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A B S T R A C T

Despite the advantages of using Bayesian networks for probabilistic risk assessment, adoption in practice has 
been limited due to the lack of realistic, facility-scale studies. Scaling up from systems to facility-level safety 
assessments poses challenges in (i) integrating external hazards and their cascading effects, and (ii) resolving 
non-homogeneity of various technical and human reliability models. The novelty of the study is in formalising 
risk integration using Bayesian networks, at facility scale, and demonstrating its effectiveness in addressing 
associated challenges. A Bayesian network-based multi-hazard risk framework is introduced and demonstrated 
for a nuclear power plant subject to flooding and earthquake hazards, capturing dependencies among hazards 
and consequences. Individual reliability models – conventionally extraneous to facility-wide risk models – are 
included as subnetworks by using Bayesian network-based surrogate models for technical systems and a Bayesian 
networks approach for human reliability modelling. Two approaches are used for subnetwork integration – 
object-oriented and unified Bayesian networks. The unified approach allows for prediction, diagnostics and inter- 
causal reasoning since Bayesian inference is bi-directional. Conversely, in the object-oriented approach, di
agnostics are limited to within individual subnetworks and as a consequence the model can potentially neglect 
dependencies between objects. However, the object-oriented model requires only 50 % of the computational 
memory and consumes less than 25% of the runtime as the unified network, while improving visual clarity of the 
risk model. The model reveals key insights – for example, variations in operator stress or available response time 
during a hazard event can result in up to a 77 % change in top event probability – demonstrating its effectiveness 
in capturing critical relationships in complex, facility-scale risk scenarios. These findings can be used to suitably 
allocate resources towards risk mitigation and plant safety management.

1. Introduction

The consequence of failure of infrastructure, such as those associated 
with public safety, chemical, aviation and nuclear industries, can be 
catastrophic (Hopkins, 2011; Lees, 2005; US NRC, 1975). Risk assess
ments in such high-reliability industries pose several challenges. Multi- 
hazard combinations of extremely low probability must be considered, 

along with their cascading effects, due to the potentially catastrophic 
consequences (Roberts, 1990). These facilities are generally composed 
of several interacting systems, and accounting for these interactions 
makes them complex to analyse. Moreover, there are very few cases of 
significant accidents in these industries, which precludes conventional 
statistical analysis to predict future risks (Leveson et al., 2009). Proba
bility estimates of various hazards and their impact on systems, 

Abbreviations: BN, Bayesian network; BN-SLIM, Bayesian network – success likelihood index method; CCF, Common cause failure; CPD, Conditional probability 
distribution; EDG, Emergency diesel generator; EQ, Earthquake; ESD, Event sequence diagram; ET, Event tree; FT, Fault tree; FTA, Fault tree analysis; HEP, Human 
error probability; JPD, Joint probability distribution; LOOP, Loss of offsite power; NPP, Nuclear power plant; OOBN, Object-oriented Bayesian network; PGA, Peak 
ground acceleration; PRA, Probabilistic risk assessment; PSA, Probabilistic safety assessment; PSF, Performance shaping factor; SBO, Station blackout; SCD, Sec
ondary cooldown; SSCs, Systems, structures and components; US NRC, United States Nuclear Regulatory Commission; VPP, Virtual power plant.

* Corresponding author.
E-mail addresses: v.k.duvvurumohan@tudelft.nl (V.K.D. Mohan), P.H.A.J.M.vanGelder@tudelft.nl (P.H.A.J.M. van Gelder), p.gehl@brgm.fr (P. Gehl), m.a.hicks@ 

tudelft.nl (M.A. Hicks), p.j.vardon@tudelft.nl (P.J. Vardon). 

Contents lists available at ScienceDirect

Nuclear Engineering and Design

journal homepage: www.elsevier.com/locate/nucengdes

https://doi.org/10.1016/j.nucengdes.2025.114558
Received 11 June 2025; Received in revised form 16 October 2025; Accepted 17 October 2025  

Nuclear Engineering and Design 446 (2026) 114558 

Available online 5 November 2025 
0029-5493/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0001-5614-6592
https://orcid.org/0000-0001-5614-6592
mailto:v.k.duvvurumohan@tudelft.nl
mailto:P.H.A.J.M.vanGelder@tudelft.nl
mailto:p.gehl@brgm.fr
mailto:m.a.hicks@tudelft.nl
mailto:m.a.hicks@tudelft.nl
mailto:p.j.vardon@tudelft.nl
www.sciencedirect.com/science/journal/00295493
https://www.elsevier.com/locate/nucengdes
https://doi.org/10.1016/j.nucengdes.2025.114558
https://doi.org/10.1016/j.nucengdes.2025.114558
http://creativecommons.org/licenses/by/4.0/


structures and/or components (SSCs), are also subject to uncertainty. 
Finally, these infrastructures are subject to both technical as well as 
human risks (Fan et al., 2020). Thus, high-reliability industries require a 
multi-hazard risk integration framework that considers even low- 
probability external hazard events and their combinations. The risk 
framework should account for the impact of these hazards on complex, 
dependent systems, and allow for inclusion of expert judgement where 
data are sparse (Cooke, 1991). The risk framework must also be suitable 
for tracking uncertainties in the data and propagating them to the final 
risk estimate.

Multi-hazard risk assessment involves the consideration of not only 
different hazards but also their interactions with other hazards (Mignan 
et al., 2014, van Erp and van Gelder, 2015). Interactions between haz
ards happen in two ways: (i) hazards may independently occur within a 
brief time window resulting in cascading damage (Gardoni and LaFave, 
2016), or (ii) the occurrence of one hazard may lead to one or more 
other hazards (Pescaroli and Alexander, 2018). The impact on SSCs from 
hazards, i.e. their fragilities, can be classified into two types: (i) the SSCs 
are impacted by multiple hazards at the same time (Zio, 2016) or, (ii) 
multiple hazards affect the SSCs at various times, progressively 
damaging them over time (Dong et al., 2013). Due to the tree-like 
structure of events that characterise such cascading effects, the result
ing interdependencies, and the uncertainty associated with physical 
mechanisms, humans and random effects, modelling of multi-hazards is 
best tackled using a probabilistic approach (Koks et al., 2019).

