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Low-dimensional Subspace Regularization through Structured Tensor Priors*

Kim Batselier

Abstract. Specifying a prior distribution is an essential part of solving Bayesian inverse problems. The prior
encodes a belief on the nature of the solution and this regularizes the problem. In this article we
completely characterize a Gaussian prior that encodes the belief that the solution is a structured
tensor that lies in a low-dimensional subspace. We define the notion of (A, b)-constrained tensors and
show that they describe a large variety of different structures such as Hankel, circulant, triangular,
symmetric, and so on. We prove that the low-dimensional subspace defined by this prior is the right
nullspace of the matrix A that defines the tensor structure. We completely characterize the Gaussian
probability distribution of such tensors by specifying its mean vector and covariance matrix in terms
of A and b. Furthermore, explicit expressions are proved for the covariance matrix of tensors whose
entries are invariant under a permutation. These results unlock a whole new class of priors for
Bayesian inverse problems. We illustrate how new kernel functions can be designed and efficiently
computed and apply our results on two particular Bayesian inverse problems: completing a Hankel
matrix from a few noisy measurements and learning an image classifier of handwritten digits. The
effectiveness of the proposed priors is demonstrated for both problems. All applications have been
implemented as reactive Pluto notebooks in Julia.
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1. Introduction. We consider a set of data samples {(€,,yn) |2z, € RP, y, € R}Y_| and
the following linear forward model:

(1.1) yn = (P(2n), W) + €n.

Each scalar measurement ¥, is obtained from an inner product of a data-dependent tensor
P(x,) € R0 with a tensor of unknown latent variables W € R/ */> corrupted by
measurement noise €,. Tensors in this context are D-dimensional arrays, with vectors (D =1)
and matrices (D =2) being the most well-known cases. Vectorizing all tensors and collecting
the measurements v, ...,yy into a vector y € RY allows (1.1) to be rewritten into the linear
system of equations
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(1.2) y=®(x)w+e

Row n of the matrix ®(x) € RV*/1"/> contains the vectorization of the tensor P(x,).
For notational convenience the indication that ® depends on x is dropped from here on.
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The inverse problem consists of inferring the latent variables w from the noisy measurements
y. In this article a Bayesian approach [2] is considered by assuming that w and € are random
variables. The goal is then to infer the posterior distribution p(w|y) of w conditioned on the
measurements y using Bayes’ theorem

p(y|w) p(w)
ply)

The distribution p(w) is called the prior and encodes a belief on what w is before the mea-
surements are known. The main contribution of this article is the complete characterization
of a prior p(w) that encodes the belief that the corresponding tensor W is structured. A
Gaussian distribution is assumed for the noise distribution p(e) = N (0,X) with mean vector
0 and covariance matrix ¥ and likewise for the prior p(w) = N (wq, Py). The linear for-
ward model (1.2) combined with the Gaussian assumptions results in a Gaussian posterior
p(wly) =N (w4, P1) with mean vector w4 and covariance matrix P

p(wly) =

(1.3) wi =Py +@'=71®) (@7 y + Py lwy),
(1.4) P, =P, +@"=1'®)" L.

The role of the prior p(w) can now be understood from (1.3) and (1.4). In the absence of data
(® =0 and y = 0) the posterior equals the prior. In other words, the prior encodes a belief
on what the solution w of (1.2) should be before any data is known. A natural question to
ask is then what kind of prior to use. In this article we consider a prior encoding the belief
that the tensor W has a structure that is completely determined by a matrix A € RI*/i/p
and vector b € R such that

(1.5) A vec (W) =b and rank(A) <min(I,J; ---Jp),

which we will refer to as (A,b)-constrained tensors. In other words, every prior sample
W € R/ gatisfies (1.5). We show in section 2.1 that each sample W of the prior lies in
a low-dimensional subspace. In this way, these priors can regularize the inverse problem by
limiting the “effective” number of posterior latent variables VW to the nullity R of A. Or in
other words, these priors favor samples of the posterior to lie in some R-dimensional subspace
of R7*/Pwhere typically R < J; - Jp. In this sense, these priors can also be interpreted as
imposing a kind of low-rank constraint on WW. Inverse problems that can benefit from this kind
of low-dimensional regularization appear in many different applications fields such as machine
learning [9, 34, 35, 39, 40] control [4, 6, 29, 33] and signal processing [14, 17, 19, 21, 26, 27, 38].
Consider for example the weight-space view of Gaussian processes [40]. In this case the data-
dependent tensor P(x,) can be thought of as the evaluation of an exponential amount of D-
variate basis functions. One can assume that not all exponentially many variables in W will
be equally important but lie in some low-dimensional subspace instead. The effectiveness of
this regularization is demonstrated in Application 6.2, completing a noisy Hankel matrix, and
Application 6.3, learning an image classifier for handwritten digits. Our proposed prior, which
limits the number of effective latent variables, consistently outperforms the max-likelihood
estimate or the commonly-used Tikhonov prior, which assumes that W lives in the whole

vector space R/ %72 The contributions of this article are threefold.
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1. We show how the definition of (A, b)-constrained tensors is well-motivated since it
encompasses a wide variety of application-relevant structured tensors. Examples are
given for tensors with fixed entries, tensors with known sums of entries and symmetric,
Hankel, Toeplitz, circulant, and triangular tensors.

2. In Lemma 2.1 we completely characterize the mean vector wy and covariance matrix
Py of the prior p(w) for (A,b)-constrained tensors, which leads to the interpretation
of prior samples living in a (typically) low-dimensional subspace.

3. In Theorems 4.5 and 4.13 we provide explicit expressions for Py for (A, b)-constrained
tensors whose entries remain invariant under a permutation P. Such tensors will be
called P-invariant or skew-P-invariant.

These three contributions are important because the prior mean wg and covariance matrix P
are necessary to solve the Bayesian inverse problem via equations (1.3) and (1.4). Contrary to
most solution strategies for linear least squares problems the matrix inverse of P LteTs e
is explicitly required as it forms the posterior covariance. Also note that the dimension of
the matrix to invert is J1Js...Jp X J1Jo ... Jp, which limits the use of direct solvers to cases
of small J and D. Hybrid projection methods [10, 11] and randomized solvers [41] are a
viable alternative for cases where J and D are prohibitively large. Another alternative is
to solve the corresponding dual problem, which is described in terms of the so-called kernel
matrix ® Py®” € RV*Y. This approach is commonly used in least-squares support vector
machines [35] and Gaussian processes [40] and has a computational complexity of at least
O(N?). When the tensor P(x,) exhibits a low-rank structure, then another way to obtain
low computational complexity of solving (1.3) is by imposing a low-rank tensor structure to w
and P [6, 28, 34]. Imposing a low-rank tensor structure onto W is another way of restricting
the number of effective latent variables. Developing dedicated solution strategies for equations
(1.3) and (1.4) lies outside the scope of this article as they are application-specific. Also note
that the results of this article can be trivially extended to vector-valued observations through a
matrix W of latent variables in (1.2). Out of notational convenience, we only consider scalar-
valued observations throughout the article, but we consider a problem with vector-valued
observations in Application 6.3.

