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Despite the advantages of using Bayesian networks for probabilistic risk assessment, adoption in practice has
been limited due to the lack of realistic, facility-scale studies. Scaling up from systems to facility-level safety
assessments poses challenges in (i) integrating external hazards and their cascading effects, and (ii) resolving
non-homogeneity of various technical and human reliability models. The novelty of the study is in formalising
risk integration using Bayesian networks, at facility scale, and demonstrating its effectiveness in addressing
associated challenges. A Bayesian network-based multi-hazard risk framework is introduced and demonstrated
for a nuclear power plant subject to flooding and earthquake hazards, capturing dependencies among hazards
and consequences. Individual reliability models — conventionally extraneous to facility-wide risk models — are
included as subnetworks by using Bayesian network-based surrogate models for technical systems and a Bayesian
networks approach for human reliability modelling. Two approaches are used for subnetwork integration —
object-oriented and unified Bayesian networks. The unified approach allows for prediction, diagnostics and inter-
causal reasoning since Bayesian inference is bi-directional. Conversely, in the object-oriented approach, di-
agnostics are limited to within individual subnetworks and as a consequence the model can potentially neglect
dependencies between objects. However, the object-oriented model requires only 50 % of the computational
memory and consumes less than 25% of the runtime as the unified network, while improving visual clarity of the
risk model. The model reveals key insights — for example, variations in operator stress or available response time
during a hazard event can result in up to a 77 % change in top event probability — demonstrating its effectiveness
in capturing critical relationships in complex, facility-scale risk scenarios. These findings can be used to suitably
allocate resources towards risk mitigation and plant safety management.

1. Introduction along with their cascading effects, due to the potentially catastrophic

consequences (Roberts, 1990). These facilities are generally composed

The consequence of failure of infrastructure, such as those associated
with public safety, chemical, aviation and nuclear industries, can be
catastrophic (Hopkins, 2011; Lees, 2005; US NRC, 1975). Risk assess-
ments in such high-reliability industries pose several challenges. Multi-
hazard combinations of extremely low probability must be considered,

of several interacting systems, and accounting for these interactions
makes them complex to analyse. Moreover, there are very few cases of
significant accidents in these industries, which precludes conventional
statistical analysis to predict future risks (Leveson et al., 2009). Proba-
bility estimates of various hazards and their impact on systems,

Abbreviations: BN, Bayesian network; BN-SLIM, Bayesian network — success likelihood index method; CCF, Common cause failure; CPD, Conditional probability
distribution; EDG, Emergency diesel generator; EQ, Earthquake; ESD, Event sequence diagram; ET, Event tree; FT, Fault tree; FTA, Fault tree analysis; HEP, Human
error probability; JPD, Joint probability distribution; LOOP, Loss of offsite power; NPP, Nuclear power plant; OOBN, Object-oriented Bayesian network; PGA, Peak
ground acceleration; PRA, Probabilistic risk assessment; PSA, Probabilistic safety assessment; PSF, Performance shaping factor; SBO, Station blackout; SCD, Sec-

ondary cooldown; SSCs, Systems, structures and components; US NRC, United States Nuclear Regulatory Commission; VPP, Virtual power plant.

* Corresponding author.

E-mail addresses: v.k.duvvurumohan@tudelft.nl (V.K.D. Mohan), P.H.A.J.M.vanGelder@tudelft.nl (P.H.A.J.M. van Gelder), p.gehl@brgm.fr (P. Gehl), m.a.hicks@

tudelft.nl (M.A. Hicks), p.j.vardon@tudelft.nl (P.J. Vardon).

https://doi.org/10.1016/j.nucengdes.2025.114558

Received 11 June 2025; Received in revised form 16 October 2025; Accepted 17 October 2025

Available online 5 November 2025

0029-5493/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0001-5614-6592
https://orcid.org/0000-0001-5614-6592
mailto:v.k.duvvurumohan@tudelft.nl
mailto:P.H.A.J.M.vanGelder@tudelft.nl
mailto:p.gehl@brgm.fr
mailto:m.a.hicks@tudelft.nl
mailto:m.a.hicks@tudelft.nl
mailto:p.j.vardon@tudelft.nl
www.sciencedirect.com/science/journal/00295493
https://www.elsevier.com/locate/nucengdes
https://doi.org/10.1016/j.nucengdes.2025.114558
https://doi.org/10.1016/j.nucengdes.2025.114558
http://creativecommons.org/licenses/by/4.0/

V.K.D. Mohan et al.

structures and/or components (SSCs), are also subject to uncertainty.
Finally, these infrastructures are subject to both technical as well as
human risks (Fan et al., 2020). Thus, high-reliability industries require a
multi-hazard risk integration framework that considers even low-
probability external hazard events and their combinations. The risk
framework should account for the impact of these hazards on complex,
dependent systems, and allow for inclusion of expert judgement where
data are sparse (Cooke, 1991). The risk framework must also be suitable
for tracking uncertainties in the data and propagating them to the final
risk estimate.

Multi-hazard risk assessment involves the consideration of not only
different hazards but also their interactions with other hazards (Mignan
et al., 2014, van Erp and van Gelder, 2015). Interactions between haz-
ards happen in two ways: (i) hazards may independently occur within a
brief time window resulting in cascading damage (Gardoni and LaFave,
2016), or (ii) the occurrence of one hazard may lead to one or more
other hazards (Pescaroli and Alexander, 2018). The impact on SSCs from
hazards, i.e. their fragilities, can be classified into two types: (i) the SSCs
are impacted by multiple hazards at the same time (Zio, 2016) or, (ii)
multiple hazards affect the SSCs at various times, progressively
damaging them over time (Dong et al., 2013). Due to the tree-like
structure of events that characterise such cascading effects, the result-
ing interdependencies, and the uncertainty associated with physical
mechanisms, humans and random effects, modelling of multi-hazards is
best tackled using a probabilistic approach (Koks et al., 2019).

Probabilistic safety assessment (PSA), also referred to as probabilistic
risk assessment (PRA), is the most prevalent risk assessment methodol-
ogy used in various industries (Bedford and Cooke, 2001). Within PSA,
event sequence diagrams and event trees along with fault trees are
typical tools used to integrate hazards and their impact on systems
(Mosleh, 2014). An event tree is an inductive tool to define the logical
sequence of events progressing to various end-states. A fault tree anal-
ysis (FTA) is a logical deductive process where the occurrence of a
hazard is assumed and is often combined with event trees, to evaluate
probabilities of occurrence of undesired end-states (‘top events’). For
example, damage to the reactor core can be a top event of interest at a
nuclear power plant (NPP). The fundamental steps in FTA are: (i)
qualitative development of the logical representation of states leading to
the top event, and (ii) quantitative evaluation of probability of the top
event based on probabilities of basic events and other intermediary
events. Shen et al. (2022) and Shen et al. (2023) conducted surveys with
PSA professionals which highlighted five main challenges in existing
PSA modelling:

(i) Incorporating Bayesian updating
(ii) Expanding PSA to external events
(iii) Improving human reliability modelling
(iv) Improving SSC dependency modelling
(v) Incorporating dynamic modelling

Several improvements have been previously made to the basic
implementation of FTA within the PSA methodology, to meet the de-
mands of high-reliability industries and address the above challenges.
Bayesian updating of probabilities has been integrated with PSA
methods (Kelly and Smith, 2011). Statistical or chronological de-
pendencies between events can be captured, at least partially, by
combining FTA with event trees. In addition, correlation coefficients
have been included in FTA to account for statistical dependencies
(Ebisawa et al., 2015). Dynamic fault trees can also consider dependence
over time and aid in the modelling of complex systems (Siu, 1994; Yazdi
et al., 2023). Uncertainty propagation and tracking is not inherent to
FTA, but adaptations such as incorporating the Monte-Carlo method
(Durga Rao et al., 2009, Zio, 2013) and fuzzy approaches (Suresh et al.,
1996) have been coupled with FTAs to handle uncertainty in PSA.
However, each of these aspects often require unique implementations of
FTAs limiting their use when multiple challenges occur together at

Nuclear Engineering and Design 446 (2026) 114558

facility-scale.

