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1 Introduction

1.a The Maximum Entropy Production Principle
From its very inception by the German physicist Rudolph Clausius, the concept of entropy was
defined as one that is maximised. This fact is nowadays known as the Second Fundamental Law of
Thermodynamics. This gives an accurate representation for isolated systems in equilibrium (Kout-
soyiannis, 2014). However, the earth system is one that is constantly fed energy by the sun, and
therefore never reaches thermodynamic equilibrium. In figure 1, we can see the way that the earth
is irradiated by the sun, and re-emits radiation into outer space (Kleidon, 2020).

Figure 1: A schematic representation of the entropy degradation of solar radiation by the earth
system, from Kleidon (2020).

These transient systems do, of course, obey the conservation laws of mass, momentum and energy.
However they generally have more degrees of freedom than can be fixed by these three laws. The
question faced by scientist in the mid 20th century is therefore the following: When choosing from
a multitude of different system outcomes, all of which obey the conservation laws, which one does
Nature choose?

A number of principles were found by scientists across many different fields which gave positive
outcomes, such as Prigogine’s principle of minimum entropy, exergy, maximum power, depletion
of gradients (Kleidon et al., 2010). However, in this paper we will focus on Maximum Entropy
Production Law (usually Principle is preferred) as proposed by Swenson (1997). This is a much
stronger statement than that of Clausius, which merely shows that entropy increases.

The Maximum Entropy Production Principle (MEPP) states that when a system is far from
thermodynamic equilibrium, it will tend to maximise the production rate of entropy. Swenson
(1997) originally used it in Biology, but it has since then been used in hydrology (Maheu et al.
(2019), Kleidon et al. (2010), Kleidon et al. (2006), Porada et al. (2011), Zhao et al. (2016)).
Though not always successfully (Westhoff and Zehe, 2013).
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1.b River morphology
In this report, we examine the applicability of the MEPP on the shape longitudinal profile of river.
This too has been the object of extensive research in the past. Attempts include using functions
such as exponentials (Yatsu, 1955), power laws (Osterkamp et al., 1983) or cycloids (Saville, 2013)
which often contain break points, or the use of thresholds (Chang, 2008).

To examine the applicability of the MEPP on longitudinal river morphology, we will derive a
theoretical shape and perform a validation. We strive to answer the questions: Which shape would
a river following the MEPP have, and is this shape consistent with observations?
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2 Derivation

2.a Notes on the sources
The goal of this derivation will be to derive a curve which maximises entropy production. This
derivation is based on a similar derivation by Jenkins and Inman (2006). It should be noted that
this paper has been criticised by Maldonado and Uchasara (2019). Their critique on the validity of
the derivation is based on the fact that other curves can be found that create more entropy than
the curve derived by Jenkins and Inman (2006).

Though this is true, fitting a curve such (such as a straight line) through the equilibrium beach
profile is likely a breach of the restrictions mentioned in the paper by Martyushev and Seleznev
(2013). More specifically, the Local Equilibrium Hypothesis would be broken, due to the excessive
erosion of sand near the bottom. In fact, it is hard to argue at all that a straight line constitutes an
equilibrium beach profile.

It should also be noted that a very similar derivation was performed for the transverse profile of
glacial valleys by Hirano and Aniya (1988) and improved by Morgan (2005) and Faraoni (2020).

2.b Thermodynamics
The goal of this derivation is to find the curve x = ζ(z), where z is the elevation of the river surface,
and x is the longitudinal upstream coordinate. This means that x = 0 is situated at the mouth
and x = xmax is situated at the top of the river. For our purposes, this "top" is arbitrary point
along the river. And it means that z[x = 0] is at the height of the mouth of the river. This is not
necessarily at sea level, as some rivers we looked into were endorheic, and others were tributaries to
larger rivers.

We start by defining the derivative of our unknown curve:

dζ =
√

(dx)2 + (dz)2 =
√
1 + x′2dz (1)

Where x′ = dx
dz . And its reciprocal, z′ = dz

dx .

