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a b s t r a c t 

Recent years have seen an increasing interest in Demand Response (DR), as a means to satisfy the growing 
flexibility needs of modern power grids. This increased flexibility is required due to the growing proportion of 
intermittent renewable energy generation into the energy mix, and increasing complexity in demand profiles 
from the electrification of transport networks. Currently, less than 2% of the global potential for demand-side 
flexibility is currently utilised, but a more widespread adoption of residential consumers as flexibility resources 
can lead to substantially higher utilisation of the demand-side flexibility potential. In order to achieve this target, 
acquiring a better understanding of how residential DR participants respond in DR events is essential – and 
recent advances in novel machine learning and statistical AI provide promising tools to address this challenge. 
This study provides an in-depth analysis of how residential customers have responded in incentive-based DR, 
utilising household-related data from a large-scale, real-world trial: the Smart Grid, Smart City (SGSC) project. 
Using a number of different machine learning approaches, we model the relationship between a household’s 
response and household-related features. Moreover, we examine the potential effects of households’ features 
on the residential response behaviour, and highlight a number of key insights which raise questions about the 
reported level of consumers’ engagement in DR schemes, and the motivation for different customers’ response 
level. Finally, we explore the temporal structure of the response – and although we found no supporting evidence 
of DR responders learning over time for the available data from this trial, the proposed methodologies could be 
used for longer-term longitudinal DR studies. Our study concludes with a broader discussion of our findings and 
potential paths for future research in this emerging area. 
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. Introduction 

The increasing proportion of renewable energy resources and the
rowing adoption of new variable load types (e.g. Electric Vehicles) in
he energy mix poses new challenges to electricity grids [1] . The ef-
ective operation of power systems demands them to function within
 range of specific acceptable values for frequency and voltage. This
equires the electricity demand and supply to be balanced at all times
n power systems. Traditionally system operators have relied solely on
olutions such as expensive network reinforcements or keeping conven-
ional power plants open, and spinning reserve to provide reserve ca-
acity. 

An alternative approach for addressing these challenges is electricity
emand response (DR) [2] . DR is regarded as a potential tool that can
rovide the necessary flexibility for mitigating the intermittency of re-
ewable energy generation and the lower predictability of future loads
1] . DR solutions allow grid operators to maintain the power grid gen-
ration and load balance at a low cost, while avoiding or delaying the
eed for costly reinforcements of the power networks, or investing in
dditional back-up generation. 

According to a 2020 IEA report [3] , less than 2% of the global po-
ential for demand-side flexibility is currently being utilised. The pre-
ominant sources of demand-side flexibility are industrial thermal loads
nd processes, thermal comfort in buildings (both residential and non-
esidential), charging of electric vehicles and on-site generation and en-
rgy storage [3] . This demand-side flexibility can be offered by Virtual
ower Plants (VPPs), demand response providers and prosumers [2] .
emand response has been identified as a key component for provid-

ng this needed flexibility across the research literature. Many studies
ave explored the effectiveness and performance of demand response
chemes, and they have provided evidence to support that demand re-
ponse schemes (e.g. dynamic pricing schemes) can be used to provide
he necessary flexibility [4–7] . 

The demand response base is relatively low and the worldwide in-
entory of flexible assets in the residential, commercial and industrial
ectors needs to grow multiple times higher than it is today [3] . For the
idespread adoption of demand response programmes there is the need

or participation in DR from distributed residential consumers, which
ave a huge demand response potential. However, the diversified, het-
rogeneous and distributed nature of the residential DR assets makes it
ore challenging for service providers (i.e. demand-side aggregators)

o participate in the electricity markets with demand-side aggregated
esources [8] . 

Accurately estimating the response behaviour of DR participants and
nderstanding the drivers behind their response is essential for address-
ng these challenges. An accurate forecast of response behaviour in DR
chemes can decrease the uncertainty related to the available flexibil-
ty, and is directly related to the reliability of the services provided to
he electricity grids. An enhanced understanding of customers’ response
ehaviour can aid researchers, retailers and system operators to design
ore accurate and precise pricing or incentive mechanisms for DR pro-

rammes. The design of a DR mechanism not only affects the profitabil-
ty of the participating entities, but also the success of the DR scheme.
nergy big data analysis and other data-driven approaches can be a pow-
rful tool for studying the consumers’ response behaviour [9] . 

In this work, we base our analysis on datasets from the Smart Grid

mart City (SGSC) trial project data [10] . The SGSC project is one of the
orld’s largest residential DR trials, running for almost 2 years. During

he duration of the trial project there were numerous product bundles
ffered to the participating consumers [11] . The product bundles were
 combination of pricing/incentive schemes (e.g. dynamic peak pric-
ng, dynamic peak rebate, seasonal time-of-use, etc.) and usage feedback
echnologies. For a more in-depth description of the SGSC trial project
he reader can refer to the project’s reports and the work of Motlagh
t al. [12] . 
2 
The focus of this work, within the larger SGSC trial, is on the
ncentive-based dynamic peak rebate (DPR) scheme provided by the
etwork trial partner. In this programme, participating customers were
ncouraged to reduce their electricity consumption by receiving rebate
ncentives. These customers were notified of the DPR events via SMS no-
ifications 24 hours in advance of the event to request their participation
11] . All the participants in this DR scheme were residential/domestic
ustomers. 

.1. Contributions and study outline 

Our work provides new and complimentary insights, which can be
sed to augment prior research and brings a more complete picture
f demand response behaviour, and the drivers behind it. Most stud-
es reported in existing literature use household load data (energy con-
umption data at different points in time) to predict response behaviour
reduction of consumption as a response to a signal) of households,
nd do not consider households’ characteristics. In this study, we use
ousehold-related features such as the type of heating system, inter-
et connection, and air-conditioning units to assess their response be-
aviour. The main contributions of this work can be summarised as: 

• In-depth analysis of the response behaviour of a large number of
households based on household and appliance data, from a large
real-world trial. 