The advantages of Bayesian networks (BNs) over fault trees are well-
established in the literature (Mohan et al., 2021). Bayesian networks
(BNs) are a directed graphical probabilistic representation of events and
their interdependence (Koller and Friedman, 2009). BNs have specif-
ically been proposed for industries, such as in the chemical (Khakzad
et al., 2011), oil and gas (Kanes et al., 2017), aviation (Ale et al., 2006,
Mohaghegh et al., 2009) and nuclear (Lee and Lee, 2006) sectors.
Literature addressing the applicability of BNs to the aforementioned five
challenges to PSA is summarised below.

Bayesian updating, consideration of statistical dependencies and
uncertainty propagation are all inherent to BNs, unlike fault trees where
additional modifications are required to incorporate these features. Liu
etal. (2015) presented a BN-based risk framework for considering multi-
hazard and fragility, considering regional risk but not industrial risk.
Shen et al. (2025) present a Monte Carlo augmented BN method for
modelling external flood risk in nuclear PSA. Kwag and Gupta (2017)
demonstrated that BNs are better suited than FTA for multi-hazard risk
for nuclear power plant risk, considering earthquake, wind and flood
hazards without interactions at the hazard level. Segarra et al. (2023)
present a BN framework for performing multi-unit seismic PSA, which
accounts for dependencies at the level of consequences. BNs have also
been shown to be effective in independently modelling either the reli-
ability of human actions (Mkrtchyan et al., 2016) or technical systems
(Caietal., 2019). Groth and Swiler (2013) use BNs for modelling human
reliability, while highlighting the need to bridge human reliability
modelling methods with overall PSA risk integration tools. Dynamic
modelling of technical systems in nuclear power plants and other com-
plex systems have also been implemented using BNs (Mamdikar et al.,
2022; Yuan et al., 2018). Another differentiating feature of BNs is their
ability to incorporate continuous random variables without the need for
additional modifications (Jensen and Nielsen, 2007). Machado et al.
(2023) also recommend that the incorporation of continuous variables
and testing with realistic cases are also key to further development of BN
use in risk assessments.

The above studies demonstrate BN capabilities to improve risk
integration in PSA. However, adoption in practice has been limited due
to lack of a framework and demonstration at facility scale, to transition
from existing tools while simultaneously realising all the advantages of
BNs. Previous studies have not jointly considered interactions between
external hazard events and between their consequences. Moreover,
reliability of technical systems and human actions have not been
modelled together with multi-hazard interactions — this would allow for
dependencies at the system level to be accounted for in the facility-wide
BN risk model. Facility-scale models also have several complex systems
and using continuous variables in the risk model can prohibitively in-
crease the computation load. Modelling multi-hazard and fragility in-
teractions can also be computationally expensive (Kameshwar et al.,
2019). BN modelling solutions for complex systems, such as the object-
oriented BN (OOBN) method (Koller and Pfeffer, 2013), need to be
assessed in the multi-hazard context. The novelty of this study is in
formalising and demonstrating the transition from existing PSAs to
multi-hazard risk assessment using BNs, with simultaneous consider-
ation of:

(i) interactions between external hazard events
(i) reliability modelling of SSCs and operator actions
(iii) integration at facility scale, while considering dependencies and
computational demands

A stepwise methodology is presented, for migrating from existing
risk integration tools to a BN in a multi-hazard scenario. Subnetworks
are used to model different technical systems and human actions. One of
the subnetworks takes advantage of the BN’s ability to incorporate
continuous variables, while another incorporates expert judgement. The
subnetworks are then integrated based on hazard interactions and other
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induced dependencies (cascading effects). Two approaches to subnet-
work integration — OOBNs and a unified BN - are presented and
compared for their ability to predict risk accurately while balancing
computational requirements. The entire methodology is implemented
for a realistic multi-hazard accident scenario at a nuclear power plant to
obtain a facility-level risk BN.

The paper is organized as follows. In Section 2, the background of
BN’s is presented with a focus on integrating multiple hazards. In Sec-
tion 3, the proposed development steps are presented and illustrated on
a case study for a nuclear power plant. The numerical results of the case
study are shown in Section 4, followed by a discussion of the results,
challenges and their potential solutions in Section 5. The conclusions
and recommendations from the study are presented in Section 6.

2. Bayesian network-based multi-hazard risk integration
methodology

A BN is a specific application of Bayesian probability theory. It is a
directed acyclic graph, composed of ‘nodes’ that correspond to random
variables and ‘arcs’ that link dependent variables. The directions of the
arcs indicate the dependencies between the nodes (i.e., directed), and
these arcs never cycle back from the child nodes to the parent nodes (i.e.,
acyclic). The network is a visually explicit representation of the mutual
relationship between random variables and represents the joint proba-
bility distribution (JPD) of all random variables within the model (Koller
and Friedman, 2009). A simple example is shown in Fig. 1. The random
variables in the network may be represented by discrete or continuous
probability distributions.

The dependencies between random variables are usually encapsu-
lated within conditional probability distributions (CPDs - given by
p(Xi|Parents(X;)), where p indicates probability and | indicates condi-
tionality) at each node. The JPD is given by the chain rule of BNs:

Fig. 1. Example of a Bayesian network; X; indicates a random variable.
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P(X1. Xz, X,) = [ [ p(XilParents(X;)) ey
The JPD of the example in Fig. 1 is given by:
P(X1,X2,X3,X4) = p(X1)p(X2|X1)p(X3|X1, X2)p(X4|X2) 2

The JPD can be queried to obtain the state of a random variable,
given the beliefs regarding the other variables, via Bayesian inference. In
other words, BNs can be used to answer probabilistic queries in a
multivariate problem when one or more variables have been observed,
which includes predictive-, diagnostic- and causal reasoning.

When multiple BNs need to be combined, one of two approaches may
be adopted - an object-oriented Bayesian network (OOBN) or a single,
unified BN. The unified BN approach is self-explanatory and is simply
one large BN comprising all the subnetworks and the arcs connecting
them. An OOBN (example in Fig. 2) contains instance nodes which
represent a BN fragment that is called a class. Instantiating the class
produces objects which are particularly useful for model re-use,
encapsulation and effective model construction (Koller and Pfeffer,
2013; Kjeerulff and Madsen, 2013). Using OOBNs also helps in modelling
subnetworks as separate objects while distinctly visualising their in-
teractions within the larger risk model.

