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Abstract—Advancements in Artificial Intelligence (AI) and
Internet-of-Things (IoT) have increased demand for edge Al but
deployment on traditional AI accelerators, like GPUs and TPUs,
using von Neumann architecture, suffer from inefficiencies due
to separate memory and compute units. Computation-in-Memory
(CIM), utilizing non-volatile memristor devices to leverage analog
computing principles and perform in-place computations, holds
great potential in improving computational efficiency by elimi-
nating frequent data movement. However, standard implemen-
tation of CIM faces several challenges, primarily high power
consumption and subsequently induced non-linearity, debating its
viability for edge devices. In this paper, we propose C3CIM, a
novel memristor-based CIM micro-architecture, featuring a new
bit-cell and array design, targeting efficient implementation of
Neural Networks (NN). Our architecture uses a constant current
source to perform Multiply-and-Accumulate (MAC) operations
with a very low computation current (10 to 100 nA), thereby
significantly enhancing power efficiency. We adapted C3CIM for
Spiking Neural Networks (SNN) and developed a prototype using
TSMC 40nm CMOS node for on-silicon validation. Furthermore,
our micro-architecture was benchmarked using two SNN models
based on N-MNIST and IBM-Gesture datasets, for comparison
against current state-of-the-art (SOTA). Results show up to 35x
reduction in power along with 6.7x saving in energy compared to
SOTA, demonstrating promising potential of this work for edge
Al applications.

I. INTRODUCTION

Recent advancements in Al together with the rise of IoT
have led to a significant demand for edge AIl, however, tra-
ditional AI accelerators like GPUs and TPUs employ the
von-Neumann architecture. The inefficiencies resulting from
separate memory and computation units demands for 100-
1000x energy efficient devices in order to practically deploy
Al at the edge [3]. Additionally, CMOS memory technology
struggles with leakage and scalability issues [4]. Memristor-
based CIM architecture [5]-[7] aims to solve this challenge
by performing computations directly within the memory min-
imizing data movement and thereby enhancing efficiency [8].
Here, emerging non-volatile memristor devices are used not
only to store weights (data), but also perform dot product
operations simultaneously with the corresponding values of
input vectors. The partial results are then typically accumulated
using analog techniques. Nevertheless, large-scale deployment
of such architectures diminishes energy-efficiency benefits as
the generated crossbar currents might be arbitrarily high. It

This work is partially funded by the European Union, CONVOLVE (Grant
No. 101070374), NEUROKIT2E (Grant No. 101112268) and Ferro4EdgeAl
(Grant No. 101135656).

further introduce challenges such as non-linearity [9] and read-
disturb, potentially impacting the neural network accuracy.

Several strategies have been proposed to reduce power con-
sumption, such as using lower absolute memristor conductances
[10], [11] or lowering read voltages [12]. Low conductance lev-
els are undesirable due to their high susceptibility to device-to-
device as well as cycle-to-cycle variations [13], [14], inducing
noise into the system and impacting the overall performance.
On the other hand, the technique of reducing read voltages
relies heavily on peripheral circuits and faces limitations, par-
ticularly in maintaining voltage stability. Moreover, the crossbar
current still remains dependent on the inputs and weights.
Consequently, higher currents that may arise will not only
lead to increased power consumption but also introduce non-
linearity in the output due to significant IR drops in the Source-
lines (SL) and Bit-lines (BL). Furthermore, another work [15],
[16] attempts to limit the current by utilizing a constant current
to drive the crossbar column. However, the limited margins do
not allow high scalability at the array-level, which still results
in increased energy consumption. Therefore, there is a decisive
need for an energy-efficient as well as cost-effective approach
to CIM, capable of delivering linear MAC outputs.

