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Abstract. When optimizing problems with uncertain parameter values
in a linear objective, decision-focused learning enables end-to-end learn-
ing of these values. We are interested in a stochastic scheduling problem,
in which processing times are uncertain, which brings uncertain values
in the constraints, and thus repair of an initial schedule may be needed.
Historical realizations of the stochastic processing times are available. We
show how existing decision-focused learning techniques based on stochas-
tic smoothing can be adapted to this scheduling problem. We include
an extensive experimental evaluation to investigate in which situations
decision-focused learning outperforms the state of the art, i.e., scenario-
based stochastic optimization.

Keywords: Stochastic Scheduling - Repair - Decision-focused learning

1 Introduction

Decision-making can be challenging due to the stochastic nature of real-world
processes. This complexity is evident in various contexts, such as manufactur-
ing, where uncertain processing times make it challenging to meet strict customer
deadlines. Formulating Constrained Optimization (CO) models for these prob-
lems is common, but unknown parameter values during decision-making add
challenges, because wrong estimates of the parameters can lead to infeasibilities.

In practice, such infeasibilities are repaired when reality unfolds. For instance,
in a manufacturing system, tasks may be postponed due to delays in earlier stages
to maintain the factory’s flow. Various repair policies and schedule definitions
are used across different contexts.

Historical data, represented as scenarios of unknown parameters like task
duration, are often available. Simple averaging of these scenarios is a common yet
naive approach that ignores uncertainty. Stochastic programming [16] and robust
optimization [1] offer alternatives, each with its challenges, such as scalability
and too conservative solutions. Moreover, modeling realistic repair possibilities
exactly is not always possible in such two-stage optimization approaches.
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Fig. 1. Deterministic opt. schedule Fig. 2. Repair action when y2 =6

Decision-focused learning (DFL), extensively reviewed by [13], introduces
a novel paradigm for stochastic optimization. This approach embeds an opti-
mization model, like Constraint Programming (CP), in a training procedure to
minimize a regret loss [6]. Challenges arise in backpropagation through com-
binatorial optimization problems, where solutions may change discontinuously.
Recent research, including the score-function approach by [17], shows promis-
ing directions for handling uncertainty in constraints. Both exploring DFL with
uncertainty in constraints, and analyzing the applicability of the score-function
method are highlighted as valuable directions for further research [13].

In this research, we explore various scenario-based approaches for stochastic
scheduling. The contribution is threefold: 1) we apply DFL for the first time to
a repairable stochastic scheduling problem with stochastic processing times, 2)
we demonstrate how an existing DFL technique that uses stochastic smoothing
can be used to serve a stochastic scheduling problem where historical realiza-
tions of processing times are used, and 3) we include an extensive experimental
evaluation in which we assess differences in performance between deterministic,
stochastic programming, and a DFL approach.

2 Scheduling with Repair

We illustrate the effect of uncertainty in constraints with an example of schedul-
ing two tasks on a single machine, where the average task lengths are g, = 4,
and ¢o = 5. The machine is not available from ¢ = 5 to ¢ = 10. The task is to
minimize makespan. Using the mean values, the optimal decision is to schedule
first task 2, and then task 1, which gives us a makespan of 14 (see Figure 1),
while scheduling first task 1, and then task 2 results in a makespan of 15.

Now suppose that task 1 is deterministic, and task 2 is stochastic, following
the discrete uniform distribution yo ~ U({3,4,5,6,7}). It still holds that the
expected task lengths are y; = 4, and 2 = 5. When we have yo = 6 and we
schedule task 2 first, the effect of the repair strategy can be seen in Figure 2 and
leads to a makespan of 20. Considering this repair, we can compute the expected
values of the two alternative decisions and find that E[first task 1, then task 2]
= 15 and Ef[first task 2, then task 1] = 16.6. So, considering the underlying
distributions, it is better to first schedule task 1, instead of task 2. We observe
that just using the expected values to come to a decision is not always a good
idea when processing times are uncertain.

3 Decision-Focused Learning

Problem Setting. The goal is to optimize an optimization (e.g. scheduling)
problem z*(y) = argmin, f(z,y) s.t. z € C(y, z), where f(z,y) is the objective
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function given parameters y and decision z and the constraint set C(y, z). How-
ever, the parameters (e.g. processing times) y are unknown at the time of solving.
We are given a data set D = {y;}?_; with historical data on y. A common app-
roach is to use the sample averages of § to solve the deterministic model and
obtain z*(g) (which possibly requires reparations when the true values become
known). Alternatively, we could take inspiration from the literature on DFL.