• Prediction of the households’ response behaviour based only on
household-related data, with accuracy in line with expectations —
given results from previous studies on prediction of response be-
haviour focused on load data. 

• Analysis of the temporal structure of the response behaviour and the
responders’ ability to learn over time. 

• A detailed and interpretable study of the effects of the various house-
holds characteristics and appliances used, and their influence on en-
ergy reductions achieved. 

Moreover, our research tries to promote more transparent and re-
roducible research by using public demand-response data and making
vailable online the code needed to reproduce the exact results as a
ublic GitHub repository 1 . Through this study we hope to improve the
odelling and the understanding of DR response behaviour, for better
lanning and decision-making in the demand response domain. 

The remainder of this paper is structured as follows. We start by pre-
enting an overview of the data-driven methods utilised in this paper
nd a literature review of the data-driven approaches used for the study
f demand response behaviour in Section 2 . That way we provide the
ontext for our approach and we position our work to the existing litera-
ure. We then perform modelling and analysis of the response behaviour,
y first exploring the available response-related datasets. The first step
s focused on ”cleaning ” the datasets and identifying potential charac-
eristics — as well as issues with the data —, utilising existing state-
f-the-art exploratory data analysis and statistical tests in Section 3 .
e also explored the possibility of DPR responders learning over time,

nd searched for temporal patterns of the response. Subsequently we
pplied machine/statistical learning techniques to model the relation-
hips between the households’ response and household-related features
n Section 4 . Having modelled the relationship between the households’
eatures and how their response to DR events, we then try to pinpoint
he important features of this relationship and we also study and dis-
uss the effect of these features on the households’ response under the
R scheme. Section 5 concludes this work with a discussion and poten-

ial extensions of this study. 
1 See the code availability section at the end of this study for the URL. 
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customers’ received incentives. 
. Data-driven approaches for demand response behaviour 

In principle, the problem of modelling the response of consumers
nder DR schemes is a complex and dynamic problem based on both
xternal and internal (to each consumer) factors. Data-driven methods
ffer a means for identifying patterns, modelling, and acquiring insights
rom the available datasets [9] . 

.1. Overview of key data-driven techniques 

The multitude of data-driven methods can be grouped according to
heir application. There are exploratory data analysis tools where,
hrough the use of descriptive statistics and data visualisation, we try
o study the structure of the data, variables’ distribution, and the inter-
ependencies within the data sets [13] . Data exploration is used as an
nitial step acting as a guide for the subsequent treatments to the data. 

Data preparation is the step of pre-processing the raw data for de-
oising, identifying discrepancies in the data and potential systematic
rrors. In the context of demand response, among others, that would
ean pinpointing ”faulty ” smart meter readings, baseline estimations,

nd potential presence of extreme compensation values. There is a need
o pre-process data to identify missing entries from smart meters read-
ngs, customers’ surveys and in general from collected data, to avoid low
uality data becoming inputs to models resulting to erroneous estimates
nd insights. Resolving the challenge of missing data can be achieved
y employing complete-case analysis or imputation techniques (rang-
ng from simple mean imputation to multiple imputation with Markov
hain Monte Carlo [14] ). In missing data analysis it is paramount to un-
erstand the underlying missing data mechanism [15] , e.g. whether the
ata are missing, or not, at random. De-noising the data entails pinpoint-
ng and filtering out errors in the data and/or outliers. Data preparation
s an important process of the data analysis pipeline; real-world data is
mpure and noisy, and errors and biases of raw data can propagate to
ubsequent steps of analysis and modelling, with a great effect on the
esults of data-driven approaches [16] . 

Furthermore, data mining can be used for clustering consumers be-
aviour to provide suggestions of consumers for DR schemes, selection
f participants in DR events, and design of DR programmes. Frequently
sed categorisation techniques include both supervised classification
nd unsupervised clustering algorithms. Methods such as k-means and
elf-organising maps have been widely used in the context of demand
esponse and for the study of response behaviour. In demand response,
here a significant proportion of data is time-series, it is essential to use

ools from time series analysis to discover potential underlying tempo-
al structure. These tools include autocorrelation, identifying trends and
easonality patterns. For example, autocorrelation (or serial correlation)
s a measure of linear association between lagged values of a sequence
e.g. time series). i.e. a lag 𝑘 autocorrelation is the correlation between
alues that are k time periods apart. 

Another important application is also the modelling of data and esti-
ation of variables of interest. In DR, that would be prediction of energy
emand to provide information to support energy producers in the ac-
urate planning for energy production, estimation of load curtailment,
eliability of DR participants, etc. 

Widely used techniques for practical data-driven modelling of data
re ensemble methods and artificial neural networks [17] . The most
opular ensemble methods are gradient boosting and random trees. Gra-
ient boosting [18] is an ensemble of weak predictive models (typically
ecision trees) and it is an additive, forward stage-wise boosting model.
his means that the algorithm sequentially adds new decision trees to
he model without altering the parameters and coefficients of the deci-
ion trees already added [18] . Moreover, this type of models allow for
he optimization of arbitrary differentiable loss functions [19] . 

Random forest is also an ensemble method based on decision trees,
nd it operates by constructing a multiple of independent decision trees
hat are trained independently on a random subset of data [20] . To grow
3 
ach tree, the inputs (or combinations of them) at each node are se-
ected in a random fashion [20] . Contrary to the gradient boosting al-
orithm (where the weak models are built sequentially), random forests
re an averaging ensemble method; meaning that they build weak deci-
ion trees independently and then they take the predictions’ average of
hese weak estimators. 