Probabilistic safety assessment (PSA), also referred to as probabilistic 
risk assessment (PRA), is the most prevalent risk assessment methodol
ogy used in various industries (Bedford and Cooke, 2001). Within PSA, 
event sequence diagrams and event trees along with fault trees are 
typical tools used to integrate hazards and their impact on systems 
(Mosleh, 2014). An event tree is an inductive tool to define the logical 
sequence of events progressing to various end-states. A fault tree anal
ysis (FTA) is a logical deductive process where the occurrence of a 
hazard is assumed and is often combined with event trees, to evaluate 
probabilities of occurrence of undesired end-states (‘top events’). For 
example, damage to the reactor core can be a top event of interest at a 
nuclear power plant (NPP). The fundamental steps in FTA are: (i) 
qualitative development of the logical representation of states leading to 
the top event, and (ii) quantitative evaluation of probability of the top 
event based on probabilities of basic events and other intermediary 
events. Shen et al. (2022) and Shen et al. (2023) conducted surveys with 
PSA professionals which highlighted five main challenges in existing 
PSA modelling: 

(i) Incorporating Bayesian updating
(ii) Expanding PSA to external events

(iii) Improving human reliability modelling
(iv) Improving SSC dependency modelling
(v) Incorporating dynamic modelling

Several improvements have been previously made to the basic 
implementation of FTA within the PSA methodology, to meet the de
mands of high-reliability industries and address the above challenges. 
Bayesian updating of probabilities has been integrated with PSA 
methods (Kelly and Smith, 2011). Statistical or chronological de
pendencies between events can be captured, at least partially, by 
combining FTA with event trees. In addition, correlation coefficients 
have been included in FTA to account for statistical dependencies 
(Ebisawa et al., 2015). Dynamic fault trees can also consider dependence 
over time and aid in the modelling of complex systems (Siu, 1994; Yazdi 
et al., 2023). Uncertainty propagation and tracking is not inherent to 
FTA, but adaptations such as incorporating the Monte-Carlo method 
(Durga Rao et al., 2009, Zio, 2013) and fuzzy approaches (Suresh et al., 
1996) have been coupled with FTAs to handle uncertainty in PSA. 
However, each of these aspects often require unique implementations of 
FTAs limiting their use when multiple challenges occur together at 

facility-scale.
The advantages of Bayesian networks (BNs) over fault trees are well- 

established in the literature (Mohan et al., 2021). Bayesian networks 
(BNs) are a directed graphical probabilistic representation of events and 
their interdependence (Koller and Friedman, 2009). BNs have specif
ically been proposed for industries, such as in the chemical (Khakzad 
et al., 2011), oil and gas (Kanes et al., 2017), aviation (Ale et al., 2006, 
Mohaghegh et al., 2009) and nuclear (Lee and Lee, 2006) sectors. 
Literature addressing the applicability of BNs to the aforementioned five 
challenges to PSA is summarised below.

Bayesian updating, consideration of statistical dependencies and 
uncertainty propagation are all inherent to BNs, unlike fault trees where 
additional modifications are required to incorporate these features. Liu 
et al. (2015) presented a BN-based risk framework for considering multi- 
hazard and fragility, considering regional risk but not industrial risk. 
Shen et al. (2025) present a Monte Carlo augmented BN method for 
modelling external flood risk in nuclear PSA. Kwag and Gupta (2017)
demonstrated that BNs are better suited than FTA for multi-hazard risk 
for nuclear power plant risk, considering earthquake, wind and flood 
hazards without interactions at the hazard level. Segarra et al. (2023)
present a BN framework for performing multi-unit seismic PSA, which 
accounts for dependencies at the level of consequences. BNs have also 
been shown to be effective in independently modelling either the reli
ability of human actions (Mkrtchyan et al., 2016) or technical systems 
(Cai et al., 2019). Groth and Swiler (2013) use BNs for modelling human 
reliability, while highlighting the need to bridge human reliability 
modelling methods with overall PSA risk integration tools. Dynamic 
modelling of technical systems in nuclear power plants and other com
plex systems have also been implemented using BNs (Mamdikar et al., 
2022; Yuan et al., 2018). Another differentiating feature of BNs is their 
ability to incorporate continuous random variables without the need for 
additional modifications (Jensen and Nielsen, 2007). Machado et al. 
(2023) also recommend that the incorporation of continuous variables 
and testing with realistic cases are also key to further development of BN 
use in risk assessments.

The above studies demonstrate BN capabilities to improve risk 
integration in PSA. However, adoption in practice has been limited due 
to lack of a framework and demonstration at facility scale, to transition 
from existing tools while simultaneously realising all the advantages of 
BNs. Previous studies have not jointly considered interactions between 
external hazard events and between their consequences. Moreover, 
reliability of technical systems and human actions have not been 
modelled together with multi-hazard interactions – this would allow for 
dependencies at the system level to be accounted for in the facility-wide 
BN risk model. Facility-scale models also have several complex systems 
and using continuous variables in the risk model can prohibitively in
crease the computation load. Modelling multi-hazard and fragility in
teractions can also be computationally expensive (Kameshwar et al., 
2019). BN modelling solutions for complex systems, such as the object- 
oriented BN (OOBN) method (Koller and Pfeffer, 2013), need to be 
assessed in the multi-hazard context. The novelty of this study is in 
formalising and demonstrating the transition from existing PSAs to 
multi-hazard risk assessment using BNs, with simultaneous consider
ation of: 

(i) interactions between external hazard events
(ii) reliability modelling of SSCs and operator actions

(iii) integration at facility scale, while considering dependencies and 
computational demands

A stepwise methodology is presented, for migrating from existing 
risk integration tools to a BN in a multi-hazard scenario. Subnetworks 
are used to model different technical systems and human actions. One of 
the subnetworks takes advantage of the BN’s ability to incorporate 
continuous variables, while another incorporates expert judgement. The 
subnetworks are then integrated based on hazard interactions and other 
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induced dependencies (cascading effects). Two approaches to subnet
work integration – OOBNs and a unified BN – are presented and 
compared for their ability to predict risk accurately while balancing 
computational requirements. The entire methodology is implemented 
for a realistic multi-hazard accident scenario at a nuclear power plant to 
obtain a facility-level risk BN.

The paper is organized as follows. In Section 2, the background of 
BN’s is presented with a focus on integrating multiple hazards. In Sec
tion 3, the proposed development steps are presented and illustrated on 
a case study for a nuclear power plant. The numerical results of the case 
study are shown in Section 4, followed by a discussion of the results, 
challenges and their potential solutions in Section 5. The conclusions 
and recommendations from the study are presented in Section 6.

2. Bayesian network-based multi-hazard risk integration 
methodology

A BN is a specific application of Bayesian probability theory. It is a 
directed acyclic graph, composed of ‘nodes’ that correspond to random 
variables and ‘arcs’ that link dependent variables. The directions of the 
arcs indicate the dependencies between the nodes (i.e., directed), and 
these arcs never cycle back from the child nodes to the parent nodes (i.e., 
acyclic). The network is a visually explicit representation of the mutual 
relationship between random variables and represents the joint proba
bility distribution (JPD) of all random variables within the model (Koller 
and Friedman, 2009). A simple example is shown in Fig. 1. The random 
variables in the network may be represented by discrete or continuous 
probability distributions.

