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Abstract 
The basic reproductive number (𝑅0) of an infectious disease is the expected number of secondary 

cases infected by the first case in an otherwise susceptible population. In this thesis, based on this 

fundamental concept, we propose a new method: the IIN-TN method that could calculate 𝑅0 of a 

network from the local structure of the network under the scenario of the SIS model. The 

analytical solution of this method is given in this thesis, and simulations are performed to verify 

the result. After the code implementation in MATLAB, the method is applied to a human contact 

network in reality. The results from the real-world network show that the 𝑅0 calculated by the 

IIN-TN method will be smaller than the value given by the traditional definition. Apart from 

that, we also find that the IIN-TN method is more effective for infectious diseases, which have 

a relatively larger infection probability of link and a higher effective infection rate. 
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1. Introduction 

1.1  Motivations  

The basic reproductive number (𝑅0 ) of an infectious disease is the expected number of 

secondary cases infected by the first case in an otherwise susceptible population [1]. Modelers 

estimate the basic reproductive number by fitting an exponential curve to a plot of new cases 

versus time from a statistical perspective [2, 3]. However, by combining the SIS epidemic 

model with further research on network topology, there might be an alternative approach to 

directly derive and calculate the basic reproductive number of a given network. 

The SIS epidemic model allows for the introduction and spread of an infectious disease 

across a network. The expected number of secondary cases depends on the local structure of 

the network where the disease originates. Different starting points may result in varying patterns 

of epidemic spread across the network, and the basic reproductive number on a network 

represents the expected number of secondary cases averaged across all nodes. 

The observed variation in the basic reproductive number during outbreaks of infectious 

diseases is often attributed to differences in population immunity, evolution of the infectious 

agent, and other significant factors. However, to our knowledge, the contribution of network 

topology to this variation remains unexplored. According to Socievole et al. [4], the 𝑅0 cannot 

summarize and reflect the information from the underlying contact network because it does not 

do enough assessment of the threshold behavior of an outbreak of an infectious disease. 

Therefore, the objective of this thesis is to investigate how the local structure influences the 𝑅0 

on a network and whether this measure can capture the behavior of different epidemic outbreaks 

in reality. 

1.2  Objectives and Challenges 

Based on the motivation mentioned above, the objectives of our research are as follows: 

1. Carefully define the basic reproductive number and explain the concept through some 

examples, such as 𝑃3, 𝐾3, and 𝐾4 graph.  

2. Derive an analytical solution for the basic reproductive number of networks. 

3. Implement the algorithm in MATLAB and apply the algorithm to the networks from 

the real world.  

4. Compare the results from different infectious diseases and further study the 

characteristics of the algorithm. 

 

Based on the objective mentioned above, several challenges need to be solved: 

1. Derive a general way that could compute the probability of getting certain 𝐺𝐼 (Graph 

with infection process) in a complex network, especially if more paths exist at the 

same time. 

2. Based on the first challenge, derive a general equation that could calculate the 

possibility of the direct infection from IIN (Initial infected node) to its NNs 
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(neighboring nodes) with given 𝐺𝐼 under the condition that:  

2.1 The alternative path has two links. 

2.2 More than 2 paths exist. 

2.3 Paths may be dependent and share links. 

2.4 How to simplify the structure to make the calculation possible. It is nearly 

impossible to directly calculate the probability because an analytical solution 

requires knowledge of all paths. 

3. After solving the first and second challenges, we need to derive an algorithm to 

calculate R0 for any network. Then, we implement the algorithm in MATLAB and 

apply it to a network from the real world.  

1.3  Thesis outline  

The structure of this thesis is as follows: Chapter 2 introduces the background of the SIS 

epidemics model and the basic epidemiology. Some fundamental concepts in this field will be 

discussed. In Chapter 3, a detailed theory regarding how to calculate the 𝑅0 will be given 

through several examples. Besides, a general expression will be derived for different networks. 

Then, in Chapter 4, simulations will be carried out to verify the analytical expression proposed 

in Chapter 3. After that, results from real-world networks will be obtained after implementing 

the algorithm on MATLAB in Chapter 5. Besides, the discussion of results and methods will 

also be given in Chapter 5. At last, a conclusion and possible scope for future work will be 

given in Chapter 6.  
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2. Background and Basic 

Epidemiology 

2.1 SIS(Susceptible-Infected-Susceptible) Model  

The SIS model is one of the most commonly used models to describe epidemics in networks 

nowadays. The node in a network only has two states in the SIS model: infected or susceptible. 

The SIS model allows nodes to change states continuously over time. Actually, the SIS model 

consists of two independent Poisson processes: the curing process with rate 𝛿 and the infection 

process with rate 𝛽 [5]. This means that an infected node could cure back to susceptible again 

with rate 𝛿, and a susceptible node could be infected by the connection with an infected node 

with rate 𝛽.  

 The graph with the infection process is 𝐺𝐼 , which not only contains the topology 

information but also includes infected nodes and the link that spread the epidemic. Based on 

the two Poisson processes, we could present the probability that a susceptible node gets infected 

by the connection with an infected node as: 

𝑃𝑟(𝐼 < 𝑅) (2.1) 

Where 𝐼 represents the amount of time before the infection event happens, and 𝑅 represents 

the amount of time before the recovery event happens. Thus, Equation (2.1) represents the 

probability that an infected node will infect a susceptible node through the connected links, 

because the amount of time required by the infection event is shorter than the recovery event. 

Since both the infection and curing processes are Poisson process with rate 𝛽  and 𝛿 

separately and we focus on the amount of time that is required before the event happen. The 

time needed before the first event happening is described by the PDF of exponential distribution:  

𝑓(𝑥; 𝜆) = { 𝜆𝑒
−𝜆𝑡  , 𝑥 ≥ 0

0,                   𝑥 ≤ 0
(2.2) 

Substitute 𝜆 = 𝛽  and 𝜆 = 𝛿  to Equation (2.2) and we could get the time before the first 

infection event happening and first curing event happening as: 

𝑓𝑇(𝑡) =  𝛽𝑒
−𝛽𝑡  , (2.3)

 𝑓𝑅(𝑟) =  𝛿𝑒
−𝛿𝑟. (2.4)

 

Where 𝑡 from Equation (2.3) is the continuous time variable for the infection process, and 𝑟 

from Equation (2.4) is the continuous time variable for the recovery(curing) process. Then, 

based on the two equations , we could find the probability by integration : 

𝑃𝑟(𝐼 < 𝑅) = ∫ 𝑃𝑟(𝐼 < 𝑅|𝑅 = 𝑟)
∞

−∞

𝑓𝑅(𝑟)𝑑𝑟 

= ∫ 𝑃𝑟(𝐼 < 𝑟)
∞

−∞

𝑓𝑅(𝑟)𝑑𝑟 

= ∫ ∫ 𝑓𝐼(𝑡)𝑓𝑅(𝑟)𝑑𝑡𝑑𝑟 
𝑟

𝑡=0

∞

𝑟=0
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=
𝛽

𝛽 + 𝛿
(2.5) 

𝑃𝑟(𝐼 > 𝑅) = 1 −𝑃𝑟(𝐼 < 𝑅) 

=
𝛿

𝛽 + 𝛿
(2.6) 

Detailed integration process is given in Appendix A.  

 The results from Equation (2.5) and Equation (2.6) tell us that the susceptible node will be 

infected by an infected node with a probability of 
𝛽

𝛽+𝛿
 through the link with and will not be infected 

with a probability of 
𝛿

𝛽+𝛿
. The two probabilities enable us to find the probability of a graph with a 

complex infection process by multiplying the two probabilities according to the permutations of 

infection/non-infection events: 

𝑃𝑟(𝐺𝐼) = (
𝛽

𝛽 + 𝛿
)
𝑚

(
𝛿

𝛽 + 𝛿
)
𝑛

(2.7) 

Where 𝐺𝐼 represents the graph with the infection process. In a given 𝐺𝐼, based on the infection 

process on it, we could find the number of links that pass the disease, and which do not. Thus, 

𝑚 is the number of links that pass the disease (infection events happen), and 𝑛 is the number of 

links that do not pass the disease (non-infection events happen).   

2.2 Basic Epidemiology 

In epidemiology, the 𝑅0  of an infectious agent is the expected number of cases directly 

generated by one case in a population where all individuals are susceptible to infections [1]. 

From the definition, we need to focus on several key concepts: 

i. The 𝑅0 is an expected number which indicates the 𝑅0 is an anticipated or average 

number from the statistical estimate. 

ii. The 𝑅0 only counts the number of infected cases which are directly generated by the 

one case. This emphasizes that we will have one and only one initial infected case in 

the population. And only the number of secondary cases directly infected by the first 

case should be regarded as 𝑅0.  

iii. All other individuals in the population are initially susceptible which enables us to 

use the SIS model.  

From the above definition, we can know that 𝑅0 does not represent the total number of 

cases introduced by the first infected case within a specific time frame. Actually, if we want to 

measure 𝑅0 in a given network, 𝑅0 is related to the following factors: 

i. The number of neighboring nodes (NNs) of the initial infected node (IIN).  

The maximum number of 𝑅0 of a node is the number of NNs of that node if we ignore 

possible reinfections in the SIS model. The actual number depends on the infection rate 

𝛽 and curing rate 𝛿 , as well as the possible existence of cycles. Detail about cycles is 

introduced in Section 3.1.  

ii. The local structure of network around IIN.  

The local structure is the basic condition for the infection process. The infection can 

only take the path given by the local structure. 
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iii. The possible different infection processes. 

Based on the local structure, the infection process may be different. We need to find the 

possibilities of each infection process together with the number of nodes directly 

infected by IIN.  

Thus, based on the definition and the important factors, we propose our guiding concept to 

calculate the 𝑅0 of a given network as follows: 

i. For a given IIN, the epidemic may propagate on different links, leading to different 

routes and infection processes. Thus, we need first to find all the possible infection 

processes. For each infection process, find the probability and the number of nodes 

directly infected by the IIN. 

ii. Calculate the 𝑅0  of the given IIN by summing up the products of possibility and 

number of nodes for each possible infection process as calculated above.  

iii. Repeat step 1 and step 2, assign each node in the given network as the IIN separately, 

and find all the corresponding 𝑅0 of node under the circumstances of different node 

as IIN.  

iv. Sum up all the 𝑅0 of node and take the average of 𝑅0 over the node set to derive the 

𝑅0 of the network.  

Based on this guiding concept, we proposed two methods to find the 𝑅0 of the network. The 

first one is the holistic method, which will give the infection process over the whole network 

by identifying the status of each link in the graph. The first method is presented and explained 

in Section 3.1. The second approach is the Initial infected node to Target node (IIN-TN) method, 

which will only focus on the infection process between the IIN and NN. The second approach 

using the IIN-TN method will be introduced in Section 3.2. 
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3. Graph Theory 
In this chapter, two methods, the holistic method and the IIN-TN method, will be introduced 

and explained in detail with examples about how to calculate 𝑅0 of networks separately in 

Section 3.1 and Section 3.2. In general, the holistic method is a straightforward method that 

could demonstrate our concepts and ideas very well. Thus, in Section 3.1, four examples 

illustrate the calculation process. However, during this process, the shortcomings of the holistic 

method will be highlighted when the example networks gradually have more nodes and links. 

In order to overcome these shortcomings, the IIN-TN method is proposed, where IIN-TN stands 

for Initial Infected Node to Target Node. The IIN-TN method will significantly reduce 

computational complexity at the expense of accuracy. However, only the IIN-TN method allows 

us to handle large and complex networks. The comparison of results of the same examples from 

the two methods will be given as well.  

3.1 First approach: Holistic method 

The holistic method focuses on IIN and the local structure around it. The most important feature 

of this method is that it will take every neighboring node (NN) around IIN into consideration 

and calculate the probability of the direct infection from IIN to all NNs as a whole. This holistic 

consideration characteristic gives this method its name: The holistic method. A simple example 

of 𝑃3 is given below.  

3.1.1 Possible epidemics on 𝑷𝟑 

With the Equation (2.7), we could derive the table of 𝑃3 as follows: 

Possible epidemics on 𝑷𝟑 

𝑮:  

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑹𝟎(𝑮𝑰) 

(1.1)  

𝛿2

(𝛽 + 𝛿)2
 0 

(1.2)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(1.3)  

𝛽2

(𝛽 + 𝛿)2
 1 

(2.1)  

𝛿2

(𝛽 + 𝛿)2
 0 

(2.2)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(2.3)  

𝛽2

(𝛽 + 𝛿)2
 1 
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(3.1)  

𝛿2

(𝛽 + 𝛿)2
 0 

(3.2)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(3.3)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(3.4)  

𝛽2

(𝛽 + 𝛿)2
 2 

Table 1: All possible epidemics in 𝑃3. The hollow dot represents the susceptible 

node while the red dot represents the infected node. The black line indicates the 

link between nodes and no infection goes through it. The red line indicates 

infection event happens through this link.  

 

𝐺𝐼  represents the graph with infection process; 𝑃𝑟(𝐺𝐼)  represents the possibilities of that 

graph; 𝑅0(𝐺𝐼)  indicates the number of nodes directly infected by IIN in that graph with 

infection process. It should be noted that, the 𝑅0(𝐺𝐼) for the graph 𝑃3(1.3) and  𝑃3(2.3) are 

both 1 instead of 2 because only one susceptible node has direct link with the initial infected 

node(IIN). According to the definition of 𝑅0 in Section 2.2, even if the last susceptible node 

on the other edge is infected, it should not be considered as the 𝑅0 of the IIN. Actually, 𝑅0(𝐺𝐼) 

is limited by the number of NNs of IIN because only the NNs of IIN can be directly infected 

by IIN. A detailed discussion of 𝑅0(𝐺𝐼) will be given in the part discussing about 𝐾3 graph 

and 𝐾4 graph when cycles of the infection process exist. 

After listing all the possible graphs with infection process 𝐺𝐼, and the probability of having 

this graph 𝑃𝑟(𝐺𝐼) together with the basic reproductive number of this graph 𝑅0(𝐺𝐼), we could 

calculate the 𝑅0 of 𝑃3 as the summation of each multiplication of 𝑃𝑟(𝐺𝐼) and 𝑅0(𝐺𝐼) and 

then divide by the N, the number of nodes in 𝑃3: 

𝑅0(𝑃3) = 𝑅0(𝐺) =  
∑𝑃𝑟(𝐺𝐼)𝑅0(𝐺𝐼)

𝑁
(3.1) 

Based on the above table, we can substitute all the probabilities and values to Equation (3.1) 

and get: 

𝑅0(𝑃3) =
4𝛽𝛿 + 4𝛽4

3(𝛽 + 𝛿)2
(3.2) 

If 𝛽 = 𝛿, substitute to Equation (3.2) and get: 

𝑅0(𝑃3) =
2

3
(3.3) 

When 𝛽 = 𝛿 , the infection probability 𝜆 =
𝛽

𝛽+𝛿
= 

1

2
 . By our intuitive understanding, the 

possibilities for the IIN located at the edge or the center in 𝑃3 are 
2

3
 and 

1

3
 respectively. The 

different location of the IIN will give a different expected 𝑅0 . The expected 𝑅0  will be 

1 ×
1

2
=

1

2
 if the IIN is at the edge of the 𝑃3 graph, and it will be 2 ×

1

2
= 1 if the IIN locates 

at the center of the 𝑃3 graph. Thus, the 𝑅0 of 𝑃3 could also be simply calculated as: 
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𝑅0(𝑃3) =
1

2
×
2

3
+ 1 ×

1

3
=
2

3
(3.4) 

The results from Equation (3.3) and Equation (3.4) are the same when substituting 𝛽 = 𝛿 , 

thus the result of Equation (3.2) is reasonable and satisfies our expectation. 

 

Another important feature that we could get from the above example on 𝑃3  is the 

symmetry of graph. Which is shown in below Table 2 and Table 3: 

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑹𝟎(𝑮𝑰) 

(1.1)  

𝛿2

(𝛽 + 𝛿)2
 0 

(1.2)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(1.3)  

𝛽2

(𝛽 + 𝛿)2
 1 

Table 2: Part of Table 1, presenting all the cases when Node A is the IIN. The IIN 

for these cases is on the left edge of 𝑃3  graph. Except the different location of 

IIN, Table 2 is the same with Table 3. 

 

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑹𝟎(𝑮𝑰) 

(2.1)  

𝛿2

(𝛽 + 𝛿)2
 0 

(2.2)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(2.3)  

𝛽2

(𝛽 + 𝛿)2
 1 

Table 3: Part of Table 1, presenting all the cases when Node C is the IIN. The IIN 

for these cases is on the right edge of 𝑃3  graph. Except the different location of 

IIN, Table 3 is the same with Table 2. 

 

Tables 2 and 3 have the same value of 𝑃𝑟(𝐺𝐼) and 𝑅0(𝐺𝐼) for each corresponding 𝐺𝐼. Apart 

from that, each 𝐺𝐼 is very similar, and the only difference is whether the IIN is on Node A or 

Node C. The symmetry of the graph causes this phenomenon. If we do not label each node in 

𝑃3 graph, it will look the same when IIN starts at the left edge or right edge. After we put the 

label, we realize they are different cases but just with the same 𝑃𝑟(𝐺𝐼)  and 𝑅0(𝐺𝐼) . This 

phenomenon also happens in the 𝐾3 and 𝐾4 graphs.  
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3.1.2 Possible epidemics on 𝑲𝟑(𝒊𝒈𝒏𝒐𝒓𝒆 𝒄𝒚𝒄𝒍𝒆𝒔) and 𝑲𝟑 

Table 4: All possible epidemics on 𝐾3(ignore cycles). Table 4 only represents the 

cases when Node A is the IIN. Due to symmetry of 𝐾3, when Node B and Node 

C is the IIN, all cases from them will be the same as when Node A is the IIN.  

 

The notation “𝐾3(ignore cycles)” indicates that infection will not happen on the link between 

Node B and Node C as 𝐺𝐼 in Table 4 shows. This is a special case, and the infection through 

the link between Node B and Node C should not be forbidden theoretically. The reason for 

doing this is to demonstrate the difference between 𝑅0(𝐺) result for both considering the case 

with a cycle and case without cycles. Detailed comparison and discussion will be given in the 

next section based on the calculation result. 

