 Finite Elements for Simulating Wideband GPR in Frequency-Domain 17

what index in the global edge index list. This is kept track of using the geometry information
from tetgen. Just as how Am have a size of (6 × 6) corresponding to six local DOFs, A has
size of [DOF × DOF]. The global source vector b is built by concatenating Equation (3-22)
together. This results in a global linear system of algebraic equations:

Ax = b, (3-23)

where x contains all the coefficients Em
j as in Equation (3-16). This system is complex

symmetric.

Solve the System

Solving this system of equations can be done by a multitude of methods and linear system
solvers. For elfe3D and also elfe3D GPR, the software MUMPS is employed to find the solution
vector x. MUMPS is a highly efficient sparse direct solver for linear systems (Amestoy et al.,
2000) written in Fortran and supports OpenMP parallelization. It uses multifrontal method
to factor and solve large, distributed linear systems.

3-2-2 Error Estimation for Adaptive Refinement

Once the system is solved, numerical errors are estimated for adaptive refinement in elfe3D.
It iteratively improves the input simulation mesh, by adding new elements in areas of high
error (Rulff et al., 2021). It includes refinement based on the residual of the CSEM PDE
Equation (3-4a), face jump in normal current density between elements based on Equation (3-
6), and face jumps of tangential magnetic fields, since these are not ensured by the weak form
of the PDE. If the errors based on these metrics cross an experimentally-determined threshold
in an element of the simulation region, these specific elements are reduced in size by bisection
(Rulff et al., 2021). This threshold needs to be set based on individual accuracy requirements.
For elfe3D GPR, I have discussed adaptive refinement implementation in Section 4-3-1.

Obtain the Results and Post-processing

Once the unknown coefficients are found, the electric and magnetic field values at the receiver
sites or the entire volume can be found by multiplying the coefficients with the basis functions
as in Equation (3-16). If a line of receivers of electric field are given, a radial decay plot can
be obtained. Moreover, centroids of each tetrahedra can be used to get a 3D volumetric data
of field distribution in the complete simulation domain. Then, multiple other post-processing
procedures can be conducted based on the requirements of the users, such as field-component
plotting, spectral analysis, or supplying the data to an inversion software.

With this, I completely describe th FE framework used in elfe3D GPR, from minimal modi-
fications of elfe3D. Now, to tackle the problem of outgoing field absorption (Section 3-1-4),
I will start with describing the history and development of PML.
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18 Theory of Electromagnetic Fields and the Finite Element Method

3-3 Perfectly Matched Layers for Wave EM

All physical phenomena described by the wave equation bounded in a finite domain need
to make the boundary as transparent to the outgoing waves as possible (Bérenger, 2007).
Initially, ABCs were developed for use in FE implementations that lead to localized relations
to the boundary fields in terms of mixed boundary conditions (Jin, 2015). They required
careful analytical treatment, and their effectiveness was limited (Engquist & Majda, 1977;
Monk, 2003). This changed with the introduction of PMLs. PML literature has been enriched
by the fact that wave phenomena are not limited to EM, but to fields such as hydrodynamics,
oceanic sciences, elastodynamics, optics and quantum mechanics (Pled & Desceliers, 2022),
and can also be studied application agnostic using the Helmholtz equation (Bermúdez et
al., 2004). This allowed for a rapid comprehensive development of its theory and numerical
implementation.

3-3-1 Initial Split Field PML

(Berenger, 1994) introduced the PML in time domain with a split-field formulation for ab-
sorbing waves in free space simulations in two dimensions. For the transverse electric (TE)
mode of EM waves with field components Ex, Ey, Hz, he split the magnetic field Hz into
two components such that the Faraday’s law (Equation (3-1a)) can be written down in two
equations. One equation includes Hzx that is responsible for creation of Ex field compo-
nent, and Hzy that is responsible for creation of Ey field component. Each of these magnetic
field components were assigned their own component of magnetic conductivity, σ∗

x and σ∗
y ,

respectively. This allowed Bérenger to introduce the matching condition for vacuum:

σ

ϵ0
=

σ∗

µ0
. (3-24)

This condition ensures that there is no impedance mismatch at the interface between the
PML and free space. He then showed that a similar approach works with splitting the Ez

component for the TM mode, giving a complete field reflection-less transmission of energy
into the PML region. Using FD terminology, he also showed how the propagation of waves in
the PML medium and transmission between layers of PML, corresponding to lateral points
across the PML extents, is reflection-less and absorbing. This set the groundwork for perfectly
matched layers.

3-3-2 Complex Stretching and Uniaxial PML Formulations

As much as the split-field PML is effective, it had its limitations. One, magnetic conductivity
is not a typical material parameter used in exisiting numerical codes. Two, due to the field
splitting, it creates significantly more DOFs due to the artificial field components which
worsens the conditioning of the system of equations. Clearly, new methods were sought that
achieve the same perfectly matching effect with minimal changes to the system. Here, two
major lines of work developed, both with a view to realize the PML without the intensive
field splitting methodology (Pekel & Mittra, 1995; Rappaport, 1996).

The first line of work lead to Uniaxial-PML (U-PML), or equivalently, the Anisotropic-PML
(A-PML) (Pled & Desceliers, 2022; Rappaport, 1996). Here, the PDE Equation (3-11) is
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3-3 Perfectly Matched Layers for Wave EM 19

preserved, only a specific frequency-dependent complex anisotropic material is introduced in
the PML region. Due to the definition of this fictitious material, described in Section 4-2-
1, it does not create new DOFs to solve for, other than the typical expected DOFs from
introducing the PML volume. This makes it much more tractable. Introduced by (Sacks
et al., 1995), its matching condition is implemented by anisotropic material matrices. It is
given by: ←→ε

ϵ0
=
←→µ
µ0

(3-25)

where ←→ε and ←→µ are the permittivity and permeability tensors of the PML medium. This
implies that both the permittivity and permeability should be modified equally to ensure
impedance matching. Analysis was conducted early on to study the equivalence between
the U-PML and the Bérenger PML (Wu et al., 1997), which showed that this interpretation
indeed allows perfect matching as long as the parameters of the PML medium are chosen
well.

The alternative line of research for the PML lead to the Stretched-Coordinate PML (SC-PML)
(W. C. Chew & Jin, 1996; Levy, 2000). This involves a complex continuation of coordinates
in the PML region from real coordinates in the simulation domain that it encloses. This is
done via complex stretching functions that map over real coordinates in a PML region of
the simulation mesh. Doing such a complex transform of coordinates and solving for the
wave equation Equation (3-11) using plane wave approximation reveals that the imaginary
component of the complex coordinate imposes exponential decay to the wave according to the
scaling provided by the stretching functions (Bérenger, 2007; Levy, 2000). This function is
required to be smooth, and monotonically increasing in the PML region. The transformation
of coordinates can be expressed in many equivalent ways, one of them expressed by (Bermúdez
et al., 2004) for a 1D domain as:

r̃ = r̃(r) := r +
i

ω

∫ r

0
γ(τ)dτ for r ∈ [Γmodel,Γtotal), (3-26)

with a corresponding stretching function s(r) for free space:

s(r) := 1− j
γ(r)

ωε0
. (3-27)

Here, r̃ is the stretched complex coordinate, r is its real coordinate, γ is a decay function,
Γmodel is the inner simulation domain-to-PML boundary, and Γtotal is the outer boundary of
the PML region. Decay function γ serves as the primary means of controlling attenuation
within the PML region such that impedance is matched at simulation domain-PML boundary.
Moreover, they should provide enough cumulative decay to the waves incoming into the PML
such that by the time the waves reach the end of simulation domain extents, their strength is
negligible. For FE formulation, a sufficiently thick PML is the equivalent of multiple layers
of PML in structured FD.

This resulting PML formulation involves complex operators, rendering the PML method
usually difficult to implement along with any conventional numerical approximation method
(Pled & Desceliers, 2022). This will also become apparent when I attempt implementing it
during my thesis (Appendix A). However, it still saves a significant number of DOFs than the
split-field PML that Bérenger introduced. Moreover, the use of a SC-PML does offer faster
solution convergence speed than an U-PML (Ji et al., 2020).
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20 Theory of Electromagnetic Fields and the Finite Element Method

3-3-3 The Exact-PML

Considerable mathematical efforts have been made to analyze the various aspects of PML
formulations using the Helmholtz equation and the EM scattering problem such as their sta-
bility and convergence properties (Bermúdez et al., 2004; J. Bramble & Pasciak, 2007; J. H.
Bramble & Pasciak, 2012; Galkowski et al., 2022; Harari et al., 2000). To make the PML as
efficient as possible, not just in performance, but also in implementation, (Bermúdez et al.,
2004) introduced the idea of an Exact-PML using Helmholtz equation with Sommerfeld ra-
diation condition. The PML is based on CS-PML, except they choose the decay function γ
such that its integral in the finite PML region reaches +∞. This is different from the conven-
tional polynomial decay functions, which have a finite integral. This difference is illustrated
in Figure 3-4. This remarkable feature makes the solution of the PML problem coincide with
the original problem, as potentially infinite attenuation corresponds to the physical problem
in unbound space. For implementation using FEM, they prescribe Dirichlet boundary con-
dition on the outer boundary of the PML region. This makes the entries of the FE system
matrices finite on the boundary, which introduces some numerical errors. However, with the
asymptotic behavior of decay function right before the boundary, it is considered that the
amount of attenuation should be sufficiently high to make any outgoing wave decayed to non-
significant values. This makes its accuracy remarkable. (Feng, Ding, & Wang, 2019) applies
this concept to unstructured FE with adaptive meshing in frequency domain with extensive
sensitivity analysis, (Ozgun et al., 2023) implements the Exact-PML for Helmholtz-like vector
PDE in locally conformal mesh, and (Karperaki et al., 2019) applies this to modelling acous-
tic waves in the ocean. Another remarkable fact of these exact decay functions is that the
resulting PML have no parameters to tune other than the PML’s thickness - as the thickness
determines how fine the PML region mesh is required to be to capture the gradients of high
attenuation. This makes them easier to implement reliably than the conventional polynomial
based functions that have multiple parameters to arbitrarily tune (Bérenger, 2007; Jin &
Riley, 2008).

Figure 3-4: Difference between coordinate transformation applied by an exact decay function
versus a conventional (Bérenger) decay function in 1D. The real component (Re(r̃))
stays the same, while the imaginary component (Im(r̃)) dictates the amount of
attenuation. Modified from (Karperaki et al., 2019).

3-3-4 The Complex Frequency Shifted PML, and Other PML Formulations

There are other intensively researched types of PML formulations, such as the Complex
Frequency Shifted PML (CFS-PML), the Convolutional PML for time domain (C-PML)
(Bérenger, 2007), the generalization of the U-PML which is Multi-Axial PML (M-PML)
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3-3 Perfectly Matched Layers for Wave EM 21

(Pled & Desceliers, 2022), PML which is locally conforming to geometry (LC-PML) (Smull
et al., 2017) and the Auxiliary Differential Equation PML (ADE-PML) which uses Auxiliary
Differential Equation form of the Maxwell’s equations to create the PML. Out of these,
I will describe the CFS-PML, as it is the most relevant to the work in this thesis, being
the continuation of the SC-PML and contributing to the discussion of the completed PML
(Section 4-2-5).

The CFS-PML adds a new coefficient in the stretching function compared to a typical SC-
PML. This is done to alleviate stability issues of the PML with near-grazing incidence and
evanescent waves (Bérenger, 2007; Pled & Desceliers, 2022). As such, the stretching function
formula for CFS-PML given by (Bérenger, 2007) is:

s(r) = κ(r) +
γ(r)

α(r) + jωϵ0
(3-28)

where, κ(r) is generalization of the real part of the the stretching function in Equation (3-
27), and α(r) is the new coefficient administering the complex frequency shift. Due to the
fact that the denominator now has a non-zero real component along with a non-zero imagi-
nary component, the resulting stretching function has a γ(r) dependent real part as well as
an imaginary part. This creates better matching and attenuation for incident near-grazing
propagating waves and evanescent-waves into the PML as explained in Pled and Desceliers
(2022).

3-3-5 Various PML Modifications

There have been other unique developments in applying these PML formulations in various
numerical simulation cases. (Wolfe et al., 2000) used the U-PML as a means to divide the
simulation domain into subdomains for parallel computing, while (Ji et al., 2020) worked on
finding optimal PML parameters for the SC-PML depending on property of the medium of
simulation. The PML has been applied to curvilinear coordinates (Davidson & Botha, 2007;
Smull et al., 2017), for special structures like periodic waveguides and electromagnetic cavity,
with unique properties (S. Cui & Weile, 2002; Schnaubelt et al., 2023; Selleri et al., 2001),
and extended to higher orders (Jiao et al., 2003; Ledger et al., 2002), formulated for spectral
elements (Zhang et al., 2018) and parametric finite elements (Matuszyk & Demkowicz, 2013).