Various OOBN approaches exist, each involving distinctive features
and capabilities (e.g., Koller and Pfeffer, 2013; Liu et al., 2016). Dy-
namic OOBNSs can be used in the modelling of complex systems with
time dependence (Zhu et al., 2022; Weber and Jouffe, 2006). A basic
OOBN approach, available in Agena.AI® — the program used for BN
implementation in this study, is adopted here. Each object within the
overall risk model is an individual BN. Each individual object may
consist of one or more “input” and “output” nodes. In Fig. 2, Object 1 and
Object 2 are individual BNs, with variable C acting as the output node in
Object 1 and as the input node in Object 2. Objects are connected by
linking the output node of the hierarchically higher object (1) to the
input node of the lower (2). Hence, the interacting input and output
nodes of the two connected objects are required to be identical. The link
between these two nodes passes the complete set of probability values
from the input node to the output node. Minor variations are possible,
where a summary statistic (e.g., mean) may be passed between two
continuous nodes or the value of a single state of a discrete output node
may be passed as a constant value to a continuous input node. The
interaction between the input and output nodes of various objects is
defined in a ‘master’ network — the OOBN risk model. The last, child
node in the hierarchically lowest object (e.g., F in Fig. 2), typically yields
the probability distribution for the top event considered in the risk
model.

In the extremes, every node in the risk model could be a separate
object (or subnetwork) of its own or the entire model could be a single
network, i.e. the unified BN approach. The selection of subnetworks and
input and output nodes is subjective. However, the modeller has to be

Object 1

Object 2

OOBN Risk Model

Object 1 Object 2

c D——— c

Fig. 2. Example of an object-oriented Bayesian network.
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careful to ensure that impactful dependencies are not lost while
breaking up the risk model into subnetworks. This is because only the
marginal probabilities are passed from output nodes in one subnetwork
to the input nodes in another (as in Fig. 2). Dependencies amongst
output nodes may be lost when multiple output nodes from parent
subnetworks are input into a child subnetwork. Hence, in such cases, it is
advisable to avoid breaking up BNs into subnetworks while using the
OOBN approach. If deemed beneficial despite the loss of dependencies,
the impact of such dependencies must be rigorously evaluated by
comparing the OOBN probability estimates with those from the unified
BN approach.

|. Subnetwork Development Steps

Step I.1

Define accident scenario of

dependent, secondary hazard(s)

interest, along with relevant 5 e . —
fol e op events of interes
Step I.2
P v 3 ESDs, FTs, ETs etc. for
Obtain/develop event trees for | _ chosen scenario, L
accident scenario “ from existing PSA
4 information
Step 1.3 \}
,/ ) \\«
Identify complete aspects (events
or associated SSC failure events)
to be modelled as subnetworks
and isolate corresponding event
sequence information |
\ &
Step 1.4A v v
B Results from multi-
Create subnetwork(s) for hazard ‘ :
i | hazard analysis and
nodes — primary hazard and “

4
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3. Risk integration methodology and implementation

Fig. 3 presents the stepwise multi-hazard risk methodology using
BN that is proposed in this study. The methodology aids in transitioning
from existing risk modelling tools such as event sequence diagrams
(ESDs), FTs and ETs but is not limited to these tools. Its key facet is its
suitability for facility-wide risk assessment, with the use of Bayesian
subnetworks for integrating multi-hazards and the reliability of different
systems as well as human actions. Multi-hazard and fragility analyses,
such as those recommended in Daniell et al. (2019) and Foester et al.
(2024), are integral to this methodology for modelling the relevant
events and their marginal or conditional probabilities. Where event

Data Input

Potential hazards and

‘A
“
Y

fragility analyses for

Step 1.4C chosen SSCs

Step 1.4B
Develop technical
subnetworks via converting
ESDs/FTs, ETs, developing
BNs from first principle or by
creating surrogate BNs of
reliability models

/

d
l

Develop human subnetworks
for operator actions in
FTs/ETs using a BN-based
human reliability method
(e.g. BN-SLIM)

Probability
distributions of
variables based on
data and/or expert
judgement

Il. Subnetwork Integration Steps

Step Il.1

4

Define interaction of hazards with
each subnetwork, adding nodes

‘A

for intermediate events (if
required)

b 4
Step I1.2 ‘}
2
Create master network to connect
all subnetworks — object-oriented
approach or unified network

N

A

“

Fig. 3. Multi-hazard risk integration methodology using Bayesian networks.
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probabilities are unavailable, either from historical data or physics-
based models, expert judgement can be integrated through structured
elicitation (Cooke and Goossens, 2008; Hemming et al., 2018).

3.1. Example implementation for a nuclear power plant

An example accident scenario from a high-reliability industry — nu-
clear power generation — is considered. The goal of this example is to
demonstrate the above risk methodology for a realistic multi-hazard
case, to obtain the probability of a facility-level top event, and to un-
derstand the sensitivity of this prediction to changes in reliability of
technical systems and human actions.

The nuclear power plant (NPP) considered in this case is the virtual
power plant (VPP) developed as part of the NARSIS EU H2020 project
(see Acknowledgements). The VPP is a generic generation III + NPP,
whose associated event and fault trees are obtained from Bruneliere
et al. (2018). The VPP design is similar to other power plants in Europe
and therefore, the accident scenario described below is applicable to
many operational plants. Any differences that could arise at a specific
power plant, do not impact the principles demonstrated in using the
methodology. While the VPP was developed using a specific design,
there is no specific location in Europe associated with the VPP. Thus, for
the consideration of external hazard events, a decommissioned NPP
based in Miilheim-Karlich, Germany is chosen as the site of interest. The
VPP does not correspond to the actual design details of the Miilheim-
Karlich NPP. This location is selected due to the prevalence of a plausible
multi-hazard scenario and to reflect a realistic location where a NPP
would indeed be stationed. A multi-hazard analysis for the site is pre-
sented by Daniell et al. (2019). For the purpose of this study, earthquake
and flooding were the external hazard events that were considered as
these were most relevant at the site. Each step of the risk integration
methodology is applied to this example case.

3.2. Subnetwork(s) development
3.2.1. Step 1.1 — Define accident scenario

- Loss of offsite power (LOOP) has occurred following one or more
external hazard events — earthquake and/or flooding. LOOP is the
initiating event for the accident scenario.

During the LOOP situation, failure of all four emergency diesel
generators (EDGs) would lead to a partial station blackout situation
(referred to as SBO, hereafter). Total Station Blackout would involve
failure of additional two Station Blackout Diesel Generators known
as Ultimate Diesel Generators. Total station blackout is not consid-
ered in this study.

Following SBO, failure of the steam generator used for residual heat
removal (or ‘partial cool down’), would lead to failure of ‘secondary
cool down’ (SCD).

Risk assessment of the accident scenario aims to evaluate the annual
probability of SBO and SCD failure following LOOP. Such a specific
scenario is chosen for the following reasons:

(i) To include sufficient complexity beyond system-level, such that
the use of subnetworks is necessary or potentially advantageous.

(i) To include sufficient complexity in the risk model in terms of
number of SSCs that require integration of different reliability
modelling methods.

(iii) To limit the number of event and fault trees involved, as the goal
of this example is to demonstrate the proposed methodology. For
instance, the accident scenario could have been extrapolated to
events beyond SCD failure. Nevertheless, the event and fault trees
used are realistic for a real NPP and are adopted completely from
Bruneliere et al. (2018).

Nuclear Engineering and Design 446 (2026) 114558

(iv) To include operator actions so that human error probability
(HEP) may be calculated within the overall risk BN.

