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Preface

This thesis is the final project of my bachelor studies in Applied Mathematics at Delft University of Tech-
nology. Over the past months | have explored how preconditioned Krylov subspace methods behave on
modern multi-core architectures, using the finite element library NGSolve and the performance-portable
framework PyKokkos. The project combines topics from numerical analysis, scientific computing and
high-performance computing.

The report is primarily intended for students and researchers with an interest in iterative methods, fi-
nite element discretisations and performance-portable implementations. A basic familiarity with linear
algebra and partial differential equations is assumed, but the relevant background on Krylov methods,
preconditioning and parallelism is reviewed in the early chapters."

| am very grateful for Dr. Heinlein for his insights, guidance and all the helpful discussions throughout
this project.

Soli Deo gloria.

H.J.G. Reijersen van Buuren
Delft, December 2025

'l declare that | have used generative Al or Al-assisted technologies during my thesis. Specifically, |
used such tools in the following ways:

» Create tables in proper LaTeX code.

* Improve the grammar, clarity, and flow of the entire text.
* Assist in writing code.

» Convert sources into the proper referencing format.
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Layman's abstract

Many simulations in science and engineering boil down to solving huge systems of linear equations.
Think of trying to predict how heat spreads in a metal plate, or how air flows around an kite. These
problems are too large to solve with pen and paper. Instead, engineers often use iterative methods:
algorithms that start with an initial guess and improve it step by step.

This thesis studies two such iterative methods, called Conjugate Gradient (CG) and Generalized Min-
imal Residual (GMRES), on modern computers. The questions are: How fast can they obtain a so-
lution? How well can they be improved with more computational power? And how much does their
performance depend on a helper tool called a “preconditioner’? Preconditioners change the system
into an easier one that the solver can handle more efficiently.

Using the finite element library NGSolve and the performance-portable framework PyKokkos, we solve
three test problems: a simple heat equation, a simplified flow problem, and finally a realistic Stokes flow
around an aircraft wing profile (a NACA airfoil). For each case we compare different preconditioners
and measure how the runtime changes when we add more computing power.

The main findings are that not every preconditioner is equally useful on modern hardware. A method
that needs fewer steps to get to the solution can still take more time if it is hard to parallelise. On the
other hand, very simple preconditioners may be easy to parallelise, but not strong enough to reduce
the amount of steps. For complex flow problems, we find that preconditioners must also respect the
coupling block structure of the equations (for example, the relations between velocity and pressure) to
be effective.

In short: getting good performance is not just about choosing the right iterative method, but also about
matching the preconditioner and implementation to both the mathematics of the problem and the parallel
hardware.
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Abstract

This thesis investigates how preconditioned Krylov subspace methods perform and scale under shared-
memory parallelism. The focus is on the Conjugate Gradient (CG) method for symmetric positive def-
inite systems and the Generalized Minimal Residual (GMRES) method for non-symmetric systems.
Both solvers are implemented in PyKokkos and applied to finite element discretisation generated with
NGSolve. We look at a scalar Laplace problem, a Stokes-like vector problem, and a steady Stokes
flow around a NACA,2412 airfoil.

For CG, we study Jacobi and symmetric Gauss—Seidel (SGS) preconditioning, strong and weak scaling
up to 16 threads, and kernel-level timings. As the mesh is refined, the iteration count grows in line
with the increasing condition number of the stiffness matrix. Jacobi reduces the iteration count only
slightly but is cheap and fully parallel, leading to runtimes similar to, and sometimes slightly better than,
unpreconditioned CG. SGS roughly halves the iteration count, but its forward/backward sweeps are
largely sequential, which limits speed-up on many cores and can make SGS slower overall despite
faster convergence.

For GMRES we analyse the influence of the restart parameter, preconditioning, and polynomial order.
Higher-order vector elements lead to more off-diagonal entries in the system matrix, here scalar Ja-
cobi becomes too weak and can even make restarted GMRES slower than using no preconditioner.
SGS remains effective in terms of iterations, but this comes with the same parallel limitations as in
CG. And overall GMRES shows poor strong and weak scaling on the tested CPUs. For the NACA
Stokes system, Jacobi and SGS preconditioning fails, whereas a block preconditioner that respects
the velocity—pressure structure shows rapid convergence.

Overall, the results show that good performance on shared-memory architectures requires precondi-
tioners that both respect the block structure of the PDE and are highly parallelizable.
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Introduction

In many areas of engineering, such as fluid dynamics, structural mechanics and electromagnetics,
simulations often involve solving very large systems of linear equations. These systems typically arise
from discretising partial differential equations using methods like the finite element method [1, Ch. 2].
For large problems, especially those with fine meshes or complex geometries, direct solvers quickly
become infeasible because of their high computational cost and memory requirements [2].