3-3-6 PML with FEM and GPR

Lastly, some of earliest works for PML in the FEM framework was done by (Pekel & Mittra,
1995), implementing the SC-PML. After this, (Abenius et al., 2005; Do Nascimento & Jiao,
2024; El Kacimi et al., 2019; Feng, Ding, & Wang, 2019; Jin & Riley, 2008), among others
have applied the PML for various versions of the FEM problem with EM waves. Specifically
for GPR simulations, (Feng, Ding, & Wang, 2019; Feng, Wang, & Zhang, 2019; Wang et al.,
2023) uses the Exact-PML in the context of GPR simulations in frequency domain. (Xue et
al., 2025) gives a comprehensive GPR simulation workflow with the Discontinuous-Galerkin
FEM and U-PML implemented on unstructured mesh. Moreover, (Jiang & Duan, 2022) have
worked on PML for layered media in the context of GPR.
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22 Theory of Electromagnetic Fields and the Finite Element Method

Using the combined insights from all these various PML approaches and innovations, I have
implemented a PML absorbing boundary for elfe3D GPR. The exact steps I have followed are
described in the following chapter, Section 4-2.
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Chapter 4

Implementation of GPR Forward
Problem using Perfectly Matched

Layers

Once the various physical and FE differences between CSEM and GPR simulations have been
identified as mentioned in Chapter 3, it is next reflected in the development of elfe3D GPR.
For the implementation of the GPR simulation using elfe3D as the base code, I made a few
major and minor changes in a few steps of the FEM framework of elfe3D (Figure 3-2).

Figure 4-1: The general FEM framework for EM problems with changes made from elfe3D to
elfe3D GPR. Major changes are marked in red and minor changes in blue.
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24 Implementation of GPR Forward Problem using Perfectly Matched Layers

The flowchart highlights that the major changes from elfe3D have been in two key areas:

1. The Absorbing PML Boundary: This did not exist in elfe3D, where appropriate
domain truncation was sufficient to allow using a homogeneous DBC on the simulation
domain boundary (Sections 3-1-3 and 3-1-4). Due to the PML, changes occur in the
BVP of the GPR problem (Equation (3-11)). This leads to changes in the problem’s
weak form, and hence, the FE system matrices.

2. Discretization: Between CSEM and GPR, the discretization methodology changes
from using a skin-depth centered approach to a wavelength centered approach. More-
over, since the PML requires a finite-thickness region enveloping the actual region of
interest, it adds complexity to the meshing of the total simulation region.

4-1 Discretize the Simulation Domain Using Finite Elements

There are a few essential features and requirements that a GPR simulation mesh needs to
adhere to. The requirements get more complex as a PML is introduced, as discussed in
Section 4-2. To ensure that the discretization is adequate for accuracy constraints while
checking computational requirements, I conducted a systematic set of numerical experiments
to verify and establish these constraints. The resulting elfe3D GPR test models and their
relevant parameters are presented and discussed in Chapter 5.

A characteristic simulation mesh that is being used produced using tetgen has the following
essential features:

1. Truncated Simulation Domain: elfe3D GPR works in 3D Cartesian coordinates.
Hence, there will be three orthogonal axes {x, y, z}. The horizontal plane described by
x and y axes, while z represents height by positive z direction, and depth by negative
z direction in my simulations, though it can be made opposite as well as per the more
conventional system. The simulation domain extents in each direction can be set flexibly.
However, as studied by examples in Chapter 5, it is clear that there are some limitations
in how small the domain has to be around the source and receivers before the PML can
be placed before it.

2. Source Antenna: All of my elfe3D GPR studies were done using a point dipole approx-
imation. This source is defined by a single line segment in the mesh with a finite size,
while the FE basis functions expand it to the elements in the mesh that are connected
by the line segment. To compare my simulation results using an analytical solution with
a simple test case, it becomes crucial to ensure this source length ls is negligibly small
compared to the wavelength of EM field emitted by the antenna λ. This choice of ls
as a ratio of wavelength has also been studied in my tests (Chapter 5) that would give
accurate solution as compared to a point source. However, for real world use cases, the
source dimensions can be made equal to the original antenna length.

3. Receiver Location(s): For the purpose of testing accuracy, multiple points in the
simulation domain are marked for recording field data, slightly below the air-earth
interface. These were along two directions respective to the antenna on the x − y
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4-1 Discretize the Simulation Domain Using Finite Elements 25

plane: endfire and broadside. While generating the tetgen input mesh, at each of
the receiver locations, a triangle is defined around the point on the air-earth interface.
The triangles ensure that small tetrahedra are generated pointing above and into the
subsurface. The actual receiver points have been placed within the tetrahedra generated
below the interface by choice. The purpose of this sophisticated definition is to ensure
that the receivers lie within elements such that no discontinuities can occur at the
receiver points.

4. Air-Earth Interface: A GPR device, such as (pulseEKKO, Sensors & Software Inc.,
2023) usually positions the antenna some small distance above the ground. As such, an
air-earth interface definition needs to be established. Defining the interface properly is
essential to ensure that the simulation mesh properly marks each element in the domain
to correct region properties.

5. Subsurface Layer(s): The near surface earth region has a rich diversity of possi-
ble electric material distributions (Annan, 2005). Materials with a difference in these
properties produce interfaces that reflect GPR signals. Hence, for synthetic testing of
elfe3D GPR, it is essential to test the response from a layered model in addition to a
whole-space and half-space simulations. These layers were defined parallel to the air-
earth interface for ease of verification with analytical solution and validation against
empymod (Werthmüller, 2017). It is a full 3D EM modeller for 1D vertically transverse
isotropic media, written in Python. It computes the frequency-domain EM response
using analytical solutions and fast numerical Hankel transforms. Soon after being its
release, a digital linear filter was designed specifically for use in wave-field modelling for
GPR (Werthmüller et al., 2019). I use this filter for validation of elfe3D GPR.

6. Subsurface Anomaly: Similar to layered earth media, there exist a variety of cases
where an electric medium with anomalous set of properties with respect to the embed-
ding can be present, such as (Annan, 2005). Hence, I test one such synthetic case in
elfe3D GPR.

7. PML: A PML bounds the regular simulation domain with a finite thickness layer of an
artificial medium that absorbs outgoing waves in all directions such that the truncated
simulation domain can accurately represent the open-world limitlessness. I discuss PML
meshing in Section 4-2.

For illustrating an example simulation domain mesh, consider the following set of parameters:

Table 4-1: Example simulation mesh parameters.

Model Parameter Specification

Category Variable Value Units

Domain Truncation Extents in x-axis [−5, 5] m
Extents in y-axis [−5, 5] m
Extents in z-axis [−4, 1] m
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Table 4-1: Example simulation mesh parameters (continued).

Model Parameter Specification

Category Variable Value Units

Air-Earth Interface Extents in x-axis [−5, 5] m
Extents in y-axis [−5, 5] m
z-axis value 0 m

Air Layer {εr, σ, µr} {1, 1e-16, 1} {−, S/m,−}
Maximum Element Volume 3.1820e-03 m3

Subsurface Layer 1 Extents in x-axis [−5, 5] m
Extents in y-axis [−5, 5] m
Extents in z-axis [−2, 0] m
{εr, σ, µr} {4, 1e-4, 1} {−, S/m,−}
Maximum Element Volume 3.9775e-04 m3

Subsurface Layer 2 Extents in x-axis [−5, 5] m
Extents in y-axis [−5, 5] m
Extents in z-axis [−4,−2] m
{εr, σ, µr} {9, 1e-3, 1} {−, S/m,−}
Maximum Element Volume 1.1785e-04 m3

Source Antenna Dipole Direction +x-axis –
Extents in x-axis [−2.5, 2.5] mm
Fixed y-axis value 0 m
Height from Interface 2.5 cm
Source Moment Magnitude I 1 A/m2

Source Frequency 100 MHz

Endfire Receiver Line Number of Receivers 256 –
Start and End x-values [0.2, 4.8] m
Depth from Interface 1.25 mm

Broadside Receiver Line Number of Receivers 256 –
Start and End y-values [0.2, 4.8] m
Depth from Interface 1.25 mm

Oblique Receiver Line Number of Receivers 256 –
Start and End x-values [0.1414, 3.3941] m
Start and End y-values [0.1414, 3.3941] m
Depth from Interface 1.25 mm

The source moment magnitude I is given by

I =

∣∣∣∣∣∣∣∣∫
Ωs

Jp(r) dV

∣∣∣∣∣∣∣∣ , (4-1)

evaluated over all volume Ωs where the source current is non-zero, and r is the position vector
of each integration point relative to the origin.

The example simulation has two subsurface layers extending across the domain, sharing one
interface at z = −2 m. The resulting mesh is illustrated below:
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(a) The 3D simulation domain, with air layer on top, and the two
earth layers below it.

(b) Dipole source
segment in mesh
(marked in red)

(c) Cross-section of the 3D domain, showing varying discretization
for each layer.

(d) Both dense
receiver lines:
endfire along x,
broadside along
y.

Figure 4-2: Example simulation mesh visualization.

Visualizing the mesh is done using Paraview (Ahrens et al., 2005). It clearly shows that the
input files generated by tetgen do match the specifications mentioned in ??. The domain
extents and interfaces all correctly assigned Section 4-1. For the source segment visualization
Section 4-1, I take a slice of the 3D file along the xy-plane, and marking the line is done
programmatically in Paraview. Its length is 300 times smaller than the wavelength in the
first subsurface layer.

In Section 4-1, I illustrate a cross-section perpendicular to the +x axis. Here, it is clear that
the different simulation regions have different maximum volumes. This is a requirement based
on wavelength of the GPR wave in each medium. The formula for GPR’s wavelength in a
dielectric medium is given by (Annan, 2005):

λm =
c

f
√
εr

(4-2)

where λmedium is the wavelength in a medium, c is the speed of light, f is the frequency of
the source wave. As is apparent, at any given frequency of source wave, the wavelength is
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inversely proportional to
√
εr. This implies that a medium with higher relative permittivity

is required to be proportionately sampled by
√
εr times smaller edge lengths of elements.

The volumes for these media are evaluated by calculating the wavelength each region will have
based on the same source frequency, and substituting the criteria of minimum edge length of
a tetrahedra being λ/10. The receiver lines shown in Section 4-1 are defined by triangles of
the same length as the source, making the receiver line area finely discretized as well.

This resolution does come with a cost, however, since the mesh has a total of 5.24 million
tetrahedra. For a vector FEM formulation, the DOFs correspond to the number of edges in the
mesh, which are 6.18 million in number. These numbers do not account for the PML region
yet. Clearly, this requires considerable computational resources. To ensure efficient meshing
with reasonable accuracy, and minimizing the number of DOFs, I conduct multiple numerical
experiments such that future usage of elfe3D GPR is as resource-optimized as possible.

4-1-1 Constructing the PML Mesh Elements

The simulation region in geophysical simulations in elfe3D GPR in 3D is truncated by a
cuboidal domain (Section 4-1). Hence, I choose to construct the PML by placing a set of
rectangular boxes with coordinates and dimensions such that they wrap around the domain
with a uniform thickness in all three dimensions. Building this set of boxes is tricky via
tetgen, especially when the model is layered because the layer interface continuity should be
maintained into the PML for accuracy (Bérenger, 2007). The PML region is also discretized
using the same first-order tetrahedra as the regular simulation domain. Hence, the PML
does not have multiple layers as per the FD terminology, rather, its total thickness can be
perceived as equivalent to the complete set of FD PML layers.

To illustrate the various set of boxes that altogether compose my PML, I now illustrate the
same example mesh as in Section 4-1 with parameters from ??, with the addition of th PML
of uniform thickness of 1.5 m in all sides:

(a) The same two-layered 3D simulation do-
main as in Section 4-1, now with PML
surrounding it.

(b) Cross-section of the 3D domain, showing
varying discretization for each layer as in
Section 4-1, including the PML.

Figure 4-3: Example simulation mesh with PML visualization.

Here, Ωtotal is the total mesh volume, with mesh boundary Γtotal over which the DBC will
now be applied. Ωmodel is the total geophysical model volume whose region is of interest to
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us, with the model boundary being Γmodel. The volume between Γtotal and Γmodel is the PML
volume, denoted by ΩPML. Thus, Ωtotal = Ωmodel ∪ ΩPML.