Decision-Focused Learning. The idea is to predict the unknowns y = hy(D)
based on the data such that the task loss is minimized. Since the unknown
parameters occur in the constraints, predicted decisions must sometimes be cor-
rected using a repair function (such as illustrated in Sect.2). A common task
loss for problems with unknown parameters in the constraints is the so-called
post-hoc regret PRegret loss [9], defined as:

PRegret(y,y) = f(zeorr (U, ), y) — (2" (), y) + pen(z*(Y), zcorr (¥, y)), (1)

where y are the true coefficient values, ¥ are the predicted values, 2*(7) is the
decision based on predicted values, and z*(y) is the optimal decision with perfect
information such as defined by [3]. Then, we have f(z*(y),y), which are the
costs for predicted decisions, and f(2*(y), y), which are true optimal costs. Due
to uncertain parameters in the constraints, predicted decisions must sometimes
be corrected using a repair function such that z*(y) — zeorr(¥,y). How this
reparation is penalized is reflected in pen(z*(9), zcorr (U, y))-

Zero-Gradient Problem. DFL procedures minimize the post-hoc regret loss
by gradient-based optimization with respect to 6 to optimize the prediction
U = ho(D). However, this loss gives a zero-gradient problem because a combina-~
torial optimization solver is embedded in the loss computation [6], which is the
7&”"({;@”’) term in (2).

y

dPRegret(y,y) _ dPRegret(zcorr(¥,Y),Y) 02corr (Y, y) 0y
30 a 0zcorr (4, 9) oy 60

(2)

Stochastic Smoothing. A novel approach by Silvestri et al. [17] shows that this
zero-gradient problem can be solved with a stochastic smoothing trick. The crux
is to use a stochastic estimator § ~ pg(y) (where py(y) is a parameterized distri-
bution) instead of the point estimator § = ho(D). Using a stochastic estimator
makes the loss function an expectation, for which the gradient can be approxi-
mated with the score-function gradient estimator (also known as likelihood ratio
gradient estimator [7]) that uses:

VoEgpo(y) [PRegret(y,y)] = Egepy ) [PRegret(y, y) Vo log(pe(y))]  (3)

for which the derivation can be found in [17]. The most important assump-
tion on py(y) is that the probability density function must be differentiable
with respect to 6. The right-hand side can be approximated with a Monte-
Carlo method [15]. This score-function gradient estimation approach is also the
foundation of the REINFORCE algorithm [19], and various other reinforcement
learning algorithms [18]. How we exactly apply these techniques to our stochastic
scheduling problem is explained in the next section.
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4 From Scenarios to Schedules

Algorithm: We adapt DFL to align with our scheduling problem in Algorithm 1.
The data D = {y;}}, comprises historical examples of processing times y.
We aim to learn which predictor § minimizes the post-hoc regret. For gradi-
ent computation, we use a stochastic estimator parameterized by 6, for which
a common choice is the Normal distribution [18|. During training, we sample
y~N(u=20,-y,0 =0,-5), where both 1 and o are trainable, and initially set
to the sample average §y and sample standard deviation &. In each training step,
we sample a point y; and a prediction g, compute schedule z*(g), and update
0 using the score-function gradient estimator that is provided in equation (3).
After training, the stochastic estimator is treated as a point estimator by using
y = p. Note that the distribution is only needed during training for gradient
computation on the regret loss.

Example: We explain the zero-gradient problem and smoothing technique
with our example from Sect.2. Suppose (y1,y2) = (4,6), but yo is unknown.
Figure 3 shows how 7, affects the regret, which is the line with a discontinuity at
72 = 5, indicating a jump in scheduling priority. The blue curves show different
stochastic estimators, and the small circles the expected regret values when we
sample 7o from each distribution. The line through the circles represents the
smoothened expected regret. We assess the applicability of Algorithm 1 using
this example. The training data has an underlying distribution with y; = 4 and
ya ~ U(3,4,5,6,7). We expect the algorithm to find scaling 62 > 1 to prioritize
scheduling task 1. A small experiment confirms that regret drops when up is
above five as anticipated, see Fig. 4.