The dependencies between random variables are usually encapsu
lated within conditional probability distributions (CPDs – given by 
p(Xi|Parents(Xi)), where p indicates probability and | indicates condi
tionality) at each node. The JPD is given by the chain rule of BNs: 

p(X1,X2,⋯,Xn) =
∏n

i=1
p(Xi|Parents(Xi)) (1) 

The JPD of the example in Fig. 1 is given by: 

p(X1,X2,X3,X4) = p(X1)p(X2|X1)p(X3|X1,X2)p(X4|X2) (2) 

The JPD can be queried to obtain the state of a random variable, 
given the beliefs regarding the other variables, via Bayesian inference. In 
other words, BNs can be used to answer probabilistic queries in a 
multivariate problem when one or more variables have been observed, 
which includes predictive-, diagnostic- and causal reasoning.

When multiple BNs need to be combined, one of two approaches may 
be adopted – an object-oriented Bayesian network (OOBN) or a single, 
unified BN. The unified BN approach is self-explanatory and is simply 
one large BN comprising all the subnetworks and the arcs connecting 
them. An OOBN (example in Fig. 2) contains instance nodes which 
represent a BN fragment that is called a class. Instantiating the class 
produces objects which are particularly useful for model re-use, 
encapsulation and effective model construction (Koller and Pfeffer, 
2013; Kjærulff and Madsen, 2013). Using OOBNs also helps in modelling 
subnetworks as separate objects while distinctly visualising their in
teractions within the larger risk model.

Various OOBN approaches exist, each involving distinctive features 
and capabilities (e.g., Koller and Pfeffer, 2013; Liu et al., 2016). Dy
namic OOBNs can be used in the modelling of complex systems with 
time dependence (Zhu et al., 2022; Weber and Jouffe, 2006). A basic 
OOBN approach, available in Agena.AI® – the program used for BN 
implementation in this study, is adopted here. Each object within the 
overall risk model is an individual BN. Each individual object may 
consist of one or more “input” and “output” nodes. In Fig. 2, Object 1 and 
Object 2 are individual BNs, with variable C acting as the output node in 
Object 1 and as the input node in Object 2. Objects are connected by 
linking the output node of the hierarchically higher object (1) to the 
input node of the lower (2). Hence, the interacting input and output 
nodes of the two connected objects are required to be identical. The link 
between these two nodes passes the complete set of probability values 
from the input node to the output node. Minor variations are possible, 
where a summary statistic (e.g., mean) may be passed between two 
continuous nodes or the value of a single state of a discrete output node 
may be passed as a constant value to a continuous input node. The 
interaction between the input and output nodes of various objects is 
defined in a ‘master’ network – the OOBN risk model. The last, child 
node in the hierarchically lowest object (e.g., F in Fig. 2), typically yields 
the probability distribution for the top event considered in the risk 
model.

In the extremes, every node in the risk model could be a separate 
object (or subnetwork) of its own or the entire model could be a single 
network, i.e. the unified BN approach. The selection of subnetworks and 
input and output nodes is subjective. However, the modeller has to be 

Fig. 1. Example of a Bayesian network; Xi indicates a random variable. Fig. 2. Example of an object-oriented Bayesian network.
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careful to ensure that impactful dependencies are not lost while 
breaking up the risk model into subnetworks. This is because only the 
marginal probabilities are passed from output nodes in one subnetwork 
to the input nodes in another (as in Fig. 2). Dependencies amongst 
output nodes may be lost when multiple output nodes from parent 
subnetworks are input into a child subnetwork. Hence, in such cases, it is 
advisable to avoid breaking up BNs into subnetworks while using the 
OOBN approach. If deemed beneficial despite the loss of dependencies, 
the impact of such dependencies must be rigorously evaluated by 
comparing the OOBN probability estimates with those from the unified 
BN approach.

3. Risk integration methodology and implementation

Fig. 3 presents the stepwise multi-hazard risk methodology using 
BNs that is proposed in this study. The methodology aids in transitioning 
from existing risk modelling tools such as event sequence diagrams 
(ESDs), FTs and ETs but is not limited to these tools. Its key facet is its 
suitability for facility-wide risk assessment, with the use of Bayesian 
subnetworks for integrating multi-hazards and the reliability of different 
systems as well as human actions. Multi-hazard and fragility analyses, 
such as those recommended in Daniell et al. (2019) and Foester et al. 
(2024), are integral to this methodology for modelling the relevant 
events and their marginal or conditional probabilities. Where event 

Fig. 3. Multi-hazard risk integration methodology using Bayesian networks.
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probabilities are unavailable, either from historical data or physics- 
based models, expert judgement can be integrated through structured 
elicitation (Cooke and Goossens, 2008; Hemming et al., 2018).

3.1. Example implementation for a nuclear power plant

An example accident scenario from a high-reliability industry – nu
clear power generation – is considered. The goal of this example is to 
demonstrate the above risk methodology for a realistic multi-hazard 
case, to obtain the probability of a facility-level top event, and to un
derstand the sensitivity of this prediction to changes in reliability of 
technical systems and human actions.

The nuclear power plant (NPP) considered in this case is the virtual 
power plant (VPP) developed as part of the NARSIS EU H2020 project 
(see Acknowledgements). The VPP is a generic generation III + NPP, 
whose associated event and fault trees are obtained from Bruneliere 
et al. (2018). The VPP design is similar to other power plants in Europe 
and therefore, the accident scenario described below is applicable to 
many operational plants. Any differences that could arise at a specific 
power plant, do not impact the principles demonstrated in using the 
methodology. While the VPP was developed using a specific design, 
there is no specific location in Europe associated with the VPP. Thus, for 
the consideration of external hazard events, a decommissioned NPP 
based in Mülheim-Kärlich, Germany is chosen as the site of interest. The 
VPP does not correspond to the actual design details of the Mülheim- 
Kärlich NPP. This location is selected due to the prevalence of a plausible 
multi-hazard scenario and to reflect a realistic location where a NPP 
would indeed be stationed. A multi-hazard analysis for the site is pre
sented by Daniell et al. (2019). For the purpose of this study, earthquake 
and flooding were the external hazard events that were considered as 
these were most relevant at the site. Each step of the risk integration 
methodology is applied to this example case.

3.2. Subnetwork(s) development

3.2.1. Step I.1 – Define accident scenario

- Loss of offsite power (LOOP) has occurred following one or more 
external hazard events – earthquake and/or flooding. LOOP is the 
initiating event for the accident scenario.

- During the LOOP situation, failure of all four emergency diesel 
generators (EDGs) would lead to a partial station blackout situation 
(referred to as SBO, hereafter). Total Station Blackout would involve 
failure of additional two Station Blackout Diesel Generators known 
as Ultimate Diesel Generators. Total station blackout is not consid
ered in this study.