From Figure 4-3a, it is clear that the rectangular boxes surrounding the simulation domain
can be categorized into three types:

1. Extending each face of the simulation domain (Marked with F in Blue):
Per each geophysical layer and air region of the domain, there will be six new boxes
corresponding to the six sides of the cuboidal domain. This is why F1 and F2 (Figure 4-
3a) are a group of three boxes (with slightly different colors in the diagram) since the
model has an air region and two subsurface layers. These boxes extend in the domain’s
±x, ±y, ±z directions. In each of these boxes, the stretching factor (Equation (4-10)) is
defined in the direction of the normal vector pointing along their respective coordinate
axis.

2. Extending each edge of the simulation domain (Marked with E in Yellow):
Per each geophysical layer and air region of the domain, there will be 12 new boxes
corresponding to the 12 edges of the cuboidal domain. This is why E2, E4 and E5
(Figure 4-3a) are a group of three boxes since the model has an air region and two
subsurface layers. In each of these boxes, the stretching factor is defined in the direction
of the normal vector that is a combination of the normal vectors of the two faces that
meet at each edge.

3. Extending each vertex of the simulation domain (Marked with V in Pink):
Per each geophysical layer and air region of the domain, there will be eight new boxes
corresponding to the eight edges of the cuboidal domain. In each of these boxes, the
stretching factor is defined in the direction of the normal vector that is a combination
of the normal vectors of the three faces meeting at that corner.

This mesh has nearly 13 million elements. That is a very huge increase in the number of
elements compared to the original mesh’s 5.24 million elements. It can be understood from
Figure 4-3b that the lowest layer (F2.3, F4.3, F8, E6 and E8) having a very dense meshing
based on its wavelength is causing a very large increase in PML elements.

4-2 Mathematical Formulation of Perfectly Matched Layers in
elfe3D GPR

With the successful generation of this PML mesh bounding the regular simulation domain,
I now apply complex stretching functions to the PML elements. To do this, there are two
standard choices for simulating the GPR forward problem: the SC-PML and the U-PML
(Section 3-3-2). For elfe3D GPR, I have chosen to implement the U-PML. For first-order
edge-based Nédélec basis functions, U-PML offers a direct implementation methodology which
translates well to programming it into the FEM system during assembly of local matrices into
the global system matrix.

I first describe the mathematical modifications that the U-PML formulation prescribes to
be implemented into the general FE framework. These have been directly programmed into
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elfe3D GPR. Once this is tested with the assumption of a homogeneous whole-space medium
(Section 5-1), I extend it for layered and arbitrary geophysical media. After testing these
considerations (Sections 5-2 and 5-3), I conclude the implementation of an accurate and
efficient PML strategy for GPR simulations with elfe3D GPR in 3D.

4-2-1 Implementing the U-PML

U-PML formulates the PML as if it were an anisotropic absorber (Section 3-3-2). I use
descriptions of U-PML from Ding et al. (2025) and Jin and Riley (2008) to implement it in
elfe3D GPR.

The procedure starts with changing the medium parameters in a PML region to an anisotropic
medium using the following tensor representation:

←→ε eff = εeff
←→
Λ , (4-3)

←→µ = µ
←→
Λ . (4-4)

Here,
←→
Λ is the stretch factor tensor, given by:

←→
Λ =


sysz
sx

0 0

0
sxsz
sy

0

0 0
sxsy
sz

 , (4-5)

where sx, sy, and sz are the usual stretching factors in the x, y, and z directions, respectively.
Notice that the same tensor is multiplied to both PML material parameters, ε and µ, making
it match the impedance condition Equation (3-25). With this transformation, the PDE for
the wave equation in the PML region ΩPML becomes:

∇× 1
←→µ
∇×E− k20

←→ε r,effE = −jk0Z0Jp in ΩPML. (4-6)

Hence, the new stiffness and mass matrices become:

K̃e
lj =

∫∫∫
Ve

(∇×Ne
l ) ·
←→
Λ

−1
· (∇×Ne

j)dV, (4-7)

M̃ e
lj =

∫∫∫
Ve

Ne
l ·
←→
Λ ·Ne

jdV, (4-8)

where
←→
Λ

−1
is the inverse of the stretch factor tensor.

Implementing this is straightforward for the stiffness matrix, since the dot products imply that
each vector component is multiplied with only one corresponding component of the tensor.
Hence, the new stretched stiffness matrix can be evaluated as:

K̃e
lj =

sx
sysz

Ke
x,lj +

sy
sxsz

Ke
y,lj +

sz
sxsy

Ke
z,lj (4-9)
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The Ke
x,lj , K

e
y,lj , and Ke

z,lj are the original stiffness matrix terms for the x, y, and z compo-
nents of the stiffness matrix from (Jin, 2015).

For the mass matrix, however, it is not as straightforward to figure out how to implement the
tensor multiplication. Jin (2015) gives explicit component-wise formulas for each entry of a

local mass matrix that makes it not directly clear what component of
←→
Λ to multiply to which

terms of the entries of mass matrix. Thankfully, Ding et al. (2025) show explicitly how to
implement the stretched mass matrix using the same first-order Nédélec basis functions that
(Jin, 2015) describes. This allowed me to complete the U-PML implemention in elfe3D GPR.

4-2-2 The Stretching Factor in Use and PML Decay Functions

The stretching factor I use now is different than the one described in (Equation (3-27)), since
I follow the recently introduced formulation as in (Ding et al., 2025; Feng, Ding, & Wang,
2019; Ozgun et al., 2023). The exact form of stretching factor I use at a point in the PML
p = (px, py, pz) is:

si(pi) = 1− j
γi(pi)

kPML
for i ∈ {x, y, z}, (4-10)

where si(pi) is the amount of stretch applied in ith direction at point pi, kPML is the complex
wavenumber of a specific media of choice (see Section 4-2-3), and γi(pi) is the decay function
in ith direction, depending only on the coordinate pi and thickness of the PML region.

There are a number of different functions that can be used for the decay function γi. The
criteria it has to satisfy are Bérenger, 2007:

1. At the simulation domain to PML boundary, the value should be very small, close to
no stretching, and increase with a slow variation. This is to allow un-impeded travel to
the waves.

2. It should monotonically increase throughout the region.

3. The FE mesh should be able to accurately capture the gradients of the increasing value.

4. By the time any wave reaches the outer boundary of the PML, it should be attenuated
enough that there is no significant strength in the wave amplitude left.

Satisfying these criteria, I used the following decay functions. Here, I am using l for the PML
thickness, di,e for the distance of element e in i ∈ {x, y, z} coordinate axis direction from the
inner PML boundary, and γi,e for decay function in ith direction for element e. Naturally, the
set of elements that e belongs to lies in ΩPML.

1. Exact Reciprocal Function 1: γi,e =
1

l − di,e
(Ding et al., 2025; Feng, Ding, & Wang,

2019).

2. Exponential Function: γi,e = exp

(
ef ·

di,e
l

)
, where ef is a scaling factor constant of

value 5. This was chosen after some testing with whole-space air model.
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3. Polynomial Function (Irving & Knight, 2006): γi,e = pf

(
di,e
l

)m

, where pf is an ar-

bitrary scaling factor constant, and m is a positive integer, of orders usually 3 or 4. I
chose m = 4, and pf is chosen to be of value

√
c0, where c0 is the speed of light, after

testing with whole-space model.

4. Exact Reciprocal Function 0: γi,e =
1

l − di,e
− 1

l
. This is modified from (Ding et al.,

2025), with the subtraction of 1/l making the function start at 0 for di,e = 0.

(a) γi in PML of l = 1.5m, except the last
grid point where DBC will be applied.

(b) γi in PML of l = 0.3m, except the last
grid point where DBC will be applied.

Figure 4-4: Decay functions γi that have been considered. The values are the same as that
would be applied to a 1-D PML with 10 equidistant grid points. The last grid point
in both subplots is removed since the DBC will be applied on Γtotal.

Figure 4-4 shows how the four decay functions behave using the parameters chosen above.
Figure 4-4a shows a 1-D simplified representation of γi,e values as they would be applied in
Table 5-1. Similarly, Figure 4-4b shows a 1-D simplified representation of γi,e values as they
would be applied in the kmin approach (Table 5-5) of the two-layered model Table 5-4.

I choose to show two versions of the exact decay function because the default function does
not start at Γmodel from 0, rather from 1/l. Interestingly, even though both functions are
supposed to be exact, in Figure 4-4a they do not reach very high decay values before the last
point. The exponential decay function has a steady increase in values, while the polynomial
function starts has the largest values owing to its scaling factor.

If the same set of parameters pf and ef were considered for a thinner PML, similar to Figure 4-
4b, the exact reciprocal decay functions re-scale themselves, while the others provide stay the
same and provide relatively lesser attenuation. Hence, the choice to use the exact reciprocal
decay function 1 for my initial testing of physical accuracy of the GPR BVP (Section 5-1)
arises from the fact that it does not have tunable parameters other than thickness of the
PML, and it has been directly used by Feng, Ding, and Wang (2019). Between the exact
decay functions, the choice of zero versus finite start has also been checked (Section 5-3-2).
These functions makes PML implementation quicker with a guarantee of sufficient attenuation
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as per Bermúdez et al. (2004). As long as the discretization is adequately capable to capture
the gradients of the decay function without creating significant impedance mismatch at the
simulation domain-to-PML interface, this decay function should work well.

4-2-3 PML for Geophysical Models

The near-Earth subsurface has considerable heterogeneity due to presence of different ma-
terials and structures, including sediments, rocks, and fluids. Since elfe3D GPR aims to
accurately simulate the forward response of a heterogeneous earth recorded by a GPR device,
it is imperative that the PML that it contains should work for any assortment of geological
materials with different electric properties. To that effect, I need to make the PML compatible
with layered geophysical models and an anomalous half-space model.

For multi-layered geophysical models, the wavenumber of choice kPML used for determining
scaling of the stretch in the PML region can be done in a few ways. Bérenger (2007) says
that for a PML lying perpendicular to interfaces of layered media, the simulation is perfect
only when the amount of stretch in the PML above and below an interface is the same. This
result, is, however, for theoretical PML who do not suffer from discretization errors, where
using a constant for a decay function would also work (Jin & Riley, 2008).

With this method, a singular wavenumber is to be used across all elements in the PML to
scale the stretching factors (Equation (4-10)). This could be decided arbitrarily, as long as
enough stretch is applied to the PML region and the discretization being used can capture
the gradients of the field decay accurately. Hence, I decided to test two wavenumber choices:

1. kmax approach: Wavenumber whose absolute value in the simulation domain is the
maximum.

2. kmin approach: Wavenumber whose absolute value in the simulation domain is the
minimum. This usually corresponds to air’s wavenumber.

I will refer to these cases as ”Uniform Stretch” tests. Important to note here is that the
material properties of the PML region above and below the interface must still be kept the
same as the material right next to the inner PML boundary in the simulation domain for
physically accurate representation of boundless interfaces.

The other approach, as mentioned in (Ding et al., 2025; Feng, Ding, & Wang, 2019; Irving
& Knight, 2006), is to vary not only the medium, but also the stretch factor according to
the material right next to the inner PML boundary in the simulation domain. Interesting to
note here is that both Ding et al. (2025) and Irving and Knight (2006) use this choice for
GPR specific simulation for layered and more general media, which is not the case with the
uniform stretch approach. I will refer to this case as ”Varying Stretch” test.

Once the optimal approach is determined, I finalize it for use in elfe3D GPR.

4-2-4 Adjusted BVP and Weak Form Including the PML

With the inclusion of the PML in elfe3D GPR, I can finally write the complete BVP that it
solves. Combining Equations (3-11) and (4-6) and redefining the meshing regions in Ω, I get
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the following BVP:

∇×
(

1

µr
∇×E

)
− k20εr,effE = −jk0Z0Jp in Ωmodel, (4-11a)

∇× 1
←→µr
∇×E− k20

←→ε r,effE = −jk0Z0Jp in ΩPML, (4-11b)

n̂×E = 0 on Γtotal, (4-11c)

with the material interface conditions (Equations (3-5) and (3-6)). The regions and boundaries
are marked in the example mesh Figure 4-3 and described right after the illustration. It is
noted that due to the truncated domain boundary being placed after the PML, that the
model’s weak form now does not include the Dirichlet BC, rather it is shifted to Γtotal.

While the inclusion of PML is directly shown via the GPR wave equation, it has resulted in
the PML region effectively solving a different weak form than the simulation region. This
follows from the adjusted BVP Equation (4-11). The complete weak form that elfe3D GPR

now solves is given by:

Find E ∈ H0(curl,Ω) such that∫∫∫
Ωmodel

1

µr
(∇×v)·(∇×E) dV−

∫∫
Γmodel

1

µr
(v×∇×E)·n̂ dS−k20

∫∫∫
Ωmodel

εr,effE·v dV = −jk0Z0

∫∫∫
Ωmodel

Js·v dV,

(4-12)
and,∫∫∫
ΩPML

1
←→µr

(∇×v) ·(∇×E) dV −
∫∫

Γtotal

1
←→µr

(v×∇×E) ·n̂ dS−k20
∫∫∫
ΩPML

←→ε r,effE ·v dV = 0, (4-13)

∀ v ∈ H0(curl,Ω), and satisfying the boundary condition (Equation (3-11b)) on Γtotal now as
well as the continuity constraints Equations (3-5) and (3-6). Here, the integrals over Γmodel

and ΓPML evaluate to zero due to continuity constraint Equation (3-5) in the total volume of
integration as well as the choice of the vector space H0(curl,Ω).

