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HIGHLIGHTS GRAPHICAL ABSTRACT

¢ An in-depth analysis of the response be-
haviour of a large number of households.

o Analysis of the temporal structure of re-
sponse behaviour.

e Data-driven modelling of DR response
based on household and appliance data.

e Study of the effects of important house-
holds’ characteristics on response be-
haviour.
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ARTICLE INFO ABSTRACT

Article history: Recent years have seen an increasing interest in Demand Response (DR), as a means to satisfy the growing
Received 21 January 2021 flexibility needs of modern power grids. This increased flexibility is required due to the growing proportion of
Received in revised form 24 March 2021 intermittent renewable energy generation into the energy mix, and increasing complexity in demand profiles
::'ieﬁfi iixir;h:?ilzom from the electrification of transport networks. Currently, less than 2% of the global potential for demand-side

P flexibility is currently utilised, but a more widespread adoption of residential consumers as flexibility resources

Keywords: can lead to substantially higher utilisation of the demand-side flexibility potential. In order to achieve this target,
Artificial intelligence acquiring a better understanding of how residential DR participants respond in DR events is essential — and
Machine learning recent advances in novel machine learning and statistical Al provide promising tools to address this challenge.

Artificial neural networks

This study provides an in-depth analysis of how residential customers have responded in incentive-based DR,
Ensemble methods

Demand response utilising household-related data from a large-scale, real-world trial: the Smart Grid, Smart City (SGSC) project.

Residential response behaviour Using a number of different machine learning approaches, we model the relationship between a household’s

Power systems response and household-related features. Moreover, we examine the potential effects of households’ features
on the residential response behaviour, and highlight a number of key insights which raise questions about the
reported level of consumers’ engagement in DR schemes, and the motivation for different customers’ response
level. Finally, we explore the temporal structure of the response — and although we found no supporting evidence
of DR responders learning over time for the available data from this trial, the proposed methodologies could be
used for longer-term longitudinal DR studies. Our study concludes with a broader discussion of our findings and
potential paths for future research in this emerging area.
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1. Introduction

The increasing proportion of renewable energy resources and the
growing adoption of new variable load types (e.g. Electric Vehicles) in
the energy mix poses new challenges to electricity grids [1]. The ef-
fective operation of power systems demands them to function within
a range of specific acceptable values for frequency and voltage. This
requires the electricity demand and supply to be balanced at all times
in power systems. Traditionally system operators have relied solely on
solutions such as expensive network reinforcements or keeping conven-
tional power plants open, and spinning reserve to provide reserve ca-
pacity.

An alternative approach for addressing these challenges is electricity
demand response (DR) [2]. DR is regarded as a potential tool that can
provide the necessary flexibility for mitigating the intermittency of re-
newable energy generation and the lower predictability of future loads
[1]. DR solutions allow grid operators to maintain the power grid gen-
eration and load balance at a low cost, while avoiding or delaying the
need for costly reinforcements of the power networks, or investing in
additional back-up generation.

According to a 2020 IEA report [3], less than 2% of the global po-
tential for demand-side flexibility is currently being utilised. The pre-
dominant sources of demand-side flexibility are industrial thermal loads
and processes, thermal comfort in buildings (both residential and non-
residential), charging of electric vehicles and on-site generation and en-
ergy storage [3]. This demand-side flexibility can be offered by Virtual
Power Plants (VPPs), demand response providers and prosumers [2].
Demand response has been identified as a key component for provid-
ing this needed flexibility across the research literature. Many studies
have explored the effectiveness and performance of demand response
schemes, and they have provided evidence to support that demand re-
sponse schemes (e.g. dynamic pricing schemes) can be used to provide
the necessary flexibility [4-7].

The demand response base is relatively low and the worldwide in-
ventory of flexible assets in the residential, commercial and industrial
sectors needs to grow multiple times higher than it is today [3]. For the
widespread adoption of demand response programmes there is the need
for participation in DR from distributed residential consumers, which
have a huge demand response potential. However, the diversified, het-
erogeneous and distributed nature of the residential DR assets makes it
more challenging for service providers (i.e. demand-side aggregators)
to participate in the electricity markets with demand-side aggregated
resources [8].

Accurately estimating the response behaviour of DR participants and
understanding the drivers behind their response is essential for address-
ing these challenges. An accurate forecast of response behaviour in DR
schemes can decrease the uncertainty related to the available flexibil-
ity, and is directly related to the reliability of the services provided to
the electricity grids. An enhanced understanding of customers’ response
behaviour can aid researchers, retailers and system operators to design
more accurate and precise pricing or incentive mechanisms for DR pro-
grammes. The design of a DR mechanism not only affects the profitabil-
ity of the participating entities, but also the success of the DR scheme.
Energy big data analysis and other data-driven approaches can be a pow-
erful tool for studying the consumers’ response behaviour [9].

In this work, we base our analysis on datasets from the Smart Grid
Smart City (SGSC) trial project data [10]. The SGSC project is one of the
world’s largest residential DR trials, running for almost 2 years. During
the duration of the trial project there were numerous product bundles
offered to the participating consumers [11]. The product bundles were
a combination of pricing/incentive schemes (e.g. dynamic peak pric-
ing, dynamic peak rebate, seasonal time-of-use, etc.) and usage feedback
technologies. For a more in-depth description of the SGSC trial project
the reader can refer to the project’s reports and the work of Motlagh
etal. [12].
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The focus of this work, within the larger SGSC trial, is on the
incentive-based dynamic peak rebate (DPR) scheme provided by the
network trial partner. In this programme, participating customers were
encouraged to reduce their electricity consumption by receiving rebate
incentives. These customers were notified of the DPR events via SMS no-
tifications 24 hours in advance of the event to request their participation
[11]. All the participants in this DR scheme were residential/domestic
customers.