Iterative solvers provide a more scalable option than direct methods, making it possible to solve prob-
lems that would otherwise be too computationally expensive [1, Chs. 6—7]. In practice, Krylov subspace
methods such as the Conjugate Gradient (CG) and Generalized Minimal Residual (GMRES) methods
are widely used and are often very effective. Their efficiency and robustness, however, depend strongly
on the choice of preconditioner, which can dramatically influence convergence rates and overall perfor-
mance [3, Ch. 1.2]. As multi-core architectures are now widespread, understanding how these solvers
behave and scale under shared-memory parallelism is essential for achieving high performance in
modern computations.

The primary goal of this thesis is to investigate how preconditioned Krylov subspace methods perform
and scale under shared-memory parallelism. The following research questions guide this work:

Main question: How do preconditioned Krylov subspace methods perform and scale under
shared-memory parallelism?

Subquestions. To answer the main question, we address the following subquestions:

Q1 How does the Conjugate Gradient method (CG) perform when solving the Laplace equation,
and what are the key computational bottlenecks?

Q2 How do different preconditioners affect the convergence and performance of CG when solv-
ing the Laplace equation?

Q3 How does the performance of a preconditioned Generalized Minimal Residual method (GM-
RES) compare when solving the Stokes system, and how do the results relate to those
observed for the Laplace equation?

Scope and Limitations

This thesis focuses exclusively on shared-memory parallelism. Although distributed-memory implemen-
tations are widely used in large-scale high-performance computing, including them here would require
substantially more time and complexity than is feasible for this project. The experiments are conducted
on CPU architectures only. The study also restricts itself to a subset of solvers and preconditioners,
specifically the CG and GMRES methods with Jacobi and Gauss-Seidel preconditioners, in order to
keep the analysis focused and the conclusions clear.



Thesis Structure
The remainder of this thesis is organised as follows.

Chapter 2 introduces iterative methods for linear systems. It starts with classical stationary
schemes and then presents Krylov subspace methods, including Conjugate Gradient (CG) and
GMRES, with an emphasis on their convergence properties and computational costs.

Chapter 3 focuses on preconditioning. It explains the motivation for preconditioning, discusses
several common constructions (such as Jacobi and Gauss—Seidel), and outlines how they can
be combined with Krylov methods to improve convergence.

Chapter 4 describes the model problem used throughout the thesis. It moves from the Laplace
equation in strong form to the weak formulation, introduces the finite element discretisation on
the unit square, and explains how the resulting linear systems are assembled with NGSolve.

Chapter 5 provides a brief overview of parallel computing on multi-core architectures. It intro-
duces shared- and distributed-memory models, basic parallel programming concepts, and the
notions of strong and weak scaling that are used later to interpret the timing results.

Chapter 6 details the implementation of the preconditioned CG solver in PyKokkos. It covers the
mesh generation and sparse matrix storage, the decomposition of CG into basic kernels, and the
implementation of Jacobi and symmetric Gauss—Seidel preconditioners. It also outlines how the
same ideas can be extended to GMRES.

Chapter 7 presents the numerical results. It compares the convergence behaviour of the differ-
ent preconditioners, analyses the strong- and weak-scaling behaviour on multi-core CPUs, and
reports kernel-level timings to identify the main performance bottlenecks. The chapter concludes
with a Stokes case based on a NACA airfoil to illustrate the solver on a more realistic geometry.

Chapter 8 summarises the main findings and offers recommendations for future work, including
potential extensions of the implementation to other Krylov methods, more advanced precondition-
ers and more challenging model problems.



[terative Methods for Linear Systems

This chapter establishes the theoretical foundations and presents an analysis of two principal classes
of iterative methods for the numerical solution of large and sparse linear systems, Az = b.

The first section introduces classical stationary methods, including Jacobi, and Gauss-Seidel. These
methods are derived from the concept of a matrix splitting and are analysed for their fundamental con-
vergence behaviour. Although no longer competitive as stand-alone solvers, these methods continue to
play an important theoretical and practical role as building blocks or smoothers in multilevel algorithms
such as multigrid.

The second section focuses on Krylov subspace methods, this includes the Conjugate Gradient method
(CG) and the Generalized Minimal Residual method (GMRES). These methods are widely used in large-
scale engineering simulations due to their rapid convergence, especially when combined with effective
preconditioning strategies.