In nuclear risk terminology, this risk assessment would constitute a
Level 1 PSA - safety assessment of events leading to reactor core dam-
age. However, the risk methodology presented in this study can be
extended to Level 2 (radioactive release frequency) and Level 3 (public
consequences) PSAs due to the features and versatility of BNs (Zhao
et al., 2021). Furthermore, BNs can potentially function as a link to
provide continuity between the various levels of PSA.

3.2.2. Step 1.2 - Obtain existing PSA information, including event and fault
trees

Fig. 4 shows the event progression from LOOP to SBO, while Fig. 5
shows the event progression from SBO to SCD (denoted as SCD_11 in the
event tree). The description of events and corresponding codes in
Figs. 4-7 can be found in Bruneliere et al. (2018) and Darnowski et al.
(2022). The reliability data of various SSCs are related to their failure
modes using the NUREG database (Idaho National Laboratory, 2007)
and hence, the data is applicable to a real engineering context.

NPPs typically have specific external event PSAs where separate
event and fault trees are used to model interaction with external haz-
ards. However, within the VPP developed in Bruneliere et al. (2018), the
PSA method was applied only for internal events. Often, even when
external events are modelled, the interactions between different hazard
trees are ignored, resulting in underestimation of top event risk in a
multi-hazard scenario (Choi et al., 2021). Hence, multi-hazard and
fragility analyses (Daniell et al., 2019; Gehl and Rohmer, 2018) are
recommended to enhance existing event and fault trees. While several
systems and components are considered in the above fault trees, no
structures are involved. One structure that can be critical in this accident
scenario is the flood defence whose performance determines if the plant
will be subject to internal flooding. Hence, the flood defence dike is
considered as an example structure whose multi-hazard fragility induces
cascading effects that consequently impact the internal event and fault
trees. Other buildings that house the above systems and components are
not considered for ease of demonstration. Fig. 8 shows an example event
tree representation of the accident sequence when there is a flood event
only. Similar event trees can be developed, including occurrence or non-
occurrence of hazard events.

The following assumptions are also made regarding the impacted
SSCs:

(i) The interaction of hazards is limited to the flood defence dike,
EDGs and a chosen operator action. While the fragilities of other
SSCs will impact the top event probability, they are superfluous
for the purpose of demonstration.

(ii) The bottom of the dike is at datum and the crest is at height 5 m.
The two EDGs each are set at an elevation of 4 m and 12 m from
the datum. The topography in the plant interior is assumed to be
flat between the dike and the EDGs.

(iii) If an EDG is flooded, it is assumed to have failed completely. This
also implies that flooded equipment cannot be damaged by
earthquakes and hence these EDGs and associated common cause
failure (CCF) events would not feature in the sequence of
earthquake-based failure events.

3.2.3. Step 1.3 — Identify subnetworks to be built

In general, the choice of which systems, sub-systems or events must
be confined within a single subnetwork is subjective and depends on the
risk model and modeller. These choices influence the visual complexity
of the integrated risk model, its computational time and its diagnostic
capabilities. If dependencies are lost during division of subnetworks, this
can also impact the (calculated) probability of the top event. The impact
on these aspects, for the subnetwork choices made in this study, are
discussed later with the results.
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7 7,68E-10 |[F.TP SCD_11-MSRT08_L

1,06E-07 |S RCS_07
9 6,62E-12 |F SP RCS_07-SIS_06

[ 10 9,62E-09 |S RCS_07-SISM14A
1" 9,93E-11 [F.SP RCS_07-SISM14A-SIS_06
12 |546E-12 |F.SP RCS_07-SISM14A-SISL40

13 1,26E-09 |F.SP RCS_07-SISM14A-FSCD02
14 1,08€-10 |F.SP RCS_07-SISM14A-OPE_3
15 2,93E-11 |[F.SP RCS_07-SCD_11

16 9,83E-06 |SBO SBO

17 |2,50E-06 |F,TP PZR_03

18 3,59E-06 |ATWS CRDM

1D Description 1D Description
CRDM Reactor Trip OPE_3 Operator initiates FSCD
PZR_03 1/3 PZR safety valves open - Overpressure protection FSCD02 Fast cooldown with 2/4 EFWS and 2/4 MSRT
SBO 1/4 EDG available (no SBO situation) OPE_01 Manual initiation of F&B

RCS_07 RCS seal LOCA PBL_02 Primary Bleed available (LOOP)

SCD_11 1 SG available for RHR (cond1) or PCD (cond2) in LOOP SISL40 1 of 4 LHSI trains for inj (LOOP)
MSRTO08_L 1/4MSRT or 1/8 MSSV available in case of LOOP SIS_06 IRWST cooling by 1 LHSI or 2 CHRS, cond1 (resp 1 CHRS cond2) in LOOP
SISM16A 2 of 4 MHSI available LOOP (no 1&C)

SISM14A 2 of 4 MHSI available (LOOP)

Fig. 4. Event tree with loss of offsite power as initiating event, leading to station blackout, with event descriptions below (after Bruneliere et al., 2018).

Station Black |RCS Seal 18G Operator Fast ACCU: 10of 4 LHSI IRWST
Out LOCA available for |initiates cooldown injection with |trains for inj |cooling by 1
RHR (cond1) |FSCD with 2/4 1/4 (LOOP) LHSI or 2
orPoh Ralh G cond
#SBO RCS_07 SCD_11 OPE_3 FSCD02 SISA01 SISL40 SIS 06 |No. |Freq.  |conseq. |code
] 1 9,83E-06 [S
P12 1,25€-07 |F,TP SCD_11
3 9,83E-08 [S RCS_07
l—4 1,04E-09 |F,SP RCS_07-SIS_06
5 5,34E-11 |F,SP RCS_07-SISL40
6 9,36E-13 [F,SP RCS_07-SISA01
7 6,92E-09 [F,SP RCS_07-FSCD02
8 9,83E-10 [F,SP RCS_07-OPE_3
1D Description

RCS_07 RCS Seal LOCA

SCD_11 1 SG available for RHR (cond1) or PCD (cond2) in LOOP

OPE_3 Operator initiates FCSD

FCSD02 Fast cooldown with 2/4 EFWS and 2/4 MSRT

SISA01 ACCU: injection with 1/4

SISL40 1 of 4 LHSI trains for inj (LOOP)

SIS_06 IRWST cooling by 1 LHSI or 2 CHRS, cond1 (resp 1 CHRS cond2) in LOOP

Fig. 5. Event tree showing progression from station blackout to secondary cooldown failure, with event descriptions below (after Bruneliere et al., 2018).

In Fig. 5, the SCD_11 event has the highest frequency within the Fig. 6 (SBO) and Fig. 7 (SCD), are both obtained from Bruneliere et al.

event tree, which is a reason for the choice of this event within the ac- (2018) and are modelled as separate subnetworks. Apart from the SSCs
cident scenario. Another reason is that the fault tree associated with the involved in these event trees, the flood defence at the NPP is likely to be
SCD_11 event contains two operator actions, one of which is modelled as a key structure influencing the accident scenario, since flooding is one of
a separate subnetwork using the BN-SLIM approach (Abrishami et al., the hazards being considered. Therefore, the geotechnical stability of an
2020). The fault trees corresponding to each of the above events, in earthen dike is modelled as one of the subnetworks of interest. Unlike
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Fig. 7. Secondary cooldown failure main fault tree, without sub-fault trees — see Supplementary Fig. S2 (after Darnowski et al., 2022).

the other subnetworks, the flood defence subnetwork also requires the
use of continuous variables. In addition to the above subnetworks that
model the failure of systems or groups of systems, subnetworks are
developed for modelling hazards and their interactions, and for LOOP.
More subnetworks can be included to add further detail to the facility-
level risk assessment. For instance, the structural failure of either the
EDG building or the reactor building may be modelled. However, for the
simplicity of demonstration further SSCs are not considered in this
study.