1.1. Notation and tensor definitions. Tensors in this article are multidimensional arrays
with real entries. We denote scalars by italic letters a,b, ..., vectors by boldface italic letters
a,b, ..., matrices by boldface capitalized italic letters A, B,... and higher-order tensors by
boldface calligraphic italic letters \A,B,.... The vector e; € R’ denotes a canonical basis
vector that has a single nonzero unit entry at position j. The vector 1; € R’ denotes a vector
of ones, and Iy € R7*7 is the unit matrix. The number of indices required to determine an
entry of a tensor is called the order of the tensor. A Dth-order or D-way tensor is hence
denoted A € R7*2X*Jp Ay index j; always satisfies 1 < jg < Jy, where Jy is called
the dimension of that particular mode. Tensor entries of a tensor W € R/ X/2XXJb g1
denoted wj, j,...,. Tensors can be reshaped into tensors of lower order by combining indices.
Combining a set of d indices j1, jo, ..., jq results in a single index j1js ... jq that satisfies

Jije-Ja=n+ G- i+ +(Ga—1)J1- Jg—1.
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The vectorization of a tensor reshapes all entries of a tensor W € R71*/2XXJp into a single
vector w = vec (W) such that W55 757 = Wiy ja,..jp- FOr a tensor W, we will always assume
that the corresponding vector w = vec(W). A more detailed introduction to tensor basics can
be found in [22]. The square root matrix /Py of a square symmetric positive-semidefinite
matrix Py is defined as any matrix that satisfies Py = v/Pg(v/Pg)’. A permutation matrix
P is a square binary matrix that has exactly one entry of 1 in each row and each column with

all other entries 0.

2. Full characterization of the prior distribution. In this section the Gaussian prior
p(w) for (A, b)-constrained tensors is fully characterized. We also discuss how the square root
covariance matrix v/ P can be computed without explicitly constructing the matrix A through
a block-row partitioning of A and how v/ P can be parameterized in terms of covariances of
underlying random variables.

Lemma 2.1. The Gaussian distribution of (A,b)-constrained tensors N (wq, Py) is de-
scribed by a mean vector wq such that Awg=b and by a covariance matrixz Py such that the
columns of \/Pqy span the right nullspace of A.

Proof. Let x be a sample of the standard normal distribution N'(0,I). A sample w of the

desired Gaussian distribution is then
1

(2.1) w=wo+VPox=w=(wy +Py) (x) ,
where /Py is the matrix square root of the covariance matrix Py. Any sample w being an
(A, b)-constrained tensor implies A w = A wy+ A/ Pyx =b, which can only be true for all
random samples x if and only if A wy =b and A /Py = 0. In other words, the mean w
of the prior also has to satisfy the linear constraints, and the columns of /Py span the right
nullspace of A. |

From Lemma 2.1, we can deduce that the linear constraints Aw = b restrict the dimension
of the vector space of prior samples w.

Corollary 2.2. Let R be the nullity of A and b # 0, then each sample of the (A,b)-
constrained tensor prior N'(wq, Po) lies in a (R + 1)-dimensional subspace of R7/p.

Each sample w lies in the column space of the matrix ('wg \/ITO) and consists of a
constant one-dimensional part wg and a variable R-dimensional part v/Pg. When b = 0
then the prior mean wy lies in the right nullspace of A and the dimension of the subspace is
reduced to R. From (1.4) we see that the posterior covariance P depends only on P( and
not on the prior mean wqy. The prior therefore regularizes the inverse problem by restricting
the posterior samples to lie in an R-dimensional subspace. If we interpret each of the I rows
of A as enforcing a linear constraint on the entries of W, then Corollary 2.2 tells us that
the more linearly independent constraints we enforce, the lower-dimensional the subspace of
prior samples will be. In section 3 a few examples of possible constraints together with related
application fields will be discussed.

Lemma 2.1 tells us that the desired prior square root covariance /Py is found by com-
puting a basis for the right nullspace of A. When the matrix A is too large to construct
explicitly then it can be beneficial to compute a basis for its right nullspace recursively.
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This is possible when considering a partitioning into S block-rows A = (AlT AT AE)T,
where each block-row A, (s =1,...,5) enforces its own set of linear constraints on W. A
basic algorithm to compute a basis for the right nullspace recursively one block-row at a time
can be found in Theorem 6.4.1 from [16, p. 329] with a computational complexity of at most
O4Jy---Jp (I/S9)2+8(1/S)3).

2.1. Parameterizing the prior covariance matrix. The covariance matrix Pg as described
in Lemma 2.1 encodes the structure of (A,b)-constrained tensors without having any free
parameters to quantify the importance of the prior p(w) relative to the likelihood p(y|w).
Such free parameters are often called hyperparameters. Suppose for example that through
Lemma 2.1 an orthogonal basis for the nullspace V3 € R71/0X% of A is computed from its
singular value decomposition (SVD)

o 39 ()

The square-root covariance matrix /Py is then Vo T, where T € R is any invertible
matrix. The T matrix can be interpreted as the square-root covariance matrix of R random
variables & = Tz, with x the standard normal random variables of (2.1), since

Py=+/Py (\/P)" =V, (TT") V§.

The matrix V5 is then to be understood as projecting the covariance matrix TT? of the R
underlying random variables & to the J;---.Jp entries of the (A,b)-constrained W tensor.
Parameterizing T in terms of a single hyperparameter o € Rt as T'= o I implies that these R
variables are independent and have equal variance 0. Correlations between the R variables
can be modeled by for example parameterizing T as a lower triangular matrix. The values of
these hyperparameters can be learned from data through cross-validation, marginal likelihood
optimization, or a hierarchical Bayesian approach [35, 40].

3. (A,b)-constrained tensors. After having completely characterized the Gaussian prior
of (A, b)-constrained tensors in Lemma 2.1, the question still remains what are application-
relevant choices for A and b. In this section we demonstrate the breadth of (A, b)-constrained
tensors through three particular examples and show that the definition of (A,b)-constrained
tensors is well-motivated in that it captures a wide variety of application-relevant
structured tensors.