Artificial neural networks are computational models inspired by, al-
eit not identical to, biological nervous systems. The two basic architec-
ures of artificial neural networks are the feed-forward and the recurrent
rchitecture [21] . A dense neural network is a feed-forward network
here all its layers are fully connected. More specifically, each unit in a
ense (fully-connected) layer is connected to all the units in the subse-
uent layer [22] . Dense neural networks (and feed-forward neural net-
orks in general) can be thought as universal function approximators
hich are constructed to achieve statistical generalisation [22] . 

For domains like demand response, which have not been extensively
tudied and evaluated, there is the need to understand how the models
ttained their results and not focus only on their predictive performance
23] . For that goal, there is a need for interpreting data-driven models.
wo popular model-agnostic interpretation methods are the (SHapley
dditive exPlanations) SHAP framework [24] and the permutation fea-

ure importance technique [20,25] . We have employed these two ap-
roaches because prior research has shown that, in cases where the in-
ut variables are categorical (like in this study), the measures of variable
mportance and Gini importance can be biased towards categorical fea-
ures with more categories [26] . These two frameworks approach the
roblem of feature importance from different angles. 

In principle, the permutation feature importance algorithm assigns
mportance to the various input variables by taking into account the
eterioration in model performance, whereas SHAP is based on the fea-
ures’ contribution to the model predictions. In more detail, the model-
gnostic permutation feature importance algorithm calculates the im-
ortance of a feature by measuring the increase/decrease in the model’s
rror metrics when the values of this feature are randomly shuffled [25] .
his permutation breaks the relationship between the feature and the
arget variable, thus a model with higher error metrics (positive impor-
ance) is indicative of the model’s dependence on the feature. On the
ther hand, negative importance (lower error metrics after permutation)
eans that the feature is not important for the model [20] . 

The SHAP approach is a framework for interpreting the models’ pre-
ictions, by assigning to each feature an importance value for a partic-
lar prediction [24] . The SHAP framework explains the prediction of
 data instance 𝑥 by computing the contribution of each feature [24] .
he contribution of a feature is calculated by computing Shapley values
rom coalitional game theory [27] . Under this paradigm, the players in
 coalition are the feature values of data instance 𝑥 and the Shapley val-
es denote how the pay-out (in this case the prediction) is distributed
mong the features in a fair manner. 

.2. Related work on data-driven methods for DR response behaviour 

The subject of the analysis and modelling of customers’ re-
ponse behaviour has been broadly studied across the DR literature
see Antonopoulos et al. [28] for a full review). There are numerous pa-
ers where data-driven techniques have been used to model and predict
ustomers’ response to DR signals. Zhou et al. [29] estimate the reduc-
ions in electricity consumption during demand response time-windows,
y incorporating latent variables (i.e. not observable variables) in statis-
ical forecasting models — i.e. Ordinary least squares, k Nearest Neigh-
ours, Support vector, and decision tree regression models. The latent
eatures are constructed from the consumer’s consumption data by ap-
lying sequentially a Conditional Gaussian Mixture model and a Hidden
arkov model. Liu et al. [8] train a Long Short-term Memory (LSTM)

eural network on simulated consumers’ response data. The response
ata were generated using a response function which is quadratic to the
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2 It is measure of association between two nominal variables — based on Pear- 
2 
Paterakis et al. [30] approach the problem of the prediction of cus-
omers’ response under dynamic DR price signals, by using a hybrid load
orecasting model. The time-series load data are decomposed to various
requency signals, by applying wavelet transform, which are then fed as
nputs to dense neural networks. The outputs from the neural networks
re aggregated to create the final response forecast. Holtschneider and
rlich [31] estimate the response behaviour to DR price signals by apply-
ng a dense neural network. To tackle the issue of sparse training data
or predicting response behaviour — there are only a few DR events
er year —, there is work where they have employed non-parametric
pproaches i.e. an ensemble of k-Nearest Neighbours regression mod-
ls [32] , or transfer learning-based approaches [33] . In the work of Cai
t al. [33] they attempt to predict the customers’ response behaviour in
ncentive-based DR by using load data from DR participants with similar
oad consumption behaviour. 

The input data to the aforementioned data-driven algorithms have
een found to be numerous.They are features engineered from the con-
umers’ load data i.e. maximum and minimum daily load, mean con-
umption [8,32] , as well as the actual data of consumers’ electric-
ty consumption [29,30,33] . Quite often time-related features are in-
luded in the model i.e. week, month, hour of the DR event, seasonal
cores [8,32] , as well as environmental factors i.e. ambient air temper-
ture [29,33] and humidity [33] . The target variable for DR response
rediction has mainly been the electricity consumption of consumers
8,29,30] . Cai et al. [33] forecast the curtailed load (difference of the ac-
ual electricity consumption from the estimated baseline consumption),
nd Kang and Lee [32] the proportion of realised load reduction to the
equested load reduction. The training data of the learning algorithms
as primarily been simulated or is semi-synthetic data [8,29,30] , but
here are also cases where real-world DR data have been used [32,33] . 

Moreover, clustering the main DR participants attributes is a typi-
al approach for analysing the various response behaviours. The litera-
ure has mainly based their analysis on the customers’ load data for the
nalysis of the response behaviour. Motlagh et al. [12] have focused on
nowledge extraction from load profile data by comparing customers’
onsumption behaviours under DR with the ones of the control group.
hey use Principal Component analysis to extract the principal compo-
ents from half-hourly consumption data and then they cluster them,
ased on these principals components, by using self-organising maps.
ther clustering algorithms like k-means [34] , expectation maximisa-

ion [34] , and finite mixture-based clustering [35] , have been employed
or understanding the DR participants behavioural use. 

Other widely applied AI approaches used to study the behaviour of
emand response are mechanism design and cooperative game theory

which are often modelling, not data-driven. These methods have been
mployed for the design of demand response contracts, such as in [36–
8] , demand response incentive mechanisms [39,40] , demand-side and
onsumer coalitions [41–43] , or coordinating specific devices, such as
lectric vehicles [44,45] . 