- Following SBO, failure of the steam generator used for residual heat 
removal (or ‘partial cool down’), would lead to failure of ‘secondary 
cool down’ (SCD).

Risk assessment of the accident scenario aims to evaluate the annual 
probability of SBO and SCD failure following LOOP. Such a specific 
scenario is chosen for the following reasons: 

(i) To include sufficient complexity beyond system-level, such that 
the use of subnetworks is necessary or potentially advantageous.

(ii) To include sufficient complexity in the risk model in terms of 
number of SSCs that require integration of different reliability 
modelling methods.

(iii) To limit the number of event and fault trees involved, as the goal 
of this example is to demonstrate the proposed methodology. For 
instance, the accident scenario could have been extrapolated to 
events beyond SCD failure. Nevertheless, the event and fault trees 
used are realistic for a real NPP and are adopted completely from 
Bruneliere et al. (2018).

(iv) To include operator actions so that human error probability 
(HEP) may be calculated within the overall risk BN.

In nuclear risk terminology, this risk assessment would constitute a 
Level 1 PSA – safety assessment of events leading to reactor core dam
age. However, the risk methodology presented in this study can be 
extended to Level 2 (radioactive release frequency) and Level 3 (public 
consequences) PSAs due to the features and versatility of BNs (Zhao 
et al., 2021). Furthermore, BNs can potentially function as a link to 
provide continuity between the various levels of PSA.

3.2.2. Step I.2 – Obtain existing PSA information, including event and fault 
trees

Fig. 4 shows the event progression from LOOP to SBO, while Fig. 5
shows the event progression from SBO to SCD (denoted as SCD_11 in the 
event tree). The description of events and corresponding codes in 
Figs. 4–7 can be found in Bruneliere et al. (2018) and Darnowski et al. 
(2022). The reliability data of various SSCs are related to their failure 
modes using the NUREG database (Idaho National Laboratory, 2007) 
and hence, the data is applicable to a real engineering context.

NPPs typically have specific external event PSAs where separate 
event and fault trees are used to model interaction with external haz
ards. However, within the VPP developed in Bruneliere et al. (2018), the 
PSA method was applied only for internal events. Often, even when 
external events are modelled, the interactions between different hazard 
trees are ignored, resulting in underestimation of top event risk in a 
multi-hazard scenario (Choi et al., 2021). Hence, multi-hazard and 
fragility analyses (Daniell et al., 2019; Gehl and Rohmer, 2018) are 
recommended to enhance existing event and fault trees. While several 
systems and components are considered in the above fault trees, no 
structures are involved. One structure that can be critical in this accident 
scenario is the flood defence whose performance determines if the plant 
will be subject to internal flooding. Hence, the flood defence dike is 
considered as an example structure whose multi-hazard fragility induces 
cascading effects that consequently impact the internal event and fault 
trees. Other buildings that house the above systems and components are 
not considered for ease of demonstration. Fig. 8 shows an example event 
tree representation of the accident sequence when there is a flood event 
only. Similar event trees can be developed, including occurrence or non- 
occurrence of hazard events.

The following assumptions are also made regarding the impacted 
SSCs: 

(i) The interaction of hazards is limited to the flood defence dike, 
EDGs and a chosen operator action. While the fragilities of other 
SSCs will impact the top event probability, they are superfluous 
for the purpose of demonstration.

(ii) The bottom of the dike is at datum and the crest is at height 5 m. 
The two EDGs each are set at an elevation of 4 m and 12 m from 
the datum. The topography in the plant interior is assumed to be 
flat between the dike and the EDGs.

(iii) If an EDG is flooded, it is assumed to have failed completely. This 
also implies that flooded equipment cannot be damaged by 
earthquakes and hence these EDGs and associated common cause 
failure (CCF) events would not feature in the sequence of 
earthquake-based failure events.

3.2.3. Step I.3 – Identify subnetworks to be built
In general, the choice of which systems, sub-systems or events must 

be confined within a single subnetwork is subjective and depends on the 
risk model and modeller. These choices influence the visual complexity 
of the integrated risk model, its computational time and its diagnostic 
capabilities. If dependencies are lost during division of subnetworks, this 
can also impact the (calculated) probability of the top event. The impact 
on these aspects, for the subnetwork choices made in this study, are 
discussed later with the results.
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In Fig. 5, the SCD_11 event has the highest frequency within the 
event tree, which is a reason for the choice of this event within the ac
cident scenario. Another reason is that the fault tree associated with the 
SCD_11 event contains two operator actions, one of which is modelled as 
a separate subnetwork using the BN-SLIM approach (Abrishami et al., 
2020). The fault trees corresponding to each of the above events, in 

Fig. 6 (SBO) and Fig. 7 (SCD), are both obtained from Bruneliere et al. 
(2018) and are modelled as separate subnetworks. Apart from the SSCs 
involved in these event trees, the flood defence at the NPP is likely to be 
a key structure influencing the accident scenario, since flooding is one of 
the hazards being considered. Therefore, the geotechnical stability of an 
earthen dike is modelled as one of the subnetworks of interest. Unlike 

Fig. 4. Event tree with loss of offsite power as initiating event, leading to station blackout, with event descriptions below (after Bruneliere et al., 2018).

Fig. 5. Event tree showing progression from station blackout to secondary cooldown failure, with event descriptions below (after Bruneliere et al., 2018).
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the other subnetworks, the flood defence subnetwork also requires the 
use of continuous variables. In addition to the above subnetworks that 
model the failure of systems or groups of systems, subnetworks are 
developed for modelling hazards and their interactions, and for LOOP. 
More subnetworks can be included to add further detail to the facility- 
level risk assessment. For instance, the structural failure of either the 
EDG building or the reactor building may be modelled. However, for the 
simplicity of demonstration further SSCs are not considered in this 
study.

3.2.4. Step I.4A – Building multi-hazard subnetworks
As mentioned previously, earthquake and flooding hazards are 

considered. According to the multi-hazard analysis in Daniell et al. 
(2019), flooding is considered as the primary hazard. The plausible 
multi-hazard scenario is that, post an extreme rainfall event, the adja
cent Rhine River could be in flood. While flood water is banked against 
the flood defence of the power plant, an earthquake event could 
simultaneously damage the flood defence, leading to flooding of the 
power plant. Hence, in addition to only the flood risk, it is necessary to 
consider the dependence between earthquake and flooding. Firstly, a 
primary hazard subnetwork with only the flooding node is created. Next, 
a multi-hazard subnetwork is created consisting of flood water level as 
the parent node and the earthquake peak ground acceleration (PGA) as 
the child node. The conditional dependence of earthquake PGA with the 
flood water level, as derived from Daniell et al. (2019), is based on the 
multi-hazard curve shown in Fig. 9.