3.1. Tensors with fixed entries. A tensor W € R71*/2>XXJp with T fixed entries can be
described as Aw = b where row i of the matrix A € RI*/1"/p ig a canonical basis vector
e, that selects the ith fixed entry wj, . ;,. The corresponding fixed numerical value of
wj,,...jp is then given by b;.

Example 3.1. Suppose W € R?*2 and we fix the values of the entries wy,1 and wig = to 1
and —4, respectively. The corresponding matrix equation is then

(609 0)w=()
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The first row of A selects entry w; 1 and is therefore the canonical basis vector eqy. Likewise,
the second row of A is the canonical basis vector efs.

Fixed values are commonly zero. In the context of system identification, such a prior can
impose stability on the estimated model [37]. Triangular or banded structures are common in
matrices, e.g., discrete convolution operators in signal processing. Such structures can also be
generalized to the tensor case, where they are for example exploited for efficient simulation of

nonlinear dynamic models [5].

Definition 3.2. A tensor W € R7**/2%%Io s Jower (upper) triangular when wj, j, ... i, =0
holds for each consecutive index pair jgq,jqr1 (d=1,...,D —1) such that jq — jar1 < (>)0.

The characterization of a lower (upper) triangular tensor as an (A, b)-constrained tensor
can be built up by generalizing the matrix case to higher orders. In what follows, we assume
that J; = Jy=---=Jp =J. Consider a lower (upper) triangular matrix W € R7*7. The A
matrix needs to select all upper (lower) triangular entries of W, and b contains their numerical
values, which are zero. The I :=J(J —1)/2 index pairs (j1,j2) of all upper (lower) triangular
entries of W satisfy j; — j2 < (>)0. Now let L be the I x J? matrix such that row i has a
single unit entry for the ith particular index pair that satisfies j; — jo < (>)0:

l _ { 1, for the ith index pair (ji,j2) that satisfies j; — jo < (>)0,
Livda 0, otherwise .

Then Lw = b states that all upper (lower) triangular entries of W are zero. Extending this
formulation to tensors of higher orders can be done by considering all consecutive index pairs
as stated in the following lemma.

Lemma 3.3. Let Jy = Joy=J, then there are I := J(J — 1)/2 index pairs (j1,j2) such that
j1—J2 < (>)0. Now let L be the I x J? matriz that selects all upper (lower) triangular entries
of a matrix W. Lower (upper) triangular tensors are then described by

LI;®---®1;
IJ®L®...®IJ

D—1
(D=—1)(J=1)J «JP

cRT T xI”

where each block-row of A contains a Kronecker product of D — 2 identity matrices and b is
a vector of zeros.

The known fixed values of lower (upper) triangular tensors are zero and hence b is a vector
of zeros. Each row of the matrix A has a single unit entry to select a particular tensor entry for
which some consecutive indices jg, jg+1(d =1,...,D—1) satisfy jg—js+1 < (>)0. A tensor with
D indices has D — 1 consecutive index pairs, and A can be partitioned into D — 1 block-rows
of Kronecker products of D — 2 identity matrices with L. The first block-row selects all entries
of W with j; — j2 < (>)0, the second block-row selects all entries with ja — j3 < (>)0 and so
on. In each block-row the L matrix factor only selects index pairs for which j; — jgr1 < (>)0
while the Kronecker product of the identity matrices generate all possible index combinations
of the D — 2 remaining index values. Each block-row consists of (J — 1)JP~1/2 rows which
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means that D — 1 block rows results in a total amount of (D — 1)(J — 1)JP~!/2 rows for A.
The A matrix that describes tensors with known fixed entries in Lemma 3.3 is sparse and
structured into block-rows, which facilitates computing its nullspace recursively one block-row
at a time as discussed in section 2.

Ezample 3.4. Consider a lower triangular tensor W € R**3*3 with D =3 and J; = Jo =
J3 = 3. The condition j; — jgr1 < 0 occurs in three cases (jg,74+1) € {(1,2),(1,3),(2,3)}.
Defining the matrix L € R¥*? with three nonzero entries L3 =113 =1333 =1 allows us to
describe the desired A matrix as

_(L®lIj 18%27
(3.1) A_<IS®L>€R ,

with 18 nonzero entries. The first block-row of A selects nine tensor entries wi 2 j,, W13 j,5
w2 3,j,, with 1 < j3 < 3. The second block-row selects nine entries wj, 1,2, wj, 1,3, wj, 2,3, wWith
1< <3,

3.2. Known sum of entries. Tensors for which the sum over all or only particular entries
add up to a known value are also quite common in applications. Stochastic tensors with
applications in hypergraphs and hidden Markov models are a particular example [1, 15, 18, 25].
Knowing a particular sum of entries can be described as follows.

Definition 3.5. The sum over an index set J C {j1,J2,...,ip} of a tensor W € R7>*Jp
is defined as Aw =vec(B) with A=Ap®---® A, where each matrix Ag (d=1,...,D) in
the Kronecker product is defined as

(3.2) Ag= {151 Fia€ T,

IJd ijd ¢ J.
The resulting tensor B has indices {j1,72,...,jp} \ J-

Ezample 3.6. Let W € R?*3 be a matrix (D =2,.J; = 2, Jy = 3) for which each row sum
equals to 1. Therefore J = {jo} and Lemma 3.5 then implies that

10y (101010
A=l3eh=(1 1 1)®<0 1>:<o 1010 1)’

and b = 19, since each row sum equals to 1. Note that the resulting b vector is described
by the index {j1,72} \ {j2} = {j1} with corresponding dimension J; = 2. The first row of A
encodes the summation over the entries wyy, wiz, w3, which is the first row of W. Likewise,
the second row of A encodes the summation over the second row of A.

3.3. Eigenvector structure. Tensors whose vectorization is an eigenvector of a matrix P
with eigenvalue A\ are described by the constraint A = Al — P and b = 0. An important
structure in this article is obtained when P is a permutation matrix. Indeed, P w = w then
implies that the entries of V¥ remain invariant under the permutation P. In what follows, we
only consider tensors for which J; = Jo =--- = Jp = J. The distinction between A =1 and
A= —1 is made explicit through the following two definitions.

Definition 3.7. Let P € R7"*7" pe q permutation matriz. A P-invariant tensor VYV is
defined by
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(I-P)w=0&Pw=w.
Likewise, a skew-P-invariant tensor VW is defined by
(I -P)w=0&Pw=—w.

