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Abstract

Data processing systems have become increasingly important in modern computing, as the volume
and complexity of data that needs to be analyzed has grown dramatically. Multiple data processing
systems have been and are being developed, that are scalable, resilient and performant.

However, despite the advances made in data processing technology, there are still challenges that
need to be addressed in order to optimize the performance, energy efficiency as well as the practical-
ity of these systems. One such challenge is the need to effectively manage the underlying system’s
resources, including the system’s throughput and the amount of work that each operator has to do and
to use optimal data-structures that would lead in faster task processing speeds.

To address this challenge, this thesis proposes the implementation of a high-performance data
processing system that exposes the underlying system’s metrics to the application level and applys
an innovative way for operator communication, by utilizing an efficient thread-safe data structure. By
providing underlying system’s metrics to the application’s scheduler, the scheduler can schedule the
tasks optimally according to the current system’s state and adjust the system’s resources during run-
time. This alleviates the developers from having to fine-tune the system beforehand and allows the
system to tackle fluctuating input workload more efficiently.

This thesis will explore the design and implementation of such system, as well as its impact on
the performance, energy-efficiency and resiliency of data processing applications. We provide perfor-
mance measurements as well as a qualitative comparison of our system compared to other state-of-the
art systems, proving our hypotheses.
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Introduction

Data processing has been increasing in popularity and demand over the years as more and more appli-
cations aiming at processing huge amounts of data are being developed. Data processing is required
in multiple different areas [1] including astronomy, medicine, finance, recommendation systems and
many more interdisciplinary scientific researches. In addition, all these areas have gained more and
more attraction in the Big Data [2] era, where tons of information and data is produced and distributed
across the internet. Some examples include machine learning models [3] that require considerable
amount of hours to train, fintech [4] applications that require fast and resilient transactions and high-
frequency trading companies [5] want to react to a change in the market as fast as possible. These
applications, along with many more, are using some form of data processing. Thus, one can see how
important the performance is in terms of throughput, energy-efficiency, resiliency and more for a data
processing system.

Nowadays, multiple different data processing systems exist, each one being unique according to
it's design. There are trade-offs of using one system to another based on their different characteristics.
For example, three big open-source stream-processing platforms, Apache Flink [6], Apache Storm [7]
and Apache Spark [8], can have big discrepancies in terms of performance, node failure and node
recovery due to the differences in their architectures [9]. Some of the main characteristics include the
language that the system has been developed, the scheduler [10] that is responsible for assigning
tasks to operators as well as the utilization of the underlying system from the application. Out of these,
we put more emphasis on the scheduler which is one of the most critical components, since it is the
decisive factor of the efficiency as well as the resiliency of the system.

Most of the current data processing systems are using the Operating System’s threaded-architecture
[11], in which they assign each task to a thread which will run until the task is over. However, using
the Operating System’s threaded-architecture comes with the overhead of context switches, as well
as it does not allow the application to make scheduling decisions, rather assigns the scheduling job
to the Operating System’s scheduler which is neither optimized nor designed for such applications.
Another kind of scheduling, which has not been researched in data processing systems, is the event-
driven scheduling architecture. The first steps on researching this architecture have been made by
SEDA [12], but an implementation of the system has not been provided. To the best of our knowledge,
research has not been conducted with regards to event-driven scheduling in the data processing field.
Our system architecture proposes an event-driven scheduling architecture has the benefits of avoiding
the context switches, since a thread-pool is initialized and a thread is assigned by the scheduler to
perform a task. In addition, today’s data processing systems do not expose the system’s metrics to the
applications. Our proposal is that exposing the system metrics to the applications, we allow the devel-
opment of a scheduler that is closer to the application, allowing to take decisions regarding specifics
such as the workload of each operator, the throughput of each operator and other metrics that are
present in the application-layer that can guide the scheduler into making better scheduling decisions.
In addition, most of today’s data processing systems like Apache Spark and Apache Flink, require a lot
of effort from the developer to fine-tune the system in order to achieve the desired performance [13].
However, by exposing the underlying system’s metrics, the application can self-adapt during run-time
and thus require much less configuration at start-time.

1



2 1. Introduction

As aforementioned, in high performance data processing systems, the programming language as
well as the utilization of the underlying system are very important. Most of today’s data processing
systems are built in Java (Hadoop) [14], [15] or Scala (Spark) [16], because Java and Scala are known
for their versatility and ability to use multiple data science techniques [17]. In addition, they are flexible
and portable languages with a broad user base, making them more attractive for developer that wish
to create an application on top of a data processing system. However, both of these languages are
not close to the machine, because they both use a JVM [14] which acts as a run-time engine that runs
the applications. Using a JVM has a lot of advantages, like being able to run in any operating system
(portability), writing applications easier because of not having to manage memory which is taken care
of by the garbage collector (usability). However, the memory footprint of Java is higher than in lower
level languages in which the developer can manage memory like C++ [18] and Rust [19]. The garbage
collector by itself requires extra memory in order to trace the memory consumption of the Java program,
making the programs that are written in lower level languages lighter and thus faster. In addition, the
runtime of Java programs is also affected by the middle layers that exist between the application code
and the byte code. JVM compiles the java programs into classes which are loaded by the Class Loader,
verified by the ByteCode verifier and are fed as input to the JIT compiler which tries to output optimized
execution code for the machine to run. On the other hand, compiled languages are producing the
machine code at once making their execution faster. For this reason, we decided to write our data
processing system in Rust, which is a very promising language that was developed in 2013 and has
seen a lot of attraction the last years [20]. By using lower-level languages, allows programmers being
closer to the hardware, by providing them libraries that will contain less lines of code and in the end
will execute faster than libraries that are used in higher-level languages, more ownership and access
to program’s memory and more. Last but not least, the utilization of the underlying system becomes
much more flexible in the application level by using lower-level languages. On top of that, most data
processing systems do not provide APls for lower-level languages, disabling developers to write their
applications in these. However, the aforementioned speed and memory improvements take place in
the application level as well.

1.1. Problem Statement

The primary goal of this thesis is the implementation and evaluation of a high-perfromance data pro-
cessing system based on the event-based scheduling architecture. We propose that allowing the ap-
plication to access system metrics results in the ability to build more efficient schedulers that target
the application directly and avoid latency overheads of the generalized operating system scheduling
mechanisms. In addition, we propose that exposing such metrics to the application, allows the system
to reach an equilibrium state, where it adapts quicker to fluctuating workloads as well as reduces the
need for excessive fine-tuning of parameters like other state-of-the art systems require. We identify
three key points for evaluating our system and comparing it with other state-of-the art systems:

+ Raw Performance

— Runtime

— Throughput
« Efficiency

— Energy Efficiency
— Per item latency

* Resiliency
— Behavior on worker errors

1.2. Research Questions
Following our problem statement, we can formulate the main research question as :
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RQ : Can the underlying system’s metrics be exposed in the application level in order to allow the
building of efficient schedulers that can reach an equilibrium state and outperform other state-of-the art
systems?

We split this main research question into more precise sub-parts as follows:

RQ1 : Can we improve the performance and practicality of a data processing system by exposing
the underlying system’s metrics to the application?

RQ2 : Can a scheduler that has access to the system metrics reach an equilibrium state ?

RQ4 : What is the most effective way of building an application on such system?

RQ5 : What are the limitations that such system imposes?

RQ3 : Does such system outperform other state-of-the art systems in , terms of performance,
practicality, energy efficiency and resiliency ?

1.3. Chapters Overview

In order to answer our research questions, we formed the structure of our thesis as follows. We begin
with Chapter 2 where we summarize some background information and previous related work relevant
to our research. This serves as a foundation for the reader to understand the context and significance
of our research. Chapter 3 contains our complete system and application design. It begins with the
final design implementation, which includes the system design, the scheduler design as well as the
application. In Section 3.4 we provide an overview of the challenges we encountered and a descrip-
tion of the various iterations we conducted before arriving at the final implementation. Additionally,
we include a performance comparison of the different iterations, providing valuable insights into the
optimization process. In Chapter 4, we move on to the experimental phase of our research, where we
aim to validate our proposals and answer the remaining research questions. We perform a series of
experiments on our final system design and compare it with other state-of-the-art systems. The results
of these experiments provide valuable insights into the performance and efficiency of our proposed
system and help to answer the remaining research questions. Finally, in Chapter 5, we conclude our
work by summarizing our research questions and the results we obtained for each of them. We also
impose future work that can act as guidance for further research to be made in this field.






Background and Related Work

A lot of progress has been made the past years in the data processing systems world. In this chapter
we begin by discussing some basic computer science concepts that are relevant to our research. We
start with a short discussion on programming languages including their compilation and runtime char-
acteristics in section 2.1. We continue with a description of memory allocation in Section 2.2, a brief
discussion of Processes and Threads in Section 2.3 and some relevant Data Structures in Section 2.4.
We continue with the introduction of the most common and important data processing systems compo-
nents (Section 2.5). Subsequently, we explore the two programming models that we mainly focus on
Section 2.6 and some existing architectures that are based on these models on Section 2.7. We then
proceed to an overview of the state-of-the art data processing systems and how these evolved in the
last years, as shown in Section 2.8, before we state our research’s main goals in section 2.9.

2.1. Programming Languages

Programming languages act as the intermediary between humans and the computers. In the modern
world, we have multiple different devices, services and applications with a variety of functions. As such,
different programming languages are required for different purposes. Some languages are easier to
understand and use, but offer less control over the hardware (most usually the interpreted languages).
On the other hand, there are languages that are closer to the machine, which offer a lot of low level
utilities to the programmers, with the cost of being harder to understand and easier to create bugs
(compiled languages). There are also languages that combine the characteristics of the previous two,
which first compile the programs and then interpret the compiled code. We decided to implement our
system in a low-level language, Rust, in order to have as much flexibility as possible in both the system
and application design.

2.1.1. Compiled Languages
Compiled languages tend to be faster and more efficient than interpreted languages. This is taking
place because they are compiled directly into machine code that the processor can execute. In addition,
these types of programming languages also give the developer more control and flexibility over the
hardware, like memory management. We chose to develop our system in such a language (Rust),
because of the performance advantages we can gain from it's versatility.

Compiled languages need to be manually compiled before executed. Every time a change is made
the program has to be re-compiled. Some examples of compiled languages are Rust, C and C++.

2.1.2. Interpreted Languages

Interpreted languages have a computer program, the interpreter which runs through a program line by

line and executes each program instruction. In this case, if a change is made in the program, it won’t

need to be manually compiled and "build”, which can save all the compilation time that may take place

in the compiled languages. In addition, interpreted programs can be modified while the program is

running. Interpreted languages have a lower runtime performance than the compiled languages.
Examples of such programming languages include Python, Ruby and Javascript.

5
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2.1.3. Compiled and Interpreted Languages

There are some languages that can be considered both compiled and interpreted languages. Such
examples are Java, Scala. These languages’s source code is first compiled into byte code which runs
on the Java Virtual Machine (JVM), which is usually a software based interpreter [21]. The two data
processing systems that we will compare our system with are written in this type of languages. Apache
Spark [8] is written in Scala, while Apache Flink [6] is written in both Java and Scala.

2.2. Memory allocation

In order to implement a high-performance data processing system, it is important to know how mem-
ory works, since the system receives and processes a substantial amount of data over time. While
developing our system, we tackled some challenges regarding to memory as described in Section 3.4,
therefore in this section we analyze the way that modern operating systems allocate memory.