Algorithm 1: DFL

Require: Dirain = {yz}?;’i"”’, Diest = {yz}?;eff
Initialize ¥ ~ po(y) such that
y~Np="0,9,0=0,0)

Regret .

for each epoch do Fig. 3. Smoothing
for each batch in Diyqin do
for each instance (y;,2*(y;)) in batch do Regret loss
15

Sample ¥ from pe(y)
Pass 7 to solver to get schedule
Compute post-hoc regret(y, yi)

1.0
0.5

N

0 5 10

end for Epochs

Update 6 with score-function:

0 =6 —1Ir- VoPRegret(y,y:)Velog(pe(¥)) Learned processing times

end for 5

end for - Zi /\f
Pass ¥ = pu to solver to get schedule A
Evaluate post-hoc regret on Diest 0 Epo5chs 10

Fig. 4. Training curves
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5 Experimental Evaluation

To understand the potential of DFL, we compare performance to deterministic
and stochastic programming formulations (Sect.5.2). We hypothesize that both
stochastic programming and DFL outperform the more naive deterministic app-
roach. Furthermore, we explore when DFL or stochastic programming performs
better; we expect that DFL has better scalability to larger instances.

5.1 Problem Instances and Evaluation

We study a variant of the Stochastic Resource Constraint Project
Scheduling Problem (RCPSP). We use two subsets of the PSPLib instances
(being j301 1 to j303_ 10, and j901 1 -to j903_10) [11]. Furthermore, we use
two sets of industry-inspired problem instances (small and large instances'),
related to the factory of our industrial partner DSM-Firmenich. The data
describing these instances is provided in our repository [8]. Originally deter-
ministic, these instances are transformed into stochastic versions by sampling
task durations from Normal distributions with mean d; and standard deviation
\/d;, where d; is the deterministic processing time of task j from the original
instance. We define a scenario as a processing time vector realization for one
problem instance. For each instance, three datasets are created: one with 100
training scenarios, another with 50 for validation and tuning, and a final set of
50 for evaluation.

The evaluation approach evaluates first-stage start times z; decisions based
on the schedule makespan. Tasks unable to start due to resource constraints or
precedence relations undergo a repair policy with (multiple) one-unit time post-
ponements resulting in corrected start times z7°"". A penalty function measures
the sum of start time deviations for all tasks j:

pen(z"(9): 22or (T,9) = P~ D 25 (@, y) — 2(0). (4)
jeJ

Here, p is the penalty coefficient, which we vary across experiments. Evaluation
is conducted using the SimPy discrete-event simulation Python package [14].

5.2 Baseline Methods

We study problem cases where historical realizations of stochastic processing
times are available (without feature data). This section describes two other
scenario-based methods that are included in the experiments.

Deterministic Approach. This is a simple baseline, where we compute sce-
nario averages of the unknown optimization coefficients. The deterministic con-
straint programming (CP) model that uses these averages uses the following
nomenclature: J: set of all tasks, R: set of all resources, S;: set of successors

125 instances with 40 to 480 tasks, 13 resource groups with different capacities.
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of task j, j: subscript for tasks, r: subscript for resources, parameters: y;: pro-
cessing time of task j, r, ;: resource requirement for task j, b.: max capacity of
resource r, minLag, ;: min. difference between start times of tasks j and i, if ¢
is a successor of j and decision variables: x;: interval length for task j. The CP
model is:

Minimize Makespan s.t. (5a)
Max(end _of(x;)) < Makespan — j € J (5b)
startOf(x;) > endOf(x;); ViedJVieS; or
startOf(x;) > minLag; ; + startOf(x;); VieJViels; (5¢)
> Pulse(xjr ;) <b,  VreR (5d)
jeJ
x; : IntervalVar(J, y;) Vied (5e)

In this model, (5b) defines the makespan which should be larger than the finish
time of all tasks, and (5c¢) enforces precedence constraints between two tasks,
where the minLag, 1, is the minimal time difference needed between task a and
b which is used for the industry instances. The CP pulse constraint (5d) models
shared resource usage [4].

Stochastic Programming. The second baseline comprises a scenario-based
stochastic programming formulation (again CP). The repair action is added
to the stochastic model which comprises the possibility to postpone activities,
together with a penalty term for the deviations from the earliest-start-time deci-
sion that is included in the objective. Note that we use the same nomenclature
as for the deterministic model, but we introduce the notion of scenarios w € {2,
and the first-stage earliest-start-time decision variable z; Vj € J.