In this paper, we present a novel approach to CIM that
utilizes a constant current source to perform MAC operations
via a serial arrangement of memory cells in a column. Within
our proposed crossbar, we employ a very low current (in
the order of sub-pyA) for the computation, which remains
independent of input values, thereby enhancing overall energy-
efficiency. The contributions are as follows.

e C3CIM: A constant column current based CIM crossbar,
utilising a new 2TIR bit-cell design, to enable ultra-low
power MAC operations

e Development of a SNN micro-architecture based on
C3CIM to validate its functionality

o Prototype at TSMC 40nm CMOS node for on-silicon
demonstration and validation of C3CIM

o Comprehensive system-level simulations using custom-
developed SNN models to benchmark the proposed work
against SOTA

Benchmark results from deploying custom-developed Le-Net

[17] style SNN models, trained on the N-MNIST [18] and
IBM-Gesture [19] datasets, indicate an overall power reduction
of up to 35x and energy savings of around 6.7x compared
to conventional CIM architectures. The measurement results
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Fig. 1. SNN and its implementation with CIM (a) Biological neuron [1]; (b)
array of CIM crossbar tiles [2]; (d) RRAM-based 1TIR CIM crossbar

from the prototype not only validate the micro-architecture’s
functionality on silicon but also demonstrate its potential for
further current reduction and lower-power operations.

The rest of this paper is organized as follows. Section II
summarises the fundamentals of SNN and CIM. Section III ex-
plains the concept of C3CIM, followed by detailed description
of the proposed SNN micro-architecture in Section IV. Section
V provides the simulation results along with discussion on
the proposed work. Section VI and VII presents the prototype
characterisation and system-level results respectively. Finally,
Section VIII concludes the paper.

II. BACKGROUND
A. CIM-based SNN

SNNs [20] are a brain-inspired class of neural networks that
aim to mimic the behavior of biological neurons, as illustrated
in Figure 1a. With the goal of achieving low-power implemen-
tation of AI akin to the human brain, SNNs, similar to their
biological counterparts, transmit information through discrete
spike events over time. This approach enables them to capture
and utilize the temporal dynamics of the input rather than its
absolute magnitude. The spikes then travel through a network
of synapses or weighted paths, where they are processed as they
propagate towards several other connected neurons at the end.
The event-driven and asynchronous nature of SNNs not only
boosts computational efficiency by exploiting sparse activity,
but also renders them suitable for implementation on CIM
architectures owing to reduced peripheral overhead. The inputs
(spikes), being binary in nature, can be directly transmitted
to a CIM crossbar without requiring specialized peripheral
circuits. The weighted paths or synapses can be emulated
using the crossbar structure, as shown in Figure 1d, where the
MAC operations occur between the input spikes and weights.
The resulting current can directly drive a standard Leaky
Integrate-and-Fire (LIF) circuit [21], which is a simple circuit
implementation of the LIF activation commonly employed in
SNNs. This is in contrast to Artificial Neural Networks (ANNSs)
implemented on CIM architectures, which typically require
Digital-to-Analog Converters (DACs) and Analog-to-Digital
Converters (ADCs) to process the input and output respectively.
These peripheral components often incur significant power and
area overhead, diminishing benefits of CIM [22]. Subsequently,

() (d)

Spiking Neural Network; (c) Typical Neuromorphic hardware consisting of an

SNNs as an application complement CIM architectures, fully
harnessing their advantages, albeit at the cost of increased
computational latency.

B. Memristor-based CIM architecture

A memristor-based CIM architecture aims to perform com-
putations within the memory using emerging memristor tech-
nologies [23] such as Resistive Random Access Memory
(RRAM) [24]. A standard CIM architecture consists of a
memristor crossbar, accompanied by suitable peripheral circuits
to handle data input and output. By leveraging analog com-
puting, MAC operations, fundamental to Al, can be directly
performed within the memory crossbar as a single operation
in the analog domain. Moreover, it allows for fully parallel
execution of multiple MAC operations, limited only by the
crossbar size or the complexity of the supporting peripheries.
This makes CIM instrumental in mitigating memory bottle-
necks associated with traditional von Neumann architectures,
thereby enabling energy-efficient edge Al Figure 1d shows
a typical RRAM-based 1TIR CIM crossbar, configured for
binary inputs. A RRAM operates on the principle of reversible
conductive filament formation, allowing it to store data in the
form of discrete conductance states. In practice, it has a low
conductance state (LCS) and a high conductance state (HCS)
representing bit 0’ and bit *1” respectively, with the potential
of having intermediate conductance states for storing multi-
bit data. By appropriately programming the conductance of bit
cells, neural network weights are stored within the crossbar.
When inputs are applied as analog voltages, the resulting bit-
cell current follows Ohm’s law, being the product of the applied
voltage and the programmed conductance. This constitutes a
multiplication operation between the inputs and the weights.
Furthermore, the parallel arrangement of bit-cells in a column
causes the currents to accumulate at their respective BL and
produce a final output current, thus performing addition and
completing the MAC operation. Conventionally, DACs at the
input and ADCs at the output support this simplified CIM
demonstration, as inputs and outputs are usually sourced from
or stored in digital memory. However, this requirement may
vary depending on the data flow or the application.
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Fig. 2. Overview of CIM crossbar design (a) Conventional crossbar design;
(b) Proposed crossbar design