We then continue by drawing a free-body diagram around the area of interest, which in our case
would be a river. Jenkins and Inman (2006) then calculate the system’s contribution to the total
entropy in the universe.

∂S

∂t Universe
=

∫
V

Φ

Ta
dV =

Pdiss

Ta
(2)

Where Φ is the average rate of dissipation of mechanical energy per unit volume. Also known
more simply as the "entropy production density". Pdiss is the total energy dissipation rate. Ta is
the temperature.

The dissipation of energy can be derived using work:

Pdiss = 2

∫
∆t

Ffricdu (3)

Where F is the friction force causing energy dissipation.
In our case, the friction forces come mostly from turbulent viscosity, which is often modelled as

a viscous friction. A viscous shear force is modelled as: τ = µ∂u
∂x where x is an arbitrary spatial

direction. In this derivation, we assume that cross-river velocity gradients are negligible, and the
same goes for long-river gradients.
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For the power per horizontal area of river , we integrate over the water depth.
This gives:

dPdiss

dA
=

∫ ∫
2µ

∂u

∂h
dhdu = µu2 (4)

Now we have already assumed that the cross-river profile is approximately constant, so we can
split out the river width and integrate over the length of the river.

Pdiss = W

∫
µu2dζ (5)

Filling this into equation 2, this gives:

∂S

∂t Universe
= W

∫
µu2

Ta
dζ (6)

2.c Fluid mechanics
We have to find a set of equations that describe the average stream velocity. A simple example is
the Chézy formula.

u = C
√
Ri = C

√
Rz′ ≈ C

√
dz′ (7)

Where C is the Chézy coefficient, R is the hydraulic radius and i is the river’s channel slope.
For wide rivers, we can assume that the hydraulic radius R is approximately equal to the depth,

which is also a function of the channel slope.

d =

(
q2

C2i

)1/3

=

(
q2

C2z′

)1/3

(8)

Combining equations 7 and 8, and assuming that the rivers we analyse have constant width, this
gives:

u = C2/3q1/3(z′)1/3 =
C2/3Q1/3(z′)1/3

W 1/3
(9)

For this derivation, we assume that temperature is only weakly linked to height, and we therefore
assume uniform temperature.

This means that we can extract the temperature from the integral giving:

∂S

∂t Universe
=

W 1/3µ

Ta

∫
C4/3Q2/3(z′)2/3dζ (10)

2.d Euler-Lagrange Maximisation
Jenkins and Inman (2006) then use the Euler-Lagrange formula to maximise the entropy production,
and so will we.

F (x, x′, z) = C4/3Q(z)2/3z′2/3
dζ

dz
= C4/3Q(z)2/3z′2/3

√
1 + x′2 (11)

We clean up by defining A = C4/3Q(z)2/3.
Using the Euler-Lagrange equation such as used by Jenkins and Inman (2006), Hirano and Aniya

(1988) and Faraoni (2020):
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d

dz

∂F

∂x′ −
∂F

∂x
= 0 (12)

Combining equations 11 and 12, and using the fact that ∂F
∂x = 0, we obtain.

d

dz

∂

∂x′

[
Az′2/3

√
1 + (x′)2

]
= 0 (13)

Before calculating the derivative, we use the fact that x′ = (z′)−1.

d

dz

∂

∂x′

[
A

(x′)2/3

√
1 + (x′)2

]
= 0 (14)

We integrate the right-hand side, which gives:

∂

∂x′

[
A

(x′)2/3

√
1 + (x′)2

]
= B (15)

Next, we calculate the derivative with respect to x’, which gives the expression below.

x′2 − 2

3x′5/3
√
1 + x′2

=
B

C4/3Q(z)2/3
(16)

We simplify the function by writing:

f(x′) =
x′2 − 2

3x′5/3
√
1 + x′2

(17)

g(z) =
B

A
=

B

C4/3Q(z)2/3
(18)

Figure 2: Graph of f(x′) as defined in equation 17
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2.e Numerical implementation
Starting from the equality f(x′) = g(z), we use the Newton-Raphson method by subtracting g(z)
from both sides (f(x′) − g(z) = 0), and then finding the roots. Doing this for many points gives a
new function. For an infinite set of points this would be equivalent to finding the inverse of f(x′)

x′ =
dx

dz
= f−1(g(z)) (19)