Finally Section 2.3 gives an overview of additional iterative method found in literature. As these methods
fall outside the scope of this research, they will not be examined in further detail.

The goal of this chapter is to provide an overview of the theoretical principles of these methods. We
will focus on the mathematical derivation and the resulting algorithmic properties, such as memory use,
stability, and speed of convergence, to understand how they work and perform.

2.1. Classical Stationary Iterative Methods

Stationary iterative methods are characterized by a fixed iteration matrix that is applied at every step.
As noted by van Gijzen [4], the foundation of these methods is the matrix splitting of the system matrix
A.

Starting from the linear system
Axr=1b

)

we introduce a splitting
A=M —R,

where the matrix M is chosen to be easily invertible, and R is the remainder. This leads to the general
stationary iteration
Ml'k+1 = Rxy +0b.

By substituting R = M — A, the iteration can be rewritten in the residual-correction form

Tyl = Tk + Mﬁl(b - Al‘k)

The vector r*) = b — Az(*) is the residual at iteration k, which measures how far the current estimate is
from satisfying the system. The choice of M determines two things: the computational cost (since we
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must be able to efficiently apply M ! at each step) and the convergence rate. This rate is controlled
by the iteration matrix GG, which is defined as

G=M'R=I-M1'4A

The method is guaranteed to converge if and only if the spectral radius of GG, denoted p(G), is strictly
less than 1[1, Ch. 4.2]. The spectral radius p(G) is the largest absolute value among all eigenvalues of
G, and its value determines how quickly the iterative process approaches the exact solution [1, Ch. 1.2,
Ch. 4.2].

The next subsections detail classical methods arising from specific, choices of the splitting matrix M.

2.1.1. Richardson Method
The Richardson method corresponds to the simplest non-trivial splitting where the matrix M is propor-
tional to the identity matrix, M = o~'I, or the unrelaxed case M = I.

The unrelaxed Richardson iteration is
Tpp1 =+ (b— Azy) =b+ (I — A) x.
The introduction of a scalar relaxation parameter « > 0 yields the general form:
Tpt1 = xp + a(b— Axy).
The corresponding iteration matrix is G, = I — aA.

Convergence requires p(I —aA) < 1. For a symmetric positive definite (SPD) matrix A with eigenvalues
Ai(A), convergence is guaranteed if

2
I<ax< ,

max

and the optimal relaxation parameter that minimizes the spectral radius of the iteration matrix is

_ 2
Gopt = /\max + >\min,

where \,..x and A\, are the extreme eigenvalues of A [1, Ch. 4.2].

Algorithmic Properties
» Simplicity: The method involves only one matrix-vector multiplication per step, making it compu-
tationally cheap per iteration.

* Role in Multilevel Methods: The Richardson structure, particularly in its relaxed form, is fre-
quently used as a smoother in multigrid algorithms due to its low cost and effectiveness in reduc-
ing high-frequency error components [1, Ch. 4].

+ Limitation: Convergence is at best linear, and the method is highly sensitive to the spectral
properties of A [1, Ch. 4].

2.1.2. Jacobi Method
The Jacobi method is derived from the decomposition of A into its diagonal (D), strictly lower (L), and
strictly upper (U) triangular parts: A =L+ D + U [1,Ch.4.1].

The splitting M = D and R = —(L + U) leads to the iteration
Dzyy1 = —(L+U)xy + b,
which is equivalent to the residual-correction form
Thy1 = ) + Db — Axy).
Convergence is guaranteed if the matrix A is strictly diagonally dominant [1, Ch. 4.1]. The rate of
convergence is determined by the spectral radius p(G ;) of the Jacobi iteration matrix

Gy;=I—-D1A
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Algorithmic Properties

Parallelism: The calculation of each component of z(+1) depends only on the components of z(*) from
the previous iteration. This complete independence makes the Jacobi method fully parallelizable [5,
Ch. 2].

Application: Despite its typically slow convergence rate, the method is primarily used in advanced
schemes, serving as a highly parallel smoother in multigrid methods or as a basic preconditioner for
more advanced Krylov solvers [1, Ch. 4.1, Ch. 13.2].

2.1.3. Gauss-Seidel Method
The Gauss—Seidel method improves upon the Jacobi method by using the most recently updated com-
ponents of the solution vector within the same iteration, making it an sequential scheme [1, Ch. 4.1].

The Gauss-Seidel splittingis M = L + D and R = —U. The iteration is defined by the lower triangular
solve
(L+ D)xgr1 = —Uxg + b,

this sequential dependence is clearly seen in the component form

1 i—1 n
Tiktl = — b — g Qi T k1 — E aijTik | -
17 .
Jj=1

j=i+1
[1, Ch. 4.1].