3.2.5. Step I.4B – Building technical subnetwork(s)

3.2.5.1. LOOP ‘subnetwork’. As described in the accident scenario, 
LOOP is the initiating event that sets off internal plant events. The 
initiating event (or sequence of events) is typically modelled as a sub
network of its own. In this case the LOOP event is an initiating event 
external to the NPP, and there are no preceding internal events. Hence, 
LOOP is represented as a subnetwork with just a single node. The annual 
probability of occurrence of LOOP is assumed to be 3.59 × 10− 2 based 
on data (Schroeder, 2015) which includes the impact of various external 
events. The dependence of the probability of occurrence LOOP on 

earthquake and flooding is not explicitly considered in this example but 
can be easily included where data are available.

3.2.5.2. Flood defence subnetwork. The details of the development of the 
flood defence subnetwork and its results are presented in Mohan et al. 
(2019) and Mohan et al. (2021). This subnetwork (shown in Fig. 10) acts 
as a surrogate model to an advanced numerical model – following the 
random finite element method (Fenton and Griffiths, 2008; Hicks and 
Samy, 2004) – used to estimate reliability of the flood defence dike.

The concepts demonstrated using the flood defence subnetwork may 
be used in building surrogate models for any system (Mohan et al., 
2019). The BN was shown to be a convenient tool for reliability updating 
while providing a visual representation of the interaction of model pa
rameters, both amongst themselves as well as with the final reliability 
estimate. The value of additional testing for maintenance of the dike was 
also evaluated from the BN. This subnetwork also demonstrates the 
capability of BNs to incorporate continuous probability distributions 
and the use of hybrid BNs in risk assessment.

3.2.5.3. SBO subnetwork. This subnetwork pertains to the fault tree 
leading to SBO, during LOOP, where a system of four EDGs must fail 
simultaneously. Since existing information from a traditional PSA 
approach is available, it is efficient to use this to construct a BN. The 
subnetwork is constructed by converting the fault tree shown in Fig. 6
following the algorithm given by Bobbio et al. (2001). Fig. 11 shows the 
BN corresponding to the SBO fault tree, including CCF events.

3.2.5.4. SCD subnetwork. As with the SBO subnetwork, the SCD sub
network is constructed by converting the corresponding event and fault 
trees. The SCD subnetwork, including all CCFs, comprises 742 nodes and 
1155 arcs, making legible visualisation with node labels difficult. 
Therefore, the subnetwork is not presented here as a figure. Since SBO is 
a precursor event to SCD, there are dependencies between the two 
subnetworks derived from the event tree. In such a case, it is important 
to evaluate whether it is beneficial to keep the subnetworks separate or 
merge them together. When there are only a few interactions between 
the nodes of two subnetworks, it is more feasible to keep the sub
networks as separate objects, since only a few input and output nodes 

Fig. 6. Complete station blackout fault tree – see Supplementary Fig. S1 (after Darnowski et al., 2022).

Fig. 7. Secondary cooldown failure main fault tree, without sub-fault trees – see Supplementary Fig. S2 (after Darnowski et al., 2022).
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would be required in the OOBN risk model, which in turn aids in better 
visual understanding. However, when many or most nodes in a sub
network share dependencies with another subnetwork, it is often easier 

to merge the subnetworks rather than repeat several nodes in both ob
jects. This avoids the near redundancy of one of the objects and prevents 
a busy visualisation of the OOBN risk model. In this case, the SCD 

Fig. 8. Example accident scenario event tree (during flood event).

Fig. 9. Combined hazard curves for earthquake and flooding events.
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subnetwork has numerous interactions involving all the basic and in
termediate event nodes of the SBO subnetwork. Hence, the SBO sub
network is merged into the SCD subnetwork and is presented as the 
SBO + SCD network by including the top event of the SBO subnetwork. 
Thus, this subnetwork consists of the SBO subnetwork as well as the 
operator action that is modelled in the human subnetwork discussed 
later.

3.2.6. Step I.4C – Human subnetwork(s)

3.2.6.1. Human subnetwork. The last subnetwork is a BN estimating the 
human error probability (HEP) associated with an operator action in the 
SCD subnetwork – operator fails to start and control the emergency 
feedwater system (EFWS). The BN-SLIM procedure developed as part of 

the NARSIS project is used for HEP estimation (Abrishami et al., 2020). 
Such a BN-based method allows for direct integration of the HEP esti
mation model with the overall risk assessment BN for the accident sce
nario. In addition, structured expert judgement elicitation was used in 
populating the probability distributions of performance shaping factors 
(PSFs) for the operator action. This demonstrates the ability of BNs to 
easily integrate expert opinion while representing and tracking the 
associated uncertainty, as opposed to the over-reliance on deterministic 
expert judgement in the conventional SLIM method. The details of the 
human subnetwork, including the expert elicitation process, are pre
sented in Abrishami et al. (2020) and Mohan et al. (2021). When new 
data becomes available through events or simulations, the PSFs may be 
adjusted as required or the HEP may be validated against other models; 
however, this is beyond the scope of the current study. The description 

Fig. 10. Flood defence Bayesian network.

Fig. 11. SBO subnetwork − equivalent of fault tree in Fig. 6 with 4 redundant EDG systems.
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of ratings for each PSF (R1–R9) are provided in Appendix A. Fig. 12
shows the human subnetwork.

3.3. Subnetwork integration

3.3.1. Step II.1 Hazard interaction with subnetworks
In this step, the interaction of the hazards subnetwork(s) with each of 

the other subnetworks is defined. In some cases, as described below, the 
inclusion of intermediate events/subnetworks may be necessary to 
define these interactions. The interaction within hazards was already 
modelled previously as a separate, multi-hazard subnetwork.

3.3.1.1. Hazard interaction with flood defence. Failure of the flood 
defence dike can be attributed to two main causes: random failure and 
hazard induced failure. In either case, flood defence failure leads to 
internal flooding – an intermediate event included as the output node of 
the flood defence subnetwork, indicating that the inside of the plant is 
flooded.

The flood defence subnetwork yields the probability of random 
failure via global stability failure, without hazard exposure, via the 
distribution of factor of safety. The hazard induced failure is assumed to 
occur via three modes – overtopping due to flooding, piping failure due 
to flooding and global stability failure due to the joint impact of flooding 
and earthquake. The fragility functions used for the piping and global 
stability failure modes are of the form: 

FR(x) = Φ
[
ln(IM/mR)

βR

]

(3) 

where Φ[.] is the standard normal probability integral, IM is the intensity 
measure for the respective hazard, mR is the median fragility, and βR =

σlnR is the logarithmic standard deviation (or dispersion) of the fragility. 
The fragility parameters used for piping and global stability are pre
sented in Table 1. Overtopping failure occurs, simply, if the flooding 
level is higher than 5 m (the height of the dike). Fig. 13 shows the part of 
the overall risk BN (unified or OOBN) that pertains to the flood defence 

dike.