1.1. Contributions and study outline

Our work provides new and complimentary insights, which can be
used to augment prior research and brings a more complete picture
of demand response behaviour, and the drivers behind it. Most stud-
ies reported in existing literature use household load data (energy con-
sumption data at different points in time) to predict response behaviour
(reduction of consumption as a response to a signal) of households,
and do not consider households’ characteristics. In this study, we use
household-related features such as the type of heating system, inter-
net connection, and air-conditioning units to assess their response be-
haviour. The main contributions of this work can be summarised as:

¢ In-depth analysis of the response behaviour of a large number of
households based on household and appliance data, from a large
real-world trial.

Prediction of the households’ response behaviour based only on
household-related data, with accuracy in line with expectations —
given results from previous studies on prediction of response be-
haviour focused on load data.

Analysis of the temporal structure of the response behaviour and the
responders’ ability to learn over time.

A detailed and interpretable study of the effects of the various house-
holds characteristics and appliances used, and their influence on en-
ergy reductions achieved.

Moreover, our research tries to promote more transparent and re-
producible research by using public demand-response data and making
available online the code needed to reproduce the exact results as a
public GitHub repository!. Through this study we hope to improve the
modelling and the understanding of DR response behaviour, for better
planning and decision-making in the demand response domain.

The remainder of this paper is structured as follows. We start by pre-
senting an overview of the data-driven methods utilised in this paper
and a literature review of the data-driven approaches used for the study
of demand response behaviour in Section 2. That way we provide the
context for our approach and we position our work to the existing litera-
ture. We then perform modelling and analysis of the response behaviour,
by first exploring the available response-related datasets. The first step
is focused on ”cleaning” the datasets and identifying potential charac-
teristics — as well as issues with the data —, utilising existing state-
of-the-art exploratory data analysis and statistical tests in Section 3.
We also explored the possibility of DPR responders learning over time,
and searched for temporal patterns of the response. Subsequently we
applied machine/statistical learning techniques to model the relation-
ships between the households’ response and household-related features
in Section 4. Having modelled the relationship between the households’
features and how their response to DR events, we then try to pinpoint
the important features of this relationship and we also study and dis-
cuss the effect of these features on the households’ response under the
DR scheme. Section 5 concludes this work with a discussion and poten-
tial extensions of this study.

1 See the code availability section at the end of this study for the URL.
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2. Data-driven approaches for demand response behaviour

In principle, the problem of modelling the response of consumers
under DR schemes is a complex and dynamic problem based on both
external and internal (to each consumer) factors. Data-driven methods
offer a means for identifying patterns, modelling, and acquiring insights
from the available datasets [9].

2.1. Overview of key data-driven techniques

The multitude of data-driven methods can be grouped according to
their application. There are exploratory data analysis tools where,
through the use of descriptive statistics and data visualisation, we try
to study the structure of the data, variables’ distribution, and the inter-
dependencies within the data sets [13]. Data exploration is used as an
initial step acting as a guide for the subsequent treatments to the data.

Data preparation is the step of pre-processing the raw data for de-
noising, identifying discrepancies in the data and potential systematic
errors. In the context of demand response, among others, that would
mean pinpointing “faulty” smart meter readings, baseline estimations,
and potential presence of extreme compensation values. There is a need
to pre-process data to identify missing entries from smart meters read-
ings, customers’ surveys and in general from collected data, to avoid low
quality data becoming inputs to models resulting to erroneous estimates
and insights. Resolving the challenge of missing data can be achieved
by employing complete-case analysis or imputation techniques (rang-
ing from simple mean imputation to multiple imputation with Markov
Chain Monte Carlo [14]). In missing data analysis it is paramount to un-
derstand the underlying missing data mechanism [15], e.g. whether the
data are missing, or not, at random. De-noising the data entails pinpoint-
ing and filtering out errors in the data and/or outliers. Data preparation
is an important process of the data analysis pipeline; real-world data is
impure and noisy, and errors and biases of raw data can propagate to
subsequent steps of analysis and modelling, with a great effect on the
results of data-driven approaches [16].

Furthermore, data mining can be used for clustering consumers be-
haviour to provide suggestions of consumers for DR schemes, selection
of participants in DR events, and design of DR programmes. Frequently
used categorisation techniques include both supervised classification
and unsupervised clustering algorithms. Methods such as k-means and
self-organising maps have been widely used in the context of demand
response and for the study of response behaviour. In demand response,
where a significant proportion of data is time-series, it is essential to use
tools from time series analysis to discover potential underlying tempo-
ral structure. These tools include autocorrelation, identifying trends and
seasonality patterns. For example, autocorrelation (or serial correlation)
is a measure of linear association between lagged values of a sequence
(e.g. time series). i.e. a lag k autocorrelation is the correlation between
values that are k time periods apart.

Another important application is also the modelling of data and esti-
mation of variables of interest. In DR, that would be prediction of energy
demand to provide information to support energy producers in the ac-
curate planning for energy production, estimation of load curtailment,
reliability of DR participants, etc.

Widely used techniques for practical data-driven modelling of data
are ensemble methods and artificial neural networks [17]. The most
popular ensemble methods are gradient boosting and random trees. Gra-
dient boosting [18] is an ensemble of weak predictive models (typically
decision trees) and it is an additive, forward stage-wise boosting model.
This means that the algorithm sequentially adds new decision trees to
the model without altering the parameters and coefficients of the deci-
sion trees already added [18]. Moreover, this type of models allow for
the optimization of arbitrary differentiable loss functions [19].

Random forest is also an ensemble method based on decision trees,
and it operates by constructing a multiple of independent decision trees
that are trained independently on a random subset of data [20]. To grow
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each tree, the inputs (or combinations of them) at each node are se-
lected in a random fashion [20]. Contrary to the gradient boosting al-
gorithm (where the weak models are built sequentially), random forests
are an averaging ensemble method; meaning that they build weak deci-
sion trees independently and then they take the predictions’ average of
these weak estimators.

