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Abstract

With the increasing popularity of mobile and voice-assisted, extracting short and pre-
cise answer passages to open-domain questions is becoming an increasingly important
information retrieval (IR) task. The recently released large-scale corpus for answer
passage retrieval—WikiPassageQA [24]—was shown to be challenging for both tra-
ditional retrieval models and neural architectures. One of the classic approaches to
improving retrieval effectiveness across tasks is automatic query expansion (QE). QE
is the process of reformulating a user’s query by adding more terms with the goal of
retrieving more relevant information. Word embeddings are commonly employed to
obtain QE terms by taking advantage of the low dimensional semantic space formed
by these embeddings.

Recently, Diaz et al. [37] showed that QE using word embeddings trained on a
local query-specific corpus performed better than embeddings that were trained on an
entire global corpus for document ranking tasks. We aim to examine the effective-
ness of QE, specifically using locally-trained word embeddings, in this new context
of answer passage retrieval. Additionally, a query-specific corpus can be small in size
with limited vocabulary which forms a challenge for training word embedding mod-
els. Since the extent to which limited vocabulary influences the semantic information
captured by word embeddings is relatively unexplored, we compare two word embed-
ding models—CBOW and IWE—in this thesis. Having the same underlying training
philosophy, the IWE model differs from CBOW in two aspects—it incorporates sub-
word information of words and uses a convolutional neural network to learn context
representation.

Our results corroborate the findings of Diaz et al. [37]—query-specific data is also
beneficial in the task of retrieving passages to open-domain questions. Word embed-
dings trained on a global corpus fail to capture the nuances of query-specific language
present in the answer passages. We also found out that IWE word embeddings capture
more semantic information than CBOW word embeddings when trained on local data
with a limited vocabulary. Our experiments show that both the IWE model compo-
nents contribute to the improved quality of word embeddings and consequently better
QE terms. Our work can be extended by using the same methodology in other domains
or by using different word embedding models to obtain QE terms. The insights from
our thesis can help researchers to make an informed decision while choosing word
embedding models and training data for their IR and natural language understanding
tasks.
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Chapter 1

Introduction

Retrieving information from search engines (Google1, Bing2 etc.), social question an-
swering (QA) sites (Yahoo Answers3, Stack Overflow4 etc.), exploratory searching
(travel planning, personal health research etc.) forms an important part of our lives in
the present world. Humans interact with these systems, either through desktops or mo-
bile devices, to find information and facts which in turn helps them to make informed
decisions. The interaction is done in the form of a query in order to communicate their
information need to the IR systems. The objective of an information retrieval (IR)
system is to satisfy this information need by retrieving a list of documents, passages,
sentences, etc. from a collection where the relevant results are usually kept at the top.
The retrieved information can be in other modality as well - images, videos or audio
which has become popular in the last few decades [30]. In this thesis, we only consider
text retrieval where both the queries and the retrieved information (search results) are
in the form of natural language.

When the query accurately describes the information a user is seeking for, the sys-
tem is likely to return good results, given the relevant information is present in the col-
lection of the IR system. In reality, however, the query submitted by a user might form
a poor representation of the underlying information need [132]. For example, a user
looking to understand how the game of football is played might formulate their web-
search query simply as ‘football’. These short queries can be ambiguous as well—it is
not clear from the query whether the user is looking for the latest football news or any
specific information regarding the sport. Fig. 1.1 shows the result returned by Google
in response to the above query. Since the information need was not clear from the
query formulation, the search system failed to retrieve results that are relevant to the
user. Furthermore, as famously conceptualized by Nicholas Belkin in his Anomalous
State of Knowledge [6], a user often does not know what their actual information need
is. Query refinement techniques [69, 4] aim to minimize this gap between the actual
information need of the user and their formulated query. Query expansion (QE) is
one such technique among others like spelling correction, query auto-completion. QE,
as the name suggests, is the technique of expanding a user’s original query with new
terms that are semantically similar to the query and relevant to the information need

1See https://www.google.com/
2See https://www.bing.com/.
3See https://answers.yahoo.com/.
4See https://stackoverflow.com/.
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Introduction

of the user [38, 14]. For example, a good QE technique will add the terms ‘game’,
‘rules’, ‘play’ etc. to the query mentioned above.

Over the years, a number of approaches [116, 28] have been proposed for QE
which we have elaborated more in Section 2.3. Currently, continuous space word em-
bedding models5 like word2vec [87], GloVe [105] etc. are popularly employed to
obtain QE terms [37, 118, 68, 100, 61]. These models project words in a vocabulary
to a dense, lower-dimensional continuous space where each word is represented as a
point. These numerical vector representations of words have the ability to model word
similarity and other semantic relationships. Words having similar semantic meaning
(‘football’, ‘game’, ‘play’ etc.) usually lie close to each other in the embedding space.
Research in natural language processing (NLP) [85, 72, 105, 77] community have
shown the effectiveness of word embeddings in analogy and word similarity tasks.
This attribute of term relatedness can also be exploited to find QE terms to a given
query. We will be able to obtain ‘game’ and ‘play’ as QE terms by searching the em-
bedding space in the vicinity of the query term ‘football’. QE using word embeddings
have been shown to improve the retrieval effectiveness [2, 37, 68] of term-matching
based traditional IR models6 (eg. BM25, Query Likelihood) in the ad-hoc search task
- the task of ranking documents in response to short queries.

a b

Figure 1.1: Google search result in response to the keyword query (a) ‘football’ and
grammatically correct question (b) ‘describe the game of football’.

In our work, we evaluate the effectiveness of QE in a context that is relatively
novel in the field of IR: open-domain QA. It aims to answer queries posed by users
in natural language [19, 134, 24] with grammatically correct syntax—‘Describe the
game of football’. As we can see, in contrast to the keyword query ‘football’, this is
more well-defined and less ambiguous—the information need is clear. Fig. 1.1 shows
the response to the natural language query—it retrieved the information relevant to the
user. However, natural language questions come with their own complexities. The IR
system needs to understand the semantic relationship between various query terms to

5Word embedding models are introduced in details in Section 2.2
6Traditional IR models are introduced in Section 2.1.2
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Introduction 1.1 Research Motivation

retrieve the relevant and correct information7. Moreover, various terms in the query
might not be present in the relevant answer passage or document. For example, in
the answer retrieved in Fig. 1.1, the word ‘Describe’ is not present. This is what
is typically known as vocabulary mismatch problem [161, 125] where a simple term
matching based IR system might fail to retrieve relevant information because of the
absence of important query terms. Without the keyword ‘describe’ the intent of the
query (‘the game of football’) might change as it is unclear now whether the user is
looking for how to play the sport or a PC/video game about the sport. Hence, QE can
reduce this gap by expanding the query with semantically similar words to describe
what will be present in relevant answer passages.

QA is a challenging and one of the earliest tasks in Natural Language Process-
ing (NLP) and has been a subject of research since 1960s [130, 65, 17, 67]. Open
domain QA is not restricted to any specific domain or topic [19, 146]. Whereas in
closed domain QA question topics come from one specific domain like medicine, law,
tourism, etc. Open-domain QA forms an important step towards the QA ideal, which
is a general question answering system that is capable of answering a question from
any domain posed by an user [65, 17, 62]. In IR community, open-domain QA has
received much attention since 1999, when the QA track was first introduced in Text
Retrieval Conference (TREC) competitions by the National Institute of Standards and
Technology (NIST) [144, 17, 89]. This was followed by development of a number of
QA IR models [44, 111, 26, 146, 155] over the years. They usually contain two com-
ponents - (i) using an IR model to select a candidate set of passages/documents from
open-domain knowledge sources like Wikiepdia8 or a subset of World Wide Web pages
etc and (ii) selecting the correct answer from the candidate or re-ranking them to keep
the answer passages/documents at the top. The first component of selecting candidate
answer texts is usually performed by one of the terms based IR models as they are fast
and robust. The more recent neural network-based IR models [23, 153, 18, 112, 155]
focus on the second component of re-ranking the answers with the goal of increased
retrieval effectiveness.

1.1 Research Motivation

With the increasing popularity of digital assistants like Google Assistant9, Siri10, Cor-
tana11, and Alexa12 open-domain QA is becoming an increasingly important retrieval
task. A user interacting with these digital assistants would prefer concise answers
instead of entire documents. Hence, we focus on the task of passage retrieval to
open-domain QA tasks in our thesis. Passages are shorter pieces of text than docu-
ments. While ranking of documents is typically performed for the ad-hoc search task,

7Apparently easy questions can be difficult for search systems. For example, a Google search on
the question ‘How many legs does a horse have’ returns ‘four’ as an answer. However, ‘Number of legs
horses have’ returns ‘six’.

8See https://en.m.wikipedia.org/wiki/Wikipedia.
9See https://assistant.google.com/.

10See https://www.apple.com/ios/siri/.
11See https://www.microsoft.com/en-us/windows/cortana.
12See https://alexa.amazon.com.
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retrieving short and precise pieces of answer text like passages forms one of the key
aspects of open-domain QA systems [158, 122, 24, 33].

Although existing research [37, 118, 2, 68] has shown the effectiveness of QE
using word embeddings in the ad-hoc search task, there is lack of literature when it
comes to analyzing the same for the task of passage retrieval for open-domain QA.
Specifically, there are two factors that can make the generation of QE terms difficult in
our open-domain QA task in comparison to the ad-hoc search task—(i) the QE terms
need to be semantically similar to all the important question terms (‘describe’, ‘game’,
‘football’ etc.) which can be challenging when the questions are long and (ii) the
QE terms have to retrieve passages which are not only smaller but also less topically
diverse than documents of the ad-hoc search task [24, 141].

In this work, we aim to re-implement the retrieval pipeline recently proposed by
Diaz et al. [37] and evaluated on the ad-hoc search task. The key idea behind the
pipeline is to reap the benefits of so-called locally trained embeddings (derived from a
query-specific corpus) over globally trained embeddings (derived from an entire cor-
pus) for QE. The unigram distribution of text on subtopics of a collection differs from
that of the whole corpora [29]. For example, the language will be different in the doc-
uments pertaining to football than politics. The word embedding models essentially
capture word co-occurrence information—words occurring in the same context are se-
mantically similar [55, 42] and thus lie close to each other in the embedding space [85].
As a result, the trained word embeddings will also be different when they are trained
on documents specific to a topic or a query. Table. 1.1 shows the difference in similar
terms produced by a word embedding model when trained on a query-specific corpus
compared to when trained on a global corpus. In this case, we see that terms specific to
‘football’ are obtained by the locally-trained word embeddings, whereas more global
relationships are captured by the globally-trained embeddings.

Table 1.1: Terms similar to ‘football’ for a word embedding model trained on a general
corpus and another trained only on documents related to ‘football’. Figure adapted
from [37].

Global Local

soccer players
baseball game
basketball role
league pitch
rugby striker
hockey international
club federation
player goal
footballer futsal
nfl keeper

The candidate set of passages to each question forms the query-specific corpora
for training the word embedding models for our experiments. Hence, our task forms
the ideal setting to evaluate the reproducibility of the approach proposed by Diaz et al.

4



Introduction 1.1 Research Motivation

[37] in this new domain. Furthermore, passages are topically constrained pieces of
text and as pointed out in [37], global embeddings fail to capture the nuances of topic-
specific language. We hypothesize that it is better to train our word embedding models
on query-specific data instead of a global corpus one for obtaining QE terms for our
task of passage retrieval to open domain QA (H1).

Word embedding models are usually trained on data with vocabulary (number of
unique words) size of more than 50k [85, 13]. Passages being shorter pieces of text, we
would need to retrieve a large number of candidate passages in order to have a similar
vocabulary size. This would result in a larger number of non-relevant passages among
the candidates and thereby defeating the purpose of query-specific data. Ideally, we
should retrieve a limited number of candidate passages to train our local embedding
model. However, the vocabulary size for training our word embedding models will
be much smaller as well. There has been no detailed investigation previously on the
outcomes when word embedding models are trained on limited data—whether the gen-
erated word embeddings still capture semantic relationship or whether limited data
render them completely useless. Obtaining and analyzing QE terms generated by the
word embeddings will enable us to investigate their quality when they are trained on
limited data. The QE terms are a good indication of the semantic information captured
in the embeddings. If the quality of the embeddings is low, it would result in QE terms
having little or no semantic similarity with the query terms.

In our thesis, we use two word embedding models—CBOW [85] and IWE [13]—
for obtaining the QE terms in our task of passage retrieval13. Both these models are
trained using the same objective: prediction of a word based on the words in its context.
The difference lies in how the models form a representation of the context. CBOW
simply concatenates the context words without any word order information to form
the context representation. On the other hand, IWE uses a convolutional neural net-
work (CNN) [43, 71] to learn structural information (word order) about the context
and form the context representation. Moreover, IWE leverages sub-word information
(like character trigrams) of the words while forming the context representations. We
hypothesize that when the models are locally trained on candidate set of passages
having a limited vocabulary, IWE word embeddings will capture better semantic re-
lationships and consequently generate better QE terms for passage retrieval than the
CBOW model (H2).

Thus the work in our thesis is guided by the following research questions:

RQ1 Does QE based on locally-trained word embeddings [37] improve the effective-
ness of traditional term-based retrieval model (Query Likelihood) for the task of
answer passage retrieval compared to globally-trained embeddings?

RQ2 Does QE based on IWE word embeddings improve the effectiveness of tradi-
tional retrieval models compared to CBOW word embeddings when the models
are locally-trained on limited data?

13The models are introduced in details in Chapter 3
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1.2 Scientific Contributions
The main contribution of our work can be summarized as follows:

• We have explored QE using word embeddings in the task of answer passage re-
trieval for open-domain QA. Specifically, we have compared the retrieval effec-
tiveness after QE using both CBOW and IWE word embedding models trained
globally and locally.

• We have compared the performance of CBOW and IWE word embedding mod-
els with the help of QE terms these two models generate. The difference in QE
terms generated by the two models and their retrieval effectiveness have shown
that IWE word embeddings capture more semantic information than CBOW
word embeddings when trained on limited data. We have shown evidence that
the incorporation of sub-word information and convolution feature learning of
context helps in the same.

• We have conducted extensive error analysis on cases when QE using CBOW or
IWE word embeddings failed to increase the retrieval effectiveness of traditional
IR models. The analysis has led to the identification of certain shortcomings of
the word embedding models and the adopted retrieval pipeline.

• We have implemented IWE word embedding model [13] from scratch in Py-
Torch14. We have also made code of our IWE implementation15 and experi-
ments16 publicly available.

1.3 Thesis Outline
The remainder of our thesis is structured as follows:

• Chapter 2: Related Work provides the reader with necessary background in-
formation of IR and discuss research related to our work.

• Chapter 3: Methodology describes all the algorithms employed in our work in
detail and discusses our approach for answering the research questions.

• Chapter 4: Experiments and Results presents the findings of the experiments
designed to answer our research questions together with an in-depth analysis of
the performance of the word embedding models.

• Chapter 5: Conclusion and Future Works concludes and summarizes our
findings and analysis. It also puts forward several possible research directions.

14An open source deep learning library for Python. See https://pytorch.org/.
15See https://github.com/roynirmal/IWE.
16See https://github.com/roynirmal/queryExpWikiPassageQA.
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Chapter 2

Related Works

In this chapter, we first provide background information to make the readers familiar
to the concepts of our research topics - namely IR, (Section 2.1), word embeddings
(Section 2.2) and QE (Section 2.3).

Secondly, we provide a brief literature survey of research, discussing their merits
and limitations, that are related to our work. We identified two such areas of work:
word embeddings in IR - the neural IR paradigm (included in section 2.2), and query
expansion using word embeddings (Section 2.4).

2.1 Information Retrieval

The term IR can mean a large number of things. Taking a notebook out of your bag to
read a certain topic is also a form of IR. According to Manning et al. [82],

Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within large collec-
tions (usually stored on computers).

Data that cannot be maintained in relational databases are typically unstructured.
Text data, which is the focus of our thesis, however, is never truly unstructured—they
can be divided into paragraphs, titles, footnote, etc. Text retrieval is the task of finding
relevant information from one or more such parts of text data in response to a user
query. The information can be presented to the user in a number of ways depending
on the task and IR system. For example, in personalized search in desktops or e-
mails, users are typically looking for one relevant document/text/mail. Ranking of
documents, with the relevant ones at the top, is a central task in IR research [90]. The
most common example of this IR task in our daily lives is a typical web search engine
like Google, Yahoo, Bing, etc. In the following sections, we will first discuss two
important IR tasks that are directly relevant to our thesis, followed by a discussion on
traditional IR models and finally the topic of evaluation of an IR system.

2.1.1 IR Tasks

The text retrieval research can be subdivided into a number of tasks such as ad-hoc
retrieval, query understanding, question answering or more novel tasks like complex
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Document
Collection

"football"
"describe the game of football"

Ranked
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IR
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Figure 2.1: A pictorial representation of a typical IR process

question answering [97] depending on the target textual unit (TTU) or TTU pairs they
are dealing with. This thesis focuses on ad-hoc retrieval and question answering which
are elaborated in the following segment.

Ad-hoc retrieval is the IR task of retrieving a ranked list of documents from a large
collection in response to a user’s query [138]. It is the main task of popular ad-hoc
and Web tracks of the Text REtrieval Conference (TREC) [143] and performed by
search engines like Google, Bing etc [92]. For this task, the TTU pair is query and
document. Although traditionally ad-hoc retrieval was used for obtaining news reports
or government documents by librarians or information experts [3], since early 1990s
web search is the most common example. In an IR system, the number of documents
in the collection remains relatively static although the number of possible queries is
unlimited - hence the term ad-hoc [3]. The documents in the collection are indexed
to facilitate their search among millions of other documents. The length of the query
submitted by the user can vary from a few terms to a few sentences, while in web
search it is typically in the form of short keywords [83]. Hence, the query might lead
to an information need that is ill-defined. This can lead to queries that are ambiguous,
as discussed in Chapter 1. Given a query, the goal of the IR model in this task is to
rank relevant documents higher than the non-relevant documents in the collection.

Open domain QA is the task of retrieving comprehensible answer texts to user
queries that are in the form of natural language questions. Naturally, the TTU pair
for this task is a question and answer. QA can further be of two types depending on
the length of text necessary to answer a user’s question [136, 153, 24]. It is called
factoid QA when the length of the answer varies from a few words to a few phrases -
“Who won the football world cup in 2018?". The length of answers to non-factoid QA
lies between a sentence or a phrase (factoid QA) and an entire document - ‘Describe
the game of football’. In our thesis, we focus on non-factoid questions where our task
is to retrieve a ranked list of answer passages. The queries in QA are well-defined in
comparison to ad-hoc retrieval—the information need is typically clearer. However,
retrieving short spans of answer text poses a unique challenge in comparison to re-
trieving documents [92]. Since the short answer spans tend to be on point with respect
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to a single topic in comparison to a long document, they might use a different language
than the questions. Often important question terms are not present in the answer pas-
sages. Hence, retrieval systems designed for QA tasks need to focus more on modeling
semantic patterns expected in the answer than an exact matching of query terms [92].
Fig. 2.1 shows a graphical representation of a typical IR ad-hoc/QA task. Similar to
ad-hoc search, the goal of the IR model in our task of open-domain QA to non-factoid
questions is to rank relevant passages higher than the non-relevant passages.

2.1.2 IR models

In an ideal scenario, a user would manually look at all documents in a collection and
keep the ones she finds relevant to particular information. Of course, this solution is
impractical and it necessitates a model to automate this process for her. The goal of
an IR model is to retrieve documents that are relevant to the users in response to their
query. However, relevance is a complex notion [121] might vary between different
users or for the same user in a different time. This poses one of the major challenges
for designing retrieval models. For ad-hoc or passage retrieval tasks, a good IR model
is one that retrieves all relevant documents/passages at the top of a ranked list. For
simplicity, henceforth if not mentioned otherwise, we will refer to both documents (for
ad-hoc search) and passages (for our task of passage retrieval) as documents. From a
holistic view, the task of an IR model can be simplified into three components:

• Given a query q, calculate a score S(d,q) for every document d in the collection
D which is a measure of the relevance of the document to q.