Based on Table 4, the basic reproductive number of 𝐾3(ignore cycles) could be calculated 

as: 

𝑅0(𝐾3(𝑖𝑔𝑛𝑜𝑟𝑒 𝑐𝑦𝑐𝑙𝑒𝑠)) = 𝑅0(𝐺) =  
3 × ∑𝑃𝑟(𝐺𝐼)𝑅0(𝐺𝐼)

𝑁
(3.5) 

As Equation (3.5) shows, the coefficient 3 is introduced by the symmetry of 𝐾3. Table 4 only 

demonstrates all possible 𝐺𝐼 when IIN starts at Node A. Two tables identical to Table 4 can 

also be derived when IIN starts at Node B or Node C. Thus, there are a total of 3 times of 

∑𝑃𝑟(𝐺𝐼) 𝑅0(𝐺𝐼) , where each 𝑃𝑟(𝐺𝐼) and 𝑅0(𝐺𝐼) of corresponding 𝐺𝐼  are given in Table 4. 

Possible epidemics on 𝑲𝟑(𝒊𝒈𝒏𝒐𝒓𝒆 𝒄𝒚𝒄𝒍𝒆𝒔) 

𝑮:  

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑹𝟎(𝑮𝑰) 

(1)  

𝛿2

(𝛽 + 𝛿)2
 0 

(2)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(3)  

𝛽𝛿

(𝛽 + 𝛿)2
 1 

(4)  

𝛽2

(𝛽 + 𝛿)2
 2 
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Substitute all probabilities and values from Table 4, together with 𝑁 = 3 to Equation (3.5): 

𝑅0(𝐾3(𝑖𝑔𝑛𝑜𝑟𝑒 𝑐𝑦𝑐𝑙𝑒𝑠)) =
2𝛽𝛿 + 2𝛽2

(𝛽 + 𝛿)2
(3.6) 

 

Possible epidemics on 𝑲𝟑 

𝑮:  

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑹𝟎(𝑮𝑰) 

(1)  

𝛿3

(𝛽 + 𝛿)3
 0 

(2)  

𝛽𝛿2

(𝛽 + 𝛿)3
 1 

(3)  

𝛽2𝛿

(𝛽 + 𝛿)3
 1 

(4)  

𝛽𝛿2

(𝛽 + 𝛿)3
 1 

(5)  

𝛽2𝛿

(𝛽 + 𝛿)3
 1 

(6)  

𝛽2𝛿

(𝛽 + 𝛿)3
 2 

(7)  

𝛽3

(𝛽 + 𝛿)3
 

3

2
 

(8)  

Impossible 

Table 5: All possible epidemics on 𝐾3. The difference between Table 4 and Table 

5 is that Table 5 will introduce the cycles, which enable the link between Node B 
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and Node C. Thus, Table 5 has more cases than Table 4. Again, due to the 

symmetry, Node B and Node C can also be the IIN and they have the same cases 

as when Node A is the IIN.  

 

 Compared with Table 4, Table 5 has more kinds of 𝐺𝐼 once we allow infection to happen,  

through the link between Node B and Node C. The last 𝐺𝐼 in Table 5: 𝐾3(8) is impossible 

because the infection will not happen between Node B and Node C when neither is infected. 

 Another very special 𝐺𝐼 in 𝐾3 is 𝐾3(7). As 𝐾3(7) shows, both Node B and Node C 

are infected, and the infection goes through all links in 𝐾3(7). The first instinct about 𝑅0(𝐺𝐼) 

of 𝐾3(7) is 2, which is actually wrong. The accurate value should be 
3

2
 which is less than 2. 

This is caused by the cycle of infection because Node B may be infected by Node C instead of 

Node A. The same reason is true for Node C; it could be infected by Node B instead of Node 

A. Thus, the actual 𝑅0(𝐺𝐼) of 𝐾3(7) is smaller than 2. The following Figure 1 shows all the 

cases that might happen:   

 

Figure 1: All possible cases of infection path in the given 𝐺𝐼: 𝐾3(7). The solid 

red lines represent the links on a faster infection path. The dashed red lines 

represent the links on the slower infection path. (The concept of competing paths 

will be given in a later section.) 

 

 Based on Figure 1, we first focus on the infection of Node C. The infection of Node C 

could be achieved by two paths: 

𝑃𝑎𝑡ℎ 1: 𝑁𝑜𝑑𝑒 𝐴 → 𝑁𝑜𝑑𝑒 𝐶 

𝑃𝑎𝑡ℎ 2: 𝑁𝑜𝑑𝑒 𝐴 → 𝑁𝑜𝑑𝑒 𝐵 → 𝑁𝑜𝑑𝑒 𝐶 

Node C is directly infected by IIN(Node A) in Path 1. Thus, only the Path 1 case could 

contribute to the 𝑅0 of 𝐾3(7), while the Path 2 case cannot. We have the same for the infection 

of Node B. To calculate the 𝑅0(𝐺𝐼) of 𝐾3(7), we need to find the four probabilities under the 

condition given 𝐾3(7) as the 𝐺𝐼: 

𝑃𝑟( 𝐴 → 𝐶|𝐾3(7) ), 𝑃𝑟( 𝐴 → 𝐵 → 𝐶|𝐾3(7) ) 
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𝑃𝑟( 𝐴 → 𝐵|𝐾3(7) ), 𝑃𝑟( 𝐴 → 𝐶 → 𝐵|𝐾3(7) ) 

The essence of the probability of occurrence of two paths is which path is faster or the entire 

infection process takes less time to complete. It is evident from 𝐾3(7) that Path 1 requires one 

infection event, and Path 2 requires two infection events. Thus, we could write the probability 

as:  

𝑃𝑟( 𝐴 → 𝐶|𝐾3(7) ) = 𝑃𝑟(𝐼 < 2𝐼) (3.7) 

𝑃𝑟( 𝐴 → 𝐵 → 𝐶|𝐾3(7) ) = 𝑃𝑟(𝐼 > 2𝐼) (3.8) 

Where I represent the amount of time before one infection event happens while 2𝐼 represent the 

amount of time before two infection event happens. Thus, 𝑃𝑟(𝐼 < 2𝐼) is the probability that one 

infection event is faster than two infection events regarding the time. The derivation and result 

of 𝑃𝑟(𝐼 < 2𝐼) are given in Appendix A.2 . Substitute the result to Equation (3.7) and Equation 

(3.8), and we have: 

𝑃𝑟( 𝐴 → 𝐶|𝐾3(7) ) =
3

4
 

𝑃𝑟( 𝐴 → 𝐵 → 𝐶|𝐾3(7) ) =
1

4
 

Same for the infection of Node B: 

𝑃𝑟( 𝐴 → 𝐵|𝐾3(7) ) =
3

4
 

𝑃𝑟( 𝐴 → 𝐶 → 𝐵|𝐾3(7) ) =
1

4
  

Thus, the 𝑅0(𝐺𝐼) of 𝐾3(7) could be derived as:  

𝑅0(𝐺𝐼) =  𝑃𝑟( 𝐴 → 𝐶|𝐾3(7) ) + 𝑃𝑟( 𝐴 → 𝐵|𝐾3(7) ) =
3

2
(3.9) 

Based on Table 5, finally we could calculate the 𝑅0(𝐺) of 𝐾3: 

𝑅0(𝐾3) = 𝑅0(𝐺) = 
3 × ∑𝑃 𝑟(𝐺𝐼)𝑅0(𝐺𝐼)

𝑁
 

=

3
2𝛽

3 + 4𝛽2𝛿 + 2𝛽2𝛿

(𝛽 + 𝛿)3
(3.10) 

Substitute 𝛽 = 𝛿 to Equation (3.6) and Equation(3.10) respectively:  

𝑅0(𝐾3(𝑖𝑔𝑛𝑜𝑟𝑒 𝑐𝑦𝑐𝑙𝑒𝑠)) =
2𝛽𝛿 + 2𝛽2

(𝛽 + 𝛿)2
= 1 (3.11) 

𝑅0(𝐾3) =

3
2𝛽

3 + 4𝛽2𝛿 + 2𝛽2𝛿

(𝛽 + 𝛿)3
=
15

16
(3.12) 

The particular case 𝛽 = 𝛿 provides us two intuitive values to help us compare with the two 

cases: ignore cycles and do not ignore cycles. If we consider cycles, the 𝑅0(𝐾3) will decrease 

compared to the case in which we ignore cycles. The most intuitive understanding is: the 𝑅0 

of a graph relies on the number of NNs of IIN, but cycles will make the NNs infected through 

other paths instead of infected directly by IIN. This is the key concept behind the definition of 

basic reproductive number that we proposed in this thesis. Otherwise, the 𝑅0 of a graph G will 

only be the value of taking the average on the degree sequence of G. 
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3.1.3 Possible epidemics on 𝑲𝟒 

Possible epidemic on 𝑲𝟒 

𝑮:  

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑹𝟎(𝑮𝑰) 

(1)  

𝛿6

(𝛽 + 𝛿)6
 0 

(2)  

3 ×
𝛽𝛿5

(𝛽 + 𝛿)6
 1 

(3)  

6 ×
𝛽2𝛿4

(𝛽 + 𝛿)6
 1 

(4)  

3 ×
𝛽2𝛿4

(𝛽 + 𝛿)6
 2 

(5)  

3 ×
𝛽3𝛿3

(𝛽 + 𝛿)6
 1 

(6)  

6 ×
𝛽3𝛿3

(𝛽 + 𝛿)6
 1 

(7)  

3 ×
𝛽3𝛿3

(𝛽 + 𝛿)6
 

3

2
 

(8)  

6 ×
𝛽3𝛿3

(𝛽 + 𝛿)6
 2 

(9)  

𝛽3𝛿3

(𝛽 + 𝛿)6
 3 

(10)  

3 ×
𝛽4𝛿2

(𝛽 + 𝛿)6
 1 

(11)  

6 ×
𝛽4𝛿2

(𝛽 + 𝛿)6
 

3

2
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(12)  

3 ×
𝛽4𝛿2

(𝛽 + 𝛿)6
 

7

4
 

(13)  

3 ×
𝛽4𝛿2

(𝛽 + 𝛿)6
 

5

2
 

(14)  

6 ×
𝛽5𝛿

(𝛽 + 𝛿)6
 

Around 1.45 

(By simulation) 

(15)  

3 ×
𝛽5𝛿

(𝛽 + 𝛿)6
 

Around 2.07 

(By simulation) 

(16)  

𝛽6

(𝛽 + 𝛿)6
 

Around 1.83 

(By simulation) 

(17)  

Impossible 
(18)  

(19)  

(20)  

Table 6: All possible epidemics on 𝐾4. Due to the symmetry of 𝐾4, Table 6 only 

shows the cases when Node A is the IIN. Node B, C, D can also have the same 

cases as Node A when they are the IIN. For some case in Table 6, due to the 

symmetry of the case, they can be further expanded as Table 7 shows. 

 

Due to the symmetry of 𝐾4 , most of 𝑃𝑟 (𝐺𝐼)  in 𝐾4  has coefficients except for: 𝐾4(1) , 

𝐾4(9), 𝐾4(16) . Use 𝐾4(2) as an example to illustrate that symmetry results in a factor of 3:  

 

Possible 𝐺𝐼 in 𝐾4(2) 

      

Table 7: Possible 𝐺𝐼  in 𝐾4(2). When Node A is the IIN and only one susceptible 

node will be infected, Node B, C, D has the same probability to be the target.  

 

As Table 7 shows, the IIN could choose three directions, thus 𝐾4(2)  actually has three 
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possible 𝐺𝐼. All three cases share the same probability 𝑃𝑟 (𝐺𝐼)= 
𝛽𝛿5

(𝛽+𝛿)6
. Thus, the probability 

of 𝐾4(2) is 3 ×
𝛽𝛿5

(𝛽+𝛿)6
. 

 The 𝑅0(𝐺𝐼) of most 𝐺𝐼 in 𝐾4 is easy to derive, but it is difficult to calculate the 𝑅0 of 

𝐾4(14), 𝐾4(15), and 𝐾4(16). This is because, for each neighboring node of IIN in these three 

graphs, there exist more than two paths for IIN to infect the NN if we consider cycles. Even 

more, some paths are dependent and share some common links. So far, since we are only able 

to theoretically calculate the probability of infection with only one competing path exists , we 

only get the numerical value of 𝑅0(𝐺𝐼) for 𝐾4(14), 𝐾4(15), and 𝐾4(16) by simulation. 

 Based on Table 6, we can get the 𝑅0(𝐾4) as: 

𝑅0(𝐾4) = 3 ×
𝛽𝛿5

(𝛽 + 𝛿)6
+ 6 ×

𝛽2𝛿4

(𝛽 + 𝛿)6
+ 3 × 2 ×

𝛽2𝛿4

(𝛽 + 𝛿)6
+ 3 ×

𝛽3𝛿3

(𝛽 + 𝛿)6

+ 6 ×
𝛽3𝛿3

(𝛽 + 𝛿)6
+ 3 ×

3

2
×

𝛽3𝛿3

(𝛽 + 𝛿)6
+ 6 × 2 ×

𝛽3𝛿3

(𝛽 + 𝛿)6
+ 3 ×

𝛽3𝛿3

(𝛽 + 𝛿)6

+ 3 ×
𝛽4𝛿2

(𝛽 + 𝛿)6
+ 6 ×

3

2
×

𝛽4𝛿2

(𝛽 + 𝛿)6
+ 3 ×

7

4
×

𝛽4𝛿2

(𝛽 + 𝛿)6

+ 3 ×
5

2
×

𝛽4𝛿2

(𝛽 + 𝛿)6
+ 6 × 1.45 ×

𝛽5𝛿

(𝛽 + 𝛿)6
+ 3 × 2.07 ×

𝛽5𝛿

(𝛽 + 𝛿)6

+ 1.83 ×
𝛽6

(𝛽 + 𝛿)6
 

=
3𝛽𝛿5 + 12𝛽2𝛿4 +

57
2 𝛽

3𝛿3 +
99
4 𝛽

4𝛿2 + 14.91𝛽5𝛿 + 1.83𝛽6

(𝛽 + 𝛿)6
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3.1.4 Disadvantage of holistic method 

In the above Section 3.1.1-3.1.4, we introduced the first approach using the holistic method to 

calculate the 𝑅0  of the given network. However, the shortcomings of the first method are 

apparent:  

i. Difficult to find 𝐺𝐼 

The holistic method needs to define the status of every link in the network. As Table 5 

and Table 6 show, there are 8 and 20 kinds of 𝐺𝐼 for 𝐾3 and 𝐾4, respectively, under 

the condition that there are only 3 and 6 links in 𝐾3 and 𝐾4. If the network has more 

nodes and links, the complexity and the number of 𝐺𝐼 will grow qucikly. Besides, as 

𝐺𝐼 from Table 5 (8) and Table 6 (17) -(20) show, the number of impossible cases will 

also rapidly increase when the network becomes complex. Thus, it is difficult to find 

every possible 𝐺𝐼.  

ii. Difficult to calculate 𝑃𝑟(𝐺𝐼) 

In the above example of 𝐾3 and 𝐾4, the active and inactive links, together with the 

symmetry property, determine the 𝑃𝑟(𝐺𝐼 ) for a given 𝐺𝐼 . However, we need to 

remember that the symmetry property can only be used in simple and symmetric 

networks such as 𝐾3  and 𝐾4 . Once we encounter an asymmetric network, the 

calculation of 𝑃𝑟(𝐺𝐼) will be much more difficult than what we have done in 𝐾3 and 

𝐾4.  

iii. Difficult to determined 𝑅0(𝐺𝐼) 

In the holistic method, we need first to calculate the 𝑅0 of nodes and then derive the 

𝑅0 of the network by adding them up and taking the average. The range of 𝑅0 of 

nodes is wide, ranging from 0 to the maximum number of the NNs of that chosen IIN, 

as Table 5 and Table 6 indicate. Apart from that, the actual value of 𝑅0(𝐺𝐼)  is 

determined by the status of links of 𝐺𝐼 . Facing the complexity of finding 𝐺𝐼  and 

𝑃𝑟(𝐺𝐼), we cannot derive an elegant mathematical expression to calculate the 𝑅0 of 

nodes. 

iv. Difficult to make simplification  

From the above shortcomings of i.-iii. , we can conclude that, for a large and complex 

network, it is very difficult to derive and calculate an analytical solution facing the 

complexity of both 𝑃𝑟(𝐺𝐼) and 𝑅0(𝐺𝐼) if we want to consider the different infection 

processes in every link. Thus, we need to make some approximations and 

simplifications to reduce the complexity without introducing significant bias in the 

result. For example, we can ignore some links and not consider them when calculating 

𝑃𝑟(𝐺𝐼) and 𝑅0(𝐺𝐼). However, the holistic approach apparently is unsuitable if we want 

to make approximations because we cannot estimate and measure the significance of 

links. The global nature of the holistic method makes it difficult to simplify locally.  
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3.2 Second approach: IIN-TN method  

In contrast with the holistic method, the IIN-TN (initial infected node to target node) method 

will not consider all the NNS of IIN once as a whole. Instead, IIN-TN will focus on the 

individual relation between IIN and its NNs. The main step of the whole process is as follow: 

i. Randomly select one node from the network as IIN. For this chosen IIN, all its 

neighboring nodes (NNs) can also be determined.  

ii. Select one of the NNs to become TN and calculate the probability that the IIN directly 

infects the susceptible TN. Repeat this process until all the NNs have been selected as 

IIN and all the probabilities have been calculated.  

iii. Sum up all the probabilities that we obtained in ii. , which is the 𝑅0 of the chosen IIN.  

iv. Repeat step i. to step iii. until all the nodes in the network have been selected as IIN. 

The process of repeating step i. to step iii should be considered as independent process. 

The summation of 𝑅0 of all the nodes in this network will become 𝑅0 of the network.  

 

The above steps only describe the general steps of the IIN-TN method. The following is a 

detailed explanation of the process using notations and formulas.  

Between IIN and TN, apart from the direct path, there might exist other alternative paths, 

which are composed of links as well. Thus, in order to describe the infection process in these 

links, we also first need to find the graph with infection: 𝐺𝐼 and the probability of it: 𝑃𝑟(𝐺𝐼) , 

just like what we do in the holistic method. The difference is that instead of calculating the 

expected secondary infected cases of the graph with infection: 𝑅0(𝐺𝐼), we need to calculate 

the probability that IIN directly infects TN under the condition of a given graph with infection: 

𝑃𝑟 (𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) . The difference is that: the value of 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)  in the IIN-TN 

method will be within the range of (0,1], and the value of 𝑅0(𝐺𝐼) in the holistic method will 

be within the range of [0, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑁𝑠].  