In practice, the nature of f(x′) does not make it invertible for all values of g(z). This is because
the range of f(x′) is (−∞, 0.118) as can be seen in figure 2. Because the Newton-Raphson method
is locally convergent, and we focus on values above 3.5, the domain of the inverted function is in
fact only (0, 0.118). In our code, the domain is limited further to (0.005, 0.118) to avoid very large
values of x′. The maximum value is x′

max = f−1(0.005) ≈ 544.32.
To ensure that equation 16 can be inverted, the integration constant B in g(z) (see equation 18)

is set such that the maximum and minimum values of g(z) fit within the domain. When that is not
possible, range of z is restricted.

The last step is to integrate both sides to obtain x.

x =

∫ x

0

dx =

∫ z

zmin

f−1(g(z))dz (20)

The resulting curve will be referred to as the "MEPP curve". It should be noted that the
integration with respect to z is unusual and it is perhaps a little confusing to see when plotted (for
instance, a constant line is vertical).
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3 Validation
The derived function was programmed in python. As discussed above, the function is the numerically
inverted and integrated to obtain the predicted longitudinal coordinates as a function of height, using
discharge as an input.

3.a Validation data
The discharge data was provided as daily time series for different stations by the Global Runoff
Data Centre GRDC by Looser et al. (2020). Stations have given spatial coordinates, and some
stations also have a given elevation. Gaps in this data are filled using the Digital Elevation Model
(DEM). It is worth noting that by using the station discharge data (which typically have a length of
20 years) and assuming that the values represent a stationary river, that we assume that the river
relaxation time is (much) shorter than the length of the discharge data. This is possibly problematic
for low-discharge rivers.

Two methods of converting the time series into a stationary data were applied, each supporting
a different hypothesis about how river morphology changes. The first method is to take the mean
water discharge (Q), which implicitly assumes that the river morphology is most strongly affected by
the mean flow. The second method is to take the mean annual peak flow (Qmax), which implicitly
assumes that annual peak flows show have a larger contribution on river morphology. These two
were chosen because in field observations, Bertoldi (2010) find that both have effect.

The simple logarithmic model Q(z) = ln(z/a)/b (where a and b are fitted constants) was used
to fit both data, as a first order approximation. The fitting was performed using a Weighted
Least Squares Estimation (WLSE), where weighting was a function of the product of the catchment
upstream area and the length of the data in years. The exact function is given in equation 21. This
is done because a larger upstream catchment area gives a smoother outflow, and because the number
of years in the data is a good proxy for the variance of the flow (if we assume that the mean and
max flows are independent from year to year).

WWLSE =
1√

AupstreamN
(21)

Where A is the catchment upstream area and N is the number of years in the time series.
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In figure 3, the Q-z diagram is shown, with the two types of stations, as well as the fitted log
function Q(z).

Figure 3: Q-z diagram for the Yukon river in Alaska, with stations with given (calculated) height
in red (blue), and the WLSE fitted log function in black. The area of the circles corresponds with
their weight in fitting.

As can be seen from figure 3, we assume the discharge to be monotonically decreasing as the
elevation z increases. Furthermore, we can see that in this particular instance, the fitted function
gives a good representation of for the stations below 400 meters. Above that, the fit deviates from
the points, at least in part because of the weighting system we utilized.

For the validation data, topographical river locations were combined with a Digital Elevation
Model (DEM) to calculate the river heights. The river locations were provided by HydroSheds
(Lehner et al., 2008). The DEM used below 60 degrees of latitude was GTOPO30 DEM, courtesy of
the U.S. Geological Survey (USGS, 1996). Above 60 degrees, the ArcticDEM courtesy of the Polar
Geospatial Centre (PGC) (Porter, 2018) was used. The DEM was sampled at points along the river
locations in order to find longitudinal elevations.