It is noted that, while the previous papers have provided valuable
nsights and advancements they tend to focus on the analysis of response
sing primarily load data. By contrast, the purpose of this work is to
tudy the modelling and analysis of response based on household and
evice-related features. With specific emphasis on studying the effects
f those features on the DR response behaviour. 

. Individual datasets exploration and analysis 

In this study we use data from the Smart Grid, Smart City trial
roject. The SGSC project is one of the largest commercial scale smart
rid technology trial projects globally [12] . It includes a wide spectrum
f trial data, ranging from household and device-related data to EV utili-
ation. In our research the SGSC trial datasets utilised are the following:

• Customer household dataset 
•
 Peak events dataset s

4 
• Peak event response dataset 
• Home Area Network Plug Readings (HANPR) dataset 

The household dataset includes data related to the participating
ouseholds including the type of product they were involved with, en-
rgy and gas usage tier, type of house, type of devices in the household
mong others. The Home area plug readings dataset has the energy us-
ge readings of various household devices, and can offer information, in
 more granular level, of what type of electricity devices the customers
tilise. The peak events dataset contains temporal details regarding the
PR and DPP events, whereas the peak event response set has the ac-

ual consumption, baseline estimation and rebate amount data. Before
pplying machine learning techniques for modelling DR response be-
aviour, we use exploratory data analysis and data exploration tools to
re-process the various datasets. 

.1. Household & HANPR data analysis 

Initially in the household dataset we drop some features irrelevant
o our analysis. That includes information on non-tariff products(e.g.
ifestyle audit, feedback technology), redundant features (e.g. internal
eferences), and in general non-informative features for how partici-
ants have responded in DR events. Although in the SGSC trial cus-
omers were offered a few tariff products, in this work the analysis is
ocused on the incentive-based DPR product. Therefore, we filtered out
ll the households which did not participate in the DPR scheme. After
he filtering stage the resulting dataset did not have any missing entries.

The household dataset includes both numerical and categorical fea-
ures (qualitative variables) with the majority of the features being cat-
gorical variables. When there is a mixture of both types it can be tricky
o visualise the level of association between all these features. In this
ork, the approach we have selected is splitting the dataset in two sub-

ets (based on the type of features) and calculating the Spearman cor-
elation for the numerical variables and the Cramér’s V 

2 metric [46] .
igs. 1 and 2 visualises the level of association for numerical and cate-
orical features respectively. 

Especially in our study, where one of the main purposes of the re-
ression models is to investigate the relationship between the input vari-
bles and the households’ response for DR, multicollinearity among the
nput variables can lead to misleading analysis of the effects of the input
ariables on the DR response, as well as erroneous interpretations of the
tted models [24,47,48] . 

From Fig. 1 we can see that in general the numeric features are not
ighly correlated with each other. The only case where there is a some-
hat significant correlation is among the features related to household’s
ower generation meters (number of gross and net solar generation me-
ers, number of general supply meters, number of miscellaneous gener-
tion meters); which is to be expected. In Fig. 2 we can identify that
here are not really strong associations among the categorical features,
ith the exception to the following cases below: 

• Between the assumed dwelling type and the actual dwelling of par-
ticipating household. 

• Between the air-condition type and the response to whether the par-
ticipating household has air-condition. 

• Among the gas-related features of the household. 

In relation to the HANPR data, where there is more granular infor-
ation about each household’s devices, we explored whether we could

ngineer features related to the participants devices. That was done for
he potential use of these features in the prediction of each household’s
esponse to the DPR events. Unfortunately this dataset only had relevant
evice data for a small proportion of the total participating households
et, therefore, we have not utilised these features further in our analysis.
on’s 𝜒 statistic —, giving a value between 0 and +1. [46] 
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Fig. 1. Spearman’s correlation among the numerical 
household characteristics. The colour bar indicates the 
value of the correlation ranging from −1 to +1 . 

Fig. 2. Cramér’s V association for the categorical household features. The colour bar indicates the value of this association measure, ranging from 0 to 1. 

5 
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Fig. 3. Number of DPR events per day (a), per season and (b), and per hour of day (c). 
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.2. Peak events & response data analysis 

Among the products that were offered in the trial project there were
wo peak event products: dynamic peak pricing (DPP) and dynamic peak
ebate (DPR). In this study, the focus of modelling and analysis is the
ncentive-based DPR programme. In the DPR scheme the participating
ouseholds were offered a rebate amount (constant at 𝐴𝑈𝐷 4 . 5∕ 𝑘𝑊 ℎ )
o decrease their electricity consumption compared to their baseline es-
imation. 

Across the running time frame of the SGSC trial there were 18 DPR
vents, as it is illustrated in Fig. 9 of the Appendix A. The duration of the
PR events ranges from two to four hours, and they have only happened
uring the weekdays (mainly Thursday and Friday), primarily during
he summer and winter months, as well as mainly in the late afternoon
ours, as shown in Fig. 3 . Since this is a dataset of domestic consumers
rom Australia, it is natural to see the peak events occur in the summer
n early afternoon, when there is maximal use of air conditioning units.

Moving on the DPR response data, for the rebate programme we have
omplete data for only 13 out of the total of 18 DPR events (found in the
eak event dataset). This means that we have the actual consumption
nd the baseline estimation for all participants, as well as the rebate
mount, for 13 peak events. At this point, we should note to the reader
hat when we use the term response to a DR event we are referring to the
ercentage difference between the actual electricity consumption of
he household and its estimated baseline consumption, for the duration
f the specific DR event — as described in Eq. (1) . 