III. C3CIM OVERVIEW
A. Conventional CIM

Figure 2a depicts a conventional CIM crossbar performing
MAC operations between binary inputs and weights. It typically
employs 1T1R bit-cells connected in parallel within a column,
across their respective SL and BL maintained at a fixed voltage
difference. Here, the binary voltages applied at the Word
line (WL) serve as the input vector while the programmed
conductance’s of the memristor array represent the weight
matrix. The resulting vector of currents generated at the BLs
is then analogous to the Vector-Matrix Multiplication (VMM)
operation between the input vector and the weight matrix.
Since the magnitude of the crossbar currents represent the
outcome of the VMM operation, the power consumption is non-
deterministic and the crossbar can potentially have arbitrarily
high power consumption for large outputs. Furthermore, these
large currents cause other non-ideal effects, such as IR drops,
power saturation, etc. inducing non-linearity into the system,
as shown.

B. Proposed C3CIM

In contrast, the proposed crossbar design, shown in Figure
2b, features 2T1R bit-cells arranged in series within a column.
The input vector, in this case, is represented by binary voltages
applied simultaneously in a complimentary manner to both WL
and WLbar of the corresponding rows of bit-cells, while the
programmed resistances of the memristor array serve as the
weight matrix. Unlike the former, each column is subjected to
a constant current to perform the same VMM operation, but
this time as a proportional voltage output at the top of each
column. This approach not only overcomes the aforementioned
challenged of the conventional CIM crossbar but also shows
promise in improving power efficiency for MAC operations by
up to two orders of magnitude.

IV. C3CIM DESIGN FOR SNN
To illustrate this improvement, we introduce a micro-
architecture based on C3CIM crossbar, designed to support
SNNs. As shown in Figure 3, the micro-architecture incor-

porates three stages to replicate the functionality of an SNN
neuron, which is discussed further in detail.

A. Stage I - C3CIM crossbar

Figure 3a illustrates a column of the C3CIM crossbar, using
a 2T1R bit-cell configuration. The bit-cell, as shown, consists
of two parallel paths: the memristive path, which includes a
memristor (Rpem) that stores binary data, and the auxiliary
path. Both paths further consist of pass transistors, whose gates
are controlled via the Word-line (WL) for the memristive path
and the Word-line bar (WLb) for the auxiliary path, enabling
switching between the paths by appropriately controlling the
transistor gates.

When complementary binary signals are applied as input to
the bit-cell via WL and WLDb, this ensures only one path is
active at a given time. With this arrangement, the effective
resistance of the bit-cell (Rgc) can be determined by the truth
table shown in Figure 3d. If the input is O, the inverted signal at
WLD activates the auxiliary path. Assuming the ”on” resistance
of the pass transistors (Rr) is negligible, the activation of
the auxiliary path causes Rpc to be same as (Rr), thereby
rendering it negligible as well. Conversely, when the input is
1, the memristive path is activated. In this case, Rgc depends
primarily on the state of the memristor. If the memristor stores
a 0, corresponding to a low resistance state (Ryrs), Rgc remains
negligible. However, if the memristor stores a 1, analogous to
a high resistance state (Ryrs), Rgc becomes significant.

Subsequently, this process constitutes a multiplication op-
eration between the input and weight in the form of altered
bit-cell resistance. The resistance is significant only when
both input and weight are 1. Multiple such operations can be
performed in parallel by providing inputs to each row of bit-
cells via their respective WL and WLb. Connecting bit-cells in
series within each column leads to the accumulation of their
effective resistances, resulting in an overall column resistance
that is linearly proportional to the output of the MAC operation
between the input and weight vectors. Finally, by inducing a
constant current into the column through a current source at the
top, enabled via ENcg, the column resistance can be read out
as a proportional voltage output (Vyac), in accordance with
Ohm’s law.