3.3.1.2. Hazard impact on human subnetwork. For the purposes of 
demonstration, simplified assumptions are made to integrate the human 
subnetwork within the accident scenario. Two PSFs – “Stressor” and 
“Available Time” – are assumed to be impacted by the occurrence of the 
hazard. It is beyond the scope of this study to investigate, in detail, the 
impact of hazards on PSFs. Instead, it is assumed that if a hazard – 
earthquake ground motion or internal flooding of the plant – were to 
occur, the PSFs would be similarly impacted, irrespective of the intensity 
of the hazards. Hence, a “hazard occurrence” node is introduced which 
is True when at least one of an earthquake PGA (>0.15 g) or an internal 
flood water level (>0.01 m) were to occur. The conditional probability 
distributions (CPDs) of the two chosen PSFs based on occurrence or non- 
occurrence of hazards are assumed, as shown in Table 2 and Table 3.

3.3.2. Step II.2 – Master network integrating all subnetworks
As discussed earlier, both approaches to subnetwork integration are 

implemented. The unified BN is a straightforward merging of all sub
networks. The entire SBO subnetwork is effectively comprised in the 
SCD subnetwork, as the SBO event is a precursor to the failure of the 
secondary cool down system. Hence, the SBO subnetwork integrated 
with hazards can directly be transposed into the SCD subnetwork. The 

Fig. 12. Human subnetwork for operator action.

Table 1 
Single and multi-hazard fragility models for piping and global stability failure 
modes.

Dike failure mode Water level 
range (m)

IM mR βR

Piping (after Bachmann et al. 
(2013))

− - Water 
level

3.48 0.22

Global Stability (after 
Tyagunov et al. (2018))

WL (0–1 m) PGA 0.1182 0.2786
WL (1–2 m) 0.1587 0.2778
WL (2–3 m) 0.1899 0.2783
WL (3–4 m) 0.2209 0.2797
WL (4–5 m) 0.2620 0.2775
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flood defence subnetwork is connected to the SBO subnetwork via the 
hazards as well as the “internal flooding” node. This node is required to 
identify if flooding outside the plant has resulted in flooding within the 
plant due to failure of the flood defence. Further, the human subnetwork 
is integrated with hazards via the “hazard occurrence” node and the 
calculated HEP is the probability of “Operator failure to start and control 
EFWS” node being True in the SCD network. The “hazard occurrence” 
node is necessary since human behaviour is expected to change during 
hazard events, irrespective of whether earthquake, flooding or both 
hazards are occurring. Hence, the human subnetwork directly fits into 
the SCD subnetwork. Thus, the 4 subnetworks – SBO, SCD, flood defence 
and the human subnetworks – are all integrated with multiple external 
hazards. The accident scenario is completed by defining a top event 
“LOOP + SBO + SCD” which effectively checks for the joint occurrence 

of LOOP, SBO and SCD. Hazard interactions and corresponding failure 
progressions implied by the “internal flooding” and “hazard occurrence” 
nodes are idealised to simplify demonstration of the overall methodol
ogy. Alternatively, continuous nodes that are more sensitive to changes 
in hazard intensity can be readily integrated within the BN method, at 
the cost of increased computation.

The OOBN model is presented in Fig. 14. This approach is imple
mented using the same intermediary nodes, i.e., “hazard occurrence” 
and “internal flooding” nodes. The “earthquake PGA” node features in 
subnetwork “1_Multi-Hazard (Flood + EQ)” (subnetwork 1) as an output 
node. It also features in the “2_Dike_InternalFlooding” subnetwork 
(subnetwork 2) since internal flooding is dependent on both flooding 
and earthquake hazards. However, it is neither an input or output node 
in subnetwork 2 and, hence, does not appear in this subnetwork within 
the OOBN representation. Connecting the “earthquake PGA” output 
node from subnetwork 1 to subnetwork 2 would result in loss of 
dependence with its parent node, “Flood_WL”. For this reason, another 
instance of the “earthquake_PGA” node is used within subnetwork 2. 
Such unique instantiations of hazard nodes, within the OOBN approach, 
can result in loss of some dependencies. “Hazard occurrence” features in 
both its own subnetwork (as output node) as well as in the human 
subnetwork (as input node). The “internal flooding” event node is part of 
the flood defence subnetwork as an output node, but also within the SCD 
subnetwork, as an input node.

4. Results

Table 4 lists the marginal probabilities of the top event of the unified 
BN (LOOP + SBO + SCD) as well as top events of each of the sub
networks within the unified BN. Also shown are their marginal proba
bilities without consideration of hazards. As expected, the marginal 
probabilities are not widely different, as the hazard events are rare at the 
considered site. However, if they were to occur, there could be a sig
nificant rise in conditional top event probabilities as shown in Fig. 15, 
which shows predictions from the unified BN for various multi-hazard 
intensities.

From Fig. 15 it is evident that the conditional top event probability 

Fig. 13. Hazard integration with flood defence subnetwork.

Table 2 
Conditional probability table of the PSF “Available Time” given hazard 
occurrence.

PSF rate Hazard occurrence

False True

R1 0.02 0.20
R3 0.13 0.40
R5 0.23 0.30
R7 0.37 0.08
R9 0.25 0.02

Table 3 
Conditional probability table of the PSF “Stressor” given hazard occurrence.

PSF rate Hazard occurrence

False True

R1 0.02 0.20
R3 0.25 0.40
R5 0.34 0.40
R7 0.34 0.00
R9 0.05 0.00
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increases significantly with PGA. The plant is relatively safer against 
flooding until a flood level of 5 m, beyond which the impact of flooding 
is greater. This is expected as the height of the flood defence dike is at 
5 m. Based on the assumed dike parameters and fragilities, it can also be 
seen that the dike is less resistant to earthquake PGA > 0.3 g. Also, 
global stability and piping failure mechanisms increase failure likeli
hood significantly beyond 3 m flooding, before overtopping occurs at 
5 m flooding. Operator action HEP follows the trend of the dike since the 
PSFs are dependent on hazard occurrence within the plant – which is 
partly determined by whether the dike is in the functional or failed 
states.