For many matrix classes, the spectral radius of the Gauss-Seidel iteration matrix is significantly smaller
than that of the Jacobi matrix, often leading to a convergence speed roughly twice as fast as Jacobi’s
method [1, Ch. 4.3]Heath_Solomonik.

The method is guaranteed to converge when the system matrix A is symmetric positive definite (SPD) [5,
Ch. 2.2]. And as before, the rate of convergence is determined by the spectral radius p(Ggs), the
Gauss-Seidel iteration matrix is

Gos=—(D+L)"'U.

Algorithmic Properties

Data Dependency and Parallelism: The core characteristic of Gauss-Seidel is its sequential update
mechanism. Because the computation of z; ;+; immediately uses the newly computed components
x;k+1 for j < 4, this introduces a significant data dependency. This dependency limits its parallel
efficiency on shared and distributed-memory architectures.

Implementation: Despite its sequential nature, the method is straightforward to implement and is
widely used inside more advanced solvers such as multigrid methods, where repeated Gauss-Seidel
sweeps effectively damp out oscillatory (high-frequency) components of the error [1, Ch. 13.2].

2.2. Krylov Subspace Methods

Krylov subspace methods are a class of non-stationary iterative solvers that construct a sequence of
approximations x; from a subspace generated by repeated application of the matrix A [1, Ch. 6.1].
Given an initial guess xy and residual ro = b — Axg, the Krylov subspace of dimension k is defined as

K1 (A;m0) = span{ro, Arg, A%ro, ..., Ao},

At iteration k, the approximate solution is sought in the affine space ¢ + K (A;7g). The iterate xy, is
selected from this space by enforcing a projection condition [1, Ch. 5.1], typically

+ a Galerkin condition, used by methods such as Conjugate Gradient (CG), or

+ a minimal residual condition, used by methods such as GMRES [1, Ch. 5, 6].

The choice of projection criterion influences key properties of the method, including how optimality is
defined on the search space and how memory and computational cost grow with & [1, Ch. 5, 6].
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2.2.1. Conjugate Gradient Method

The Conjugate Gradient (CG) method is a Krylov subspace solver for linear systems
Ax =b,

where A is symmetric positive definite (SPD) [1, Ch. 6.7]. This assumption is important for two reasons.
First, 27 Az > 0 for all nonzero z, which makes v zT Az a proper norm. Second, symmetry ensures the
orthogonality relations used by CG are consistent (7 Ay = 47 Azx). Together, these properties make
the CG update formulas well-defined (no division by zero in exact arithmetic) and guarantee monotonic
convergence in the A-norm [1, Ch. 6.7].

CG constructs approximations x, in the affine space
I0+IC]C(A,T0), T():b*AIO,
where the Krylov subspace is

K (A, rg) = span{rg, Arg, ... ,Ak_lro}.

Optimality and search directions
Let z* be the exact solution and e, = z;, — z* the error. For SPD matrices, the A-norm

[lv]|a = V0T Av
is a true norm. CG chooses x;, such that the error is minimal in this norm over the current search space:

|z — z*||la = min |z —2*|| -
z€xo+Kr(A,r0)

This is achieved by generating search directions p;, that are mutually A-conjugate,

pi Ap; =0 fori# j.
In practice, CG updates x.1 = xx + axpg, choosing «y, so the new residual is orthogonal to the current
Krylov space, and forms p;; from the new residual plus a correction that preserves A-conjugacy.

A key practical benefit is that conjugacy leads to a short recurrence: each new iterate can be com-
puted using only a small number of vectors from the previous step, giving CG low memory use and a
predictable cost per iteration [1, Ch. 6.7].

Residual and stopping criterion
An important quantity in CG is the residual

T = b—A$k7

which measures how well the current iterate satisfies the linear system. Convergence is measured via
the Euclidean residual norm ||r||2. An absolute tolerance (||rx|2 < €abs) can be misleading, because
the scale of the right-hand side b may vary between test problems, e.g. a residual norm of 106 is small
if ||b]|2 ~ 1, but relatively large if ||b]|> ~ 1072,

In the implementation used in this thesis, the iteration is terminated as soon as
[7kll2 < tol - [|b]|2, (2.1)

where tol is a user-specified tolerance. inequality (2.1) enforces a bound on the relative residual. This
makes it possible to compare runs with different problem sizes and right-hand sides [5].