Since the column current is fixed by design, the power con-
sumed by the crossbar is now constant and independent of the
state of the crossbar, making it deterministic. By maintaining
extremely low column currents, such as 100 nA in this case,
this crossbar can achieve MAC operations with very high power
efficiency while also mitigating the problem of non-linearity.
Moreover, the 2T1R bit-cell configuration inherently addresses
the non-zero “on’ resistance of the pass transistors, as one of the
two paths is always active regardless of the input state. With
identical pass transistors in both the paths, the total number
of transistors in the current path remains fixed, at 64 in this
case. Consequently, the cumulative voltage drop due to these
transistors is nearly constant and input-independent, allowing
it to be treated as a fixed offset for easier post-processing.
Furthermore, the input loading is negligible since the inputs
are applied at the gate of the pass transistors. This makes
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table

the crossbar design flexible as any number of columns can
be accommodated in parallel, by having buffers at appropriate
intervals to regenerate the binary signals.

B. Stage II - Trans-conductance amplifier (TA)

As illustrated in Figure 3b, the TA serves as an intermediate
stage to facilitate the C3CIM crossbar, which generates output
in the form of voltages, for implementing SNN. When enabled
via ENta. the amplifier is designed to generate a current pro-
portional to the applied input voltage, which is the Vyac from
the previous stage. It is not required in the case of conventional
crossbars, which generate outputs directly as currents, but at the
expense of high power consumption

The desired functionality is achieved by utilising a MOS
transistor operating in the triode/linear region, where the chan-
nel current varies linearly with the gate-to-source voltage (Vgs),
provided the drain-to-source voltage (Vpg) is held constant.
By maintaining a suitably low Vpg, such as 200 mV across
the PMOS transistor in this case, the device is constrained to
operate within the triode/linear region. To accomplish this, an
NMOS transistor operating in the saturation region is connected
in series with the PMOS transistor, with their drains tied
together at a common node (Vg). A differential amplifier
actively monitors this node in a negative feedback configuration
and adjusts the gate voltage of the NMOS transistor (Vi) such
that Vg remains close to the externally applied reference voltage
of 900 mV.

The output voltage from the previous stage (Vyac) is then
applied to the gate of the PMOS transistor, while its source is
held at a fixed supply voltage of 1.1V (Vpp). This causes the
PMOS transistor to generate a current that is linearly propor-
tional to its gate-to-source voltage (Vgsp), and by extension, to
its gate voltage or Vyac. Since the NMOS transistor operates
in the saturation region with its source grounded, its current
is mainly governed by its Vgs or Vp and remains largely
unaffected by its Vpg or Vg. Moreover, due to the series
connection of the transistors, Vi must be generated such that
the induced current in the NMOS transistor matches that of the

PMOS transistor. Finally, this Vi allows the matched current,
which is linearly proportional to Vyac, to be mirrored into the
LIF circuit in the next stage via current mirroring techniques
for further processing.

C. Stage Il - LIF circuit

Stage 3 consists of a LIF circuit, as illustrated in Figure 3c,
which aims to mimic the behavior of a biological neuron. On
enabling the circuit via ENp g, a membrane capacitor (Cyen) iS
charged at a rate proportional to the magnitude of the induced
current, effectively integrating the current over time as a voltage
across the capacitor (V¢). Since the induced current is mirrored
from the previous stage (Imac,), it is proportional to the output
of the MAC operation. As a result, the capacitor integrates
charges that are proportional to the MAC operation in a given
computation cycle, when integrated for a fixed time.

When V¢ reaches a predetermined threshold (Vry), the
circuit generates a binary pulse at the output or fires an output
spike, which then serves as input to subsequent neurons. This
is followed by resetting the membrane capacitor to its initial
value after a specified refractory period. The refractory period,
during which the circuit ignores any new input, is adjustable via
Vr and governs the high-to-low transition time of a buffer. The
leaky behavior is emulated by an additional transistor operating
in saturation, which continuously induces a small, constant
current into the capacitor determined by its gate voltage (V).
This circuit effectively implements the LIF model in hardware
enabling the implementation of SNN using CIM paradigm.