3.2.4. Step 1.4A - Building multi-hazard subnetworks

As mentioned previously, earthquake and flooding hazards are
considered. According to the multi-hazard analysis in Daniell et al.
(2019), flooding is considered as the primary hazard. The plausible
multi-hazard scenario is that, post an extreme rainfall event, the adja-
cent Rhine River could be in flood. While flood water is banked against
the flood defence of the power plant, an earthquake event could
simultaneously damage the flood defence, leading to flooding of the
power plant. Hence, in addition to only the flood risk, it is necessary to
consider the dependence between earthquake and flooding. Firstly, a
primary hazard subnetwork with only the flooding node is created. Next,
a multi-hazard subnetwork is created consisting of flood water level as
the parent node and the earthquake peak ground acceleration (PGA) as
the child node. The conditional dependence of earthquake PGA with the
flood water level, as derived from Daniell et al. (2019), is based on the
multi-hazard curve shown in Fig. 9.

3.2.5. Step 1.4B - Building technical subnetwork(s)

3.2.5.1. LOOP ‘subnetwork’. As described in the accident scenario,
LOOP is the initiating event that sets off internal plant events. The
initiating event (or sequence of events) is typically modelled as a sub-
network of its own. In this case the LOOP event is an initiating event
external to the NPP, and there are no preceding internal events. Hence,
LOOP is represented as a subnetwork with just a single node. The annual
probability of occurrence of LOOP is assumed to be 3.59 x 10~2 based
on data (Schroeder, 2015) which includes the impact of various external
events. The dependence of the probability of occurrence LOOP on

earthquake and flooding is not explicitly considered in this example but
can be easily included where data are available.

3.2.5.2. Flood defence subnetwork. The details of the development of the
flood defence subnetwork and its results are presented in Mohan et al.
(2019) and Mohan et al. (2021). This subnetwork (shown in Fig. 10) acts
as a surrogate model to an advanced numerical model - following the
random finite element method (Fenton and Griffiths, 2008; Hicks and
Samy, 2004) — used to estimate reliability of the flood defence dike.

The concepts demonstrated using the flood defence subnetwork may
be used in building surrogate models for any system (Mohan et al.,
2019). The BN was shown to be a convenient tool for reliability updating
while providing a visual representation of the interaction of model pa-
rameters, both amongst themselves as well as with the final reliability
estimate. The value of additional testing for maintenance of the dike was
also evaluated from the BN. This subnetwork also demonstrates the
capability of BNs to incorporate continuous probability distributions
and the use of hybrid BNs in risk assessment.

3.2.5.3. SBO subnetwork. This subnetwork pertains to the fault tree
leading to SBO, during LOOP, where a system of four EDGs must fail
simultaneously. Since existing information from a traditional PSA
approach is available, it is efficient to use this to construct a BN. The
subnetwork is constructed by converting the fault tree shown in Fig. 6
following the algorithm given by Bobbio et al. (2001). Fig. 11 shows the
BN corresponding to the SBO fault tree, including CCF events.

3.2.5.4. SCD subnetwork. As with the SBO subnetwork, the SCD sub-
network is constructed by converting the corresponding event and fault
trees. The SCD subnetwork, including all CCFs, comprises 742 nodes and
1155 arcs, making legible visualisation with node labels difficult.
Therefore, the subnetwork is not presented here as a figure. Since SBO is
a precursor event to SCD, there are dependencies between the two
subnetworks derived from the event tree. In such a case, it is important
to evaluate whether it is beneficial to keep the subnetworks separate or
merge them together. When there are only a few interactions between
the nodes of two subnetworks, it is more feasible to keep the sub-
networks as separate objects, since only a few input and output nodes
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would be required in the OOBN risk model, which in turn aids in better
visual understanding. However, when many or most nodes in a sub-
network share dependencies with another subnetwork, it is often easier

Annual probability of exceedance

/

g z EDGs Secondary Top Event
Flood dik
Offsite Power cod dike (failure = SBO) cooldown (SBO + SCD)
Functional - No
: Functional No
Functional |
: T —
3 Functional No
Failed
Failed Yes
Failed
rm— e ———
Functional No
Failed
[—— Functional No
Failed
Failed ‘ Yes

Fig. 8. Example accident scenario event tree (during flood event).
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Only EQ

Fig. 9. Combined hazard curves for earthquake and flooding events.

to merge the subnetworks rather than repeat several nodes in both ob-
jects. This avoids the near redundancy of one of the objects and prevents
a busy visualisation of the OOBN risk model. In this case, the SCD
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Fig. 10. Flood defence Bayesian network.
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Fig. 11. SBO subnetwork — equivalent of fault tree in Fig. 6 with 4 redundant EDG systems.

subnetwork has numerous interactions involving all the basic and in-
termediate event nodes of the SBO subnetwork. Hence, the SBO sub-
network is merged into the SCD subnetwork and is presented as the
SBO + SCD network by including the top event of the SBO subnetwork.
Thus, this subnetwork consists of the SBO subnetwork as well as the
operator action that is modelled in the human subnetwork discussed
later.

3.2.6. Step 1.4C — Human subnetwork(s)

3.2.6.1. Human subnetwork. The last subnetwork is a BN estimating the
human error probability (HEP) associated with an operator action in the
SCD subnetwork — operator fails to start and control the emergency
feedwater system (EFWS). The BN-SLIM procedure developed as part of

the NARSIS project is used for HEP estimation (Abrishami et al., 2020).
Such a BN-based method allows for direct integration of the HEP esti-
mation model with the overall risk assessment BN for the accident sce-
nario. In addition, structured expert judgement elicitation was used in
populating the probability distributions of performance shaping factors
(PSFs) for the operator action. This demonstrates the ability of BNs to
easily integrate expert opinion while representing and tracking the
associated uncertainty, as opposed to the over-reliance on deterministic
expert judgement in the conventional SLIM method. The details of the
human subnetwork, including the expert elicitation process, are pre-
sented in Abrishami et al. (2020) and Mohan et al. (2021). When new
data becomes available through events or simulations, the PSFs may be
adjusted as required or the HEP may be validated against other models;
however, this is beyond the scope of the current study. The description
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of ratings for each PSF (R1-R9) are provided in Appendix A. Fig. 12
shows the human subnetwork.

3.3. Subnetwork integration

3.3.1. Step II.1 Hazard interaction with subnetworks

In this step, the interaction of the hazards subnetwork(s) with each of
the other subnetworks is defined. In some cases, as described below, the
inclusion of intermediate events/subnetworks may be necessary to
define these interactions. The interaction within hazards was already
modelled previously as a separate, multi-hazard subnetwork.

3.3.1.1. Hazard interaction with flood defence. Failure of the flood
defence dike can be attributed to two main causes: random failure and
hazard induced failure. In either case, flood defence failure leads to
internal flooding — an intermediate event included as the output node of
the flood defence subnetwork, indicating that the inside of the plant is
flooded.