• Rank documents in descending order of their score S(d,q).

• Produce the top n results to the user.

Over the course of 5 decades of research, various IR models have been proposed [114,
82]. The models differ in how they score the documents and in their assumptions be-
hind the scoring functions but have the same goal of retrieving the most relevant results
to the users. One of the earliest of such approaches is the boolean retrieval model,
where a q is represented as a logical combination of words. The model returns a set
(instead of a ranked list) of documents that exactly matches the query with the as-
sumption that all matching documents have the same relevance. However, this model
is rarely used in current IR research involving ad-hoc search task or open-domain QA.
This was followed by the vector space model (VSM) [120], which we discuss in more
detail in Section 2.2.1 as they form an important background to word embeddings. The
more recent approaches which are used in modern IR research are probabilistic mod-
els (PM) like BM25 and language modeling.

PM was developed following decades of empirical work on IR models when it was
necessary to have more theoretical evidence and explicit assumptions [82]. Probabilis-
tic IR models measure the relevance of documents based on probabilities estimated
as accurately as possible based on the data available to the models [115]. Binary in-
dependence model (BIM) is a PM where documents are represented as a vector of
binary features (1 if a term is present, 0 otherwise) and assume independence of terms.
The key idea behind BIM is to rank documents based on the ratio of its probability
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of being relevant to the query to that of being non-relevant. The assumption of term
independence simplifies the calculation of the probability that the document is rele-
vant to the query. BIM is the basis of BM25 [90] which is not only one of the most
popular baselines of current IR research but the first PM model to consistently outper-
form previous approaches. BM25 extends BIM by incorporating document weights
and term frequency (TF) t f (w,d) which is the frequency of a word w in a document.
The equation of BM25 [41] is presented below.

BM25(d,q) = Â
qi2q

id f (qi).
t f (qi,d).(k1 +1)

t f (qi,d)+ k1.(1�b+b |d|
avgdl )

.
(k2 +1)t f (tq,d)

k2 + t f (qi,d)
. (2.1)

where k1,k2 and b are parameters of BM25 that need to be tuned and avgdl is
the average length of documents in the collection D. id f (w) is known as inverse
document frequency (IDF) of a word and measures the importance of a term based on
number of documents in D that contains the term (also known as document frequency
of the term d f (w). IDF is calculated as the following [41, 92]

id f (w) = log
|D|�d f (w)+0.5

d f (w)+0.5
(2.2)

Language modeling [109] is having a probability distribution over the vocabulary
V (number of unique words/stems/phrases) in a collection or document. While BM25
uses various query term statistics to directly compute the relevance of a document with
respect to the query, the main intuition of retrieval using language modeling is to esti-
mate the likelihood P(q|d) of generating query terms if words are randomly sampled
from a document [82]. Under the assumption that the query terms are independent of
each other computing the likelihood becomes easier,

P(q|d) = ’
qi2q

P(qi|d). (2.3)

The documents are then ranked based on the relevance score which is the product of the
likelihood estimates of all query terms (using Bayes Theorem). This model is also re-
ferred to as query likelihood (QL). The prior probabilities of documents can assumed
to be uniform or can be estimated from training data based on document length, source
etc. [82]. Often, to avoid the problem of having 0 probability (and consequently 0
relevance score for a document), QL use smoothing [81, 82] by sampling query terms
from the collection if they are unseen in the documents. For our thesis, we use a QL
model with Dirichlet smoothing [81] as our retrieval model since this was also used as
a baseline model by Diaz et al. [37]. The formula [41] for the same is presented below.
Here µ is the smoothing parameter and |d| is the document length or the number of
words in the document.

QL(d,q) = ’
qi2q

✓
t f (qi,d)+µÂd̄2D t f (qi, d̄)

Âd̄2D |d̄|

◆
/

✓
|d|+µ

◆
(2.4)

More recent IR models include translation models, pseudo relevance feedback
(PRF) [28], learning to rank (LTR) [52, 51] and the latest neural IR models (neu-
IR) [126, 127, 50, 91]. The PRF model employs query expansion and will be explained
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in more detail in Section 2.3. LTR and neu-IR approaches can be used to extend tradi-
tional approaches by re-ranking their results either by using handcrafted features (LTR)
or by learning features automatically (neu-IR) to represent input (more discussion in
section 2.2.6).

2.1.3 Relevance, Evaluation and Metrics in IR

As discussed in Section 2.1.3, relevance forms a key notion in IR and it is one of
the most important factors for evaluating IR models. In conjunction with effective-
ness, an IR model should also be efficient in terms of the computer resources used
such as memory, storage, and time [114]. A good IR model retrieves all relevant
documents and as few non-relevant documents as possible. Relevance is a complex,
intuitive concept of human and it can vary between users or the same user in different
time [114, 121]. Hence, the goal of evaluation measures in IR tasks like ad-hoc search
or passage retrieval to open-domain QA is to assess how well the model meets the
information need of the users with the ranked list of documents it produces [142]. The
user-based evaluations measure user satisfaction in terms of corpus coverage, time lag
for retrieval, presentation of output etc [82]. However, these kind of evaluations are
not only difficult or expensive but it also raises questions regarding reproducibility
and re-usability of these results [114]. In an attempt to overcome these difficulties
and to quantify the difference between system performances, IR researchers primarily
use an empirical, test collection based approach known as batch or offline evaluation.
This IR evaluation methodology was developed by Cyril Cleverdon [22] at the College
of Aeronautics at Cranfield in the 1960s and is also known as Cranfield evaluation
paradigm. The methodology consists of three key components:

• a collection of documents D,

• a set of topics or queries Q,

• a complete set of binary relevance judgments or qrel for each document anno-
tated by human assessors.

The modern evaluation has adapted the methodology in terms of relevance judg-
ment where a multi-graded or user-dependent decision is used instead of binary judg-
ments. Moreover, depth pooling1 [131] is commonly used to avoid the cost of labeling
all documents, whether they are relevant or not, for every topic. The general idea
remains the same - simulate user-based evaluations with the help of these cheaper,
reusable and reproducible test collections. The only drawback of this methodology is
that they might not reflect the gains or satisfaction of real users [82]. To compare the
performance of different approaches, we need evaluation metrics together with the test
collection. The evaluation metrics used in our thesis are introduced in Section 3.4.1.

2.2 From Words to Vectors
How can machines understand words? Language, in its written, spoken or signed
form, has been the medium of knowledge transfer throughout the course of human-

1It is used in TREC and NTCIR
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ity. To allow machines or computers to use this knowledge and take part in daily
interactions with humans, we need to represent language using mathematical models -
models that will help machines translate and understand natural language for their own
computation. Word embeddings, the representation of words in numerical vectors of
real numbers, stems from a long line of research in NLP - a research field focused on
developing mathematical and computational models of language.

The design of mathematical models for language can be dated back to Indian and
Greek philosophers of 4th Century BC [113]. In the early 17th century, Leibniz and
Descartes put forward theoretical proposals which would relate words between differ-
ent languages - one of the earliest known work of machine translation (MT). The
research of MT in the early 20th century was mostly theoretical and unsuccessful ow-
ing to lack of computing resources - the task of encoding language into computer
programs proved to be more complex than what the researchers had imagined [53].
American linguist Noam Chomsky published Syntactic Structures [21] in 1957 where
he introduced the concept of a generative grammar: rule-based descriptions of syn-
tactic structures. It is believed that most of NLP research since 1957 has been in-
fluenced by Chomsky’s work [53]. The period of 1960-1970 saw key developments
in the research of encoding grammar, syntax and semantics for machine understand-
ing [147, 123] and development of NLP systems like SHRDLU2, PARRY3, etc. Most
of these systems and methods were based on a complex set of rules and the focus was
on executing a specific task.

Introduction of machine learning (ML) algorithms for language processing in
the 1980s not only brought a new direction in NLP research but also necessitated the
representation of language or text in the form of numerical vectors - vectors that en-
code important syntactic and semantic information. Word embedding4 is the collective
name for a variety of techniques that are involved with the mathematical representa-
tion of words in a low-dimensional continuous vectors space. We can broadly divide
the approaches into two categories [5, 105]: count based word embeddings which
employs global corpus statistics like word frequencies and prediction based word
embeddings which are typically neural models trained by setting up a prediction task
where the objective is to predict a word given the words in its context. We believe the
development and emergence of the two types of word embeddings can be respectively
attributed to VSM and neural network language models (NNLM) which we discuss
in this chapter.

2.2.1 The Vector Space Model

The technique of representing words as numerical vectors is typically attributed to the
development of the VSM, specifically the work of Salton et al. [120] where they used
word frequencies in a collection to capture the semantic information of a text. Prior to
that, in linguistics, the distributional hypothesis [55], aimed at quantifying the seman-
tic similarity of terms based on their distribution in large samples of language data.
Firth [42] famously purported this idea by stating “a word is known by the company

2See http://hci.stanford.edu/~winograd/shrdlu/.
3See https://phrasee.co/parry-the-a-i-chatterbot-from-1972/.
4To our knowledge, the term was first used by Morin and Bengio [95]. Models prior to that used to

call them distributed representation of words.
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it keeps" - words appearing in the same context tend to be semantically similar. The
common theme that underlines various forms of VSM and the distributional hypothe-
sis can be stated as statistical semantics - that is the statistical pattern of human word
usage can be leveraged to understand what people mean.

The VSM of Salton et al. [120] represented queries and documents as |V|-dimensional
vectors where |V| is the size of the vocabulary. Each element in these |V|-dimensional
vectors corresponds to a word and can be either binary (1 if the word is present in
the document, 0 otherwise) or real numbers. Commonly, the elements are weighted
by their TF-IDF (introduced in Section 2.1.2) to capture how informative each word
is. Depending on the vocabulary, |V| can be in millions - leading to a very high di-
mensional vector space. Given such vector representations, we can rank documents
based on their similarity to a query. The most popularly used similarity score is cosine
similarity (see equation 2.5) which we employ for various tasks in our thesis as well.

Cosine(di,q) =
Â|V|

j=1 di j ·q jq
Â|V|

j=1 d2
i j ·Â

|V|
j=1 q2

j

(2.5)

where di = (di1,di2, ....,di|V|) and q = (q1,q2, ....,q|V|) are the representation of doc-
ument di and query q in this vector space, respectively. This representation is also
known as the term-document representation [139] where the document vector repre-
sents the documents as bag of words in each column. In IR, the bag of words hypoth-
esis states that frequency of words in a document tends to indicate the relevance of a
document to a query [120, 139]. The cosine similarities in Equation 2.5 essentially
captures this notion of relevance.

Deerwester et al. [32] pointed out that we can also compute word similarities
by considering the rows of the above term-document representation instead of the
columns. This shifted the focus towards representing words in a numerical vector
in various ways. The words can be represented by a binary vector or one-hot repre-
sentation where the size of the vector is the size of the vocabulary. For example, in
a vocabulary of 10,000 words if ‘football’ is the third word it will be represented by
the 10,000-dimensional vector [0,0,1,0...0]. The words can also be represented by
various hand-crafted features like documents containing the word [32], grammatical
dependencies [76] character tri-graphs etc. Lund and Burgess [78] introduced the Hy-
perspace Analogue to Language (HAL) model where each word was represented by
its co-occurrence with neighboring or context words. In this model, stop-words like
the, contributed disproportionately, since they did not apply any normalization to the
co-occurrence counts. Rohde et al. [117] fixed the issue in their COALS model by
considering conditional co-occurrence - a normalization technique by calculating the
ratio of the likelihood of co-occurrence of word A with word B to that with a random
word from the vocabulary. In general, we can consider these representations as a word-
context matrix where the context is given by words, phrases, sentences, documents or
other features as mentioned above [139].

2.2.2 Count Based Word Embeddings

The vector space representation can highlight the semantic relationship between words
but they suffer from a few drawbacks. Since the dimensions are in the order of the vo-
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cabulary of the underlying corpus or the number of documents, they can be extremely
high and sparse, sometimes reaching millions which can be unmanageable in many
practical applications due to computational memory and disk space. For instance, the
WikiPassageQA dataset has 323,591 (|V|) unique words and 244,136 (|D|) passages.
If we use the term-document representation, the dimensionality of the matrix will be
|V|⇥ |D| and most of the elements in the matrix will be 0 since most passages will use
only a small fraction of the whole vocabulary. If term co-occurrence is used as features
for the word vectors then the dimensionality of each word will be |V| and there will be
|V|2/2 entries in the entire term-context matrix and it will be sparse as well for similar
reasons. These sparse vectors might be computationally expensive to be used as input
features to ML models— having a large number of weights to tune. Moreover, a dense
vector might generalize better than these sparse vectors.

Count based word embeddings, traditionally known as distributional semantic
models (DSM), are learned from these high dimensional representations by factor-
izing the word-document or word-context matrices. Singular value decomposition
(SVD) [46] is one of the most popular approaches for this task. SVD is employed
by latent semantic analysis5 [32], COALS [117] etc. to obtain these low dimensional
word embeddings and observed improved retrieval effectiveness over prior models.
The main motivation for employing various techniques for reducing the dimensions
of the word-context matrix is to increase the speed of computation for obtaining word
embeddings (more details in Section 2.2.4). Dhillon et al. [35] in their iterative low
rank multi-view learning (LR-MVL) used canonical correlation analysis [59] between
the contexts of a given word for producing word embeddings. Lebret and Collobert
[70] performed Hellinger PCA 6 transformation on the word-context matrix for the
same. These models were not only faster (around 1.5 times) than previous count-based
models they also gained significant effectiveness improvement over LSA, COAL in
multiple NLP tasks like named entity recognition (NER) and sentiment classification.

The final count-based model that we will discuss is the widely popular GloVe
(Global Vectors for Word Representation) by Pennington et al. [105]. The model is
based on the intuition that the ratio of the co-occurrence of two words (rather than
the co-occurrence probabilities themselves) carries the semantic information about a
pair of words. They store this information in a word-context co-occurrence matrix
and learns a low-dimensional representation of the words using a log-linear model.
The model aims to minimize the difference of a pair of words in the latent space to
the logarithm of their actual co-occurrence ratio count. The authors report improved
effectiveness over other count-based models and prediction-based models in tasks like
NER, word analogy and similarity.

2.2.3 Neural Network Language Modeling

Language models (LM), are the probability distribution of words over a vocabulary.
The LM described in Section 2.1.2 was designed from a retrieval perspective since it
calculates the likelihood of obtaining a query term from a document. LM can also be

5Originally built for IR, but the word embeddings can be used for NLP tasks as well
6This algorithm tried to minimize the distance between principal components and actual data by

employing Hellinger Distance which is the Euclidean Distance analog of two probability distributions.
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created by estimating the likelihood of a target word given its immediately preced-
ing words (context) and these models find their application in a number of NLP and
IR tasks. Ideally, we would have a complete probabilistic model with the likelihood
of every word for all possible preceding words in the vocabulary. The LMs where
we calculate the probability distribution of a sequence of T words by the product of
the conditional probability of every word given their preceding context words can be
formalized as follows:

P(wT
1 ) =

T

’
t=1

P(wt |wt�1
1 ) (2.6)

where wt is t-th word in the sequence, wt�1
1 is the sequence of all preceding word to wt

starting from the first word in the window T . It has been empirically shown that a small
context size of 3 (3 preceding words) is enough to give a satisfactory performance [48].
That is, words in a sequence are more dependent on context that is closer to them. We
can generalize this approximation as n-gram LM (where n is the number of words in
the context). Hence, Eq. 2.6 can be re-written as

P(wT
1 ) =

T

’
t=1

P(wt |wt�1
t�n+1). (2.7)

One of the fundamental problems of these LMs is the curse of dimensionality in-
volved in calculating the discrete joint distributions of Eq. 2.6. For example, modeling
the joint distribution of 10 consecutive words (T = 10) from a vocabulary of 17,000
words potentially leads to 1700010 � 1 parameters that need to be trained. In an at-
tempt to overcome this, Bengio et al. [7] were one of the earliest proponents of what
is traditionally known as NNLM—they represented each word in the vocabulary us-
ing a feature vector whose size (30, 60 or 100) is much smaller than their vocabulary
(17000) and expressed the joint probability function in terms of this feature vector.
This drastically reduced the number of trainable parameters. Their model consists of a
one-hidden layer feed-forward NN and maximizes the log-likelihood of the prototypi-
cal LM objective of Eq. 2.7:

Jq =
1
T Â

t
logP(wt |wt�1

t�n+1) (2.8)

where P(wt |wt�1
t�n+1), i.e. the probability of the current word given its n preceding

words, is calculated by the softmax layer:

P(wt |wt�1
t�n+1) =

ezt

Â|V|
j=1 ez j

(2.9)

where z is the intermediate representation of the words. Jq is also known as cross-
entropy loss. Their model consists of three main components as can be seen from
Fig. 2.2 which forms the foundation of most of the current NNLMs and word embed-
ding models.

• Word Embedding Layer: The first layer is generally a word embedding ma-
trix (or word feature matrix) using the indices of the context word. The word
embedding matrix is trained by backpropagation. During inference, the embed-
dings are looked up from this matrix.
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First Layer/Word
Embedding Layer

Final Layer/
Softmax Layer

Intermediate
Layer

Figure 2.2: A pictorial overview of the NNLM adopted from Bengio et al. [7]. The first
layer is the word embedding layer that is usually a matrix whose weights are learned
by back-propagation. The matrix, after training, contains the embeddings of all words
in the vocabulary which can be looked up during inference. The intermediate layer is
a fully-connected layer with non-linearity. And the final layer is a softmax layer that
provides a probability distribution over the words. The objective is to have the highest
probability for the target word.

• Intermediate Layer(s): One or more layers that produce an intermediate repre-
sentation of the input. For example, a fully connected layer with a non linearity
as used by Bengio et al. [7], convolutional neural networks (CNN) [107], re-
current neural networks (RNN) as used by Mikolov et al. [84], long short term
memory (LSTM) RNNs as used by Sundermeyer et al. [135], Kim et al. [64] etc.

• Softmax Layer: The final layer which provides a probability distribution of the
words in a vocabulary given that context. That is to say, the model predicts
the target word given its context words. This forms the underlying idea for
prediction-based word embedding models.

Bengio’s NNLM outperformed state of the art non-neural models in run-time (100
fold speed up) and perplexity7 in the language modeling task. However, the last soft-
max layer can still be computationally very expensive for large vocabularies. Most of

7Perplexity is a measure of how well a probability distribution predicts a word. A low perplexity
indicates good performance.
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the efforts during 2003 to 2008 revolved around trying to speed up training time of
NNLMs either by various techniques like employing hierarchical softmax8in the final
layer [95] or using a log-bilinear model [93] (which is faster than the log-linear model
of Bengio et al. [7]’s NNLM) 9 or a combination of both [94]. These works focused
on the task of language modeling—they just used the words in the left context to pre-
dict the target word—and considered word embeddings (distributed representation of
words) as an interesting by-product.

2.2.4 Prediction Based Word Embeddings

Collobert and Weston [27] shifted the focus towards the specific purpose of learning
word embeddings by training them on multiple downstream tasks like NER, POS tag-
ging, semantic role labeling (SRL). The final layer produced a probability distribution
over the classes of the task instead of words in the vocabulary. Since labeled training
data is expensive, they also proposed a model that can learn word embeddings from
the unlabeled text. This was similar to prior NNLMs like [7]. However, they introduce
two noteworthy improvements:

- They used both preceding (left) and after (right) contexts to predict the target
word compared to just using the left context10. The objective of the prediction based
word embedding models is to predict the target words given the context words from
both sides.