Artificial neural networks are computational models inspired by, al-
beit not identical to, biological nervous systems. The two basic architec-
tures of artificial neural networks are the feed-forward and the recurrent
architecture [21]. A dense neural network is a feed-forward network
where all its layers are fully connected. More specifically, each unit in a
dense (fully-connected) layer is connected to all the units in the subse-
quent layer [22]. Dense neural networks (and feed-forward neural net-
works in general) can be thought as universal function approximators
which are constructed to achieve statistical generalisation [22].

For domains like demand response, which have not been extensively
studied and evaluated, there is the need to understand how the models
attained their results and not focus only on their predictive performance
[23]. For that goal, there is a need for interpreting data-driven models.
Two popular model-agnostic interpretation methods are the (SHapley
Additive exPlanations) SHAP framework [24] and the permutation fea-
ture importance technique [20,25]. We have employed these two ap-
proaches because prior research has shown that, in cases where the in-
put variables are categorical (like in this study), the measures of variable
importance and Gini importance can be biased towards categorical fea-
tures with more categories [26]. These two frameworks approach the
problem of feature importance from different angles.

In principle, the permutation feature importance algorithm assigns
importance to the various input variables by taking into account the
deterioration in model performance, whereas SHAP is based on the fea-
tures’ contribution to the model predictions. In more detail, the model-
agnostic permutation feature importance algorithm calculates the im-
portance of a feature by measuring the increase/decrease in the model’s
error metrics when the values of this feature are randomly shuffled [25].
This permutation breaks the relationship between the feature and the
target variable, thus a model with higher error metrics (positive impor-
tance) is indicative of the model’s dependence on the feature. On the
other hand, negative importance (lower error metrics after permutation)
means that the feature is not important for the model [20].

The SHAP approach is a framework for interpreting the models’ pre-
dictions, by assigning to each feature an importance value for a partic-
ular prediction [24]. The SHAP framework explains the prediction of
a data instance x by computing the contribution of each feature [24].
The contribution of a feature is calculated by computing Shapley values
from coalitional game theory [27]. Under this paradigm, the players in
a coalition are the feature values of data instance x and the Shapley val-
ues denote how the pay-out (in this case the prediction) is distributed
among the features in a fair manner.

2.2. Related work on data-driven methods for DR response behaviour

The subject of the analysis and modelling of customers’ re-
sponse behaviour has been broadly studied across the DR literature
(see Antonopoulos et al. [28] for a full review). There are numerous pa-
pers where data-driven techniques have been used to model and predict
customers’ response to DR signals. Zhou et al. [29] estimate the reduc-
tions in electricity consumption during demand response time-windows,
by incorporating latent variables (i.e. not observable variables) in statis-
tical forecasting models — i.e. Ordinary least squares, k Nearest Neigh-
bours, Support vector, and decision tree regression models. The latent
features are constructed from the consumer’s consumption data by ap-
plying sequentially a Conditional Gaussian Mixture model and a Hidden
Markov model. Liu et al. [8] train a Long Short-term Memory (LSTM)
neural network on simulated consumers’ response data. The response
data were generated using a response function which is quadratic to the
customers’ received incentives.



I. Antonopoulos, V. Robu, B. Couraud et al.

Paterakis et al. [30] approach the problem of the prediction of cus-
tomers’ response under dynamic DR price signals, by using a hybrid load
forecasting model. The time-series load data are decomposed to various
frequency signals, by applying wavelet transform, which are then fed as
inputs to dense neural networks. The outputs from the neural networks
are aggregated to create the final response forecast. Holtschneider and
Erlich [31] estimate the response behaviour to DR price signals by apply-
ing a dense neural network. To tackle the issue of sparse training data
for predicting response behaviour — there are only a few DR events
per year —, there is work where they have employed non-parametric
approaches i.e. an ensemble of k-Nearest Neighbours regression mod-
els [32], or transfer learning-based approaches [33]. In the work of Cai
et al. [33] they attempt to predict the customers’ response behaviour in
incentive-based DR by using load data from DR participants with similar
load consumption behaviour.

The input data to the aforementioned data-driven algorithms have
been found to be numerous.They are features engineered from the con-
sumers’ load data i.e. maximum and minimum daily load, mean con-
sumption [8,32], as well as the actual data of consumers’ electric-
ity consumption [29,30,33]. Quite often time-related features are in-
cluded in the model i.e. week, month, hour of the DR event, seasonal
scores [8,32], as well as environmental factors i.e. ambient air temper-
ature [29,33] and humidity [33]. The target variable for DR response
prediction has mainly been the electricity consumption of consumers
[8,29,30]. Cai et al. [33] forecast the curtailed load (difference of the ac-
tual electricity consumption from the estimated baseline consumption),
and Kang and Lee [32] the proportion of realised load reduction to the
requested load reduction. The training data of the learning algorithms
has primarily been simulated or is semi-synthetic data [8,29,30], but
there are also cases where real-world DR data have been used [32,33].

Moreover, clustering the main DR participants attributes is a typi-
cal approach for analysing the various response behaviours. The litera-
ture has mainly based their analysis on the customers’ load data for the
analysis of the response behaviour. Motlagh et al. [12] have focused on
knowledge extraction from load profile data by comparing customers’
consumption behaviours under DR with the ones of the control group.
They use Principal Component analysis to extract the principal compo-
nents from half-hourly consumption data and then they cluster them,
based on these principals components, by using self-organising maps.
Other clustering algorithms like k-means [34], expectation maximisa-
tion [34], and finite mixture-based clustering [35], have been employed
for understanding the DR participants behavioural use.

Other widely applied Al approaches used to study the behaviour of
demand response are mechanism design and cooperative game theory
— which are often modelling, not data-driven. These methods have been
employed for the design of demand response contracts, such as in [36-
38], demand response incentive mechanisms [39,40], demand-side and
consumer coalitions [41-43], or coordinating specific devices, such as
electric vehicles [44,45].