In modern operating systems the so called memory virtualization is taking place for protection and
efficient memory sharing among different processes. Each process has a separate view of memory
in the system. This view is called address space [22]. The address space of a process contains all
the memory required for the program to run. Among other things like the code and some statically-
initialized variables, the stack and the heap of the program lies in it's address space. The code is static
so it lives in the top of the address space since it can’t grow while the program runs. On the other
hand, the stack and the heap can grow and shrink while the program runs, that’'s why we put them at
the opposites ends of the address space. As we can see in Figure 2.1 the heap starts right after the
code (at 1KB) and grows downward, while the stack starts at the end of the address space (16KB) and
grows upward. In this example, the free address space that can be used by both the heap and the
stack is 13KB and the current heap and stack sizes are 1KB each.

2.2.1. Stack

The stack is being used during the program’s runtime. While the program runs, it stores the function
call chain, the local variables, the parameteres and return values to the stack. When a function is
called, a block is reserved on the top of the stack for all these local variables and bookkeeping of data.
Whenever this function returns, the block becomes unused and can be used by the next function call.
Each thread has it's own stack, which is sometimes called the thread stack.

2.2.2. Heap

The heap memory is set aside for dynamic memory allocation, managed by the user. Unlike the stack,
the allocation and deallocation of blocks have no specific pattern in the heap. The user/ application is
responsible for reserving and freeing space from the heap. There are many custom heap allocators
available, or virtual machines like the JVM which contain their own internal memory allocator. In the
case of the JVM, it initially requests some amount of heap memory from the operating system and it
manages this memory while running with the use of garbage collectors. This is one core difference
between Rust and Java/ Scala. In the former one, the developer is responsible for handling memory
allocation, however for the latter cases, the JVM will take care of that. As aforementioned, in Section
3.4 we will see how JVM outperformed our first system implementation and how we overcame that by
changing our system’s memory allocation method.

2.3. Processes and Threads

Modern operating systems require the ability to provide concurrent operations even on a single CPU.
For this reason, the concept of processes was created, which are abstractions of executing programs.
Threads are very closely related to processes but with some key differences. Our system is heavily
based on concurrency, therefore in this section we will analyze the different ways that concurrency can
be achieved in modern operating systems.

2.3.1. Processes

Modern operating systems require the ability to provide concurrent operations even on a single CPU. A
process is an executing program’s abstraction that is leveraged by the operating system in order to turn
the CPU into multiple virtual CPUs. A process is an instance of an executing program, such that it is
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Figure 2.1: Address space example

consisted of the program counter, registers and variables of the program. Processes are very handful
because they provide the ability to The CPU to switch between them, giving the illusion of parallelism.
For example, some operations like disk accesses require a lot of time to complete. In that case, the
operating system can decide to switch to another process in order to avoid the slow disk’s processing
time. However, switching to another process is not cost-free, as it requires a virtual address space
switch.

2.3.2. Threads

A thread is a path of execution within a process. A thread consists of a program counter that keeps
track of the next instruction to execute, some registers that save the current working variables and
a stack, known as thread stack, which keeps the execution history. The main difference between
threads and processes is that threads share the same address space. These attributes are required
in order to allow the operating system to switch between threads without losing it’s state. In standard
operating systems, every process has a designated address space and a single thread of execution.
However, having more than one threads within a process can yield a lot of benefits. Threads can have
a positive impact in the performance if the operations performed within the process contain substantial
computing and are I/O intensive. In addition, in the multi-core systems each thread can run on it's own
core, achieving true parallelism. There are two types of threads, user level threads that are managed
in user space and kernel level threads that are managed by the kernel. The aforementioned benefits
were the reason that we chose to use threads in order to parallelize our system.

« User level threads

User level threads are managed entirely by the user space. In that regard, the kernel does not
know their existence and acts as if the process is single threaded. This indicates that the process
has to store information about it’s threads in order for the run-time system to be able to switch be-
tween them. This information is included in a thread table that consists of each thread’s program
counter, registers, the thread’s state and more. User level threads have many benefits, such as
enabling the applications to build their own customized scheduling algorithms. In addition, they
scale better since the kernel requires a lot of space when there are a large number of threads.

¢ Kernel level threads

Another type of threads are the kernel level threads. In this case, the kernel is responsible for
managing and scheduling the threads. In order to do so, as in the case of the user level threads,
the kernel needs to save the state of the threads. Thus, as in the user level threads case, the
kernel holds a thread table that keeps each thread’s program counter, registers, state and more.

* Thread pools
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A thread pool is a collection of threads that are waiting for tasks to execute. Thread pools boost
performance and decrease latency in execution because they remove the need of the creation
and destruction of threads, along with the allocation and deallocation of the resources that these
require. As we discuss in Chapter 3, thread pools play a fundamental role in the design of our
scheduler.

2.4. Data Structures

Data structures are specific ways of organizing data such that it can be used efficiently, according to
the application requirements. There are many data structures, some being simple and others being
more complex. In this section we discuss about a very common data structure, the queue, as well as
different derivations from it, which are used in many data processing systems, including the one we
implement.

2.4.1. Queues

A queue is a collection of objects that are stored in a sequence. The end of the sequence is also
referred to as the tail of the queue and the start of the sequence is known as the head of the queue.
There are three common operations in queues, the addition of an object which adds the object in the
tail of the queue, the peek of the queue which returns head of the queue and the removal of an object
which removes the head from the queue. Queues follow the first in First in First Out methodology,
which means that the data that is stored first will also be accessed first. A queue design can be seen

in Figure 2.2.

head tail

Figure 2.2: Design of a simple queue

2.4.2. Priority Queues

A priority queue [23] is a data structure that maintains a set of elements, each associated with a value
called a key which is the element’s priority. The priority queue can be either a max priority queue or a
min priority queue. In the former case, the element with higher priority is dequeued before the element
with lower priority, while in the latter case the opposite event takes place. If two elements have the
same priority, they are dequeued according to their order in the queue. Our system is using this data
structure in order to prioritize the tasks according to the metrics as we discuss in section 3.2.3.

2.4.3. Ring Buffers

A ring buffer, also known as circular buffer or circular queue is a fixed-size buffer which is connected
end-to-end. A ring buffer consists of a queue and two pointers, one representing the head and one
representing the tail. Whenever the head pointers gets to the end of the fixed-sized buffer, it wraps
around to the first element of the array. Data is allowed to be overwritten in a ring buffer, so every
time the head pointer wraps around to the first element, each addition is essentially overwriting the
previously added elements. This is a very suitable data structure for our system, as we handle large
amounts of data and we would like to re-use memory of already processed data. In addition, two
different operators require access on the same data structure at the same time, attributing the ring
buffer a very good choice because of the two different pointers it contains, the head and the tail. A
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producer can continuously write on the memory targeted by the head pointer while the consumer can
be reading from the memory targeted by the tail pointer at the same time.

2.5. Data Processing Systems Components

Data processing systems are emerging because of the need to process large amounts of data in many
different sectors. There are multiple components that compose a data processing system, which also
play a role in the performance and efficiency of the system. In this section we discuss some of the most
common components that we pay more attention to due to their importance.

2.5.1. Processing

There are two main distinct models of processing data, batch processing and stream processing [24].
Under the batch processing model, some collection of data takes place over a period of time before
it is fed into the system for processing. Stream processing refers to the process of data as soon as it
enters the system, where the processing takes place in real time.

» Batch processing

There are multiple applications that fit to the batch processing model because of their nature.
Some examples include email systems that gather emails in batches before sending them all to
their destinations. By doing this, the senders can delete or edit the emails after they have chosen
to send them, if the batch has not been dispatched yet. Other examples include payroll and
billing systems, processing of input and output in operating systems and more. The response is
provided by the system after a job completion. Apache Spark is an example of a batch processing
system.

+ Stream processing

Stream processing is targeted mainly by applications that are more interactive. This includes
applications that require quick responses to events such as high-frequency trading companies,
the stock market, social media, e-commerce transactions and others. In this case, the response
is provided by the system immediately. Apache Flink and our system are stream processing
systems.

2.5.2. Operators

In data processing systems there are multiple processes that are responsible for filtering the data that
is being passed through the system, according to the requirement of the application. These processes,
also known as operators, receive data as input, process it and produce an output. One operator’s
output can be fed to another operator’s input, also known as downstream operator, with this process
repeating itself until the data hits the last operator, which will produce the final output. The first operators
in the hierarchy are called source operators and they are responsible for receiving input from different
resources like the disk, the memory or a stream.

A very common example of such an operator is the map operation. Map takes a function which is
called for each value in the input and produces an output which is sent to the output. Other operator
examples are the ones that implement spilit, filter, flat and flatmap operations.

Anyone can design a data processing application by using these operators and provide the desirable
input or functions to be called on each one of them, in a sequence that is related to the application’s
needs. For our system application, we had to create several operators that communicate with each
other and process the data as discussed in Section 3.3.

2.5.3. Scheduler

The scheduler is one of the most important components in every data processing system, because
it's decisions have impact on many vital system’s metrics such as the throughput, resiliency, energy-
efficiency. Efficient scheduling implementation is a difficult task to achieve in such systems, because of
the non-deterministic nature of the problem that it has to solve. An optimal job scheduling is impacted
by a lot of factors such as how much time a task will need to finish, the current state and the availability
of the operator that the task is going to be assigned, the relative importance of the different tasks
that it has to schedule and many other factors such as statistical outliers, noise and so forth. In this
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regard, developing and tuning the scheduler for each different workload is infeasible, which is the
reason why current schedulers use simple and generalized heuristics in order to make decisions [25].
The scheduler is one of our main contributions in this research. We propose that by exposing several
system metrics to the scheduler, it can take decisions that will eventually allow the system to reach a
peak equilibrium state and enhance it's performance and resiliency.

2.6. Programming Models

Data processing systems need to acquire, analyze and output huge amounts of data in short amount
of time. Thus, in most cases, the systems dispatch multiple threads and assign a part of the workload
to each one of them. Nowadays, most data processing systems use the operating system threaded
architecture 2.6.1. Nevertheless, the event driven architecture 2.6.2 seems very promising for data
processing systems.

2.6.1. Threaded Model

In this model, the data processing system relies on the operating system’s threaded model. In that
regard, the system creates the desired amount of threads, each one responsible for executing a specific
task, leaving the rest of the work for the operating system. By doing so, the CPU concurrency is
exploited, since each thread can run on a different CPU. However, the operating system is responsible
for the thread scheduling, leaving no space for application-level scheduling optimizations. This model
has some performance implications for high performance applications since context-switching is a big
overhead. In addition, large amount of memory is required by the thread stacks, since every thread
requires it's own stack used to store the thread’s runtime data. There are more limitations for using
threads in general, including the difficulty of writing thread-safe code, the dangers of deadlocks as well
as the performance costs of synchronized code, depicted by Amdahl’s law, however these concerns do
not trouble the data processing systems which just assign an amount of work to each thread, without
the need of synchronization.