Table 4 also shows that the plant-wide OOBN risk model yields 
nearly the same probability estimates as the unified BN, with notable 
underestimation of the impact of hazards when compared to the unified 
BN. This is expected as the hazard nodes are common parent nodes 
(explicit common cause of failure) to all the subnetworks in the unified 
BN, while they interact individually with each subnetwork, one at a 
time, in the OOBN. This results in the loss of some interdependency, 
since the interaction of hazards with each subnetwork is treated via a 
unique instantiation as opposed to a single hazard node, in the unified 
BN, which houses all dependencies. Further, every time the configura
tion of the overall risk BN – structure, CPDs or evidence – is changed, 
these losses in dependence could be significantly different. Therefore, 
for every configuration of the BN, it must be verified that probability 
estimates from the OOBN model remain comparable to those from the 
more accurate unified BN. This implies that both models will always 
have to be generated, while the OOBN can be used in practice, where 
suitable, to capitalise on the advantages discussed below.

Despite the loss of some dependencies, it may be still attractive to use 
the OOBN approach due to the ease of visualisation and model con
struction. The subnetworks and their interactions are often visually 
intelligible (as in Fig. 14) with OOBNs as opposed to a large, unified BN. 
Crucially, the OOBN approach also offers computational benefits over 
the unified BN. Table 5 provides the computational requirements for 
time and memory space for the various BNs featured in this study. The 
models were executed on a Windows Desktop x-64 based PC – Intel® 
Xeon® CPU E5-1620 v3 @3.50 GHz, 3501 MHz, 4 Core(s), 8 Logical 
Processor(s) with 32 GB physical RAM. For the plant-wide risk model, 
the OOBN consumes less than 25 % of the time and less than 50 % of the 
memory as the unified BN for this specific example, which can be sig
nificant when further complexities are introduced.

4.1. Sensitivity analysis

Sensitivity analysis can be performed in several ways using BNs, 
including global sensitivity methods developed as part of the NARSIS 
project (Rohmer and Gehl, 2020). Here, we simply use the diagnostic 
inference capabilities of the unified BN. Evidence of occurrence and non- 
occurrence of the top event is provided to the BN, and posterior prob
abilities of other events in the network are calculated using Bayesian 
inference. Hazard interaction was also assumed only for the EDGs (in the 
SBO subnetwork), the flood defence and human reliability of one 
operator action. Hence, the focus here is on the ability to link the top 
event (LOOP + SBO + SCD) to the hazards, but also to the other sub
networks – the flood defence and human subnetworks. The response of 
the top event probability of the SBO subnetwork to multiple hazards is 
presented in Appendix B.

The variations in posterior distributions of HEP and flood defence 
failure nodes, based on evidence of the top event, are shown in Fig. 16. 
Overtopping failure probability is negligible due to the extremely low 
probability of the flood level exceeding the height of the dike at the site. 
While piping failure is as determined by the fragility functions, the 
probability of global stability failure of the dike undergoes the maximum 
change.

Fig. 16 also shows that the posterior probability of human error 
changes by almost two orders of magnitude, indicating the considerable 
influence of human reliability on plant safety, in this scenario. To further 
understand its impact on the top event, evidence of occurrence and non- 
occurrence of operator error was provided to the network to check the 
posterior probability of the top event. If operator action were to be 
correctly performed, the annual top event probability was calculated to 
be 1.22 × 10− 7, as compared to 5.79 × 10− 7, when there was an oper
ator error – an increase of over 4 times while all other variables in the 

Fig. 14. Object-oriented Bayesian Network for the entire example accident scenario.

Table 4 
Marginal probabilities of annual occurrence of key events before and after multi- 
risk integration.

Event Marginal probability of occurrence

Before hazard 
and 
subnetwork 
integration

Subnetworks 
integrated with 
hazards −
unified BN

Subnetworks 
integrated with 
hazards − OOBN

SBO 2.73 × 10− 4 2.77 × 10− 4 2.76 × 10− 4

SCD 5.38 × 10− 4 5.47 × 10− 4 5.45 × 10− 4

Dike failure 4.26 × 10− 2 4.66 × 10− 2 4.66 × 10− 2

Operator fails to start 
and control EFWS

2.26 × 10− 2 2.79 × 10− 2 2.79 × 10− 2

Top event −
LOOP + SBO + SCD 
(unified BN)

1.25 × 10− 7 1.32 × 10− 7 1.31 × 10− 7
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unified BN remained unchanged.
Fig. 17 shows the sensitivity of HEP to various PSFs in the human 

subnetwork, prior to hazard integration. Change in rating level from PSF 
R9 (relatively safe) to R1 (relatively unsafe) in the “Procedure” and 
“Experience/Training” PSFs has maximum impact over the probability 
of human error. Based on hazard interactions with the human subnet
work, “Available Time” and “Stressor” are the PSFs most impacted by 
hazard occurrence. With these facts as background, the posterior impact 
at the level of PSFs, when evidence is provided to the top event in the 
unified BN, is examined. Fig. 18 (a) gives the posterior probability of the 
eight PSFs given evidence of top event occurrence, indicating the rela
tive influence of various rating levels. The change in probabilities of 

individual rating levels within PSFs is relatively minor, while we already 
observed a notable change in HEP in Fig. 16. This is because the change 
in total HEP is distributed as shifts between rating levels – a degradation 
of PSFs as probability shifts from R9 (relatively safe) towards R1 (rela
tively unsafe). As a result, a meaningful change in HEP and top event 
probability is possible, even with a relatively minor change in the state 
of PSFs. Fig. 18 (b) shows the difference in posterior probabilities of PSF 
ratings when evidence of top event (LOOP + SBO + SCD) is changed 
from “Failure” to “O.K.” in the unified BN. As expected, the Available 
Time and Stressor PSFs undergo maximum change due to their hazard 
interactions, with a rating level drop to R3 being most likely to cause top 
event failure. During hazard occurrence within the plant, changes in 

Fig. 15. Multi-hazard probability of key failure events (from unified BN).
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these PSFs, from R5 to R1, could result in a 77 percent increase in top 
event probability.

Thus, the unified BN clearly demonstrates the ability of the BN-based 
risk model to understand multi-hazard dependencies that are typically 
not considered in design or are not readily obtained from existing PSA 
tools. This is also possible because the top event is linked to various 
SSCs, including input parameters of their individual BN-based reliability 
models.

5. Discussion

The results indicate that the global stability failure mode most affects 
top event probability – a deduction that is easily possible because of the 
association of dike reliability with accident states of the NPP, via the 
unified BN. Hence, solutions such as buttressing the flood dike would be 

Table 5 
Computational load for BNs in this study.

BN reference Run-time 
(seconds)

Maximum memory 
used (MB)

SBO ~1 272
SBO with hazards – OOBN ~1 272
SCD 45 680
Flood defence 28 524
Human reliability 4 1088
Plant-wide unified BN 

(LOOP + SBO + SCD)
840 2536

Plant-wide OOBN 
(LOOP + SBO + SCD)

180 1204

Fig. 16. Posterior annual probability of flood defence failure and operator error given evidence of non-occurrence and occurrence of top event (LOOP + SBO + SCD).