4-2-5 Discussion on the Implemented PML

Before I present the testing that was conducted, I must make certain aspects of the PML
implementation clearer such that there is no ambiguity.

Implications of the Finalized Stretching Function

From Equations (3-9) and (4-10), it is clear that the denominator of the stretching factor is a
complex number. This is unlike the usual definitions of the coordinate stretched PML, where
the stretching factor is of the form:

si = 1 +
γi
jωε

for i = x, y, z, (4-14)

Since only the angular frequency and the permittivity are generally used, the real part of
the stretch is usually 1 and does not play a role in stretching, while the imaginary part
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stretches the propagating waves. However, in my current implementation, the stretching
factor Equation (4-10) can be re-written as:

si = 1− γi
k′ + jk′′

for i = x, y, z, (4-15)

where k′ and k′′ are the real and imaginary components of the wavenumber, respectively.

This is equivalent to the CFS-PML formulation, whose general form for cartesian PML is:

si = κi +
γi

αi + jωϵi
, for i = x, y, z, (4-16)

where κi and αi are arbitrarily defined parameters. This is a natural effect of using the
wavenumber definition. The CFS-PML is meant to help absorb evanescent waves and prop-
agating waves that are incident at grazing angles (Bérenger, 2007). Usually the parameters
κi and αi are determined parametrically. However, with using the complex wavenumber
for scaling the decay function, as per (Ding et al., 2025; Ozgun et al., 2023), I indirectly
use a CFS-PML-like expression with exact decay function. Moreover, using wavenumber di-
rectly for scaling allows for easier implementation using the BVP for GPR (Equation (4-11)).
Combining the PML formulation I have implemented with the FE framework in frequency
domain gives it unique characteristics that have been, as of the date of submission of this
thesis, previously un-tested.

Complexities with the SC-PML

Before concluding the methodology, I want to describe why the SC-PML could not be imple-
mented in elfe3D GPR. It’s complete derivation for the FE local matrix is given in Appendix
A. From this derivation, it becomes evident that there are a few sources of inaccuracies.

One, since I evaluate the stretched derivatives on all edges of the elements separately, using
the coordinate of the midpoint of each edge to determine the stretch, it may have resulted
in non-smooth stretching of the local stiffness matrices of the elements. Two, the stretched
volume factor is evaluated using the centroid of the element. This discrepancy in quadrature
of evaluation caused non-uniform stretch between the stiffness matrix and the mass matrix.

To fix this, a more sophisticated quadrature rule needs to be established that bridges the
evaluation of both stretching terms within the stiffness and mass matrices to equal points of
evaluation. It should also account for the smooth variation of stretching for edge-based FEM
that the formulation I attempted cannot satisfy. Both of these point to higher order Nédélec
basis functions. However, implementing this would be quite intensive, as elfe3D GPR’s entire
framework is set up with first-order elements. This is not to forget a new meshing approach
will need to be determined with tetgen. Hence, I have finalized the U-PML implementation
for elfe3D GPR.

4-3 Completing the elfe3D GPR Forward Solver

In this section, I describe the remaining minor implementation changes that I implemented
to complete elfe3D GPR as a forward solver.
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4-3-1 Adjusting the Error Estimation for Adaptive Refinement

Adaptive refinement in elfe3D iteratively improves the mesh given as an input, by adding
new elements in areas of high error (Rulff et al., 2021). It includes refinement based on the
residual of the PDE, face jump in normal current density between elements, and face jumps of
tangential magnetic fields. Since the magnetic field is computed using Faraday’s law on first-
order accurate electric field data, the magnetic field becomes a zero-order field. This means
that the tangential components of the magnetic field will always jump across the face of an
element. This makes it a good criterion to check if the mesh elements are small enough. If
the errors based on these metrics cross a user-defined threshold in an element, these specific
elements are reduced in size (Rulff et al., 2021). This threshold needs to be set based on
individual accuracy requirements.

For elfe3D GPR, I modified elfe3D’s implementation to account for the new BVP. First, error
estimation is excluded for the PML region, because the PML is not the region of interest and
its curl-curl equation is different from the physical curl-curl equation of the simulation domain.
For this modification, I refer the implementation in Ren et al. (2013), which was also used
for Rulff et al. (2021) for elfe3D that have general expressions for the complete Maxwell’s
equations. Keeping the algorithm the same as in elfe3D, I only modify the error estimation
expressions to include the effect of permittivity. After implementation, I have, as of yet, been
unable to test its accuracy and adjust its thresholds.

4-3-2 Improving the Dirichlet Boundary Condition Implementation

elfe3D has an accurate implementation of the Dirichlet BCs Equation (3-4b), which I could
have left as is for elfe3D GPR. Unfortunately, as problem sizes grew with the wavelength
constraints and layered media with high permittivity, it became essential to optimize compu-
tation time. Hence, I have made programming optimization adjustments to the subroutine
that applies Dirichlet BC such that it is now much quicker, without requiring parallelization.

After all these adjustments, elfe3D GPR is now capable of simulating general GPR problems
in frequency domain. Its complete capabilities are tested and presented in Chapter 5.
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Chapter 5

Synthetic Testing and Validation of
elfe3D GPR

In this chapter, I present all significant tests that I have conducted during and after the devel-
opment of the current version of elfe3D GPR. These serve to verify the accuracy of elfe3D GPR

simulation results as well as estimate discretization and truncation limitations using the 3D
unstructured mesh along with the PML. Testing of elfe3D GPR is done incrementally from the
implementation of the first working version of the PML (Section 3-3), to subsequent changes
that completed the software (Section 4-3). These tests are done on four synthetic models: a
whole-space model, a half-space model, a two-layered model, and a half-space with anomaly
model. I start by presenting these models with a base set of parameters, and their simulation
results. Then, I change one or few parameters at a time as required to test various important
aspects of the forward simulation code of elfe3D GPR and its modelling constraints. Using
these results, I discuss the capabilities of elfe3D GPR and hence the outcomes of this thesis.

5-1 Whole-Space Model: Air

This is a homogeneous air model with a dipole source antenna placed at the center of the sim-
ulation domain and receivers near it. Its purpose is to verify if elfe GPR and its PML is able
to simulate wave propagation without significant reflections from the truncated simulation
domain boundary.

Table 5-1: Simulation parameters for the base whole-space model.

Model Parameter Specification

Category Variable Value Units

Domain Truncation Extents in x-axis [−5, 5] m
Extents in y-axis [−5, 5] m
Extents in z-axis [−5, 5] m
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Table 5-1: Simulation parameters for the base whole-space model (continued).

Model Parameter Specification

Category Variable Value Units

Air Medium {εr, σ, µr} {1, 1e-8, 1} {−, S/m,−}
Maximum Element Volume 3.1820e-03 m3

Maximum Edge Length λair/10 m

Source Antenna Dipole Direction +x-axis –
Extents in x-axis [−2.5, 2.5] mm
Fixed y-axis value 0 m
Height from Interface 2.5 cm
Source Moment I 1 A/m2

Source Frequency 100 MHz

In this table and in subsequent usage, λair corresponds to the wavelength of the electric field at
the given source antenna frequency in air. Results from simulating this model are compared
against the analytical solution of wave propagation in air with the same source configuration.

The first successful wave-regime simulation using elfe3D GPR used the whole-space air model
of Table 5-1. The PML here uses the Exact reciprocal decay function 1 from Section 4-2-2.
All six components of the EM field Ex, Ey, Ez, Hx, Hy, Hz are obtained. For inference of the
results, I compare the Ex field component with the analytical solution for a homogeneous
medium, which can be found in David (2009) and Wait (2013).

Figure 5-1: Whole-Space Air Model: Amplitude and phase of the Ex component of EM field in
whole-space air from an x-directed dipole source. Cross-sections of the 3D domain
are taken at 0.01 m below the source, in x−y plane. (a) and (d) is from elfe3D GPR,
(b) and (e) shows the analytical solution, and (c) and (f) is the error of elfe3D GPR.

Figure 5-1 shows a 2-D cross-section of x − y plane located at 0.01 m below the source.
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The analytical solution is also evaluated in the same plane. The field values of elfe3D GPR

simulation are taken at centroids of each tetrahedra in the plane, and interpolated linearly
for plotting.

In the cross-sections of amplitude (Figure 5-1 (a)) and phase (Figure 5-1 (d)) belonging to my
simulation results, I have marked the inner PML boundary Γmodel using dotted lines, hence I
do not show that region in the analytical solution. Qualitatively, my simulation results look
reflection free and smoothly decaying in the simulation region. Moreover, the amplitude field
continues varying smoothly within the PML region as well, whereas the phase plot shows a
slight shift at x = ±5 where the PML starts, showing slight impedance error.

The evaluation of differences between elfe3D GPR results and the analytic results is done
using these specific measures:

1. Normalized Amplitude Error:
|Ex,elfe3D GPR − Ex,analytical|

|Ex,analytical|
, where |(·)| denotes tak-

ing the magnitude of a complex number.

2. Phase Error: ∠(Ex,elfe3D GPR)− ∠(Ex,analytical), where ∠(·) denotes taking the phase
of the complex number in radians.

In the amplitude error distribution (Figure 5-1 (c)), and for all subsequent results, a normal-
ized error of 1.0 corresponds to 100% error with respect to the analytical solution. Figure 5-1
(c) shows that error in the simulation domain is quite randomly scattered throughout the
domain, except for lines in the positive x − y region that correspond to receiver lines. This
near-random scattering indicates that the volume constraint used in this experiment dis-
cretizes the domain with large unstructured tetrahedra that have significant inter-element
discontinuities.

There is a region of high error near the source (in the center of the cross-section). This is
expected due to the fact that the model source is a finite length antenna (Table 5-1). On the
other hand, the analytical solution is evaluated with a Dirac delta source assumption. Most
importantly, an important factor to note is that there are no bands of high error near the
edges of the domain. This gives an indication that the PML is able to absorb outgoing waves
despite significant error in the complete domain of simulation.

The phase error plot (Figure 5-1 (f)) is also interesting. It shows that there are rings of
high error at regular spatial intervals. These correspond to areas where phase jumps from
+π to −π, which are expected from any finite discretization. From statistical analysis of the
distribution, the mean of phase error is at zero with a standard deviation of 0.53. This shows
that, just like amplitude error, the phase also suffers from insufficient discretization.

With this test, I demonstrate that elfe3D GPR can simulate wave propagation even with
insufficient discretization in homogeneous media.

5-1-1 Testing Decay Functions

After the success of the exact reciprocal decay function, I tested how well other decay functions
can perform with the same PML formulation. Figure 5-2 shows the same x − y plane cross
sections as in previous section, now with the first three alternative decay functions from
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(Section 4-2-2). I present the result of comparison between the two exact reciprocal decay
functions in Section 5-3-2, due to finer discretization used in the two-layered model. Before
Section 5-3-2, the Exact reciprocal decay function 0 is omitted, and hence, the exact reciprocal
decay function 1 is referred in this test and subsequent tests without its number.

Figure 5-2: Whole-Space Air Model: x−y plane cross-section at the origin, Ex field component
comparison of various PML decay functions γ.

Figure 5-3: Whole-Space Air Model: Ex field component along the endfire receiver line for
various PML decay functions γ.

Qualitatively, the exponential and the exact reciprocal decay functions are able to evaluate
wave propagation with a smooth decay without noticeable reflections. Out of all three of sim-
ulated test cases, the polynomial decay function struggles to effectively eliminate reflections
from the inner PML boundary, as is observable from the increased phase mismatch closer to
the inline boundary of the simulation domain (along ±x axis). Its phase cross-section also
shows that there is a lot of phase noise within the PML region, while the other two have less.
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This makes it clear that more tuning is required if the PML is to be used with the polynomial
decay function, while the Exact Reciprocal decay function required no tuning of parameters.

To quantitatively understand how well each decay function is performing, Figure 5-3 shows
the x component of the electric field over a line of receivers in the endfire direction, while
Figure 5-4 shows the exact error values in each field component. These receivers located
between 0.2 m to 4.8 m from the source, at 0.001 m below the source. There are 256 total
receivers, with equal spacing between them. The analytical solution is also evaluated at the
same coordinates such that no interpolation is required.