2.6.2. Event Driven Model

Another existing model of parallelism is the event driven model. In this case, there is an event loop which
handles incoming events. These events can be handled synchronously or asynchronously, depending
on the system’s capabilities and requirements. In the synchronous case, a time consuming event would
cause a delay before the processing of the following events. In the asynchronous case, the events can
be processed asynchronously and are handled by the event loop when their execution is finished. It
is quite difficult to take advantage of real CPU concurrency in this model, however an implementation
of a thread-pool that handles the events in parallel would also take advantage of the multiple cores.
Nevertheless, in order for this implementation to be efficient, there should be low thread contention
meaning little amount of synchronization.

2.7. System Architectures

There are many architectures that are based on the two programming models mentioned in Section 2.6.
In this section, we discuss the architectures of Hadoop, which was used for the descendant state-of-the
art data processing systems like Spark and Flink and we analyze the architecture of an event-based
system that inspired our system’s design due to it's novel architectural approach.

2.7.1. Hadoop Architecture
There are three types of nodes in a Hadoop cluster, each having different responsibilities and functions
to execute.

First, there is a client node which acts as an interface between the hadoop cluster and the out-
side network. It is providing the data specifying how it is supposed to be processed and collects the
results. Following a master-slave architecture, the second type is the master node, also called NameN-
ode, which is responsible for coordinating and controlling the storage and parallel processing of data.
This node is running Yarn resource manager in order to manage the application resources across all
the worker nodes. It also runs the job tracker which is used for both job resource management and
scheduling as well as monitoring of the jobs. Finally, there are the worker nodes, also called DataN-
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odes, that are used to store and process data according to the master node’s instructions. These nodes
run Yarn’s NodeManagers which are responsible for monitoring resources of the virtual machine and
reporting results to the ResourceManager on the master node. This design can be seen in Figure 2.3.

2.7.2. Staged Event Based Architecture

A design implementation that levarages the multiple CPU cores as well as the event-driven model is
SEDA [12]. SEDA is a design built for highly concurrent internet services, however we believe that the
design proposed can provide a lot ofimprovements and novel research questions to the data processing
system architectural designs. Our system is mainly based on this architecture, as discussed in Chapter
3.

SEDA consists of several application specific event-driven stages connected by distinct queues.
Each stage is made up of an incoming event queue, a thread pool as well as an event-handler. In
order to keep the stages efficient and available under large fluctuating workloads, SEDA makes use of
dynamic resource controllers which dynamically adjust resource allocation and scheduling of the tasks
dynamically. These resource controllers are present on every stage of the system. There are two types
of resource controllers :

» Thread pool controller Thread pool controller, as shown in Figure 2.4, is responsible for altering
the amount of threads executing withing the stage. The thread controller observes the input event
queue and assigns a thread whenever the input queue is exceeding a certain threshold, limited
by a maximum thread threshold per stage in order to not overallocate threads in a stage. Threads
are removed whenever they remain idle for some time in the stage.

» Batching controller Batching controller, depicted in Figure 2.5, is responsible for adjusting the
number of events that will be processed each time by the event handler. Due to cache locality
and task aggregation, processing many events at once increases throughput [26]. Nevertheless,
large batches lead to increased response times. The batch controller tries to make a trade-off
between these two aspects, by attempting to find the lowest batching factor that leads to high
throughput. In order to achieve that, it observes the output rate of events from the stage and
adjusts the batch factor accordingly. First it tries to decrease the batching factor until the output
rate decreases and if this decrement is little, then the batching factor is increased by a small
amount.

Master node

( NameNode
Client node < >
L ResourceManager

JobTracker

Worker node 1 Worker node 2 Worker node N

il

>

DataNode DataNode DataNode

NodeManager NodeManager NodeManager

MapReduce MapReduce MapReduce

Figure 2.3: Hadoop’s Architecture
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Figure 2.5: Stage’s batching controller

2.8. Related Data Processing Systems Overview

There are multiple data processing systems that have been developed throughout the years. Each one
has it's own design characteristics that distinguish it from the others. One has to choose the system that
suits more into the functional and non-functional requirements of the application. Nevertheless, apart
from the design choices, current state-of-the art data processing systems use the operating system
threaded model, which poses limitations as discussed in Section 2.6.1.

2.8.1. Hadoop

In traditional data processing systems the entire data would be processed on a single machine having
a single processor. However, this method became inefficient and infeasible as the data started growing
both in size and in the speed it is produced. One of the first attempts to tackle this problem is Apache
Hadoop, which was introduced in 2010. Hadoop is a fault-tolerant distributed data processing system
that is used to store and process large amount of data. It partitions the data in many hosts and process
it in parallel, according to the application computations. Hadoop has three main components. First, the
Hadoop File System (HDFS) [27] is the file system storing the data in a distributed manner. Second,
a framework responsible for resource management and job scheduling named YARN [28]. The third
component is MapReduce [29], a system based on YARN, which is responsible for the parallel analysis
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and transformation of the data. MapReduce programs read input data from disk, map a function across
this data and reduce the results storing them on disk. All these components are shown in Figure 2.3

2.8.2. Spark

Another data processing system that was developed after the introduction of Hadoop is Apache Spark [8].
Spark was developed in response of the limitations of the MapReduce paradigm. Reading and storing
the results on disk were problematic for iterative and interactive workloads, due to the low I/O perfor-
mance of the disk. Spark’s architecture is based in the resilient distributed dataset (RDD). As the name
suggests, RDDs are fault-tolerant, immutable collections of objects of any type, distributed over multi-
ple nodes. Each dataset RDD is partitioned on different nodes in the cluster so that it can be operated
in parallel. One of the fundamental performance improvemenets of the RDDs is the ability of the user
to opt to persist them in memory, so that they can be reused multiple times efficiently, reducing the
latency of iterative and iteractive applications by several orders of magnitude compared to Hadoop’s
MapReduce [30] [31].

2.8.3. Flink

Both Hadoop and Spark are designed to process data in batches. Even ifitis possible to opt for stream-
ing in spark, it does not actually process data in a streaming fashion, rather it uses micro batches to
emulate streaming. Flink [6] was developed in order to fill this gap and introduce a distributed process
engine for stateful computations over data streams. Thus, Flink is capable of processing data in real
time, which is not possible in Apache Spark’s batch processing method. There have been many com-
parisons between these two data processing systems showing that there is no single framework for
all data types and sizes. Spark is about 1.7x faster than Flink in large graph processing, while Flink
is up to 1.5x faster than Spark for batch and small graph workloads [32]. As the authors suggest, this
behavior is explained by the different design choices imposed by Spark and Flink. First of all, the mem-
ory management plays a crucial role in the performance of the system. The JVM’s garbage collector
can become a huge overhead as more and more objects are allocated in the JVM. In particular, the
authors spotted that during the experiments Flink, instead of accumulating many objects in the heap,
it stores them in an exclusive memory region in order to avoid memory issues, in contrast to Spark.
Some other observations include the pipelined execution of Flink compared to the staged execution
of Spark, the optimizations of Flink which are handled internally compared to Spark which has to be
manually optimized to specific datasets and finally the parameter configuration which is very tedious in
Spark.

2.8.4. Phoenix++

Phoenix++ [33] is a shared-memory Map-Reduce framework, which was implemented as an improve-
ment of the Phoenix [34] framework.

The authors suggest that Phoenix had a couple of limitations, such as being ineliciotus to adapt
to a wide range of MapReduce applications because of it's poor task overhead, as well as for it's
performance issues due to the data structure choice used to store the intermediate key-value pairs and
due to an inefficient combiner’s implementation. A combiner acts as an optional localized reducer and
processed data from the Mapper before passing it to the Reducer. In particular, Phoenix is using a
static MapReduce pipeline where intermediate key-value pairs are stored in a hash-table of predefined
size, a design that is limiting the performance in workloads with large number of keys. In addition, the
combiner execution takes place at the end of every map stage, reducing the total overhead of invoking
the combiner but costing a lot in terms of memory allocation and increasing the possibility of cache
misses.

The authors propose that by running the combiner more frequently, performance will improve be-
cause of reduced memory allocation pressure. Therefore, they propose Phoenix++, a framework that
is modular and allows users to adapt performance critical elements of the pipeline, according to the
workload they are working with. This is achieved by exposing the key-value grouping and storage and
by allowing the users to disable the final key-value sort and by allowing them to replace the default
memory allocator.
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2.9. Main goals
The main goal of our research is to address the gap in current state-of-the-art systems by enabling
developers to build effective schedulers that are based on the system’s state. We believe that by
utilizing metrics such as the operator’s throughput and the amount of work each operator has to process
at a certain point in time, we can make intelligent scheduling decisions that will not only enhance the
system’s performance, but also improve its resiliency. By allowing the system to self-adapt according to
the state of its processors, we propose that it can reach an equilibrium with an optimized performance
and resiliency.

In addition to this, we believe that the utilization of thread pools can complement such a system.
By allowing the scheduler to dynamically adjust the size of the thread pool based on the needs of the
applications, we believe that we can further enhance the system’s performance and resiliency.

Furthermore, we plan to implement processes that communicate via shared memory using shared-
memory thread-safe ring buffers. This, to the best of our knowledge, has not been done in similar work
in the field of data processing systems, and we believe that it will provide additional benefits in terms
of performance and resiliency. By allowing processes to efficiently communicate and share data using
shared memory, with a design that minimizes the need for locking mechanisms, we believe that we can
significantly improve the overall capabilities of the system.



Design

In this chapter we analyze all the design choices and the implementation of our work. We start by
discussing the system design in Section 3.1 which includes the data structures used as well as the
higher level architecture of the system. We continue in Section 3.2 where we examine two different
scheduler implementations, a simple round robin scheduler and a more advanced priority scheduler.
We then continue with the application we designed on top of our system in Section 3.3. We finalize the
chapter in Section 3.5 where we briefly summarize the chapter and note the most important takeaways
from our work.

3.1. System Design

This section contains an overview of the design of the system we implement. The code of our system,
including the tests can be found at [35]. We start by explain the data structures, the different operators
and how these communicate with each other in order to process the tasks. We then analyze some of
the challenges that we faced and how we overcome them.

As we have discussed, the main proposition of our research is the implementation and evaluation
of a high-performance data processing system which exposes decisive metrics to the application level,
in order to allow for the design of more efficient schedulers, which are able to use the system’s metrics
in order to take decisions and reach a peak equilibrium state. To our knowledge, similar systems that
expose metrics such as the operator’s throughput, the work that is queued for the operator and others,
have neither been developed nor researched. We believe that such systems can result in the creation
of schedulers that will allow the system to adapt and react to changes during run-time, making stream-
processing more efficient and performant. By taking into account the run-time metrics, we propose that
a scheduler, after a start-up phase will reach an (peak) equilibrium until it stops. In addition, our system
requires a very low amount of fine-tuning parameters, which can be cumbersome and require a lot of
work in other systems like Apache Spark and Apache Flink.

In order to achieve the aforementioned results, we require an efficient data structure that multiple
threads can use in order to communicate with each other. We opted for shared memory thread-safe
ring buffers as we believe is the most efficient way to achieve the fastest communication between
processes when multiple threads are involved. Similar work has been done in close domains like data
acquisition [36], but to our knowledge, no research has been concluded for data-processing systems
implementing multi-threaded ring buffers as a communication method. In particular, each operator of
our system contains one input ring buffer and one output ring buffer. The goal is for it to read from the
input ring buffer as many items as the scheduler suggests, whenever the scheduler decides it’'s time to
activate this operator. It then processes these elements and writes the results to it's output ring buffer,
which is the input ring buffer of the downstream operator. By doing so, we create a graph of processes
that communicate with each other over this shared memory as shown in Figure 3.2.