Fig. 17. Sensitivity of HEP to variation in different PSFs: tornado plot based on the human reliability subnetwork (without hazard interaction).
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Fig. 18. Posterior probability distributions of PSFs in the unified BN, given evidence at the top event (LOOP + SBO + SCD).
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more effective in improving dike reliability, thereby reducing top event 
probability. The required extent of such risk mitigation measures can be 
planned by using the unified BN to assess impact on top event proba
bility. Given the modelling assumptions, the results from the unified BN 
also imply that top event risk can be reduced by improving operator 
clarity in emergency procedures. This may be achieved both by 
improving the procedures but also by investing in further training of 
operators during normal operating conditions. More emphasis on 
operator stress management and on training efficient action within a 
short span of time can reduce top event risk during hazard events. Expert 
judgement elicitation for the BN-SLIM method may be suitably revised 
following such risk mitigation measures.

One significant challenge in the implementation of unified BNs is the 
large computational load (run-time and/or memory used) due to dis
cretised hazard nodes, detailed uncertainty representation of fragility 
parameters, continuous variables (such as in the flood defence subnet
work) or other large CPDs due to multi-state variables (such as in the 
human subnetwork). As a rule of thumb, representing continuous vari
ables increases run-time, while larger CPDs increase the file size of the 
model and its memory usage. The computational load on the network 
can potentially be eased by removal of inconsequential hazards and 
dependencies, a step that was already done during hazard analysis in 
Daniell et al. (2019). Furthermore, the filtering of less important hazard 
ranges based on fragility parameters was also performed separately – e. 
g., by limiting the earthquake impact on human reliability to PGA >
0.15 g. Despite such efforts, the unified BN approach is computationally 
more intensive as seen in Table 5.

Another potential solution to manage the computational re
quirements is to combine the OOBN and unified BN approach to inte
gration, where subnetworks are integrated only where necessary while 
other subnetworks remain as separate risk objects. This, of course, needs 
a thorough analysis of dependence across the various SSCs in the in
dustrial facility and a judicious application of the BN method to maxi
mise its advantages. Firstly, all the ET/FTs at the facility may be 
converted to risk objects using the OOBN approach, to first reproduce 
the results of existing PSA. Next, subnetworks may be integrated using 
unified BNs as required. While this would not represent a complete so
lution by modelling every dependence in the facility, it would still 
complement and improve existing PSA results. Other minor, technical 
improvements include the divorcing of discrete nodes where possible 
(Pearl, 1988; Henrion, 1987). Also, much of the computational time 
often comes from the static discretisation of hazard nodes which impact 
several SSCs across the risk model. Fitting parametric distributions to 
hazard curves can avoid inefficient static discretisation of nodes, and 
instead, take advantage of dynamic discretisation of continuous nodes. 
Similarly, the use of non-parametric BNs can also significantly reduce 
the computational load of large BNs, with the necessary assumption of 
dependence between variables following the Gaussian copula (Hanea 
et al. 2015; Morales-Nápoles and Steenbergen, 2015). In some cases, the 
diagnostic abilities in the OOBN approach may be improved by 
advanced inference methods as in Koller and Pfeffer (2013). However, 
these methods are generally intended for encapsulation of variables 
within an object and the repeated use of model fragments in different 
contexts, aspects which are not relevant to the example in this study.

Another challenge may be the large amount of time and workload 
involved in eliciting expert judgements regarding various probability 
distributions of variables. A significant and dedicated effort would be 
needed to transform existing PSA to BNs and improve it by eliciting 
expert judgements where needed. Again, the risk analyst must deter
mine areas where there is value in such an exercise. The sensitivity re
sults from the BN can be useful in this regard.

6. Conclusions

Below are a summary of this study and its findings, regarding the use 
of BNs for multi-risk integration: 

• A stepwise multi-risk framework for risk integration using BNs was 
proposed. The methodology was applied to an example accident 
scenario of LOOP-induced SBO and failure of SCD.

• Technical and human aspects were successfully integrated in a multi- 
hazard scenario using BNs. Multiple hazards, surrogate models for 
systems, human reliability methods and existing PSA information 
were all integrated under one risk framework. This allows for un
derstanding of various dependencies that are normally lost in a 
facility-wide risk model. Thus, the risk model can be particularly 
useful in plant safety management, for determining specific areas of 
risk mitigation that are most impactful in reducing top event 
probability.

• BNs can directly incorporate continuous random variables without 
the need for additional modifications as in the case of fault trees. 
Also, it is easy to integrate expert judgement in BNs. These advan
tages, demonstrated in the subnetworks, are also carried over into 
the facility-wide risk model.

• As more complex systems are modelled, with increased common 
cause effects, BNs can grow in size, making visualisation and 
computation challenging. Dependencies between components can 
become visually indecipherable.

• The methodology is shown to be applicable using existing PSA in
formation such as event and fault trees. Hence, the method can be 
used to enhance existing PSA methods, without the need for addi
tional data. However, including BN-based reliability models such as 
those in this study, may require additional information. Any surro
gate BN models will have to be developed individually based on 
underlying numerical or analytical models. Structured expert 
judgement elicitation, in the absence of PSF data, is required for 
implementing the BN-based human reliability model. Such addi
tional data acquisition is not expected to introduce unique regulatory 
considerations that are not already applicable to existing PSAs, but 
this must be checked on a case-by-case basis.

Unified BN vs. OOBN
Maximising the advantages of BNs: 

• Diagnostic inference and Bayesian updating are inherent advantages 
of BNs. In OOBNs, diagnostic inference is limited to within risk ob
jects and cannot be performed across objects. Thus, unified BNs 
better preserve this key advantage of BNs over existing tools such as 
FTs.

• The unified integration of subnetworks with external hazards can 
help understand links between the top event of interest and various 
SSCs at the facility and reveal unforeseen dependencies. While using 
many hazard trees as in OOBNs, dependencies may be missed be
tween different variables across scenarios. Especially, the impact of 
dependencies related to explicit common causes of failures such as 
hazards may be underestimated. Using a unified BN limits such 
omissions.

Using existing PSA information: 

• ET and FTs in existing PSA can be equivalently modelled as OOBNs, 
allowing for easy transition and parallel application as opposed to 
the unified BN approach, where the logical interactions of event trees 
are forcibly housed in CPDs of hazard nodes. Hence, OOBNs can also 
be more easily implemented for plant-wide applications.

Computational load 

• Multi-hazard integration under a unified BN, with several variables 
influenced by hazards and complex subnetworks, can result in sig
nificant computational challenges. Using the OOBN approach im
proves computational speed and decreases computational memory 
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requirements, but each OOBN model must be verified against a 
unified BN.
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