 After finding 𝑃𝑟 (𝐺𝐼)  and 𝑃𝑟 (𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) , we can get the probability that IIN 

directly infect TN by the law of total probability: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) =∑𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) (3.13) 

In this way, we guarantee that the IIN-TN method includes the consideration of the local 

structure between IIN and TN.  

Then, we assign the next node of NNs to be TN and repeat the process until all nodes in 

NNs have been regarded as TN. For 𝑇𝑁 ∈ 𝑁𝑁, 𝟙𝐼𝐼𝑁 → 𝑇𝑁 is a Bernoulli random variable and 

𝑅0 of IIN is the sum of dependent random variables. Thus, we have:  

𝑅0(𝐼𝐼𝑁) =  𝐸[ (𝟙𝐼𝐼𝑁 → 1) + ( 𝟙𝐼𝐼𝑁 → 2| 𝐼𝐼𝑁 → 1 )+. . . + (𝟙𝐼𝐼𝑁 → 𝑑𝑣| 𝐼𝐼𝑁 → 1,2. . . 𝑑𝑣 − 1)] 

We assume that each Bernoulli trials be independent, then we can derive 𝑅0 of IIN as:   

𝑅0(𝐼𝐼𝑁) ≅ 𝐸 [ ∑ 𝟙𝐼𝐼𝑁 → 𝑇𝑁

𝑇𝑁∈𝑁𝑁

] 

≅ ∑ 𝐸[𝟙𝐼𝐼𝑁 → 𝑇𝑁]

𝑇𝑁∈𝑁𝑁
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≅ ∑ 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁)

𝑇𝑁∈𝑁𝑁

(3.14) 

Where the expectation of the independent Bernoulli random variable 𝐸[𝟙𝐼𝐼𝑁 → 𝑇𝑁]  is the 

probability of success 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁). 

At last, sum all the 𝑅0 of the IIN and divide the number of nodes in the network to derive 

the 𝑅0 of the network: 

𝑅0(𝑁𝑒𝑡𝑤𝑜𝑟𝑘) =
∑ 𝑅0(𝐼𝐼𝑁)𝐼𝐼𝑁∈𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑁
(3.15) 

 Equations 3.13-3.15 demonstrate the key process of the IIN-TN method. Compared with 

the holistic method, in the IIN-TN method, we further divide the process of finding 𝑅0(𝐼𝐼𝑁) 

into smaller parts. This change gives us the benefit that we can ignore the rest of the links in 

the graph and only focus on the links between IIN and TN. Furthermore, we can also reduce 

the complexity of calculating 𝑃𝑟(𝐺𝐼) and 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) by making a simplification on 

the alternative paths between IIN and TN. The simplification is done with the help of the 

structure of 𝐾2,𝑃𝐴 + 𝑒, where we have an analytical solution. A more detailed introduction and 

explanation will be given in the following sections. 

 

 

3.2.1 Introduction of 𝑲𝟐,𝑷𝑨 + 𝒆 and revisit of 𝑲𝟑  

 
Figure 2: The graph and structure of 𝐾2,𝑃𝐴 + 𝑒. The 2 nodes are Node A and Node 

B. The 𝑃𝐴 nodes are the rest susceptible nodes that form 𝑃𝐴 alternative paths. 

Link 𝑒  is the link between Node A and Node B. The red color of Node A 

represents that Node A is the IIN, and the red color of Node B represents that Node 

B is the target node that must be infected. The red color of link 𝑒 represents that 

this link will surely spread the epidemic, while the black color of the rest 

alternative paths indicates that all the paths have the chance to compete with link 

𝑒. 

The 𝐾2,𝑃𝐴 + 𝑒 is the complete bipartite graph on two and 𝑃𝐴 nodes plus the link 𝑒, which 

connects IIN(initial infected node) and TN (target node) directly. As Figure 2 shows, between 

IIN and TN, there are a total number of 𝑃𝐴 alternative paths. Alternative path means the path 

provides another option for IIN to reach TN instead of the direct path (link 𝑒) between IIN and 

TN. The analytical solution of Figure 2 will change accordingly with the change in the number 

of alternative paths 𝑃𝐴. In order to derive the analytical solution, we need to derive two things 

based on 𝐾2,𝑃𝐴 + 𝑒: 



 

 

26 
 

i. 𝑃𝑟(𝐺𝐼): The probability of graph with infection process.  

ii. 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) : Conditional probability of IIN infect TN directly under the 

condition of given 𝐺𝐼  

 

An example 𝐺𝐼 under the structure of Figure 2 is given below:  

 

Figure 3: A possible case of 𝐾2,𝑃𝐴 + 𝑒 . Except from the link 𝑒 , there is one 

competing path (which originally is an alternative path) that will compete with 

link 𝑒  for the shortest time to infect TN. The number of 𝑃𝐶   and 𝑃A  will 

determine 𝐺𝐼  for each case.  

 

If we define the links that spread the infection as active links, compared with Figure 2 and 

Figure 3, Figure 3 has two more active links. The two links form a competing path, which is 

denoted as 𝑃𝐶 = 1. The commons and differences between an alternative path and a competing 

path are given below: 

i. The number of alternative paths 𝑃𝐴 is determined and fixed once we have a graph 

structure like Figure 2. But the number of competing paths 𝑃𝐶 might vary just like 

Figure 3 shows. The maximum number of possible competing paths is the number of 

alternative paths: 𝑚𝑎𝑥 (𝑃𝐶) = 𝑃𝐴. 

ii. The number of links in one alternative path is denoted as 𝐿𝐴. If all the links in the 

alternative path are active, the alternative path will become a competing path. This 

means that if the number of active links in one alternative path is less than 𝐿𝐴, this 

alternative path should not be considered a competing path.  

iii. The existence of competing paths will lower the probability that IIN directly infects TN 

(𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)) because the infection from IIN to TN could be reached by any 

competing paths or the direct path. Thus, 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) is actually determined by 

𝑃𝐶 and 𝐿𝐴, but irrelevant with 𝑃𝐴. However, 𝑃𝑟 (𝐺𝐼) is determined by all of them: 

𝑃𝐴, 𝑃𝐶, and 𝐿𝐴.  

 

A simple example with 𝑃𝐴 = 1 will demonstrate how this work as the following table 

shows (𝐾2,1 + 𝑒 is same as 𝐾3):  
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𝑮: 𝑲𝟐,𝟏 + 𝒆 = 𝑲𝟑 

 

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑷𝒓(𝑰𝑰𝑵 → 𝑻𝑵|𝑮𝑰) 

 

(1) 

𝛽

𝛽 + 𝛿

𝛽0𝛿2

(𝛽 + 𝛿)2
 1 

 

(2) 

𝛽

𝛽 + 𝛿

𝛽1𝛿1

(𝛽 + 𝛿)2
 1 

 

(3) 

𝛽

𝛽 + 𝛿

𝛽1𝛿1

(𝛽 + 𝛿)2
 1 

  

(4) 

𝛽

𝛽 + 𝛿

𝛽2𝛿0

(𝛽 + 𝛿)2
 

3

4
 

Table 8:All possibly epidemics on 𝐾2,1 + 𝑒 (𝐾3). For this case, 𝑃𝐴 = 1, and 

𝑃C = [0,1]. 

 

Based on Table 8, the probability that IIN directly infects TN could be calculated as: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) = 𝑃𝑟(𝐴 → 𝐵) =∑𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) =
𝛽𝛿2 + 2𝛽2𝛿 +

3
4𝛽

3

(𝛽 + 𝛿)3
(3.16) 

In fact, Table 8 and Equation 3.16 only calculate the case when node A is the IIN and node B is 

TN. However, when node A is IIN, node C should also be considered as TN apart from node B. 

By the symmetry of 𝐾3, the probability that node A directly infects node B should be the same 

as the probability that node A directly infects node C: 

𝑃𝑟(𝐴 → 𝐵) = 𝑃𝑟(𝐴 → 𝐶) (3.17) 



 

 

28 
 

Thus, the 𝑅0 of node A when A is selected as IIN could be calculate as: 

𝑅0(𝐼𝐼𝑁 = 𝐴) = ∑ 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁)

𝑇𝑁∈𝑁𝑁𝑠

 

= 𝑃𝑟(𝐴 → 𝐵) + 𝑃𝑟(𝐴 → 𝐶) 

= 2 ×
𝛽𝛿2 + 2𝛽2𝛿 +

3
4𝛽

3

(𝛽 + 𝛿)3
 

=

3
2𝛽

3 + 4𝛽2𝛿 + 2𝛽2𝛿

(𝛽 + 𝛿)3
(3.18) 

IIN could be selected as node B and node C as well, and due to the symmetry of 𝐾3, the value 

should be the same when IIN is either A, B or C: 𝑅0(𝐼𝐼𝑁 = 𝐴) = 𝑅0(𝐼𝐼𝑁 = 𝐵) =

𝑅0(𝐼𝐼𝑁 = 𝐶). At last, the 𝑅0 of 𝐾3 could be calculated as:  

𝑅0(𝐾3) =
∑ 𝑅0(𝐼𝐼𝑁)𝐼𝐼𝑁∈𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑁
 

=
𝑅0(𝐴) + 𝑅0(𝐵) + 𝑅0(𝐶)

3
 

=

3
2𝛽

3 + 4𝛽2𝛿 + 2𝛽2𝛿

(𝛽 + 𝛿)3
(3.19) 

Comparing the results from Equation (3.19) by the IIN-TN method and from Equation (3.10) 

by the holistic method, we can find that the two methods deliver the same result. The 

consistency of the results between the two methods supports our choice of using the less 

complex IIN-TN method. Furthermore, comparing Table 5 and Table 8, we can find that the 

complexity of the IIN-TN method is only half of the holistic method regarding the case of 𝐾3.  

 From the above example, one essential concept should be pointed out and emphasized: the 

𝐾2,𝑃𝐴 + 𝑒 could help us to calculate the probability of the direct infection between any IIN and 

any TN ( 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁)  ) for any number of independent alternative paths (2 links only) 

between IIN and TN.  

As the above example shows, when  𝑃A = 1 , 𝐾2,𝑃𝐴 + 𝑒 becomes 𝐾3. The exact match 

of result of 𝐾2,1 + 𝑒 and 𝐾3 is a coincidence because 𝐾3 is one of the simplest structures 

and there is no alternative path in 𝐾3 that is longer than 2 links. Actually, 𝐾2,𝑃𝐴 + 𝑒 could be 

used as an approximation and simplification method to solve 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁)  by only 

considering the alternative path with 2 links. Another example of 𝐾4 will be shown in the next 

section after the analytical solution of 𝐾2,𝑃𝐴 + 𝑒 is given. In which, we will find that some 

links are ignored by using 𝐾2,𝑃𝐴 + 𝑒 as a simplification method and how much error it will 

introduce. 

 

 

 

 



 

 

29 
 

3.2.2 Analytical solution of 𝑲𝟐,𝑷𝑨 + 𝒆 and revisit of 𝑲𝟒  

In 𝐾2,𝑃𝐴 + 𝑒, 𝑃𝐴 ( number of alternative paths ) is a variable that has a range of [1,∞), and it 

determines the basic structure of 𝐾2,𝑃𝐴 + 𝑒 once 𝑃𝐴 is determined. Therefore, there are two 

variables are based on 𝑃𝐴, such as the range of 𝑃𝐶 and 𝐿𝐼 : 𝑃𝐶 = [0, 𝑃𝐴] and 𝐿𝐼 = [0,2𝑃𝐴].  

First, we define 𝐿𝐼 as the total number of infected links in all alternative paths. Thus, 𝐿𝐼 

determines the power of 𝛽 just as 𝑃𝑟 (𝐺𝐼) in Table 8 shows. Besides, as we can see from the 

values of  𝑃𝑟 (𝐺𝐼) in Table 8, they are composed of two fractions. The first fraction is a fixed 

value of 
𝛽

𝛽+𝛿
, which indicates the direct path 𝑒 that connects IIN and TN. The second fraction 

will change in the numerator according to the total number of infected links 𝐿𝐼,  but has a 

fixed value at the denominator: 
𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽+𝛿)2𝑃𝐴
  . Where 2𝑃𝐴  is the total number of links of all 

alternative paths, 𝐿𝐼 is the number of active links, and 2𝑃𝐴 − 𝐿𝐼  is the number of remaining 

inactive links.  

𝑮𝑰 𝑷𝒓 (𝑮𝑰) 𝑷𝒓(𝑰𝑰𝑵 → 𝑻𝑵|𝑮𝑰) 

 

(2) 

𝛽

𝛽 + 𝛿

𝛽1𝛿1

(𝛽 + 𝛿)2
 1 

 

(3) 

𝛽

𝛽 + 𝛿

𝛽1𝛿1

(𝛽 + 𝛿)2
 1 

Table 9: Part of Table 8. 𝑃𝑟 (𝐺𝐼) and 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) are the same for both 

cases even the active links are different. This is because the two cases have the 

same 𝐿𝐼 and 𝑃C. 

 

 Besides, as we can see from Table 9 above, we can find that for the two cases in 𝐾3, they 

have the same 𝑃𝑟 (𝐺𝐼)  and 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)  because the 𝐿𝐼 = 1  and 𝑃𝐶 = 0  are the 

same for both cases. The difference is the placement of the active links. In fact, for  𝐾2,𝑃𝐴 + 𝑒 

with a large number of 𝑃𝐴, the kinds of placements of active links with a fixed 𝑃𝐶 is a large 

number, which could be calculated as the following function shows: 

|𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼)| =

{
 
 

 
 
(
𝑃𝐴
𝑃𝐶
)
∏ (2𝑃𝐴−2𝑃𝐶−2𝑘

1
)𝐿𝐼−2𝑃𝐶−1

𝑘=0

𝑃(𝐿𝐼 − 2𝑃𝐶 , 𝐿𝐼 − 2𝑃𝐶)
, 𝑖𝑓 𝐿𝐼 − 2𝑃𝐶 − 1 ≥ 0

(
𝑃𝐴
𝑃𝐶
) ,                                                      𝑖𝑓 𝐿𝐼 − 2𝑃𝐶 − 1 < 0

(3.20) 

And  𝑃𝐴 = [1,∞), 𝑃𝐶 = [0, 𝑃𝐴], 𝐿𝐼 = [0,2𝑃𝐴] for Equation 3.20.  
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Where |𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼)| is the product of two terms: (𝑃𝐴
𝑃𝐶
) and 

∏ (
2𝑃𝐴−2𝑃𝐶−2𝑘

1
)

𝐿𝐼−2𝑃𝐶−1

𝑘=0

𝑃(𝐿𝐼−2𝑃𝐶 ,𝐿𝐼−2𝑃𝐶)
.  

 (𝑃𝐴
𝑃𝐶
) is the binomial coefficient which could be calculated as: 

(
𝑃𝐴
𝑃𝐶
) =

𝑃𝐴!

𝑃𝐶! (𝑃𝐴 − 𝑃𝐶)!
(3.21) 

The meaning of (𝑃𝐴
𝑃𝐶
) is to select 𝑃𝐶 competing paths from the total number of 𝑃𝐴 alternative 

paths.  

Then, what’s the meaning of 
∏ (

2𝑃𝐴−2𝑃𝐶−2𝑘
1

)
𝐿𝐼−2𝑃𝐶−1

𝑘=0

𝑃(𝐿𝐼−2𝑃𝐶 ,𝐿𝐼−2𝑃𝐶)
   The total number of links of all 

alternative paths in 𝐾2,𝑃𝐴 + 𝑒  is 2𝑃𝐴 . Because all the alternative paths in 𝐾2,𝑃𝐴 + 𝑒  are 

composed of 2 links, one competing path will occupy two links, thus the number of remaining 

undefined links will be 2𝑃𝐴 − 2𝑃𝐶. Then, from 2𝑃𝐴 − 2𝑃𝐶 undefines links, we select one link 

as the active link, which could be represented by the binomial coefficients (2𝑃𝐴−2𝑃𝐶
1

). After 

this selection, the number of remaining undefined links will reduce to 2𝑃𝐴 − 2𝑃𝐶 − 2 because 

we cannot select the link on the same alternative path as the 𝐿𝐴 = 2 (𝐿𝐴 is the number of links 

in one alternative path). If two links in the same alternative path both become active, then this 

alternative path will become a competing path, which will lead to an increase of 𝑃𝐶  and 

conflict with our precondition of fixed 𝑃𝐶. Then, based on 2𝑃𝐴 − 2𝑃𝐶 − 2 undefined links, 

we can select another link to be active, which is (2𝑃𝐴−2𝑃𝐶−2
1

). Repeat the process until the 

number of active links reaches our precondition, the fixed 𝐿𝐼. The continued selection process 

could be represented by the product of each selection: ∏ (2𝑃𝐴−2𝑃𝐶−2𝑘
1

)
𝐿𝐼−2𝑃𝐶−1
𝑘=0 .  

However, we should not ignore the errors introduced during the selection process: one 

combination of selections will be overcounted many times by the order of several independent 

selection processes. For example, one combination of {link A, link B, link C} might be 

overcounted as (link A, link B, link C), (link A, link C, link B), (link B, link A, link C), (link B, 

link C, link A), (link C, link A, link B), (link C, link B, link A) for six permutations. Thus, we 

need to divide the selection result by the permutation number: 𝑃(𝐿𝐼 − 2𝑃𝐶 , 𝐿𝐼 − 2𝑃𝐶), which 

could be calculated as:  

𝑃(𝐿𝐼 − 2𝑃𝐶 , 𝐿𝐼 − 2𝑃𝐶) =
(𝐿𝐼 − 2𝑃𝐶)!

[(𝐿𝐼 − 2𝑃𝐶) − (𝐿𝐼 − 2𝑃𝐶)]!
= (𝐿𝐼 − 2𝑃𝐶)! (3.22) 

because in total we need to select 𝐿𝐼 − 2𝑃𝐶  links one by one, thus we have  𝐿𝐼 − 2𝑃𝐶  

independent selection process.  