3.1.1. Shared Thread-Safe Ring Buffers
For our system to be efficient we had to implement a data structure that would work and scale under
heavy workloads. For that we implemented a shared thread-safe ring buffer which is the main compo-
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nent of our system and is being used by all the operators for the sending and retrieval of it's tasks. The
main reasoning behind this choice was to design a data structure that can be accessed by different
threads at the same time without the need of locking mechanisms, which would work as a communica-
tion mean between the processes. This design allows us to efficiently control the resources (threads)
of each process, while matching the requirement of our system to expose some important metrics such
as the workload of each process to the scheduler.

Applications in Apache Spark and Apache Flink, on the other hand, are parallelized into multiple
tasks that are distributed and concurrently executed in a cluster. However, this design does not allow
for dynamic parallelization and the burden of optimizing the parallelization is assigned to the developer
and is dependent on different factors such as the application and the workload.

In order to achieve this, we implement a ring buffer of a fixed capacity. For achieving parallelism,
we have to split the ring buffer in a way that multiple threads can simultaneously read and write data
on it. If a thread could only read or write to one slot of the ring buffer, the system would not scale with
the number of threads increasing. Thus, we introduce the notion of slices. The slices are subqueues
that are logical partitions of the ring buffer.

There are two different types of slices, the read slices and the write slices. With the help of queue
pointers and atomic operations, multiple variable sized read, write or both slices can be requested simul-
taneously. In the case of a request of a read slice of size n, a slice of size max(n,readable_amount)
will be returned, where readable_amount is the total amount of items that have not been yet read in
the ring buffer. From this point, the requester is the sole owner of this read slice and can start reading
items from it. In the case of a write slice request of size n, the request will either succeed or fail de-
pending on the state of the ring buffer. If there is enough space in the ring buffer for the reservation
request, a writable slice of size n will be returned, otherwise the option None will be returned. Again,
the requester will be the sole owner of this writable slice and it can start writing it. In both read and
write slices, after having completed the desired work, the requester should free the slice. By freeing
the slice, again using atomic operations, the queue pointers will be updated into their correct positions
so that the next requester has the correct view of the ring buffer’s state.

As aforementioned, for the implementation of the read and write slices, we used queue pointers.
The queue pointers are the following : head, shadow_head, tail, shadow_tail. In simple queue
implementations, only head and tail pointers are enough in order to keep track of the state of the
queue. However, in our implementation we require the shadow_head and shadow_tail pointers for
keeping track the state of the slices as well. In particular, the space between head and shadow_head
refers to the space that has already been requested and has not been freed yet. Whenever a requester
successfully receives a read slice of size n, the shadow_head pointer will progress n steps. The head
pointer proceeds whenever a read slice is being freed. Our system respects the order of the requests,
so if a read slice is being freed that does not point to the same place as the head pointer, the head
pointer will not proceed. However, when all the slices that are before this one are freed, the space
for this slice will also be freed in an accumulated manner. The steps that the head pointer proceeds
is equal to the accumulated size of the continuous read slices that have been freed. Similarly, the
area between tail and shadow_tail relates to the space that has been reserved for writing by all the
write slices. Requesting and freeing write slices will proceed the shadow_tail and tail pointers in
similar fashion to the shadow_head and head pointers, by taking into account the order of requests.
An example of requesting and freeing a read slice from the ring-buffer can be seen in Figure 3.1.

3.1.2. Operators (Processes)

Operators (also named processes) contain the logic of the operations we want to perform on the data.
Each operator is a struct that takes some input, processes it and produces some output. Operators
require a way to communicate in order to send the data to the downstream operators. As aforemen-
tioned, the most efficient way we think is to achieve this is by the use of the shared thread-safe ring
buffers. Each operator is composed by distinct ring buffers, some that are responsible for gathering the
input data and some that are responsible for gathering the output data. Consequently, an operator’s
output ring buffers are the same as it's downstream operator’s input ring buffers. In this way, operators
can request read slices from their input ring buffers and process the data contained on it according to
the operation they are performing, before freeing the read slice. Consequently, they can request for
writable slices from the downstream operator and write the results on it. After having finished writing
the results, they can also free the write slices in which point they have completed their job. In our
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Figure 3.1: Design of a simple shared-memory thread-safe ring buffer

experimental application, we used one input ring buffer and one output ring buffer for every process,
therefore we will be mentioning this design for the rest of the thesis. In Figure 3.2 we can see an exam-
ple of an application consisted of the source and sink operators as well as four other operators. In this
example, we can see one input and one output ring buffer for each operator (which is also the minimum
amount required for the communication between the processes). It is illustrated how a ring buffer is
used both by the upstream and the downstream operator, being the output queue for the former and
the input queue for the latter.
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Ring buffer Ring buffer
@ e Process 1 . @ _____ Process 3
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B @ Process 2 @ Process 4
Ring buffer Ring buffer
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Figure 3.2: Example of an application design consisted of six processes

3.1.3. Tests

In order to check the stability and correctness of our system, we implemented several tests. First
we created a test for testing the writable slices only, in which we spawn five threads, each reserving a
writable slice of 250 size. It then increments a counter that is shared among all the threads and appends
the result to it’s write slice. Finally, after all the threads have finished their job we are requesting a read
slice of the accumulated write slice sizes and check if the correct numbers are inside it.
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Another test we implemented is a producer-consumer scheme. In this scenario, the producers are
adding items in the ring buffer while the consumers are constantly reading these items. For this case,
we are not testing the slices, we rather add only one item per time in the ring buffer we just wanted to let
the program run for long time so we implemented a handler to exit and print some metrics concerning
the performance of the system. We create another similar test case for checking if the correct values
and ensuring that there are no duplicate values are inside the ring buffers.

In the next scenario, we enhance the previous test case for using slices. Now producers and con-
sumers reserve a slice of a specific size. After a specific amount of items have been read, the metrics
like the producers time, the consumers time and the total time are printed. We also create another very
similar test case which is used for testing if the correct values are inside the ring buffers in the end and
ensuring that there are no duplicate values.

Finally, we implement the most generic test case which would be closer to a real-world application
scenario. In this test case we do not use the producer-consumer scheme, so there is no notification
between the producers and the consumers with the use of semaphores. Here, we spawn a certain
amount of producers and consumers threads which run repeatedly, until their required amount of work
is finished. Thus, the producers are consistently requesting write slices, fill them up and commit them
while the consumers repeatedly request read slices, read them and commit them. By doing this, apart
from the performance measurements of the core data structure, we are also testing if the ring buffer
data structure does not return slices that are already in use and that the system works as expected.

3.2. Scheduler

The Scheduler is one of the main components of our system. The scheduler is responsible for assigning
work to each operator and by efficiently doing so reaching a peak equilibrium state. The main goal
of our scheduler is to utilize the system’s metrics such as the recent selectivity (throughput) of each
processor as well as the amount of work that is queued to each processor. We propose that by the
utilization of these (and other) metrics, we can create a system that can reach a peak equilibrium by
only configuring a small amount of parameters beforehand. Such parameters include the desirable size
of each process’s queue, the total number of threads and the desired input rate of the sink process’s
input queue. We expect such a scheduler to reach a peak equilibrium state and to outperform current
state of the art schedulers in terms of run-time. We also expect it to adapt efficiently and fast to data
input fluctuation (e.g. vastly changing input that would require more processing on other operators than
before) and to disruptions such as unexpected changes to the thread pool size.

Current scheduler implementations do not rely on such metrics, as they have not been designed in
a way that would allow them to do so. Scheduler implementations like Apache Spark’s split the jobs
into stages which utilize all the underlying resources until the job is done. Therefore, a process will
be activated irregardless of the amount of work it has to do, the recent throughput that it achieves and
other performance relevant metrics.

We started by implementing a simple scheduler that schedules the jobs in a round robin fashion.
Later, we constructed a process priority scheduler which takes into account the different processes’
priorities, which takes into account the metrics that we are interested in, in order to make a scheduling
decision.

3.2.1. Thread pool

As aforementioned, having the threads in user-space provides a lot of benefits, including the removal
of context switches, the removal of space stored by the kernel’s thread stacks as well as the allowance
of implementing an application level scheduler. In all our scheduler implementations we are using a
thread pool that spawns a constant number of threads. Each thread lives forever and is constantly
getting the next process to be executed, which removes the need of context switches. The priority that
the processes will be picked is decided upon the scheduler implementation.

3.2.2. Round Robin Scheduler

Ouir first approach of a scheduler implementation is a round robin scheduler. In this case, the operators/
processes are stored in a simple array. Upon the start of the scheduler, the thread pool will spawn a
predefined specific amount of threads. Each thread will enter an infinite loop, in which it repeatedly
picks the processes one by one from the array in a circular manner, since after the last process the
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thread will start picking processes starting from the first position of the array again. The amount of work
that each operator will undertake on each activation is determined by a pre-defined static variable that
we manually tune.

The round robin scheduler does not take into account any metrics that would benefit the system
in terms of either performance or availability. For example, in the case that an operator does not
have any items to process in it's input queue, CPU cycles would be wasted by constantly checking
the activation amount of this process. In addition, even if a process has a low amount of items in
it's input queue, the whole system would benefit more by activating another process with more items
and activating this process later when it also has gathered more items in it's input queue. Another
devastating effect that the round robing scheduler can have that can, in the worst case, block the
whole system is the case where the downstream operator’s input queue is full. In the good scenario,
the current thread will spin-lock until another thread picks the downstream operator and process some
of it’s input elements. However, in the worst case scenario, all the threads can get stuck at the current
thread, waiting ineffectively for another thread to activate the downstream operator. We started tackling
this problem by introducing static weights. Each process has different processing times and workloads,
so it makes sense if every operator processes a different amount of items in each activation. This
greatly improved the performance and the availability of the system. However, in a real world scenario
where the loads can change dramatically, the same problems will appear. For tackling this, we need
a scheduler that takes decisions based on dynamic metrics which change throughout the system’s
lifetime.

Our first implementation of the round robin scheduler was using the same fixed pre-determined
variable for both read and write slices. Therefore, each operator is activated with this variable each
time. However, by doing so, we are wasting memory space and CPU cycles. This happens because
in some applications like the one that we are building, the size of the output a process will produce
might not be known beforehand. For example, the split string process’s output is correlated to the input
text. Therefore, it is not possible to reserve the exact sized slice amount required and update it while
splitting the lines. In order to tackle this problem, we introduced selectivity. This variable is initialized
to a default value (for every process) and it keeps track of the average output size of each process
dynamically in run-time. Then, for each process that the output size is unknown (so every process
except for the split string and filter processes), we are reserving a write slice of selectivity size. If the
slice gets full, we commit it and we are reserving another slice of the same size, until the required work
is completed.