 𝑖,𝑗 = 

𝑙𝑜𝑎𝑑 𝑖,𝑗 − 𝑏𝑎𝑠𝑒 𝑖,𝑗 

𝑏𝑎𝑠𝑒 𝑖,𝑗 
× 100 (1)

Where 𝑟 𝑖,𝑗 is the response of household 𝑖 for the DR event 𝑗. Re-
pectively, 𝑙𝑜𝑎𝑑 𝑖,𝑗 is the actual consumption, and 𝑏𝑎𝑠𝑒 𝑖,𝑗 is the baseline
onsumption (estimated by the service provider) of household 𝑖 for the
uration of the DR event 𝑗. This metric was selected with the reasoning
hat it has the advantage of being comparable across different customers,
ontracts, and DR schemes. But, at the same time there are limitations;
.e. errors of it constituent parts (errors in baseline estimation) can prop-
gate to the response variable. Due to the fact that baseline estimation
s one of the basic issues for demand response schemes [49,50] , we in-
estigate any potentially faulty estimations of baseline and we filter out
hese data points. 

First, given that a typical household consumes in average more than
.45 kWh per 2 h, we exclude from our analysis all the cases where the
aseline estimation is lower than 0.01 kWh. We can infer that house-
olds consuming less than this electricity consumption indicate proba-
le faulty values in the baseline estimation, or that the households are
ot really used by their owners and therefore there is no reason for in-
luding them in our response analysis. 
6 
In Table 1 we provide the descriptive statistics of the various cus-
omers’ actual and baseline consumption across the DPR events, as well
s of their received rebates and their response for the DPR events. The
escriptive statistics include the mean value, the standard deviation
std), minimum and maximum values, and the quartiles (25%, 50%,
5%) 

We can see that the average response for the DPR scheme is positive
34.25%), meaning that on average a participating household will not
ecrease their consumption during a peak (DPR) event but actually in-
rease it by around a third. We can also see that the standard deviation
std) of how customers have responded in the DPR events is exception-
lly high ( ≈ 800%). This could be partly attributed to outliers and poten-
ial issues with baseline estimation. Looking at the 3rd quartile (75%)
alue of response we can see that it is positive. That means that quite
ften ( > 25% of the cases) households have not actually decreased their
onsumption during a DPR event. The extremely high maximum values
nd standard deviation of responses indicate an issue with outliers in
he data. 

We filtered out the DPR events which show irregular distribution pat-
erns, and to address the issue found with the outliers in the remaining
PR events we employed unsupervised techniques for outlier/anomaly
etection. The outlier detection is implemented on each DPR event,
nd not on each household. Mainly because the baseline estimation can
hange through time, and also because the number of DPR events per
ouseholds is really small to do any meaningful outlier detection. 

The algorithms that we examined for this task are the Local Outlier
actor (LOF) algorithm [51] , and the Isolation Forest [52] . The applied
OF algorithm is a density-based approach which employs the k-nearest
eighbours to estimate the local density of each sample, and tries to
dentify samples which have significantly lower density to its surround-
ng datapoints. The isolation forest algorithm takes a different approach
o outlier detection, with explicitly isolating the anomalies instead of
rofiling normal samples [52] . It uses an ensemble of random splitting
rees, and considers outliers those datapoints which have short average
ath lengths on these trees. 

In this study we applied an approach similar to the algorithm pro-
osed in Cheng et al. [53] where the two algorithms are combined to
ry and overcome their respective limitations. First we applied the Iso-
ation forest and extracted an initial set of outliers, and on that ini-
ial set the LOF algorithm was applied to perform local outlier de-
ection and get the final set of outliers. The distribution of the var-
ous households’ response 𝑟 𝑖,𝑗 per DPR event after removing the out-
iers/anomalies is illustrated on Fig. 4 . From Fig. 4 it is apparent that
ven after removing the outliers there is a high variance in how house-
olds have responded to DR signals. This result is in accordance with
revious work in the literature [4] , where it is presented that the aver-
ge reduction DR trials is ranging between 10% and 50%. The issue
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Table 1 

Descriptive statistics of the consumers’ actual and baseline consumption, rebate amount and response across 
the DPR events. 

Actual consumption ( kWh ) Baseline consumption ( 𝑘𝑊 ℎ ) Rebate amount ( 𝐴𝑈𝐷) Response (%) 

mean 3.331 5.360 14.501 34.247 

std 3.620 4.889 17.148 799.552 

min 0.000 0.100 0.000 − 100.0000 

25% 1.031 1.865 2.803 − 70.637 

50% 2.094 3.936 9.100 − 40.411 

75% 4.293 7.405 19.660 7.204 

max 39.565 50.972 164.800 66218.750 

Fig. 4. Violin plots showing the probability density of households’ response (as defined in Eq. (1) ) for ten DPR events. The circle marker shows the median of the 
data and the box inside each violin plot indicates the interquartile range. 
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3 Type of statistical hypothesis test where the null hypothesis is well specified, 
contrary to the alternative hypothesis which is more loosely specified [55] . 
f variance in DR has been discussed also in the work of Aïd et al.
36] . 

A subsequent step, following the removal of the outliers from the
ataset is to study the distribution of the households’ responses to the
arious DPR events. We filter out the customers who have responded
o less than five (out of total 10) DPR events. The reasoning behind
his filtering of consumers is that there should be a minimum number
f events where they have responded, in order for this analysis to pro-
ide any meaningful insights. Fig. 5 illustrates that the distribution of
he consumers’ responses seems to be similar to a log-normal distribu-
ion. The distribution of the responses in this case is not symmetric and
ppears to be positively skewed. This tendency is the same across all
easons and it is apparent that it persists in the aggregated case too.
hen the data follow a skewed distribution, the median is often the

est measure of central tendency. That is the rationale behind select-
ng the median response per household (across the DPR events in which
hey have participated), rather than the mean as a measure of central
endency. 