It is noted that, while the previous papers have provided valuable
insights and advancements they tend to focus on the analysis of response
using primarily load data. By contrast, the purpose of this work is to
study the modelling and analysis of response based on household and
device-related features. With specific emphasis on studying the effects
of those features on the DR response behaviour.

3. Individual datasets exploration and analysis

In this study we use data from the Smart Grid, Smart City trial
project. The SGSC project is one of the largest commercial scale smart
grid technology trial projects globally [12]. It includes a wide spectrum
of trial data, ranging from household and device-related data to EV utili-
sation. In our research the SGSC trial datasets utilised are the following:

e Customer household dataset
e Peak events dataset
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o Peak event response dataset
e Home Area Network Plug Readings (HANPR) dataset

The household dataset includes data related to the participating
households including the type of product they were involved with, en-
ergy and gas usage tier, type of house, type of devices in the household
among others. The Home area plug readings dataset has the energy us-
age readings of various household devices, and can offer information, in
a more granular level, of what type of electricity devices the customers
utilise. The peak events dataset contains temporal details regarding the
DPR and DPP events, whereas the peak event response set has the ac-
tual consumption, baseline estimation and rebate amount data. Before
applying machine learning techniques for modelling DR response be-
haviour, we use exploratory data analysis and data exploration tools to
pre-process the various datasets.

3.1. Household & HANPR data analysis

Initially in the household dataset we drop some features irrelevant
to our analysis. That includes information on non-tariff products(e.g.
lifestyle audit, feedback technology), redundant features (e.g. internal
references), and in general non-informative features for how partici-
pants have responded in DR events. Although in the SGSC trial cus-
tomers were offered a few tariff products, in this work the analysis is
focused on the incentive-based DPR product. Therefore, we filtered out
all the households which did not participate in the DPR scheme. After
the filtering stage the resulting dataset did not have any missing entries.

The household dataset includes both numerical and categorical fea-
tures (qualitative variables) with the majority of the features being cat-
egorical variables. When there is a mixture of both types it can be tricky
to visualise the level of association between all these features. In this
work, the approach we have selected is splitting the dataset in two sub-
sets (based on the type of features) and calculating the Spearman cor-
relation for the numerical variables and the Cramér’s V> metric [46].
Figs. 1 and 2 visualises the level of association for numerical and cate-
gorical features respectively.

Especially in our study, where one of the main purposes of the re-
gression models is to investigate the relationship between the input vari-
ables and the households’ response for DR, multicollinearity among the
input variables can lead to misleading analysis of the effects of the input
variables on the DR response, as well as erroneous interpretations of the
fitted models [24,47,48].

From Fig. 1 we can see that in general the numeric features are not
highly correlated with each other. The only case where there is a some-
what significant correlation is among the features related to household’s
power generation meters (number of gross and net solar generation me-
ters, number of general supply meters, number of miscellaneous gener-
ation meters); which is to be expected. In Fig. 2 we can identify that
there are not really strong associations among the categorical features,
with the exception to the following cases below:

e Between the assumed dwelling type and the actual dwelling of par-
ticipating household.

e Between the air-condition type and the response to whether the par-
ticipating household has air-condition.

e Among the gas-related features of the household.

In relation to the HANPR data, where there is more granular infor-
mation about each household’s devices, we explored whether we could
engineer features related to the participants devices. That was done for
the potential use of these features in the prediction of each household’s
response to the DPR events. Unfortunately this dataset only had relevant
device data for a small proportion of the total participating households
set, therefore, we have not utilised these features further in our analysis.

2 It is measure of association between two nominal variables — based on Pear-
son’s y? statistic —, giving a value between 0 and + 1. [46]
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Correlation plot of numerical features Fig. 1. Spearman’s correlation among the numerical
1.00 household characteristics. The colour bar indicates the
‘ value of the correlation ranging from —1 to +1.
Number of general supply meters

0.75
Number of controlled load meters - .
0.50
Net solar power generation meters - .
0.25
Gross solar power generation meters —. .
0.00

Number of other power generation meters - .
—-0.25

Number of refrigerators - .
—-0.50

Number of heated rooms - .
-0.75

Median response - -
' | | ! ' ! ! —-1.00

- 1.0

Customer Service Status
Climate zone

Assumed dwelling type
Assumed gas usage - 0.8
Assumed electricity usage
Dwelling type

Clothes dryer usage

Effort level -06

Air-condition type

Power generation capability

Access to Internet - - 0.4
Use of gas

Use gas for heating
Use gas for hot water
Use gas for cooking -0.2
Poolpump

Air-conditioning —

Other gas-using appliances -

-0.0

Fig. 2. Cramér’s V association for the categorical household features. The colour bar indicates the value of this association measure, ranging from 0 to 1.
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Fig. 3. Number of DPR events per day (a), per season and (b), and per hour of day (c).

3.2. Peak events & response data analysis

Among the products that were offered in the trial project there were
two peak event products: dynamic peak pricing (DPP) and dynamic peak
rebate (DPR). In this study, the focus of modelling and analysis is the
incentive-based DPR programme. In the DPR scheme the participating
households were offered a rebate amount (constant at AUD4.5/kW h)
to decrease their electricity consumption compared to their baseline es-
timation.

Across the running time frame of the SGSC trial there were 18 DPR
events, as it is illustrated in Fig. 9 of the Appendix A. The duration of the
DPR events ranges from two to four hours, and they have only happened
during the weekdays (mainly Thursday and Friday), primarily during
the summer and winter months, as well as mainly in the late afternoon
hours, as shown in Fig. 3. Since this is a dataset of domestic consumers
from Australia, it is natural to see the peak events occur in the summer
in early afternoon, when there is maximal use of air conditioning units.