3.2.3. Process Priority Scheduler
The second scheduler that we implemented is the process priority scheduler. Here, the processes are
stored inside a shared priority queue that prioritizes them based on the following equation :

readable_amount; * (target; + i)

As we have previously mentioned, readable_amount; is the total amount that can and has not yet
been read from the input queue of the it" process. In the special case of the source operator (where i
is equal to 0), the readable_amount refers to the items that have yet to be read from the output source
that provides them, since the source operator does not have an input queue. The equation introduces
another new variable, target;, which refers to how many items the it" process requires in order for
the last process to have a certain percentage of it's queue full. In order to calculate target for each
process, we firstly set the last_queue_limit, an integer that is correlated to how many items we want to
have in the last queue. Then, every 500 ms, the target of each process is calculated, by starting from
the last process and calculating how many items are missing in order to reach the last_queue_limit.
Recursively, we calculate every process’s target by determining how many items are missing from the
downstream process’s input queue. Initially, for the first 500 ms, we use a pre-defined static target that
we manually tune. In that way, every 500 ms, the query plan changes which also affects the scheduling
decisions for the next 500 ms. We chose the value of 500 ms since it produced the best results for
our application. By choosing low times for this metric, the accuracy of the target values will be higher
since the target values will be updated more frequently and inaccurate values will also be used for
less amount of time. However, more frequent updates lead to more time that the shared priority queue
will be locked. On the other hand, by choosing high times, the lock times will be lower however the
accuracy of the targets will also be lower.
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We can see that this equation first prioritizes the processes that have simultaneously many items to
read and their target is high (which means that their downstream processes also require a lot of items
on their input queues in order to fulfill the last_queue_limit). Then, next in priority are the processes
that either do not have many items to read or they have a low target, followed by the processes with
low amount of items and low target. This prioritizing function is also convenient because if a process
does not have any items to read, or the downstream process does not require any items, the priority of
it will be 0.

We found that addition of the process’s index in the equation is important because in the case that
processes have the same priorities, we want to prioritize the last operators in order to avoid blocking the
system. This blocking can take place in the situation where all operators have items to read, but also
every operator has a target of 0, meaning that it does not require any more items on it’s input queue. In
that case, all operators would have a priority of 0 and if we do not prioritize the last operator before the
next to the last and so on, the system could block since the input queues could get full. However, with
the addition of the operator’s index, we are ensuring that in that case the latest operators have higher
priority.

In the process priority scheduler, the reserving of write slices works in the same way as the latest
implementation of the round robin scheduler. Thererefore, selectivity, which keeps track of the aver-
age write slice sizes for each operator, is being used in order to approximate the write slice size that
will be required for the split string and filter processes (since these are the two processes with unknown
output sizes).

3.3. Application Design

In order to test our system, we did build an application that has a real-world scenario that we can
benchmark in all the systems we want to compare, including our system, Spark and Flink. We built a
log parser that parses a big text file and counts all the words that start with a specific character (e.g. all
the hashtags contained in the file). We started with a simple design and did multiple iterations in order
to improve it while comparing it with Spark and Flink. In the current section, we will describe the design
of the final output, however we will also describe the challenges that we faced building the application
and the iterations we did before reaching the final result, as described in section 3.4.

3.3.1. Processes

In order to achieve the desired results we build four distinct processes. We followed this approach,
because in the end we want to expose each process’s metrics to the scheduler, which will take decisions
on to which process it will assign work next and how much work it will assign to it. Therefore, by
specifying multiple processes, each having a single particular job to do, we allow the scheduler to have
more possibilities for it's task assignment and is able to make a decision from a wider pool of choices.
The processes we created for our application are the following:

A source process responsible for reading the text file and writing every line to the downstream
process. The next process is processing these lines, splits them into words and writes them to it's
downstream process, which is filtering all the words starting with the character a and writes them to
it's downstream process, which is also the sink process. The sink process is increasing a counter for
every word that come into it’s input queue.

* File Reader

File reader is the source process of our application. As a source process, it contains only an
output ring buffer. File reader is in charge of reading in parallel a text file and writing each line
to it's output queue. For achieving this, we experimented with two different ways of reading in
parallel. In one, we are splitting the text file into smaller text files and provide an array of read
buffers to the process. In the second way, we are providing the single big text file along with
an integer partitions which specifies how many partitions we want. Consequently, the process
creates an array containing partitions amount of read buffers. The array containing the read
buffers is shared among the different threads that are activating the process. By doing so, each
thread can get and remove a unique read buffer pointing to a distinctive place in the text file, read
from it and return it to the shared array. The initialization of the read buffer array is taking place
at the constructor of the struct. A thread activates this process by providing how many bytes it
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wants to read from the read buffer as a parameter. Then, the process removes a read buffer
from the shared array, reads from it as many bytes as specified by the caller and writes these
bytes line by line to the output ring buffer, so that every entry in the output ring buffer is the bytes
corresponding to a line. A more detailed explanation on why we chose to provide bytes instead
of strings lies in Section 3.4.

» Split String

Split string is the second process of the data processing system application we built. It contains
an input ring buffer, which is the same as the output ring buffer of the file reader, as well as an
output ring buffer which is the same as the input ring buffer of the next process. This process is
responsible for splitting the string into words. As aforementioned, the input ring buffer contains
the lines of the text file in bytes. After multiple iterations that we discuss in Section 3.4, we ended
up with providing a tuple containing an array of the bytes of the line as the first entry and a two
dimensional array as the second entry. The two dimensional array contains the index of the start
of the word at the first entry and the index of the end of the word as the second entry. In this
way, the next process can simply check every word by iterating the start and end indexes in the
line provided at each entry of it’s ring buffer. The thread that activates this process specifies how
many entries from the input ring buffer it wants to process.

* Filter

Filter process contains one input queue which is the same as the split string’s output queue and
one output queue that is the same as the sink’s input queue. This process is responsible for
filtering out the words that start with a specific character and clones these words to it’s output
queue. The words in the output queue are stored in the same format as in it's input queue, so
each entry is a tuple with an array of bytes as the first entry and a two dimensional array containing
the indexes of the start and the end of the word respectively. Like all other processes, the caller
should specify the number of the input ring buffer’s entries that it wants to process at each call.

* Output

This is the sink process and it contains the simplest logic of all the processes. It's job is to count
the words that are being forwarded to it's queue.

We can see that every process has one and only parameter that is set by the caller, what we
call batch_size. This parameter is very important as it is responsible for how many CPU cycles
a process will occupy, as well as how full the ring buffers of the processes will be. This is the
parameter that the scheduler is making use of in order to utilize the target of each process and
eventually achieve high throughput and availability.

In Figure 3.3 we can see the layout of the processes and how their ring buffers are shared between
them. The first ring buffer, which lays between the file reader and the split string processes,
contains an array of bytes for each line of the source file. So, according to the ASCII table, the
first entry of bytes would correspond to a line starting with the characters "#Ae” and the second
entry corresponds to a line starting with the characters "CIV”. Then, split string process will split
the bytes as words and put them in it's output ring buffer in the format we have already mentioned.
In this case the ring buffer contains one of the words which is "#Ae” (the first entry) as well as
one other word from the same line. It also contains a word from the next line, which start from
index 6 and ends at index 11. Finally, the last ring buffer contains the filtered words, so for this
example the words that start with a hashtag (#). The first entry of the final ring buffer contains the
word "#Ae”. The sink process will take each entry of this ring buffer and write it to the terminal.
As mentioned in the System Design 3.1, multiple threads can request read slices and write slices
from the ring buffers in order to achieve parallelism. Each of these slices will be reserved and
freed until the thread finishes it’s job, so it is free to use it without any locking mechanisms.

3.4. Challenges

There were a lot of challenges we faced both in the system design and the application design. We start
by briefly describing the challenges we faced and how we resolved them in 3.4.1. We then proceed
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Figure 3.3: Hashtag Parser application design

with presenting more analysis and some experiments comparing the runtime of our system during the
different main iterations we did before reaching our final optimized application and system in 3.4.2.

3.4.1. Summary of challenges

+ Atomic Operations

The concurrent nature of the design presented a number of challenges, particularly with regards
to the atomic operations that needed to be performed. One of the most significant challenges
was ensuring that the order of these atomic operations was carefully considered, as a change in
the order could result in bugs or unexpected behavior during certain runs.

In particular, we chose to design a system that allows the order to be strictly preserved. Even if this
is not a requirement for the application that we test, and even if this is a more complex design than
just keeping a bitset that marks the slices that have been committed, we decided to implement this
feature because it is a common need in streaming big data applications. Some examples include
processing time-series data since the order of the elements is crucial to preserve time-dependent
calculations. Another example is event processing or financial transactions, where events are
processed in the events in which are occurred and the dependencies between them should be
conserved. Apache Flink respects the order by default and Apache Spark has operations that
can preserve the order of the data as well.

An example of this challenge was observed when committing write slices. In order to fully under-
stand this scenario, it is important to first explain the concept of a "semi-commit.” A "semi-commit”
occurs when a write slice that is after the next expected write slice to be committed is committed.
In this case, the slice is marked as committed, but is not actually committed until the previous
write slices have also been committed in the correct order. Therefore, this system design allows
for applications to be built on top that can preserve the order of the incoming events.

The scenario in question occurs when a write slice is being committed. At this point, the system
checks how many write slices after this slice have been semi-committed, in order to commit them
all at once. However, before the system can actually commit these slices, another thread may
commit the next expected slice instead of semi-commiitting it. This can happen because the slice
that is being committed is first changing a pointer that points to the next expected slice to be
committed via atomic operations, before actually committing all the slices. This would violate the
order rule for committing and could also cause the system to become stuck in the event that the
slices before the wrongly committed slice have not been actually committed.
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To address this challenge, we engaged in a rigorous process of testing and experimentation to
produce a stable data structure that, according to our tests, is free of bugs. This involved carefully
analyzing the order of atomic operations and making necessary adjustments to ensure the correct
order was being followed.

* Variable Slice Size

Another significant challenge we encountered during the development of our application was
the issue of variable slice sizes. Initially, we had implemented the system with static slice sizes,
meaning that a thread could only request a specific, pre-determined size for write and read slices.
This approach had several advantages, such as ease of committing slices since all slices had the
same number and the read and shadow_read pointers, as well as the write and shadow_write
pointers, moved at a similar pace during each slice commit. It also provided a convenient baseline
for our experiments, as we knew exactly what slice size a process would require from the next
process when input workloads were known.

However, despite its conveniences, this approach was highly limiting for general applications,
and also imposed limitations on performance. For instance, it made it impossible to implement
a scheduler, as we wanted to implement it, since it was heavily based on requesting different
amounts of slices according to the amount of work to be done, and take into account the sys-
tem’s throughput. Additionally, in the case of static slice sizes, some processes may always be
reserving more space than necessary, resulting in wasted space.

To overcome this challenge, we had to redesign our approach and implement a system where the
slices could be of variable sizes. This required a significant amount of work and experimentation
to determine the optimal way to handle variable slice sizes and how to incorporate this into our
scheduler. We had to consider how to handle the different read and write pointers, how to manage
the committing of slices, and how to ensure that the system was utilizing resources efficiently. We
also had to take into account the impact of variable slice sizes on the overall performance of the
system.

This approach allows for more flexibility, performance and stability for unknown and varying work-
loads, as the system is able to adapt and make more efficient use of resources. It also provides
a more general solution that could be applied to a wider range of applications. Overall, this was
a significant challenge that required a great deal of effort to overcome, but ultimately resulted in
a more robust and versatile system.

* Memory Allocation

As we delved deeper into the design and development of our application, it became increasingly
apparent that there were a number of hurdles and obstacles that we would need to overcome
in order to achieve our desired outcome. One of the most significant challenges that presented
itself had to do with the management and allocation of memory.