 Equation 3.22 only gives the number of kinds of 𝐺𝐼 for the fixed 𝐿𝐼 and 𝑃𝐶. However, 

this is insufficient because both 𝐿𝐼  and 𝑃𝐶  will change if we want to derive an analytical 

solution of 𝐾2,𝑃𝐴 + 𝑒. Based on Equation 3.22, we take the further step by considering the 

change of 𝐿𝐼 , but with fixed 𝑃𝐶. When 𝑃𝐶 is a fixed number, the range of 𝐿𝐼 is determined 

as 𝐿𝐼 = [2𝑃𝐶 , 𝑃𝐴 + 𝑃𝐶] . The reason is simple: each competing path has two links,  which 

means there must be at least 2𝑃𝐶 active links to form 𝑃𝐶 competing path. The higher bound 

is limited by 𝑃𝐴 + 𝑃𝐶, because if we have one more active link, it will form 𝑃𝐶 + 1 competing 
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path, which conflicts with our predefinition of fixed 𝑃𝐶. Based on the range of 𝐿𝐼, we could 

write the following equation as the sum of a series of Equation 3.22, where |𝒻(𝑛𝑢𝑚𝑏𝑒𝑟)| is 

the total number of family of placements: 

|𝒻(𝑛𝑢𝑚𝑏𝑒𝑟)| = ∑ |𝒻(𝐿𝐼 , 𝑃𝐴, 𝑃𝐶)

𝑃𝐴+𝑃𝐶

𝐿𝐼=2𝑃𝐶

| (3.23) 

Furthermore, based on Equation 3.23, we could calculate the probability of 𝐺𝐼 as: 

𝑃𝑟(𝐺𝐼) =
𝛽

𝛽 + 𝛿
∑ (𝑓(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)2𝑃𝐴
)

𝑃𝐴+𝑃𝐶

𝐿𝐼=2𝑃𝐶

(3.24) 

 Equation 3.24 is achieved based on the precondition that 𝑃𝐶 is a fixed value. 𝑃𝐶 not only 

determines 𝑃𝑟(𝐺𝐼)  as Equation 3.24 shows, but it also determines the value of 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼).  In 𝐾2,𝑃𝐴 + 𝑒 , with fixed 𝑃𝐶  in 𝐺𝐼 , 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)  refers to the 

probability that the infection goes through the path faster than any competing path, including 

the fastest alternative path. Thus, 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) could be rewrite as: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) = 𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) (3.25) 

Again, we could calculate 𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) ))  by the integration of the product of 

conditional probability: 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) = ∫ 𝑃𝑟(𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) ) >  𝐼| 𝐼 = 𝑡)
∞

𝑡=−∞

𝑓𝐼(𝑖)𝑑𝑡 

= ∫ 𝑓𝐼(𝑡) (1 − 𝐹min( 𝑃𝐶(𝐼+𝐼))(𝑡)) 𝑑𝑡
∞

𝑡=0

 

= ∫ 𝛽 𝑒−𝛽𝑡(𝑒−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)
𝑃𝐶
𝑑𝑡

∞

𝑡=0

 

=  𝑒  𝑃𝐶+1( 𝑃𝐶 + 1)
− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1) (3.26) 

(The detail derivation process of Equation (3.26) is given in Appendix A.4 .) 

 Based on Equation 3.23-3.26, we could write the result of probability that IIN direct infect 

TN in the graph 𝐾2,𝑃𝐴 + 𝑒 with 𝑃𝐶 range of [0, 𝑃𝐴] as:  

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) = ∑ 𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)

𝑃𝐴

𝑃𝐶=0

 

= ∑ {[
𝛽

𝛽 + 𝛿
∑ (𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)2𝑃𝐴
)

𝑃𝐴+𝑃𝐶

𝐿𝐼=2𝑃𝐶

] ( 𝑒  𝑃𝐶+1( 𝑃𝐶 + 1)
− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1))}

𝑃𝐴

𝑃𝐶=0

(3.27) 

Where |𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼)| = {
(𝑃𝐴
𝑃𝐶
)
∏ (

2𝑃𝐴−2𝑃𝐶−2𝑘
1

)
𝐿𝐼−2𝑃𝐶−1

𝑘=0

(𝐿𝐼−2𝑃𝐶)!
, 𝑖𝑓 𝐿𝐼 − 2𝑃𝐶 − 1 ≥ 0

(𝑃𝐴
𝑃𝐶
) ,                                         𝑖𝑓 𝐿𝐼 − 2𝑃𝐶 − 1 < 0

 

 The above Equation 3.27 may seem very complicated, but it is straightforward if we 

calculate step by step. Another example of 𝐾2,𝑃𝐴 + 𝑒 with 𝑃𝐴 = 2, as Figure 4 shows, will be 

given to illustrate the inside of Equation 3.27.  
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Figure 4: 𝐾2,𝑃𝐴 + 𝑒 with 𝑃𝐴 = 2. This structure has two alternative paths.  

 

 Starting with the outermost part of the formula, we have the summation of the multiple 

terms with a range of 𝑃𝐶 = [0, 𝑃𝐴]. In this example, 𝑃𝐴 = 2, thus we have the range of 𝑃𝐶 =

[0,2], which lead to 3 cases: 𝑃𝐶 = 0; 𝑃𝐶 = 1; 𝑃𝐶 = 2. 

 When 𝑃𝐶 = 0, the range of 𝐿𝐼  could be derived : 𝐿𝐼 = [2𝑃𝐶 , 𝑃𝐴 + 𝑃𝐶] = [0,2]. Thus, 

𝐿𝐼  also has three cases: 𝐿𝐼 = 0; 𝐿𝐼 = 1; 𝐿𝐼 = 2. Then, we can find the kinds of 𝐺𝐼  and 

calculate the number for each kinds using |𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼)|:  

|𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼)| = (
𝑃𝐴
𝑃𝐶
)
∏ (2𝑃𝐴−2𝑃𝐶−2𝑘

1
)

𝐿𝐼−2𝑃𝐶−1
𝑘=0

𝑃(𝐿𝐼 − 2𝑃𝐶 , 𝐿𝐼 − 2𝑃𝐶)
 

=

{
  
 

  
 (
2

0
)               𝑤ℎ𝑒𝑛 𝐿𝐼 = 0

(
2

0
)

(4
1
)

𝑃(1,1)
 𝑤ℎ𝑒𝑛 𝐿𝐼 = 1

(
2

0
)
(4
1
)(2
1
)

𝑃(2,2)
 𝑤ℎ𝑒𝑛 𝐿𝐼 = 2

 

= {
1   𝑤ℎ𝑒𝑛 𝐿𝐼 = 0
4   𝑤ℎ𝑒𝑛 𝐿𝐼 = 1
4   𝑤ℎ𝑒𝑛 𝐿𝐼 = 2

(3.28) 

Besides, the probability 𝑃𝑟(𝐺𝐼) for each case (not considering the number of each kind ):  

𝑃𝑟(𝐺𝐼) =
𝛽

𝛽 + 𝛿

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)2𝑃𝐴
=

{
  
 

  
 

𝛽

𝛽 + 𝛿

𝛽0𝛿4

(𝛽 + 𝛿)4
   𝑤ℎ𝑒𝑛 𝐿𝐼 = 0

𝛽

𝛽 + 𝛿

𝛽1𝛿3

(𝛽 + 𝛿)4
   𝑤ℎ𝑒𝑛 𝐿𝐼 = 1

𝛽

𝛽 + 𝛿

𝛽2𝛿2

(𝛽 + 𝛿)4
   𝑤ℎ𝑒𝑛 𝐿𝐼 = 2

(3.29) 

Equation 3.28 shows 3 kinds of 𝐺𝐼  when 𝑃𝐴 = 2 and 𝑃𝐶 = 0, and each kind has 1, 4, and 

4 possible epidemics, respectively. The following Table 10 summarizes the content of 

Equation 3.28 and Equation 3.29 and gives the schematic graph of possible epidemics: 
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𝑳𝑰 𝑮𝑰 𝑷𝒓(𝑮𝑰) 

𝐿𝐼 = 0 

 

𝛽

𝛽 + 𝛿

𝛽0𝛿4

(𝛽 + 𝛿)4
 

𝐿𝐼 = 1 

 

 

4 ×
𝛽

𝛽 + 𝛿

𝛽1𝛿3

(𝛽 + 𝛿)4
 

𝐿𝐼 = 2 

 

 

4 ×
𝛽

𝛽 + 𝛿

𝛽2𝛿2

(𝛽 + 𝛿)4
 

Table 10: Possible epidemics for 𝐾2,2 + 𝑒 when 𝑃𝐴 = 2 and 𝑃𝐶 = 0. 𝐿𝐼 

has range [0,2]. 

 

Furthermore, we need to calculate 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) when 𝑃𝐶 = 0: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) =  𝑒
 𝑃𝐶+1( 𝑃𝐶 + 1)

− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1) = 1 (3.30) 

At last, based on Equation 3.28-3.30 we could calculate 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) when 𝑃𝐶 = 0: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) = 𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) 

=
𝛽

𝛽 + 𝛿
[ ∑ (𝑓(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)2𝑃𝐴
)

𝑃𝐴+𝑃𝐶

𝐿𝐼=2𝑃𝐶

] ( 𝑒  𝑃𝐶+1( 𝑃𝐶

+ 1)− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1)) 

=
𝛽

𝛽 + 𝛿
[∑ (𝑓(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)4
)

2

𝐿𝐼=0

] × 1 

=
𝛽

𝛽 + 𝛿
(
𝛽0𝛿4

(𝛽 + 𝛿)4
+

4𝛽1𝛿3

(𝛽 + 𝛿)4
+

4𝛽2𝛿2

(𝛽 + 𝛿)4
) (3.31) 
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After dealing with the case when 𝑃𝐶 = 0 , when 𝑃𝐶 = 1  and 𝑃𝐶 = 2 , we repeat the 

process of Equation 3.28 and 3.29, and we can write another 2 tables similar to Table 10: 

𝑳𝑰 𝑮𝑰 𝑷𝒓(𝑮𝑰) 

𝐿𝐼 = 2 

  

2 ×
𝛽

𝛽 + 𝛿

𝛽2𝛿2

(𝛽 + 𝛿)4
 

𝐿𝐼 = 3 
  

    

4 ×
𝛽

𝛽 + 𝛿

𝛽3𝛿1

(𝛽 + 𝛿)4
 

Table 11: Possible epidemics for 𝐾2,2 + 𝑒 when 𝑃𝐴 = 2 and 𝑃𝐶 = 1. 𝐿𝐼 has 

range: [ 2, 3 ]. 

 

𝑳𝑰 𝑮𝑰 𝑷𝒓(𝑮𝑰) 

𝐿𝐼 = 4 

  

𝛽

𝛽 + 𝛿

𝛽4𝛿0

(𝛽 + 𝛿)4
 

Table 12: Possible epidemics for 𝐾2,2 + 𝑒  when 𝑃𝐴 = 2  and 𝑃𝐶 = 2 . 𝐿𝐼 

could only be 4 for this case. 

 

Again, we can calculate 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) for the two cases of Table 11 and Table 12: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) =  𝑒
 𝑃𝐶+1( 𝑃𝐶 + 1)

− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1) 

= {

3

4
, 𝑤ℎ𝑒𝑛 𝑃𝐶 = 1

17

27
, 𝑤ℎ𝑒𝑛 𝑃𝐶 = 2

(3.32) 

And the 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁): 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) = 𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) 

=
𝛽

𝛽 + 𝛿
[ ∑ (𝑓(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)2𝑃𝐴
)

𝑃𝐴+𝑃𝐶

𝐿𝐼=2𝑃𝐶

] ( 𝑒  𝑃𝐶+1( 𝑃𝐶

+ 1)− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1)) 

=

{
  
 

  
 𝛽

𝛽 + 𝛿
[∑ (𝑓(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)4
)

3

𝐿𝐼=2

] ×
3

4
, 𝑤ℎ𝑒𝑛 𝑃𝐶 = 1

𝛽

𝛽 + 𝛿
[∑ (𝑓(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)4
)

4

𝐿𝐼=4

] ×
17

27
, 𝑤ℎ𝑒𝑛 𝑃𝐶 = 2

 



 

 

35 
 

=

{
 
 

 
 

𝛽

𝛽 + 𝛿
(
2𝛽2𝛿2

(𝛽 + 𝛿)4
+

4𝛽3𝛿1

(𝛽 + 𝛿)4
) ×

3

4
, 𝑤ℎ𝑒𝑛 𝑃𝐶 = 1

𝛽

𝛽 + 𝛿
(
𝛽4𝛿0

(𝛽 + 𝛿)4
) ×

17

27
,                             𝑤ℎ𝑒𝑛 𝑃𝐶 = 2

(3.33) 

 

In Equation 3.31 and Equation 3.33, we have derived the terms for different values of 

𝑃𝐶 . According to Equation 3.27, the last step is to sum up all the terms: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) = ∑ 𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)

𝑃𝐴

𝑃𝐶=0

 

= ∑ 𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)

2

𝑃𝐶=0

 

=
𝛽

𝛽 + 𝛿
(
𝛽0𝛿4

(𝛽 + 𝛿)4
+

4𝛽1𝛿3

(𝛽 + 𝛿)4
+

4𝛽2𝛿2

(𝛽 + 𝛿)4

+ (
2𝛽2𝛿2

(𝛽 + 𝛿)4
+

4𝛽3𝛿1

(𝛽 + 𝛿)4
) ×

3

4
+ (

𝛽4𝛿0

(𝛽 + 𝛿)4
) ×

17

27
) 

=
𝛽1𝛿4 + 4𝛽2𝛿3 +

11
2 𝛽

3𝛿2 + 3𝛽4𝛿1 +
17
27 𝛽

5𝛿0

(𝛽 + 𝛿)5
(3.34) 

The result in Equation 3.34 is the analytical result of 𝐾2,2 + 𝑒. For 𝐾2,𝑃𝐴 + 𝑒 with a 

high 𝑃𝐴 value, we can still follow the same process and get the analytical solution. With 

the analytical result of 𝐾2,2 + 𝑒, we can regard it as the simplification structure of 𝐾4 as 

Figure 5 shows.  

 

Figure 5: 𝐾4 could be simplified as 𝐾2,2 + 𝑒 by ignoring one links. For this case, 

the link between Node D and Node C has been ignored. Based on this 

simplification, the analytical solution of  𝐾2,2 + 𝑒  could be used as the 

approximation result of 𝐾4. 

 

Thus, the 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) of 𝐾4 could be regarded as the analytical solution we have 

derived for 𝐾2,2 + 𝑒, which is shown in Equation 3.34. Thus, based on Equation 3.34, we 

could calculate the 𝑅0 of node A by regarding node B, node C, and node D as TN in turn. 

By symmetry of 𝐾4 , the 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) between each pair of nodes is the same and we 

could write 𝑅0 of node A:  

𝑅0(𝐼𝐼𝑁 = 𝐴) = ∑ 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁)

𝑇𝑁∈𝑁𝑁𝑠

 

= 𝑃𝑟(𝐴 → 𝐵) + 𝑃𝑟(𝐴 → 𝐶) + 𝑃𝑟(𝐴 → 𝐷) 

= 3𝑃𝑟(𝐴 → 𝐵) 
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= 3 ×
𝛽1𝛿4 + 4𝛽2𝛿3 +

11
2
𝛽3𝛿2 + 3𝛽4𝛿1 +

17
27
𝛽5𝛿0

(𝛽 + 𝛿)5
(3.35) 

Apart from the case when node A is IIN, the rest of the nodes in 𝐾4 could also be regarded 

as IIN, and we can get the same result of 𝑅0 as the one given in Equation 3.35 due to the 

symmetric property of 𝐾4 . Thus, we could write 𝑅0 of 𝐾4 as: 

𝑅0(𝐾4) =
∑ 𝑅0(𝐼𝐼𝑁)𝐼𝐼𝑁∈𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑁
 

=
𝑅0(𝐴) + 𝑅0(𝐵) + 𝑅0(𝐶) + 𝑅0(𝐷)

4
 

=
4𝑅0(𝐴)

4
 

= 3 ×
𝛽1𝛿4 + 4𝛽2𝛿3 +

11
2
𝛽3𝛿2 + 3𝛽4𝛿1 +

17
27
𝛽5𝛿0

(𝛽 + 𝛿)5
(3.36) 

 

 So far, we have two results of 𝑅0(𝐾4), one from the holistic method and one from the 

IIN-TN method. We can compare them by substituting 𝛽 = 𝛿 = 1  to both analytical 

results: 

 

𝑅0(𝐾4)

=

{
 
 

 
 3𝛽𝛿5 + 12𝛽2𝛿4 +

57
2
𝛽3𝛿3 +

99
4
𝛽4𝛿2 + 14.91𝛽5𝛿 + 1.83𝛽6

(𝛽 + 𝛿)6
, 𝑏𝑦 𝐻𝑜𝑙𝑖𝑠𝑡𝑖𝑐 𝑚𝑒𝑡ℎ𝑜𝑑

3 ×
𝛽1𝛿4 + 4𝛽2𝛿3 +

11
2
𝛽3𝛿2 + 3𝛽4𝛿1 +

17
27
𝛽5𝛿0

(𝛽 + 𝛿)5
,                                   𝑏𝑦 𝑇𝑁𝑁 − 𝐼𝑁 𝑚𝑒𝑡ℎ𝑜𝑑

 

= {
1.3840, 𝑏𝑦 𝐻𝑜𝑙𝑖𝑠𝑡𝑖𝑐 𝑚𝑒𝑡ℎ𝑜𝑑
1.3246,        𝑏𝑦 𝐼𝐼𝑁 − 𝐼𝑁 𝑚𝑒𝑡ℎ𝑜𝑑

(3.37) 

 

As the results stated in Equation 3.37 show, the two methods almost give the same result. 

The extremely small error proves that the IIN-TN method is correct and makes a good 

approximation for the 𝐾4 . However, by theory, the result from the IIN-IN method should 

be bigger than the result of the Holistic method. The Holistic method used in 𝐾4 

considers every link for each case as Table 6 shows. For example, for the case (14), (15), 

and (16) in Table 6, since our method cannot derive analytical solutions for them, the 

value of 𝑅0(𝐺𝐼) can only be given by simulation. As for the IIN-TN method, as Figure 5 

shows, some link has been ignored when we use the 𝐾2,𝑃𝐴 + 𝑒  structure. That is the 

reason why the IIN-TN method will give a higher result of 𝑅0(Network) than the Holistic 

method by theory. However, the simulation result will vary for each trial, which means the 

simulation will not provide a fixed exact value all the time. The simulation method will be   

introduced in Chapter 4. Since the error is so small, in the 𝐾4 example, we tend to believe 

this abnormality is introduced by the simulation error that we use in the Holistic method.  