In figure 4, the rivers studied in this research are highlighted in blue. These are overlayed on a
map of the world’s coatlines (in brown) for geographic reference. Major studied rivers include the
Mississippi river basin and the Niger. Note that the Saskatchewan river in the Canadian Arctic is a
tributary of the Nelson river (with a lake in between).

To be chosen, rivers had to fit two criteria.

1. They have to be long enough to allow for many points to be taken from the DEM, increasing
precision.

2. They have to have many discharge-measuring stations (at the very least 2) along the course
of the river, with long time series.

For the project, an important tertiary concern the quantity of engineering performed on the
river. As stated in Ylla Arbós et al. (2021), only a third of major global have not been subject to
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major engineering. This is problematic, because engineered rivers break a number of assumptions
made in the derivation. Notably, they are not in steady state, vary wildly in width, and most likely
do not maximise entropy in their current state.

This third criterion was often broken, however, to test the limits of the MEPP derivation.

Figure 4: Map of analysed rivers (in blue). An exhaustive list of rivers used in this project and
important data concerning those rivers can be found in the Appendix

The values of the longitudinal elevations are smoothed using a rolling quantile function, called
qsmooth. The window width is set to one-fiftieth of the data, so 2%, and the quantile to the lowest
5th percentile. These values are somewhat arbitrary, but prove to give good results. The advantage
of these values is they select the lower points (where the river would logically be) however, this does
induce a bias in the data.

In figure 5, the effect of the smoothing function is shown.
Finally, x coordinates of the river are calculated. This is done using the final formula as found in

equation 20. x(z,Q(z), B,C), is given the smoothed height values z, the fitted logarithmic function
Q(z) and a Chézy constant value of 43, based on an interpolation of the values for "Straight stable
deep natural channel" (C = 49) and "Variable rivers, vegetated banks" (C = 37) from table 2 in
Warmink et al. (2007).

The resulting curve can then be compared with the data. An example of the two overlayed can
be found in figure 6. To quantify the goodness of fit, the Mean Absolute Bias (MAB, see equation
22) was calculated for each river for both the mean water discharge and mean annual peak flow
discharge types.

MAB =
1

N

j=N∑
j=0

|xj − x(zj , Q(zj), B, C)| (22)

Where N is the number of points (x, z) in the validation data.
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Figure 5: Observed longitudinal river profile for the Mississippi river before (after) using quantile
smoothing in black (red)

For the final analysis, we use normalised data according to the following equations, with the
additional constraint that all values of x and z must be positive.

x⋆ =
x− xmin

xmin − xmax
(23)

z⋆ =
z

zmax
(24)
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Figure 6: Smoothed observed longitudinal river profile of the Mississippi river (in black) compared
with fitted MEPP function (in blue). Both axes are normalised according to equations 23 and 24.
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4 Results & Discussion
An overview of the results can be found in figure 7. It should be noted that the results and all other
data showed are also tabulated in the Appendix.

The MAB (Mean Absolute Bias) is calculated from normalised data, so the values are relatively
small. As the x (remember we calculate the MAB and RMSE using the x coordinates) values are
bound between 0 and 1, the MAB is also. The MAB was chosen for its ease of interpretation as
it effectively measures the area between the two curves. (It is not that simple, as the points are
not evenly spaced, but it is a reasonable approximation). This approximation has the practical
advantage that the "area between the curves" is independent of viewing direction.

Figure 7: MAB of the results sorted by MAB from the mean discharge

Looking at figure 7, we can see that there is a large variation between the MABs of the different
rivers. Indeed, we can see that the Missouri performed an order of magnitude better than the Nelson
river.

From figure 7, we do not see any particular pattern. We do not see a strong difference in
performance between the mean and peak flow rate, nor do we see any geographic pattern in the
location of the rivers. For instance, the Saskatchewan is a tributary of the Nelson, so we would
expect similar results, but this is clearly not the case.

We do see that in individual cases, the mean discharge or mean annual peak flow rate strongly
outperforms the other, such as the Saskatchewan or the Ohio rivers. This is due to a significant
change in the logarithmic fit for the discharge-height relationship. Generally, changes in scale are
compensated by the integration constant B. Changes in the shape of the logarithmic fit due to
changes in input can cause strong variations in results.