The flood defence subnetwork yields the probability of random
failure via global stability failure, without hazard exposure, via the
distribution of factor of safety. The hazard induced failure is assumed to
occur via three modes — overtopping due to flooding, piping failure due
to flooding and global stability failure due to the joint impact of flooding
and earthquake. The fragility functions used for the piping and global
stability failure modes are of the form:

3)

Fr(x) = ® {M}

Pr

where ®]] is the standard normal probability integral, IM is the intensity
measure for the respective hazard, mg is the median fragility, and p =
onr is the logarithmic standard deviation (or dispersion) of the fragility.
The fragility parameters used for piping and global stability are pre-
sented in Table 1. Overtopping failure occurs, simply, if the flooding
level is higher than 5 m (the height of the dike). Fig. 13 shows the part of
the overall risk BN (unified or OOBN) that pertains to the flood defence
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Table 1
Single and multi-hazard fragility models for piping and global stability failure
modes.

Dike failure mode Water level M mg Pr
range (m)
Piping (after Bachmann et al. — Water 3.48 0.22
(2013)) level
Global Stability (after WL (0-1 m) PGA 0.1182 0.2786
Tyagunov et al. (2018)) WL (1-2 m) 0.1587 0.2778
WL (2-3 m) 0.1899  0.2783
WL (3-4 m) 0.2209  0.2797
WL (4-5 m) 0.2620  0.2775
dike.

3.3.1.2. Hazard impact on human subnetwork. For the purposes of
demonstration, simplified assumptions are made to integrate the human
subnetwork within the accident scenario. Two PSFs — “Stressor” and
“Available Time” - are assumed to be impacted by the occurrence of the
hazard. It is beyond the scope of this study to investigate, in detail, the
impact of hazards on PSFs. Instead, it is assumed that if a hazard —
earthquake ground motion or internal flooding of the plant — were to
occur, the PSFs would be similarly impacted, irrespective of the intensity
of the hazards. Hence, a “hazard occurrence” node is introduced which
is True when at least one of an earthquake PGA (>0.15 g) or an internal
flood water level (>0.01 m) were to occur. The conditional probability
distributions (CPDs) of the two chosen PSFs based on occurrence or non-
occurrence of hazards are assumed, as shown in Table 2 and Table 3.

3.3.2. Step 1.2 — Master network integrating all subnetworks

As discussed earlier, both approaches to subnetwork integration are
implemented. The unified BN is a straightforward merging of all sub-
networks. The entire SBO subnetwork is effectively comprised in the
SCD subnetwork, as the SBO event is a precursor to the failure of the
secondary cool down system. Hence, the SBO subnetwork integrated
with hazards can directly be transposed into the SCD subnetwork. The

Failure in controling or
starting EFWS (Total HEP)
Yes42.26%
No 97.74%
Failure in gathering Failure in making a Failure in taking an action
informati decision(D) (A)
Yes0.09% Yes{1.58% Yes{0.97%
No 99.91% No 98.42% No 99.03%
Available time Stressor I Complexity Experience & Training Procedure Ergonomics N Fitness for duty Work process
R14 2% HR1 ]2% |R1{1% FR1{1% R14 2% NR1{1% L|R14 2% R1{2%
R3 13% R3 25% R3] 4% R3{|3% Rr3{ 2% Ra{3% r3{]|8% R3{]o%
RS 23% R5 34% RS 28% R5 25% RS 20% R5 43% RS 36% RS 37%
R7 [37% ||R7 [34% | |R7 | 40% R7 32% R7 30% R7 48% ||R7 |49% | [R7 | 47%
R9 25% Rro {7 5% R9 27% R9 | 39% R9 [46% ||Ra{]5% R9{|5% Rg ] 5%

Fig. 12. Human subnetwork for operator action.
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Fig. 13. Hazard integration with flood defence subnetwork.

P> =] 2z
» Tangent of rorizontal
Slope Angle Slope Height Cohesion Fetos A Scale of
9 Fluctuation
Factor of a
Safety Failure Length
DikeFail_No
Hazard
A
Dike Failure
Table 2

Conditional probability table of the PSF “Available Time” given hazard
occurrence.

PSF rate Hazard occurrence

False True
R1 0.02 0.20
R3 0.13 0.40
R5 0.23 0.30
R7 0.37 0.08
R9 0.25 0.02

Table 3

Conditional probability table of the PSF “Stressor” given hazard occurrence.

PSF rate Hazard occurrence

False True
R1 0.02 0.20
R3 0.25 0.40
R5 0.34 0.40
R7 0.34 0.00
R9 0.05 0.00

flood defence subnetwork is connected to the SBO subnetwork via the
hazards as well as the “internal flooding” node. This node is required to
identify if flooding outside the plant has resulted in flooding within the
plant due to failure of the flood defence. Further, the human subnetwork
is integrated with hazards via the “hazard occurrence” node and the
calculated HEP is the probability of “Operator failure to start and control
EFWS” node being True in the SCD network. The “hazard occurrence”
node is necessary since human behaviour is expected to change during
hazard events, irrespective of whether earthquake, flooding or both
hazards are occurring. Hence, the human subnetwork directly fits into
the SCD subnetwork. Thus, the 4 subnetworks — SBO, SCD, flood defence
and the human subnetworks — are all integrated with multiple external
hazards. The accident scenario is completed by defining a top event
“LOOP + SBO + SCD” which effectively checks for the joint occurrence

11

of LOOP, SBO and SCD. Hazard interactions and corresponding failure
progressions implied by the “internal flooding” and “hazard occurrence”
nodes are idealised to simplify demonstration of the overall methodol-
ogy. Alternatively, continuous nodes that are more sensitive to changes
in hazard intensity can be readily integrated within the BN method, at
the cost of increased computation.

The OOBN model is presented in Fig. 14. This approach is imple-
mented using the same intermediary nodes, i.e., “hazard occurrence”
and “internal flooding” nodes. The “earthquake PGA” node features in
subnetwork “1_Multi-Hazard (Flood + EQ)” (subnetwork 1) as an output
node. It also features in the “2 Dike InternalFlooding” subnetwork
(subnetwork 2) since internal flooding is dependent on both flooding
and earthquake hazards. However, it is neither an input or output node
in subnetwork 2 and, hence, does not appear in this subnetwork within
the OOBN representation. Connecting the “earthquake PGA” output
node from subnetwork 1 to subnetwork 2 would result in loss of
dependence with its parent node, “Flood_WL”. For this reason, another
instance of the “earthquake_PGA” node is used within subnetwork 2.
Such unique instantiations of hazard nodes, within the OOBN approach,
can result in loss of some dependencies. “Hazard occurrence” features in
both its own subnetwork (as output node) as well as in the human
subnetwork (as input node). The “internal flooding” event node is part of
the flood defence subnetwork as an output node, but also within the SCD
subnetwork, as an input node.

4. Results

Table 4 lists the marginal probabilities of the top event of the unified
BN (LOOP + SBO + SCD) as well as top events of each of the sub-
networks within the unified BN. Also shown are their marginal proba-
bilities without consideration of hazards. As expected, the marginal
probabilities are not widely different, as the hazard events are rare at the
considered site. However, if they were to occur, there could be a sig-
nificant rise in conditional top event probabilities as shown in Fig. 15,
which shows predictions from the unified BN for various multi-hazard
intensities.