D. Design optimisation: Charge pump

The serial arrangement of bit-cells in the column results
in significant RC loading, causing the output voltage to take
approximately 500 ns (Figure 4b) to settle to its final value.
This latency is nearly two orders of magnitude greater than the
SOTA solutions, which, despite the high power efficiency of
our micro-architecture, could negate any energy consumption
benefits and potentially worsen overall performance. To address
this issue, we incorporated a charge pump mechanism designed
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to deliver high-current pulses for very short durations. These
pulses are delivered from the top of the crossbar column,
from where the constant current is also induced. This rapidly
elevates the output voltage before allowing it to stabilize at a
lower value, significantly accelerating the process. As a result,
latency is reduced by an order of magnitude to 50 ns, as shown
in Figure 4c. Consequently, our design now surpasses SOTA
solutions not only in power efficiency but also in overall energy
consumption.

V. CIRCUIT-LEVEL SIMULATIONS

This section presents the per-stage SPICE-level behavior and
performance of the proposed C3CIM micro-architecture for
SNN.

A. Simulation setup

TABLE I
SIMULATION SETUP SPECIFICATIONS
[ Parameters | Specifications |
RRAM device HfOx [25]
HRS/LRS 20 K2/2 KS2
Devices per column 64
Read current 100 nA
Voltage supply 1.1V
CMOS technology TSMC 40 nm
Process corner Typical
Temperature 27°C

Table I summarizes the design specifications for the circuit-
level analysis. For simulation purposes, the crossbar column
consists of 64 bit cells in series, i.e. 64 rows, in the previously
proposed 2T1R configuration. The column current source is
designed to provide a constant current of 100 nA, with the
provision to deliver short current pulses of up to 5 pA for the
charge pump. The bit cell design incorporates the HfO,-based
RRAM model that is modified to store a single bit of data. As
a result, it exists in either a low resistive state (LRS) of 2 K()
(representing binary ’0’) or a high resistive state (HRS) of 20
KQ (representing binary ’1’), yielding an R,,/Ryg ratio of 10.

B. Simulation results

Figure 4 presents the simulation results, with Figure 4a
illustrating the input and output characteristics of the C3CIM
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© 35055 H
=S

50 100 150 200 0 2 4 6 8 10
Vinac (MV) = Time (ns) —
() (&)

crossbar column. As seen, Vyac is plotted against the number
of “on’ devices, linearly swept from O to 64, where *on’ devices
correspond to bit-cells with both input 1’ and weight *1°.
The plot shows a linear relationship between Vyac and the
number of ’on’ devices, with the entire curve shifted along
the y-axis by a constant value, indicating the fixed offset due
to the non-zero resistance of the pass transistors. Figure 4b
shows the transient behavior of the crossbar column, where
VmMmac typically requires approximately 500 ns to settle to
its final value. However, as shown in Figures 4c and 4d,
the implementation of a charge pump significantly reduces
this latency to 50 ns, demonstrating its efficacy in enhancing
the column’s performance. Furthermore, Figure 4e presents
a plot of Iyac against the incoming Vyac, linearly swept
from 0 to 160 mV (the range of the crossbar column). The
linear relationship between Iyac and Vyac, along with Vg
being maintained at a nearly constant 900 mV throughout the
entire range of Vyac (as shown in Figure 4f), validates the
functionality of the proposed TA. Finally, the timing diagram
in Figure 4g illustrates the behavior of the LIF circuit, which
fires and resets upon reaching the set threshold value of 500
mV.

C. Discussion

While this approach offers notable power benefits, it also
comes with certain shortcomings that must be weighed against
these advantages. Primarily, the massive RC chain formed
by numerous bit-cells arranged in series within a column,
significantly increases operational latency. In ordinary case, as
already seen, the latency can be as high as 500 ns. Secondly,
the crossbar’s functionality requires the inclusion of an extra
transistor in the bit-cell to enable the necessary computations,
thereby increasing the crossbar area. Lastly, the design supports
only binary inputs as the signals are applied to the gate of the
pass transistor, functioning as a switch.