In figure 8, we checked using linear regression whether the length of the river, the mean slope,
the mean or maximum discharge, the number of discharge stations and the MAB of the logarithmic
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fit of Q are good predictors of the MAB of the MEPP curve for the mean water discharge.

Figures of possible correlations

(a) River length (b) Mean slope

(c) Mean discharge (d) Max discharge

(e) Number of discharge stations (f) The MAB of the log fit parameters

Figure 8: Analysis of possible correlations between river properties and the MEPP goodness-of-fit
(MAB)

Looking at figure 8, we can state that only one of the aforementioned factors might be good
predictors of the MAB. This has a number of implications, which we will discuss one by one below.

The fact that there is no clear link between river length (fig. 8a) and RMSE implies that the
DEM had a relatively small impact on the results. If there had been a strong link between river
length and MAB, then this might have to do with the coarseness of DEM, which affects small objects
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more than large ones. But as this does not happens, we can reject this hypothesis. Importantly, we
conclude from this that the DEM employed can support the analysis of smaller watercourses.

The only possibly good predictor is slope (fig. 8b). More specifically, it seems that steeper rivers
have higher MABs. This can be debated on the basis of our small sample size (about 20 rivers)
and the poor p-value and correlation coefficient. However assuming, for now, that this relationship
is true, we would explain it it two ways: The first is by pointing out that steeper rivers might
break some hypotheses, notably the hypothesis on constant river width. The second is that steeper
rivers are more inviting for placing dams, which, as we will see, significantly increases their MAB.
Both of these hypotheses also help explain the low correlation coefficient. There is no law of nature
dictating the placement of dams, nor are there clear patterns (other than a gradual widening over
long distances) in river width. This variability is reflected in the the variable MAB.

There is also no clear link between either mean or maximum discharge and MAB (fig. 8c and d).
This is against our expectations, as a smaller (peak) discharge would likely have a smaller sediment
discharge, which implies a longer relaxation time. Therefore, one would expect a lower MAB for
larger discharges. As this is not the case, we can assume that the dryer watercourses were generally
no less in equilibrium than the curves with higher (maximum) discharges.

Interestingly, there is no clear link between having more station data and having a lower MAB.
This likely has to do with the logarithmic fit we performed. Taking the example of the Danube,
with 34 stations along the river, in figure 9.

Figure 9: Logarithmic fit using Weighted Least Squares Estimation on Danube discharge data

In figure 9, we see that the logarithmic curve does not properly follow the data, mostly as a
consequence of the weighting system. This means that adding more points especially in the higher
reaches of the river, contributes very little to improving the accuracy of the model.
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Finally, there is no clear correlation between the MAB of the MEPP curve and that of the
logarithmic Q(z) profile (fig. 8f). This is remarkable, as one would expect that a poor Q-z would
automatically lead to the poor performance of a river. But as we hinted at when talking about slope,
the influence of dams does disrupt the data.

To generalise what we discussed above, from figure 8, we can state that in general, it is unclear
which effects have an impact on the goodness-of-fit of the MEPP curve. This, of course, requires a
more thorough quantitative analysis, using more rivers. But more importantly, it is also a demon-
stration of the limitations of the derived curve, which shows significant variability when tested on
different rivers. In short: the results show that the derived curve is far from perfect. This means
that for now, this method will have to be used as a first-order approximation of longitudinal river
morphology.

Moving away from the quantitative analysis, we can also find two important qualitative reasons
that explain some high MAB values: tributaries and dams.

Returning to figure 9, we can see two discontinuous jumps at elevations of about 50, 250 and
300 meters. These are where the Tisza and Sava, Drava, and Iller and Inn rivers respectively have
confluences with the Danube. These tributaries create considerable discontinuities within the the
discharge-elevation graph, which are not captured by the logarithmic fit.