- They also employed a faster training objective than the cross-entropy based loss
function of Bengio et al. [7] which tries to maximize the probability of the target word
given the left context. They create incorrect word sequences by replacing the target
word with an incorrect word, randomly sampled from the vocabulary V . Their model
is trained to output a higher score fq(x) for the correct sequence than that fq(x�) for the
incorrect one. This technique, popularly known as negative sampling, has been used
by a number of works [87, 13] and has shown to speed up training by avoiding costly
operations like calculating cross-entropies and softmax. Their objective function can
be written as:

Jq = Â
x2S

Â
x�2V

max(0,1+ fq(x)� fq(x�)) (2.10)

where S is the set of word sequences. This was the first time LM were trained on
large scale training data of vocabulary size 130000 (compared to 17000 of Bengio
et al. [7]) and the resulting word embeddings carried syntactic and semantic meaning
while simultaneously improving accuracy on the downstream NLP tasks of NLP, POS
tagging and SRL.

In 2013, Mikolov et al. [88] analyzed the word embeddings obtained as a by prod-
uct of training an recurrent neural network-LM (RNN-LM) [84]11 and surprisingly

8If we arrange the words in a hierarchical binary tree structure, we can calculate the probability of
each word by considering the path leading up to that word in the tree. This can exponentially speed up
calculations.

9These are special cases of log-linear models.
10Prior works focused on the task of language modeling and hence they can only consider left context

to predict the target word. Models whose main goal is to create word embeddings do not have any such
restrictions.

11RNN-LM is an NNLM that emloys an RNN as its intermediate layer.
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observed semantic relationship in the embeddings which could be captured using sim-
ple algebraic operations. For example, vector(King) - vector(Man) + vector(Woman)
lead to a vector which was very close to vector(Queen) in the embedding space12.
Furthermore, most prior LMs and word embedding models were computationally ex-
pensive and were not successfully trained on |V| in the order of millions. Hence,
with the goal of scaling up these techniques (so that the new model can be trained on
billions of words in lesser time) while preserving the above mentioned linear relation-
ships in the emebeddings, Mikolov et al. [85] introduced two new models for learning
embeddings, which came to be known as word2vec 13. The two models were called
the continuous bag-of-words (CBOW) and skip-gram (SG) models. These log-linear
models differed in their training objective - CBOW uses left and right context words
to predict the target words while SG uses the target words to predict the left and right
context words. The training objective can be summarized in Eq. 2.11 and Eq. 2.12
respectively:

JCBOW =
1
T

T

Â
t=1

logP(wt |wt�n, ...,wt�1,wt+1, ...,wt+n) (2.11)

JSG =
1
T

T

Â
t=1

Â
�n jn,n6=0

logP(wt+ j|wt). (2.12)

As can be seen, the CBOW objective function is similar to that of the LM objective
(Eq. 2.8) except that it takes the right context into account as well. The SG objec-
tive sums the log probabilities of the surrounding words given the target word. These
models were two times faster than existing LM and word embedding models since
they forgo the costly intermediate layer of those models (more details on the architec-
ture in Chapter 3). The word embeddings were significantly more accurate than prior
models in a number of word relationships tasks. They followed up their work with a
variant [87] of the models that use negative sampling (SGNS) instead of hierarchical
softmax for the final layer and objective function which achieved a speedup of about
10%. The major contribution of Mikolov et al. [85, 87] is creating computationally
efficient models that can be trained on data with an unprecedented vocabulary size of
692000. This resulted in embeddings with greater quality and carrying more informa-
tion.

Among the more recent contributions to prediction-based models for word embed-
dings we mention the work of Cao and Lu [13] - their model (more details in Chapter
3) leverages sub-word information of words and uses a convolutional layer to extract
higher-level semantic information of words in context, both of which are used to pre-
dict the target word. The idea of using CNN for the language modeling task (and
consequently word embeddings) has been explored before ([27, 107, 31]) where the
recent models outperformed RNN-LMs in the LM task. The accuracy of these word
embeddings learned using CNN, however, do not outperform those obtained using

12Recently Nissim et al. [99] has shown that these analogy relationships hold because of certain
constraints in the implementation of [88] which does not let the final vector be equal to vector(King).
This might lead to some apparent biases in the embedding space that is not actually present in the dataset.

13After they released their codes for the models in a repository with the same name -
https://code.google.com/archive/p/word2vec/.
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LSTM-LM14. Nonetheless, CNNs have the advantage of having simpler architecture
than RNNs or LSMTs with lesser parameters and can also be trained in parallel to
speed up computation. Bojanowski et al. [9] in their FastText15 model, used sub-word
information for learning n-gram embeddings (which can be concatenated to form word
embeddings) and noted better accuracy than SGNS in German, French and Spanish.
Their intuition was that words have some information encoded in the morphological
structures as well. Cao and Lu [13] combined the above two ideas—using sub-word
information and a convolutional layer to learn context representation—and applied to
the task of learning word embeddings. Their IWE embeddings not only performed
better in the NLP tasks of word analogy and word similarity over word2vec (SGNS,
CBOW), GloVe and FastText, the embeddings were also more robust to the size of
training data—their effectiveness did not decrease considerably when the vocabulary
size was decreased.

2.2.5 Comparison among Count-based and Prediction-based Word
Embedding Models

The popularity of both GloVe16 and word2vec in IR and NLP research [75, 11] can be
attributed to the fast training of the models, the small size of the embeddings and the
publicly available codes. Moreover, various labs and research groups have trained a
number of word embedding models (word2vec, GloVe, FastText) on large corpus like
Wikipedia dump, Gigaword17, Common Crawl 18 etc. to obtain word embeddings for
millions of words and released them online19. These publicly available embeddings are
commonly known as pre-trained word embeddings and are widely used in IR and NLP
tasks. Two questions arise from the background information on the word embedding
models:

Are the count-based and prediction-based models inherently similar? Although
apparently, count and predict models use different algorithms to learn word representations—
count and predict—both types of model fundamentally act on the same underlying
statistics of the data, i.e. the co-occurrence counts between words. Furthermore, Levy
et al. [74] considers GloVe to be a prediction based model since it is trying to predict
the representation of the target word even though it is clearly factorizing a word context
co-occurrence matrix. Levy and Goldberg [73] demonstrate that word2vec implicitly
factorizes a word-context PMI matrix. Hence, it cannot be said that count-based mod-
els and prediction based models are fundamentally different and indeed share some
inherent similarities.

Is there one-word embedding model that is better than the rest for all tasks? Al-
though GloVe and word2vec are shown to perform better than most other models,

14LSTM-LM is an NNLM with an LSTM as the intermediate layer.
15See https://research.fb.com/fasttext/.
16See http://nlp.stanford.edu/projects/glove/.
17See https://catalog.ldc.upenn.edu/LDC2011T07.
18See http://commoncrawl.org/the-data/get-started/.
19See https://github.com/chakki-works/chakin for a comprehensive list of widely popular

pre-trained word embeddings
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we cannot say that there is one model that produces better embeddings than the rest.
Prediction based word embeddings have also shown to substantially outperform tradi-
tional count-based models. There has been some research that has compared count-
based models and prediction based models. Baroni et al. [5] showed that, in nearly all
tasks, predict models consistently outperform count models, and therefore provided
us with a comprehensive verification for their supposed superiority (however, this was
before the introduction of GloVe). Pennington et al. [105] showed that GloVe outper-
forms SGNS in tasks such as word analogy and Named Entity Recognition. Levy et al.
[74] compared SVD, SGNS, and GloVe by training the models on a dump of the En-
glish Wikipedia and evaluating the obtained embeddings in the task of word similarity
and word analogy. They showed that SVD performed best on similarity tasks, whereas
SGNS performed the best in analogy tasks. They also mention that tuning the hyper-
parameters of the models is often more important than choosing between models since
with properly tuned hyper-parameters no model has a significant advantage over the
others. SGNS outperforms GloVe in all tasks of Levy et al. [74]. Hence, the general
conclusion is that a single model is not better in all tasks, rather the performance is
dependent on the task, training data and the proper tuning of hyper-parameters.

In the following subsection, we will provide a brief overview of how word embed-
dings are typically employed in IR research, specifically in document ranking.

2.2.6 Word Embeddings for Document Ranking

Document ranking in ad-hoc retrieval is essentially the task of finding the relevance
scores of documents with respect to a query and then ranking the documents based on
the score. To achieve the same we need to generate a representation of the query, a
representation of the considered document and calculate the similarity scores between
the representation to estimate the relevance of the document to the query. In traditional
IR models, the queries and documents are represented in the form of bag-of-words.
The more recent neu-IR models learns to rank the documents with respect to a query
by forming their own representations.

These word embeddings of query and document terms form the input to the neu-
IR models where they are subsequently passed through neural network architectures
to form query and document representations. These representations are finally used to
calculate the relevance score for the query-document pair by a ranking function:

S(d,q) = g(y(q),f(d),h(d,q)). (2.13)

The above equation has been adopted from [51, 91, 148] where d and q are the word
embedding input representation of the document and query, y and f are functions that
form higher lever representations of d and q, h is the interaction function that extracts
feature from d and q together and g is finally the scoring function which computes
the relevance score of the d-q pair. Fig. 2.3 shows a graphical representation of the
general architecture of these neural IR models. The learning objective of these neural
models is to minimize the difference between relevance labels of the query-document
pair and the predicted ranking score obtained using S. In other words, S(d,q) should
be higher for a document that is more relevant to a query than the one which is less or
non-relevant to the same query. This can be expressed in a loss function that is used
to train these neural models. The input or the word embedding layer may or may not
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be considered a part of the trainable components of the neural network architecture.
Typically they are not re-trained and just used as a basic input layer so that different
pre-trained word embeddings can be employed in the same model.

Figure 2.3: A pictorial overview of the neural IR model inspired from [90]. This
is a hybrid approach and in general neural IR models might have either or both the
representation and interaction based components.

Neural IR models are often categorized [51] into three types based on the man-
ner they model the input representations of queries and documents - representation-
based, interaction-based and hybrid approaches. Representation-based models [60,
127, 126, 103] employ neural network architectures, y and f, to create good repre-
sentations of the query and documents separately from their word embeddings which
are ultimately combined by similarity function g in the last layer. Interaction-based
models [50, 104, 39, 137] defines an interaction matrix h to capture local interactions
between d and q like exact matching of n-grams or cosine similarity of queries and
sentences of the documents etc. The output of h is then passed through a neural net-
work to be similarly used by g to find the relevance score. Hybrid models use both
representation-based (y and f) and interaction-based (h) components separately [91]
or one-after-another [145] to finally obtain the relevance score.

To summarize, word embeddings are used as the input layer for these neu-IR mod-
els to retrieve a ranked list of documents or passages. The semantic information carried
by word embeddings is also used to find QE terms to a given query. In the following
sections, we first provide a brief introduction to QE approaches followed by a discus-
sion on how word embeddings are typically used for the same.
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2.3 Query Expansion

The main idea of QE technique is to let the system help (automatically or semi-
automatically) by adding terms to the original query to close the semantic gap between
a user’s query and her information need. The performance of the QE approach can only
be judged by comparing the retrieval effectiveness of the IR model with and without
the QE terms generated by the approach. We can say QE is effective when it improves
performance over the no-expansion IR model. QE approaches can be thesaurus based
where expansion terms are generated from a domain-specific thesaurus or generic the-
saurus like WordNet (where QE is done by adding semantically similar terms called
synsets). Sometimes external text collections like Wikipedia dumps are also used.

Another QE approach involves a first round of retrieval to retrieve documents in
response to the original query. Following this round, a feedback is provided on which
documents are relevant among the retrieved ones. The idea is that words that occur
more frequently in relevant than non-relevant documents are more important and thus
used as QE terms to the original query. This approach is also known as relevance
feedback (RF) - an idea that was first introduced by Rocchio [116] as a VSM. Their
goal was to obtain an optimal query vector from the original query vector using the
RF from users. The general overview of their approach can be summarized in the
following steps:

1. User formulates a query.

2. The IR model returns a ranked list of documents - the first round of retrieval.

3. The user provides feedback on which documents are relevant and non-relevant
to her query.

4. The system forms a better representation of the query by adding important terms
from the relevant set of documents.

5. The IR model returns a revised ranked list of documents.

Steps 3-5 can be repeated more than once until the ideal query representation is
obtained. Most QE techniques use this general approach to find expansion terms. The
relevance feedback in step 3 can be of three types — explicit [119, 54] - where the user
explicitly mentions the relevance of retrieved documents; implicit [20, 163] - where
the user activities on retrieved documents like clicks or their social media information
are used to implicitly interpret which documents are relevant; and lastly, the process
of relevance feedback can be automated by considering a number of top-ranked docu-
ments in step 2 to be relevant, a process which is also called pseudo relevance feedback
(PRF).

Croft and Harper [28] proposed relevance model (RM) which gives us the ex-
pected distribution of words in the relevant documents. In the LM of Eq. 2.6, queries
are fixed samples and documents are ranked based on their probability of generating
the sample. The notion of PRF can be incorporated in the LM if we consider the query
terms to come from the probability distribution of the RM, instead of fixed samples.
The relevant documents are larger samples from the same model. Given the RM R ,
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documents can be ranked according to the KL divergence [160]20 score of document
LM (D) which is the probability distribution of words in individual documents) and
R as follows:

score(d,q) =�KL(R ||D) =� Â
w2V

P(w|R ) log
P(w|R )

P(w|D)
(2.14)

The main intuition is that we are trying to find documents with similar distribution to
the RM - the expected distribution of relevant documents. The question that arises is
how to estimate the RM without any relevance information. We can estimate R as
the probability distribution over the vocabulary based on the query terms which, as
discussed, are a small sample from R . This is the conditional probability of each word
given the query terms and can written as follows:

P(w|R )⇡ p(w,q1,q2, ...,qn)/p(q1,q2, ...,qn) (2.15)

The above equation gives high probability to words that are expected in the same
documents as query terms. Assuming exchangeability of words (that is the order in
which the words are observed does not matter), we can use de Finetti’s theorem 21 to
compute the above joint probability distribution as

p(w,q1,q2, ...,qn) = Â
D2C

P(D)P(w|D)
n

’
i=1

P(qi|D) (2.16)

where C is a collection of document LMs, P(D) = 1/|D| is the uniform prior over
documents and ’n

i=1 P(qi|D) is the QL score of a document. Hence, RM incorporates
PRF in LM in the following manner:

1. User formulates a query.

2. The documents are ranked according to their QL score to obtain the weights
needed to compute the RM.

3. Top f bDocs documents are selected to be in the collection set C . This is the
PRF assumption of relevance.

4. Calculate RM probabilities P(w|R ) with the estimates of Eq. 2.15 and Eq. 2.16
and select top f bTerms expansion terms based on the probabilities and add them
to the original query.

5. Re-rank the documents using the KL divergence score of Eq. 2.14.

Comparing the above steps with that of the general RF approach we can clearly see
how the PRF based approach varies in steps 2-5. There are different variations of RMs
employed in literature out of which we use the popular RM3 version which is not only
one of the most effective approaches of QE [25] but is also used a strong baseline IR

20Kullack - Leibler (KL) divergence measures the difference between two probability distributions.
Higher the KL divergence score, more apart the two distributions are

21In probability theory, de Finetti’s theorem states that exchangeable observations are conditionally
independent relative to some latent variable.
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model. RM3 regularizes the RM P(w|R ) by interpolating it with the term frequencies
of the original query as follows:

P(w|R 0
) = f bOrigWeight

t f (qi,q)
|q| +(1� f bOrigWeight)P(w|R ) (2.17)

where f bOrigWeight is the interpolation weight. The above equation also represents
the expanded query LM and can also be seen as a query reformulation technique. The
first part of Eq. 2.17 assigns a weight to each query term based on its frequency in
the query q (query LM) and the second part is the weight of top f bTerms expansion
terms (expansion LM) calculated using the above algorithm. f bOrigWeight is used
to weigh the comparative contribution of the original query terms and the expansion
terms. For our thesis, we use the RM3 implementation of Indri as a baseline. RM3
model suffers from one drawback—it involves 5 hyper-parameters ( f bTerms, f bDocs,
f bOrigWeiht, f bMu for the first round and µ for the second round of retrieval) that
need to be optimized for testing compared to 1 (µ) of QL with Dirichlet smoothing.
This makes tuning of RM3 hyper-parameters more tedious. Fig. 2.4 shows a graphical
representation of the QE pipeline using RF/PRF.

Document
Collection

"football"

Ranked
List

User

Index

IR
System

Indexing,
Crawling

Formulates Query

Retrieve Results

"sport, players,
field, baseball.."

QE

Relevance
Feedback
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Figure 2.4: A pictorial representation of a QE using relevance feedback from users or
using PRF where the top documents in the ranked list are assumed to be relevant

In the recent trends of the QE approach, with the popularity of word embedding
models, expansion terms are normally generated as the words in the vocabulary with
the highest cosine similarity to the query embeddings [68, 159, 118, 101, 37]. The
weights of the expansion terms are typically their cosine similarity score with the query
terms. More details on QE techniques using word embeddings are discussed in section
2.4.

2.4 Query Expansion using Word Embeddings

Word Embeddings, as discussed in Section 2.2, are a low dimensional numerical repre-
sentation of words in a vocabulary. The latent space in which the words are embedded
is used to capture the semantic and syntactic properties of these words. Words hav-
ing similar meanings are normally placed in similar regions of the latent space. Hence,
various similarity or distance measures can be used to find words that are nearest neigh-
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bors or similar to a particular word. The most commonly used similarity measure is
the cosine similarity (Eq. 2.5).

Since QE is essentially finding semantically similar words to a query, word em-
beddings can be leveraged to find the expansion terms. That is to say, we can find the
nearest neighbors of the query terms in the embedding space using cosine similarity
and weigh them according to their cosine similarity score. This can be seen as the
expansion LM of the second part of Eq. 2.17. Following which we can interpolate
them with the original query LM and use the final expanded query LM to retrieve doc-
uments or passages with IR models like QL or BM25. This is the basic framework
employed by a number of words [68, 159, 118, 101, 37] that uses word embeddings to
find QE terms. The word embedding models for this task can either be trained on the
entire corpus - global word embedding models or can be trained on a query-specific
subset of a corpus local word embedding models. In this section, we discuss the two
approaches.

2.4.1 Global Word Embedding Models

To our knowledge, Roy et al. [118] was the first to use word embeddings to gener-
ate expansion terms for the ad-hoc retrieval task using the above framework. Prior to
that word embeddings of query and documents were used as input to neural network
architectures to find latent semantic representations of the query and documents [60,
127, 126, 50] (Section 2.2.6). The goal of Roy et al. [118] was to observe if the
K-nearest neighbor terms of each query terms in the embedding space were good ex-
pansion terms i.e. whether they improved retrieval effectiveness. The pooled, K ⇥ |q|
(K times the number of query terms) candidate expansion terms were ranked according
to their mean cosine similarity score with all query terms, out of which k were chosen
as expansion terms. They trained CBOW model on the entire corpus (the TREC disk
4 and 5 collections and the web WT10G collection) to obtain the embeddings. They
observed that although the nearest neighbor expansion model outperforms the no ex-
pansion model, they were significantly inferior to the popular RM3 baseline. However,
one advantage of this model is that only one round of retrieval round is necessary for
the entire process.

Kuzi et al. [68], Zamani and Croft [159] extended the above global word embed-
ding based query expansion approach with RM1 and RM3 respectively—their models
were a linear combination of QE using word embeddings and QE using PRF. They
observed significantly improved retrieval effectiveness over the PRF based baselines
of RM1 and RM3. PRF approaches generate expansion terms from documents rele-
vant to the original query, a piece of information that is not utilized if we consider the
approach of Roy et al. [118]. These works show that the knowledge of relevance is
important while generating the expansion terms - the main underlying intuition behind
the local word embedding models. A graphical overview of QE using the global word
embeddings approach is presented in Fig. 2.5.