Moving on the DPR response data, for the rebate programme we have
complete data for only 13 out of the total of 18 DPR events (found in the
peak event dataset). This means that we have the actual consumption
and the baseline estimation for all participants, as well as the rebate
amount, for 13 peak events. At this point, we should note to the reader
that when we use the term response to a DR event we are referring to the
percentage difference between the actual electricity consumption of
the household and its estimated baseline consumption, for the duration
of the specific DR event — as described in Eq. (1).

load; ; — base; ;
LJ

X 100

r

1
base; ; M

Where r;; is the response of household i for the DR event j. Re-
spectively, /oad, ; is the actual consumption, and base; ; is the baseline
consumption (estimated by the service provider) of household i for the
duration of the DR event ;. This metric was selected with the reasoning
that it has the advantage of being comparable across different customers,
contracts, and DR schemes. But, at the same time there are limitations;
i.e. errors of it constituent parts (errors in baseline estimation) can prop-
agate to the response variable. Due to the fact that baseline estimation
is one of the basic issues for demand response schemes [49,50], we in-
vestigate any potentially faulty estimations of baseline and we filter out
these data points.

First, given that a typical household consumes in average more than
0.45 kWh per 2 h, we exclude from our analysis all the cases where the
baseline estimation is lower than 0.01 kWh. We can infer that house-
holds consuming less than this electricity consumption indicate proba-
ble faulty values in the baseline estimation, or that the households are
not really used by their owners and therefore there is no reason for in-
cluding them in our response analysis.

In Table 1 we provide the descriptive statistics of the various cus-
tomers’ actual and baseline consumption across the DPR events, as well
as of their received rebates and their response for the DPR events. The
descriptive statistics include the mean value, the standard deviation
(std), minimum and maximum values, and the quartiles (25%, 50%,
75%)

We can see that the average response for the DPR scheme is positive
(34.25%), meaning that on average a participating household will not
decrease their consumption during a peak (DPR) event but actually in-
crease it by around a third. We can also see that the standard deviation
(std) of how customers have responded in the DPR events is exception-
ally high (~ 800%). This could be partly attributed to outliers and poten-
tial issues with baseline estimation. Looking at the 3rd quartile (75%)
value of response we can see that it is positive. That means that quite
often (> 25% of the cases) households have not actually decreased their
consumption during a DPR event. The extremely high maximum values
and standard deviation of responses indicate an issue with outliers in
the data.

We filtered out the DPR events which show irregular distribution pat-
terns, and to address the issue found with the outliers in the remaining
DPR events we employed unsupervised techniques for outlier/anomaly
detection. The outlier detection is implemented on each DPR event,
and not on each household. Mainly because the baseline estimation can
change through time, and also because the number of DPR events per
households is really small to do any meaningful outlier detection.

The algorithms that we examined for this task are the Local Outlier
Factor (LOF) algorithm [51], and the Isolation Forest [52]. The applied
LOF algorithm is a density-based approach which employs the k-nearest
neighbours to estimate the local density of each sample, and tries to
identify samples which have significantly lower density to its surround-
ing datapoints. The isolation forest algorithm takes a different approach
to outlier detection, with explicitly isolating the anomalies instead of
profiling normal samples [52]. It uses an ensemble of random splitting
trees, and considers outliers those datapoints which have short average
path lengths on these trees.

In this study we applied an approach similar to the algorithm pro-
posed in Cheng et al. [53] where the two algorithms are combined to
try and overcome their respective limitations. First we applied the Iso-
lation forest and extracted an initial set of outliers, and on that ini-
tial set the LOF algorithm was applied to perform local outlier de-
tection and get the final set of outliers. The distribution of the var-
ious households’ response r; ; per DPR event after removing the out-
liers/anomalies is illustrated on Fig. 4. From Fig. 4 it is apparent that
even after removing the outliers there is a high variance in how house-
holds have responded to DR signals. This result is in accordance with
previous work in the literature [4], where it is presented that the aver-
age reduction DR trials is ranging between 10% and 50%. The issue
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Descriptive statistics of the consumers’ actual and baseline consumption, rebate amount and response across

the DPR events.

Actual consumption (kWh)

Baseline consumption (kW h)

Rebate amount (AU D) Response (%)

mean 3.331 5.360
std 3.620 4.889
min 0.000 0.100
25% 1.031 1.865
50% 2.094 3.936
75% 4.293 7.405
max 39.565 50.972

14.501 34.247
17.148 799.552
0.000 —-100.0000
2.803 —-70.637
9.100 -40.411
19.660 7.204
164.800 66218.750
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Fig. 4. Violin plots showing the probability density of households’ response (as defined in Eq. (1)) for ten DPR events. The circle marker shows the median of the

data and the box inside each violin plot indicates the interquartile range.

of variance in DR has been discussed also in the work of Aid et al.
[36].

A subsequent step, following the removal of the outliers from the
dataset is to study the distribution of the households’ responses to the
various DPR events. We filter out the customers who have responded
to less than five (out of total 10) DPR events. The reasoning behind
this filtering of consumers is that there should be a minimum number
of events where they have responded, in order for this analysis to pro-
vide any meaningful insights. Fig. 5 illustrates that the distribution of
the consumers’ responses seems to be similar to a log-normal distribu-
tion. The distribution of the responses in this case is not symmetric and
appears to be positively skewed. This tendency is the same across all
seasons and it is apparent that it persists in the aggregated case too.
When the data follow a skewed distribution, the median is often the
best measure of central tendency. That is the rationale behind select-
ing the median response per household (across the DPR events in which
they have participated), rather than the mean as a measure of central
tendency.

3.3. Temporal structure analysis

A key hypothesis to explore would be whether participants are learn-
ing to respond better over time. This hypothesis has implications on the
selection of consumers for response in DR events. In the case that con-
sumers learn over time to respond better over a sequence of DR events,
then a more dynamic view on the customers’ potential for DR should
be considered. For example, an aggregator could select these consumers

more often with the intention of a better response in the longer-term.
One way to check this hypothesis is with the use of autocorrelation.