To find a good example of the effect of tributaries on the morphology of a river, we will consider
the example of the Rio Grande (see fig. 10). The first notable observation is the poor fit of the curve
in figure 10b, which, as it can be seen, corresponds with a very poor fit of the logarithmic discharge
model in figure 10a. The second and more important point is that in figure 10b, at an upstream
distance of about 0.6, there is a break point in the curve. In reality, this break point coincides with a
confluence between the Rio Grande and Rio Conchos, which is its largest tributary Garrick (2018).

Results for the Rio Grande river

(a) Q-z diagram (b) Fitted MEPP curve

Figure 10: Results for the Rio Grande river. On the left the relatively poor Q-z plot. On the right
the resulting poor fitted MEPP curve. Note that as Q(z) is almost constant, the MEPP curve, which
is an integral with Q(z) as on of its arguments, is almost a straight line.

Dams also have a large impact on the MAB. To explain this, we should remember that the
DEM that was used does not measure bathymetry, but water surface. This effectively means that
the assumption that we made about the difference between river bed elevation and river surface
elevation being negligible does no longer hold. The same goes for an assumption of constant width.
Furthermore, dams filter sediment from water, severely impacting the way the river erodes. This
also means that a river with recent dam engineering work are also not in equilibrium.
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Figure 11: MEPP curve and validation data for the Zambezi river

The Zambezi river is an excellent example of how dams are poorly modelled by the derived
MEPP curve. As can be seen in figure 11, the Zambezi water surface has a shape that strongly
differs from that predicted by the MEPP curve. Furthermore, we can also clearly see the placements
of the dams in the observed elevation at upstream coordinates 0.2, 0.45 and 0.6.

However, a word of caution must be said before generalising that "all antropogenic riverine
disruptions yield poor MABs". The Missouri, Rhine and Danube performed well in our analysis
despite labelled "examples of [...] heavily engineered rivers" by Ylla Arbós et al. (2021). The
difference between the engineering mentioned by Ylla Arbós et al. (2021), which is mostly to improve
navigability and the dams we referred to above is the scale of the disruption. We therefore postulate
that the scale of engineering is a better predictor of poor MEPP performance than the "naturalness"
of a river. This is unsurprising as small changes to the river do not significantly impact the river
elevation, therefore having little impact on the goodness of fit.

Conversely, this means that the MEPP curve also performs well on rivers engineered for naviga-
tion, meaning that it can also be applied on the many larger rivers that do have major engineering
performed to them.
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5 Conclusion & Recommendations
In this report, we have described the following results:

Firstly we have shown that it is indeed possible to derive an idealised river profile using the
Maximum Entropy Production Principle (MEPP). Though by no means an elegant expression, it
is simple in the way that this curve is dependant only on discharge values in the river. We have
managed to find a numerical solution to the derived equation and have managed to apply it to 20
rivers.

Secondly we have attempted to validate this curve, with mixed results. Using the Mean Absolute
Bias (MAB) as an objective function, we see an order of magnitude of difference between the best-
and worst performing rivers.

Finally, through qualitative and quantitative analysis, we have found that the presence of large
dams and the average steepness of rivers are two likely influences on the goodness-of-fit of the derived
MEPP. The presence of dams dramatically changes the longitudinal elevation profile, in a way that
Nature does not perform. As a result, performance suffers. Steeper rivers perform more poorly,
possibly because they are more likely to contain dams, but equally possibly because might break
some assumptions, such as the presence of a homogeneous cross section.

For future research, we suggest two paths. One testing and extending the applicability of the
MEPP curve in the field of geomorphology. Questions that remain unanswered include:

1. What can be said about the influences of various river parameters (e.g. those chosen for figure
8) when more rivers are analysed?