When facing a more complex network, the shortcoming of using the 

approximation might be more obvious because the number of alternative paths that are 
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longer than two links might be significant in some scenarios. In those cases, the results 

after the approximation will be higher than the theoretical value. This is the error 

introduced by the approximation and we believe this is a valuable direction worth further 

research in the future.  
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4. Verification of Graph Theory 

by Simulation 
In Chapter 3, the calculation and derivation in graph theory have been given mathematically, 

but there is a lack of results from simulation to support our calculation. Thus, in this chapter, 

we will introduce how we use MATLAB to simulate the epidemics in the networks that 

appearing in Chapter 3. The code of MATLAB will be given in Appendix C.  

4.1 Verification of 𝑲𝟑(𝟕) 

In Chapter 3, Section 3.1.2, the first non-integer value of 𝑅0(𝐺𝐼) is introduced when we try to 

find the 𝑅0 of 𝐾3 as the following Table 13 shows: 

Possible epidemics on 𝑲𝟑 

𝑮𝑰 𝑹𝟎(𝑮𝑰) 

 

3

2
 

Table 13: Part of Table 5: case (7) of Table 5. All links are active, thus the infection 

of Node B and Node C are the result of competing between different links. 

Detailed calculation process of this case was given in Figure 1 and Equation 3.7-

3.9.  

 

In Equation 3.9, we give the numerical result of above 𝐺𝐼  as the sum of two conditional 

probabilities: 

𝑅0(𝐺𝐼) =  𝑃𝑟( 𝐴 → 𝐶|𝐾3(7) ) + 𝑃𝑟( 𝐴 → 𝐵|𝐾3(7) ) =
3

2
(3.9) 

 For the 𝐺𝐼 in Table 13, it has a total of 3 links. Thus, in MATLAB, we could use the 

following code to generate the random time that the link needs for the link to become active 

and spread the epidemic to the node on the other side(Full code is given in Appendix C): 

 

1 

2 

3 

4 

5 

6 

infection_rate = 1; 

curing_rate = 1; 

effect_spr_rate = infection_rate / curing_rate; 

link1 = exprnd(1 / infection_prob); 

link2 = exprnd(1 / infection_prob); 

link3 = exprnd(1 / infection_prob); 

Table 14: Part of source code of K3_R0_simulation in Appendix C. 

Where infection_rate in the above code is 𝛽 , curing_rate is 𝛿, and the effect_spr_rate 

is the effective spreading rate 𝜏.  The MATLAB command exprnd will generate the random 
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number from the exponential distribution with a mean of 
1

𝜏
 . The reason for mean =

1

𝜏
  is 

simple. Please recall that, in Section 2.1, we have explained that the infection process and curing 

process are two independent Poisson processes, and the ratio 𝜏 =
𝛽

𝛿
 is the effective infection 

(spreading) rate [5] [6] based on the two Poisson processes. Thus, we could use the exprnd 

command to generate the random time.  

Based on the time for each link, we could further compare the time for different paths and 

find out which path needs the shortest time. Suppose the path with the shortest time is the 

alternative path. In that case, it means in this round of the simulation, the IIN does not directly 

infect the neighboring node, and it cannot be counted as the 𝑅0 of IIN; if the direct path (the 

link that directly connects IIN and neighboring node) has the shortest time, which means in this 

round of simulation, IIN directly infects the neighboring node. It should be counted as the 𝑅0 

of IIN. 

It should be noted that we cannot get the results directly from one round of simulation. 

According to the law of large numbers (LLN), the larger the number of times that the simulation 

is repeated, the closer will the average result be to the expected value [7]. Thus, only after a 

huge round of simulation, we could get close to the real probabilities of the direct infection and 

the real 𝑅0(𝐺𝐼) for a given 𝐺𝐼 that we want to explore. The number of rounds of simulation 

for different structures in our program is set to be 100,000, which we believe is a balanced 

choice that guarantees acceptable errors on the one hand and would not cost too much 

calculation resources on the other hand. Besides, in order to make the easy comparison, we also 

assign the special value of 𝛽 = 1, and 𝛿 = 1 in simulation. The aim of doing this is to stay 

consistence with the theory part and in this way, we could easily find whether the simulation 

and theoretical derivation are matched or not. The following Table 15 shows the results of 

several attempts of simulation: 

1 

2 

3 

4 

5 

6 

7 

8 

>> K3_R0_simulation 

R0: 1.5012 

>> K3_R0_simulation 

R0: 1.5019 

>> K3_R0_simulation 

R0: 1.5009 

>> K3_R0_simulation 

R0: 1.5011 

Table 15: 4 results in Command window (MATLAB) after running 

K3_R0_simulation 4 times. The results could be regarded as the same. Some 

variation is caused by the number generated by the exprnd() function. 

 

As the results in Table 15 above show, the result of each time of simulation is different; 

this is because the result depends on the randomly generated number, which is reasonable to 

have four different results. Although the precise numbers are not perfectly 
3

2
, but the accuracy 

of the simulation is very high because they are very close to 
3

2
 . Thus, the results also prove 

the correctness of our derivation in Equation 3.9 . 
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4.2 Verification of three cases in 𝑲𝟒 

In Table 6 of Section 3.1.3, we give three simulation results for the three cases of 𝐺𝐼: (14), (15), 

and (16) as the following Table 16 shows: 

 

Possible epidemic on 𝑲𝟒 

𝑮𝑰 𝑹𝟎(𝑮𝑰) 

 

Around 1.45 

(By simulation) 

 

Around 2.07 

(By simulation) 

 

Around 1.83 

(By simulation) 

Table 16: Part of Table 6: cases (14), (15), (16) of Table 6. The 𝑅0 for these three 

cases is not derived based on calculation but on simulation by the method 

mentioned in Table 14. The reason is given in section 3.1.3. 

 

 Using the same method as given in Section 4.1.1, we conduct the simulation for the 𝐺𝐼 in 

Table 16, and the results are presented in the following Table 17: 

1 

2 

3 

4 

5 

6 

>> K4_14_R0_simulation 

R0: 1.4456 

>> K4_15_R0_simulation 

R0: 2.0749 

>> K4_16_R0_simulation 

R0: 1.8338 

Table 17: Results in Command window (MATLAB) after running simulation for 

(14), (15), and (16). 

 

Due to the similarity of the code for the three cases, we only provide the full version of 

code of (14) in Appendix C. The code of the other two cases can be easily obtained by modifying 

the part about comparing different paths. The reason why we can only provide the 𝑅0(𝐺𝐼) 

results by simulation for the cases (14), (15), and (16) in Table 6 is that we do not have an 

analytical solution that perfectly solves the 𝐺𝐼 of the three cases. Currently, only the analytical 

solution that deals with the independent alternative paths with 2 links (𝐾2,𝑃𝐴 + 𝑒) is derived 

and stated in Section 3.2.2, Equation 3.27 . However, an approximation result for 𝐾4, after 

using the IIN-TN method, can also be given in Section 3.2.2 . The verification of the IIN-TN 

method will be given in the next section. 
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4.3 Verification of 𝑷𝒓(𝑰𝑰𝑵 → 𝑻𝑵|𝑮𝑰) in 𝑲𝟐,𝑷𝑨 + 𝒆  

In section 3.2.1 , the graph and structure of 𝐾2,𝑃𝐴 + 𝑒 are given in Figure 2 as below shows: 

 

Figure 2: The graph and structure of 𝐾2,𝑃𝐴 + 𝑒. 

 

Based on this structure, we further give the mathematical expression of 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼), the 

conditional probability under the given 𝐺𝐼 with variable 𝑃𝐶 (number of the competing path) 

in Section 3.2.2 as Equation 3.25 and Equation 3.26 states:   

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼) = 𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) 

=  𝑒  𝑃𝐶+1( 𝑃𝐶 + 1)
− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1) (3.25 & 3.26) 

We also provide the full analytical solution of 𝐾2,𝑃𝐴 + 𝑒  by using the IIN-TN method as 

Equation 3.27 states: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁) = ∑ 𝑃𝑟(𝐺𝐼)𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼)

𝑃𝐴

𝑃𝐶=0

 

= ∑ {[
𝛽

𝛽 + 𝛿
∑ (𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼) ×

𝛽𝐿𝐼𝛿2𝑃𝐴−𝐿𝐼

(𝛽 + 𝛿)2𝑃𝐴
)

𝑃𝐴+𝑃𝐶

𝐿𝐼=2𝑃𝐶

] ( 𝑒  𝑃𝐶+1( 𝑃𝐶 + 1)
− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1))}

𝑃𝐴

𝑃𝐶=0

(3.27) 

Where |𝒻(𝑃𝐴, 𝑃𝐶 , 𝐿𝐼)| = {
(𝑃𝐴
𝑃𝐶
)
∏ (

2𝑃𝐴−2𝑃𝐶−2𝑘
1

)
𝐿𝐼−2𝑃𝐶−1

𝑘=0

(𝐿𝐼−2𝑃𝐶)!
, 𝑖𝑓 𝐿𝐼 − 2𝑃𝐶 − 1 ≥ 0

(𝑃𝐴
𝑃𝐶
) ,                                         𝑖𝑓 𝐿𝐼 − 2𝑃𝐶 − 1 < 0

 

It should be noted that the simulation program, which concepts are introduced in Section 

4.1.1, can only be used to simulate a given 𝐺𝐼  once after every edit. Thus, it will be too 

complex to implement a simulation program to verify the whole of Equation 3.27 since there 

are too many kinds of 𝐺𝐼 within it if the 𝑃𝐴 is a large number. However, we can achieve the 

simulation for some certain 𝐺𝐼, which only have competing paths. It will be easier for us to 

obtain the structure of 𝐾2,𝑃𝐴 + 𝑒 in the program when only the competing paths exist. We can 

do this by adding the number of competing paths consecutively by a for loop in MATLAB. This 

kind of 𝐺𝐼 is shown in the following Figure 6: 
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Figure 6: 𝐾2,𝑃𝐴 + 𝑒 with only show competing paths. The alternative paths are 

not shown for the simplicity of the figure.  

 

Thus, on the one hand, we can simulate the direct infection probability between IIN and TN 

under the existence of competing paths, which is 𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁|𝐺𝐼). On the other hand, the 

mathematical expression of the conditional probability is also given as Equation 3.26 shows, 

which is easy to achieve in MATLAB. The following Figure 7 shows the comparison of the 

mathematical results and the simulation results for the number of competing paths from 1 to 50: 

  

Figure 7: Comparison of results from the mathematical calculation and simulation 

for the conditional probability of direct infection under 𝐾2,𝑃𝐴 + 𝑒 structure with 

only competing paths exist.(Full code is given in Appendix C.) 

 

As Figure 7 indicates, the two curves representing the results from the calculation and 

simulation almost overlap, which means that our simulation and calculation are perfectly 

matched, and our derivation is correct.  
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5. Application and Results 
In this chapter, we first implement the IIN-TN method through MATLAB and apply it to the 

human contact network in the real world. Based on the real-world network, we could get the 

distribution of 𝑅0. Based on the distribution, we will further explore the differences in the 

results of 𝑅0  between the IIN-TN method and the traditional Star method with different 

infectious diseases that have occurred in history, for example, Influenza, Measles, SARS-CoV-

1, and SARS-CoV-2.  

5.1  Code implementation of IIN-TN method 

In Section 3.2.2, we provide the analytical solution of structure 𝐾2,𝑃𝐴 + 𝑒, and further utilize 

it as the fundamental structure of the IIN-TN method. The whole process of the IIN-TN method 

has been implemented in MATLAB (Full code is provided in Appendix C). The method could 

be applied to any network. Some examples of simple networks, such as 𝐾3 and 𝐾4, are given 

below in Figure 8 (All examples provided in this section use the special value 𝛽 = 1 and 𝛿 =

1 for consistency with the examples in the above sections) : 

 

Figure 8: The 𝑅0  distribution of 𝐾3  and 𝐾4  using the IIN-TN method in 

MATLAB. (Full code is provided in Appendix C). The green line represents 1, which 

is the threshold value that will determine whether the epidemic will spread out or 

die out. The red line represents the 𝑅0  value that is derived from the IIN-TN 

method. The blue line represents the 𝑅0(𝑑𝑒𝑓), which will be introduced in Equation 

5.1. The blue histogram shows the percentage of 𝑅0(𝑛𝑜𝑑𝑒)  values, where each 

𝑅0(𝑛𝑜𝑑𝑒) value is derived for each node when the node is the IIN. For the two 

cases in Figure 8, since both 𝐾3 and 𝐾4 are symmetric structures, every node is 

the same, 𝑅0(𝑛𝑜𝑑𝑒) has the same value, and the percentage is 1.  

 

In each graph of Figure 8, there are three vertical lines in the color green, red, and blue. Which 

separately represents 1, 𝑅0 of the network by IIN-TN method and 𝑅0(𝑑𝑒𝑓). The 𝑅0 of K3 
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and K4 are 0.938 and 1.325 separately as Figure 8 shows. The two results match the results 

that we derive in Section 3.2.1, Equation 3.19, and Section 3.2.2, Equation 3.37. The 

consistency of results shows that our implementation of code is successful.  

Apart from the 𝑅0 of a network derived by IIN-TN method, we use another definition   

𝑅0(𝑑𝑒𝑓) as a comparison, which is the ratio between effective spreading rate 𝜏 and epidemic 

threshold 𝜏𝑐: 

𝑅0(𝑑𝑒𝑓) ≜
𝜏

𝜏𝑐
[8] (5.1) 

Because we know that for both case: 

i. 𝑅0 < 1 [4, 9] 

ii. 𝜏 < 𝜏𝑐 [4, 5] 

the epidemic dies out. Where 𝜏 is the effective infection rate for a SIS model [5, 6]: 

𝜏 =
𝛽

𝛿
(5.2) 

and 𝜏𝑐  is the epidemic threshold which could be derived from the largest eigenvalue of 

adjacency matrix 𝐴 of the network [5]: 

𝜏𝑐 =
1

𝜆𝑚𝑎𝑥(𝐴)
(5.3) 

Thus, based on Equation 5.1-5.3, we can derive the equation for 𝑅0(𝑑𝑒𝑓) as: 

𝑅0(𝑑𝑒𝑓) =
𝛽𝜆𝑚𝑎𝑥(𝐴)

𝛿
(5.4) 

The blue histogram in Figure 9 represents the percentage of 𝑅0(𝑛𝑜𝑑𝑒) values. For each 

node in the network, the IIN-TN method will find the 𝑅0 of a node when the node is regarded 

as the IIN. Thus, the percentage of 𝑅0(𝑛ode) values is the ratio, which is calculated as the 

ratio of the number of 𝑅0(𝑛𝑜𝑑𝑒) that is within the specific range to the total number of nodes.  

 Because of the symmetry of 𝐾3 and 𝐾4, each node in 𝐾3 or 𝐾4 is identical, thus the 

𝑅0 of each node is also identical and both the distribution histograms only have 1 bin in Figure 

8. This phenomenon only appears in the complex graph. The distribution histogram is different 

from a random graph which is constructed based on the Erdős–Rényi model [10]:  
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Figure 9: The 𝑅0 distribution of an ER-random graph using the IIN-TN method. 

The shape of the distribution is a bell shape, which satisfies the properties of an ER-

random graph.  

 

The network 𝐺_𝐸𝑅(𝑛, 𝑝)  in Figure 9 is   created based on Erdős–Rényi model with node 

number 𝑛 = 100, and the probability for each link 𝑝 = 0.15. The distribution histogram of 

𝐺_𝐸𝑅(100,0.15)  is the shape of normal distribution, which makes sense and matches the 

characteristic of the Erdős–Rényi model. 

 Apart from the IIN-TN method, another method, the Star method also be implemented. 

The following Figure 10 shows the degree distribution of 𝐺_𝐸𝑅(100,0.15): 

 

Figure 10: The 𝑅0 distribution of an ER-random graph using Star method. The Star 

method will count the degree of each node with the consideration of infection 

probability. The Star method could also be regarded as degree distribution times the 

infection probability. 
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The Star method will not consider the cycles in the network. It only counts the degree of each 

node times the infection probability. Thus, the 𝑅0 of the network by the Star method will be 

smaller than the 𝑅0 of the network by the IIN-TN method as Figure 9 and Figure 10 show. 

Please note that all the figures in this section are carried out under the premise that 𝛽 = 1 and 

𝛿 = 1. Thus, the detailed discussion in this distribution will be meaningless. However, in the 

next section, the two methods will be implemented in a real human-contact network with the 

data from the infectious disease that truly appears in human history. 

 

5.2  Application in human-contact network 

5.2.1 Dataset  

Dataset 1 [11] 

In 2018, an undirected network of around 100 students from the Massachusetts Institute of 

Technology (MIT) was collected by using location data from GPS. During the 9 months, the 

research records every face-to-face contact between the students. In this network, a node 

represents a person, and a link between two nodes indicates the corresponding person has 

physical contact. Figure 11 shows the real human-contact network after implementing the data 

processing on the original data (Code about data processing is given in Appendix C): 

 

Figure 11: The human-contact network of 96 students from MIT. The total number 

of nodes is 96 and total number of links is 2539.  

 

Dataset 2 [12] 

This high-density network is constructed based on the high-resolution data of CPIs. Where CPIs 

stand for the close proximity interactions. Researchers used wireless sensor network technology 

to collect the CPI data from an American high school within a typical day. They collected 

762,868 CPIs among 788 individuals. This means the whole network has 788 nodes in total. 

The entire network is too extensive for our program to run. The time needed is unacceptable 

when implementing our algorithm on this network based on my current device. Thus, to find 
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the balance between computation cost and scale of the network, we resample the dataset and 

only focus on the first 100 nodes.   

 

Figure 12: The high-resolution human contact network of around 100 students from 

an American high school. The number of nodes is 99 and number of links is 1707.  

 

5.2.2 Infectious Disease  

The data of four diseases are shown in the following Table 17.  

Disease Influenza Measles SARS-CoV-1 SARS-CoV-2 

(COVID19) 

Infectious Period (days) 1 [13] 5 [14] 4.5 [15] 10.91[16] 

Curing rate (𝜹) 1 1

5
 

2

9
 

1

10.91
 

Empirical 𝑹𝟎 1.28 [17] 15 [18] 2.87 [19] 2.45 [16] 

Table 17: Empirical data of four infectious disease. 