In our initial implementation, we had utilized strings in each ring buffer of every process. This
involved reading from a file and then storing each line as a string in the split string process, which
would then divide the line strings into individual words and store them in the filter process. The
filter process would then filter out any words that did not begin with a desired character, and store
the remaining words again as strings in the output process.

However, as we began to implement the same approach using Spark and Flink, we quickly re-
alized that the performance of these frameworks was significantly better than our own program.
Through extensive performance measurements and observations, we were able to identify that a
significant amount of runtime was being spent on memory management during string allocations
and freeing of memory.

Our program was utilizing malloc and free calls each time a string was created or replaced,
whereas Spark and Flink were taking advantage of the Java Virtual Machine’s memory allocator.
The JVM’s memory allocator is slab-alike [37], and allows for the fast creation of objects as well
as efficient management of freeing up space when objects are no longer needed. Additionally,
the JVM utilizes string pools [38], which save a significant amount of memory when similar strings
are used.
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In light of these findings, we knew that we needed to take a different approach to tackling the
memory allocation issue. Initially, we experimented with the use of smartstrings [39], a library
that stores strings on the stack instead of the heap for strings that are 23 bytes or less. This
change resulted in a noticeable improvement in performance and a reduction in time spent on
heap allocations. However, we knew that we needed to explore other options in order to achieve
optimal performance.

We ultimately decided to handle tuples of arrays of bytes and two pointers depicting the start
and end of words. By handling the data in this manner, we were able to utilize the heap again,
but without any restrictions on the size of the strings. This also allowed us to manage the fre-
quency of calls to the underlying operating system’s memory allocator by controlling the number
of bytes stored in each vector. Furthermore, we reduced the number of times malloc was called,
as multiple words could be expressed by multiple pointers in the same byte array.

We stored the bytes of each line in a vector of bytes, and wrapped each data structure’s input
vector of bytes under a shared pointer. This way, whenever a vector was cloned to the down-
stream ring buffer, its pointer was also cloned. This allowed for the allocated space to be freed
from the heap once all pointers were destructed. Through this extensive process of trial and error,
we were able to overcome the challenges of memory allocation and ultimately achieve optimal
performance for our application.

3.4.2. Iterations

In this section we present the main different approaches we followed in order to adapt the ap-
plication while discovering bottlenecks and limitations throughout our evaluation and comparison
with Spark and Flink.

Expectations, Workload and Variables

Our expectation is for our system to be faster than Spark and Flink for any number of threads, in
any sized workload that is neither memory nor CPU bound.

We began our system design by experimenting with a weight-based approach, where we as-
signed different weights to various processes within the system and meticulously fine-tuned these
weights to achieve optimal results. It is important to note here that these weights are a property
of the prototype implementation and not inherent to the system design. As we will see in the
upcoming paragraphs, the final design does not require any weight fine-tuning, as it is able to
determine and adjust the size of the asked slices automatically.

In all the following experiments, the weights we chose are 1.2 for file read process, 1.2 for
the split_string process, 42 for the apply_regex process and 42 for the output_result pro-
cess. Each weight is multiplied in the activation function of each process by a pre-set variable
WRITE_SLICE SIZE, which is set to 10.000 for the first implementation and 300 for the rest
implementations. The slices requested are fixed and everytime, we request the same slice for
each process. Since the workload for these experiments is the same line repeated, we know
exactly the size that the split_string process will require from the next process, therefore we
could get an optimal baseline for our experiments, after fine-tuning the weights as discussed.
The WRITE_SLICE_SIZE variable is not needed at all in the final implementation since we are
dynamically changing the slice sizes according to the selectivities of the processes.

In order to calculate the performance and compare the following implementations and adaptions,
we used a program of 11GB size, which contained the exact same line repeatedly, because this
allows the split string process to request the exact slice size amount (optimal) from it's output
queue, since we know beforehand how many words are in each line. Our benchmark application
reads the entire file in parallel and calculates how many words start with '#'. We applied the same
application in Apache Spark and Flink in order to compare the runtimes. Between every run, we
cleared the caches.

First implementation

Ouir first system and application design approach consisted of a variable write slice size implemen-
tation. In this design, each process may request an arbitrary sized slice (either from it’s input or
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from it’s output ring buffer). For the firstimplementation, we decided to use the same size for both
input and output slices. In this approach, we used a round-robin scheduler in which each thread
is activating a process in a round robin fashion with the specified slice size WRITE_SLICE_SIZE
(which is pre-defined) as input. Consequently, the process is reserving a slice with this size from
it's input queue, processes the data and produces the output, writing it to another slice of the
same size it reserves from it's output queue. Since every process is responsible for different op-
erations, it is expected that every process should use a different slice size. Thus, we implemented
weights, where each process is multiplying it's input and output slice size with this pre-defined
weight value. Therefore for this system and application design implementation, in order to find
the best configuration for a specific workload, someone should fine-tune this weight parameter
as well as the slice size that will be multiplied with the weight.

We evaluated this implementation’s runtime against Spark’s and Flink’s runtime for the same
application under the same workload. For that, we utilized the DAS-6 cluster [40], which is a high-
performance computing environment composed of 20 nodes equipped with dual 16-core 2.8 GHz
CPUs and 128GB of memory. At first, we used a smaller workload (12 MB) where our program
met our expectations as it performed better in terms of runtime for completing the same task
compared to Apache Spark and Apache Flink, as we can see in Figure 3.4. Nevertheless, we can
see in Figure 3.4a that even though the average runtime of our system is significantly lower than
the other systems (e.g. for 64 threads it is 93.3% lower against spark and 93.7% against Flink,
the standard deviations are pretty high, so we cannot draw clear conclusions about the systems’
performances. This was expected, since the workload is very small and the runtimes are less
than two seconds. From the Figure 3.4b depicting the speedup (other_runtime/ordo_runtime
we can also see that our system outperforms the other systems by at least twice as much in
almost all cases.

However, in order to experiment more and to draw stronger research conclusions, we started
increasing the workload to 500MB as shown in Figure 3.5. In this case, we can already see from
both Figures 3.5a and 3.5b that our system has started being outperformed by Spark and Flink for
the lower number of threads. In particular, the speedup between Ordo and Spark for 4 threads is
0.32 and 0.41 between Ordo and Flink, indicating that Spark is moderately more than three times
faster and Flink is slightly more than 2.4 faster than Ordo for 4 threads for this 500MB workload.
The runtime improves when we increase the amount of threads, but again the standard deviation
is pretty high and we cannot draw dependable conclusions. In any case, we expect our system
to outperform Spark and Flink for lower amount of threads too. It is worth mentioning that we
experience an unexpected behavior by Spark for 16, 32 and 64 threads, where the runtime is
increased significantly. We noticed that at first, a single task starts by itself and it takes long time
to finish in this experiment, however we did not investigate this behavior further, since it is out of
scope and it did not repeat in the following experiments.

After these observations, we increased the workload substantially, reaching 11 GB. The results
of this workload are shown in Figure 3.6a. We can see that our system’s (Ordo) runtimes are
significantly worse than Spark and Flink. The gap between our system and the state-of-the art
systems is shrinking as the threads increase, from 817.5% increase for 4 threads between Ordo
and Spark and 527.1% between Ordo and Flink for 4 threads to 21.5% and 56.8% increased
runtime for 64 threads. These results did not meet our expectations, therefore we tried to find
the bottlenecks to our system. We also plot the speedup in Figure 3.6b. We can see how the
speedup improves and almost reaches the value 1 which indicates that the systems have same
performance, however the implementation does not meet our requirements and requires inves-
tigation to find the bottleneck. In all the rest of the experiments in this section, we will continue
using the bigger workload of 11 GB.

First adaptation

After carefully monitoring the performance of our system while running our application with the
mentioned workload, we found that the reason our system took so long to perform the same task
as Spark and Flink lied in the memory allocation. As described in 3.4.1, our system relied too
heavily on the operating system’s allocator since malloc was called too often (everytime a string
was created), in contrast to Spark and Flink applications where the JVM was taking care of the
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memory allocation and string pools are used. Our first approach to tackle it was to implement
smart strings instead of normal strings. As discussed, by doing so we would allocate every string
less than a certain amount of bytes to memory instead of the heap, minimizing the number of
malloc calls. Our workload is beneficial for this implementation, since all the strings are less than
23 bytes, therefore all the strings were allocated to the stack instead of the heap. As shown in
Figures 3.7a and 3.7b showing the runtimes and speedup respectively. We can see the that ordo
is performing better for any amount of threads compared to Spark and Flink, with a drastically
improvement compared to our first implementation. In particular, the runtime for 64 threads is
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reduced to an average of 16.6 seconds, an improvement of 37.3%, while the performance has
improved vastly for the lower amount of threads as well, as for 4 threads, the runtime reduced
to 24.2 seconds from the initial 309.2 seconds, a decrease of 92.2%. Also, we can see from the
speedup plot that our system performs better in any number of threads, being slightly more than
twice as fast for 4 threads and slightly less than twice as fast for 8 threads compared to Flink.

Furthermore, Ordo is 1.4 times as fast compared to spark for 4 and 8 threads. For higher number

of threads the performance is almost similar to Flink but still 1.4 times faster than Spark. For the
higher number of threads (16-64) we also observed a higher standard deviation, therefore we

cannot yet draw final conclusions on which system is performing strictly better.
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Second adaptation

Our third iteration consisted of transitioning from smart strings to bytes. The reason we did not
settle for smart strings was the limitation they impose. Smart strings provide the benefit of storing
the strings in the stack instead of the heap only if the string is less than 23 bytes. In addition,
being able to decide how many bytes will be processed gives more flexibility, since we do not rely
on the size of the strings while reading them. We can see the results of the third implementation
in Figures 3.8a 3.8b where for the same configuration, workload and application we have very
similar results as our first adaptation.
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3.5.

Final design

Finally, our last iteration was to implement the selectivities for all the benefits we have discussed.
In this implementation, the weights have disappeared entirely, since the scheduler is able to take
the optimal decisions based on the throughput of the system. As shown in Figures 3.9a and 3.9b
the average runtime for every thread amount is very similar to the other implementations, while
there was no need to fine-tune the weights and to have the optimal decisions, as we had in the
previous runs where e.g. we knew exactly how many splits we will have in each line. We can also
see that the speedup is pretty much the same. We can see that the runtime in some cases it is
slightly worse than our previous implementations (e.g. for 32 threads), but this is expected since
our previous implementations were the baseline for our experiments, since they were optimized
in any way possible (we knew exactly the amount of splitted words we have for each line and we
fine-tuned the weights). This is our final implementation, which we also used for the experiments
we conducted in the section 4.

Discussion

In this section, we analyzed the design decisions we took and the adaptations we had to do while imple-
menting and evaluating our system. The main characteristic of our system is the exposure of decisive
metrics to the application level. This allows for the creation of efficient schedulers that can adapt and
react to changes during runtime which we believe will lead to a system more efficient, performant and
resilient than the current state-of-the art systems that do not take into account these metrics in their
scheduling decisions. The system has been designed to require minimal fine-tuning of parameters, a
common challenge in systems such as Apache Spark and Apache Flink.
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One of the challenges faced during this research was the need for a data structure that would work
and scale under heavy workloads. The shared thread-safe ring buffer was chosen for its efficiency in
achieving fast communication between processes when multiple threads are involved. The implemen-
tation of slices as logical partitions of the ring buffer allowed for parallelism, with variable sized read and
write slices able to be requested simultaneously. To the best of our knowledge, the use of a thread-safe
ring buffer in this context has not been studied before, making this an original contribution to the field.
Our system has been tested and shows promising results, which are shown in section 4.