2. In our analysis we used mean and annual max flows. Which quantile is the best representation?

3. Does the MEPP curve also hold on smaller watercourses?

4. Does the MEPP curve also hold for watercourses created under laboratory conditions?

5. Does the MEPP curve also hold for subsections of rivers, where the start or end of such a
subsection is a dam?

6. Does the MEPP curve also hold for intermittent watercourses?

7. What timescale is the relaxation time?

8. Can we find a better curve than logarithmic for the Q-z diagrams?

9. Can we include the discontinuities caused by tributaries in our Q-z diagrams?

10. Can this approach be extrapolated into the field of glaciology (using assumptions similar to
the glaciologist Faraoni (2020))

The second is to test if the equations derived could also be used as a remote sensing tool. As
there is a one-to-one relationship between the discharge and the river gradient (which we use, see
equation 16), the reverse is also true. Would it be possible to use the shape of the river to estimate
its (mean) flow characteristics?
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6 Appendix

6.a Appendix I: River information

Name Length ∆z # Points # Stations Lowest Q Average Q Maximum Q
- [km] [m] - - [m3/s] [m3/s] [m3/s]

Amazon 14574 484 48250 6 47101 116245 169490
Arkansas 5117 1304 20068 6 15 450 1266
Columbia 2640 274 10745 11 10 3013 6684

Danube 6991 331 289977 34 13 2653 6527
Elbe 1660 119 76527 11 288 461 694

Limpopo 3373 862 119072 7 21 93 183
Loire 1532 164 64926 2 3 457 912

Mackenzie 4170 122 22727 4 4926 7628 9197
Mississippi 7962 209 30002 10 84 5840 17861

Missouri 9836 1095 41497 4 1129 1732 2385
Nelson 2008 217 9386 4 2224 2913 3540

Oder 1039 77 46454 10 42 222 514
Ohio 4329 159 16704 3 1190 4180 7908

Orange 5381 1479 198869 16 18 115 252
Parana 7173 322 24791 5 1551 13865 17764

Parnaiba 1544 74 2683 3 427 618 768
Rhine 2750 343 116244 22 117 1127 2246
Rhone 989 186 37351 6 3 461 1653

Rio grande 6725 2284 24681 6 20 39 87
Saskatchewan 3571 557 16972 10 54 298 684

Yukon 6926 573 4441 13 246 2809 6640
Zambezi 7354 1056 247492 5 11 1087 2463

Table 1
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6.b Appendix II: MAB values

River MAB using Q MAB using Qmax MABQ−z using Q MABQ−z using Qmax

Arkansas 1.0001e-01 7.5163e-02 2.7311e+02 1.0964e+03
Columbia 2.5160e-01 2.5688e-01 7.0883e+02 2.5705e+03

Danube 9.1031e-02 1.0759e-01 1.3545e+03 2.2799e+03
Elbe 1.3248e-01 1.6836e-01 4.8345e+01 1.5997e+02

Limpopo 2.0929e-01 2.3833e-01 2.7117e+01 4.2903e+02
Loire 1.3888e-01 1.3984e-01 6.0840e-14 2.4869e-13

Mackenzie 8.3545e-02 7.9851e-02 9.7659e+02 3.2610e+03
Mississippi 1.3103e-01 1.5869e-01 2.0845e+03 6.2574e+03

Missouri 1.5097e-02 2.6591e-02 5.9043e+01 1.4917e+02
Nelson 3.7328e-01 3.7367e-01 4.4346e+01 5.2653e+01

Oder 9.6727e-02 1.0961e-01 8.7156e+01 1.8683e+02
Ohio 1.2004e-01 5.4631e-02 1.3918e+03 2.5195e+03

Orange 3.1938e-01 3.1739e-01 7.0552e+01 5.4641e+02
Parnaiba 1.5830e-01 1.4802e-01 2.3373e+01 2.3767e+02

Rhine 1.1835e-01 1.0812e-01 2.9796e+02 8.2340e+02
Rhone 1.5864e-01 1.5453e-01 6.2377e+01 1.6004e+02

Rio grande 2.7069e-01 2.6211e-01 1.3906e+01 1.6057e+02
Saskatchewan 3.4716e-02 8.6115e-02 1.2882e+02 1.8509e+02

Yukon 5.6414e-02 7.2088e-02 4.7868e+02 2.1660e+03
Zambezi 2.4207e-01 2.3779e-01 2.9039e+02 1.1080e+03

Table 2
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6.c MEPP results for mean flows
Starting with the lowest MAB, from left to right and top to bottom.
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6.d MEPP results for peak annual flows
Starting with the lowest mean flow MAB, from left to right and top to bottom.
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