These four infectious diseases are all notorious in history. According to Table 17, they have 

very different infectious characteristics. Take the two SARS-CoV diseases as an example.  

Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) and Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are two distinct viruses. Still, they are 

closely related and belong to the same family of viruses known as Coronavirus. Among the 

many differences, the most significant difference is the scope and outcome of the two final 

spreads. The outbreak of SARS-CoV-1 occurred between 2002 and 2003. The virus primarily 

spread from Guangdong Province in China to other parts of China and then to various countries, 

leading to a global outbreak. The most affected areas were in Asia, including China, Hong Kong, 

Taiwan, Singapore, and Vietnam. SARS-CoV-2, known as COVID-19, has exhibited a much 

broader and sustained global spread than SARS-CoV-1. Since its emergence in late 2019 in 

Wuhan, China, COVID-19 has rapidly spread to nearly every corner of the world. COVID-19 
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has spread to multiple continents and countries, and the virus continues to be a primary concern 

even after significant efforts to control its transmission through vaccination campaigns, public 

health measures, and travel restrictions.  

Although these four infectious diseases perform very differently, we use four indicators to 

measure them: 

i. Infectious period  

ii. Curing rate (𝛿) 

iii. Empirical basic reproductive number (𝑅0) 

iv. Infection rate (𝛽) 

Where the infectious period refers to the number of days that an infected patient remains 

contagious. Usually, we cannot directly find the curing rate of a disease from the analytical data 

in the academic paper. However, the curing rate is the reciprocal of the infectious period. Once 

we get the infectious period, it is very easy to derive the curing rate of a disease by finding the 

reciprocal of the infectious period. In addition to the cure rate, the infection rate is also a value 

that is difficult to quantify clinically. However, we have the empirical 𝑅0  of the diseases. 

Based on the Star method, we could find the infection rate 𝛽 that makes the 𝑅0 of the human 

contact network become identical to the empirical 𝑅0. Tables 18 and 19 give the infection rate 

𝛽 of the four diseases based on the network in Figure 11 and Figure 12 with empirical 𝑅0 in 

Table 17: 

 

Disease Influenza Measles SARS-CoV-1 SARS-CoV-2 

(COVID19) 

Infection rate (𝜷) 

for Dataset 1 

0.0248 0.0792 0.0128 0.0045 

Table 18: Calculated infection rate based on human contact network from dataset 1 

and empirical 𝑅0 in Table 17. 

 

Disease Influenza Measles SARS-CoV-1 SARS-CoV-2 

(COVID19) 

Infection rate (𝜷) 

for Dataset 2 

0.0385 0.1539 0.0202 0.0070 

Table 19: Calculated infection rate based on human contact network from dataset 2 

and empirical 𝑅0 in Table 17. 

 

5.3 Results  

With the curing rate in Table 17 and the infection rate in Table 18. We could get the distribution 

histogram of the diseases in the human contact network by the method of IIN-TN. Meanwhile, 

the distribution histogram by the Star method will also be given along with the histogram by 

the IIN-TN method for easier comparison. Figure 12-15 are the results for four diseases in 

human contact network from MIT. 
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Figure 12: The comparison between two distributions of 𝑅0 values derived by thee 

IIN-TN method and Star method separately for Influenza based on the human contact 

network of MIT.  

 

 
Figure 13: The comparison between two distributions of 𝑅0 values derived by the 

IIN-TN method and Star method separately for Measles based on the human contact 

network of MIT. 
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Figure 14: The comparison between two distributions of 𝑅0 values derived by the 

IIN-TN method and Star method separately for SARS-CoV-1 based on the human 

contact network of MIT. 

 

 

Figure 15: The comparison between two distributions of 𝑅0 values derived by the 

IIN-TN method and Star method separately for SARS-CoV-2 based on the human 

contact network of MIT. 
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Following the same method and procedure, we can also get the distribution histogram of four 

diseases by two methods with the curing rate in Table 17 and infection rate in Table 19. The 

results for four diseases in the human contact network from American high school are shown in 

Figure 16-19. 

 

Figure 16: The comparison between two distributions of 𝑅0 values derived by the 

IIN-TN method and Star method separately for Influenza based on the human contact 

network of high school. 

 

 

Figure 17: The comparison between two distributions of 𝑅0 values derived by the 

IIN-TN method and Star method separately for Measles based on the human contact 

network of high school. 



 

 

54 
 

 

 

Figure 18: The comparison between two distributions of 𝑅0 values derived by the 

IIN-TN method and Star method separately for SARS-CoV-1 based on the human 

contact network of high school.  

 

 

Figure 19: The comparison between two distributions of 𝑅0 values derived by the 

IIN-TN method and Star method separately for SARS-CoV-2 based on the human 

contact network of high school.  
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From the eight figures for two human contact networks, we can find that the 𝑅0 of the 

network by the IIN-TN method is smaller than the Star method for four cases. This phenomenon 

matches our expectation because the nature of the IIN-TN method is to consider the alternative 

path between the neighboring two nodes, which will decrease the direct infection probability. 

However, according to 𝑅0 results in Figure 12-19, the reduction of 𝑅0 of the network is not 

significant for the three diseases: Influenza, SARS-CoV-1, and SARS-CoV-2. The only obvious 

reduction happens in Measles. This is also reflected in the distribution histogram: only the 

Measles experienced a significant distribution shift from the higher part to the lower part. This 

could be explained by the infection probability and effective infection rate of diseases as stated 

in the following Table 20: 

Disease Influenza Measles SARS-CoV-1 SARS-CoV-2 

(COVID19) 

Infection probability 

(
𝜷

𝜷+𝜹
) 

0.0242 0.2836 0.0545 0.0468 

Effective infection 

rate (
𝜷

𝜹
) 

0.0248 0.3960 0.0121 0.043 

Table 20: Infection probability and Effective infection rate of four disease.  

 

According to Table 20, Measles has a significantly larger infection rate and effective 

infection rate compared with other three diseases. On the one hand, the more significant 

effective infection rate, together with a larger infection probability, could indicate that Measles 

will spread much faster in the network than other diseases, which means there is more 

possibility for the infection to go through the alternative paths instead of the direct link. On the 

other hand, the more significant infection probability will make the results derived from 

Equation 3.27 decrease more compared with a more negligible infection probability. Both could 

explain why Measles has a more noticeable change. This could also lead to a conclusion that 

the IIN-TN method will be more effective for a disease with a more significant infection 

probability and a more effective infection rate. 
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6. Conclusion and Future 

Research 
This chapter is the last chapter that will summarize what has been achieved in this thesis and 

provide some possible direction for future research. 

6.1 Conclusion 

In this thesis project, based on the original concepts of the basic reproductive number (𝑅0) of  

infectious disease, we propose a new approach to calculate the 𝑅0 based on the structure of the 

network and implement this method in MATLAB and, last, apply it to the human contact 

network.  

 In Chapter 1 and Chapter 2, we first give the introduction of the basic concept of 

epidemiology, especially the parameter in the SIS model, and then derive the infection 

probability of a link equal to 𝜆 =
𝛽

𝛽+𝛿
. Based on this infection probability, in Chapter 3, we 

first use the Holistic method to find the R0 of some simple network: 𝑃3, 𝐾3, and 𝐾4. Then, 

we propose a new method: the IIN-TN method, which could take the alternative paths between 

two nodes into consideration when finding the direct infection probability between IIN and TN: 

𝑃𝑟(𝐼𝐼𝑁 → 𝑇𝑁). The consistent results of the IIN-TN method with the holistic method in 𝐾3, 

and 𝐾4 prove the correctness of IIN-TN method. Then, we further expand the IIN-TN method 

to a large and complex network with the help of 𝐾2,𝑃𝐴 + 𝑒 structure. The analytical solution 

is given in Section 3.2.2. Meanwhile, we also point out the shortcomings of only adopting 

𝐾2,𝑃𝐴 + 𝑒 structure to a complex network at the end of Chapter 3.  

 In Chapter 4, based on the essence of the SIS model, we propose a simulation method that 

could randomly generate the infection time of a link. Then, this simulation method is used to 

verify the theory discussed in Chapter 3. After the successful verification, the analytical solution 

in Chapter 3 is implemented as MATLAB algorithms in Chapter 5 and applied to a real human 

contact network with data from different infectious diseases.  

The application results indicate that the IIN-TN method indeed gives a lower 𝑅0 value of 

the network compared with the 𝑅0  given in the method, which follows the traditional 

definition. This finding meets our expectations and shows that the IIN-TN method have the 

ability to further analyze the local structure of a network. Apart from that, according to the 

results from different infectious diseases, the IIN-TN method will be more effective if the 

disease has a relatively larger infection probability and effective infection rate.  

The calculation and derivation of 𝑅0  have been discussed for a long time. Some 

researchers try to estimate it by empirical data from a statistical perspective [2, 3], and some 

modelers try to derive it using epidemic models from a mathematical perspective [9, 20, 21]. 

However, none emphasized the contact network and linked the 𝑅0 with the network itself. This 

is why some scholars think 𝑅0  cannot reflect the information from the underlying contact 

network[4]. However, the IIN-TN method proposed in this paper could directly calculate 𝑅0 
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from any contact network. Furthermore, the IIN-TN method could give the 𝑅0 distribution 

based on the contact network, which could further reveal the properties of the contact network. 

Thus, we believe this paper is a solid addition to the field of finding 𝑅0 because this paper 

connects the contact network with 𝑅0  directly, and we wish our work could bring more 

inspiration to this area. 

 

6.2 Future research 

However, there are still two directions that are worth further research: 

i. In Chapter 3, we only give the analytical solution of structure 𝐾2,𝑃𝐴 + 𝑒 . The 

limitation of this structure is obvious: it can only deal with the alternative path of 2 

links. For the alternative path has 3 links or more, our method will ignore it by default. 

This simplification will make the results larger than the theoretical result. There may 

be many competing paths that has 3 links or more, which will lower the theoretical 

results than the results derived from our IIN-TN method. 

ii. The human contact network from MIT used in Chapter 5 is a relatively small network 

with only 96 persons. Besides, all the people in the network are students from MIT, 

which has the limitation that the network does not have a powerful universality for an 

epidemic outbreak in society. Thus, a more extensive network with all kinds of people 

could provide more accurate and meaningful data after applying the IIN-TN method.  
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Appendix  

Appendix A: Derivation 

A.1 The derivation of 𝑷𝒓(𝑰 < 𝑹) 

Both the infection and curing processes are Poisson process with rate 𝛽 and 𝛿 separately. In 

Section 2.1, we derive the two equations for the time before the event happening from the 

perspective of exponential distribution. Here we provide another approach by using the Erlang 

distribution. The Erlang distribution describe the 𝑘 independent exponential variables, when 

𝑘 = 1, the Erlang distribution could be simplified to exponential distribution. (When 𝑘 ≠ 1, 

Erlang distribution is an effective tool when we face multiple independent Poisson processes. 

The application of Erlang distribution when 𝑘 ≠ 1 is given in Section A.2.) 

Thus, we could get the two equations from Erlang distribution by substituting 𝑘 = 1 and 

𝜆 = 𝛽 𝑜𝑟 𝜆 = 𝛿 to PDF of Erlang distribution: 𝑓(𝑥; 𝑘, 𝜆) =
𝜆𝑘𝑥𝑘−1𝑒−𝜆𝑘

(𝑘−1)!
 to get the functions: 

𝑓𝐼(𝑡) =  𝛽𝑒
−𝛽𝑡  , (1)

 𝑓𝑅(𝑟) =  𝛿𝑒
−𝛿𝑟. (2)

 

Then, we could derive 𝑃𝑟(𝐼 < 𝑅) with (1), (2) by implementing law of total probability: 

𝑃𝑟(𝐼 < 𝑅) = ∫ 𝑃𝑟(𝐼 < 𝑅|𝑅 = 𝑟)
∞

−∞

𝑓𝑅(𝑟)𝑑𝑟 (3) 

= ∫ 𝑃𝑟(𝐼 < 𝑟)
∞

−∞

𝑓𝑅(𝑟)𝑑𝑟 

= ∫ ∫ 𝑓𝐼(𝑡)𝑓𝑅(𝑟)𝑑𝑡𝑑𝑟 
𝑟

𝑡=0

∞

𝑟=0

 

= ∫ ∫ (𝛽𝑒−𝛽𝑡)(𝛿𝑒−𝛿𝑟)𝑑𝑡𝑑𝑟 
𝑟

𝑡=0

∞

𝑟=0

 

= ∫  [∫ (𝛽𝑒−𝛽𝑡)𝑑𝑡] (𝛿𝑒−𝛿𝑟)𝑑𝑟 
𝑟

𝑡=0

∞

𝑟=0

 

= ∫  (1 −
∞

𝑟=0

𝑒−𝛽𝑟)(𝛿𝑒−𝛿𝑟)𝑑𝑟 

= ∫ 𝛿𝑒−𝛿𝑟𝑑𝑟
∞

𝑟=0

−∫  
∞

𝑟=0

𝛿𝑒−(𝛽+𝛿)𝑟𝑑𝑟 

= 1−
𝛿

𝛽 + 𝛿
=

𝛽

𝛽 + 𝛿
. (3.1) 

 

 

A.2 The derivation of 𝑷𝒓(𝑰𝟏 < 𝑰𝟐 + 𝑰𝟑) 

𝐼1, 𝐼2, and 𝐼3 are the infection time from three identical and independent infection process 

described by Poisson process. 𝐼1 represents the time that direct path needs to spread the 

infection from infected node to the susceptible node. 𝐼2 + 𝐼3  represents the time that the 

competing path needs to spread the infection from infected node to the susceptible node. 

𝑃𝑟(𝐼1 < 𝐼2 + 𝐼3) is the probability that the susceptible node is infected by the infected node 
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through direct path (has only one link) instead of through the competing path (has two links).  

To solve this probability, we can use the law of total probability as Equation (3) shows, 

derive the function as: 

𝑃𝑟(𝐼1 < 𝐼2 + 𝐼3) = 𝑃𝑟(𝐼2 + 𝐼3 > 𝐼1) 

= ∫ 𝑃𝑟(𝐼2 + 𝐼3 > 𝐼1|𝐼1 = 𝑡)
∞

𝑡=−∞

𝑓𝐼(𝑡)𝑑𝑡  

= ∫ 𝑃𝑟(𝐼2 + 𝐼3 > 𝑡)
∞

𝑡=−∞

𝑓𝐼1(𝑡)𝑑𝑡 

= ∫ ∫ 𝑓𝐼2+𝐼3(𝑠)𝑑𝑠𝑓𝐼1(𝑡)
∞

𝑠=𝑡

𝑑𝑡
∞

𝑡=0

   

= ∫ 𝑓𝐼(𝑡) (∫ 𝑓𝐼2+𝐼3(𝑠)
∞

𝑠=𝑡

𝑑𝑠)𝑑𝑡 
∞

𝑡=0

 

= ∫ 𝑓𝐼(𝑡) (1 −∫ 𝑓𝐼2+𝐼3(𝑠)
𝑡

𝑠=0

𝑑𝑠)𝑑𝑡 
∞

𝑡=0

 

= ∫ 𝑓𝐼(𝑡) (1 − 𝐹𝐼2+𝐼3(𝑡)) 𝑑𝑡
∞

𝑡=0

. (4) 

 

Since infection process 2 and 3 are identical Poisson process, we could get the CDF function  

𝐹𝐼2+𝐼3(𝑡) directly from Erlang distribution by substituting 𝑘 = 2 and 𝜆 = 𝛽 to (5) 

𝐹(𝑥) = 1 −∑
1

𝑛!
𝑒−𝜆𝑥(𝜆𝑥)𝑛

𝑘−1

𝑛=0

(5) 

and get: 

𝐹𝐼2+𝐼3(𝑡) = 1 − 𝑒
−𝛽𝑡 − 𝛽𝑡 𝑒−𝛽𝑡 . (6) 

 

Then, substitute (1), (6) to (4): 

𝑃𝑟(𝐼1 < 𝐼2 + 𝐼3) = ∫ 𝛽𝑒−𝛽𝑡(𝑒−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)𝑑𝑡 
∞

𝑡=0

 

= ∫ (𝛽𝑒−2𝛽𝑡 + 𝛽2𝑡𝑒−2𝛽𝑡)𝑑𝑡 
∞

𝑡=0

 

= ∫ 𝛽𝑒−2𝛽𝑡𝑑𝑡 +
∞

𝑡=0

∫ 𝛽2𝑡𝑒−2𝛽𝑡𝑑𝑡
∞

𝑡=0

 . (7) 

 

Then, we could calculate (7) separately. 

To calculate ∫ 𝛽𝑒−2𝛽𝑡𝑑𝑡 
∞

𝑡=0
, substitute 𝑢 =  −2𝛽𝑡, 𝑑𝑢 = −2𝛽𝑑𝑡, and this also gives a new 

lower bound 𝑢 = − ∞, and a new upper bound 𝑢 = 0: 

∫ 𝛽𝑒−2𝛽𝑡𝑑𝑡 
∞

𝑡=0

= 
1

2
∫ 𝑒𝑢𝑑𝑢 =  

1

2
 

0

−∞

(7.1) 

Similarly, to calculate ∫ 𝛽2𝑡𝑒−2𝛽𝑡𝑑𝑡
∞

𝑡=0
, using integrate by part and substitute 

 𝑔 = −
𝑒−2𝛽𝑡

 2𝛽
 , 

𝑑

𝑑𝑡
𝑔 = 𝑒−2𝛽𝑡  to it: 
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∫ 𝛽2𝑡𝑒−2𝛽𝑡𝑑𝑡
∞

𝑡=0

=  ∫ 𝛽2𝑡𝑔′𝑑𝑡
∞

𝑡=0

= 𝛽2 ( [𝑡𝑔]0
∞ + ∫ 𝑡′𝑔𝑑𝑡

∞

𝑡=0

) 

= [−
𝑡𝛽𝑒−2𝑡𝛽

2
]
0

∞

+∫
𝛽𝑒−2𝛽𝑡

2
𝑑𝑡

∞

𝑡=0

 

=
−∞𝛽𝑒−2∞𝛽

2
+
0𝛽𝑒−0

2
+
1

4
 

= 0 + 0 +
1

4
=
1

4
(7.2) 

Then, sum up (7.1) and (7.2) to (7) and we get: 

𝑃𝑟(𝐼1 < 𝐼2 + 𝐼3) =
1

2
+
1

4
=
3

4
(8) 

 

A.3 The derivation process of 𝑷𝒓(𝑰𝟏 < 𝑳𝑨𝑰) 

𝐿𝐴  is the number of links in one alternative path. 𝐿𝐴𝐼  means the time that needed for a 

competing path with 𝐿𝐴 links in this path to spread infection from the infected node to target 

node. 𝑃𝑟(𝐼1 < 𝐿𝐴𝐼) is the probability that the infection in direct path is faster than competing 

path.   