Figure 5-4: Whole-Space Air Model: Error in Ex field component along the endfire receiver line
for various PML decay functions γ.

Inspecting Figure 5-3 makes it clearer that the polynomial decay function gives the most
erroneous field values, while the others generally follow the same curve as the analytical
solution. This could be attributed to the fact that the polynomial decay function as mentioned
in Section 4-2-2 is orders of magnitude above the other two decay functions. This could cause
high impedance mismatch not only at Γmodel, but also within the PML, as is apparent in
Figure 5-2. For the real and imaginary components of Ex field, I use the following error
formulas:

1. Normalized Real Component Error:

∣∣∣∣Re(Ex,elfe3D GPR − Ex,analytical)

Re(Ex,analytical)

∣∣∣∣ , where

Re(·) denotes taking the real component of a complex number.

2. Normalized Imaginary Component Error:

∣∣∣∣ Im(Ex,elfe3D GPR − Ex,analytical)

Im(Ex,analytical)

∣∣∣∣ ,
where Im(·) denotes taking the imaginary component of a complex number.

The error in amplitudes for all decay function cases are higher near the end of the receiver
line, potentially from the increased unstructured meshing at the Γmodel interface. Otherwise,
between 1 and 3 metres, the magnitude of error in amplitude for exact reciprocal and ex-
ponential functions stay below 1e-2, or 1%. The phase, real and imaginary error plots all
show huge spikes in error at certain individual receiver sites. These can be likely attributed
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to the sharp phase discontinuities as seen before in Figure 5-1. Even still, the errors at these
sites are lower for exact reciprocal and exponential decays compared to the polynomial decay
function.

Concluding the testing with the whole-space air model, elfe3D GPR shows potential for
promising accuracy using the exact reciprocal decay or the exponential decays. For the
polynomial decay function, more tuning is necessary. For the exponential decay as well, tun-
ing was performed specifically for this whole-space model. Hence, further tuning is required
for geologically complex models. Consequently, the exact reciprocal decay function is used
in all subsequent simulations. This is to ensure I address the critical parts of the work with
sufficient rigor without over-engaging with PML tuning, when it is not necessary using the
exact reciprocal decay function.

5-2 Half-Space Model

The half-space model introduces the interface between air and earth. The source is kept
slightly above the air-earth interface, while the receiver points are slightly below it. It serves
as a simplistic geological test that introduces the effects from direct air-wave, direct ground-
wave, head-wave and propagating waves in air and earth. This model is insightful for initial
testing of various theoretical PML configurations for GPR models as well (Section 4-3).

Table 5-2: Simulation parameters for the base half-space model.

Model Parameter Specification

Category Variable Value Units

Domain Truncation Extents in x-axis [−3, 3] m
Extents in y-axis [−3, 3] m
Extents in z-axis [−1.5, 3] m

Air-Earth Interface Extents in x-axis [−3, 3] m
Extents in y-axis [−3, 3] m
z-axis value 0 m

Air Layer {εr, σ, µr} {1, 1e-16, 1} {−, S/m,−}
Maximum Element Volume 3.1820e-03 m3

Maximum Edge Length λair/10 m

Half-Space Layer Extents in x-axis [−3, 3] m
Extents in y-axis [−3, 3] m
Extents in z-axis [−1.5, 0] m
{εr, σ, µr} {4, 1e-4, 1} {−, S/m,−}
Maximum Element Volume 3.9775e-04 m3

Maximum Edge Length λ1/10 m

Source Antenna Dipole Direction +x-axis –
Extents in x-axis [−2.5, 2.5] mm
Fixed y-axis value 0 m
Height from Interface 2.5 cm
Source Moment Magnitude I 1 A/m2

Source Frequency 100 MHz
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Table 5-2: Simulation parameters for the base half-space model (continued).

Model Parameter Specification

Category Variable Value Units

Endfire Receiver Line Number of Receivers 256 –
Start and End x-values [0.2, 4.8] m
Depth from Interface 1.25 mm

Broadside Receiver Line Number of Receivers 256 –
Start and End y-values [0.2, 4.8] m
Depth from Interface 1.25 mm

Oblique Receiver Line Number of Receivers 256 –
Start and End x-values [0.1414, 3.3941] m
Start and End y-values [0.1414, 3.3941] m
Depth from Interface 1.25 mm

Here, λ1 corresponds to wavelength of the electric field at the given source antenna frequency
in the half-space medium. As mentioned before, to check the accuracy of elfe3D GPR’s
results, I am using two semi-analytical approaches, one since they evaluate the solutions
using numerical integration (Wait, 2013; Werthmüller, 2017). The quadrature approach was
implemented in MATLAB, and for empymod I used their 2001-point filter designed for high
frequency EM (Werthmüller et al., 2019).

Figure 5-5: Half-Space Model: Comparison of Ex field along CMP-like receiver line of empymod
with analytical solution. The data components are plotted in the first row and
empymod’s error with respect to analytical solution are plotted in the second row.

Both solutions in Figure 5-5 give very close estimates. The maximum errors in real and
imaginary components in empymod’s solution (Figure 5-5 (f,g)) are about 2 orders of magnitude
higher than the maximum error in amplitude (Figure 5-5 (e)). The maximum amplitude is
located near 4 m, where the absolute value is the lowest in the complete receiver line. Even
then, it is close to 1%. The phase values are also very accurate. This comparison between two
semi-analytical approaches is insightful to understand the numerical limits of estimating field
values. For further comparisons, I choose the quadrature method as the reference solution.
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5-2-1 Testing PML Wavenumber Approaches

Testing for the half-space model needs to begin with what wavenumber to use for scaling the
decay function (Section 4-2-3). Each different PML wavenumber scaling approach as men-
tioned in Section 4-2-3 requires a unique combination of material parameters, discretization
and scaling factor, as illustrated in Figure 5-6. These considerations are given in the table
below:

Table 5-3: Description of PML approaches for the base half-space model.

Approach kPML Used PML Thickness Max PML Element
Edge Length

Uniform kmin Stretch kair := k of Air λair/2 = 1.5 m λair/10

Uniform kmax Stretch khs := k of Half-Space λ1/2 = 0.75 m λ1/10

Varying Stretch kair Above Air-Earth
Interface, khs Below it

λ1/2 = 0.75 m λair/10 Above Air-
Earth Interface, λ1/10
Below

(a) Uniform kmax stretch, y-z
plane at origin.

(b) Varying stretch, y-z plane at
origin.

(c) Uniform kmin stretch, y-z
plane at origin.

(d) Uniform kmin Stretch, x-y
plane at origin.

Figure 5-6: Cross-sections of the half-space model for three PML wavenumber approaches.

As specified in Table 5-3, the uniform kmin stretch PML is the thickest one of the three
(Figure 5-6c). However, since it is also the coarsest, it has the lowest number of degrees of
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freedom of the three cases. The uniform kmax stretch approach (Figure 5-6a) has the most
dense PML, due to the transition between coarse air region and dense uniform PML. The
varying stretch PML has the same thickness as the uniform kmax PML (Figure 5-6b), and
its tetrahedra volumes are constrained depending on the layer next to the PML. I did not
choose a greater thickness for the varying stretch as with Figure 5-6c, due to its mesh having a
prohibitively high number of DOFs in the PML relative to the other two wavenumber scaling
approaches.

After simulating all test cases using the half-space model described in Table 5-2, the corre-
sponding semi-analytical analytical solutions were generated. The endfire receiver-line curves
for the Ex field data from the different approaches is shown in Figure 5-7. In Figure 5-8, the
corresponding elfe3D GPR errors are illustrated with respect to the semi-analytical reference.
The receiver line is restricted to a length of 1m to emphasize the region of interest near
the source antenna, which is characteristic of common-offset (CO) ground-penetrating radar
(GPR) acquisition at 100 MHz.

Figure 5-7: Half-Space Model: Testing Wavenumber approaches, within CO-like distances.
Comparison of Ex field along with the two semi-analytical solutions.

It is clear that none of the approaches produce outright outliers compared to the semi-
analytical solutions, except a phase shift at one receiver site by the uniform kmax stretch
solution. Moreover, empymod’s solution matches the analytical solution very well and they are
essentially overlapping.

Figure 5-8 shows that the best performing wavenumber approach appears to be uniform
stretch with kmax being used as the scaling factor with the decay function. Its maximum
error for the amplitude is at 0.1 m, of value 2.9%. It’s average amplitude error is quite low,
at 0.96%, with a standard deviation of 0.68%. While it is also the only one with a noticeable
phase shift compared to analytical solution, it is only one receiver out of the 48 where the
arbitrarily high phase error exists which I have clipped out for easier inference. As in Figure 5-
1, this is due to an error in the sharp jump in phase, which is acceptable due to the finite
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sizes of the field evaluations. The second best results are from the varying stretch approach,
with a maximum of 5.46% error, mean of 1.16% error and standard deviation of 1.07% error.
The uniform stretch with kmin has a maximum of 11.65% error, with a mean error of 2.56%
and a standard deviation of 2.68%.

Figure 5-8: Half-Space Model: Error for Wavenumber approaches in the Ex field data, within
CO-like distances.

Figure 5-9: Half-Space Model: Testing Wavenumber approaches, with CMP-like distances.
Comparison of Ex field along with the two semi-analytical solutions.

It is also worth noting that except for numerical percent advantages in amplitude, there is
no clear best performing approach for the complete receiver line. In an attempt to identify
this with a more extreme simulation domain, I repeat the same experiment with a longer
receiver line corresponding to Common Midpoint (CMP) like acquisition distances, with its
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result shown in Figure 5-9. This corresponds to longer extent in the x-axis direction, now
going from -3 to 5 m, while 256 receivers lie between 0.2 and 4.8 m.

The error at distances greater than one meter are very high for the uniform air-like stretch,
with a maximum amplitude error of 47.81%. The other two methods maximize at close to
11% amplitude error with average error of around 2.75 %. The uniform earth-like stretch
approach performs the best here as well, with quite low errors around 2.5 to 3.5 metres.
All combined, these results particularly indicate that numerical dispersion is affecting the
simulation results, intensifying more the longer the wave propagates as it travels away from
the source.

It should also be noted here that several different configurations of PML thickness, source
length and receiver depths, x, y, z extents were tested here before the base model was decided
upon. A box of much finer discretization around the source and receiver line was also tested
in effort to improve the solution accuracy without considerable improvements. However, that
method failed due to worsening of mesh quality from the box bringing worse structure to the
mesh. Ultimately, the base model represents the best set of parameters that I found when
the mesh elements were constrained to a maximum edge length of λmedium/10, as per the
medium in the simulation domain and the PML approach (Table 5-3).

With the half-space model, it is made clear that the wave propagation from all various air-
earth interface effects can be captured effectively with uniform kmax stretch PML approach.
However, comparing my PML thickness to ones implemented by (Ozgun et al., 2023; Warren,
Giannopoulos, & Giannakis, 2016), it is clear that my PML is much thicker in terms of
wavelength of the wave at centre frequency in air. Since no iteration of this model has
allowed me to have a similarly thin PML, for testing with two layered model below, I use a
finer discretization of λmedium/20. Since an adequate performance has been achieved with the
half-space model using the uniform kmax approach, it is not necessary to test it further.

5-3 Two-Layered Model

To make elfe3D GPR truly applicable for all GPR problems where multiple geophysical layers
and anomalies exist, this two-layered model is extensively tested. It helps identify more subtle
considerations that must be made for accurate results with more general geological models.
The model’s parameters are described in Table 5-4.

Table 5-4: Simulation parameters for the base two-layered model.

Model Parameter Specification

Category Variable Value Units

Domain Truncation Extents in x-axis [−0.3, 1.3] m
Extents in y-axis [−0.3, 0.3] m
Extents in z-axis [−1.1, 0.3] m

Air-Earth Interface Extents in x-axis [−0.3, 1.3] m
Extents in y-axis [−0.3, 0.3] m
z-axis value 0 m
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Table 5-4: Simulation parameters for the base two-layered model (continued).

Model Parameter Specification

Category Variable Value Units

Air Layer {εr, σ, µr} {1, 1e-16, 1} {−, S/m,−}
Maximum Element Volume 3.1820e-03 m3

Maximum Edge Length λair/20 m

Subsurface Layer 1 Extents in x-axis [−0.3, 1.3] m
Extents in y-axis [−0.3, 0.3] m
Extents in z-axis [−1.0, 0.0] m
{εr, σ, µr} {4, 1e-4, 1} {−, S/m,−}
Maximum Element Volume 3.9775e-04 m3

Maximum Edge Length λ1/20 m

Subsurface Layer 2 Extents in x-axis [−0.3, 1.3] m
Extents in y-axis [−0.3, 0.3] m
Extents in z-axis [−1.1,−1.0] m
{εr, σ, µr} {9, 1e-3, 1} {−, S/m,−}
Maximum Element Volume 1.1785e-04 m3

Maximum Edge Length λ2/20 m3

Source Antenna Dipole Direction +x-axis –
Extents in x-axis [−2.5, 2.5] mm
Fixed y-axis value 0 m
Height from Interface 2.5 cm
Source Moment Magnitude I 1 A/m2

Source Frequency 100 MHz

Endfire Receiver Line Number of Receivers 256 –
Start and End x-values [0.2, 4.8] m
Depth from Interface 1.25 mm

Here, λ2 corresponds to wavelength of the electric field at the given source antenna frequency
in the second subsurface layer. Similar to half-space model validation, for this two-layered
model, I use the semi-analytical quadrature solution for reference.