Minﬁ Z Makespan(w) + p - Z ZstartOf(xj (W) —z; st (6a)

weN weN j
Max;(end_of(xj(w))) < Makespan(w) Yw € 2 (6b)
startOf(x;(w)) > endOf(x;(w) ViedJVielS; or
w)

);
startOf(x; (w)) > minLag; ; + startOf(x;(w)); VieJVieS; Ywe2 (6c)

ZPulse(Xj (W), 1rj) < by Vre R Ywe (6d)

jeJ
zj(w) : IntervalVar(J,y;(w)) ViedJ VYweS (6e)
zj < startOf(x;(w)) ViedJ VYwe? (6f)

5.3 Results

All experiments are done on a virtual server that uses an Intel(R) Xeon(R) Gold
6148 CPU with two 2.39 GHz processors, and 16.0 GB RAM. All CP models
are solved with single thread IBM CP solver [4]. The runtime limits are set per
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Fig. 5. Normalized post-hoc regret per instance set - penalty setting (smaller regret
is better). The box spans from the 25th to the 75th percentile, visualizing the median
and interquartile range.

problem size (max. 60 min.) and provided in the README of the repository [§],
together with the tuned hyperparameters? for deterministic, DFL, and stochas-
tic. Each boxplot in Figure 5 presents the results for the three methods on a
single combination of instance set and penalty setting. The y-axis shows the
distribution of the normalized post-hoc regret among the test instances of that
specific set. We use p = Silze (small), where size indicates the number of tasks,
and p = 1 (large). We tested the significance of the performance difference of
the different algorithms for each setup (a-i) using a paired t-test with o = 0.05,
and the p-values are included in the repository [§].

On smaller instances with small penalties, both DFL and stochastic methods
perform well, with no significant difference. For the large penalty, stochastic
tends to outperform both deterministic and DFL methods significantly in PSPlib
730 instances. Notably, under p = 1 for 730 instances, no repairs were needed
across all instances, emphasizing the robust performance of stochastic when the
instances are small enough. For larger instances like PSPlib 790, DFL becomes
better, even significantly for the small penalty. For the large penalty, there is still
a subset of the instances for which stochastic finds very robust solutions that
do not need repairs, but because for some of the instances the stochastic model
performs much worse than DFL (which is also visible in Fig. 5d), we observe no
significant difference between DFL and stochastic looking at all 90 instances. We
see a somewhat similar pattern in the industrial instances, where again stochastic
is most advantageous for the smaller instances and with a high penalty, although
not significantly better than DFL. For the larger instances, stochastic performs
even worse, especially for the small penalty and DFL is significantly better. We

2 Such as the number of scenarios.
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investigated optimality gaps of the outputs of the stochastic model and found
that even with a time limit of three hours the gaps are on average approximately
around 30%, with outliers of more than 90% (for the largest industry instances)
which shows the scalability issue of stochastic programming.

6 Related Work

Previous studies [2,6,13] focused mainly on comparing prediction-focused versus
DFL approaches for problems with uncertainty in (linear) objectives. The knap-
sack problem is the most prominent [5,12]. As far as we know, the set-up without
feature data is not studied in earlier work [13]. However, the crux of our prob-
lem setting is that uncertain parameters occur in constraints, which can lead to
infeasibilities. Hu et al. [10] were the first who introduced a post-hoc regret that
penalizes for infeasibilities. The methods introduced in their work rely on specific
conditions, such as being recursively and iteratively solvable [9,10]. This work
applies a DFL approach [17] to a pure stochastic repairable scheduling problem,
for which both the repairable scheduling setting and the context without fea-
tures are novel application domains for DFL. It is important to highlight that
before this study we did not know if DFL could work for repairable scheduling.

7 To Conclude, and Continue

This study explores a novel application of DFL to stochastic resource-constrained
scheduling with repairs, where uncertainty is in the constraints, and the deriva-
tive is not smooth by itself. Results indicate that stochastic programming is dom-
inant when it can find the optimal solution, most prominently when the penalty
factor is high and the instances are small enough to find robust solutions that do
not need reparation. In contrast, we have shown that DFL scales better and is
a promising alternative to stochastic programming, even in this pure stochastic
scheduling setup. Furthermore, we highlight the potential of DFL because of
its flexibility across various settings with different repair strategies, providing a
distinct advantage over stochastic programming, in which modeling the exact
repair functions is not always possible. We hypothesize that in a setting with
features related to stochastic processing times the benefits of DFL for stochastic
scheduling are further enhanced, such as shown in earlier research with uncer-
tainty in a (linear) objective [13]. Further interesting directions are investigating
alternative gradient estimators or reinforcement learning-inspired algorithms.
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