Overall, the design we present offers an innovative solution for improving the efficiency and per-
formance of data processing systems. The exposure of system’s metrics to the application level as
well as the use of a shared, thread-safe ring buffer for communication between processes is a novel
contribution to the field that shows promising results. Further research could focus on improving the
scalability of the system and testing it in a range of different scenarios.






Experiments

In this section, we aim to compare the performance of our custom data processing system against the
widely-used Spark and Flink systems in terms of runtime, throughput, resiliency, and energy consump-
tion. To do this, we have developed the application we discussed in section 3.3 that we will run on all
three systems, using the DAS-6 cluster sites [40] as our testing environment environment. Through
careful measurement and analysis, we hope to answer our research questions and gain insights into
the relative strengths and weaknesses of each system.

4.1. Specifications

To ensure the reliability and robustness of our results, we conducted all the non-energy related exper-
iments in the DAS-6 cluster [40], which is a high-performance computing environment composed of
multiple nodes equipped with dual 16-core 2.8 GHz CPUs and 128GB of memory. The energy related
experiments were ran on Astron cluster, which is a hybrid cluster that meets specific research needs
(one of them being energy-efficient computing), being part of the DAS-6 cluster sites. The ASTRON
nodes we used were equipped also with dual 16-core 2.8 GHz CPUs with 258GB memory. These
nodes allowed us to run our experiments under realistic conditions and accurately measure the perfor-
mance and energy of each system.

The input workload that we used for all the following experiments was 20GB of text data generated
by a script that parses the Gutenberg library. We repeatedly copied the result until the file reached
20GB. Finally, the application here parses and counts all the words that start with the letter ’a’ in the
input data.

In order to eliminate the influence of caching and other external factors, we ran all experiments 10
times, with the caches cleared between each run. We plotted the standard deviations in each graph
to provide a visual representation of the variation between the runs. These precautions allowed us to
thoroughly evaluate the performance of our system and compare it to the performance of the existing
Spark and Flink systems with confidence.

4.2. Runtime

We expect our system to outperform current state of the art systems in terms of total runtime required
to complete the application. The results, shown in Figure 4.1, demonstrate the clear advantage of
our system compared to Flink and Spark. We found that the application for our system is /O bound,
meaning that it becomes limited by the input/output performance of the system. For our system, this
limitation becomes obvious at 16 threads. In contrast, we observed that the applications for Flink and
Spark were limited at 64 threads and onwards. This means that our system is able to scale more
efficiently and utilize more resources effectively than Flink and Spark.

Additionally, our system outperformed both Flink and Spark by significant margins. For 4 threads,
our system outperformed Spark by 53% and Flink by 40%. For 8 threads, our system outperformed
both by almost 54%. These results demonstrate the superiority of our system in terms of total runtime
required to complete the application.

31
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We also evaluated the runtime for additional configurations for Apache Spark in order to test the re-
siliency of our system, as described in section 4.5, however the configuration we have chosen in Figure
4.1 seems to be the optimal one amongst all the experiments with regards to the runtime performance
for Spark. Overall, our results show that our system, Ordo, is able to outperform the current state of
the art systems in terms of total runtime required to complete the application.
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Figure 4.1: Runtime comparison with increasing number of threads

4.3. Throughput

The start-up time for our system can vary depending on various factors such as the input data and the
processing power of the system. In this particular experiment, we observed that the system required
1.5 seconds to reach its peak equilibrium, which it maintained until the end.

As shown in Figure 4.2, the system reaches the equilibrium at 1750MB/s and maintains this level
of performance until the end of the experiment. This indicates that our system is able to effectively
process the input data and maintain a high level of performance even when faced with a high volume
of data. We can see that in the start-up phase, the system reaches a throughput of 2000MB/ s, however
this higher throughput could take place because initially there is less contention and therefore the slices
do not require to wait for previous slices to be committed before they are also committed, resulting in
faster throughput for these starting ms.

Towards the end of the experiment, we can see a decline in the throughput of the system, which is
due to the diminishing input data. Overall, our experimental results indicate that our system is able to
effectively reach a peak equilibrium and maintain high performance levels.

4.4. Per item latency

The results of our experiments indicate that our system is capable of achieving an evenly distributed
per-item latency when the equilibrium is reached. As expected, we observed some deviations in the
per-item-latency until the equilibrium was reached. This is likely due to processes being activated more
frequently than desired until the system has stabilized and the processes’ selectivities and priorities
accurately reflect the current state of the system.

The per-item-latency after random sampling is shown in Figure 4.3a. The figure depicts the his-
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Figure 4.3: Histogram (a) and CDF plot(b) for the average per item latency of Ordo (random sampling every 100
items, run for 32 threads)

togram of the average per-item-latency after random sampling every 100 items. It clearly demonstrates
the even distribution of latencies for the majority of items, with almost 3.5 million words being processed
within 0-80 milliseconds, as indicated by the first bar. However, we also observe some very low height
bars in the range of 350-650 milliseconds, each concerning around 100,000 words. These deviations
are likely the result of processes being activated more frequently than desired until the system has
stabilized.



34 4. Experiments

We can also see, in Figure 4.3b, the cumulative distribution function plot of the average per item
latencies for our system (by random sampling every 100 items randomly). Our system processes the
87% of the items in less than 24ms. As the histogram plot, we can see the outliers that are processed
in higher latencies, up to 650ms.

Overall, these results are consistent with our expectations and demonstrate the effectiveness of
our system in achieving an evenly distributed per-item latency. While there may be some temporary
deviations until the equilibrium is reached, these are likely to disappear once the system has stabilized.

4.5. Resiliency

In order to evaluate the resiliency of our system, we conducted an experiment to evaluate the throughput
in a situation where we systematically reduced the number of threads by 60% every 4 seconds, in order
to simulate a case where the system experiences a significant drop in resources. In order to avoid being
left with no threads after a lot of decrements, we set the minimum number of final threads to 2 so that
the system can produce a final result in the end. It is logically expected that this reduction in threads
would result in a drastic reduction in throughput and an increase in run-time.

Consequently, We implemented a strategy to enhance the system’s ability to efficiently handle sud-
den resource drops. In our implementation, each thread checks the size of the thread pool and adjusts
it accordingly if necessary. This allows the system to dynamically respond to changes in the number
of available threads, and we expect that it will help mitigate the negative effects of the thread reduction
in our system’s performance.

We can see the results of our experiments in Figure 4.4. The red plot shows the sudden drops
in throughput and the long run-time that occurred when the number of threads is reduced without
implementing our new strategy. In contrast, the blue plot shows that in the new strategy, where each
thread is adjusted to resize the thread pool if it sees that the size is not as expected, the system is able
to maintain a high level of throughput despite the reduction in threads. We can also observe that the
runtime of the restoring experiment is around 27 seconds, which is the optimal runtime we observed
for 32 threads in section 4.2. This demonstrates the effectiveness of our strategy in countering the
negative effects of sudden resource drops on system performance, and our expectations are met.
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Figure 4.4: Throughput of ordo over time for a reducing and a restorative implementation
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We also tested the resiliency of one of systems that are well-known for their high fault-tolerance,
Apache Spark, for comparison. In order to do so, we first tried to implement a similar drop in resources
as our system’s experiment. It is worth noting that Apache Spark does not have the ability to revive
executor’s threads. However, it can revive Executor and Worker nodes. Therefore, we created several
experiments that required the revival of Executors and Workers by Apache Spark, as shown in Figure
4.5 and 4.6.

The DAS-6 cluster is consisted of 20 nodes, each having 64 cores and 128 GB of memory, so for
our first experiments, in Figure 4.5, we first started a configuration with 64 executors, each having 2 GB
memory and 1 core. Similarly to our system’s experiment, we first tried reducing the number of execu-
tors every 4 seconds by 60%. However, with this implementation, we could not get any results because
the system was too busy spinning up the new executors and it did not progress in the tasks completion
at all. Thus, we adapted the experiment to reduce the executor processes every 10 seconds by 60%.
As we can see, for the configuration of 64 executors, the difference between the normal implementation
(where no executor processes were terminated) and the revive implementation (where we did kill 60%
of executor processes every 10 seconds), is large. The normal implementation required 40.8 seconds
to complete while the implementation where executors were terminated throughout required more than
double time to complete ( 85.8 seconds ). We tested different configurations as well, such as for 32
executors (with 4GB of memory and 2 cores each) and 16 executors (with 8GB memory each and 4
cores each). We can see for the former case, the runtime increased by 5.6% and in the latter case
by 3.75%. This was expected, since the lower amount of the total executors, the less amount was
terminated, due to our 60% ratio. These experiments show how more efficient and performant is the
revival of threads instead of processes (executors) in systems where constant processing is required.

Finally, since Apache Spark provides the ability to revive Workers, we also performed some ex-
periments where, instead of executors, the Workers were terminated unexpectedly only once and not
periodically like the executor experiments. In each of the experiments, we used 1 executor for each
worker. The results are shown in Figure 4.6. We first a configuration with 2 workers and 64 cores per
executor. However, the runtime was much lower than the optimal runtime we have observed for spark,
indicating a resource contention, so we tried a different configuration with less executors. We can see
that for a normal run with 2 workers and 32 executors each, the average runtime is 31.9 seconds.
However, when we terminated one of the workers, 15 seconds after the start of the experiment, we can
see that the runtime increased to 37.4 with an increase of 17.2%. We also performed an experiment
terminating all workers (2 in this case) which resulted in a runtime of 34.1 with an increase of 6.8%
compared to the normal run. Similar behavior is shown in the experiment with 4 workers (16 cores
each), where the runtime increased by 30% with 1 worker failure and by 12.8% by 4 worker failures.
We can clearly see an increase in the standard deviation while we increase the worker failures. This is
reasonable, because in each run the worker might have a quite different amount of tasks in a different
stage. The time to start-up the worker might also play a crucial role in this increase. Another interesting
fact is that for the case where we terminated all the workers appeared to require less runtime than the
case where we terminated one worker. We suspect the following reasons for this:

» Data locality When a worker fails, the data that was stored on that worker needs to be shuffled
to another worker in order to continue processing. This can be time-consuming and can lead to
longer runtimes. However, when all workers fail, the same worker could continue working on the
same job after it’s revival, so there is no data locality to consider.

» Task scheduling When a worker fails, the remaining tasks may need to be re-scheduled on
the remaining workers, which can also add overhead and increase the runtime of the job. If all
workers fail, the tasks may be scheduled on the same worker after revival.

» Job recovery When a worker fails, Spark’s fault-tolerance mechanisms may kick in to recover
the lost tasks and data. This can also add overhead and increase the runtime of the job. If all
workers fail, there is no need to recover any lost tasks or data.