The most interesting aspect to test with this model is how well reflections at material bound-
aries in the subsurface is captured by elfe3D GPR, and how thick should the second layer
be before the PML can be safely placed. Since the two layered model is closer to general
subsurface conditions for GPR than the half-space model, I am also presenting more of the
testing around truncation and source-receiver sizes.

5-3-1 Re-Testing PML Wavenumber Approaches

With the now smaller domain and much finer discretization of maximum edge length of
λmedium/20, I re-tested the different PML approaches for the base two-layered model, with
the adjusted parameters described in Table 5-5, and their resulting simulation mesh illustrated
in Figure 5-10.
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Table 5-5: Description of PML wavenumber approaches for the base two-layered model.

Approach kPML Used PML Thickness Max PML Element
Edge Length

Uniform kmin Stretch kair λair/10 = 0.3 m λair/20

Uniform kmax Stretch k2 := k of Subsurface
Layer 2

λ2/10 = 0.1 m λ2/20

Varying Stretch kair Above Air-Earth
Interface, k1 Laterally
Around the first sub-
surface layer, and k2
below it.

λ2/10 = 0.1 m λmedium/20 depending
on medium of the PML
element

(a) Uniform kmax stretch model,
z − x plane at origin.

(b) Varying stretch model, z − x
plane at origin.

(c) Uniform kmin stretch model,
z − x plane at origin.

(d) Uniform kmin stretch model,
y − x plane at origin.

Figure 5-10: Cross-sections of two-layered models with different wavenumber approaches as de-
scribed in Tables 5-4 and 5-5.

With the new finer discretization, there are significantly more elements per wavelength of the
field. All of Figures 5-10a to 5-10c models are much smaller now compared to the models in
haf-space (Figure 5-6), even in z-axis extents. Laterally, the model now is now not much more
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than a strip of receiver line surrounded by the PML, as seen in Figure 5-10d and compared
with Figure 5-6d. Hence, this allows to lower the degrees of freedom by a factor of around 9
times compared to the half-space model even though the subsurface layer 2 is included which
has finer discretization than the discretization in the half-space (Tables 5-2 and 5-4).

Figure 5-11: Two-Layered Model: Testing Wavenumber approaches, with CO-like distances.
Comparison of Ex field along with the reference semi-analytical solution with field
values in the top row and error in each approach in the bottom row.

Figure 5-11 shows the with this two-layered model, the uniform kmin stretch approach works
better than the uniform kmax stretch approach, where the kmax approach is more inaccurate
in amplitude plot (Figure 5-11 (e)), but significantly more so in real (Figure 5-11 (g)) and
phase (Figure 5-11 (g)) plots. The clear worst performing approach here is with the varying
stretch approach. Its real error plot is more than one order of magnitude worse (Figure 5-
11 (f)), and its phase plots (Figure 5-11 (d,h)) show that it is unable to capture the wave
propagation at all. This model proves clearly what Bérenger (2007) said about layered model
PML (Section 4-2-3).

The PML approach with uniform stretching using kmin indeed shows great performance, with
maximum amplitude error of 3.96%, an average of 0.80% along the receiver line, and standard
deviation of just 0.65%. The discrepancy between kmax’s superior results in the half-space
model and kmin’s results in the two-layered model can be attributed to the lower discretization
used in the half-space model. The kmax approach makes sure that the entire PML domain
is finer in discretization compared to wavelength in air, like in Figure 5-6. Moreover it has
smoother gradients since the larger denominator makes the amount of stretch lesser. The
increase in sampling from finer discretization is also more beneficial for impedance matching
compared to a relatively coarse discretization. It also allows the higher gradient scaling of
kmin to be accurately captured.

With this finer discretization, even though the discretization of PML region itself is coarser
with larger domain in the kmin approach, the improvement between λmedium/20 versus
λmedium/10 sampling allows more physically accurate wave propagation and absorption. This
is further proven by how much smaller the domain and PML are now compared to the half-
space model (Tables 5-3 and 5-5). Now, I can safely keep the PML at λair/10 ≈ 0.3 m away

August 4, 2025



5-3 Two-Layered Model 51

from the source. It is, therefore, absorbing the near field as well as the the propagating
wavefront.

5-3-2 Testing the Two Exact Reciprocal Decay Functions

The question still remains whether the exact reciprocal decay function should start with zero
at Γmodel, or if a start from a finite value works (Section 4-2-2). To address this, I simulate
both options of the exact reciprocal decay function using the two-layered model of Table 5-4
with uniform kmin scaling.

Figure 5-12: Comparing the error between the two exact decay functions.

It is interesting to note from Figure 5-12 that the exact reciprocal decay function starting
with a finite value shows better agreement to the analytical solution, than the decay function
starting with zero at Γmodel. This is unexpected behavior, because an abrupt increase in
complex stretching could create numerical reflections. Yet, the result from Figure 5-11 clearly
shows that using the exact decay function with finite start performs well. One possible
explanation could be that due to function 1’s larger attenuation values versus function 0 from
the absence of 1/l term (Section 4-2-2), it effectively decays outgoing waves within the PML
region without creating numerical reflections back into the model domain. Whereas, due to
the lower attenuation values in function 0, even if the impedance is better matched at the
start of PML region, non-trivial numerical reflections happen at Γtotal and reach the model
domain to create errors.

Moving forward with the tests, I choose to continue using the un-modified exact decay function
as used by Ding et al. (2025) and Feng, Ding, and Wang (2019).
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5-3-3 Testing Broadside Response

Most of my tests in this thesis considered the endfire response. However, broadside response
is a crucial component of GPR imaging. Hence, in this test, I model the broadside response in
Figure 5-13 using the same two-layered model of Table 5-4, with the exception that the dipole
is oriented in +y-axis direction. This required re-meshing the domain to align the elements
near the source region as per the new dipole direction.

Figure 5-13: The two-layered model broadside Ex field.

As expected, the broadside field is also being captured well by the same parameters as the
uniform stretch kmin approach (Table 5-5). The error range in amplitude and phase (Figure 5-
13 (e,h)) are comparable to the range of error obtained in the corresponding endfire response
(Figure 5-11(e,h)) with the uniform kmin approach. Hence, it is be inferred that the PML
designed and discretization approach is not specific to angular orientation.

With the combination of tests in Sections 5-3-1 to 5-3-3, I have illustrated how well the exact
PML implementation with kmin performs for layered media, with a very small domain and
λ/20 maximum tetrahedral edge lengths. Now, I conduct parametric testing of key modelling
parameters to check their influence on accuracy.

5-3-4 Testing PML Thickness

This set of tests uses the same base two-layered model (Table 5-4), while varying only the
PML’s thickness defined as λair/ft, where ft is a thickness factor number in range [10, 25].
Figure 5-14 shows error statistics of these simulations as a function of PML thickness.

From all four field components in Figure 5-14, it is apparent that the general trend is of
increasing error with reducing PML thickness. Interestingly, the minimum of amplitude error
is not at PML of thickness λ/5, rather at λ/10, albeit the difference is small. Such differences
could be attributed how tetgen generated mesh are not simply adding more structured blocks
to the existing PML, rather the elements are re-defined for each new PML. Therefore, the
mesh quality is not linearly increasing with more elements.
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Figure 5-14: Two-Layered Model: Errors in Various PML Thicknesses λair/ft.

In PML thinner than λ/10, the error in all four plots increases, until it reaches λ/22.5.
It is possible that numerical dispersion or improper absorption experienced in the thinner
PMLs somehow got destructively interfered using the λ/22.5 thick PML. Unfortunately, this
is an outlier to the general trend, and hence, should not be used as a good choice for PML
thickness. Moreover, plotting the maximum error in phase is not needed because it will always
be a value close to 6 owing to the sharp phase shifts from −π to π or vice versa as was the
case in Figure 5-4.

5-3-5 Testing Source Discretization

This set of tests uses the same base two-layered model (Table 5-4), while varying only the
source length and the receiver triangle edge lengths by the same factor fsr, where fsr is
a discretization factor in the range [100, 500]. Figure 5-15 shows error statistics of these
simulations as a function of source and receiver discretization.

Most source and receiver discretization options appear to have good agreement with the an-
alytical solution, as is apparent from the mean and standard deviations in all four aspects of
field values. However, the maximum error in amplitude follows a nearly steady decline, with
close minima at λ/250 (4.43%) and λ/500 (3.96%). However, the real and imaginary maxi-
mum error trends do not follow any apparent pattern. This implies that any discretization
factor higher than 250 could be a valid choice if modelling a point source. The mesh quality
a and hence the simulation accuracy could vary differently for different geological models.
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Figure 5-15: Two-Layered Model: errors in various source and receiver discretization, varied by
factor fsr.

5-3-6 Testing Domain Truncation

This set of tests uses the same base two-layered model (Table 5-4), while varying only the
x and y axes extents, which define the distance from the source antenna’s midpoint and the
farthest receiver to the PML boundary. The truncation distance is set as λair/fxy, where fxy
is a truncation factor varied in the range [10, 25]. For each value of fxy, the x-axis extent is
adjusted so that the space between the source midpoint and the nearest PML boundary, as
well as the space between the farthest receiver and its nearest PML boundary, is λair/fxy.
The y-axis extents are changed proportionally using the same factor. All other parameters
are kept the same as in Table 5-4. Figure 5-16 shows error statistics of these simulations as
a function of the domain truncation factor.

The amplitude, phase and real component plots show closely linear increase in error as the
domain is shrunk around the source and receivers. This could imply that making the domain
too thin makes it lose valuable wave propagation information. Hence, for usage with different
models, it should be tested parametrically how much extent is required for sufficient accuracy.
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Figure 5-16: Two-Layered Model: errors in domain truncation options, varied by factor fxy.

5-3-7 Testing Thickness of Second Layer

This set of tests uses the same base two-layered model (Table 5-4), while varying only the
thickness of the second subsurface layer, defined as λ2/fz, where fz is a thickness factor varied
in the range [1, 20]. Knowing this could be very useful for limiting DOFs, since the region
below the lowest geological interface is not of significant interest. Figure 5-17 shows error
statistics of these simulations as a function of the second layer’s thickness.

Figure 5-17: Two-Layered Model: Errors from Varying Thickness of Second Layer, varied by
factor fz.
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Upon inspection, there seems to be no apparent pattern to how thin the second layer can be.
Amplitude errors are nearly oscillating from low error to high error between each thickness
option. Phase and imaginary component errors are nearly constant, and real component
error is at its lowest at the thickest and the thinnest options. With such ambiguity, factor fz
should be carefully chosen by testing a few different options before finalizing the accuracy of
elfe3D GPR’s results.

5-3-8 Testing Wideband Capability

elfe3D was designed to simulate multiple frequencies with the same mesh. This could be
inconvenient for wideband simulation if the sampling factor of λmedium/x, ∀x > 10 is not
satisfied for any frequency in the band of frequencies with a sufficiently thick PML. Hence, to
test how accurately the wideband simulations could be conducted, I simulate the two layered
model response for frequencies 50 MHz and 150 MHz. This choice comes from the choice of
-3dB bandwidth from a centre frequency of 100 MHz. I simulate these frequencies using two
different simulation mesh each. One, the Base Mesh (Table 5-4) only changing the source
frequency. Two, a Frequency Specific Mesh scaled in mesh volume constraint, source
length, buffer space around source and receiver line before reaching PML, and PML thickness
based on the frequency.

(a) 100 MHz Base Mesh
(b) 50 MHz Specific

Mesh
(c) 150 MHz Specific

Mesh

Figure 5-18: Two-layered models for different frequencies, y − z cross-sections.

From the cross-section images of the models in Figure 5-18, it is clear that the 50 MHz
specific mesh has a biggest domain and PML mesh, due to larger wavelength (Figure 5-18b).
However, the wavelength allows us to correspondingly relax mesh element volumes compared
to 100 MHz (Figure 5-18a). For 150 MHz, it is the exact opposite, with a thinner domain
and PML, but denser mesh (Figure 5-18c). All three mesh illustrated here have nearly the
same order of number of DOFs, ranging between 3e5 and 4.5e5.