2.4.2 Local Word Embedding Models

Diaz et al. [37] followed a similar k-nearest neighbor approach with one important
difference. They pointed out that word embeddings trained using the global corpus
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Figure 2.5: A pictorial overview of the retrieval pipeline with QE using global word
embeddings which is also employed in our experiments

statistics will be different from those trained on a query-specific subset of the same
corpora. They proposed to train the word embeddings on the query-specific documents
instead of the whole collection. In order to obtain the topic-specific documents, they
perform an initial round of retrieval using the original query out of which the top 1000
documents were considered query-specific. Finally, they train CBOW on the 1000
documents retrieved for each of the queries. The main intuition is that the documents
retrieved by the original query give a notion of relevance for the query (similar to PRF
based approaches) in addition to the fact that their unigram distribution is different
from that of the entire corpus. This initial round of retrieval can be performed either
on the target corpus (which contains the relevant documents or answer passages) or
on a larger external corpus. As the authors mention in their work, the embeddings
from the external corpus have the advantage of containing more information from a
larger variety of topical material than what the embeddings from the target corpus
contain [36]. For them, only QE using the embeddings trained on the external corpus
significantly outperformed the global word embedding model - QE terms obtained
using word embeddings pre-trained on an unconstrained corpus. An overview of QE
using word embeddings from a topic-specific corpus is shown in Fig. 2.6.

The idea of using an external corpus was implemented much earlier by Xu et al.
[150] where the authors leveraged text from Wikipedia to perform the first round of
retrieval of RM and observed improved performance over the baseline RM. The local
embedding approach of Diaz et al. [37], however, suffers from an important drawback.
The word embedding model has to be trained in an online manner on the top 1000 re-
trieved documents for every query. That is, not only two rounds of retrieval is required,
the word embedding model also has to be trained after the first round of retrieval for
each query. This makes the approach expensive and inefficient time-wise. A solution
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Figure 2.6: A pictorial overview of the retrieval pipeline with QE using word embed-
dings trained on a topic-specific corpus. In this image, the query-specific corpus is
obtained from an external collection. It can be also obtained from the target document
collection, where the first round of retrieval will retrieve documents from the target
corpus.

to this, as mentioned by the authors, is to try to do the word embedding training in an
offline manner before the retrieval round. Another solution can be to retrieve less num-
ber of documents in the first round of retrieval to speed up the process of training the
word embedding models. Table 2.1 provides a comparative summary of the mentioned
query expansion models.

As we have discussed in Chapter 1, the task of passage retrieval involves retrieving
a limited number of candidate passages to each query, which forms the query-specific
data for training the local word embedding models. However, the vocabulary size in the
candidate set of passages is considerably small which can be problematic for training
the models as the resulting embeddings might fail to capture semantic information.
A similar issue was faced by Ould-Amer et al. [101] in their local expansion model
for the task of CLEF Social Book Search22 [66]. They trained the word embedding
models on one short document for each query to generate the expansion terms. The
model could not outperform the no expansion baseline since the word2vec model did
not have sufficient data to train, leading to embeddings of poor quality and in turn, it
produces expansion terms that cannot increase retrieval efficiency. Hence, the research
in our thesis has two objectives:

• To observe if expansion terms produced by local embedding models (target and
external) improves in retrieval performance over those produced by the global

22See http://social-book-search.humanities.uva.nl/#/suggestion
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Table 2.1: Comparison of various query expansion models. We identify the models
by local (L) or global (G) depending on whether they use an entire corpus or query-
specific subset of a corpus (with relevance assumption) for generating the expansion
terms. Off indicates word embedding training is done before any retrieval round and
On indicates the training is done during the retrieval.

QE model Corpus # Retrieval
rounds

Relevance
Assumption #WE training

RM3 L 2 Yes -
Roy et al. [118] G 1 No SGNS, Off
Kuzi et al. [68] G + L 2 Yes CBOW, Off
Zamani and Croft
[159] G + L 2 Yes GloVe, Off

Diaz et al. [37] G 1 No GloVe, Off
Diaz et al. [37] L (target) 2 Yes CBOW, On
Diaz et al. [37] L (external) 2 Yes CBOW, On

embedding model in the task of answer passage retrieval to open-domain QA
(RQ1).

• To focus on the retrieval efficiency of the QE terms produced by CBOW and
IWE models when trained using a limited vocabulary. Consequently, our goal is
also to understand the function of various components of the word embedding
models in such a data-adverse condition (RQ2).

28



Chapter 3

Methodology

In chapter 1, we have discussed our arguments for employing the retrieval pipeline
introduced by Diaz et al. [37] in this new context of answer passage retrieval. In this
chapter, we discuss the methodology in detail. Specifically, we discuss the architec-
ture and choice of our word embedding models CBOW and IWE (Section 3.1). We
follow this up by a discussion on the difference in training methodology of the mod-
els when they are trained on entire corpus (global) and query-specific (local) corpus
(Section 3.2). Next, we discuss, the methodology of QE using the trained word embed-
dings (Section 3.3) followed by an introduction of our dataset employed for our task of
answer passage retrieval using QE (Section 3.4). Finally, we revisit our research ques-
tions in detail (Section 3.5). An overview of our methodology and this experiment is
presented in Fig 3.1.

Figure 3.1: An overview of the methodology adopted in our thesis.

3.1 Word Embedding Models

Here we describe the model architecture of our two word embedding models. The
section builds on the discussion of Section 2.2.

3.1.1 CBOW

CBOW or the continuous bag-of-words word embedding model is one of the variants
of the word2vec algorithm introduced by Mikolov et al. [85] (the other being the skip-
gram model). In order to understand the CBOW model let us consider the sentence (S)
— “We will play football after school.” as an example. The objective of CBOW is to
predict a target word (‘football’) from context words (‘will’, ‘play’, ‘after’, ‘school’)
which are on both of its sides. The CBOW architecture is depicted in detail in Fig. 3.2.
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Figure 3.2: CBOW model for learning word embeddings.

Training To understand how the model is trained, let us consider the above sentence
comes from a vocabulary of size |V| and the dimensions of the word embeddings is d.
The training procedure takes the following steps:

1. All words are in the vocabulary are randomly initialized in an embedding matrix
U whose size |V|⇥d.

2. Let at the current instance of training we have encountered sentence S and we
are predicting the word ‘football’ which is the j-th word in the vocabulary.

3. The weights of the words in its context are looked up from U and added together
to form the 1⇥d representation of the context which forms the first layer of the
model.

4. This layer is then transformed through a linear projection to form the 1⇥ |V|
intermediate layer.

5. The final layer produces a probability distribution over all words in the vocab-
ulary by softmax (Eq. 2.9) computation. We are interested in the probability of
the j-th word ‘football’.

6. Lastly, we calculate a cross-entropy loss which is given by the equation

JCBOW = logP(football|will, play, after, school). (3.1)

The generalized objective function is the one shown in Eq. 2.11 of Section 2.2.4.
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7. The loss is then back-propagated throughout the model to update the weights of
the linear projection layer and the word embeddings in matrix U.

Steps 2-7 is repeated for all sentences in the vocabulary where each word in every
sentence is predicted as the target word (Fig. 3.3). Thus the loss for one iteration
is the cumulative loss of predicting every word in every sentence. The training is
done for a certain number of iterations until the loss is satisfactorily minimized. The
trained embeddings in U of all words in the vocabulary are used for inference and other
downstream tasks (finding QE terms in our case).

< s > < s > We will play football after school < s > < s >

< s > < s > We will play football after school < s > < s >

< s > < s > We will play football after school < s > < s >

< s > < s > We will play football after school < s > < s >

Training Instance 1

Training Instance 2

Training Instance 3

Training Instance 4

Figure 3.3: An example depicting the first four training instances of our sentence S.
The blue box represents the target word and the yellow boxes represent words in the
context used for predicting the target word. < s > denotes a start/end of sentence
token. The blue box of training instance slides over all words in the sentence. This is
repeated for all sentences in the vocabulary.

Drawing parallels with the NNLM model of Bengio et al. [7] depicted in Fig. 2.2,
we can see that CBOW has a similar architecture with all three layers. The difference
lies in the intermediate layer which is a linear projection for CBOW in contrast to
the fully connected non-linear layer of NNLM. CBOW also has the computationally
expensive softmax computation in the final layer which can be fastened by introducing
negative sampling. The intuition is that instead of computing softmax over the entire
vocabulary we randomly sample N� negative words from the vocabulary and calculate
the loss based on these words only. The negative sampling objective for one training
instance becomes

JCBOW NS = logP(wt |wt�n, ...,wt�1,wt+1, ...,wt+n)

+
N�

Â
i=1

log�P(wi|wt�n, ...,wt�1,wt+1, ...,wt+n).
(3.2)

CBOW with negative sampling is depicted in Fig. 3.4. The rest of the architecture
remains the same. We use CBOW with negative sampling for our thesis owing to its
faster computation.
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Figure 3.4: CBOW model for learning word embeddings using negative sam-
ples. In this example the number of negatively sampled words are N� (‘boy’, ‘ap-
ple’,‘stop’,‘news’,‘thesis’). Instead of computing softmax over the entire vocabulary,
we only need to compute softmax over the 5 negative words and our target word ‘foot-
ball’.

Why CBOW A number of reasons influenced our decisions for choosing the CBOW
word2vec model which we list below:

• As mentioned in Section 2.2.4, there are a number of publicly available im-
plementations of both word2vec models - CBOW and skip-gram which can be
easily used. Moreover, it enables the easy reproduction of the experimental
pipeline.

• word2vec embeddings are standard representations of words for almost all NLP
tasks1 [86, 151, 79, 128] because of model simplicity and ability of the embed-
dings to capture semantic relationship among words. They are extensively used
in the IR community as well to form query and document representations for a
task like document ranking (ad-hoc search) [124, 96, 148], QEn [118, 37, 68].

• Although there is no study conclusively mentioning which word2vec variant is
better, we specifically employ the CBOW model because Diaz et al. [37] use the
same for their pipeline.

1There are about 10000 results for the search ‘word2vec NLP’ in https://scholar.google.nl/.
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• Moreover, the skip-gram model predicts each of the context words using the
target word. Thus it creates C training samples from each training instance com-
pared to just 1 of CBOW making it a slower process [85].

3.1.2 IWE

Like CBOW, the IWE word embedding model introduced by Cao and Lu [13] is also a
prediction based model with a similar task of predicting a target word given its context.
IWE differs from CBOW in two aspects - the input representation and convolutional
feature learning of the context as can be seen from Fig. 3.5. The input representation
aims to encode useful linguistic information of the words from their sub-word repre-
sentations. It consists of two pieces of information — letter trigram features which
capture certain morphological information when similar words access overlapping fea-
ture space. For example, “player” and “playing” both share the features “#pl”, “pla”,
“lay”. The letter trigrams shared between the words indicate that the words can poten-
tially be related to each other. Root and derivational affixes which can be very useful
for understanding the semantics and derivative morphology of a word. For example,
“player”, “play”, “playing” and “player” all have the same root “play”. The various
affixes provide derivational morphology that changes the meaning of the words yet
they remain semantically similar because of the root word.

The convolutional layer aims to capture local contextual features from word order-
ing and sub-word information. CNNs are used in text classification tasks like sentiment
classification [63, 45] where they are known to behave as n-gram detectors. The filters
together with the max-pooling layer are known to capture important tri-grams in a sen-
tence to make the prediction. In IR, CNNs have been used for predicting the relevance
of a document with respect to a query [127, 126]. Semantically related words in doc-
uments and queries are captured by the same filters which result in a higher matching
score for a document with respect to a query. In the IWE model, we use CNN in a
slightly different application. In contrast to CBOW, where the target word is predicted
directly from the context, CNN will learn context embedding which contains semantic
information regarding the context to predict a target word. In the following section,
we will discuss the IWE model in detail and elaborate on how it is trained.

Training We will consider a similar training setting like CBOW where our vocabu-
lary is V, the dimension of the word embeddings is d and the current training instance
is sentence S where we are predicting the word ‘football’. The training methodology
has the following steps:

1. Two dictionaries are built which respectively comprises of all the unique tri-
grams and root affixes in the vocabulary. Let their sizes be |Vt | and |Vr|. Each
word is represented by the concatenation of the one-hot encoding of the tri-
grams and root affixes they are made of. For example, if ‘#pl’, ‘pla’, ‘lay’ and
‘ay#’ are the 1st, 2nd, 3rd and 4th tri-grams in the tri-gram dictionary and ‘play’
is the 1st root word in the root dictionary, the word ‘play’ will be represented
by the concatenation of the 1⇥ |Vt | vector [1,1,1,1,0,0, ...,0] and the 1⇥ |Vr|
vector [1,0,0, ...,0].
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Figure 3.5: IWE word embedding model. In this example the number of negatively
sampled words are N� = 2 (‘stop’,‘thesis’). The sliding window for convolution layer
l = 3. The objective is to maximize the similarity between context embedding and the
word embedding of ‘football’ and minimize that with the embeddings of ‘stop’ and
‘thesis’.

2. The target word, C words in its context and N� randomly sampled negative
words are represented as mentioned above.

3. For the words in the context, we thus have (|Vr|+ |Vt |)⇥C matrix which is
passed into the convolutional layer where we pass a sliding window of size l.

4. The number of filters f is equal to the number of output dimensions that we
want, which in our case is equal to d. The size of each filter is (|Vr|+ |Vt |)⇥ l.

5. Each filter performs the convolution operation < [ui, ...,ui+l�1], f j > where i 2
[0,C� l] and j 2 [1,d] on l words in the context which is given by the following:

yi =< [ui, ...,ui+l�1], f j >= s(W ⇤ [ui, ...,ui+l�1]+b) (3.3)
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where ui is the input representation of the i-th word, W and b are the weights of
filter f j. Thus, f j slides over all l-words sequences in the context and produces
C outputs (if we consider padding).

6. When all filters have performed the above step, we get a C⇥d output. This rep-
resentation of convolution feature learning is able to capture local information
from the sub-words and ordering of the context words.

7. To combine local information, we apply max-pooling which is given by

c( j) = max
i=0,...,C�1

{yi( j)};1  j  d. (3.4)

Thus we get c, which is a d dimensional representation of the context. A detailed
schematic of the entire convolution process is presented in Appendix A.

8. The target word and the negative word representation are passed through a linear
transformation followed by a non-linearity given by:

w = s(zu+ t) (3.5)

where u is the input representation of the target word, z and t are the weights of
the linear transformation. w is the embedding of the target word. Let w0

j be the
embeddings of the j-th negatively sampled word.

9. We compute the cosine similarity s(w,c) of the target word embedding w and
the context c. The loss function is defined as the negative log-likelihood for each
pair of target word and the context representation. The loss function associated
with a particular word context pair (w,c) is given by

l(w,c;q) =� log p(w|c) (3.6)

where p(w|c) is the softmax function defined over the similarity layer composed
of the cosine similarity between the context c and each of target and negatively
sampled words and q is the parameters of the neural network. The softmax
function can be defined as

p(w|c) = exp(gs(w,c))
exp(gs(w,c))+Â j exp(gs(w0

j,c))
(3.7)

where s(w0
j,c)) is the cosine similarity between the context c and the embed-

ding of the jth negatively sampled word and g is a temperature parameter that
influences the effect of the similarity value. Thus the loss becomes

l(w,c;q) = log(1+Â
j

exp(gD j(w,c))) (3.8)

where D j(w,c) = s(w,c)� s(w0
j,c) is the difference of similarity between the

target word and jth negatively sampled word with the context.
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Then we compute the similarity between the context representation and word em-
beddings of the target and negative words. The objective is to maximize the difference
in the similarity of the context with the target words than that with the negative terms.
We do that using a negative log-likelihood loss function over the softmax distribution
of the similarity scores. Similarly to CBOW, steps 2-9 are repeated for all words in
all sentences in the vocabulary. Table 3.1 summarizes the difference between the two
models.

Table 3.1: Comparison of models: CBOW vs IWE

CBOW IWE

#Training parameters 2⇥ |V|⇥d (|Vr|+ |Vt |)⇥ d +
l⇥(|Vr|+ |Vt |)⇥d

#Hyper-parameters d, C, N�, a d, C, N�, l, g, a
Input Dimensions d (|Vr|+ |Vt |)

Context Embedding Concatenation of
input

Convolution over
input

Output Dimensions 1+N� 1+N�

Word embedding layer First Intermediate

Why IWE Although IWE has a more complex model (more parameters to train and
hyperparameters to tune) than CBOW, it overcomes certain short-comings of CBOW
and is beneficial for our task of passage retrieval. We discuss our choice of using IWE
in the following:

• IWE can be seen as an extension to the CBOW model - instead of concatenat-
ing the representations of the context words we are learning contextual features
using the convolution layer. The remaining part of the model remains similar to
the CBOW model wherein we try to predict a target from this representation of
context.

• The input representation in the form of character tri-graph and root affixes makes
it possible to have a representation of unseen query terms in the IWE model.
This is because it is more than likely to have one or more constituent character
tri-grams of the unseen query terms in our tri-gram vocabulary. For example,
although a query term like ‘particular’ is not present in the training vocabulary
a word like ‘participate’ is present. Thus, we have the tri-grams of ‘participate’
in our vocabulary some of which are also shared by ‘particular’. Thus we can
have a representation of the latter with the tri-grams it has in common with the
former and pass them through the trained linear transformation layer to have
their embedding. CBOW has no such provisions. Hence, if a query term is not
present in the vocabulary there will be no representations for it. Moreover, the
words do not come from the same root and stemming would not help either.
Thus it will be omitted from the process of obtaining QE terms. We believe this
property of the IWE will help in improving retrieval effectiveness using QE.
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• Order of words in a sentence captures semantic information in natural language [129].
As we can see from Fig. 3.2, the representation of the context does not depend
on the order in which the context words appear. Hence, the word embeddings
produced by CBOW do not contain the semantic information contained in word
orders. However, the context representation in IWE depends on the order as the
CNN filters will produce different representations when the orders are different.
And since the target word predicted from this context representation, the word
embeddings will contain semantic information obtained from word orders. This
will be beneficial in scenarios where the word embedding models need to be
trained on limited data. When training data is less, semantically similar words
might not occur in a similar context. CBOW produces similar embeddings for
words when they share similar context and hence when there is less data the em-
beddings might not be able to capture the similarities. The semantic information
lost from word co-occurrence count can be compensated if a model learns local
contextual features from word ordering like IWE. As a result, the word embed-
dings, although trained in limited vocabulary, will be able to generate better QE
terms that will help in increased retrieval efficiency in the task of answer passage
retrieval.

• Cao and Lu [13] used the IWE model to learn word embeddings which per-
formed better than embeddings trained by CBOW or Fastext (which takes into
account character tri-gram but without the convolutional layer) in the word sim-
ilarity and analogy tasks. Their ablation study showed that both the input rep-
resentation and the convolutional layer helped in the tasks. Since obtaining QE
terms is finding terms similar to our query, we believe that IWE model will also
generate better QE terms than CBOW and thereby improve retrieval effective-
ness.

• Cao and Lu [13] showed that IWE’s performance is robust to fewer data. That
is, in the lack of sufficient training data the performance of IWE in these tasks is
not affected as much as CBOW. We will be training our word embedding models
on candidate set of passages for the locally trained embedding models (query-
specific corpora) whose vocabulary is significantly less than what Mikolov et al.
[87] used to train CBOW (692K words) and Cao and Lu [13] used to train IWE
(50K words). Hence, we believe that embeddings produced by IWE will cap-
ture more semantic relationships among words than CBOW in this data-scarce
scenario which will lead to better QE terms generation and ultimately improved
retrieval effectiveness.