In this way, any particular permutation matrix P then defines a corresponding structured
tensor. Next we discuss some prominent examples of P-invariant tensor structures found in
different applications [3, 13, 20, 24, 31, 42].

Definition 3.8 (Symmetric tensor). Let S be the permutation matriz such that all entries
of W := S vec(W) satisfy Wj, . j, = Wr(j,,.. jp), Where w(j1,...,jp) is any permutation of the
indices. An S-invariant tensor W defines a symmetric tensor.

Definition 3.9 (Centrosymmetric tensor [7]). A J-invariant tensor W, where J is the
column-reversed identity matriz, is called a centrosymmetric tensor.

A centrosymmetric tensor WV satisfies

Wyy,....jp = Wh—ji1+1,....Jp—jp+1-

Probably the most famous tensor that exhibits centrosymmetry is the matrix-matrix multi-
plication tensor [12].

Definition 3.10 (Hankel Tensor). Let H € R777%7" be the permutation matriz that cyclically
permutes all D indices ji,...,jp with constant index sum j1+---+jp. A H-invariant tensor
W is called a Hankel tensor.

The minimal index sum is D = 141414 --+1 and maximal index sum is JD = J+J+-- -+
J. This implies that H consists of JD — D+ 1 permutation cycles and rank(H) = JD—D+1.

Definition 3.11 (Toeplitz Tensor). LetT € RY7%7” pe the permutation matrix that cyclically
permutes all indices jg+— jq+ 1, where Jg+1—1(d=1,...,D). A T-invariant tensor W is
called a Toeplitz tensor.

A special case of a Toeplitz tensor is a circulant tensor.

Definition 3.12 (Circulant Tensor). Let T € R?”"*7” be the permutation matriz that cycli-
cally permutes all indices jq— mod (jq+ 1,J4) #0. If mod (jq+ 1,J3) =0, then jg+— Jq (d=
1,...,D). A T-invariant tensor W is called a circulant tensor.

4. Explicit covariance matrix construction for permutation-invariant tensors. Comput-
ing the covariance matrix Py via Lemma 2.1 requires a basis for the nullspace of A. For
P-invariant tensors it is possible to derive an explicit formula for Py as a function of the
permutation matrix P, which enables efficient sampling of the prior. Before we can state the
main result in Theorem 4.5, we first need to discuss some facts about permutation matrices.
An important concept tied to permutation matrices is its order. Any permutation can be
written as a product of R disjoint cycles. From Theorem 4.13 we will show that R is exactly
the nullity of A and therefore the dimension of the subspace in which the prior samples live.
Each cycle has a particular length, also called the order of the cycle. In this article K will
denote the least common multiple of all orders of disjoint cycles of a given permutation.
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Definition 4.1. The order K € N of a permutation matriz P is defined as the smallest
natural number such that PX =1T.

Skew- P-invariant structures always have an even order K.

Lemma 4.2. A skew-P-invariant structure has an even order K.

Proof. From the definition of skew- P-invariance follows that Pw = —w. The definition of
the order K tells us that PXw =w. Combining these two definitions results in the statement
that (—1)% =1, which can only be true when K is even. [ ]

Theorem 4.5 will express the desired covariance matrix Py as a function of powers of the
permutation matrix P. The following two lemmas relating powers of permutation matrices
are easily proved.

Lemma 4.3. Let P be a permutation matriz of order K, then for any 1 <k < K:
(4.1) Pt = pE+k,
Lemma 4.4. Let P be a permutation matriz of order K, then for any 1 <k < K:

(4.2) pE-k <Pk)T.

Lemma 4.3 follows from PX = I. Lemma 4.4 follows from the orthogonality of permutation
matrices and from the fact that powers of permutation matrices are still permutation matrices.
We now have all ingredients to describe the main result that provides an analytic solution for
the covariance matrix P as an average over powers of the permutation matrix P.

Theorem 4.5. Let P be a permutation matriz of order K. The Gaussian distribution of
P-invariant tensors N(wq, Py) is described by a mean vector wq that is P-invariant and
covariance matriz

_ P+P*+...+PF
- 7 :

(4.3) Py

The P-invariance of the mean wq follows directly from Lemma 2.1. The proof of Theo-
rem 4.5 therefore requires showing that Py in (4.3) is the desired covariance matrix. A matrix
Py is a covariance matrix if it satisfies the following three sufficient conditions:

1. has positive diagonal entries,
2. is symmetric,
3. is positive (semi-)definite.
Short proofs will now be given for each of these three covariance conditions.

Lemma 4.6. The matriz Py has positive diagonal entries.

Proof. Py is defined as a sum of permutation matrices, all diagonal entries of Py are there-
fore either zero or positive. Since PX = I, we have that the diagonal entries are guaranteed
to be positive. |

Lemma 4.7. The matriz Py is symmetric.
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Proof. The symmetry of P follows from

T:PT+(P2)T+”‘+(PK71)T_{_(PK)T

P
0 K b
_PK71+PK72_|_+P_|_PK
= T 7
— POv
where the second line follows from Lemma 4.4. [ |

The semipositive definiteness of Pg follows from its idempotency.
Lemma 4.8. The matriz Py is idempotent, that is P% = Py.
Proof. Writing out (K Pg)? in terms of P and applying Lemma 4.3 results in

(P+ P? 4.+ P5)?,

=P’ 2P+ ..+ (K-1) PN+ K P (K- 1) PEP2 .. 2 p2E-1 4 p2K
=KP+P*+(K-1)Ps?4...p2pP? 51 (K -2) PE L (K —1) PK + P?K,

K P? K PE-1 KPX
=K (P+P?+ P+ ...+ PK),
=K? Py,
which proves that Py is idempotent. |

The first consequence of Py being idempotent is that it is positive semidefinite.
Lemma 4.9. The matriz Pq is positive semidefinite.

Proof. The two eigenvalue equations
Pyv=2X\v, (Py)*v=X\w
are actually equal due to Py being idempotent. It therefore follows that A> — A = 0, which

implies that the eigenvalues are either 0 or 1. This proves the positive semidefiniteness of Py. B

Having proved that Py is a covariance matrix it remains to show that samples drawn from

N (wq, Py) are P-invariant. From its symmetry and idempotency it follows that Py is its own
. T T
matrix square root Po=+/Pog=Py =+ Py .

Lemma 4.10. Every sample w drawn from N (wg, Py) is P-invariant.