From the 50 MHz endfire simulation results in Figure 5-19, it is evident that the base mesh
that originally worked well for 100 MHz produces inaccuracies in the simulation for 50 MHz.
On the other hand, the custom mesh follows the analytical curve well, which is expected.
While this is contrary to what should be observed with oversampling from the base mesh,
the PML is simply not thick enough for 50 MHz which was sufficient for 100 MHz. This is
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similar in effect to what I observed in Figure 5-14, where PML of thickness less than λ2/15
give much higher errors, except the outlier.

Figure 5-19: Two-Layered Model: 50 MHz endfire response of the Ex field and its error with
respect to the semi-analytical quadrature solution.

The errors in field components along the receiver line give a clearer insight. The amplitude
error for the custom mesh has a much lower average, especially in the second half of receiver
line. Its maximum, mean and standard deviation of error are 5.00%, 1.23% and 1.13% re-
spectively. Compared to this, the base mesh shows higher error along the receiver line overall,
even though at the beginning it is not the case. Its maximum, mean and standard deviation
of error are 5.92%, 2.76% and 1.81& respectively. More importantly, the custom mesh has
much lower error in all of phase, real and imaginary components of the x component of the
electric field.

I now repeat the experiment with 150 MHz using the base mesh (Figure 5-18a) and the
150 MHz-specific mesh (Figure 5-18c). From inspecting Figure 5-18c it appears that both
simulations follow the analytical solution well. The base mesh does seem to generate a
noticeable phase error at one receiver value, otherwise the solution for base mesh is not as
clearly worse as it was for 50 MHz.

Here, the difference in amplitude error is not significantly different for both mesh. The custom
mesh has maximum error of 4.15% with a mean of 2.82% while the base mesh has a maximum
of 6.13 percent error with a mean of 1.90%. Hence, the custom mesh is still better, due to
better discretization and a thinner but denser PML that is adjusted to its frequency. There
are few high error locations in real and imaginary components that cause the phase errors, but
otherwise, the remaining receivers do not have significant difference from analytical solution.
This lower difference in error could be attributed to the thicker PML that is used in 100 MHz,
even with coarser discretization.
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Figure 5-20: Two-Layered Model: 150 MHz endfire response of the Ex field and its error with
respect to the semi-analytical quadrature solution.

Overall, wideband simulation with elfe3D GPR is clearly possible. Understandably, for the
limits of a wide band of frequencies, error with only one mesh designed for centre frequency
of the band gives higher error than re-meshing the domain. However, errors from this base
mesh is not exceedingly high such that completely new mesh will need to be generated for
each individual frequency of interest in the wide band. Similar to my approach, three or so
different mesh could be generated for across the spectrum, and the complete band could be
divided into corresponding range of frequencies that are simulated using these mesh. Another
approach could be to perform a few refinement steps with a PML thick enough that can
accommodate the complete frequency band, if re-sized and re-meshed domains are not feasible
due to memory constraints.

5-3-9 Testing Anomaly Detection

For an anomaly detection test, a slightly simplistic approach has been chosen. An anomalous
box is embedded into the two-layered medium itself. The choice to choose a two-layered
medium instead of half-space for the anomaly simulation is due to the fact that significantly
higher amount of testing has been done on the two-layered model which would assure me of
good accuracy of the model discretization and PML choices to compare against.

The anomaly has a relative permittivity of 20, and resistivity of 1e-4. It is embedded into
the first layer, between depths 0.5 m and 0.9 m from the air-earth interface, and x-extents of
(0, 0.375)m and y-extents of (−0.15, 0.15)m. Since I did not have access to an alternative 3D
frequency-domain solver, the receiver line plot is directly shown relative to the semi-analytical
solution of the two-layered medium in Figure 5-21.
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Figure 5-21: Comparing the anomaly Ex field with respect to the base two-layered model Ex

field in endfire orientation.

(a) Anomaly model: Amplitude
cross-section

(b) Base model: Amplitude
cross-section

(c) Anomaly model: Phase
cross-section

(d) Base model: Phase cross-
section

Figure 5-22: Comparison of cross-sections between the anomalous and normal two-layered mod-
els: (a) amplitude with anomaly, (b) amplitude without anomaly, (c) phase with
anomaly, (d) phase without anomaly. The horizontal black lines are marked to
show the air-earth interface and the subsurface layer interface, and the black ar-
rows point to the field distribution around the anomaly.

The amplitude and imaginary components of the anomalous subsurface response in Figure 5-
21 deviate very slightly compared to the base two-layered model response. The real and
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the phase components of the Ex field show the most apparent change in comparison to the
analytical solution.

To visually inspect what the field distribution looks like and if the anomaly produces reflec-
tions, I have taken x−z plane cross-sections at origin of two simulations: the base two-layered
model response from Figure 5-11 and table 5-4, and the anomalous subsurface model response.
They have the same uniform kmin scaling of the exact decay function. Between Figure 5-22a
and Figure 5-22b, the anomalous body is clearly visible with a sharp change in amplitude
of the field around it at the exact coordinates of the anomalous box placement. Similarly,
between Figure 5-22c and Figure 5-22d, the phase shift is observable along the vertical of
the anomalous body. Both of these changes in Figure 5-22 indicate that the presence of
the anomalous body has been captured well. Moreover, there is no observable numerical
dispersion here.

5-4 Discussion on Capabilities of elfe3D GPR

5-4-1 Establishing a Working PML

The first step towards a successful GPR simulation has been to establish a working PML
implementation in the code of elfe3D GPR. From whole-space air tests (Section 5-1-1), I
established that the U-PML with the exact reciprocal decay function to be the best performing
PML that requires no tuning at all to work well for homogeneous models. The exponential
decay function gives a similar performance as the exact reciprocal decay function, but it
requires tuning of the parameter a (Section 4-2-2). For all subsequent tests, I used the exact
decay function using the U-PML. Comparison between the zero and non-zero iterations of
the exact decay function (Section 4-2-2) using the two-layered model (Section 5-3-2) show
interesting implications of the scaling factor and the amount of attenuation. Apart from
Section 5-3-2, the exact reciprocal decay with non-zero minimum attenuation has been used
throughout the thesis.

5-4-2 Half-Space Model and Element Edge and Volume Constraints

With the working PML, I have tested the influence of presence of synthetic subsurface layers
in the simulation model. Here, the strategy has been to simulate various alternate choices
of the wavenumber that are required to scale the decay function (Equation (4-10)). Starting
with the half-space model and a maximum tetrahedral edge length of λmedium/10, I concluded
that this discretization factor was insufficient in accurately determining the right wavenumber
choice.

One, due to the discretization factor, it was essential to use a very large domain, equal to at
least one wavelength of the source frequency in both media of the model in all three dimensions
(Table 5-2). This, I attribute to the need for coarser discretization to have minimum near-
field effects such as evanescent waves before reaching the inner PML boundary. This misled
me to infer that the best wavenumber approach to be of uniform kmax to efficiently absorb
the outgoing waves. It is the thinner PML compared to the kmin approach (Table 5-3), but
has uniformly halved edge length constraint. This success of kmax is due the fact that the
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decay functions γi are inversely proportional to wavenumber, and that kmax > kmin. This
means kmax causes lower attention compared to kmin per meter. Combined with the fact
that the higher wavenumber requires finer mesh to discretize, the PML was more capable of
absorbing outgoing waves compared to the other two approaches due to kmax approach having
the smoothest gradients for capturing the decay function in the PML region.

Two, it also became necessary to use a very thick PML of λair/2 to get sufficient absorption.
With the successful reported use of exact decay functions (Ding et al., 2025; Feng, Ding, &
Wang, 2019; Ozgun et al., 2023), the PML have been extremely thin, of order λair/10, it was
an insightful indication of the requirement for finer discretization.

5-4-3 Two-Layered Media Simulation and Wavenumber Scaling Approaches

This is established concretely from the test performed of the two-layered model and a max-
imum tetrahedra edge length of λmedium/20. With the Section 5-3-1 group of simulations, I
have been able to use a much thinner PML (λair/10) and much smaller domain compared
to the half-space model (Table 5-4 and fig. 5-10). Here, it is evident that the wavenumber
approach of uniform kmin stretch is the best performing PML, while the uniform kmax ap-
proach performs relatively worse. Even though the PML thickness used for kmin approach
is larger than that of kmax approach (Table 5-5), due to coarser discretization required for
sampling air-like stretch, the number of DOFs in kmin PML is smaller than that of kmax PML,
making it more resource-efficient. The varying wavenumber approach performs the worst out
of the three approaches, which is expected due to the mismatch in stretching that this en-
forces between the layers within the PML. Hence, the requirement of same stretch scaling as
mentioned by (Bérenger, 2007) holds true.

5-4-4 Parametric Testing of Modelling Choices for Unstructured 3D Domains

Using this complete version of PML - with a combination of U-PML implementation in 3-D
cartesian coordinates using the exact reciprocal decay function and a uniform wavenumber
scaling of kmin - I conduct parametric tests of various simulation parameters. Testing for PML
thicknesses (Section 5-3-4) progressively smaller than λair/10 indeed proved that it is unable
to sufficiently capture the high gradients of the exact decay function to absorb all outgoing
waves. Testing the source and receiver edge lengths progressively smaller (Section 5-3-5)
also proved that for a point source approximation, the smaller edge lengths would estimate
the field values with higher accuracy. Testing how thin the x and y extents can be before
the PML is placed (Section 5-3-6) showed that a length of λair/10 is sufficient between the
source and the inner PML boundary, and that a smaller simulation domain is not able to
capture wave propagation in the near field well. Testing of the depth of the last layer below
the lowest interface is more interesting (Section 5-3-7). It shows that there is no simple
relationship between this thickness, and accuracy of the results, hinting at the limitations of
the unstructured nature of mesh. Hence, different models will require different thicknesses of
the final subsurface layer for good accuracy.
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5-4-5 Wideband Simulation Capability and Constraint

For wideband testing, I simulated 50 MHz and 150 MHz using two approaches (Section 5-
3-8). Here, I am able to prove that with a proper mesh directly designed for their specific
frequencies, the simulation produces accurate results. With the same mesh as I used for 100
MHz, I get worse results for both ends of the spectrum (Figures 5-19 and 5-20). However, the
difference between the custom mesh and the base mesh estimates for amplitude is not very
high. With 150 MHz, the discretization of the base 100 MHz mesh limits accuracy. On the
other hand, for 50 MHz, the PML thickness, more than discretization, is the limiting factor.
These are both expected, as I have also established from the parametric testing of the 100
MHz mesh.

5-4-6 Anomaly Simulation

Finally, for anomaly detection characteristics, I simulated the base two-layered model with an
embedding of an anomalous box of higher permittivity relative to the first subsurface layer.
It is placed in the first subsurface layer, hence the contrast in material parameters is only
in relative permittivity. From comparison with the semi-analytical solution of two-layered
medium along endfire receiver line and 2D cross-sections of field distributions (Figures 5-21
and 5-22), it is apparent that the anomaly does produce reflections in the domain. However,
for quantitative understanding of accuracy of the solution, a more comprehensive approach
needs to be made.

5-4-7 Overall Capability of elfe3D GPR

All considered, elfe3D GPR is able to successfully simulate GPR forward problems of layered
media, with an indication that anomalous subsurface models should be accurately modelled
as well. The parametric testing shows that efficient domain truncation is also possible. This
proves the effectiveness of my implementation of the PML using the exact decay function
and the complex wavenumber scaling. The domain truncation and other parametric results,
and the specific wideband tests show good potential for efficient frequency-domain wideband
GPR simulations in 3D. Especially considering the parallelization that comes with frequency-
independent simulations, and frequency-specific meshing strategies that exist, elfe3D GPR is
ready for simulating complex GPR forward and inverse problems.
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Chapter 6

Conclusions and Future Work

In this thesis, I have worked on the development of elfe3D GPR for modelling the 3D wide-
band GPR forward problem in frequency-domain. This has been motivated by the fact that
there are several frequency-domain specific forward modelling and inversion strategies that
uniquely make use of frequency-domain characteristics of EM wave data. Throughout the
development of elfe3D GPR, I worked on modification of a CSEM diffusive-regime simulation
program, elfe3D, to a GPR wave-regime simulation program. I used elfe3D’s implementa-
tion of first-order edge-based Nédélec basis 3D FEM on unstructured mesh as the foundation
on which I developed elfe3D GPR. Hence, relevant differences between CSEM and GPR mod-
elling schemes using local methods such as FEM were first highlighted, which allowed me to
implement the proper BVP for GPR wave simulation.