• CNNs are simpler architectures than LSTMs or RNNs having a lesser number of
parameters to train. CNNs are faster since they can be trained in parallel, unlike
RNNs which require sequential computation [10].

3.2 Training the Word Embedding Models

The word embedding models - CBOW and IWE - are trained on a vocabulary/corpus
to form the numerical representations of the words. In our thesis, we are interested
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to observe how retrieval effectiveness based on QE using these models change based
on the data/corpus they are trained on for our task of answer passage retrieval. To
that extent, we train the models on two kinds of data - one that is entire corpus-based
(global) and the other that is specific (local) to a given query. In this context, let
us define target corpus of the queries as the corpus that contains the relevant answer
passages. We can use either the entire target corpus or another external corpus as the
global corpus for training the word embeddings.

In the following sections we will discuss characteristics of each kind of data sepa-
rately and the methodology we employ to train our word embedding models.

3.2.1 Training on a Global Corpus

A global corpus can be used to pre-train our word embedding models. These pre-
trained embeddings can then be used to generate QE terms for answer passage re-
trieval. Various IR tasks ([124, 50, 152], etc.) pre-train these models on a global cor-
pus or use publicly available pre-trained word embeddings as input to their IR model
for tasks like document ranking. In our task, it makes the passage retrieval pipeline
fast as we need to train the word embeddings once before we can generate QE terms
for queries. The methodology is shown in Fig 3.6.

Word Embedding
Models

Global Corpus Word
Embeddings

Query ExpansionPassage Retrieval Target Corpus

Figure 3.6: A pictorial overview of the retrieval pipeline with QE using word embed-
dings trained on a topically unconstrained corpus.

However Diaz et al. [37] pointed out that global word embeddings fail to capture
topic-specific nuances of texts or documents. For example, the language statistics like
word co-occurrence will be different in a document about ‘football’ than that in a
document about ‘news’ or ‘law’. Thus word embeddings trained on a global general
corpus will be different from those trained specifically in the document about ‘football’
or ‘news’. Diaz et al. [37] showed that word embeddings trained on these topic-specific
corpora generate QE terms that increase the retrieval effectiveness of traditional IR
models in the task of document ranking. This forms the inspiration to employ the
same methodology in our task as well.

3.2.2 Training on a Local Corpus

As discussed, to retrieve answer passages to the question ‘Describe the game of foot-
ball’ we hypothesize that it is better to train our word embedding models on documents
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or passages about ‘football’ rather than an entire global corpus (H1). To obtain such
a query-specific or local corpora, we need to perform an initial round of retrieval for
our query. The documents or passages obtained in such a round of retrieval are then
used to train the word embedding models. Here, the assumption is that the language
in these retrieved documents will be consistent, although all the documents might not
be relevant to the query. Hence, word embeddings trained on these specific sets of
documents will be better at capturing query-specific nuances consequently leading to
better QE term generation. The topic-specific corpora can be obtained in two ways:

Local external: We can use an external corpus to perform the first round of retrieval
and obtain a number of query-specific documents to train the models. The benefit of
having an external corpus is that there is significantly more query-specific content of
data for training the word embedding models. Diaz and Metzler [36] showed that an
external corpus that is larger, high quality and comparable to the evaluation target cor-
pus can help in IR tasks like document ranking. It can also provide sufficient topical
diversity for producing good word embeddings. However, the disadvantages are since
the training data comes from an external corpus they do not contain the answer pas-
sages and we need a large amount of data (around 1000 documents) to train our word
embedding models. This makes the entire retrieval pipeline inefficient as reported by
Diaz et al. [37].

Local target : We can also retrieve a specific set of passages/documents from the
target dataset during the first round, which not only forms the dataset for training
the local word embedding models but also forms the candidate set of passages to an-
swer the given query. The benefit is that since we have less training data, training the
word embedding models will be faster and consequently making the entire retrieval
pipeline efficient. However, the disadvantage is the lack of words in the vocabulary
might be problematic for the word embedding models. We hypothesize that in this
local target setting, where the models are trained on much less data than the local
external or global model, IWE word embeddings will capture better semantic relation-
ships and consequently generate better QE terms for passage retrieval than the CBOW
model (H2). The incorporation of both sub-word information and convolutional fea-
ture learning of context will contribute to better word embeddings for the IWE model
when training data is less. A brief summary of the various corpus used to train our
word embedding models is provided in Table 3.2. The local external and local target
word embedding models are depicted in Fig 3.7. We will now look at the process of
obtaining QE terms from this trained word embedding models.
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Figure 3.7: A pictorial overview of the retrieval pipeline with QE using word embed-
dings trained on a topic-specific corpus.

3.3 Query Expansion using Trained Embeddings

To generate QE terms from word embeddings we use the methodology of Diaz et al.
[37]. Let U be the |V|⇥ d embedding matrix obtained from either globally or lo-
cally trained data (where |V| is the vocabulary size and d is the dimension of word
embeddings) and q be the |V|⇥ 1 binary encoding of the query. For example, if ‘de-
scribe’, ‘game’, and ‘football’ are the 1st, 2nd and 3rd words in the vocabulary, the
question “Describe the game of football” will be represented by q = [1,1,1,0, ...0].
S = 1

|U|2 UUT is a similarity matrix where element Sij of the matrix is the cosine - sim-
ilarity score of the ith and jth words in the vocabulary. S.q gives the weights of all
candidate expansion terms to the given query. Out of which the top k terms are taken,
normalized and used to form the expansion language model pq+ . Fig. 3.8 depicts the
process of obtaining QE terms from the trained word embeddings.
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Table 3.2: Summary of corpus and training data for the word embedding models

Corpus Data

External Wikipedia dump
Target WikiPassageQA (Introduced in section 3.4)

(a) Corpus used in our experiments

Query Specific Training Data

Global No Entire Wikipedia dump

Local External Yes Documents retrieved from Wikipedia
dump to each query

Local Target Yes Candidate Passages to each query in
WikiPassageQA

(b) Training data for the CBOW and IWE word embedding models

Figure 3.8: The QE using word embeddings methodology we use in our thesis

We interpolate pq+ with the query language model pq(w) =
t f (qi,q)

|q| to form the
final language model:

p1
q(w) = lpq(w)+(1�l)pq+(w) (3.9)

where l is the interpolation weight. This interpolated model is then used to rank
passages from the candidate set of passages for a given query. The above equation is
similar to that of PRF in Eq. 2.17 except that here the RM is replaced by the expansion
language model obtained by finding cosine similarity of candidate terms with query
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terms. One of the important intuition of this approach is that candidate QE terms are
ranked based on their similarity score will all query terms. Other works like [118, 68]
often rank candidate QE terms based on their similarity score with individual query
terms. But those approaches were evaluated on key-word searches instead of passage
retrieval to natural language questions. We believe that the method adopted in our work
is better suited when the queries are in the form of natural language. This is because
such queries are typically longer (‘football’ vs ‘Describe the game of football’) and
with the other approach QE terms can be influenced by just one or two query terms
instead of them being semantically similar to the all the different important entities in
the natural language queries.

3.4 WikiPassageQA Dataset

The WikiPassageQA dataset, has been developed by Cohen et. al. [24] for the task
of answer passage retrieval for non-factoid questions. Given a query (in the form
of a natural language question) and a Wikipedia document (in the form of a group
of passages that make up the document), we have to rank the passages that contains
the answer (answer passages) to the question above the ones that do not (non-answer
passages). This can be seen as a non-factoid QA task where the answer is in the form
of passages. There are over 4000 queries from the top 863 Wikipedia documents from
the Open Wikipedia Ranking2, making it “only large data set with long passages as
answers for thousands of non-factoid questions in the open domain” [24] at the time
of release (July 2018).

Each query in the WikiPassageQA dataset belongs to one unique Wikipedia docu-
ment. The dataset comes with a binary passage-level relevance judgment - if a passage
of the Wikipedia document contains the answer it is labeled as 1, otherwise 0. On an
average, there are 1.7 relevant passages per question. Multiple questions can come
from the same Wikipedia document albeit with different answer passages. In other
words, each question has a set of candidate passages or passages that make up the re-
spective Wikipedia document, out of which only a few are relevant (answer passages)
for that question. As a result, for our thesis we need not perform the first round of
retrieval to obtain the candidate set of passages for our local target model. We use
the passages of the relevant Wikipedia document for the same. Table 3.4 provides two
examples from the dataset.

The average vocabulary size of a Wikipedia document is 1752 unique words with
a minimum of 84 words and a maximum of 4386 words. Figure 3.9 shows a dis-
tribution of the document length in the dataset. Each Wikipedia document in the
WikiPassageQA dataset is split into passages of six sentences which was achieved
using a non-overlapping sliding window of the same length. Hence, the last passage of
the Wikipedia documents may contain less than six sentences. Employing this process
on the 863 documents in the corpus yields 50,477 unique passages - each containing
135.2 words on average with a minimum of 11 and a maximum of 1332. The 4,186
questions in the dataset were created by crowd-workers from Amazon Mechanical
Turk3. The length of questions varies from a minimum of 2 words to a maximum of

2See http://wikirank.di.unimi.it/.
3See https://www.mturk.com/.
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39 words with an average length of 9.5 words. The relevance judgments were also
obtained from the same crowd-workers that created the questions and were further
validated by a subsequent mechanical turk verification poll. The dataset comes with
a pre-defined training, development and testing set split respectively containing 3332,
417, and 416 queries which we maintain in our work.

Figure 3.9: Distribution of vocabulary size of the 863 Wikipedia documents in
WikiPassageQA dataset.

Table 3.3: An overview of WikiPassageQA dataset adapted from [24]. “P" in the first
column denotes “Passages”.

Data Total

Questions 4,154
CandidateP 243,489
PosCandidateP 6,947
NegCandidateP 236,542
PositiveP/CandidateP 0.03
CandidateP/Query 58.62
PsoCandidateP/Query 1.67
AvgLenOfQuestion 9.52
AvgLenOfAnswerP 146.8
AvgLenOfP 135.46

3.4.1 Evaluation Measures and Statistical Significance

Cohen et al. [24] reports the result of two baselines, three traditional IR models and
five neural IR models on the dataset. None of their models, however, is a QE based
model. Following their work, we use mean average precision (MAP), precision at k
(P@10) and recall at k (Recall@10) metrics for our evaluation and comparison of re-
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Table 3.4: Two examples from the WikiPassageQA dataset adapted from [24]. Each
query comes from one Wikipedia document which is made up of a number of passages
(candidate passages). The question can be answered by one or more passages out of
the candidate set of passages. We have highlighted the passages containing answer
with green and shown one example of a negative passage- that is a passage that does
not contain the answer with red .

Query 1184:
Question: How is uranium found in nature?
Document ID: 745
Document Name: Uranium.html
Answer Passages:
Passage ID 1: It occurs naturally in low concentrations of a few parts per million in soil,
rock, and water, and is commercially extracted from uranium-bearing minerals such as
uraninite. In nature, uranium is found as uranium-238 , uranium-235 , and a very small
amount of uranium-234. Uranium decays slowly by emitting an alpha particle. The half-
life of uranium-238 is about 4.47 billion years and that of uranium-235 is 704 million
years, making them useful in dating the age of the Earth. Many contemporary uses of
uranium exploit its unique nuclear properties. Uranium-235 has the distinction of being
the only naturally occurring fissile isotope.
Passage ID 5: Uranium metal has a very high density of 19.1 g/cm3, denser than lead , but
slightly less dense than tungsten and gold. Uranium metal reacts with almost all non-metal
elements and their compounds, with reactivity increasing with temperature. Hydrochloric
and nitric acids dissolve uranium, but non-oxidizing acids other than hydrochloric acid
attack the element very slowly. When finely divided, it can react with cold water; in air,
uranium metal becomes coated with a dark layer of uranium oxide. Uranium in ores is
extracted chemically and converted into uranium dioxide or other chemical forms usable
in industry. Uranium-235 was the first isotope that was found to be fissile.

Query 2402:
Question: What is the structure of Australia’s members of parliament?
Document ID: 400
Document Name: Member_of_parliament.html
Answer Passages:
Passage ID 0: A Member of Parliament is the representative of the voters to a parliament.
In many countries with bicameral parliaments, this category includes specifically members
of the lower house, as upper houses often have a different title. Members of parliament
tend to form parliamentary groups with members of the same political party. The Westmin-
ster system is a democratic parliamentary system of government modeled after the politics
of the United Kingdom. This term comes from the Palace of Westminster, the seat of the
Parliament of the United Kingdom. A member of parliament is a member of the House
of Representatives, the lower house of the Commonwealth parliament. Members may use
“MP" after their names; “MHR" is not used, although it was used as a post-nominal in the
past.
Passage ID 1: A member of the upper house of the Commonwealth parliament, the Sen-
ate, is known as a “Senator". In the Australian states of New South Wales, Victoria and
South Australia, a Member of the Legislative Assembly or “lower house," may also use
the post-nominal “MP." Members of the Legislative Council use the post-nominal “MLC."
Members of the Jatiyo Sangshad, or National Assembly, are elected every five years and
are referred to in English as members of Parliament. The assembly has directly elected
300 seats, and further 50 reserved selected seats for women. The Parliament of Canada
consists of the monarch, the Senate, and the House of Commons
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trieval effectiveness of different models. We employed trec_eval4 for the calculation
of all measures of retrieval effectiveness in the sanity check and all our subsequent ex-
periments. Wherever reported, the statistical significance of the observed difference
in retrieval effectiveness has been performed using Wilcoxon signed-rank test5 with
Bonferroni correction and p-value < 0.05.

Precision [82] is the fraction of relevant documents out of all the documents retrieved
by a retrieval model. It measures the system’s ability to only to retrieve relevant doc-
uments. It can also be evaluated at a given cut-off rank, considering only the topmost
results returned by the system. This measure is called precision at k or P@k (for our
thesis, we use P@10).

P =
# relevant docs retrieved

# docs retrieved
(3.10)

P@10 =
# relevant docs retrieved
# docs retrieved (=10)

(3.11)

Recall [82] is the fraction of relevant documents retrieved by a model out of all the
relevant documents in the collection given the query. It measures the system’s ability
to retrieve all relevant documents. When recall is evaluated at a given cut-off rank it is
called Recall at k or R@k (for our thesis, we use R@10).

R =
# relevant docs retrieved

# total relevant docs
(3.12)

R@10 =
# relevant docs retrieved

# total relevant docs
(3.13)

Both precision and recall are set-based results and does not take into account the
order of the retrieved list. We calculate the sum of the metric scores per query and take
the mean by dividing with the total number of queries |Q|.

Average Precision [82] is a metric that takes the order of the retrieved result into
account. It also uses the number of relevant documents R and employs an indicator
rel(k) which is set as 1 if the item at rank k is a relevant document, 0 otherwise. This
average is calculated over all relevant documents retrieved in the top n documents and
the relevant documents not retrieved get a precision score of zero. This metric can be
evaluated on a collection level by taking mean (dividing by |Q|) of the scores obtained
per query.

AveP =
Ân

k=1 P@k · rel(k)
R

(3.14)

MAP =
1
|Q| Â

q2Q

Ân
k=1 P@k · rel(k)

R
(3.15)

4See https://trec.nist.gov/trec\_eval/. We have used version 9.0.
5We use scipy.stats.wilcoxon method of Python.
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3.5 Research Questions
In our thesis, we investigate the usefulness of query expansion using word embeddings
for the task of answer passage retrieval. We aim to answer the following research
questions:

RQ1 Does QE based on locally-trained word embeddings [37] improve the effec-
tiveness of traditional retrieval model for the task of answer passage retrieval
compared to globally-trained embeddings?

Specifically, we are interested in finding out whether word embedding models (CBOW
and IWE) trained on query specific corpora produce better QE terms than when they
are trained on a global corpus. Generated QE terms are considered better when they
increase retrieval effectiveness in our task of answer passage retrieval. We also observe
how the local and global expansion models perform in comparison with a no expansion
baseline and also with the strong RM3 QE baseline. We conduct an error analysis,
investigating the cases where the QE using word embedding models leads to a decrease
in retrieval efficiency, which forms an important stepping stone to RQ2.

RQ2 Does QE based on IWE word embeddings improve the effectiveness of tradi-
tional retrieval models compared to CBOW word embeddings when the models
are locally-trained on limited data?

In particular, how do the two components of IWE, the input of sub-word features and
convolutional feature learning of context, contribute to the improved retrieval effec-
tiveness over CBOW, if any? Moreover, we also observe how vocabulary size, query
length, and query term frequency affect the retrieval effectiveness of QE using CBOW
and IWE models. We leverage the QE terms produced by the two models not only
to compare retrieval effectiveness but also to perform an extensive comparison of the
word embeddings produced by the two models when trained on less training data.
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Chapter 4

Experiments and Results

In this chapter, we first outline our experimental setup (section 4.1), then we proceed
to answer our two research questions. First, we compare between QE using locally
trained word embeddings vs that using globally trained word embeddings (RQ1, Sec-
tion 4.2). Secondly, we compare QE using IWE and that using CBOW when they are
trained using query-specific data (candidate set of passages) with limited vocabulary
(RQ2, Section 4.3).

4.1 Experimental Setup

In this section, we first discuss the implementation details of the traditional IR models
that we use as baselines for our passage retrieval task (Section 4.1.1). We follow it
up by a discussion of the experimental pipeline used for passage retrieval (Section
4.1.2), a summary of adopted hyper-parameter values for each model (Section 4.1.2),
and finally a sanity check of our baseline models against the benchmarking results
reported in Cohen et al. [24] (Section 4.1.4).

4.1.1 Traditional Retrieval Models

We use QL with Dirichlet Smoothing (introduced in Section 2.1.2) for the no expan-
sion model and RM3 (introduced in Section 2.3) as our traditional retrieval models. We
employed the implementation in the open-source search engine Indri [133], available
with Lemur toolkit1. Indri is compatible with various Operating systems2 and is
one of the most popular search engines among IR researchers being used by them for
over a decade [157, 149]. We further used a variant of Indri RM3 (RM3+EC), im-
plemented by Fernando Diaz3, where the first round of retrieval is performed on an
external corpus (the Wikipedia dump), similar to our local external model. The pur-
pose of employing this model is to observe whether incorporating external vocabulary
improves the performance of RM3 for our task and how it compares to the other QE
models that we use in our experiments.

1See https://www.lemurproject.org/indri/. We have used Indri 5.13
2We use both Windows 10 and a Unix based OS for our experiments.
3See https://github.com/diazf/indri
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4.1.2 Experimental Pipeline

An overview of the experimental pipeline we adopted for obtaining the retrieval ef-
fectiveness using various word embedding models is depicted in Fig 4.1 and is further
elaborated in this section.

1. Data Pre-processing and indexing: We removed stopwords4 from both the
documents and queries of the WikiPassageQA dataset. We only kept alphanu-
meric characters and removed the rest to make it compatible with Indri toolkit
and also to avoid noisy terms during the training of word embedding models.
Lastly, we observe a number of special cases in the WikiPassageQA dataset.
We list them in the following and mention our decisions with regards to them:

• We remove questions with ID 4148, 1315 (train) and 4149 (dev) since they
only contained the symbols ‘{}’.

• Questions with ID 3731 (train) and 3732 (test) are the same - “How does
the WTO function?" but with different passages as the answer. We remove
these instances of ambiguous queries.

• All candidate passages of QID 903, 3727, 3738, 3729, 3993 are answers.
We keep them for our experiments.

• Document ID 188 does not have any questions associated with it. We keep
it in the corpus for indexing.

From here on, for our experiments and remainder of the pipeline, we refer to
WikiPassageQA as the filtered and pre-processed instance. We index the dataset
using Indri retrieval toolkit.