From Fig. 15 it is evident that the conditional top event probability
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Fig. 14. Object-oriented Bayesian Network for the entire example accident scenario.

bl Despite the loss of some dependencies, it may be still attractive to use

Table 4

Marginal probabilities of annual occurrence of key events before and after multi-
risk integration.

Event Marginal probability of occurrence
Before hazard Subnetworks Subnetworks
and integrated with integrated with
subnetwork hazards — hazards — OOBN
integration unified BN
SBO 2.73 x 1074 2.77 x 107* 2.76 x 107*
SCD 5.38 x 10°* 5.47 x 10°* 5.45 x 10°*
Dike failure 4.26 x 1072 4.66 x 1072 4.66 x 1072
Operator fails to start 2.26 x 1072 2.79 x 1072 2.79 x 1072
and control EFWS
Top event — 1.25 x 1077 1.32x 1077 1.31 x 1077
LOOP + SBO + SCD
(unified BN)

increases significantly with PGA. The plant is relatively safer against
flooding until a flood level of 5 m, beyond which the impact of flooding
is greater. This is expected as the height of the flood defence dike is at
5 m. Based on the assumed dike parameters and fragilities, it can also be
seen that the dike is less resistant to earthquake PGA > 0.3 g. Also,
global stability and piping failure mechanisms increase failure likeli-
hood significantly beyond 3 m flooding, before overtopping occurs at
5 m flooding. Operator action HEP follows the trend of the dike since the
PSFs are dependent on hazard occurrence within the plant — which is
partly determined by whether the dike is in the functional or failed
states.

Table 4 also shows that the plant-wide OOBN risk model yields
nearly the same probability estimates as the unified BN, with notable
underestimation of the impact of hazards when compared to the unified
BN. This is expected as the hazard nodes are common parent nodes
(explicit common cause of failure) to all the subnetworks in the unified
BN, while they interact individually with each subnetwork, one at a
time, in the OOBN. This results in the loss of some interdependency,
since the interaction of hazards with each subnetwork is treated via a
unique instantiation as opposed to a single hazard node, in the unified
BN, which houses all dependencies. Further, every time the configura-
tion of the overall risk BN - structure, CPDs or evidence — is changed,
these losses in dependence could be significantly different. Therefore,
for every configuration of the BN, it must be verified that probability
estimates from the OOBN model remain comparable to those from the
more accurate unified BN. This implies that both models will always
have to be generated, while the OOBN can be used in practice, where
suitable, to capitalise on the advantages discussed below.
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the OOBN approach due to the ease of visualisation and model con-
struction. The subnetworks and their interactions are often visually
intelligible (as in Fig. 14) with OOBNs as opposed to a large, unified BN.
Crucially, the OOBN approach also offers computational benefits over
the unified BN. Table 5 provides the computational requirements for
time and memory space for the various BNs featured in this study. The
models were executed on a Windows Desktop x-64 based PC — Intel®
Xeon® CPU E5-1620 v3 @3.50 GHz, 3501 MHz, 4 Core(s), 8 Logical
Processor(s) with 32 GB physical RAM. For the plant-wide risk model,
the OOBN consumes less than 25 % of the time and less than 50 % of the
memory as the unified BN for this specific example, which can be sig-
nificant when further complexities are introduced.

4.1. Sensitivity analysis

Sensitivity analysis can be performed in several ways using BN,
including global sensitivity methods developed as part of the NARSIS
project (Rohmer and Gehl, 2020). Here, we simply use the diagnostic
inference capabilities of the unified BN. Evidence of occurrence and non-
occurrence of the top event is provided to the BN, and posterior prob-
abilities of other events in the network are calculated using Bayesian
inference. Hazard interaction was also assumed only for the EDGs (in the
SBO subnetwork), the flood defence and human reliability of one
operator action. Hence, the focus here is on the ability to link the top
event (LOOP + SBO + SCD) to the hazards, but also to the other sub-
networks — the flood defence and human subnetworks. The response of
the top event probability of the SBO subnetwork to multiple hazards is
presented in Appendix B.

The variations in posterior distributions of HEP and flood defence
failure nodes, based on evidence of the top event, are shown in Fig. 16.
Overtopping failure probability is negligible due to the extremely low
probability of the flood level exceeding the height of the dike at the site.
While piping failure is as determined by the fragility functions, the
probability of global stability failure of the dike undergoes the maximum
change.

Fig. 16 also shows that the posterior probability of human error
changes by almost two orders of magnitude, indicating the considerable
influence of human reliability on plant safety, in this scenario. To further
understand its impact on the top event, evidence of occurrence and non-
occurrence of operator error was provided to the network to check the
posterior probability of the top event. If operator action were to be
correctly performed, the annual top event probability was calculated to
be 1.22 x 1077, as compared to 5.79 x 10”7, when there was an oper-
ator error — an increase of over 4 times while all other variables in the
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Fig. 15. Multi-hazard probability of key failure events (from unified BN).

unified BN remained unchanged.

Fig. 17 shows the sensitivity of HEP to various PSFs in the human
subnetwork, prior to hazard integration. Change in rating level from PSF
R9 (relatively safe) to R1 (relatively unsafe) in the “Procedure” and
“Experience/Training” PSFs has maximum impact over the probability
of human error. Based on hazard interactions with the human subnet-
work, “Available Time” and “Stressor” are the PSFs most impacted by
hazard occurrence. With these facts as background, the posterior impact
at the level of PSFs, when evidence is provided to the top event in the
unified BN, is examined. Fig. 18 (a) gives the posterior probability of the
eight PSFs given evidence of top event occurrence, indicating the rela-
tive influence of various rating levels. The change in probabilities of

individual rating levels within PSFs is relatively minor, while we already
observed a notable change in HEP in Fig. 16. This is because the change
in total HEP is distributed as shifts between rating levels — a degradation
of PSFs as probability shifts from R9 (relatively safe) towards R1 (rela-
tively unsafe). As a result, a meaningful change in HEP and top event
probability is possible, even with a relatively minor change in the state
of PSFs. Fig. 18 (b) shows the difference in posterior probabilities of PSF
ratings when evidence of top event (LOOP + SBO + SCD) is changed
from “Failure” to “O.K.” in the unified BN. As expected, the Available
Time and Stressor PSFs undergo maximum change due to their hazard
interactions, with a rating level drop to R3 being most likely to cause top
event failure. During hazard occurrence within the plant, changes in
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Table 5
Computational load for BNs in this study.
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these PSFs, from R5 to R1, could result in a 77 percent increase in top
event probability.

Thus, the unified BN clearly demonstrates the ability of the BN-based
risk model to understand multi-hazard dependencies that are typically
not considered in design or are not readily obtained from existing PSA
tools. This is also possible because the top event is linked to various
SSCs, including input parameters of their individual BN-based reliability
models.

5. Discussion

The results indicate that the global stability failure mode most affects
top event probability — a deduction that is easily possible because of the
association of dike reliability with accident states of the NPP, via the
unified BN. Hence, solutions such as buttressing the flood dike would be

BN reference Run-time Maximum memory
(seconds) used (MB)
SBO ~1 272
SBO with hazards — OOBN ~1 272
SCD 45 680
Flood defence 28 524
Human reliability 4 1088
Plant-wide unified BN 840 2536
(LOOP + SBO + SCD)
Plant-wide OOBN 180 1204
(LOOP + SBO + SCD)
DikeFail_NoHazard =
DikeFail_fromHazard —
Global_Stability_Fail = }

Piping_Fail =

Overtopping_Fail —I

Operator_Action_Fail —

)
0.001

I |} I
0.010 0.100 1.000

Probability of failure

Top event = False (left extreme) and Top event = True (right extreme)

Fig. 16. Posterior annual probability of flood defence failure and operator error given evidence of non-occurrence and occurrence of top event (LOOP + SBO + SCD).