.3. Temporal structure analysis 

A key hypothesis to explore would be whether participants are learn-
ng to respond better over time. This hypothesis has implications on the
election of consumers for response in DR events. In the case that con-
umers learn over time to respond better over a sequence of DR events,
hen a more dynamic view on the customers’ potential for DR should
e considered. For example, an aggregator could select these consumers
7 
ore often with the intention of a better response in the longer-term.
ne way to check this hypothesis is with the use of autocorrelation. 

We calculated the autocorrelation function (ACF) for every house-
old’s DPR responses and the distributions of 1-lag and 2-lag autocorre-
ation are presented in Fig. 6 . At first glance there appeared to be quite a
ew households that have relatively high autocorrelation values. But we
eed to confirm that the autocorrelations in the population from which
he sample is taken are statistically different from zero, rather than these
bserved autocorrelations being the result of randomness from the sam-
ling process. This can be achieved by employing the Ljung Box Q test
54] , which is a portmanteau 3 statistical test. In order to reject the null
ypothesis of the Ljung-Box Q test (that the data are independently dis-
ributed) the p-values must have lower value than the alpha significance
evel. 

By checking the p-values associated with the Ljung Box Q-statistics,
t the 5% significance level, we can see that only 29 households had
 statistically significant 1-lag autocorrelation and 21 households had
 statistically significant 2-lag autocorrelation — out of a total of 953
ouseholds. With these results, there is little evidence that there is a
emporal structure in the participants’ response to the peak events and
hat there is a learning process over time, at least for this dataset where
he majority of the customers participated only in a limited set of DR
vents. This points to an important insight for future DR trials, that could
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Fig. 5. Distribution plots on how households have responded per season. 

Fig. 6. Distribution plots of the 1-lag (left) and 2-lag (right) autocorrelations. 
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model. 
e conducted over a longer period of time, allowing better observation
f temporal structure and learning. 

Furthermore, by examining the response of households in Figs. 5 and
 it can be inferred that the response does not differentiate much among
he seasons. The same can be said for distinct days — DPR events only
appened in three days and all of them were during the work week —,
nd for distinct hours and months. Their distributions can be seen in the
igs. 14–16 of the Appendix A. 

. Modelling of demand response behaviour 

In this section we explore the potential relationship between the
ousehold-related features described in Section 3.1 and the median re-
ponse per household for DPR DR events, and extract the important
eatures for that purpose. As stated above (see Fig. 5 ) the median re-
ponse per household have been selected as a target variable due to the
kewed distribution of the responses, and the nature of the inputs vari-
bles (which is at the household level). The distribution of the target
ariable is presented in Fig. 7 . For that purpose we train different types
8 
f predictive models on the household data set, and the models used in
his work are the following: 

• Linear model 
• Gradient Boosting Regression 
• Random Forest regression 
• Dense Neural Network 

Initially, we split the features’ data in training, validation and test
et and then we pre-process the data. Our dataset is predominantly
omposed of categorical features (see Section 3.1 ). As a result, the pre-
rocessing of the dataset mainly involves converting the categorical fea-
ures to numerical, using an embedding system (e.g. one-hot encoding
r ordered target encoding). In general, the numerical features were not
re-processed because they are of similar scale and distribution. More-
ver, in our case there were not any missing data, so there was no im-
utation step involved. In the subsequent paragraphs we describe more
n detail the models used, and the actual encoding system used for each
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Fig. 7. Distribution plots of the median response per household and its breakdown in seasons. 
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In the linear model the estimation of its parameters is done using
he Ordinary Least Squares (OLS) method, which is a widely used and
ommon approach. This kind of linear model offers good interpretability
f the potential relationship between the predictor variables and the
arget variable [56] , and serves as a benchmark for the comparison of
he other learning algorithms. In this work we utilised the statsmodels
mplementation [57] of an OLS linear regression, with one-hot encoding
f the categorical variables. 

In this study, the gradient boosting on decision trees algorithm is
ased on the CatBoost implementation [58] . This implementation in-
ludes a permutation-driven alternative to the classic gradient boosting
lgorithm, and has a built-in embedding approach for categorical fea-
ures based on target statistics [59] . The number of trees used in the
nal model are selected, based on the iteration that outputs the optimal
valuation metric in the validation set. For the training of the Random
orest model we utilised the scikit-learn [60] implementation with its
efault parameters. The pre-processing of the dataset was done in a sim-
lar fashion to the gradient boosting case. 

Here, we constructed a two-hidden layer dense neural network using
he Keras API which runs on top of the TensorFlow platform [61] . The
etwork’s hyperparameters — in our case the number of units for each
ayer and the learning rate of the Adam optimiser [62] — were tuned
ased on the Keras Tuner library [63] , with the use of the random search
ethod [64] . We also experimented with ”deeper ” architectures (higher
umber of layers) but there was no gain in the predictive performance of
he model, and therefore were not selected as the final model. According
o the survey of Hancock and Khoshgoftaar [65] the most common en-
oding for categorical variables in neural networks is One-Hot encoding.
n our case we have used the CatBoost encoder (as in the earlier models)
or consistency reasons and to make the results more comparable. 

The various machine learning models were trained and validated on
0 different splits of the dataset (in training, validation and test sets).
hat was done in order to evaluate their average performance and give
ore informed values of their test error metrics. The selected metrics

re root mean squared error (RMSE), mean average error (MAE), mean

verage percentage error (MAPE) and 𝑅 

2 , and were evaluated on the test
et of the data. The results are presented in Table 2 . For a more detailed
escription of the models’ implementation and the exact values of the
ptimal hyperparameters, the reader can always refer to the Jupyter
otebooks/codebase in the GitHub repository as found in Section 5 . 