2. Word Embeddings: We use three sources of training data (Section 3.2) for our
word embedding models which are listed below:

• Global: we train CBOW and IWE models on a Wikipedia dump of June
20155. For CBOW, we use the implementation of Gensim6, which is a
Python library developed for the target audience of NLP and IR commu-
nity. We have coded the IWE model from scratch which is available on-
line7 for reproducibility and future usage. Both the word embeddings were
trained for 15 epochs.

• Local target: CBOW and IWE models are trained on the candidate pas-
sages corresponding to each query from the WikiPassageQA dataset. Both
IWe and CBOW are trained for 50 epochs.

• Local external: CBOW is trained on the top 1000 retrieved documents
from the Wikipedia dump to each query. In this case, CBOW is trained for
15 epochs as well. The initial round of retrieval on the Wikipedia dump is
performed using Indri toolkit.

4We used the SMART stopword list. See https://www.lextek.com/manuals/onix/stopwords2.html.
5See https://dumps.wikimedia.org/.
6See https://pypi.org/project/gensim/.
7See https://github.com/roynirmal/IWE.
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The training on global and local target corpus can be done in an offline manner
(before passage retrieval) in our case, whereas that for local external corpus has
to be performed in an online manner (during passage retrieval).

3. Query Expansion: Once the word embedding models are trained, we use Co-
sine Similarity (Eq. 2.5) to generate QE terms employing the methodology men-
tioned in section 3.3. For the embeddings trained on a global corpus, we only
have one set of embeddings for all queries. For the word embeddings trained on
local target corpus, we store the embeddings trained on the respective candidate
passages to each query in a lookup table. Hence, each query is represented by
a different set of word embeddings which is looked up during this step. For the
embeddings trained on the local external corpus, the word embeddings to each
query are also different but they are obtained after the first round of retrieval.
Like the training of word embeddings, the QE process is also done in python.

4. Expanded Query: The expanded query LM (Eq. 3.9) is obtained according to
the methodology described in Section 3.3 which is then converted into a ‘query
file’ compatible with the Indri toolkit. In the query file, we also provide the
IDs of the associated candidate passages.

5. Passage Retrieval: We performed passage ranking with Indri QL model with
Dirichlet smoothing using the subprocess8 module of python which produced
the files with ranked passage list for each question.

6. Retrieval Effectiveness: We use trec_eval for measuring the retrieval effec-
tiveness with the metrics mentioned in the previous section.

The pipeline essentially follows the Cranfield methodology defined in Section
2.1.3. The experimental pipeline for passage ranking using the baseline models of QL
(with no expansion), RM3 and RM3+EC remain the same without steps 2, 3 and 4.
We pass the necessary arguments9 for Indri toolkit in the command line for obtaining
the results file with the ranked passages.

8See https://docs.python.org/2/library/subprocess.html.
9See https://www.lemurproject.org/doxygen/lemur/html/IndriParameters.html for the

comprehensive list of arguments for different retrieval models.
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Figure 4.1: A block diagram of the pipeline. Green Blocks signify all processes that
are done online during retrieval. Purple cylinders indicate everything that we can store
offline. Red arrows indicate steps taken during retrieval using QE, blue arrows indicate
retrieval using baseline models, and black arrows indicate steps common for both. The
three word embedding training approaches for QE are shown.

4.1.3 Hyper-parameter Tuning

We tuned the hyper-parameters of the retrieval and word embedding models on the
combined training and development set of the WikiPassageQA dataset, optimizing for
MAP. We performed a grid search, which is one of the most widely used strategies for
hyper-parameter optimisation in ML [8], over a range of values10. We have used the
best performing combination of hyper-parameter settings for the experiments reported
in our work which are summarized in Table 4.1.

For QE using word embedding models, the optimal dimension is lower when they
are trained on limited vocabulary (local target) than when they are trained on larger
vocabulary (global and local external). The optimal number of QE terms, on the other
hand, is more for when the word embedding models are trained on query-specific
corpus (local target and local external) than when they are trained on entire corpus
(global). We have discussed a possible reason for this in Section 4.2.1.

4.1.4 Reproducing Benchmark Results

In order to ensure the retrieval models using the Indri toolkit is performing as ex-
pected we performed a sanity check using the QL model on the WikiPassageQA
dataset. We compared it with the results as reported by Cohen et al. [24] and sum-
marized it in Table 4.2. The difference in the result, which varies from �0.0267 to

10The range of hyper-parameter values we tried is provided in Appendix B.
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Table 4.1: Final hyper-parameter values of (a) Traditional Models and (b) Word Em-
bedding Models used for experiments on the test split of the WikiPassageQA dataset.
Values marked with ⇤ were not tuned. Models requiring two rounds of retrieval have
two smoothing parameters - µ1 and µ2 respectively for each round.

Model Parameters Tuned Value

QL µ 250

RM3

f bMu 750
f bDocs 5

f bTerms 400
f bOrigWeight 0.5

µ 250

RM3+EC

f bMu 250
f bDocs 50

f bTerms 200
f bOrigWeight 0.4

µ 500
(a) Traditional Models

Model Parameters Tuned Value
Global Local Target Local External

CBOW

µ1 - - 250⇤

a 0.01 0.1 0.01
C 5⇤ 5⇤ 5⇤

N� 100 30 30
d 200 100 400
k 100 200 200
l 0.45 0.6 0.3
µ2 500 500 500

IWE

a 0.02⇤ 0.02⇤ -
C 5⇤ 5⇤ -
g 10⇤ 10⇤ -
l 3⇤ 3⇤ -

N� 100 30 -
d 300 100 -
k 50 200 -
l 0.45 0.6 -
µ 500 750 -

(b) Word Embedding Models
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�0.0026, can be caused by the difference in pre-processing techniques of stemming
and stopping (For example, we have not performed stemming). We consider the dif-
ferences to be small and hence the model performs as expected.

Table 4.2: Sanity check of IR models by benchmark test on the WikiPassageQA as
reported by Cohen et al. [24]. The difference of our obtained results with the original
is mentioned in the last row.

MAP P@5 P@10 R@5 R@10

WikiPassageQA [24] 0.5436 0.1947 0.1151 0.6353 0.7275
QL 0.5282 0.1894 0.1125 0.6124 0.7157

Difference �0.0154 �0.0053 �0.0026 �0.0229 �0.0118

52



Experiments and Results 4.2 RQ1: QE using Locally vs Globally Trained Embeddings

4.2 RQ1: QE using Locally vs Globally Trained
Embeddings

In this section, we first answer RQ1 by comparing the retrieval effectiveness of QL
no expansion model, QE using the RM3 model, and finally with QE using globally
and locally trained QE models. We adopt the experimental pipeline as described in
Section 4.1.2. The results are depicted in Table 4.3. Following that, we perform an
error analysis, identifying 6 error types, where the QE using various word embedding
models perform worse than the no expansion model. An overview of this section is
provided in Fig. 4.2.

RQ1: 

Local vs Global

Error Analysis:

QE using word

embedding < no QE

Embeddings trained

on global corpus fail

to capture query-

specific nuances of

language

The problem

Retrieval Effectiveness

Experiments

H1: QE using lcoal

embeddings > QE using

global embeddings 

Figure 4.2: An overview of the experiments and analysis done to answer RQ1

4.2.1 Comparing Retrieval Effectiveness

Firstly, as can be seen from Table 4.3, incorporating PRF using both RM3 (row 2)
and RM3+EC (row 3) outperform the QL no expansion model. This is in line with
the findings of [102, 68, 118] where QE using the RM3 model improves performance
over the no expansion baseline in the ad-hoc search task. However, RM3 suffers from
a drawback—it considers the top-ranked passages by the no expansion QL model as
relevant and the number of optimal top-ranked passages being 5 (Table 4.1), the answer
passages might not be present in those passages and consequently, the expansion terms
generated will not help with retrieval effectiveness. Using the external Wikipedia dump
to obtain the RM, proves to be better as RM3+EC significantly outperforms RM3. This
shows that RM3 benefits from an external corpus to generate QE terms for passage
retrieval by alleviating the above-mentioned problem of RM3.

We observe that both CBOW trained on local target data (row 6) and local exter-
nal data (row 7) significantly improve performance over the no expansion baseline.
However, the CBOW local target model does not have significant improvement over
the CBOW trained on global data (row 4) or RM3 models. It is only when we train
CBOW on a larger but query-specific external corpora (like the Wikipedia dump) that
we see significantly improved performance over the baselines and QE using globally
trained CBOW. This observation is on similar lines as observed by [37, 141] and can
be attributed to the larger training data available when using the local external corpus.
Here the training data for CBOW is diverse enough to obtain good QE terms. We ob-
serve that IWE trained on local target corpus (row 8) can significantly outperform QE
using globally trained IWE (row 5) and the baselines of RM3 and no expansion QL.
Hence, we do not require an external corpus of Wikipedia dump for IWE. This shows
that word embeddings produced by IWE, even when trained by limited data produce
QE terms that help to increase retrieval effectiveness.

53



4.2 RQ1: QE using Locally vs Globally Trained Embeddings Experiments and Results

Table 4.3: RQ1: Comparison of retrieval effectiveness of QE using locally-trained
word embeddings vs globally-trained word embeddings and traditional IR baselines
for CBOW and IWE. ‘ + EC’ denote when the first round of retrieval was performed
on the external Wikipedia dump. The superscript numbers denote statistically signifi-
cant improvements (Wilcoxon signed rank test with p < 0.05) with Bonferroni correc-
tion against the respective rows. ⇤ denotes a statistically significant improvement over
approaches( 1�6). The best performing approach per metric is displayed in bold.

Model MAP P@10 Recall@10

Traditional 1QL 0.528 0.112 0.716
2RM3 0.5331 0.113 0.72

3RM3+EC 0.5351,2 0.1161,2 0.7321,2

Global QE
4CBOW 0.5361,2 0.1151,2 0.7351,2

5IWE 0.5391,2 0.1161,2 0.7351,2

Local QE
6CBOW 0.5401,2 0.1171,2 0.7431,2,3

7 CBOW+EC 0.545⇤ 0.1181,2,3,4 0.7471,2,3,4

8IWE 0.560⇤ 0.1181,2,4,5,6 0.752⇤

QE using globally trained CBOW and IWE models although outperforms the no
expansion model and RM3, fail to do so in comparison to RM3+EC and CBOW+EC.
One reason can be query drift, i.e. change in “intent” of information need between
the original query and the expanded query [164]. QE using word embedding models
trained on a global corpus leads to the generation of expansion terms which might not
be present in the respective answer passages or the respective candidate set of passages
leading to a change in the underlying intent of the original query. For example, for the
query “How is cricket played?" the expansion terms generated by the global CBOW
model were ‘football’, ‘players’, ‘game’, ‘match’ etc out of which terms like ‘football’
were neither present in the answer passages nor in the candidate passages and terms
like ‘players’,‘game’, ‘match’ were common terms throughout all the candidate pas-
sages with low IDF score. It failed to capture important candidate QE terms that were
present in the answer passages.

A general observation from both IWE and CBOW is that a major portion of QE
terms obtained from embeddings trained on a global corpus are terms that have lower
IDF because they are terms present throughout the candidate set of passages. These
QE terms are non-discriminating and hence not useful for the task of passage retrieval.
This is shown in Fig. 4.3 where we plot the distribution of the IDF score of the QE
terms generated obtained from the different word embedding models. Locally trained
word embedding models like CBOW local external and IWE local target as seen from
Fig. 4.3 are better at identifying important, higher IDF terms as QE terms. CBOW
trained on local target corpus is an exception, in this case, the reason for which we
probe later in Section 4.3.4. The above-mentioned short-coming of globally trained
word embeddings is also reflected by the fact that the optimum number of QE terms (k)
for the global embedding models is less than the local embedding models (Table 4.1).
More QE terms lead to more terms that are present throughout the candidate passages
instead being very important terms from the answer passages.
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We follow this result by an error analysis provided in Section 4.2.2 where we
check the test cases where QE using word embedding models fail to outperform the
no expansion model. Our goal is to obtain a better understanding of the CBOW model
pertaining to its performance when it is trained on limited vocabulary. We aim to
identify the shortcomings of the CBOW model and observe if IWE can overcome
those.

Figure 4.3: Distribution of the IDF value of QE terms generated by various models

To answer RQ1, we state that QE using locally trained word embeddings signif-
icantly improves retrieval effectiveness of QL compared to QE using globally trained
word embedding models and baselines models—no expansion and QE using RM3.

4.2.2 Error Analysis

In this section, we first distinguish various types of terms present in a query and their
importance with respect to obtaining QE terms and performing passage retrieval. We
follow it by identifying 6 error types based on the type of query, answer passages and
the generated QE terms in the cases where QE using word embeddings perform worse
than the no expansion baseline.

Query term importance QE terms are terms similar to query terms in the embedding
space. A query in the form of natural language questions is made up of a number of
terms. The average length of a query in the WikiPassageQA dataset is 9.5 words.
After stop-word removal from the questions, it is 5.8 words. Out of these words,
some are important with relevant to the answer passages or the candidate passages
(the Wikipedia document to which the query belongs). In this context, let’s define
the importance of a query term qi in the query q with respect to the relevant answer
passages dRP as follows:

T I(qi) = Â
r2dRP

t f (qi,r)⇤ id f (qi,d) (4.1)
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where t f (qi,r) is the TF of qi in the relevant passages r of the document d and
id f (q,d) is its IDF in the whole document (in all candidate passages). That is, a
query term is important for answering that question if its frequency in the answer
passages is high and its IDF in the entire document is high as well (that is it is a dis-
criminating term). For example, consider the query “What are the female aspects in
blues from 1920s?" belong to the Wikipedia document titled “Blues". The query term
‘blues’ is highly frequent throughout the document and hence has a low IDF. Thus
T I(blues) will be low although the TF of ‘blues’ in the answer passages is quite high.
On the other hand, terms like ‘female’ and ‘1920s’ will have a high T I score if their
frequency is high in the answer passages since their IDF score for the document is
high as well. Figure 4.4 shows the distribution of T I scores for query terms in the
test split of WikiPassageQA dataset. As we can see, most of the query terms have
a T I score close to 0 and only a few terms in a query have a high T I score. Based
on the distribution of the scores, we can divide the terms in a query according to the
following:

• Common: When id f (qi,d) is low i.e. when the query term is present in most
candidate passages of the document and hence is non-discriminating. This will
result in a low T I score for that term.

• Rare: When t f (qi,r) is low but have a high id f (qi,d) i.e. when the query term
is not or rarely present in the answer passages but is a discriminating term in
the document. Although the T I score will be low, the query term may contain
important semantic information.

• Important: When both t f (qi,r) and id f (qi,d) are high, meaning the query
term is rare and very important with respect to the answer passages. Query
terms having a T I > 0.02 (75% ile) belong to these category.

As discussed in Chapter 3, QE terms are the terms in the embedding space with the top
k average cosine similarity with all query terms. QE terms having very high similarity
with one term can make it in the top k in spite of having low similarity with other
terms. Ideally, we would want the QE terms to be highly similar to important query
terms since these are the important terms that help to answer our question.

Error types Keeping these categorizations in mind, we manually check the entire test
set where QE using word embeddings performed worse than the no expansion base-
line. We identify 6 distinct error types based on the queries and QE terms generated.
We calculated the percentage of occurrence of each error type for the word embed-
ding models trained in different corpus and reported the numbers in Table 4.4. This
experiment is inspired by a similar analysis done in [136]. The 6 error types are as
follows:

1. Complex Inference: One of the most common types of error (as seen in Table
4.4) were to answer a question that requires complex reasoning. These are ques-
tions that are either long or characterized by the presence of rare query terms
and the absence of important query terms. For example, in the question “How
did Stalin’s death in 1953 affect the soviet union?" the T I score of none of the
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Figure 4.4: Distribution of T I scores for query terms in the test split of
WikiPassageQA dataset

query terms was above 0.02. The term ‘death’ was present once in the answer
passage and a few times in the Wikipedia document. Whereas ‘affect’ was not
present in the answer passage but in one of the non-answer candidate passages.
Hence, these were rare query terms. ‘Stalin’, ‘soviet’, ‘union’ were all common
since the Wikipedia document is about Stalin. As mentioned, due to a lack of
training examples, CBOW could not identify semantically similar terms to the
important rare query terms in the answer passage.

2. Missing Keyword When a major question keyword is missing from the docu-
ment, the local target CBOW fails to find any representation of that particular
word. Without these important keywords, the question only consisted of com-
mon query terms. For example in the question, “How did Plato help instill the
education process?" - the word ‘instill’ and ‘help’ were not present in the docu-
ment but synonyms like ‘established’, ‘founded’ were. Without these key terms
and stop-words, the remaining words like ‘Plato’, ‘education’ and ‘process’ are
common query terms with very low id f (tq,d). Hence, none of the QE terms
were related to ‘instill’ or ‘help’ but were terms similar to the present common
query terms.

3. Ambiguous Relevant Passage This issue stems from how the WikiPassageQA
dataset is created rather than the word embedding model’s failure to generate
good QE terms. Sometimes only one sentence in a candidate passage was part
of the answer to the query. That passage was marked relevant in the dataset but
it had mostly non-relevant content. For example, for the question ‘How does
the United States define an urban area?’ the following passage was a relevant
passage however only one sentence (highlighted) in the passage was a part of
the answer:

The definition is an extent of at least 20 ha and at least 1,500 census
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residents. Separate areas are linked if less than 200 m apart. Included
are transportation features. The UK has five Urban Areas with a pop-
ulation of over a million and a further sixty-nine with a population
of over one hundred thousand In the United States, there are two cat-
egories of an urban area - the term urbanized area denotes an urban
area of 50,000 or more people.

Although QE using word embeddings could retrieve other relevant passage(s),
it failed to identify this passage as a relevant passage. Candidate passages
like these are ambiguously relevant, as they are marked as answer passages
in the WikiPassageQA dataset even though they are mostly made up of con-
tent non-relevant to the query. Hashemi et al. [56] also reports this issue of the
WikiPassageQA dataset.

4. Incorrect tokenization and non-English words: The local embeddings failed
to capture colloquial or non-English terms in the question/text like ‘tech’ (in-
stead of technology), ‘ahimsa’ etc. This is similar to the missing keyword error
except that the missing keywords are not English terms but either short forms
or non-English terms. Without these keywords, these queries also consisted of
only the common query terms.

5. Wrong expansion terms generated: In a few of the cases, the expansion terms
generated were wrong or did not capture the underlying intention of the question
and made the retrieval system to rank incorrect passages at the top.

6. Unknown: For approximately 5-10% of the error cases in different models,
when none of the above error types applied, it was unclear why the retrieval ef-
fectiveness of local target CBOW was worse than global CBOW or the baseline.

From Table 4.4, we observe that missing keywords is the most important error
type for CBOW trained on local target data. This is due to the fact that it is trained on
limited vocabulary of the candidate passages and does not have embeddings for query
terms that are not present in the candidate passages. This error is less prominent in
case of models trained on global corpus or CBOW trained on local external corpus. It
is less prominent for local target IWE as well, since as discussed in Section 3.1.2, IWE
can form embeddings of unseen query terms, based on their sub-word information.
Local target IWE also performs better than other models in the problem of complex
inference error. As we will see in Section 4.3.3, local target IWE embeddings can
generate better QE terms for longer questions. A general problem across models is the
error of ambiguous answer passage which, as discussed, stems from the method of
creation of WikiPassageQA dataset, rather than the QE models themselves.
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Table 4.4: Comparison (A < B) of different pipeline variants for those topics (their
number is shown in column #T) whose retrieval effectiveness is worse in A compared
to B. For each topic, the percentage of each error type approach A (i.e. the worse
performing one) is shown.