In conclusion, we can see the advantage of our system in terms of resiliency compared to Spark.
It is evident that recovering threads is much more light and efficient than recovering processes. By
enabling thread recovery, we gain the advantage of more stability, data locality and less task scheduling,
since each process can continue processing with the same throughput, which can greatly affect the
performance of the system.
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4.6. Energy Efficiency

In order to evaluate the energy efficiency of our system, we performed experiments in the ASTRON
nodes. In particular, we used the Power Measurement Toolkit (pmt) software library which provides
power consumption measurements on various hardware [41]. Power Measurement Toolkit provides the
ability to measure the Joules and Watts consumption of any part of the applications desired. We used
Intel RAPL, one of the most accurate tools for monitoring the energy consumption of the hardware [42].
We decided to measure the power consumption of the whole runtime for Ordo and compare it with the
power consumed by Spark and Flink over the same workload we used in the rest of the experiments
(20GB of text data).

For these experiments our expectations are that our system will be significantly more efficient in
energy consumption than Spark and Flink for a couple of reasons. Firstly, as we previously showed,
our system has greater runtime for any number of threads compared to both Spark and Flink. This is
a reason for our system to have less Joules consumption. However, just the runtime is not enough to
draw conclusions about the energy consumption, since it could require substantially more hardware
resources than the other systems and therefore, even having less runtime, consume more joules than
the other systems. Nevertheless, some of the reasons of the significant difference between Ordo and
Spark and Flink can be because the latter systems :

* Run on a JVM which acquires hardware resources beforehand and runs operations like garbage
collection

» Come with the overhead associated with distributing and coordinating the data processing tasks
across multiple nodes in a cluster

» Contain built-in resource managers that allocate resources to data processing tasks based on
various criteria such as CPU usage, memory usage, and network 1/0 and more

On the other hand, our system is more light-weight as it decides where to optimally schedule the
tasks based on the workload and does not require any extra jobs like garbage collection. It also does
not run on a JVM relying on garbage colletors and it does not have overhead associated with tasks like
distributing and coordinating the data procesing tasks across multiple nodes (however this might be
implemented in the future). We also expect all systems to improve (reduce) in Joules consumption up
to 32 threads and then remain to close levels with possible deterioration due to the fact that the runtime
showed similar behaviors because of the I/O-boundness of the problem.

In Figure 4.7 we can see the pure Joules consumed by the systems. Ordo performs substantially
better in all thread amounts. We can see for 4 threads Ordo spends 4593.8 Joules while Spark requires
28371.9 and Flink 30652.6 Joules, with an improvement of 83.80% and 85.01% respectively. For 16
threads, which is the optimal joules consumption for each system, we observe an improvement of 79.7%
and 80.2% against Spark and Flink respectively. After 16 threads, the power consumption increases
slightly for all the systems probably because of the 1/0 boundness.

Figure 4.8 shows the Watts consumption of the systems. We can see that the Watts consumption is
close for all the systems, with Spark achieving the best Watt consumption from all systems, followed by
Flink and then Ordo. The standard deviation of the Watts is also higher, especially for the runs after 16
threads, showing that we cannot draw clear conclusions of which system is significantly better than the
other. However, as Watts depict the Joules consumed per second, we can say that Ordo consumes
more Joules per second because it completes the job execution faster than Spark and Flink. To be
more precise, for 16 threads where the systems seem to have the optimal Watts consumption, Ordo
consumed 136.5 Watts, Spark 109.6 Watts and Flink 112.4 Watts, with Ordo consuming 24.5% and
21.4% more Joules/s compared to Spark and Flink respectively.
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Conclusions and Future Work

5.1. Conclusions

The primary goal of this research is to answer the following main research question that we proposed in
Section 1.2 ”Can the underlying system’s metrics be exposed in the application level in order to allow the
building of efficient schedulers?”. In order to answer this question, we designed, implemented through
multiple rounds of refinement, both a system and an application on top of it in order to experiment and
compare it with other state-of-the art systems. We divided the above question to sub-questions in order
to be able to give more detailed answers as follows:

1. Can we improve the performance and practicality of a data processing system by exposing the
underlying system’s metrics to the application?

As aforementioned in Section 3, Ordo’s architecture exposes the underlying system’s metrics
such as the throughput of each process and the workload of each process to the application,
allowing the scheduler to make optimal decisions dynamically during run-time. We started by
implementing the system with a simple round-robin scheduler and continued with implementing a
process-priority scheduler which takes into account the underlying system metrics. By doing so,
we saw a significant improvement in all the aforementioned metrics in our analysis in Section 3.4.
In this section, we saw that our final design, which consists of a process priority scheduler that
takes into account the underlying system’s metrics, we can achieve the same performance as
the optimal baseline which required static optimal pre-configuration, which is not feasible in real-
world streaming application scenarios since we used a workload that we knew what the optimal
weights were, proving that our system can improve the performance and practicality of the data
processing system by exposing the underlying system metrics to the application level.

2. Can a scheduler that has access to the system metrics reach an equilibrium state ?

After having built the system with the desired characteristics, we experimented in order to check
if our assumptions where correct. In section 4, we plotted the throughput of the average of 10
runs, including the standard deviations and the results were clear that our system reached a peak
equilibrium state, which continued until the end of processing. We observed a higher peak for
a very short time in the start of the application, which we believe is because of the faster slice
commitments and the lower contention during the start-up phase.

3. What is the most effective way of building an application on such system?

The system’s scheduler is one of the main components and is responsible for the benefits we
have discussed, such as the increased performance, resiliency etc, when it takes into account
the underlying system’s metrics. As we saw in 3.4, we tackled a lot of challenges building the
application to achieve substantial greater results than our first implementation. Therefore, all
the most effective way of building an application on such system is to being able to tackle the
challenges that we faced, such as being able to measure the performance of the application
and find the bottlenecks, as well as the requirement of using good memory allocation and data
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structures within the application (within the operators) and finally building an efficient scheduler
that takes into account the desired underlying system metrics.

4. What are the limitations that such system imposes?

While our system is very effective and performant, as we saw in 3.4 it also imposes a lot of chal-
lenges that might be a limitation factor in some cases. The application developer trying to build
an application on top of such system must be experienced in finding bottlenecks and developing
low-level applications with optimal data structures.

5. Does such system outperform other state-of-the art systems in, terms of performance, practicality,
energy efficiency and resiliency ?

In section 4 we performed an extensive research and comparison of our system compared to
stae-of-the art systems such as Apache Spark and Apache flink. We showed that our system
outperforms both the other systems for any number of threads. For 4 threads, our system outper-
formed Spark by 53% and Flink by 40%, while for 8 threads it outperformed them by almost 54%.
We noticed that the problem is I/0O bound, however our system still reaches this boundnness faster
than the other systems, indicating that it requires less threads for the same amount of work than
the other systems. Furthermore, we compared the resiliency of our system against Spark, which
is well-known for it's resiliency. We concluded that recovering threads (as Ordo does) is signifi-
cantly lighter and more efficient than recovering processes, as Spark does. While our system had
very similar runtime to our optimal runtime, after thread failures, Spark had significantly slower
runtimes (almost double runtime for 64 executors, 32 GB memory and 1 core per executor). We
also did Worker resiliency experiments in Spark, where we also observed a drop in performance
when a Worker died (e.g. runtime increased by 30% with 1 worker failure for a configuration of 4
workers, 16 cores each).

Finally, we conducted energy experiments to compare all three systems. The energy experiments
provided great and very promising results for our system compared to the other two systems. In
particular, for 16 threads, Ordo had 79.7% and 80.2% less Joules consumption against Spark
and Flink respectively. As for the Watts consumption, we observed that Ordo had a slightly worse
Watts consumption than the other two systems, however this can be appointed to the fact that
Ordo consumes more Joules per seconds because it completes the same jobs in faster time
than Spark and Flink (Ordo consumes 24.5% and 21.4% more J/s compared to Spark and Flink
respectively).

By answering all the sub-questions, we have also answered our main research question : Can
the underlying system’s metrics be exposed in the application level in order to allow the building of
efficient schedulers that can reach an equilibrium state and outperform other state-of-the art systems?.
We showed that it is possible to expose the underlying system’s metrics to the application level in
an efficient way. We managed to build an efficient scheduler that reached an equilibrium state and
outperformed other state-of-the art systems in many aspects, such as runtime performance, energy-
efficiency and resiliency.

5.2. Future Work

The present work has focused on the design, implementation and validation of a high performance data
processing system that is consisted of a scheduler which, with the help of the exposed underlying sys-
tem’s metrics, can reach an equilibrium throughput state. It proves that such system implementation is
possible and it’s capabilities are in-line with our expectations. Nevertheless, we have some suggestions
that can be taken into consideration for future work in this field, some of them being arose by the chal-
lenges that we faced during the implementation of the system, while others being recommendations
that we believe will be valuable to validate in the future.

To begin with, we built and tested our system implementation for a single machine. However, we
believe that this can be extended in a more scalable version in the future, were more machines can
contribute towards the same goal. In such system, each node will still contain a thread pool, however
there can be more than one nodes that communicate with each other and distribute the workload, in
order to have a more scalable system.



5.2. Future Work 41

Another improvement that we can see is scaling the thread-pool of the system according to the
workload, a suggestion that was also proposed in SEDA [12]. By doing so, the system will not be
wasting resources (threads) by containing them inside the thread pool but keeping them inactive. This
will also be very useful in our previous suggestion to make the system more scalable, since there will
be multiple nodes and more thread pools to manage, so the total benefit will be more significant. This,
of course, is another benefit of exposing the system’s metrics to the application, since we can adjust
the thread pools according to the throughput of the processes.

As already mentioned, two of our system’s aims is to increase the efficiency and practicality. As
discussed, we minimized the need to fine-tune parameters, which is a very common occurrence in such
systems. An we see in this topic is to make the size of each ring-buffer variable, since each process
has totally different responsibilities and workloads. On top of that, it is also possible to have a dynamic
memory allocator that every some time intervals, dynamically changes the memory of each ring-buffer
according to the process’s average workload over some time period. This shows yet another benefit
of exposing the system metrics and it can greatly save more system resources.

Another improvement we can see that we believe would improve the performance of the system
would be to implement a mechanism to exit a process. Right now, if a process is activated, it will
have to complete it's job and there will be no way of returning to the scheduler without completing
it. However, we believe that this is imposing a limitation to the system, since there can be factors
that would deem the return to the scheduler much more efficient for the system’s performance. As an
example of such limitation, right now a thread (inside a process) will repeatedly try to reserve a slice
from the next process. However, if all threads enter the same process and try to request a slice from
the next one, but the next process does not have enough slices to supply the requesters, the system
will stuck. In order to avoid this, a mechanism can be introduced where a process tries to reserve a
slice for a specific amount of times, before failing and returning to the scheduler, lowering it’s priority
as well such that the scheduler will prefer to pick another process before continuing.

Lastly, as we analyzed in Section 3, we decided to implement a system that takes care of the
ordering of the incoming events. This is a more complex design and we could imagine our system
being configurable, where the developer can suggest via a parameter if order preservation is required
by the application. If so, the committing of slices could be handled as we have currently designed it,
otherwise the system could fallback to a much easier implementation where the slice committed status
is shown in a bitset.

Apart from the aforementioned improvements that can be applied directly to the contributions of
this research, we suggest some other future works that can be made towards the validation and exper-
imentation of such systems. One of the contributions would be to compare this system against other
low-level data processing frameworks like Phoenix++ [34]. In addition, more experiments can be con-
ducted, e.g. to evaluate huge fluctuations in the input stream, to which we believe our system would
adapt to effectively.
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