We calculated the autocorrelation function (ACF) for every house-
hold’s DPR responses and the distributions of 1-lag and 2-lag autocorre-
lation are presented in Fig. 6. At first glance there appeared to be quite a
few households that have relatively high autocorrelation values. But we
need to confirm that the autocorrelations in the population from which
the sample is taken are statistically different from zero, rather than these
observed autocorrelations being the result of randomness from the sam-
pling process. This can be achieved by employing the Ljung Box Q test
[54], which is a portmanteau® statistical test. In order to reject the null
hypothesis of the Ljung-Box Q test (that the data are independently dis-
tributed) the p-values must have lower value than the alpha significance
level.

By checking the p-values associated with the Ljung Box Q-statistics,
at the 5% significance level, we can see that only 29 households had
a statistically significant 1-lag autocorrelation and 21 households had
a statistically significant 2-lag autocorrelation — out of a total of 953
households. With these results, there is little evidence that there is a
temporal structure in the participants’ response to the peak events and
that there is a learning process over time, at least for this dataset where
the majority of the customers participated only in a limited set of DR
events. This points to an important insight for future DR trials, that could

3 Type of statistical hypothesis test where the null hypothesis is well specified,

contrary to the alternative hypothesis which is more loosely specified [55].
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Fig. 6. Distribution plots of the 1-lag (left) and 2-lag (right) autocorrelations.

be conducted over a longer period of time, allowing better observation
of temporal structure and learning.

Furthermore, by examining the response of households in Figs. 5 and
7 it can be inferred that the response does not differentiate much among
the seasons. The same can be said for distinct days — DPR events only
happened in three days and all of them were during the work week —,
and for distinct hours and months. Their distributions can be seen in the
Figs. 14-16 of the Appendix A.

4. Modelling of demand response behaviour

In this section we explore the potential relationship between the
household-related features described in Section 3.1 and the median re-
sponse per household for DPR DR events, and extract the important
features for that purpose. As stated above (see Fig. 5) the median re-
sponse per household have been selected as a target variable due to the
skewed distribution of the responses, and the nature of the inputs vari-
ables (which is at the household level). The distribution of the target
variable is presented in Fig. 7. For that purpose we train different types

of predictive models on the household data set, and the models used in
this work are the following:

¢ Linear model

¢ Gradient Boosting Regression
¢ Random Forest regression

¢ Dense Neural Network

Initially, we split the features’ data in training, validation and test
set and then we pre-process the data. Our dataset is predominantly
composed of categorical features (see Section 3.1). As a result, the pre-
processing of the dataset mainly involves converting the categorical fea-
tures to numerical, using an embedding system (e.g. one-hot encoding
or ordered target encoding). In general, the numerical features were not
pre-processed because they are of similar scale and distribution. More-
over, in our case there were not any missing data, so there was no im-
putation step involved. In the subsequent paragraphs we describe more
in detail the models used, and the actual encoding system used for each
model.
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In the linear model the estimation of its parameters is done using
the Ordinary Least Squares (OLS) method, which is a widely used and
common approach. This kind of linear model offers good interpretability
of the potential relationship between the predictor variables and the
target variable [56], and serves as a benchmark for the comparison of
the other learning algorithms. In this work we utilised the statsmodels
implementation [57] of an OLS linear regression, with one-hot encoding
of the categorical variables.

In this study, the gradient boosting on decision trees algorithm is
based on the CatBoost implementation [58]. This implementation in-
cludes a permutation-driven alternative to the classic gradient boosting
algorithm, and has a built-in embedding approach for categorical fea-
tures based on target statistics [59]. The number of trees used in the
final model are selected, based on the iteration that outputs the optimal
evaluation metric in the validation set. For the training of the Random
Forest model we utilised the scikit-learn [60] implementation with its
default parameters. The pre-processing of the dataset was done in a sim-
ilar fashion to the gradient boosting case.

Here, we constructed a two-hidden layer dense neural network using
the Keras API which runs on top of the TensorFlow platform [61]. The
network’s hyperparameters — in our case the number of units for each
layer and the learning rate of the Adam optimiser [62] — were tuned
based on the Keras Tuner library [63], with the use of the random search
method [64]. We also experimented with ”deeper” architectures (higher
number of layers) but there was no gain in the predictive performance of
the model, and therefore were not selected as the final model. According
to the survey of Hancock and Khoshgoftaar [65] the most common en-
coding for categorical variables in neural networks is One-Hot encoding.
In our case we have used the CatBoost encoder (as in the earlier models)
for consistency reasons and to make the results more comparable.

The various machine learning models were trained and validated on
10 different splits of the dataset (in training, validation and test sets).
That was done in order to evaluate their average performance and give
more informed values of their test error metrics. The selected metrics
are root mean squared error (RMSE), mean average error (MAE), mean
average percentage error (MAPE) and R?, and were evaluated on the test
set of the data. The results are presented in Table 2. For a more detailed
description of the models’ implementation and the exact values of the
optimal hyperparameters, the reader can always refer to the Jupyter
notebooks/codebase in the GitHub repository as found in Section 5.

Based on the combination of the models performance on the differ-
ent error metrics, the Gradient boosting algorithm seems to produce the
best results in the test set, followed by the linear model. In general, the

results across all these four models are quite similar (both for linear and
non-linear estimators), and comparable to the existing literature. For
example, the MAPE metric of models for individual customers’ response
is in the range of 41-45% [32,33]. In all cases the R? is quite low, and
therefore we can infer that this household features are not very infor-
mative predictors of the median response. But, even though the input
variables explain one a small percentage of the variance in the model,
that does not necessarily mean that they need to be discarded as use-
less. In this work, the purpose is to explore the relationship among the
features and their importance, and not high prediction accuracy. When
the independent variables are statistically significant, we can still draw
important conclusions about the relationships between the variables.
Examining the results’ summary of the linear model, we can see that
the in-sample R? ~10%, and primarily that the p-value of the F-statistic
is quite low. In the multiple regression setting this fact means that there
is at least one statistically significant feature, and therefore there is a re-
lationship between the household features (at least of a subset of them)
and the household’s median response. Moreover, examining the p-values
of the t-test for individuals features we can see that, at the 95% signifi-
cance level, there are the following statistically significant features:

The level of a household’s dryer usage

If a household has internet access

If the household is using gas oven

If the household is using gas for hot water

If the household has Air-condition

The number of a household’s controlled loads

The number of refrigerators in a household

Whether the household stayed on the trial for the duration

The above are supporting evidence that there is a statistically signifi-
cant relationship between the input variables and a household’s median
response, albeit not a strong one. Therefore we extend further our anal-
ysis by exploring important features and discussing the contributions of
these important features on the customers’ response, in an incentive-
based DR scheme.