If we assign 𝐿𝐴 = 2, repeat the derivation process A.2 , we could calculate 

𝑃𝑟(𝐼1 < 𝐼2 + 𝐼3 + 𝐼4) =  
7

8
, (9) 

because we can us the same method in (7.2) to get 

∫
1

2 × 1
𝛽3𝑡2𝑒−2𝛽𝑡𝑑𝑡

∞

𝑡=0

=
1

8
. (10) 

Furthermore, we could find a general equation for the probability that infection process 

takes the direct path instead of competing path with 𝐿𝐴 links as (only single competing path 

exists) : 

Pr(𝐼1 < 𝐿𝐴𝐼) = 1 −
1

2𝐿𝐴
(11) 

The proof is given below: 

Follow the same process in (4) , we can prove (11) as following shows: 

𝑃𝑟(𝐼1 < 𝐿𝐴𝐼) = 𝑃𝑟(𝐿𝐴𝐼 > 𝐼1) 

= ∫ 𝑃𝑟(𝐿𝐴𝐼 > 𝐼1|𝐼1 = 𝑡)
∞

𝑡=−∞

𝑓𝐼(𝑡)𝑑𝑡  

= ∫ 𝑃𝑟(𝐿𝐴𝐼 > 𝑡)
∞

𝑡=−∞

𝑓𝐼1(𝑡)𝑑𝑡 

= ∫ ∫ 𝑓𝐿𝐴𝐼(𝑠)𝑑𝑠𝑓𝐼1(𝑡)
∞

𝑠=𝑡

𝑑𝑡
∞

𝑡=0

   

= ∫ 𝑓𝐼(𝑡) (∫ 𝑓𝐿𝐴𝐼(𝑠)
∞

𝑠=𝑡

𝑑𝑠)𝑑𝑡 
∞

𝑡=0

 

= ∫ 𝑓𝐼(𝑡) (1 − ∫ 𝑓𝐿𝐴𝐼(𝑠)
𝑡

𝑠=0

𝑑𝑠)𝑑𝑡 
∞

𝑡=0

 

= ∫ 𝑓𝐼(𝑡) (1 − 𝐹𝐿𝐴𝐼(𝑡)) 𝑑𝑡.
∞

𝑡=0

(12) 
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Where 𝐹𝐿𝐴𝐼(𝑡) is the CDF function which indicate that infection process takes the competing 

path with 𝐿𝐴 links in total. Since the infection along each link in this path are identical and 

independent, we could get the CDF function of 𝐹𝐿𝐴𝐼(𝑡) directly from Erlang distribution by 

substituting 𝑘 = 𝑛 and 𝜆 = 𝛽 to (5), and get: 

𝐹𝐿𝐴𝐼(𝑡) = 1 − 𝑒
−𝛽𝑡 − 𝛽𝑡 𝑒−𝛽𝑡 −

1

2 × 1
(𝛽𝑡)2 𝑒−𝛽𝑡 −⋯−

1

(𝐿𝐴 − 1)!
(𝛽𝑡)𝐿𝐴 𝑒−𝛽𝑡 . (13) 

Substitute (1), (13) to (12): 

𝑃𝑟(𝐼1 < 𝐿𝐴𝐼)

= ∫ (𝑒−2𝛽𝑡 + 𝛽2𝑡 𝑒−2𝛽𝑡 +
1

2 × 1
𝛽3𝑡2 𝑒−2𝛽𝑡 +⋯+

1

(𝐿𝐴 − 1)!
𝛽𝐿𝐴𝑡𝐿𝐴−1 𝑒−2𝛽𝑡)𝑑𝑡.

∞

𝑡=0

(14)
 

The total number of terms in the integration of (14) is 𝐿𝐴, which is the same number of links 

in the competing path. The integration results of former three terms already be given in (7.1), 

(7.2), (10). Actually, all terms in (14) have the same structure with the last term: 

∫ (
1

(𝐿𝐴 − 1)!
𝛽𝐿𝐴𝑡𝐿𝐴−1 𝑒−2𝛽𝑡)𝑑𝑡

∞

𝑡=0

, (15) 

and a general result of (15) will help us to solve (14).  

Here, we could take use of one equation from the list of integrals of exponential 

functions: 

∫ (𝑥𝑁𝑒−𝑎𝑥)𝑑𝑥 =
𝑁!

𝑎𝑁+1

∞

0

(𝑁 = 0,1,2… , 𝑅𝑒(𝑎) > 0), (16) 

to solve (15) because they have same structure.  

Compare with (15) and (16), we could substitute 𝑥 = 𝑡, 𝑎 = 2𝛽, 𝑁 = 𝐿𝐴 − 1 to (16): 

∫ (𝑡𝐿𝐴−1𝑒−2𝛽𝑡)𝑑𝑡
∞

0

=
(𝐿𝐴 − 1)!

(2𝛽)𝐿𝐴
, (17) 

and further substitute (17) to (15): 

∫ (
1

(𝐿𝐴 − 1)!
𝛽𝐿𝐴𝑡𝐿𝐴−1 𝑒−2𝛽𝑡)𝑑𝑡

∞

𝑡=0

 

=
𝛽𝐿𝐴

(𝐿𝐴 − 1)!
× ∫ (𝑡𝐿𝐴−1𝑒−2𝛽𝑡)𝑑𝑡

∞

0

 

=
𝛽𝐿𝐴

(𝐿𝐴 − 1)!
×
(𝐿𝐴 − 1)!

(2𝛽)𝐿𝐴
 

=
1

2𝐿𝐴
. (18) 

Based on (7.1), (7.2), (10) and (18), we could write (14) as: 

𝑃𝑟(𝐼1 < 𝐿𝐴𝐼) =
1

2
+
1

4
+
1

8
+ ⋯+

1

2𝐿𝐴
. (19) 

Equation (19) is the sum of a geometric series, which could be solved by using geometric series 

formular and the result is: 

𝑃𝑟(𝐼1 < 𝐿𝐴𝐼) = 1 −
1

2𝐿𝐴
(20) 
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A.4 The derivation of 𝑷𝒓( 𝑰 < 𝒎𝒊𝒏( 𝑷𝑪(𝑰 + 𝑰) )) 

𝐼 is the time needed for the direct path. 𝑃𝐶 is the number of competing paths, and  𝑃𝐶(𝐼 + 𝐼) 

indicates there are total number of 𝑃𝐶 independent time for all competing paths (each path is 

composed of 2 links). Thus, 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) ) refers to the shortest time among them. And 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) is the probability that the direct path is faster than any competing 

path because 𝐼 is even smaller than the shortest time.  

Repeat what we have done in A.2 and A.3: 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) = 𝑃𝑟(min ( 𝑃𝐶(𝐼 + 𝐼)) >  𝐼) 

= ∫ 𝑃𝑟(min( 𝑃𝐶(𝐼 + 𝐼) ) >  𝐼| 𝐼 = 𝑡)
∞

𝑡=−∞

𝑓𝐼(𝑖)𝑑𝑡  

= ∫ 𝑃𝑟(min( 𝑃𝐶(𝐼 + 𝐼) ) > 𝑡)
∞

𝑡=−∞

𝑓 𝐼(𝑡)𝑑𝑡 

= ∫ ∫  𝑓min ( 𝑃𝐶(𝐼+𝐼))(𝑠) 𝑑𝑠 𝑓 𝐼(𝑡)
∞

𝑠=𝑡

𝑑𝑡
∞

𝑡=0

  

= ∫ 𝑓𝐼(𝑡) (∫ 𝑓min ( 𝑃𝐶(𝐼+𝐼))(𝑠)
∞

𝑠=𝑡

𝑑𝑠)𝑑𝑡 
∞

𝑡=0

 

= ∫ 𝑓𝐼(𝑡) (1 −∫ 𝑓min ( 𝑃𝐶(𝐼+𝐼))

𝑡

𝑠=0

(𝑠)𝑑𝑠)𝑑𝑡 
∞

𝑡=0

 

= ∫ 𝑓𝐼(𝑡) (1 − 𝐹min ( 𝑃𝐶(𝐼+𝐼))(𝑡)) 𝑑𝑡
∞

𝑡=0

(20) 

 

Every single competing path in 𝑃𝐶(𝐼 + 𝐼) is composed of two links, similarly as (5) and (6) in 

A.2, we can get the CDF for one competing path 𝐹𝐼+𝐼(𝑡) directly from Erlang distribution by 

substituting 𝑘 = 2 and 𝜆 = 𝛽 to 

𝐹(𝑥) = 1 −∑
1

𝑛!
𝑒−𝜆𝑥(𝜆𝑥)𝑛

𝑘−1

𝑛=0

 

and get: 

𝐹𝐼+𝐼(𝑡) = 1 − 𝑒
−𝛽𝑡 − 𝛽𝑡 𝑒−𝛽𝑡 (21) 

  

Because the total number of competing paths is 𝑃𝐶, we need to find the relationship between 

𝐹𝐼+𝐼(𝑡) and 𝐹min( 𝑃𝐶(𝐼+𝐼))(𝑡). 𝐹𝐼+𝐼(𝑡) is the CDF of 𝑃𝑟 (𝐼 + 𝐼 < 𝑡) , thus 1 − 𝐹𝐼+𝐼(𝑡) will 

represents 𝑃𝑟 (𝐼 + 𝐼 > 𝑡). Then, we further take 1 − (1 − 𝐹𝐼+𝐼(𝑡))
𝑃𝐶  to make sure that the 

shortest infection time is smaller than 𝑡  , which is exactly the CDF that we want to find: 

𝐹min( 𝑃𝐶(𝐼+𝐼))(𝑡). This gives us following equation: 

𝐹min( 𝑃𝐶(𝐼+𝐼) ) = 1− (1 − 𝐹𝐼+𝐼(𝑡))
𝑃𝐶

 

= 1− (1 − (1 − 𝑒−𝛽𝑡 − 𝛽𝑡 𝑒−𝛽𝑡)) 

= 1− (𝑒−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)
𝑃𝐶 (22) 
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Substitute (22) back to (20): 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) ) ) = ∫ 𝑓𝐼(𝑡) (1 − 1 + (𝑒
−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)

𝑃𝐶
) 𝑑𝑡

∞

𝑡=0

 

= ∫ 𝛽 𝑒−𝛽𝑡(𝑒−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)
𝑃𝐶
𝑑𝑡

∞

𝑡=0

(23) 

Compare (23) with (7):  

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) = ∫ 𝛽 𝑒−𝛽𝑡(𝑒−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)
𝑃𝐶
𝑑𝑡

∞

𝑡=0

(23) 

𝑃𝑟(𝐼1 < 𝐼2 + 𝐼3) = ∫ 𝛽𝑒−𝛽𝑡(𝑒−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)𝑑𝑡 
∞

𝑡=0

(7) 

We could easily find that the two equations have very similar form, and actually we could get 

(7) from (23) by substituting  𝑃𝐶 = 1  to (23). The match of two equations proves the 

corrections of our derivation.  

 The result of integration in (23) will give us the analytical solution for any  𝑃𝐶 that we 

want to choose. However, the direct integration of the power of a summation of exponential 

functions is difficult to derive, especially when  𝑃𝐶 is large and the binomial expansion will 

be very complex. In this paper, a tricky method is used to solve this. Some examples in the 

above section, such as (7.1),(7.2) show that, the integration result of terms with infection rate 

𝛽 does not consist of 𝛽 anymore. This finding is reasonable since we only want to compare 

the infection time of different path and get the corresponding probability, which should be 

irrelevant with infection rate. We can change our time scale, and we could further simplify (23) 

by substituting 𝛽 = 1: 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) = ∫  𝑒−𝑡(𝑒−𝑡 + 𝑡 𝑒−𝑡)𝑃𝐶𝑑𝑡
∞

𝑡=0

 

= ∫  𝑒−𝑡(𝑒−𝑡(𝑡 + 1))𝑃𝐶𝑑𝑡
∞

𝑡=0

 

= ∫  𝑒−𝑡  (𝑒−𝑡) 𝑃𝐶(𝑡 + 1)𝑃𝐶𝑑𝑡
∞

𝑡=0

 

= ∫
𝑒−𝑡(𝑃𝐶+1)

(𝑡 + 1)−𝑃𝐶
𝑑𝑡

∞

𝑡=0

(24) 

Let 𝑢 = 𝑡 + 1, thus we have 𝑡 = 𝑢 − 1 and 𝑑𝑡 = 𝑑(𝑢 − 1) = 𝑑𝑢, substitute to (24): 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) = 𝑒
𝑃𝐶+1∫

𝑒−𝑢(𝑃𝐶+1)

𝑢−𝑃𝐶
𝑑𝑢

∞

𝑢=1

(25) 

In (25), ∫
𝑒−𝑢(𝑃𝐶+1)

𝑢−𝑃𝐶
𝑑𝑢

∞

𝑢=1
  matches the form of generalized exponential integral. Thus, we 

could further simplify (25) by following Equation 8.19.3 in NIST Digital Library of 

Mathematical Functions: 

𝐸𝑝(𝑧) = ∫
𝑒−𝑧𝑡

𝑡𝑝
𝑑𝑡

∞

1

  

Then, (25) could be represented as: 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) =  𝑒
 𝑃𝐶+1𝐸−𝑃𝐶(𝑃𝐶 + 1) (26) 

Where 𝐸−𝑃𝐶(𝑃𝐶 + 1) is the generalized exponential integral, which could further extend as 

the function of gamma function according to Equation 8.19.1 in NIST Digital Library of 

Mathematical Functions [22]: 
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𝐸𝑝(𝑧) = 𝑧
𝑝−1𝛤(1 − 𝑝, 𝑧)  

Thus, the final result could be represented as  

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) =  𝑒
 𝑃𝐶+1( 𝑃𝐶 + 1)

− 𝑃𝐶−1 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1) (27) 

Where 𝛤( 𝑃𝐶 + 1,  𝑃𝐶 + 1) is the incomplete gamma function.  

The results of 𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) for some value of  𝑃𝐶 are given below: 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) )) =
3

4
,                 𝑖𝑓 𝑃𝐶 = 1 

=
17

27
  ,            𝑖𝑓 𝑃𝐶 = 2  

=
71

128
,            𝑖𝑓  𝑃𝐶 = 3 

=
1569

 3125
, 𝑖𝑓 𝑃𝐶 = 4 (28) 

 

 

A.5 The derivation of 𝑷𝒓( 𝑰 < 𝒎𝒊𝒏(𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒆 𝒑𝒂𝒕𝒉) ) 

In A.4, we already derived the solution of the probability that the direct path is faster than any 

competing paths with 2 links. In this thesis, only the solution of A.1, A.2, and A.4 have been used 

in the mathematical derivation and program development. However, it is still worth further 

exploration on the probability for a more general case.  

 We are happy to point out that, based on the previous derivation, we can find a general solution 

for the probability that the direct path is faster than multiple independent paths. In Equation (20), 

we have: 

𝑃𝑟( 𝐼 < 𝑚𝑖𝑛( 𝑃𝐶(𝐼 + 𝐼) ))  = ∫ 𝑓𝐼(𝑡) (1 − 𝐹min ( 𝑃𝐶(𝐼+𝐼))(𝑡)) 𝑑𝑡
∞

𝑡=0

 

And 𝐹min ( 𝑃𝐶(𝐼+𝐼))(𝑡) could be further calculated by using Erlang distribution in Equation (22): 

𝐹min( 𝑃𝐶(𝐼+𝐼)) = 1 − (𝑒
−𝛽𝑡 + 𝛽𝑡 𝑒−𝛽𝑡)

𝑃𝐶
 

Similarly, we can follow the same procedure: 

𝑃𝑟(𝐼 < 𝑚𝑖𝑛(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑝𝑎𝑡ℎ)) = ∫ 𝑓𝐼(𝑡) (1 − 𝐹𝑚𝑖 𝑛(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑝𝑎𝑡ℎ)(𝑡)) 𝑑𝑡
∞

𝑡=0

(29) 

In which 𝐹𝑚𝑖 𝑛(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑝𝑎𝑡ℎ)(𝑡) can be represented as: 

𝐹𝑚𝑖 𝑛(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒  𝑝𝑎𝑡ℎ)(𝑡) = 1 − [1 − 𝐹1(𝑡)] [(1 − 𝐹2(𝑡)] … [1 − 𝐹𝑛(𝑡) ] (30) 

Where 𝐹1(𝑡), 𝐹2(𝑡), and 𝐹𝑛(𝑡) are the CDF of different competing paths. Each CDF could 

be found by using Erlang distribution by substitution 𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 in that path and 

𝜆 = 𝛽 to  

𝐹(𝑥) = 1 −∑
1

𝑛!
𝑒−𝜆𝑥(𝜆𝑥)𝑛

𝑘−1

𝑛=0

 

Thus, the probability could be presented as the integration of the function: 

𝑃𝑟(𝐼 < 𝑚𝑖𝑛(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑝𝑎𝑡ℎ)) = 

∫ 𝑓𝐼(𝑡)(1 − [1 − 𝐹1(𝑡)] [(1 − 𝐹2(𝑡)]… [1 − 𝐹𝑛(𝑡) ])𝑑𝑡
∞

𝑡=0

(31) 
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Appendix B: Nomenclature 

B.1 List of Abbreviations 

 

B.2 List of Notations 

Notation Explanation 

𝐺 Graph 

𝐺𝐼 Graph with infection process  

𝐴 Adjacency matrix of a graph 

𝑁 Number of nodes in graph G 

𝐿 Number of links in graph G 

𝑃𝐴 Number of alternative paths  

𝑃𝐶 Number of competing path (alternative path becomes competing path 

once every link in alternative path propagates infection ) 

𝐿𝐼 Number of active link (active link: links which propagate infection) of 

all alternative paths (same number as infection events) 