#T Compl. Keyword Amb. Faulty System Unknown
inf. missing passage tok. fault

Global
CBOW <
QL

100 24.0% 7.0% 30% 4.0% 23.0% 12.0%

Global IWE
< QL 98 25.0% 8.0% 28.9% 5.4% 19.1% 13.6%

Local target
CBOW <
QL

95 29.5% 32.6% 16.8% 9.5% 6.3% 5.3%

Local exter-
nal CBOW
< QL

81 22.3% 8.8% 44.1% 2.3% 12.7% 9.8%

Local target
IWE < QL 78 14.9% 5.0% 50.9% 6.4% 15.1% 8.6%

4.3 RQ2: QE using IWE vs CBOW

In this section, we first answer RQ2 by comparing the retrieval effectiveness of QE
using CBOW and IWE when they are trained on the local target corpus. Following that
we delve deeper in order to understand the underlying reasons behind this difference
in retrieval performance. Specifically, we observe the effect of vocabulary size or
training data on the models (Section 4.3.2), effect of query length and query term
frequency (section 4.3.3), followed by a closer look at the QE terms generated by the
two models (Section 4.3.4), an analysis of the effect of two main components of the
IWE model—sub-word information (Section 4.3.5) and convolution feature learning of
the context (Section 4.3.6)—on the generation of QE terms and retrieval effectiveness.
An overview of this section is provided in Fig. 4.5.

4.3.1 Comparing Retrieval Effectiveness

The main results of RQ2 can be found in Table 4.5. IWE trained on the candidate
passages of each query significantly outperforms CBOW trained on the same data.
Its performance is similar to local external CBOW which is trained using more data.
Hence, we can say that when trained on limited vocabulary IWE generates better QE
terms and hence increased retrieval effectiveness than the QE terms obtained using the
CBOW model. We observed that the IWE model improves over the CBOW model in
about 36% of the total test cases. Out of those, about 60% of the improvements are in
complex inference and missing keyword error types.

Thus, to answer RQ2, we state that QE based on IWE word embeddings signifi-
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RQ2: 
IWE vs CBOW

Retrieval
Effectiveness 

Effect of Vocabulary

Effect of Query
Length

Effect of Query
Term Frequency

Effect of sub word
information

Effect of Convolution
Feature Learning

Comparing QE
terms

Error Analysis IWE

Local target corpus
or the candidate set
of passages to each

query has limited
vocabulary

The problem

Experiments

H2: QE using IWE
embeddings > QE using

CBOW embeddings when
trained on local target data

Figure 4.5: An overview of the experiments and analysis done to answer RQ2

Table 4.5: RQ2: Comparison of retrieval effectiveness of QE using locally trained
CBOW vs locally trained IWE. The superscript numbers denote statistically significant
improvements (Wilcoxon signed rank test with p < 0.05) with Bonferroni correction
against the respective rows. The best performing approach per metric is displayed in
bold.

Model MAP P@10 Recall@10

Local QE

1CBOW 0.540 0.117 0.743
2 CBOW+EC 0.5451 0.1181 0.7471

3IWE 0.5601 0.1181 0.7521

cantly improves the retrieval effectiveness of QL compared to that using CBOW when
both the models are trained on the topic-specific candidate set of passages with a lim-
ited vocabulary.

4.3.2 Effect of Vocabulary Size

The candidate passages to each query, on average, consists of around 2000 unique
words which, as we have seen, is orders of magnitude lesser than the vocabulary size
word embedding models are generally trained on. We are interested to see if the size
of training data in this range contributes to a difference in retrieval effectiveness. That
is whether being trained using 1500 words or 3000 words has an effect on the quality
of QE terms generated by the two models.

We divided the queries into four groups based on the distribution of the vocabu-
lary size of their candidate passages (Fig. 3.9) which forms the training data for the
word embedding models. For each vocabulary group, we observed the percentage of
queries where QE using IWE resulted in better (>), worse (<) and equal (=) retrieval
effectiveness than that using CBOW. In Fig. 4.6, we plot the percentage of queries in
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each vocabulary group where IWE > CBOW, IWE = CBOW and IWE < CBOW. For
all vocabulary groups, the number of queries where IWE > CBOW is always higher
than that where IWE < CBOW. However, this difference is more prominent in the
last two groups, where the vocabulary size is higher than average. This shows that, in
our scenario of limited training data, there is not much difference in QE terms gen-
erated by IWE or CBOW when the vocabulary size is less than 1752 words (mean
of the vocabulary size in the WikiPassageQA dataset). However, with slightly more
training data (when the candidate passages contain more than 1700 unique words), QE
terms obtained using IWE starts getting much better than that using CBOW which is
reflected in the retrieval effectiveness. The improvement in the performance of IWE
word embeddings with a larger vocabulary size can be attributed to its higher model
complexity - a minimum amount of data is required to adequately reap the benefits of
the IWE model.

18%   21%   18%
  10%

54%   49%
  34%

   25%

28%   30%
  48%

   65%
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Figure 4.6: Effect of vocabulary size (training data) on QE terms generation by
the word embedding models and consequently retrieval effectiveness. The vocabu-
lary sizes are divided into the following groups - L: v <= 1120 (112 queries), LM:
1120 < v <= 1737 (102 queries), HM: 1737 < v <= 2333 (104 queries) and H:
2333 < v (98 queries). For every bar, the red, blue and green areas, respectively,
depicts the percentage of queries for which CBOW performs better than IWE, both
models have similar performance and IWE performs better than CBOW. One model
performs better than the other if QE using that model results in higher retrieval effec-
tiveness than that with the other model.

4.3.3 Effect of Query Length and Query Term Frequency

To observe the effect of query length and query term frequency in the candidate pas-
sages, we conducted two experiments inspired from similar experiments performed by
Mitra et al. [91]. For the first experiment, we divided the queries based on the dis-
tribution of their length (in the number of words) and calculated the average MAP of
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the no expansion model, QE using CBOW and QE using IWE models in these groups
(Fig. 4.7). In the second experiment, we divided the queries based on the frequency of
the rarest query term in the candidate set of passages for that query. The frequency is
calculated in the top x percentile - for example, a common query term will be in the
top 5 percentile among the terms in the vocabulary. Similar to the previous experiment,
we calculate the average MAP of the three models in each of these groups (Fig. 4.8).

As can be seen from Fig. 4.7, QE using IWE performs better than CBOW both
in case of shorter queries and longer (> 12 words) queries. Shorter queries usually
consist of common query terms and QE terms obtained by CBOW embeddings are
not as effective as that obtained using IWE embeddings. On the other hand, a question
that requires complex inference is typically longer in length. As we have seen from
Table 4.4, and further corroborated by Fig. 4.7, IWE embeddings are better obtaining
QE terms for these long complex questions11. Interestingly for these longer queries
QE terms produced by CBOW decreases the retrieval effectiveness of QL.

Figure 4.7: Relation between query length in words and retrieval effectiveness. Verti-
cal lines denote standard error.

When the rarest query term belongs to the top 5% frequent terms of the vocabulary,
then it indicates that most of the terms (if not all) in the query are common terms. As
can be seen from Fig. 4.8, CBOW performs worse than the no expansion QL model in
these cases. That is to say, when the query is made of highly frequent terms, the QE
terms obtained by CBOW decreases the retrieval effectiveness of QL. We do not see
such an effect on IWE. The reason for this observation is further explored in Section
4.3.4. When the query contains a term that is not present in the vocabulary, which
forms the main reason for missing keyword error type, IWE performs better than
CBOW. This is in line with the observation of Table 4.4 and can be attributed to the
fact that IWE can form a representation of these unseen query terms from their tri-
gram representations as seen in Chapter 3. CBOW can only achieve representations
of unseen query terms when the first round of retrieval is performed from an external
corpus and contains larger vocabulary. IWE does not need an external corpus (or a

11We have presented an exploratory analysis explaining the difference in QE terms obtained by IWE
and CBOW word embeddings for longer queries in Appendix C
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larger vocabulary) for finding a representation of words missing from the candidate
passages. Thus, missing keyword error type is much less for IWE than CBOW when
trained on local target corpus.

Figure 4.8: Relation between frequency (in top x percentile) of the rarest query term
in the document and retrieval effectiveness. When the rarest query term is not present
in the corresponding Wikipedia page we tag the query as ‘unseen’.

4.3.4 Analysing QE Terms

In order to obtain insights into the word embeddings produced by CBOW and IWE
trained on local target data, we look at the QE terms generated by the models. Word
embeddings model like CBOW encode information regarding term frequency and the
learned embeddings of rare words and popular words behave differently [47]. We
argue that the effect of high-frequency words in a small corpus is much more prominent
in the case of CBOW. We conduct the following experiment to see the influence of
common query terms in QE terms generation in our task.

1. For each query, we select the top two common query terms - query terms with
the lowest id f (tq,d).

2. We collect all words in their context window of ±5 words which is the training
window for CBOW and IWE.

3. Out of these collected words, we identify words that are rare in the candidate set
of passages with a frequency of 1 or 2.

4. Lastly, we calculate what percentage of QE terms for the entire query is made
up of these rare words in the context of high-frequency query terms. and plot
the distribution in Fig. 4.9.

As observed from Fig. 4.9, a high percentage of QE terms in the case of CBOW
are formed by the rare words which are present the context of high-frequency query
terms. In the embedding spaces, these terms appear much closer to the common query
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Figure 4.9: Distribution of the percentage of expansion terms that come from the im-
mediate context of the low IDF terms.

terms although they are not semantically similar in most cases. As a result, these terms
are selected as QE terms in spite of having no semantic relationship with the query.
In most cases, especially in error types complex inference and missing keywords,
these terms are present in one of the non-answer candidate passages, thus leading to
a decrease in retrieval effectiveness. Only when these terms are present in the answer
passages, there can be an increase in retrieval effectiveness. With IWE, we can see
that the influence of the common query terms for QE term generation are lessened as
the rare words in the context of these high-frequency terms makeup about 10% of the
expansion terms on an average.

To qualitatively show the difference in word distribution in the embedding space
we perform an experiment inspired by [37]. The assumption is that terms having high
frequency (after removing stopwords) in the answer passages are good candidate QE
terms. We can visualize where these good candidate QE terms lie in the embedding
space of CBOW and IWE. We choose one of the questions where QE using IWE gives
better retrieval effectiveness than CBOW (IWE > CBOW) - “How did American foot-
ball evolve originally?" from the Wikipedia document titled ‘American_football’12.
Fig. 4.10 depicts a 2-dimensional projection using t-sne [80] of the query terms to-
gether with candidate expansion terms from the vocabulary. The query term repre-
sentation by the blue dot is the mean of the 2D projection of the embeddings of all
query terms. The good candidate expansion terms are highlighted in green. As can be
seen, these terms cluster closer to the query in the IWE embedding space whereas in
the CBOW embedding space they are scattered among the poor candidates. The red
points are the rare terms that occur in the context of common query terms (‘American’
and ‘football’) but not in the answer passages. These terms if selected as QE terms
will potentially lead to a decrease in retrieval effectiveness. As we can see, they are
grouped close to the query embedding in CBOW and far away from the same in case
of IWE.

12https://en.wikipedia.org/wiki/American_football
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CBOW IWE

Figure 4.10: CBOW versus IWE embeddings of expansion terms. Each point repre-
sents a candidate expansion term. Green points have a high frequency in the relevant
set of passages. White points have low or no frequency in the relevant set of passages.
Red points are low-frequency terms in the vocabulary occurring in the context of the
Type1 query terms. The blue point represents the query ‘How did American football
evolve originally?’ which is obtained by averaging the 2D representation of all the
query terms. Contours indicate the distance from the query.

Thus, the green dots have higher chances of being picked up IWE as QE terms
whereas the red dots have higher chances in case of CBOW. This can explain the better
retrieval effectiveness for QE using IWE for this question. We observe a similar trend
for most queries where IWE > CBOW. This indicates a higher semantic similarity of
good candidate expansion terms with the query in the IWE embedding space which
perhaps leads to a better query expansion model and consequently better retrieval ef-
fectiveness. The projection of CBOW for our case is different from that presented in
[37] were in their local model the good terms are clustered close to the query term
embedding. This can be attributed to the limited vocabulary size on which our CBOW
model is trained on and points to the fragility of the model in these cases.

In the following sections, we will perform ablation studies, understanding the ef-
fect of IWE model components on better expansion term generation and increased
retrieval effectiveness.

4.3.5 Effect of Subword Information

One of the important components of the IWE model is the representation of the input
words in their tri-gram form. The effect of this can already be seen from Table 4.4
where we see the IWE local model trained only on the candidate set of passages like
the target CBOW model, brought down missing keyword error type to 5% from 32.6%.
This is because, as mentioned in Chapter 3, the IWE model can have representations of
unseen query terms when they are not present in the training data. In order to observe
the effect of representing the input in such a manner on the better retrieval effectiveness
of QE using the IWE model, we conducted the following experiments.

QE terms sharing similar sub-word information In this experiment, we aim to
find out how many terms that are morphological variations of one of the query terms
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are captured as QE terms by the two word embedding models. We assume a term in
the vocabulary to be a morphological variation of a query term if >= 60% of the tri-
grams of that term are tri-grams of one of the query terms as well. For example, terms
like ‘influences’, ‘influenced’, ‘influencing’, ‘influencer’, ‘male’ etc. have >= 60%
of their tri-grams similar to that of one of the query terms for the query ‘What were
some aspects of female influence in the blues?’. Fig. 4.11 shows on average 10-15% of
the QE terms picked up by CBOW embeddings are morphological variations of query
terms. On the other hand that percentage is higher (around 20%) for IWE. This shows
that one of the contributing factors for IWE > CBOW is indeed the ability to identify
morphological variant terms as QE terms.

Figure 4.11: Distribution of percentage of expansion terms that share similar subword
structure (trigrams) as one of the query terms

This raises the question of whether these QE terms sharing a similar tri-gram struc-
ture as the query terms are solely responsible for the performance improvement. In
order to check that, we performed a retrieval where the QE terms were only formed by
these terms that are a morphological variation of the query terms. The weights of the
QE terms were computed with the same methodology as described in chapter 3. Ta-
ble 4.6 shows that just the sub-word terms are not sufficient as QE terms and we require
other semantically similar terms as QE terms for increased retrieval effectiveness.

Table 4.6: Comparing retrieval effectiveness of QE only using terms that are a mor-
phological variation of the query terms with the local target CBOW and local target
IWE models

Model MAP P@10 Recall@10

Local QE

1CBOW 0.5402 0.117 0.7432

2IWE (only subword) 0.471 0.117 0.739
3IWE 0.560⇤ 0.118 0.752⇤
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Training CBOW with stemmed words Cao and Lu [13] do not perform stemming
of the vocabulary while training their IWE model or for their experiments. Hence, in
our thesis, we also do not perform stemming while training IWE or CBOW for a fair
comparison. However, it raises another question whether CBOW with stemming will
give similar performance as IWE since different morphological variations of a word
will be normalized to the same word. In which case, we expect CBOW to obtain QE
terms from answer passages that contain morphological variations of a query term.
For this purpose, we stemmed the WikiPassageQA dataset using a Porter stemmer13,
indexed it and then proceeded to train our CBOW word embedding on the stemmed
candidate passages for each query. Table 4.7 reports the retrieval effectiveness of QE
using CBOW trained on the stemmed data (CBOW + stem). Although the performance
of QE using CBOW increases with stemming, IWE still significantly outperforms both
the CBOW models. This shows that IWE can capture sub-word information from
the tri-gram representation and its usefulness is not merely a substitute for stemming.
Perhaps, the filters of the convolution layer of the IWE model is learning various local
features from the sub-word information alongside word order - a discussion on which
is presented in the next section.

Table 4.7: Comparing retrieval effectiveness of QE using CBOW trained on the
stemmed vocabulary to that using IWE trained on the original vocabulary of the lo-
cal target corpus.

Model MAP P@10 Recall@10

Local QE

1CBOW 0.540 0.117 0.743
2 CBOW + stem 0.5461 0.118 0.7471

3IWE 0.560⇤ 0.118 0.752⇤

4.3.6 Effect of Convolutional Feature Learning of Context

The convolutional layer of IWE learns structural information about the context while
predicting the target word during the training of word embeddings. That is to say, IWE
takes the ordering of the context words while predicting the target word. Whereas, the
CBOW model architecture has no such provisions. In order to observe how convolu-
tion feature learning of the context affects the word embeddings and consequently QE,
we perform an experiment where we randomize the order of the words in the context
of the target word while training both CBOW and IWE. Table 4.8 shows that the per-
formance of QE using CBOW with random word order does not change significantly.
This is due to the fact that while predicting the target word CBOW simply does a lin-
ear transformation where the order does not matter. On the other hand, we see that
the performance of IWE decreases significantly when the word orders are randomized.
This shows that the CNN layer of IWE learns local contextual features which are cap-
tured in the word embeddings and reflected in the retrieval effectiveness using QE.
Randomizing the word orders, decreased the quality of QE terms produced by IWE.

13See https://tartarus.org/martin/PorterStemmer/.
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However, the performance does not drop below that of CBOW, which shows that word
co-occurrence14 also has its contribution on IWE embeddings.

Table 4.8: Comparing retrieval effectiveness of QE using IWE and CBOW embeddings
trained on local target data with ( + rand) and without randomizing the words in the
context.

Model MAP P@10 Recall@10

Local QE

1CBOW 0.540 0.117 0.743
2 CBOW + rand 0.541 0.117 0.735

3IWE 0.560⇤ 0.118 0.752⇤
4IWE + rand 0.547 0.117 0.74

In order to understand what is being learned in the CNN layer while producing
the word embeddings and how it is beneficial for the passage retrieval task, we check
some of the test examples where the MAP drops the most (� 0.2 from IWE to IWE
+ rand). One of those cases is the question ‘How would you describe molecular biol-
ogy?’ with QID 2821. Fig. 4.12 shows the QE terms generated by the IWE model with
the randomized word order in a sentence and by the original IWE model. As we can
see, when words are randomized in a sentence, IWE word embeddings fail to capture
semantic relationships. Simple co-occurrence based information is not enough as the
vocabulary size is small in the candidate set of passages. Hence, we can say that IWE
learns important contextual information from local word ordering to predict word em-
beddings which capture various semantic relationships even with scarce training data,
which is typically not possible by CBOW.

4.3.7 Error Analysis

We also analyzed the cases when the IWE model was performing worse than the
CBOW model and saw that one of its strength of being able to use sub-word infor-
mation for better expansion terms generation was also a cause for decreased retrieval
efficiency in some cases. About 50% of the cases where it was worse than CBOW
was due to the generation of wrong expansion terms since this model has an affinity
of picking up terms that have a similar sub-word structure to a query word and those
expansion terms made the system retrieve wrong passages.

Examining a few of such examples, we noticed that wrong expansion terms were
typically generated when terms within the query had low or negative cosine similarity
to each other. In these cases, if an important query term had low cosine similarity to
its similar terms than a non-important term (common), it led to the wrong candidate
expansion terms having higher weights, inevitably leading to decrease in retrieval per-
formance. For example, in the query ‘What were some aspects of female influence in
the blues?’ - ‘female’ is an important query term. However, it had very low cosine
similarity with other terms in the query like ‘aspects’ and ‘influence’. This means that
terms that are similar to the other query terms are unlikely to be similar to ‘female’
and vice versa. Since we are taking into consideration all query terms together for

14Word co-occurrence count does not change by randomizing word order in a sentence
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Figure 4.12: QE terms generated by the IWE model with the randomized word order
in a sentence and by the original IWE model to the question ‘How would you describe
molecular biology?’. Terms highlighted using orange are the query terms and that
using green are the QE terms generated by the IWE model that is presented in the
answer passages out of the top 30 QE terms. Words semantically similar to query
words like ‘concerns’, ‘studies’, ‘learning’, ‘dna’, ‘biochemistry’ etc are identified as
QE terms by IWE. When the words are randomized, the convolutional layer of IWE
fails to capture semantic information from the context and hence these terms do not
appear as QE terms. Only terms sharing similar sub-word information are captured
when word orders are randomized.

the generation of QE terms, terms similar to important query term terms might be
given low weight in the expansion model. The QE terms generated for this query were
{influences, influenced, blues, male, influencing, buyers,..}. Out of this only ‘male’
and ‘buyers’ were the terms closest to ‘female’ and were the only expansion terms to
be present in the answer passage—these were good expansion terms. But since they
had very low similarity with other query terms they were pushed down the list of can-
didate expansion terms leading to a decrease in performance. This phenomenon of
query terms having low similarity with each other is what we define as inter query
disagreement. We followed it by an experiment to observe if this was a general trend
among the cases were the IWE model performed worse than the CBOW model (IWE
< CBOW).