(Procedure = R9)

(Experience/training = R9)

(Complexity = R9)

(Available time = R9)

(Stressor = R9)

(Ergonomics = R9)

(Work process = R7)

(Fitness for duty = R9)

Marginal probability, Total HEP = True

1
0.006 [N 0.210 (Procedure = R1)
1
1
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1
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0.016 — 0.054 (Work process = R9)
1
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1
1
0.00 0.05 0.15 0.20 0.25

p(Failure in controlling or starting EFWS (Total HEP) = True)

Fig. 17. Sensitivity of HEP to variation in different PSFs: tornado plot based on the human reliability subnetwork (without hazard interaction).
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Fig. 18. Posterior probability distributions of PSFs in the unified BN, given evidence at the top event (LOOP + SBO + SCD).
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more effective in improving dike reliability, thereby reducing top event
probability. The required extent of such risk mitigation measures can be
planned by using the unified BN to assess impact on top event proba-
bility. Given the modelling assumptions, the results from the unified BN
also imply that top event risk can be reduced by improving operator
clarity in emergency procedures. This may be achieved both by
improving the procedures but also by investing in further training of
operators during normal operating conditions. More emphasis on
operator stress management and on training efficient action within a
short span of time can reduce top event risk during hazard events. Expert
judgement elicitation for the BN-SLIM method may be suitably revised
following such risk mitigation measures.

One significant challenge in the implementation of unified BNs is the
large computational load (run-time and/or memory used) due to dis-
cretised hazard nodes, detailed uncertainty representation of fragility
parameters, continuous variables (such as in the flood defence subnet-
work) or other large CPDs due to multi-state variables (such as in the
human subnetwork). As a rule of thumb, representing continuous vari-
ables increases run-time, while larger CPDs increase the file size of the
model and its memory usage. The computational load on the network
can potentially be eased by removal of inconsequential hazards and
dependencies, a step that was already done during hazard analysis in
Daniell et al. (2019). Furthermore, the filtering of less important hazard
ranges based on fragility parameters was also performed separately — e.
g., by limiting the earthquake impact on human reliability to PGA >
0.15 g. Despite such efforts, the unified BN approach is computationally
more intensive as seen in Table 5.

Another potential solution to manage the computational re-
quirements is to combine the OOBN and unified BN approach to inte-
gration, where subnetworks are integrated only where necessary while
other subnetworks remain as separate risk objects. This, of course, needs
a thorough analysis of dependence across the various SSCs in the in-
dustrial facility and a judicious application of the BN method to maxi-
mise its advantages. Firstly, all the ET/FTs at the facility may be
converted to risk objects using the OOBN approach, to first reproduce
the results of existing PSA. Next, subnetworks may be integrated using
unified BNs as required. While this would not represent a complete so-
lution by modelling every dependence in the facility, it would still
complement and improve existing PSA results. Other minor, technical
improvements include the divorcing of discrete nodes where possible
(Pearl, 1988; Henrion, 1987). Also, much of the computational time
often comes from the static discretisation of hazard nodes which impact
several SSCs across the risk model. Fitting parametric distributions to
hazard curves can avoid inefficient static discretisation of nodes, and
instead, take advantage of dynamic discretisation of continuous nodes.
Similarly, the use of non-parametric BNs can also significantly reduce
the computational load of large BNs, with the necessary assumption of
dependence between variables following the Gaussian copula (Hanea
et al. 2015; Morales-Napoles and Steenbergen, 2015). In some cases, the
diagnostic abilities in the OOBN approach may be improved by
advanced inference methods as in Koller and Pfeffer (2013). However,
these methods are generally intended for encapsulation of variables
within an object and the repeated use of model fragments in different
contexts, aspects which are not relevant to the example in this study.

Another challenge may be the large amount of time and workload
involved in eliciting expert judgements regarding various probability
distributions of variables. A significant and dedicated effort would be
needed to transform existing PSA to BNs and improve it by eliciting
expert judgements where needed. Again, the risk analyst must deter-
mine areas where there is value in such an exercise. The sensitivity re-
sults from the BN can be useful in this regard.

6. Conclusions

Below are a summary of this study and its findings, regarding the use
of BNs for multi-risk integration:
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e A stepwise multi-risk framework for risk integration using BNs was
proposed. The methodology was applied to an example accident
scenario of LOOP-induced SBO and failure of SCD.

Technical and human aspects were successfully integrated in a multi-
hazard scenario using BNs. Multiple hazards, surrogate models for
systems, human reliability methods and existing PSA information
were all integrated under one risk framework. This allows for un-
derstanding of various dependencies that are normally lost in a
facility-wide risk model. Thus, the risk model can be particularly
useful in plant safety management, for determining specific areas of
risk mitigation that are most impactful in reducing top event
probability.

BNs can directly incorporate continuous random variables without
the need for additional modifications as in the case of fault trees.
Also, it is easy to integrate expert judgement in BNs. These advan-
tages, demonstrated in the subnetworks, are also carried over into
the facility-wide risk model.

As more complex systems are modelled, with increased common
cause effects, BNs can grow in size, making visualisation and
computation challenging. Dependencies between components can
become visually indecipherable.

The methodology is shown to be applicable using existing PSA in-
formation such as event and fault trees. Hence, the method can be
used to enhance existing PSA methods, without the need for addi-
tional data. However, including BN-based reliability models such as
those in this study, may require additional information. Any surro-
gate BN models will have to be developed individually based on
underlying numerical or analytical models. Structured expert
judgement elicitation, in the absence of PSF data, is required for
implementing the BN-based human reliability model. Such addi-
tional data acquisition is not expected to introduce unique regulatory
considerations that are not already applicable to existing PSAs, but
this must be checked on a case-by-case basis.

Unified BN vs. OOBN
Maximising the advantages of BNs:

Diagnostic inference and Bayesian updating are inherent advantages
of BNs. In OOBNSs, diagnostic inference is limited to within risk ob-
jects and cannot be performed across objects. Thus, unified BNs
better preserve this key advantage of BNs over existing tools such as
FTs.

The unified integration of subnetworks with external hazards can
help understand links between the top event of interest and various
SSCs at the facility and reveal unforeseen dependencies. While using
many hazard trees as in OOBNs, dependencies may be missed be-
tween different variables across scenarios. Especially, the impact of
dependencies related to explicit common causes of failures such as
hazards may be underestimated. Using a unified BN limits such
omissions.

Using existing PSA information:

ET and FTs in existing PSA can be equivalently modelled as OOBNS,
allowing for easy transition and parallel application as opposed to
the unified BN approach, where the logical interactions of event trees
are forcibly housed in CPDs of hazard nodes. Hence, OOBNs can also
be more easily implemented for plant-wide applications.

Computational load

Multi-hazard integration under a unified BN, with several variables
influenced by hazards and complex subnetworks, can result in sig-
nificant computational challenges. Using the OOBN approach im-
proves computational speed and decreases computational memory
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requirements, but each OOBN model must be verified against a
unified BN.
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