Proof. A sample w from N (wq, Py) can be drawn by computing w = wq + /Py @, where
@ is drawn from a standard normal distribution N'(0,I). The P-invariance of w follows from

Pw=Pwy+ P+ Py,

=wo+P+Pyzx,

©) 2025 SIAM and ASA. Published by SIAM and ASA under Creative Commons Attribution NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) license
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=wo+ P x,
K
<P2+P3+~-+PK+P>
:’LU()+ K €,

=wog+VPox=w.

The P-invariance of wy is used to go from line 1 to 2 and Lemma 4.3 is used to go from line 3
to line 4. |

Lemmas 4.6 up to 4.10 constitute the proof of Theorem 4.5. Another consequence from
the idempotency of Py is that this matrix is its own pseudoinverse.

Lemma 4.11. The pseudoinverse Pg satisfies
Pl =P,.

Proof. The pseudoinverse Pg needs to satisfy the following four properties:
1. PoP)Py= Py,
2. P PyPl =P},
3. (PoP))T = PyP},
4. (P} Py)T = P{P,.
All these properties are satisfied when assuming P(T) = Py and they follow from the idempo-
tency of Py. For example, Properties 1 and 2 follow from

PyP\Py= P} PyP} = (Py)’= Py =P},
Properties 3 and 4 follow from the symmetry of Pj. |

The fact that Py =+/Py = P(T) = \/Pzr] is convenient for several reasons. First, no explicit
P! computation is required in equations (1.3) and (1.4). Second, sampling N (wp, Po) can
be done without a matrix square-root computation and without any matrix-vector multipli-
cations. Using Theorem 4.5 the product v/ Pgx = Pgx can be implemented as a weighted
sum of permuted versions of x

Px+Plzx+ - -+PKx
I .

All information of the permutation P is contained in a vector p of J entries that specifies how
ecach entry gets mapped to the next. Each term P*a of the weighted sum is then computed
by successive permutations of & according to p with computational complexity O(J?). The
pseudocode for sampling the distribution is given in Algorithm 4.1.

A similar result as in Theorem 4.5 can be proven for P-skew-invariant tensors.

Theorem 4.12. For a permutation of even order K, the Gaussian distribution of P-skew-
invariant tensors N (wq, Pg) is described by a mean vector wq that is P-skew-invariant and
covariance matrix

(4.4) Py PPt PR S U
. : - - .
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Algorithm 4.1. Generate P-invariant sample from N (wq, Py)

Require: wy, index permutation vector p, K
x < randn(JP) % sample standard normal A (0,T)
w +— K wy
for k=1:K do
w—w+x
x < x[p] % permute entries of x according to p
end for
W Z
return w

Proof. The proof is very similar to that of Theorem 4.5. The diagonal entries being
nonnegative can be derived from the following argument. The permutation matrix P itself
consists of cyclic permutations, with either even or odd order. If a cyclic permutation has an
even order k, then P* will have ones on the diagonal for entries of the cycle. This cycle will
occur K/k times in (4.4), always with a positive sign. If a cyclic permutation has odd order
k, then the diagonal entries of P¥ will come in equal amounts of K/(2k) negative and K/(2k)
positive contributions, which results in a zero contribution to the diagonal. The total effect
of all cyclic permutations then add up to either zero or positive diagonal entries. Symmetry
is proven by using Corollary 4.4 and the fact that K is even: an even order k gets mapped to
another even order K — k and an odd order k gets mapped to and odd order K — k. Hence,

T _ e <—[1{>’f (PH" Y <—;>’fPK—’f _p,

The idempotency of Py follows a similar proof as for the case of P-invariance. Writing
out (K Pg)? in terms of P and applying Corollary 4.3 results in

(—P+P%— ...+ PK)?

=P? 2P+ .+ (K-1)PX - KPS (K —1)PEY2 ... g p?K-1 4 p2K
= KP+P’+(K-1)PEY2_... op?K-l _ (g _2)PE-14 (K —-1)PE 4+ P?K
K‘;ﬂ —K;K*I K;K
=K (-P+P?-P?+...4+ PK)
=K% P,
which proves that Py is idempotent. |

Theorems 4.5 and 4.12 are practical when the order K of the permutation matrix P
stays small compared to J and D. For Hankel structures this is unfortunately not the case.
Consider for example a 20 x 20 Hankel matrix. Its corresponding permutation matrix has
permutation cycles ranging from length 1 up to 20, and K is therefore the least common
multiple of 1,2,...,20 = 232,792,560. Fortunately, it is possible to explicitly construct a
sparse matrix of orthogonal columns V such that v/ Py=V.
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Every permutation P can be decomposed in terms of R cyclic permutations. These
cyclic permutations partition the set of all tensor entries into R disjoint sets and allow for
an alternative construction of /Py, where the resulting matrix is sparse and consists of
orthogonal columns.

Theorem 4.13. Let P be a permutation matriz that consists of R permutation cycles and
let C, denote the rth cycle, where the number of tensor entries in C, is denoted |Cy|. Then
D
the range of the matriz V e R7"*® such that

1 :
Zf wjlzj%""jD € CT’

(4.5) vr——r =< V||

j17j27"'7jD7T -
0 otherwise,

spans the eigenspace of P corresponding to an eigenvalue A = 1. In other words, V = +/Py.
Also, VIV =1Ij.

Proof. The equality PV =V follows from each column of V' containing nonzero values
at tensor entries of a particular permutation cycle of P. The orthogonality follows directly
from the permutation cycles being disjoint and each column of V' being unit-norm due to the
scaling with /|C|. [ ]

Theorem 4.13 tells us that the dimension of the subspace induced by the prior is equal to
the number of permutation cycles R. A basis for the skew- P-invariant eigenspace can be built
in a similar way by retaining the cycles of even order and alternating the sign of the entries

UMJ“ in each column.

Erample 4.14. Consider a 20 x 20 Hankel matrix. Using Theorem 4.5, one would need
to construct the 400 x 400 Hankel permutation matrix H and construct Py by adding
232,792,560 terms together. Using Theorem 4.13, the sparse 400 x 39 matrix V can be
constructed directly containing 400 nonzero entries.

5. Solving the inverse problem. In this section two different aspects when solving the
inverse problem are discussed. First, we briefly discuss how to sample the posterior and how a
change of variables, originally proposed in [11], can exploit fast implementations of the matrix
vector product Pow. The second aspect relates to kernel methods, where (A, b)-constrained
tensor priors are used to define new structured tensor kernel functions.