Based on the combination of the models performance on the differ-
nt error metrics, the Gradient boosting algorithm seems to produce the
est results in the test set, followed by the linear model. In general, the
 o  

9 
esults across all these four models are quite similar (both for linear and
on-linear estimators), and comparable to the existing literature. For
xample, the MAPE metric of models for individual customers’ response
s in the range of 41–45% [32,33] . In all cases the 𝑅 

2 is quite low, and
herefore we can infer that this household features are not very infor-
ative predictors of the median response. But, even though the input

ariables explain one a small percentage of the variance in the model,
hat does not necessarily mean that they need to be discarded as use-
ess. In this work, the purpose is to explore the relationship among the
eatures and their importance, and not high prediction accuracy. When
he independent variables are statistically significant, we can still draw
mportant conclusions about the relationships between the variables. 

Examining the results’ summary of the linear model, we can see that
he in-sample 𝑅 

2 ≈10%, and primarily that the p -value of the F-statistic
s quite low. In the multiple regression setting this fact means that there
s at least one statistically significant feature, and therefore there is a re-
ationship between the household features (at least of a subset of them)
nd the household’s median response. Moreover, examining the p-values
f the t-test for individuals features we can see that, at the 95% signifi-
ance level, there are the following statistically significant features: 

• The level of a household’s dryer usage 
• If a household has internet access 
• If the household is using gas oven 
• If the household is using gas for hot water 
• If the household has Air-condition 
• The number of a household’s controlled loads 
• The number of refrigerators in a household 
• Whether the household stayed on the trial for the duration 

The above are supporting evidence that there is a statistically signifi-
ant relationship between the input variables and a household’s median
esponse, albeit not a strong one. Therefore we extend further our anal-
sis by exploring important features and discussing the contributions of
hese important features on the customers’ response, in an incentive-
ased DR scheme. 

.1. Identification of important features and discussion of their effects on 

esponse behaviour 

Given that there is a relationship between the customer households’
eatures and the response of a household, an interesting subsequent step
s to examine which features are important for the response behaviour
f the DR consumers. Identifying which features are important cannot
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Table 2 

Average values of evaluation metrics (in the test set) for various learning models. 

RMSE MAE MAPE 𝐑 𝟐 

Linear model 18 . 769 ± 0 . 794 15 . 284 ± 0 . 625 0 . 465 ± 0 . 099 0 . 009 ± 0 . 027 
Gradient Boosting regression 18 . 711 ± 0 . 714 15 . 246 ± 0 . 631 0 . 473 ± 0 . 101 0 . 015 ± 0 . 018 
Random Forest regression 19 . 721 ± 1 . 611 16 . 107 ± 1 . 389 0 . 484 ± 0 . 101 −0 . 108 ± 0 . 240 
Dense Neural Network 18 . 906 ± 0 . 641 15 . 469 ± 0 . 663 0 . 484 ± 0 . 101 −0 . 008 ± 0 . 063 
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nly potentially lead to more accurate prediction of response behaviour,
ut also provide insights to the data and the models utilised. 

In our study we have applied two popular model-agnostic interpreta-
ion methods to examine features’ importance . The SHAP framework
nd the permutation feature importance method. These two methods
ave been applied to different models in order to get more decorrelated
esults and a less biased set of important features. The permutation im-
ortance algorithm has been applied for the linear and random forest
egression models. The results for the test set appear in the Fig. 12 of
he Appendix A. In the x-axis of the importance graph we have the im-
ortance of the feature (difference between the model’s score metric
ith and without each feature’s permutation), and in the y-axis we have

he features ranked by their importance magnitude. The SHAP method
as been applied for the gradient boosting and dense neural network
odels. The importance of each feature in this case is the mean of

he absolute Shapley values across the test data. The sorted features
y decreasing magnitude of importance are illustrated in Fig. 11 of the
ppendix A. 

Based on these four different models and two feature selection frame-
orks we have four distinct rankings of the features’ importance. To
vercome this diversity among them and create a global set of ranked
mportant features we have utilised an ensemble feature ranking based
n a Markov Chain rank aggregation method [66] . 

Understanding the drivers behind response behaviour in DR schemes
nd their effect on response can have wide implications on the use
f demand response for the provision of demand-side flexibility ser-
ices. Among others, a deeper comprehension of residential response
ehaviour can assist service providers with targeting households for DR,
etter selection strategies for responding in individual DR events, as well
s with the design of more successful, fair, with high participant engage-
ent DR schemes. 

In this work, we approach the study of the effect of households’ char-
cteristics on the residential response behaviour in two ways. We exam-
ne the distribution of the residential responses across the various impor-
ant households’ characteristics, and we investigate the impact of these
eatures on the Gradient boosting model’s output, employing the versa-
ile SHAP interpretable framework. The local explanations of the SHAP
ethod for the samples of the test set result to global model insights.
he Gradient Boosting regression model has been selected because it is
he model with the best prediction accuracy (across the models used in
his study). The intuition behind using two different methods is that this
ay we cross-check the results between them, and therefore can acquire

nsights, on the residential response behaviour in DR events, which are
otentially less biased. 

In more detail, based on the results of the ensemble ranking algo-
ithm we select the features with the highest rank, and for each feature
e explore how the various levels of the categorical input variables in-
uence the households’ response. How the various numerical features
ffect consumers response in DPR events can be seen in Fig. 8 . E.g.
ouseholds with high number of refrigerators tend to not follow the
R request, whereas households with a low number of refrigerators im-
lies that the household will decrease more their consumption during
R events. Fig. 13 presents the empirical cumulative distribution func-

ion for the different levels of the most important categorical variables.
he rationale for using this type of plots is that by comparing the CDFs
or different categories we can estimate whether the categories influence
10 
ifferently the response behaviour of the DR participants. Categories of
he same variable with ”steeper ” CDFs indicate that households belong-
ng in this category tend to have higher response, and decrease more
heir actual electricity consumption (compared to their baseline) than
ouseholds belonging to the other categories — and vice versa. 