𝐿𝐴 Number of links in one alternative path 

𝑅0(𝐺) Basic reproductive number of graph G 

𝑅0(𝐺𝐼) Basic reproductive number of graph with infection process 

𝑅0(𝐴) Basic reproductive number of node 𝐴 in graph G  

𝑃𝑟 (𝐴 → 𝐵) Probability of infected Node A directly infect susceptible Node 𝐵 

𝑃𝑟 (𝐺𝐼) Probability of graph with infection process 

𝑃𝑟 (𝐼) Probability of infection event happens between an infected node and a 

susceptible node 

𝐼 The amount of time before the infection event happens 

𝑅 The amount of time before the curing event happens 

𝑛𝐼 The amount of time required for n consecutive infection events (infection 

happen through n links) 

 

 

 

 

 

Abbreviation Definition 

IIN Initial infected node 

NN Neighboring node 

TN Target node 

𝑃3 Graph with path on 3 nodes  

𝐾3(𝑖𝑔𝑛𝑜𝑟𝑒 𝑐𝑦𝑐𝑙𝑒𝑠) Complete tripartite graph without considering cycles of infection  

𝐾3 Complete tripartite graph 

𝐾4 Complete 4-partite graph 

𝐾2,𝑃𝐴 + 𝑒 The complete bipartite graph on two and 𝑃𝐴 nodes plus the link 𝑒, 

which connect IIN and TN directly 
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Appendix C: Codes 

C.1 Code in Section 4.1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

% set parameters 

num_simulations = 100000; % simulation times 

infection_rate = 1; 

curing_rate = 1; 

effect_spr_rate = infection_rate/curing_rate; % effective infection rate 

 

% set counter 

A_direct_infections = 0; 

B_direct_infections = 0; 

 

for i = 1:num_simulations 

    % simulate time for 3 paths 

    link1 = exprnd(1 / effect_spr_rate); 

    link2 = exprnd(1 / effect_spr_rate); 

    link3 = exprnd(1 / effect_spr_rate); 

    % find which path is quickest 

    if link1<link2+link3 

       A_direct_infections=A_direct_infections+1; 

    end 

    if link2<link1+link3 

       B_direct_infections=B_direct_infections+1; 

    end 

end 

 

% find probability 

A_prob = A_direct_infections / num_simulations; 

B_prob = B_direct_infections / num_simulations; 

R0 = A_prob + B_prob; 

% display result 

fprintf('R0: %.4f\n', R0); 

 

C.2 Code in Section 4.2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

% set parameters 

num_simulations = 100000; % simulation times 

infection_rate = 1; 

curing_rate = 1; 

effect_spr_rate = infection_rate/curing_rate;% effective infection rate 

 

% set counter 

A_direct_infections = 0; 

B_direct_infections = 0; 

 

for i = 1:num_simulations 

     

    % simulate time for 5 links 

    link1 = exprnd(1 / effect_spr_rate); 

    link2 = exprnd(1 / effect_spr_rate); 

    link3 = exprnd(1 / effect_spr_rate); 

    link4 = exprnd(1 / effect_spr_rate); 

    link5 = exprnd(1 / effect_spr_rate); 



 

 

72 
 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

 

    % find which path is quickest 

    if (link1<link2+link3) && (link1<link2+link4+link5) 

       A_direct_infections=A_direct_infections+1; 

    end 

 

    if (link2<link1+link3) && (link2<link1+link4+link5) 

       B_direct_infections=B_direct_infections+1; 

    end 

 

end 

 

% find probability 

A_prob = A_direct_infections / num_simulations; 

B_prob = B_direct_infections / num_simulations; 

R0 = A_prob + B_prob; 

% display result 

fprintf('R0: %.4f\n', R0); 

 

 

C.3 Code in Section 4.3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

clc 

clear 

close all 

 

%% Code implementation of Equation 3.26 

%Initialize result container 

condi_prob_results_1 = zeros(1, 50); 

for i = 1:50 

    P_A = i; 

 

    for j = 0:P_A  %The range of P_C is [0,P_A] 

        P_C = j; 

     

        %Calculate the probability of direct infection at different P_C 

        condi_prob =  exp(P_C+1) * (P_C+1)^(-P_C-1) * igamma(P_C+1,P_C+1); 

   

    end 

    condi_prob_results_1(i) = condi_prob; 

end 

 

%% Code implmentation of Structure of Figure 2, Section 3.2.1 

% Setting parameters 

num_simulations = 100000; % Simulation times 

infection_rate = 1; 

curing_rate = 1; 

effect_spr_rate = infection_rate/curing_rate;% effective infection rate 

 

n=50;  %Set the number of additional paths besides direct_path 

condi_prob_results_2 = zeros(1, n); %Initialize result container 

 

 

%Initialize the loop of path, the number of paths increases from small  

for j =1:n 

 



 

 

73 
 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

    % Initialize counter 

    direct_infections = 0; 

    chain_infections = 0; 

     

    %Initialize the simulation loop, each simulation should be independent 

    for i = 1:num_simulations 

        direct_time = exprnd(1 / effect_spr_rate); 

         

        path_time =zeros(1, j); 

        path_time(1)=direct_time; 

        for k = 1:j 

            link_number = 2; %Specify how many links there are in each competing path 

            chain_path_time = exprnd(1 / effect_spr_rate,1,link_number);  

            path_time(k+1) = sum(chain_path_time); 

        end 

     

        if min(path_time)==direct_time 

            direct_infections = direct_infections + 1; 

        else 

            chain_infections = chain_infections + 1; 

        end 

     

        % calculation ratio 

        direct_infection_ratio = direct_infections / num_simulations; 

        chain_infection_ratio = chain_infections / num_simulations; 

        % store results 

        condi_prob_results_2(j)=direct_infection_ratio; 

    end 

end 

 

%% Plot the figure 

figure; 

plot(condi_prob_results_1, '-o', 'DisplayName', 'Equation 3.26'); 

hold on;  

plot(condi_prob_results_2, '-s', 'DisplayName', 'Simulation of K_2,_P_a +e'); 

 

legend; 

xlabel('Number of competing path (P_C)'); 

ylabel('Conditional probability under P_C competing paths'); 

ylim([0, 1]); 

 

title('Comparison of Equation and Simulation'); 

grid on; 

hold off; 
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D.4 Code in Section 5.1 

 Network generation: 𝑲𝟑, 𝑲𝟒, and 𝑮_𝑬𝑹(𝟏𝟎𝟎, 𝟎. 𝟏𝟓). 
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%% Constuct the K3 graph 

G_k3 = graph(); 

% add 3 nodes to graph 

G_k3 = addnode(G_k3, {'Node1', 'Node2', 'Node3'}); 

% add links for the 3 nodes 

G_k3 = addedge(G_k3, 'Node1', 'Node2'); 

G_k3 = addedge(G_k3, 'Node2', 'Node3'); 

G_k3 = addedge(G_k3, 'Node3', 'Node1'); 

% plot the graph 

% plot(G_k3) 

 

%% Constuct the K4 graph 

G_k4 = graph(); 

% add node 

numNodes = 4; 

G_k4 = addnode(G_k4, numNodes); 

% add link 

probability = 1; % set the prob of each link to be 1 

for i = 1:numNodes 

    for j = i+1:numNodes 

        if rand < probability 

            G_k4 = addedge(G_k4, i, j); 

        end 

    end 

end 

% plot(G_k4) 

 

%% Construct ER-random graph 

% This ER random graph has 100 node, and p=0.15 for link between each pair 

G_ER = graph(); 

% add node 

numNodes = 100; 

G_ER = addnode(G_ER, numNodes); 

% add random links 

probability = 0.15; % initial the probability of each link 

for i = 1:numNodes 

    for j = i+1:numNodes 

        if rand < probability 

            G_ER = addedge(G_ER, i, j); 

        end 

    end 

end 

plot(G_ER) 
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Implementation of IIN-TN method 
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%% Implement IIN-TN emthod 

 

%% Load the network to be tested here 

input_network = G_ER; 

adjacency_matrix = adjacency(input_network); 

%initial infection rate and curing rate 

infection_rate = 1; 

curing_rate = 1; 

 

%% calculate R0 of each node based on network 

% Initialize the number of nodes in the network 

num_nodes = numnodes(input_network); 

% Initialize a backup of the adjacency matrix 

adjacency_matrix_copy = adjacency_matrix; 

% Initialize result storage structure 

results = struct('IIN', [], 'TN', [], 'Num2linksPath', [],'Probability',[]); 

% Initialize the index of result 

index = 1; 

 

for i = 1:num_nodes 

    % Initialize IIN 

    IIN = i; 

    % Traverse the adjacent nodes of node IIN (find TN) 

    TN = find(adjacency_matrix(IIN, :)); 

    for j = 1:length(TN)    

        %Make a backup first and then delete the  

        %link that directly connection two nodes 

        adjacency_matrix_copy_A = adjacency_matrix_copy; 

        adjacency_matrix_copy_A(IIN,TN(j)) =0; 

        adjacency_matrix_copy_A(TN(j),IIN) =0;        

         

        %look for the shortest path to connect the two and record the number of 2linksP

ath 

        counter = 0; 

        while true 

            shortest_path = shortestpath(graph(adjacency_matrix_copy_A), IIN, TN(j)); 

            if length(shortest_path) == 3  

                adjacency_matrix_copy_A = Edge_remove(adjacency_matrix_copy_A,shortest_pa

th); 

                counter = counter + 1; 

            else 

                break 

            end 

        end 

        results(index).IIN = IIN; 

        results(index).TN = TN(j); 

        results(index).Num2linksPath = counter; 

        index = index + 1;  

    end 

end 

 

% Calculate the probability of each IIN-TN 

for i = 1:length(results) 

    num_2linkpaths = results(i).Num2linksPath; 

    results(i).Probability = Prob_IIN_TN(infection_rate,curing_rate,num_2linkpaths); 

end 
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% Calculate R0 for each node 

results_node = struct('Node', [], 'R0', []); %initial  

for i = 1:num_nodes 

    results_node(i).Node = i; 

    results_node(i).R0 = 0; 

end 

 

for i = 1:length(results) 

    for j = 1:length(results_node) 

        if results(i).IIN == results_node(j).Node 

           results_node(j).R0 = results_node(j).R0 + results(i).Probability; 

        end 

    end 

end 

 

%% Calculate the R0 of the network based on results_node and draw the results 

 

% find R0 for the whole graph by using R0 for each node 

total_sum = 0; 

R0_list = zeros(1, num_nodes); 

for i = 1:length(results_node) 

    total_sum = total_sum + results_node(i).R0; 

    R0_list(i)=results_node(i).R0; 

end 

R0_network = total_sum/num_nodes; 

 

%print out the result 

fprintf('The R0 of this network by IIN-TN method is:') 

disp(R0_network) 

 

% find R0 by definition 

eigenvalues = eig(adjacency_matrix); 

max_eigenvalue = max(eigenvalues); 

R0_def = (infection_rate / curing_rate)* max_eigenvalue; 

fprintf('The R0 of this network by definition:') 

disp(R0_def) 

 

 

figure; 

subplot(2, 1, 1); 

plot(input_network) 

title('Network'); 

 

subplot(2, 1, 2); 

plot_limit = ceil( max(R0_list) ); 

edges = linspace(0, plot_limit, plot_limit*4+1 ); 

histogram(R0_list, edges, 'Normalization', 'probability'); 

title('Distribution of R0 Values'); 

xlabel('R0 values'); 

ylabel('Percentage of the R0 values'); 

 

% Add vertical bars to highlight the values of R0 and R0_def 

hold on 

[counts, ~] = histcounts(R0_list, edges); %Find the number of each hist 

max_count = max(counts); 

line_position = max_count / num_nodes + 0.05; %Find the highest reached position of hist 
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% Draw a vertical line of 1 in color green 

line([1 1], [0 line_position], 'Color', 'g', 'LineWidth', 1);  

% Draw a vertical line of R0 in color red 

line([R0_network R0_network], [0 line_position], 'Color', 'r', 'LineWidth', 1);  

% Draw a vertical line of R0_def in color blue 

line([R0_def R0_def], [0 line_position], 'Color', 'b', 'LineWidth', 1);  

 

% Edit legend 

legend('','1',sprintf('R0       = %.3f', R0_network),sprintf('R0_{(def)} = %.3f', R0_def)) 

hold off 

 

Implementation of Star method(the part should run after the above part in 

C.4) 
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%% Repeat the process with star method 

% Calculate R0 of each node (star method)) 

results_node_star_method = struct('Node', [], 'R0', []); % Initialize result container 

for i = 1:num_nodes 

    results_node_star_method(i).Node = i; 

    results_node_star_method(i).R0 = 0; 

end 

 

for i = 1:length(results_IIN_TN) 

    for j = 1:length(results_node_star_method) 

        if results_IIN_TN(i).IIN == results_node_star_method(j).Node 

           results_node_star_method(j).R0 = results_node_star_method(j).R0 + ... 

           infection_rate/(infection_rate + curing_rate); 

        end 

    end 

end 

 

total_sum_star_method = 0; 

R0_list_star_method = zeros(1, num_nodes); 

for i = 1:length(results_node_star_method) 

    total_sum_star_method = total_sum_star_method + results_node_star_method(i).R0; 

    R0_list_star_method(i)=results_node_star_method(i).R0; 

end 

R0_network_star_method = total_sum_star_method/num_nodes; 

 

%print out the result 

fprintf('The R0 of this network by Star method is:') 

disp(R0_network_star_method) 

 

figure; 

% plot the result 

plot_limit = ceil( max(max(R0_list_star_method) , max(R0_list)) ); 

edges = linspace(0, plot_limit, plot_limit*4+1 ); 

histogram(R0_list_star_method, edges, 'Normalization', 'probability'); 

title('Distribution of R0 Values (Star method)'); 

xlabel('R0 values'); 

ylabel('Percentage'); 

hold on 

[counts, ~] = histcounts(R0_list_star_method, edges); 

max_count = max(counts); 

line_position = max_count / num_nodes + 0.05;  

line([1 1], [0 line_position], 'Color', 'g', 'LineWidth', 1);   

line([R0_network_star_method R0_network_star_method], [0 line_position], 'Color', 'r', 'LineWid
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th', 1);   

line([R0_def R0_def], [0 line_position], 'Color', 'b', 'LineWidth', 1);   

legend('','1',sprintf('R0       = %.3f', R0_network_star_method),sprintf('R0_{(def)} = %.3f', R0

_def)) 

hold off 

 

 Functions used in above 

1. Prob_IIN_TN.m 
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function [result] = Prob_IIN_TN(infection_rate, curing_rate, num_paths) 

%   This function is the Equation 3.27 in Thesis paper 

%   infection_rate, curing_rate, num_paths are the parameters that should 

%   be given 

 

    P_A = num_paths; 

    if P_A == 0 

        result = 1; 

    else 

        result = 0; 

        for j = 0:P_A  % the range of P_C is [0,P_A] 

            P_C = j; 

            prob_sum = 0; 

            for k = 2*P_C:(P_A+P_C) %the range of L_I is [2*P_C,P_A+P_C] 

                L_I = k; 

    %             % check the output 

    %             fprintf('%s = %g,\n', 'P_A', P_A); 

    %             fprintf('%s = %g,\n', 'P_C', P_C); 

    %             fprintf('%s = %g,\n', 'L_I', L_I); 

         

                % Count the number of each infection graph 

                % f: This varible corresponds to f (P_A,P_C,L_I) in the formula 

                if L_I-2*P_C-1<0 

                    f = nchoosek(P_A, P_C); 

    %                 fprintf('%s = %g,\n', 'f ', f);   

                else 

                    molecular = 1; 

                    for k = 0:(L_I-2*P_C-1) 

                        comb = nchoosek( 2*P_A-2*P_C-2*k , 1); 

                        molecular = molecular*comb; 

                    end 

                    denominator = factorial(L_I-2*P_C); 

                    f = nchoosek(P_A, P_C)*molecular/denominator; 

    %                 fprintf('%s = %g,\n', 'f ', f);             

                end 

         

                % Calculate the probability corresponding to each f 

                prob_molecular = (infection_rate^L_I) * ( curing_rate^(2*P_A-L_I) ); 

                prob_denominator = (infection_rate+curing_rate)^(2*P_A); 

                prob = prob_molecular/prob_denominator; 

    %             fprintf('%s = %g,\n', 'probability', prob);  

                 

                %Calculate the probability sum of all situations where L_I is in range:[2*P

_C,P_A+P_C] 

                prob_sum = prob_sum + prob*f; 

            end 

            %fprintf('%s = %g,\n', 'prob_sum', prob_sum); 
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            direct_path = infection_rate /(infection_rate + curing_rate); 

            total_prob = direct_path*prob_sum; 

             

            %Calculate the probability of direct infection at different P_C 

            condi_prob =  exp(P_C+1) * (P_C+1)^(-P_C-1) * igamma(P_C+1,P_C+1); 

         

            %Calculate the final result 

            result = condi_prob*total_prob + result; 

        end 

    end 

end 

 

2. Edge_remove.m 
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function [new_adjacency_matrix] = Edge_remove(adjacency_matrix,shortest_path) 

    % delete the corresponding links in the 

    % adjacency_matrix according to the shortest path 

     

    num_edges_in_path = length(shortest_path) - 1; 

    for i = 1:num_edges_in_path 

        edge_to_remove = [shortest_path(i), shortest_path(i+1)]; 

        adjacency_matrix(edge_to_remove(1), edge_to_remove(2))=0; 

        adjacency_matrix(edge_to_remove(2), edge_to_remove(1))=0; 

    end 

    new_adjacency_matrix = adjacency_matrix; 

end 

 

D.5 Code in Section 5.2.1 

 Data preprocessing  
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%% Preprocessing (sorting) of realHumanContactMIT 

sortedData = sortrows(realHumanContactMIT, 2); 

sortedData = sortrows(sortedData, 1); 

G_MIT = graph(); 

% Set the length 

transmit_index = length(sortedData.id1)-1; 

% Establish a point-to-point connection 

for i = 1:transmit_index 

    disp(i) 

    node1 = sortedData.id1(i); 

    node2 = sortedData.id2(i); 

    if node2 ~= sortedData.id2(i+1) 

       G_MIT = addedge(G_MIT, node1, node2); 

       plot(G_MIT) 

    end 

 

    if i == transmit_index 

       G_MIT = addedge(G_MIT, node1, node2); 

    end 

end 

plot(G_MIT) 
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