4.1. Identification of important features and discussion of their effects on
response behaviour

Given that there is a relationship between the customer households’
features and the response of a household, an interesting subsequent step
is to examine which features are important for the response behaviour
of the DR consumers. Identifying which features are important cannot
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Table 2
Average values of evaluation metrics (in the test set) for various learning models.
RMSE MAE MAPE R?
Linear model 18.769 + 0.794 15.284 + 0.625 0.465 + 0.099 0.009 + 0.027
Gradient Boosting regression 18.711 +£0.714 15.246 +0.631 0.473 +£0.101 0.015 +0.018
Random Forest regression 19.721 £ 1.611 16.107 + 1.389 0.484 +0.101 —0.108 +0.240
Dense Neural Network 18.906 + 0.641 15.469 + 0.663 0.484 +0.101 —0.008 + 0.063

only potentially lead to more accurate prediction of response behaviour,
but also provide insights to the data and the models utilised.

In our study we have applied two popular model-agnostic interpreta-
tion methods to examine features’ importance. The SHAP framework
and the permutation feature importance method. These two methods
have been applied to different models in order to get more decorrelated
results and a less biased set of important features. The permutation im-
portance algorithm has been applied for the linear and random forest
regression models. The results for the test set appear in the Fig. 12 of
the Appendix A. In the x-axis of the importance graph we have the im-
portance of the feature (difference between the model’s score metric
with and without each feature’s permutation), and in the y-axis we have
the features ranked by their importance magnitude. The SHAP method
has been applied for the gradient boosting and dense neural network
models. The importance of each feature in this case is the mean of
the absolute Shapley values across the test data. The sorted features
by decreasing magnitude of importance are illustrated in Fig. 11 of the
Appendix A.

Based on these four different models and two feature selection frame-
works we have four distinct rankings of the features’ importance. To
overcome this diversity among them and create a global set of ranked
important features we have utilised an ensemble feature ranking based
on a Markov Chain rank aggregation method [66].

Understanding the drivers behind response behaviour in DR schemes
and their effect on response can have wide implications on the use
of demand response for the provision of demand-side flexibility ser-
vices. Among others, a deeper comprehension of residential response
behaviour can assist service providers with targeting households for DR,
better selection strategies for responding in individual DR events, as well
as with the design of more successful, fair, with high participant engage-
ment DR schemes.

In this work, we approach the study of the effect of households’ char-
acteristics on the residential response behaviour in two ways. We exam-
ine the distribution of the residential responses across the various impor-
tant households’ characteristics, and we investigate the impact of these
features on the Gradient boosting model’s output, employing the versa-
tile SHAP interpretable framework. The local explanations of the SHAP
method for the samples of the test set result to global model insights.
The Gradient Boosting regression model has been selected because it is
the model with the best prediction accuracy (across the models used in
this study). The intuition behind using two different methods is that this
way we cross-check the results between them, and therefore can acquire
insights, on the residential response behaviour in DR events, which are
potentially less biased.

In more detail, based on the results of the ensemble ranking algo-
rithm we select the features with the highest rank, and for each feature
we explore how the various levels of the categorical input variables in-
fluence the households’ response. How the various numerical features
affect consumers response in DPR events can be seen in Fig. 8. E.g.
households with high number of refrigerators tend to not follow the
DR request, whereas households with a low number of refrigerators im-
plies that the household will decrease more their consumption during
DR events. Fig. 13 presents the empirical cumulative distribution func-
tion for the different levels of the most important categorical variables.
The rationale for using this type of plots is that by comparing the CDFs
for different categories we can estimate whether the categories influence
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differently the response behaviour of the DR participants. Categories of
the same variable with ”steeper” CDFs indicate that households belong-
ing in this category tend to have higher response, and decrease more
their actual electricity consumption (compared to their baseline) than
households belonging to the other categories — and vice versa.

The graphs that illustrate the contributions of each feature to the
Gradient boosting regression’s model are Fig. 8 and Fig. 10. Each point
in these graphs is the Shapley value for a specific feature and an in-
stance of the model’s output. Fig. 8 combines feature importance with
feature effects. The features are sorted by their importance magnitude
and the colour represents the value of the feature from low to high. The
grey colour denotes a categorical variable, where there is no notion of
high and low values. Although this plot illustrates information about
the relationship between the values of households’ characteristics and
the impact on the model’s prediction, for numerical variables, it is not
really informative for categorical variables. In this case to see the ex-
act form of the relationship we have to look at Fig. 10, where we plot
the Shapley value of that feature with its categories for all the examples
in the test dataset. On the y-axis are the SHAP value for that feature,
which represents how much knowing that feature’s value changes the
output of the model for that sample’s prediction. Also, because of the
way we have defined the households’ response (percentage difference
between actual and baseline consumption), negative SHAP values indi-
cate decrease in the electricity consumption and thus better response.
Moreover, the points in this plot are coloured based on the level of the
household’s electricity usage level. If an interaction effect is present be-
tween the plotted feature and the electricity usage level it will appear
as a distinct colouring pattern.