The graphs that illustrate the contributions of each feature to the
radient boosting regression’s model are Fig. 8 and Fig. 10 . Each point

n these graphs is the Shapley value for a specific feature and an in-
tance of the model’s output. Fig. 8 combines feature importance with
eature effects. The features are sorted by their importance magnitude
nd the colour represents the value of the feature from low to high. The
rey colour denotes a categorical variable, where there is no notion of
igh and low values. Although this plot illustrates information about
he relationship between the values of households’ characteristics and
he impact on the model’s prediction, for numerical variables, it is not
eally informative for categorical variables. In this case to see the ex-
ct form of the relationship we have to look at Fig. 10 , where we plot
he Shapley value of that feature with its categories for all the examples
n the test dataset. On the y-axis are the SHAP value for that feature,
hich represents how much knowing that feature’s value changes the
utput of the model for that sample’s prediction. Also, because of the
ay we have defined the households’ response (percentage difference
etween actual and baseline consumption), negative SHAP values indi-
ate decrease in the electricity consumption and thus better response.
oreover, the points in this plot are coloured based on the level of the

ousehold’s electricity usage level. If an interaction effect is present be-
ween the plotted feature and the electricity usage level it will appear
s a distinct colouring pattern. 

After careful examination of the aforementioned graphs we can pro-
ide the following insights on the effects of households’ characteristics
n the DR response behaviour. As we can see from both approaches,
ouseholds that have access to the internet tend to respond better in DR
vents. We can infer that this feature does not have a direct effect on
he DR response, but most likely it is associated with characteristics of
he residents. One interesting insight that we can infer from Figs. 10 and
3 (and seems counter-intuitive) is the fact that the reported effort level
aken by the households, to respond to a DR signal, does not seem to
ave an effect on the households’ actual response. Households that own
ir-conditioning systems respond better than the ones which do not. The
ouseholds that do not have a gas-fired oven tend to respond better than
he ones that do. 

Another interesting insight is that the households with medium elec-
ricity usage level tend to respond better than the ones with low or high
sage levels. Existing studies on the literature have indicated that high-
se households tend to respond significantly more in load reduction
han low-use households [7] . This could potentially be attributed to the
esign of this specific DR peak scheme, where the rebate amount per
nergy unit decreased is constant. Moreover, the customers in warmer
limate zones tend to have a better response behaviour than the ones
iving in areas with mild climate conditions. The residential customers
ith medium and high level of clothes dryer usage respond better than

esidential properties which do not use the dryer frequently (or at all). 
We can see that consumers with medium levels of gas usage tend to

e more responsive in DR peak events than the ones with low levels. It
eems that households with high levels of both gas and electricity usage
end to perform worse in response behaviour. The dwelling type does
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Fig. 8. SHAP values of each household characteristic (feature) for every sample of the data. 
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ot seem to have a big effect on the response behaviour of customers. We
ould cautiously infer that the consumers residing in units (apartments)
ith medium electricity usage level tend to respond better. 

. Conclusion and further work 

For the wider realisation of the demand-side flexibility potential, the
idespread utilisation of residential DR resources is essential. However,

esidential response behaviour poses certain challenges. Accurate mod-
lling of response behaviour of DR participants and a deeper compre-
ension of the factors driving response behaviour can assist in allevi-
ting these challenges with better targeting and selection strategies of
onsumers for DR and the design of better-tailored schemes. 

In this work, the authors approach the study of modelling and anal-
sis of response behaviour under DR by utilising not primary load data
which is mainly used in such studies), but datasets related to household
haracteristics, when responding in an incentive-based DR programme.
o this end, the study makes use of data from one of the largest open-
ource DR trial projects involving residential (household) consumers.
e explored the datasets and pre-processed them accordingly (i.e. check

or multi-collinearity, handling of missing values, outlier/anomaly de-
ection and filtering). We explored the possibility of participating house-
olds learning to respond better over time, but we did not find support-
ng evidence for this hypothesis (at least for this specific DR scheme and
vailable dataset). 

We have showed that there is a statistically significant relationship
etween a household’s response and a number of households’ charac-
eristics, and we have applied various machine learning techniques in
11 
earch of better prediction accuracy. The prediction accuracy of these
odels found by our study is in line with expectations, given previous
ork on prediction of response behaviour which only focused on load
ata. Future work could combine both types of data this (household-
elated features and load data), potentially yielding better prediction
ccuracy for residential response behaviour. 

We further explored and found the important features for modelling
he households’ response behaviour using two model-agnostic methods,
cross the different machine learning models. Next, we examined the ef-
ects of these important features on the households’ response behaviour
y using statistical distribution plots and interpretable AI methods based
n coalitional game theory. We found that households with internet ac-
ess, air-conditioning systems, power-intensive appliances (e.g. clothes
ryer), and with lower gas usage tend to respond better than average.
oreover, there are also some insights which raise questions about the

eported level of consumers’ engagement in DR schemes, and the indi-
idual rationale of customers’ response to DR signals. 

Finally, taking a longer-term view, we argue that data-driven stud-
es such as ours can provide key insights into better design of future
esidential DR trials, such that the data they collect can fill gaps in the
nowledge of researchers and practitioners. For example, in this study,
e could not detect a temporal trend showing an improvement in the

esponse of households, as they participate in more DR events over time.
his is likely due to the limited number of DR events the dataset from
he SGSC trial (after filtering, we found only 10 events had reliable,
igh-quality, usable data). Another question that cannot be answered
ased on this data is what is the elasticity of the expected percentage
emand reduction (response), w.r.t. the size of the financial reward of-
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ered by the DR aggregator or network operator. In practice we expect
his question to be important in designing, budgeting and optimising
nd budgeting residential DR schemes in the future. 

Overall, with the roll-out of ubiquitous smart meters and large-
cale availability of consumer-level response data, we argue data-driven
ethods will have an increasingly key role to play in the design of suc-

essful and fair DR schemes, with high participant engagement. 
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