5.1. Change of variables. Squaring the condition number when solving the normal equa-
tion of (1.3) can be avoided by solving its square-root version

VETle B VETly
( Py ) o (\/Polwo>

instead. In order to sample the posterior one requires the posterior square-root covariance
v/ P+ and mean vector w. Both can be computed from the SVD of the square-root precision
matrix

VEle Vel
—— | =USV" as w =VS'UT | — Y Pi=VSt
PO PO wo



Downloaded 09/29/25 to 145.90.34.181 . Redistribution subject to CCBY license

©) 2025 SIAM and ASA. Published by SIAM and ASA under Creative Commons Attribution NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) license

LOW-DIMENSIONAL SUBSPACE REGULARIZATION 1465

When the SVD computation is too expensive, iterative solvers such as hybrid projection meth-
ods [10, 11] or randomized solvers [41] can be used. In [11] a change of variables was introduced
to avoid explicit construction of the square-root prior precision matrix /P L By defining

=P, ! (wy —wp) and z :=y — Pwy, the square-root linear system is transformed into

(\/27_;<I>P0> x:< 20—1z>.

The desired posterior mean w4 can then be recovered from w, = Pgx 4+ wy. This formu-
lation is especially beneficial when the matrix vector product Py« can be implemented in a
computationally efficient manner, for example using Algorithm 4.1.

5.2. Structured tensor kernel functions. When the tensor VW is much larger than the
data size N, then the O(J3P) computational complexity of computing (1.3) is replaced with
at least O(N?) by solving the corresponding dual problem

(5.1) (PP ®" +D)v=y.

An additional benefit is that no matrix inverse of Py is required so that Theorems 2.1, 4.5,
and 4.13 can be applied directly. The matrix ® Py ® is called the kernel matrix K and each
entry k;; is defined as the evaluation of a kernel function

kij=Fk(x;,x;):= o(x:)" Py p(x)).

Choosing Py as a covariance matrix of an (A, b)-constrained tensor allows us to define new
kernel functions. The kernel trick in machine learning refers to the fact where the kernel
function can be evaluated without every explicitly computing the possibly large feature vectors
@(-). In the case of P-invariant tensors one can exploit the particular structure of Py as
described in Theorem 4.5 or use Algorithm 4.1 to achieve this goal.

Ezample 5.1 (Centrosymmetric polynomial kernel). Let \/c € R and d € N. The polynomial
kernel function is defined as

k(zi, ;) =@(x:)" I o(x;),
=(ve al)o--a(Ve o) I (Ve o)) @--a(/e a])

~
d times d times

=(c+ wZT :cj)d.

The expression (¢ + a:ZT a:j)d is obtained from writing the identity matrix I as a Kronecker

product of smaller identity matrices and applying the mixed product property. The polynomial
kernel function can therefore be interpreted as using a unit covariance matrix Py. We can
now define the centrosymmetric polynomial kernel function ks by using the polynomial feature
vectors ¢(-) and replacing I with the covariance matrix (I +.J)/2 of centrosymmetric tensors.
From Theorem 4.5, it then follows that
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b, ) = 5 @) (T+J) (),
1
“l(e al)eo (e @) aad) (Ve o) 0a (Ve o),
. . dd tlriles . " . d times

Also here the explicit construction of ¢(-) is avoided by writing the matrix J € R77%7” as a

Kronecker product of the smaller permutation matrix Jz € R7*7 with itself d times and using
the mixed-product property.

6. Applications. In this section we demonstrate the use of Theorems 2.1, 4.5, and 4.13
in three different applications. Practical implementations on how to sample various (A, b)-
constrained tensor priors are explained in Application 6.1. We consider lower triangular
tensors, tensors for which the sum over the last index adds up to 1, symmetric tensors and
Hankel tensors. Application 6.2 considers the problem of completing a Hankel matrix from
noisy partial measurements by solving it as a Bayesian inverse problem. The estimate of the
completed Hankel matrix when using a Hankel prior is compared to the estimate where no
prior is used. In Application 6.3 learning a classifier for handwritten digits is solved as a
Bayesian inverse problem. The classifier obtained with the commonly used Tikhonov prior is
compared to several (A, b)-constrained tensor priors.

All applications have been implemented as reactive Pluto [36] notebooks in Julia [8] and
are publicly available at https://github.com/kbatseli/AbTensors. The notebook files can be
freely downloaded and run on your local machine in Julia. An alternative way to use these
notebooks that does not require the installation of Julia is to run them in the cloud via Binder
[30]. This can be done by clicking on each of the links on the main Github page.

As discussed in section 2.1 we parameterized the prior covariance matrix Py with a single
hyperparameter op in both Applications 6.2 and 6.3.

6.1. Sampling structured tensor priors. In this first application we demonstrate how
Theorems 2.1, 4.5 and 4.13 are used to sample the priors of different (A, b)-constrained tensors.

Ezample 6.1 (Lower triangular tensors). A first example of an (A, b)-constrained tensor
considered here are lower triangular tensors. From Definition 3.2 we know that triangular
tensors are described by

Ay LRI;@---®1;

A2 IJ®L®®IJ D-1)(J-—1)gP-1
A— _ - . e RGP

Ap_q I;I;---QL

and zero vector b. The square root of the covariance matrix is built up by recursive computa-
tion of the nullspace of A, considering only one block-row of A at a time. The whole A matrix
is never explicitly made. In the notebook it is possible to sample lower triangular tensors with
orders ranging from 2 up to 5 and dimensions 2 up to 6 by moving the corresponding sliders.
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LOW-DIMENSIONAL SUBSPACE REGULARIZATION 1467

An example of a 6 x 6 lower triangular matrix sampled in this way is

0.057705 0.0 0.0 0.0 0.0 0.0
—-0.37369  —0.71027 0.0 0.0 0.0 0.0
—1.08755  0.600503 —0.209701 0.0 0.0 0.0
—0.334201  1.33079 0.926074  0.869311 0.0 0.0

0.9346 —0.164181 —0.230121 —0.110009 0.294956 0.0
—1.85009  0.771951 —0.284285 0.467705 —0.700058 0.205478

Ezample 6.2 (Tensors with known sum of entries). In this example we sample tensors
W for which the sum over the last index always adds up to a value of 1:

% Vj1,J2,- -5 JD-1" ijl,jz,...,jD =01 joyjor = 1-
g ”
E From Definition 3.5 we know that in this case A = 1; RI;®---®1j. It is straightforward to
8 verify that a basis for the right nullspace of A is
o
3 11 1
3
o) -1 0 0
= IR 1.
s o -1 --- 0
= 0 0 - —1
=2
=
% Sampling the prior can now be done without every constructing a basis for the nullspace
-r?é explicitly since
§ 11 1
3 / _ |-t 0o -0 .
8: Pyx = 0 1 ... 0 ®@I;® @Iy |z
Q o 0o - -1
—
Q 1 t+xo+- -+ T
@ IJD—l IJD—I O IJD—l T —x
g |- I 0 e 0 T2 _ —ay
3 0 —Ijpp1 - 0
3 0 0 coo =Ty
Ty
g J-1 —zy
=
2 It is therefore sufficient to sample x € RG=D7"™ from a standard normal distribution and do

the operations on the J — 1 partitions of & as described above to generate the desired sample.
An example of a generated 5 x 5 matrix sample is

—2.55782 1.49607 0.261848  0.920155  0.879752
—0.521966  1.31607  —0.287877 0.760659 —0.266883
—0.445579 —0.330202 —0.674927 0.690687  1.76002
—2.48504 —0.441223  2.02517  0.428044  1.47305
0.242143 2.06895  —0.220772 —0.59756 —0.492757

©) 2025 SIAM and ASA. Published by SIAM and ASA under Creative Commons Attribution NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) license



Downloaded 09/29/25 to 145.90.34.181 . Redistribution subject to CCBY license

©) 2025 SIAM and ASA. Published by SIAM and ASA under Creative Commons Attribution NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) license

1468 KIM BATSELIER

Summing each row of this matrix results in a vector of ones. In the notebook one can change
the order of the sampled tensor from 2 up to 5 and dimension from 5 up to 10 by using the
corresponding sliders.

Ezample 6.3 (Symmetric tensors). Symmetric tensors W are tensors for which entries
are invariant under any index permutation. The permutation matrix S in the symmetric case
consists of cyclic permutations where each cycle contains the entry wj, . ;, and all entries
with corresponding index permutations wy;, . i,). For example, in the case D=2 and J =2
the permutation matrix S consists of 3 cyclic permutations wi 1 — wy 1, wa,1 = w12, W12
wa1, wa 2+ wo22. The order K of § in this case is 2 since S2=1. According to Theorem 4.5,
the square root of the covariance matrix is v/Pg = (S + §2)/2. When D = 3, the order K of the
corresponding permutation matrix is 6 and hence /Py = (S + 8% + 8§34+ 8% + 85 + §%) /6.
Sampling from these priors is done via Algorithm 4.1 where a standard normal sample « € R’ Y
is generated and permuted K times. An example of a sampled symmetric 5 X 5 matrix is

0.530979  —0.0991279 —0.421909 —1.76112 —0.380734
—0.0991279 —0.388004 —0.0187159 0.165119 —0.446671
—0.421909 —0.0187159 —0.879571 —0.483638 0.624838

—1.76112 0.165119 —0.483638 —1.35093  0.0902599
—0.380734 —0.446671 0.624838  0.0902599 —2.03848

The notebook allows you to sample symmetric tensors of orders 2 and 3 and dimensions 3 up
to 10.

Ezample 6.4 (Hankel tensors). Hankel tensors W are tensors for which entries with
a constant index sum j; + --- 4+ jp have the same numerical value. The order K of the
corresponding permutation matrix P grows very quickly. For example, when D = 2 and
J =20 the order K is the least common multiple of 1,2,...,20 = 232,792,560. Theorem 4.13,
however, allows us to construct a matrix /Py € R77*R , where R is the number of permutation
cycles. For Hankel tensors we have that R = D(J — 1) + 1. An example of a sampled 5 x 5
Hankel matrix is

—0.0125803  —1.1419  —0.0329509 —0.333555 —1.32625
—1.1419  —0.0329509 —0.333555 —1.32625 0.20827

—0.0329509 —0.333555  —1.32625 0.20827 0.759984

—0.333555  —1.32625 0.20827 0.759984 —0.340118
—1.32625 0.20827 0.759984  —0.340118  1.22822

The notebook allows you to sample Hankel tensors of order 2 up to 4 and dimensions 3 up to 10.

6.2. Completion of a Hankel matrix from noisy measurements. Hankel matrices are
very common in signal processing and control theory. In this application a Bayesian approach
will be used to complete a Hankel matrix based on noisy incomplete measurements. For this
we use the following forward model y = ® w + €, where w € R is the vectorization of the
true underlying 10 x 10 Hankel matrix. The I x 10> matrix ® selects I random entries of w
with equal probability. Each row of ® contains a single nonzero unit-valued entry at a random
location. The number of measurements I can be changed through a slider in the notebook.
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The vector € is a vector of zero-mean Gaussian noise. Given y and ®, a Bayesian estimate
of the underlying Hankel matrix W can be obtained from (1.3) as the posterior mean w.
Another commonly used estimate is the maximum likelihood estimate, which is the w that
maximizes the likelihood p(y|w). We compare two posterior estimates with the maximum
likelihood estimate under two different assumptions on the noise covariance. We fix the
sampling rate at 50% and choose 02 = 1. The prior covariance matrix is set to 012; Py =
1076 Py, where Py is covariance matrix of the Hankel prior obtained via Theorem 4.13.

Ezample 6.5 (White noise). First we consider white noise, which implies that ¥ = o2 I.

The singular values of the prior precision /Py ! /op, posterior precision (&7 /o, VP Jon L),
and likelihood precision ® /o, are shown in Figure la. They provide us with insight on how
the prior, posterior and likelihood relate to each other. The likelihood p(y|w) only has 50
measurements and gives all of them equal weight. The prior p(w) on the other hand only
considers 19 nonzero values as a 10 x 10 Hankel matrix has 19 distinct entries. Given the
relative high noise variance compared to the prior, the posterior p(w|y) “follows” the prior
for the first 19 singular values. A prior mean is obtained by averaging over the nonzero
antidiagonals of the measurements and using those averages to construct a Hankel matrix.
We now compute three different estimates and compare them to the ground truth. The first
estimate is obtained from (1.3) with a backslash solve. A second estimate is computed by
truncating the SVD of (@7/o. P, /or )T to rank 19 in equation (1.3). The third estimate is
the maximum likelihood estimate. For each of these estimates we show the relative error
in Table 1. Adding the Hankel prior shows a clear improvement on the completed Hankel
matrix. The relative error is 4 times smaller from the inclusion of the prior. Since the first 19
singular values of the posterior are equal to the singular values of the prior, one could expect
the estimated posterior mean w, obtained from truncating the SVD to the first 19 singular

100 10°
10° :l -_——- 1° L —
107° H I 1070 F
107 i : 1071 \\
———— \
team.. ~— ~15 i - >
107° - |emmm Posterior Se = 107 |- |emmm Posterior e
@ Prior e 3 @ Prior ¢
@ ikelihood l | ikelihood |\
10*2\1 ! 1 1 I I 1 10’25 L 1 I A
0 25 50 75 100 0 25 50 75 100
(a) White-noise case. Given the relative high noise (b) Hankel-noise case. Also in this case we have
variance the posterior follows the prior for the first that the posterior follows the prior for the first 19
19 singular values. singular values.

