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1.1 Motivation

- Why do we want to model trees?
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1.1 Motivation

- Why do we want accurate tree models?
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1.2 Research Objective

» 3D tree modeling from point clouds
— Accurate (geometrically correct)
— Detailed (topologically faithful)
— Automatic
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1.3 Research Scope

+ Focus on branch reconstruction

* Focus on individual tree reconstruction
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1.4 Challenges

* Trees are complex

Static scanner
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Mobile scanner

AHN3 data

10






2.1 Modelling “icon” trees

*  Modelling 3D trees for CityGML Singapore (Soon et al. 2017)

— Can model trees on a large region
— Tree model is not accurate or detailed
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2.2 Cylinder-fitting approach

« Automatic trunk reconstruction (Wang et al. 2016)

— Can model the trunk accurately

fitting process

reconstructed trunk
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— Doesn’t consider other small tree branches
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2.3 Skeleton-based approach

- Automatic reconstruction of tree skeleton (Livny et al. 2010)

point clouds

skeleton

tree branches

— Can model the complicated skeletal structure of the tree

— Doesn't fit enough to the input points
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3. Methodology Overview

Add realism
Point Skeleton Skeleton N Branch BN Fine
cloud Initialization | | Simplification Fitting Model
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3. Methodology Overview

Skeleton
Initialization
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3.1 Skeleton Initialization

* We obtain initial tree skeleton from the minimum
spanning tree
— Read input points

Real tree Point cloud
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3.1 Skeleton Initialization

* We obtain initial tree skeleton from the minimum
spanning tree
— Construct Delaunay triangulation

Point cloud Delaunay triangulation
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3.1 Skeleton Initialization

* We obtain initial tree skeleton from the minimum
spanning tree

— It provides a very initial
graph

— It completes missing parts
of data
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3.1 Skeleton Initialization

* We obtain initial tree skeleton from the minimum
spanning tree
— Compute minimum spanning tree from shortest path

/ root

Delaunay triangulation Minimum spanning tree
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3.1 Skeleton Initialization

 We obtain initial tree skeleton from the minimum
spanning tree
— Obtain the Initial skeleton

Minimum spanning tree Initial skeleton
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* An example of a well-extracted initial skeleton

3.1 Skeleton Initialization
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An example of a badly-extracted initial skeleton

3.1 Skeleton Initialization




3.1 Skeleton Initialization

* We address the problem by centralizing main-
branch points, to generate condensed branches

— ldentify main-branch points

tips

tree base

w ol e
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X

branch |..a :
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3.1 Skeleton Initialization

* We address the problem by centralizing main-
branch points, to generate condensed branches

— centralize main-branch points

o
o o °
Neighbor points
o

o

o « °
Current point o

]
TUDelft

o o _® _Shifttothe new location

26



3.1 Skeleton Initialization

- We address the problem by centralizing main-
branch points, to generate condensed branches
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3. Methodology Overview

Skeleton
Simplification
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3.2 Skeleton Simplification

» Weight vertices and edges with subtree lengths
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3.2 Skeleton Simplification

- Eliminate small noisy branches from weights

\/I\/r- ow =",
’ « For the it" vertex:
\ \ — Ifow < T:

| — Then remove it" vertex and its
subtree

]
TUDelft



3.2 Skeleton Simplification

» Eliminate small noisy branches from weights
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3.2 Skeleton Simplification

* lterative simplification
— Single-child vertex simplification
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3.2 Skeleton Simplification

* lterative simplification
— Multiple-children vertex simplification
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New vertex

it < o
T

*  Then merge

current children

33



3.2 Skeleton Simplification

* lterative simplification
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3. Methodology Overview
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3.3 Branch f

te the branch geometry

 Fit cylinders to approxima
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3.3 Branch fitting

* Fit cylinders to approximate the branch geometry
— Assign each branch with corresponding points
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3.3 Branch fitting

* Fit cylinders to approximate the branch geometry

— Non-linear least squares problem (Levenberg—
Marquardt algorithm)

Parameters to solve:

—~ P, R,d
* Input data:
Point 0 .
oints @ ' — Position of P
/ * Objective function:
/’ — min ), D
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3.3 Branch fitting

* Fit cylinders to approximate the branch geometry
— 2" jteration: Weighted non-linear least squares

« Weight:

D.
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Dmax

* Objective function:
— min ZDiWi
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3.3 Branch fitting

 Fit cylinders to approximate the branch geometry
— Fit a cylinder first for the main trunk
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3.3 Branch fitting

* Fit cylinders to approximate the branch geometry
— Small branches don’t have enough points to fit
— We derive the radius by:

We,

e T rtZ We
J

r is the radius, e; is the it" branch, t is the trunk, w is the
weight of the corresponding branch edge.
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3.3 Branch fitting

* Fit cylinders to approximate the branch geometry
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3. Methodology Overview

Add realism

\ Fine
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3.4 Adding realism

- Add leaves and texture to the tree model
— Reconstructing leaves almost impossible
— Randomly grow leaves on top of branches
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4.1 Resu

ts: different tree types

Input points
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skeleton branches

fine model
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4.1 Results: different data sources

Input points skeleton branches fine model
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4.1 Results: model vs
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real tree
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4.2 Evaluation: geometrical accuracy

* Measure the distance from points to the model

Tree No.1 Tree No.2 Tree No.3

Height 5.61m 10.05m 10.61m
Mean distance 2.76cm 10.04cm 6.25cm
Standard deviation | 2cm 8cm 6cm
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4.2 Evaluation: geometrical accuracy

* Error visualization
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4.3 Evaluation: co

Tree No.1

Tree No.2

Tree No.3

mputation efficiency

Tree No.4

Point count 2488 11855 28993 137407
Triangulation 0.152s 0.753s 1.652s 9.006s
Skeleton initialization | 0.043s 0.195s 0.583s 3.35s
Simplification 0.013s 0.037s 0.096s 0.475s
Branch fitting 0.014s 0.072s 0.099s 0.521s
Rendering 1.215s 0.501s 4.252s 12.965s

o]
TUDelft

51



4.4 Comparison

* Improve topological fidelity

Livny’s method

]
TUDelft

Our method
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4.4 Comparison

* Improve geometrical accuracy
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Our method

Livny’s method
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4.5 Applications

« Compute tree height & trunk thickness
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4.5 Applications

« Estimate wood volume, biomass..
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4.5 Applications

 Enhance realism in urban scenes
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4.6 Limitations

- Data-driven mainly

* Not involving the natural growing rules of tree
branches
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5.1 Conclusions

Fully-automatic
- Widely applicable to various trees

- Able to achieve high modelling quality from static
scanning data and mobile scanning data

* Able to generate plausible results from airborne scanning
data
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5.2 Future Work

* Individual tree
P A set of trees

 Cylinder fitting
1" Free form surface fitting

* Point cloud only
1”7 Points with Images
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Abstract: Laser scanning is an effective tool for acquiring geometric attributes of trees and vegetations,
which lays a solid foundation for 3-dimensional tree modelling. Existing studies on tree modelling
from laser scanning data are vast. Nevertheless, some works don’t ensure sufficient modelling
accuracy, while some other works are mainly rule-based and therefore highly depend on user
interactions. In this paper, we propose a novel method to accurately and automatically reconstruct
tree branches from laser scanning points. We first employ the shortest-path algorithm to extract an
initial tree skeleton over the single tree point cloud, then simplify the skeleton through iteratively
removing redundant components. A global-optimization approach is performed to fit a sequence of
cylinders to approximate the geometry of the tree branches. The results show that our approach is
adaptable to various trees with different data qualities. We also demonstrate both the topological
fidelity and geometrical accuracy of our approach without significant user interactions. The resulted
tree models can be further applied in the precise estimation of tree attributes, urban landscape
visualization, etc.

Keywords: laser scanning; point cloud; individual tree modelling; precision forestry

1. Introduction

Trees are an important component lhmughnul the world. They form and function in natural
ecosystems such as forests, and also in human-made environments for instance parks and gardens
[1). Urban scenes without trees or plants are lifeless. Furthermore, satisfying environmental goals
always require heavy reliance on vegetation mapping and monitoring [2]. Models of trees, therefore,
have a wide range of applialims, including urban landscape design, ecological simulation, forestry
management, and entertainment visualization. While applications such as landscape design and
visualization only require modelling virtual trees, lots of other applications relevant with ecological

modelling and forestry management require accurate ing of tree pa s (tree height, tree
stem thickness, etc). Accurate tree modelling not only enhances the realism within a scene, but also
provides promising approaches to scientifically manage vegetations and forests, which will in retum
contribute a lot to ecosystem protection, resource preservation, preventing degradation, and many
other human activities [3). Hence, conducting researches in accurate tree modelling is necessary and of
great importance to modern society.

The traditional way of measuring trees is to manually conduct fieldwork, which is usually
expensive and time-consuming [4]. Since the last several decades, remote-sensing technology has
been widely exploited in mapping various information on forests and plants [5]. Both satellite sensors
and airborne sensors can effectively acquire digital images with high spatial resolution, and that
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