After careful examination of the aforementioned graphs we can pro-
vide the following insights on the effects of households’ characteristics
on the DR response behaviour. As we can see from both approaches,
households that have access to the internet tend to respond better in DR
events. We can infer that this feature does not have a direct effect on
the DR response, but most likely it is associated with characteristics of
the residents. One interesting insight that we can infer from Figs. 10 and
13 (and seems counter-intuitive) is the fact that the reported effort level
taken by the households, to respond to a DR signal, does not seem to
have an effect on the households’ actual response. Households that own
air-conditioning systems respond better than the ones which do not. The
households that do not have a gas-fired oven tend to respond better than
the ones that do.

Another interesting insight is that the households with medium elec-
tricity usage level tend to respond better than the ones with low or high
usage levels. Existing studies on the literature have indicated that high-
use households tend to respond significantly more in load reduction
than low-use households [7]. This could potentially be attributed to the
design of this specific DR peak scheme, where the rebate amount per
energy unit decreased is constant. Moreover, the customers in warmer
climate zones tend to have a better response behaviour than the ones
living in areas with mild climate conditions. The residential customers
with medium and high level of clothes dryer usage respond better than
residential properties which do not use the dryer frequently (or at all).

We can see that consumers with medium levels of gas usage tend to
be more responsive in DR peak events than the ones with low levels. It
seems that households with high levels of both gas and electricity usage
tend to perform worse in response behaviour. The dwelling type does
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Fig. 8. SHAP values of each household characteristic (feature) for every sample of the data.

not seem to have a big effect on the response behaviour of customers. We
could cautiously infer that the consumers residing in units (apartments)
with medium electricity usage level tend to respond better.

5. Conclusion and further work

For the wider realisation of the demand-side flexibility potential, the
widespread utilisation of residential DR resources is essential. However,
residential response behaviour poses certain challenges. Accurate mod-
elling of response behaviour of DR participants and a deeper compre-
hension of the factors driving response behaviour can assist in allevi-
ating these challenges with better targeting and selection strategies of
consumers for DR and the design of better-tailored schemes.

In this work, the authors approach the study of modelling and anal-
ysis of response behaviour under DR by utilising not primary load data
(which is mainly used in such studies), but datasets related to household
characteristics, when responding in an incentive-based DR programme.
To this end, the study makes use of data from one of the largest open-
source DR trial projects involving residential (household) consumers.
We explored the datasets and pre-processed them accordingly (i.e. check
for multi-collinearity, handling of missing values, outlier/anomaly de-
tection and filtering). We explored the possibility of participating house-
holds learning to respond better over time, but we did not find support-
ing evidence for this hypothesis (at least for this specific DR scheme and
available dataset).

We have showed that there is a statistically significant relationship
between a household’s response and a number of households’ charac-
teristics, and we have applied various machine learning techniques in
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search of better prediction accuracy. The prediction accuracy of these
models found by our study is in line with expectations, given previous
work on prediction of response behaviour which only focused on load
data. Future work could combine both types of data this (household-
related features and load data), potentially yielding better prediction
accuracy for residential response behaviour.

We further explored and found the important features for modelling
the households’ response behaviour using two model-agnostic methods,
across the different machine learning models. Next, we examined the ef-
fects of these important features on the households’ response behaviour
by using statistical distribution plots and interpretable Al methods based
on coalitional game theory. We found that households with internet ac-
cess, air-conditioning systems, power-intensive appliances (e.g. clothes
dryer), and with lower gas usage tend to respond better than average.
Moreover, there are also some insights which raise questions about the
reported level of consumers’ engagement in DR schemes, and the indi-
vidual rationale of customers’ response to DR signals.

Finally, taking a longer-term view, we argue that data-driven stud-
ies such as ours can provide key insights into better design of future
residential DR trials, such that the data they collect can fill gaps in the
knowledge of researchers and practitioners. For example, in this study,
we could not detect a temporal trend showing an improvement in the
response of households, as they participate in more DR events over time.
This is likely due to the limited number of DR events the dataset from
the SGSC trial (after filtering, we found only 10 events had reliable,
high-quality, usable data). Another question that cannot be answered
based on this data is what is the elasticity of the expected percentage
demand reduction (response), w.r.t. the size of the financial reward of-
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fered by the DR aggregator or network operator. In practice we expect
this question to be important in designing, budgeting and optimising
and budgeting residential DR schemes in the future.

Overall, with the roll-out of ubiquitous smart meters and large-
scale availability of consumer-level response data, we argue data-driven
methods will have an increasingly key role to play in the design of suc-
cessful and fair DR schemes, with high participant engagement.

Data availability

The Smart-Grid Smart-City Customer Trial Data used in this
study are available at the Australian Government data website:
https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-
15a8a77907ef/details.

Code availability

The reproducible code for this analysis can be found at: https://
github.com/antongiannis/dr-behaviour-modelling-residential.git.
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Fig. 11. Mean SHAP values of household characteristics based on Gradient boosting (a) and dense NN (b).
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Fig. 12. Permutation feature importance results for the OLS regression and Random forest.
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Fig. 13. Empirical CDF for the most important features.
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Fig. 14. Distribution plots of DPR responses for distinct days.
Kernel Density Estimation 1o Empirical CDF
0.005 A
0.8
0.004
< 0.67
2 0.003 £
5 g
8 5
o
0.4 1
0.002 A
0.001 A 021
0.000 - 0.0 u T T T T T T T
-100 -80 —-60 —-40 -20 0 20 40 -100 -80 -60 -40 -20 0 20 40
Response (%) Response (%)
Fig. 15. Distribution plots of DPR responses for distinct hours of the day.
Kernel Density Estimation 1o Empirical CDF
Month
0.007 4 1
—/ 2
/ 3 0.8
0.006 - — 7
18
0.005 A
< 0.67
> S
'3 0.004 £
8 &
o
0.003 047
0.002 A
0.2 1
0.001 A
0.000 - 0.0 u T T T T T T T
-100 -80 —-60 —-40 -20 0 20 40 -100 -80 -60 -40 -20 0 20 40
Response (%) Response (%)

Fig. 16. Distribution plots of DPR responses for distinct months of the year.
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