Figure 1. Singular values of the square-root precision matrices of the prior, likelihood and posterior distri-
bution. Only 50% of the Hankel matrix W was measured. The noise variance is 1 and the prior variance is
107°.
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Table 1
Relative errors for three different Hankel matriz completion estimates w. Smallest relative error is indicated
in bold.

backslash truncated SVD max-likelihood

=1Lz (white noise) 0.160 0.137 0.614
=2 (Hankel noise) 0.235 0.137 0.604
%7_\5”2 0.12 6.3e-7 0.80

values to be Hankel. In order to confirm this, we also compute the relative Hankel error
||H w — w||2/||w]|2 for the three estimates in Table 1, where H is the Hankel permutation
matrix. Restricting the posterior mean to lie in a subspace spanned by the first 19 right
singular vectors indeed enforces a Hankel structure.

Ezample 6.6 (Hankel distributed noise). To investigate the effect of the noise covariance
on the estimates we now consider noise e that also has a Hankel structure. In other words,
the covariance matrix for p(e) is o2 Py, whereas the prior covariance is 0% Py. With the noise
being Hankel, this means that the perturbation € of w will have a Hankel structure as well.
This can be modeled via the forward model y = ®(w+e€), where now p(®e) = N (0,02 ® Py 7).
Figure 1b shows the singular values of the square-root precision matrices. The number of
nonzero singular values of the likelihood now consists of two plateaus. Again, the posterior
follows the prior for the first 19 singular values. Since now measurements of entries along the
same antidiagonal are identical, less information is to be extracted from the measurements.
This explains the first drop of Figure 1b at the 19th singular value for both the likelihood and
posterior. Less information also means that we can expect our estimate to be worse compared
to the white noise case. The relative errors are now indeed higher, as seen in Table 1. Note
however that the estimate obtained by truncating the SVD remains the same.

6.3. Bayesian learning of MNIST classifier. In this application we learn a classifier for
images of 10 handwritten digits. The classifier is trained on the MNIST data [23], which
consists of 60,000 pictures for training and 10,000 pictures for test. Each picture x,, is of size
28 x 28. We pick 10,000 random samples from the training set and convert each picture x,,
into 252 = 625 random Fourier features ¢(x,); = Re(e~#%/*n) [32]. The 625 frequency vectors
v; are sampled from a zero-mean Gaussian with variance 1/ 52 I. We use a one-vs-all strategy
by learning 10 classifiers at once. Each classifier is trained to distinguish between 1 particular
class versus all others. The forward model for our 10 classifiers is then y = ¢(x) W +e. Each
column of W € R6%*10 contains the model parameters of one specific classifier. In order to
predict the class of a sample x*, we compute y* = p(x*) W and apply the softmax function

eYr

*\ 10
oy )_Zkeyi eR™.

The prediction is then the class with maximal o (y*). The 10 classifiers are trained on a
training data set of pictures X € R%00%74 and corresponding class labels Y e R10:000x10,
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(a) When 0% = 107° large differences between the (b) When 0% = 1073 all differences between the
different posteriors are observed. The correspond- different posteriors have almost vanished. The cor-
ing classifiers are therefore expected to also behave responding classifiers are expected to also behave
differently. similarly.

Figure 2. Singular values of the square-root precision matrices of the posterior distribution for four different
priors. The noise variance is fixed to 1.

Our estimate for W is the mean of the posterior p(W Y, X). The residual e is most com-
monly assumed to be zero-mean white Gaussian noise p(e) = N(0,02I). Likewise, the prior
p(W) is usually assumed to be a zero-mean normal distribution with a uniform scaling co-
variance matrix Py = 0123 I. Such a prior is also called Tikhonov regularization. We compare
the performance of the Tikhonov prior to other zero-mean (A,b)-constrained tensor priors
(symmetric, Hankel en circulant), constructed using either Theorem 4.5 or Theorem 5.1. The
2 is set to a fixed value of 1. The difference between these different priors
in terms of the low-dimensional subspace they specify can be investigated by looking at the
singular value profiles of the square-root precision matrices of the corresponding posteriors.
These are shown in Figure 2a for a% =107% and in Figure 2b for 0123 =1073. Being confident
in the prior (0123 =107%) has a strong effect on the corresponding posterior, which explains the
large differences in singular value profiles. The structured tensor priors are characterized by
a relatively quick decay of singular values due to the low-dimensional subspace they enforce
compared to the Tikhonov prior, which considers the whole vector space R%2%. This favors
the posterior solution for the classifier parameters to be described by less than 625 indepen-
dent parameters. The corresponding classifiers can then be expected to also differ a lot on
unseen test data. Indeed, applying the obtained classifiers on 10,000 test images results in a
relative number of correctly classified images shown in Table 2. All (A, b)-constrained priors
outperform the conventional Tikhonov prior, with Hankel and circulant tensors having the
best performance. These results indicate that the 625 model is overparameterized and that
the structured tensor prior is able to remove this model redundancy effectively. By increasing
the prior covariance to 0*123 = 1073 all singular value profiles become very similar, all limiting
the total number of “effective” model parameters in the same way. Unsurprisingly, the corre-
sponding classifiers have similar performance as seen in Table 2. No significant classification
improvement is observed for the Hankel and circulant priors.

noise variance o
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Table 2
Comparison of relative number of correctly classified test images for classifiers learned with different priors.
Best classifier indicated in bold.

Tikhonov  symmetric ~ Hankel circulant
o5 =10"° 0.650 0.880 0.917 0.915
05=10"3 0.917 0.918 0.920 0.919

7. Conclusions. A whole new class of Bayesian priors has been worked-out which could
be potentially applied to a variety of different inverse problems. The main focus of this
article was mostly on the theoretical foundation and where possible we discussed practical
implementations without going into much detail. Although the curse of dimensionality when
considering tensors of large order and dimension can be completely resolved via the corre-
sponding dual problem (5.1) as discussed in section 5.2, the computational complexity can
still become prohibitively large with increasing sample size. To tackle this complexity, the
possibility to represent the prior mean vector and covariance matrix of these priors as exact
low-rank tensor decompositions could be investigated.
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