VI. PROTOTYPE CHARACTERISATION
A. Prototype details

Figure 5a depicts the prototype developed to validate our
micro-architecture on silicon. Fabricated using TSMC’s 40 nm
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CMOS process, the chip has an area of Ilmm? and features
a 64x64 C3CIM crossbar array at its core. Each of the 64
columns in this crossbar array is equipped with dedicated
periphery (Stages 2 and 3) to enable fully parallel operation.
To ensure reliability, the RRAMs are emulated using standard
resistive devices, hard-coded to predefined resistances/weights
derived from off-chip learning. The column current is designed
to be externally tunable to compensate for design or fabrication
variations and to facilitate precise measurements. An onboard
multiplexer allows for simultaneous readout of the outputs
from each stage, one column at a time. To maintain design
simplicity, no clock is used, thanks to the asynchronous nature
of the micro-architecture. Additionally, all the analog reference
voltages are supplied externally.

B. Characterisation results

The simulation results are further validated by the character-
isation results where, as seen in Figure 6a, the measured output
voltage (Vmac) across multiple columns is linearly proportional
to the number of on’ devices in each column. Since the current
was adjustable, measurements were conducted not only at 100
nA but also at reduced column currents as low as 10 nA, and
the output, as seen, still maintains a linear proportion to the
number of “on’ devices. This highlights the effectiveness of the
approach and its potential for enabling even lower-power MAC
operations. Figure 6b shows the TA in operation, where the
measured output current (Ipac) is in a near linear relationship
with the Vyac. This behavior also aligns with the simulation
results, validating its functionality.

TABLE Il
SYSTEM-LEVEL SPECIFICATIONS

Parameters Specifications
Datasets N-MNIST [ IBM-Gesture
Test-accuracy 91.8% 84.8 %
Time-steps 300 1450
Quantized Yes Yes
Weight precision 6-bit 6-bit
TABLE I

HARDWARE COMPARISON TABLE ON DEPLOYING BOTH THE SNN MODELS
TRAINED ON N-MNIST AS WELL AS IBM-GESTURE DATASETS

[16] (12]

Parameters ISSCC-"22 AICAS-"23 This work
Technology 40nm 40nm 40nm
Supply 0.9V L1V L1V
Storage device PCM Resistive Resistive
Storage 1b 1b 1b
Bitcell 1TIR 1TIR 2T1R
RHigh/RLow - 200KQ/2K | 20KQ/2KQ
Sensing mode Voltage Current Voltage
Accumulation 8 64 64
Average Power 1396, /1970 40(531.6*/1040.2°| 15.3%/72°
(mW)
Latenc(ygg)feren“ 22.9%/88.5° | 9.8%/37.7° | 93%/359.6°
E“ergy(’:g‘;ere““ 0.1%/1743° | 52413920 | 1.4*/25.9°
TOPS/W 25.4%/25.6° | 44.4*/113.8° [161.7*/172.3°
*: N-MNIST
©: IBM-Gesture

VII. SYSTEM-LEVEL RESULTS

To benchmark our micro-architecture and demonstrate its ef-
ficacy compared to the SOTA solutions, we developed two SNN
models trained on the N-MNIST and IBM Gesture datasets.
These models, adapted from the LeNet architecture, incorporate
spiking convolutional as well as fully connected layers with
LIF activation. We utilized the SLAYER SNN framework [26]
for model development, with the details summarized in Table
II. The spiking convolutional and fully connected layers, where
MAC operations occur, are readily mappable to both our micro-
architecture and SOTA solutions. For a fair comparison, mainly
the crossbar design is adapted from each work while the LIF
circuit is assumed to be same. Table III presents a comprehen-
sive performance comparison of our micro-architecture against
SOTA solutions, as evaluated on the developed SNN models.

VIII. CONCLUSION

In this paper, we propose a novel approach to CIM cross-
bar for MAC operations, utilizing a constant current source
and a new 2T1R bit-cell design. We also propose a micro-
architecture, based on this crossbar array, to facilitate SNN
implementation. This is followed by the development of a
prototype for on-silicon demonstration and validation of our ap-
proach. Benchmarking against SOTA using custom-developed
SNN models reveals our work achieving up to 35X higher
power efficiency along with upto 6.7x energy savings, demon-
strating the potential of our approach in enabling energy-
efficient MAC operations with memristor-based CIM crossbars.
Additionally, our measurement results suggest further possibil-
ities for reducing current and enabling even lower-power MAC
operations.
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