We calculated the inter query term similarity for all terms within a query separately
for the cases where IWE > CBOW and IWE < CBOW. Then we took the difference of
the highest cosine similarity and lowest cosine similarity for each query as a measure
of inter query disagreement15. We expect a higher inter query disagreement for
cases when the IWE model performed worse than the CBOW model IWE < CBOW.
This is supported by the results obtained in Fig. 4.13 where we plot the distribution
of inter query disagreement scores for both the cases. We believe that this problem is
more pertinent in the task of QE for question answering rather than in key-word based

15Here we omit 12 cases in total where the number of query terms after stopping was reduced to 1
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Figure 4.13: Distribution of inter query disagreement score for the two cases where
the IWE model performed better and worse than the CBOW model. The inter query
disagreement score is the difference between the highest term similarity and the lowest
term similarity within a particular query

information retrieval. This is because questions are typically longer and the expansion
model has to take into account more query terms while generating candidate QE terms.
This motivates a different strategy for picking up QE terms. Instead of taking the mean
cosine similarity of candidate terms with the query terms, we can weigh them using
their IDF score or other measures. We leave this as future work.
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Chapter 5

Conclusions and Future Work

In this chapter, we first draw conclusions (Section 5.1) of our work to answer our
research questions and address the current research gap. Finally, we propose various
future directions of research (Section 5.2) in consideration with the limitations of our
work.

5.1 Conclusion

Since Mikolov et al. [85] proposed word2vec, word embeddings have been extensively
used in IR and NLP community for a number of downstream tasks. In this thesis, we
employ word embeddings on one such IR task—passage retrieval for open-domain QA
using QE. We re-implemented the retrieval pipeline of Diaz et al. [37] in this new task.

QE has been shown to increase the retrieval effectiveness of traditional term-
matching based IR models in the ad-hoc search task. However, the effectiveness QE
in the task of passage retrieval to open domain QA is relatively unexplored. Employ-
ing the pipeline of Diaz et al. [37] not only allowed us to address the above research
gap, but we could also observe to what extent training the word embedding models on
query-specific corpora improve the retrieval effectiveness in comparison to training
them on the entire corpus. Our experiments showed that QE using word embedding
models improve the retrieval effectiveness of traditional IR models in this new task as
well. Moreover, we found out that the retrieval pipeline of Diaz et al. [37] is gener-
alizable to this new context—QE using embedding models trained on query-specific
corpus improves the retrieval effectiveness of the traditional IR models in comparison
to training them on the entire corpus (RQ1). We found out that, the QE terms gener-
ated by training the models on a global corpus were non-discriminating with respect to
the candidate passages of the query which can explain the observed results. We con-
ducted an extensive error analysis observing individual cases where QE using word
embedding models failed to outperform the no expansion baseline. We identified 6
error types based on the terms present in the query and the candidate passages.

Next to observing the effectiveness of training word embedding models on query-
specific data, we have researched the quality of word embeddings when the two models—
CBOW and IWE—were trained on limited vocabulary. Despite a large number of
works that have used popular word embeddings models or proposed their own word
embeddings models for various tasks, there is a lack of extensive studies showing the
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effect of limited vocabulary for training these word embedding models. We found
that when trained on less data IWE word embeddings contain more semantic infor-
mation than CBOW word embeddings. This was shown by the fact that QE terms
generated by IWE word embeddings increased the retrieval effectiveness of QL more
than the QE terms by CBOW word embeddings—the former QE terms were also se-
mantically more similar to the query than latter (RQ2). We found that rare terms in
the vocabulary lie very close to high-frequency terms in the CBOW embedding space
even though they are not semantically similar. IWE is immune to such drawbacks.
Moreover, IWE can form representations of unseen query words using sub-word in-
formation unlike CBOW. We also observed that IWE embeddings produced better QE
terms when the questions were longer. IWE gains its advantage over CBOW owing to
the two components—incorporation of sub-word information and convolutional fea-
ture learning of the context— which contribute to the improved performance of IWE
word embeddings.

Finally, we showed evidence that both of these components are able to capture im-
portant semantic features to learn the word embeddings. Representing the input using
sub-word information helps the model capture the semantic information present in the
morphological variations of a word. As a result, IWE embeddings can capture words
having a similar sub-word structure to the query terms as QE terms. We also found
evidence that the convolutional layer of the IWE model is learning important semantic
information from word order in a sentence while producing word embeddings.

We would also like to comment on the reproducibility of the work of Diaz et al.
[37]. The authors described a precise pipeline and clear statements in addition to
mentioning all the hyper-parameter they optimized. This enabled us to accurately
recreate their retrieval pipeline. Although we train our word embedding models on
the global corpus of Wikipedia dump, the pre-trained word embeddings1 they use for
the global model are publicly available. They employ a Wikipedia dump of December
2014 and the Gigaword corpus2 as the local external corpus. However, the latter,
which is responsible for the improved performance in their experiments, is expensive
and would not have been possible for us to use for our work.

Concluding, we corroborate the findings of Diaz et al. [37] in our task of answer
passage retrieval to open-domain questions. Our thesis provides further proof of the
benefits of locally trained word embeddings which we believe will also be beneficial
for other NLP and IR tasks. We hope that our work provides enough motivation for
future researchers to explore the effect of local contextualized information in these
tasks. Moreover, we use QE to gain insights on the word embedding models of CBOW
and IWE and understand the difference when they are trained on limited vocabulary.
We expect our thesis to be an informative resource for future work deliberating on the
type of word embedding model to use in their tasks.

1They use four GloVe embeddings of different dimensionality trained on the union of
Wikipedia and Gigaword documents. See http://nlp.stanford.edu/data/glove.6B.zip.
They also use a word2vec embedding trained on Google News documents. See
https://code.google.com/archive/p/word2vec/. Lastly, they use a GloVe embedding trained on
Common Crawl data. See http://nlp.stanford.edu/data/glove.840B.300d.zip.

2See https://catalog.ldc.upenn.edu/LDC2011T07.
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5.2 Future Work

The effectiveness of QE using locally trained word embedding models pave the way
for a number of research directions which we discuss in the subsequent sections.

5.2.1 Limitations

Our work has a few limitations that we would like to discuss and suggest improvements
to address them.

Candidate set of passages In our thesis, the local target corpus is the candidate set of
passages to each query. In the WikiPassageQA dataset, the candidate set of passages
is already pre-defined. Thus we did not perform an initial round of retrieval to obtain
the candidate passages. In many practical applications, the candidate passages might
not be known a-priori. Hence, it would be interesting to see the effect of obtaining
our own candidate passages and then training our word embedding models for QE.
This kind of training data will be more noisy, containing more non-relevant informa-
tion than having all candidate passages from the same Wikipedia document (as in the
case of WikiPassageQA dataset). MSMarco (MicroSoft MAchine Reading COmpre-
hension) released by Nguyen et al. [98] can be used for this improvement. Although
the authors have made 1000 candidate passages available to each question, these pas-
sages do not come from a single document—they are snippets extracted from real web
documents through Bing3. Moreover, the authors suggest researchers to use their own
top-k retrieval model to obtain the candidate set of passages in response to each query.

Efficient retrieval pipeline Training the word embeddings locally requires an initial
round of retrieval if the query-specific corpus is not known a-priori (in WikiPassageQA
each query comes with an associated candidate set of passages). This makes the lo-
cal QE embedding models slower than QE using word embedding models trained on
a global corpus. This is short-coming is also pointed out by Diaz et al. [37]. The
retrieval effectiveness obtained can be nullified by the decrease in time efficiency in
many practical applications. Hence, one important future work will be to increase the
efficiency of the QE using local word embedding models. If the entire corpus is pre-
divided into coarser topics, instead of query-specific corpora, word embeddings can be
trained on them in an offline manner—similar to when we know the candidate set of
passages to a query beforehand. During retrieval time, the word embeddings trained
on the respective rough sub-topics can be looked up to obtain QE terms.

Hyper-parameter tuning In our thesis, we have not fully explored the effect of all
hyper-parameters for the IWE model. For example, as reported in Table 4.1, we fixed
the value of learning rate (a), the number of context words (C) and temperature co-
efficient (g) to values as suggested by Cao and Lu [13]. Moreover, we have not com-
pared the robustness of the two models, IWE and CBOW, with respect to variations in
their hyper-parameters. It would be interesting to observe the variation of retrieval ef-
fectiveness using QE when the model hyper-parameters are also changed. Depending

3See https://www.bing.com/.
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on the robustness of the model we can strengthen or relax conclusions drawn in our
thesis regarding the retrieval effectiveness. Word embeddings are known to have sta-
bility issues [58]—retraining the word embeddings with exact same hyper-parameters
will lead to different embeddings. Hence understanding the effect of hyper-parameters
will also aid in the reproducibility of our experiments and observations. In this re-
gard, we can take inspiration from a number of literature [108, 40, 15] that aims to
understand the impact of various model hyper-parameters on word embeddings.

Convolutional learning There is scope to delve deeper into understanding what
precisely is being learned in the convolutional layer while producing the word em-
beddings. We have shown with one experiment (Fig. 4.12) how randomizing word or-
ders in a sentence leads to word embeddings without semantic information—QE terms
generated by those embeddings are not semantically related to the query terms for that
particular example. This shows that the CNN layer is able to capture semantic infor-
mation from the word order in a sentence. Additional empirical analysis is required to
understand what is specifically learned and how are they learned—whether the filters
or the max-pooling operation or both play a part in the semantic understanding. Shen
et al. [126] has shown, using a few examples, that semantically similar words, even
though they are not present in the same context, activate the same filters for the task of
estimating document title relevance to a query. A study can be conducted to observe
if this observation holds while predicting a target word from the context words—if
semantically similar target words are activated by similar context representation (Sec-
tion 3.1.1). Furthermore, Jacovi et al. [63] observed that the filters together with the
max-pooling layer work as n-gram detector for tasks like sentiment classification. Un-
derstanding how the convolution layer of IWE works in the task of generating word
embeddings as a prediction based model will be a challenging yet important step to-
wards deeper insights about the model (and other deep neural network-based models
in general).

5.2.2 Extensions

There are some potential directions of research that form natural continuations or ex-
tensions of our work. We discuss some of them in the following sections.

Using contextualized word embeddings One of the limitations of CBOW or IWE is
that they form one representation of words that can have multiple meanings depending
on the context (‘stick’, ‘bank’, ‘crane’, ‘date’ and many more). Instead of fixing a
single embedding for these words, models like ELMo [106] and BERT [34] looks at
the entire sentence before assigning each word an embedding—these models produce
contextualized word embeddings. We have also observed from our experiments re-
ported in Table 4.8 and Fig. 4.12 the importance of word ordering and context features
for capturing semantic information in word embeddings. Hence, it will be interesting
to see the retrieval effectiveness of QE using contextualized embeddings of models
like ELMo and BERT. The models are made of complex neural network architectures
like bi-directional LSTMs [49] or transformers [140] and are trained on the language
modeling task (Section 2.2.3) using a large amount of data. These models can be fine-
tuned on specific downstream tasks and have shown state-of-the-art performance in a
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number of NLP4 [34] and IR5 [156, 154, 110] tasks. Hence, a possible future direction
is to observe whether fine-tuning the embeddings on a query-specific corpus, which
are smaller with a limited vocabulary, causes an increase in retrieval effectiveness by
enhancing the quality of QE terms. Perhaps, for these models, QE using the pre-trained
global embeddings are sufficient for our task of passage retrieval.

Different way of obtaining QE term The error analysis of the IWE model (Section
4.3.7) and the CBOW model (Section 4.3.4) highlighted a drawback of the QE method-
ology employed in our work. Our QE terms are the ones that are closest to the mean
of the query terms. A bad candidate term, being highly similar to one of the query
terms, will make them closer to the query mean irrespective of it being not similar to
other query terms. In this way, bad QE terms can be in the expanded query leading
to a decrease in retrieval effectiveness. One of the possible research directions is to
employ other methodologies of obtaining QE terms (rather than simply calculating the
distance of the candidate terms from the query mean). For example, we can weigh
each term with their IDF score in the candidate set of passages and obtain QE terms
based on this weighted query mean. The intuition is to have greater influence by the
more important terms in the questions for generating the QE terms. Zheng and Callan
[162] proposes a query term weighting scheme which has shown to increase retrieval
effectiveness in the ad-hoc search task. We can use the same, for obtaining QE terms.

Another direction of research is the classification of good and bad QE terms. Not
all obtained QE terms help to increase the retrieval effectiveness—selecting only the
ones that do the same might be beneficial. Some prior works [12, 100, 61] use a
variety of techniques including using support vector machine, reinforcement learning
or siamese networks for the classification and they have shown to improve retrieval
effectiveness.

Different task and domain The success of QE using word embedding models trained
on query-specific corpus encourages the research testing their effectiveness in other
tasks like closed-domain QA [1], vertical search6 [16] or enterprise search7 [57]. These
tasks typically involve retrieving information from specific domains like travel, real
estate, legal, medical, etc. Documents pertaining to a specific domain can be perceived
as candidate passages that are already known beforehand and when a user makes a
specific query the word embeddings trained on the candidate passages of the specific
domain can be used for QE. Thus the retrieval pipeline of QE using word embeddings
trained on query-specific corpus employed in our thesis can also be employed in these
tasks. For example, for the question ‘Describe the game of football’ word embeddings
trained on the candidate passages from domains like ‘Football’ or ‘Sports’ can be used.

4See https://gluebenchmark.com/leaderboard. 6 out of top 10 models for various language
understanding tasks are based on BERT embeddings.

5See http://www.msmarco.org/leaders.aspx. All of the top 10 models in the passage retrieval
task on the MS Macro dataset is based on BERT embeddings.

6A vertical search engine focuses on one specific industry or type of content. For example, a travel
search engine like Kayak, real estate site Trulia, etc.

7Enterprise search is the search within the collections of an enterprise
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Appendix A

Convolution in Text

Fig. A.1 shows how convolutional layer forms the context representation in details.
The input to the convolutional layer is the context words represented using their character-
trigrams and root afflixes. There are also zero padding on both sides of the context
which means the number of outputs from the convolution operation is equal to the
number of context words which, in this example, is 4. We require the context embed-
ding to be of the same dimensions (d) as the word embeddings. Hence, we need d
filters to learn the context representation. For our experiments (and in this example),
we use a sliding windoe l of 3. Each filter ( f1, f2, ..., fd) slides over the input represen-
tations and forms 4 outputs each with the convolution operation < [ui, ...,ui+l�1], f j >.
The filters are represented using different colours in Fig. A.1. Thus, from the convo-
lution operation we obtain a d ⇥4 output. After that in the max pooling operation, we
take the maximum value obtained using each filter. That is we take the maximum out
of the four outputs from < [ui, ...,ui+l�1], f1 > by filter f1. We repeat this for all d fil-
ters and finally we get the d⇥1 representation of the context or the context embedding
c.
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Convolution in Text

will play after school

d*1
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max
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Figure A.1: A detailed schematic of the convolutional feature learning of the context.
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Appendix B

Hyperparameter Tuning

This is the overview of hyperparameter values tested while tuning the performance of
traditional IR models QL, RM3 and RM3+EC and word embedding models CBOW
and IWE.

Model Hyperparameters Tested Values

QL µ {5, 10, 100, 250, 500, 750, 1000, 2000, 3000, 4000,
5000}

f bMu {250, 500, 750, 1000, 3000}
f bDocs {5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80}

RM3 f bTerms {5, 100, 200, 350, 400, 450, 500}
f bOrigWeight {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

µ {5, 10, 100, 250, 500, 750, 1000, 2000, 3000, 4000,
5000}

f bMu {250, 500, 750, 1000, 3000}
f bDocs {5, 10, 50, 100, 150, 200, 250, 350, 400, 450, 500}

RM3 + EC f bTerms {5, 100, 200, 350, 400, 450, 500}
f bOrigWeight {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

µ {5, 10, 100, 250, 500, 750, 1000, 2000, 3000, 4000,
5000}

a {0.1, 0.01, 0.001}
d {50, 100, 200, 300, 400}

CBOW k {5, 50, 100, 200, 300, 400, 500}
l {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
µ2 {100, 250, 500, 750, 1000, 3000, 5000}

IWE

d {50, 100, 200, 300, 400}
k {5, 50, 100, 200, 300, 400, 500}
l {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
µ {100, 250, 500, 750, 1000, 3000, 5000}

Table B.1: Range of hyperparameter values tested while tuning the MAP of the IR
models. They are tuned on the train and dev split of WikiPassageQA dataset.
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Appendix C

Long Questions

As we have seen previously, complex inference type error was one of the most preva-
lent errors for QE using most of the word embedding models. Moreover, for the IWE
model 40% of the improvements over the CBOW model were achieved in the complex
inference error type. The complex inference type errors were typically committed on
queries which were long and needed long distance semantic understanding of question
terms. We can also observe from Fig. 4.7 that the IWE model performs better than all
other models, specially the CBOW local target model, for longer queries.

Figure C.1: Correlation of distances from generated expansion terms among the terms
in a query. A high correlation among the terms indicate that the expansion terms
generated were similar to the words. Ideally, we would like to have high correlation
among words which are far away from each other in long questions to have expansion
terms similar to query terms which are syntactically far apart but equally important
semantically.

Now a long query has multiple parts which contributes to the entire semantic mean-
ing of the question. For example, ‘Explain the quote, "The history of all hitherto ex-
isting society is the history of class struggles," stated by Karl Marx in regard to the
concept of class struggle.’ - this question contains three main components - the quote,
‘Karl Marx’ and ‘concept of class struggle’. The query expansion model should ide-
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Long Questions

ally find expansion terms that is similar to all these components. In this experiment,
we are trying to observe the difference between IWE and CBOW models trained on
local target data while dealing with longer queries.

For this experiment, we find the cosine similarity of the QE terms for the above
question generated by the embeddings of the two models with each of the terms in the
query. In Fig. C.1 we plot the correlation of these distances among the query terms.
The intuition is that query terms having high correlation contributes to the generation
of similar expansion terms. We would want the important parts in the question to be
correlated to each other which would mean that the generated expansion terms have
similar distance to the correlated query terms in the embedding space. If we see the
CBOW model, there is a local correlation among the words in the quote and words
like ‘class struggle’. There is a lack of correlation among the three different parts of
the question. This means that the expansion terms generated are similar only to these
local group of words and not so much to other important parts of the question like ‘Karl
Marx’. Hence, these QE terms result in a decrease in retrieval effectiveness. But in the
IWE model, we see high correlation among different words from all important parts of
the question. For example, the word ‘Marx’ has high correlation with words from the
quotes as well the word ‘class’ from ‘concept of class struggle’. Hence, we can say that
the QE terms generated in this case are similar to words from all important parts of the
question. Naturally, these QE terms lead to an improved retrieval effectiveness. One
more interesting thing to observe is the high correlation between the word ‘struggle’
and ‘struggles’ for the IWE model. The sub-word feature information in the IWE
model creates similar embeddings for words having high overlap in sub-word structure
which also contributes to the generation of better QE terms.
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