To efficiently truncate the GPR simulation domain, an absorbing PML boundary has been
studied and implemented. The U-PML formulation has been implemented into elfe3D GPR

using an exact decay function, and tested for layered and anomalous subsurface. The use of U-
PML and exact reciprocal decay function proved to be the most efficient method for absorbing
boundary implementation, requiring no tuning of hyper-parameters that are characteristic of
conventional decay functions. Moreover, key parameters of discretization and truncation
have been parametrically studied for their effect on accuracy of results. It is found that using
λmedium/20 large elements edge length is a must for accurate GPR modelling in 3D, with the
added advantage of being able to use a very thin PML of λair/10 and possibly thinner. The
exact decay function allows a very remarkable absorption profile, even with the PML placed
very close (λair/10) to the source and receivers. This has allowed very efficient modelling of
2.5D layered models, and an anomalous synthetic test case, using the kmin scaling approach
to PML definition.

For wide-band capability testing, testing with 50 MHz and 150 MHz sources was conducted
on two meshes. One was the same two-layered model as used for 100 MHz, as well as a custom
model re-scaled and re-meshed for each frequency. While the custom mesh performed very
well, the base two-layered model still gave reasonable accuracy. This implies that wide-band
simulations in frequency-domain should not require extensively prohibitive re-scaling and re-
meshing for each sampled frequency in the complete spectrum of frequencies. Only a few well-
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chosen frequencies to design the mesh will be needed. During my work on converting elfe3D

into elfe3D GPR, few difficulties were encountered during PML implementation. Primarily,
there were difficulties in implementing a SC-PML with first-order tetrahedral edge-based FE
which has been mentioned.

In conclusion, the wide-band capable 3D GPR forward simulation code of elfe3D GPR in
frequency-domain with U-PML and exact decay function will serve as a strong foundation
for advancing wide-band GPR modeling in frequency-domain. Hence, a large scope of future
work exists. First and foremost, more realistic geophysical model tests should be performed
for benchmarking performance along with adaptive refinement. In terms of user-friendliness
of elfe3D GPR, its high-performance Fortran forward solver can be wrapped into a Python or
Julia environment along with mesh generation from tetgen, or possibly other software, for
seamless GPR modelling experience for users. Extending elfe3D GPR to include a dedicated
wide-band re-meshing algorithm would be the first step in improving its usability for more re-
alistic wide-band GPR simulations. Moreover, domain decomposition strategies designed for
different bands of frequency in the wide-band can be implemented in elfe3D GPR to further re-
duce computational cost. More significantly, elfe3D GPR’s workflow needs only to be coupled
with an optimization code for performing inversions. Hence, frequency-domain full-waveform
inversions in 3D for wide-band GPR is now possible to implement using elfe3D GPR.
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mal perfectly matched layer for higher order curvilinear finite-element modeling. IEEE
Transactions on Antennas and Propagation, 65 (12), 7157–7165. https://doi.org/http:
//dx.doi.org/10.1109/TAP.2017.2759839

Sun, S., Kooij, B. J., Jin, T., & Yarovoy, A. G. (2017). Cross-correlated contrast source
inversion. IEEE Transactions on Antennas and Propagation, 65 (5), 2592–2603. https:
//doi.org/http://dx.doi.org/10.48550/arXiv.1906.10864
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Appendix A

Attempted Implementation of the
CS-PML

To attempt implementation of the CS-PML, I derived the altered stiffness and mass matrices
of elfe3D GPR that apply in the PML region only, considering the choice of first-order Nédélec
basis functions.

I used the works from (Jin, 2015; Jin & Riley, 2008; Ozgun et al., 2023) to derive the changes
I need to implement for this. From (Jin & Riley, 2008), the coordinate stretching manifests
as a change in the differential operator ∇ to ∇̃, where ∇̃ is defined as:

∇̃ =
1

sx

∂

∂x
x̂+

1

sy

∂

∂y
ŷ +

1

sz

∂

∂z
ẑ. (A-1)

Here, si ∀ i ∈ {x, y, z} are stretching factors in the direction of the respective coordinate axis.
These are defined by the expression:

si = 1− j
γ(i)

ωε
i = x, y, z; γ(i) > 0 (A-2)

where γ(i) defines the amount of stretch, ω is the angular frequency of simulation, and ε here
is the permittivity of the background medium. This form is specifically chosen to ensure:

1. The imaginary component of si is always negative, which ensures for the e+jωt conven-
tion that the wave is attenuated in the PML region (Jin & Riley, 2008).

2. The scaling by ωε ensures that the decay factor (not the stretching function) is frequency
independent.

It is to be noted that I was implementing this version of PML before considering the changed
PDE Equation (3-11). This PML was designed to work with the original PDE in Equation (3-
4a).
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To define γ(i), I used a modification of the formulation from (Ozgun et al., 2023). Their
original formulation is designed for a spherical PML in non-geological context. Their stretched
coordinates looks like:

r̃ = r− j
γ(δ)

k
n̂(δ), (A-3)

where r is the original position vector of any node in the mesh, r̃ is the new position vector that
is stretched, k is the complex wavenumber, γ(δ) is the decay function they choose, equivalent
to γ(i) in the previous interpretation except γ(δ) applies to spherical coordinates, and n̂ is
the unit normal vector to the boundary. γ(δ) is defined as:

γ(δ) = − log(1− δ), (A-4)

δ =
||r− rin||
||rout − rin||

, (A-5)

where rin and rout are the position vectors to the inner and outer boundaries of the PML
region from origin, respectively. The position factor δ has a range of [0, 1]; zero at the inner
PML boundary and one at the outer PML boundary. This ensures that the stretching γ(δ)
is maximum at the outer PML boundary, tending to +∞ and minimum at the inner PML
boundary starting from zero. Doing this ensures matching the impedance at the inner PML
boundary to the medium. Due to γ(δ) having a range of [0,+∞) in any given thickness of
the PML, it corresponds to an Exact PML, with continuously varying attenuation for the
PML region effectively acting as a perfect absorber effectively simulating an infinitely large
medium.

For my application of this stretching function in a PML built using a combination of rect-
angular prisms surrounding the face, edges and corners, Figure 4-3, I have to account for
where each finite element in the mesh is located in the PML region. This is to provide correct
direction vector to the decay of outgoing waves perpendicular to the plane of PML.

For evaluating the stretching function γ(δ), I evaluate it axis-wise based on which of the 3
coordinate axes apply. For each coordinate axis i ∈ {x, y, z}, I define the following:

1. ri: The value of the coordinate of the midpoint of each edge in the PML region, along
the relevant axis, as per edge-based FEM DOFs.

2. rin,i: The value of the coordinate of the inner boundary of the PML region, along the
relevant axis.

3. rout,i: The value of the coordinate of the outer boundary of the PML region, along the
relevant axis.

4. ||rout,i − rin,i|| evaluates to the thickness of the PML region for each axis.

This ensures that each coordinate axis is evaluated independently, and the stretching function
γ(δ) reduces to γ(i) for each axis, since (Jin & Riley, 2008) says the stretching function applied
in one coordinate axis is independent of the other axes.

Once I evaluate γ(i), I can evaluate the stretching factor si for each axis using the equation
Equation (A-2). The stretching factor is then used to modify the differential operator ∇ to
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∇s as defined in Equation (A-1). This converts the original finite element stiffness and mass
matrices Equations (3-20a) and (3-20b) to:

K̃e
lj =

∫∫∫
Ve

1

µe
(∇̃ ×Ne

l ) · (∇̃ ×Ne
j)dṼ (A-6)

M̃ e
lj =

∫∫∫
Ve

Ne
l ·Ne

jdṼ (A-7)

whereNe
l andNe

j are the shape functions for the lth and jth edges of the element, respectively,
and Ve is the volume of the element.

Since elfe3D’s implementation of the basis functions and differential operators is based on
(Jin, 2015), I refer to them to derive the stretched stiffness and mass matrices. From the
stretched local matrices Equation (A-6), it is evident that I need to evaluate the following
terms for the PML region differently:

1. (∇̃ ×Ne
l ) · (∇̃ ×Ne

j)

2. dṼ

Using the definition of Nedelec basis functions Equation (3-18) the differential operator ∇̃ as
defined in Equation (A-1), I get its stretched-curl as follows:

∇̃×Ne
l =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

1

sxl

∂

∂x

1

syl

∂

∂y

1

szl

∂

∂z(
Le
i1

∂

∂x
Le
i2
− Le

i2

∂

∂x
Le
i1

)
lei

(
Le
i1

∂

∂y
Le
i2
− Le

i2

∂

∂y
Le
i1

)
lei

(
Le
i1

∂

∂z
Le
i2
− Le

i2

∂

∂z
Le
i1

)
lei

∣∣∣∣∣∣∣∣∣∣
(A-8)

Upon evaluating the determinant for the stretched-curl, I get, for component x̂:

(∇̃ ×Ne
l ) · x̂ =

1

syl

∂

∂y

((
Le
i1

∂

∂z
Le
i2 − Le

i2

∂

∂z
Le
i1

)
lei

)
− 1

szl

∂

∂z

((
Le
i1

∂

∂y
Le
i2 − Le

i2

∂

∂y
Le
i1

)
lei

)
(A-9)

Applying the product rule, all mixed second derivative terms are zero since both Le are linear,
leaving only the cross products of their first derivatives:

(∇̃ ×Ne
l ) · x̂ =

1

syl

(
∂Le

i1

∂y

∂Le
i2

∂z
−

∂Le
i2

∂y

∂Le
i1

∂z

)
lei −

1

szl

(
∂Le

i1

∂z

∂Le
i2

∂y
−

∂Le
i2

∂z

∂Le
i1

∂y

)
lei (A-10)

Rearranging per the same differential terms, I get:

(∇̃ ×Ne
l ) · x̂ =

(
1

syl
+

1

szl

)
∂Le

i1

∂y

∂Le
i2

∂z
lei −

(
1

syl
+

1

szl

)
∂Le

i2

∂y

∂Le
i1

∂z
lei (A-11)

or,

(∇̃ ×Ne
l ) · x̂ =

(
1

syl
+

1

szl

)(
∂Le

i1

∂y

∂Le
i2

∂z
−

∂Le
i2

∂y

∂Le
i1

∂z

)
lei (A-12)
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If the stretching functions were not to be applied, in the normal simulation domain, the x
component of the original curl would have been:

(∇×Ne
l ) · x̂ = 2

(
∂Le

i1

∂y

∂Le
i2

∂z
−

∂Le
i2

∂y

∂Le
i1

∂z

)
lei (A-13)

Hence, it is apparent that the application of the stretching functions in the PML region applies

a scaling of the factor of
1

2

(
1

syl
+

1

szl

)
to the original curl.

Using this now to determine the the dot product (∇̃×Ne
l ) ·(∇̃×Ne

j) is straightforward. From

the x̂ component of both (∇̃ ×Ne
l ) and (∇̃ ×Ne

j), I get the first term of the dot product as:((
1

syl
+

1

szl

)(
∂Le

i1

∂y

∂Le
i2

∂z
−

∂Le
i2

∂y

∂Le
i1

∂z

)
lei

)
·
((

1

syj
+

1

szj

)(
∂Le

j1

∂y

∂Le
j2

∂z
−

∂Le
j2

∂y

∂Le
j1

∂z

)
lej

)
(A-14)

Hence, the first term of the dot product is re-written as:(
1

syl
+

1

szl

)(
1

syj
+

1

szj

)(
∂Le

i1

∂y

∂Le
i2

∂z
−

∂Le
i2

∂y

∂Le
i1

∂z

)(
∂Le

j1

∂y

∂Le
j2

∂z
−

∂Le
j2

∂y

∂Le
j1

∂z

)
lej l

e
i (A-15)

This essentially means that for the x̂ component of the stiffness matrix, I have to multiply
the following term to the original stiffness matrix expression:

1

4

(
1

syl
+

1

szl

)(
1

syj
+

1

szj

)
(A-16)

For the other two components, similar process is applied. Hence, the stretched stiffness matrix
would look like:

K̃e
lj =

1

4

(
1

syl
+

1

szl

)(
1

syj
+

1

szj

)
Ke

x,lj (A-17)

+
1

4

(
1

sxl

+
1

szl

)(
1

sxj

+
1

szj

)
Ke

y,lj (A-18)

+
1

4

(
1

sxl

+
1

syl

)(
1

sxj

+
1

syj

)
Ke

z,lj (A-19)

The Ke
x,lj , K

e
y,lj , and Ke

z,lj are the original stiffness matrix terms for the x̂, ŷ, and ẑ compo-
nents of the stiffness matrix from (Jin, 2015).

To evaluate the dṼ term, I evaluate the stretching factors at the centroid of each element
in the PML region. Since dV is defined as dxdydz, the stretch makes it dx̃dỹdz̃, where
dx̃ = sxdx, dỹ = sydy, and dz̃ = szdz.
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