A maximum number of iterations k.. is also enforced to prevent excessive runtimes in problematic
cases.
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Algorithmic properties
* Finite termination in exact arithmetic: In exact arithmetic, CG reaches the exact solution in at
most n iterations for an n x n system [3, Ch. 5.1].

* Restriction to SPD systems: If A is nonsymmetric or indefinite, CG may fail, in those cases one
typically uses a different Krylov method such as GMRES [3].

2.2.2. Generalized Minimal Residual Method
The Generalized Minimal Residual (GMRES) method, proposed by Saad and Schultz [6], is a widely
used Krylov subspace method for solving nonsymmetric linear systems Az = b. GMRES constructs
iterates of the form

T = o + Vilk,

where Vi, = [v1,v2,...,vx] is an orthonormal basis of the Krylov subspace generated by the initial
residual ro = b — Axg [1, Ch. 6.5].
The orthonormal basis vectors vy, ..., v, are constructed by the Arnoldi process, which can be viewed

as applying (modified) Gram—Schmidt orthogonalization to the sequence
To, 147‘07 142’/‘07 ce

First, the initial residual is normalized,

7o
V1 = .
[[roll2
Then, atstep j = 1,2,..., one computes
w = Avj,

and orthogonalizes w against the existing basis vectors:
hij:viva w = w — hj v, 1=1,...,].

The remaining vector is normalized,

hjt1,; = w|lz2, Vj41 = 3 )
bi+1,5

unless h;+; ; = 0, in which case the process terminates. This procedure is precisely a Gram—Schmidt
orthogonalization of Av; against the previously computed basis vectors [1, Ch. 6.5].

In matrix form, the Arnoldi process yields the relation
AVk- == Vk-JrlHk,

where Vi1 = [v1, ..., vk41] and Hy, € RETD>F s an upper Hessenberg matrix. The j-th column of H,
collects the coefficients {h;;}/"| that express Av; in the current basis,

Jj+1
AUjZZhijUi7 j:L...,k.
i=1

By construction, H, is nearly triangular, with nonzero entries only on and above the first subdiagonal [7].

Optimality and Recurrence
GMRES minimizes the Euclidean norm of the residual ||b — Axzy ||, at every iteration. Using the Arnoldi
relation, this minimization reduces to a small least-squares problem involving only Hy:

yrk.neiﬂr{lkuﬁel - I:I"’kaQ’ B = |roll2.

Solving this yields the coefficients y;, and hence the GMRES iterate z;, = x9 + Viys.

This least-squares problem can be solved via a QR factorization of Hj, [1, Ch. 6.5]. Rather than re-
computing the factorization from scratch at each step, GMRES updates it incrementally using Givens
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rotations that introduce zeros in the subdiagonal entries of H;,. This allows one to track the residual
norm efficiently at every iteration without explicitly forming the full QR factorization. The concrete im-
plementation of this Givens-based update is described in Chapter 6.

Because the residual norm is explicitly minimized at each iteration, GMRES guarantees a monotonically
nonincreasing residual norm in exact arithmetic. In particular, the method converges in at most n steps
for an n x n system, but the cost of storing and orthogonalising all k¥ basis vectors grows like O(k?)
after k iterations. This motivates restarted variants such as GMRES(m) [7].

Algorithmic Properties
* Robustness: The guaranteed monotonic decrease of the residual norm in exact arithmetic en-
sures stability, making GMRES highly reliable for challenging nonsymmetric problems [3, Ch. 6.1].

* Memory and cost growth: The Arnoldi process requires storing the entire orthonormal basis
Vi (of size n x k), and the orthogonalization cost increases quadratically with k. For large sys-
tems, this escalating memory and computational cost necessitates the use of a restarted variant,
GMRES(m), where the process is truncated and restarted after m iterations [3, Ch. 6.1].

Restarted GMRES(m)
In practice, one typically chooses a restart parameter m < n. The GMRES(m) algorithm proceeds in
cycles: starting from an initial guess xy and residual g = b — Axg, one performs m standard GMRES
iterations to obtain

Tm = To + VinYm,

which minimizes the residual norm over the Krylov subspace KC,,,(A, ro). At this point, the Arnoldi basis
V» and the Hessenberg matrix H,, are discarded, and a new cycle is started with

new __ new __
o = T, ro " =b— Az,

this process is repeated until a prescribed convergence criterion is satisfied [3, Ch. 6.1].

Restarting controls both the memory footprint and the per-cycle computational cost, but it also comes
at a price: GMRES(m) no longer minimizes the residual over the entire accumulated Krylov subspace,
only over the most recent K, (A, r$u™) [3, Ch. 6.1]. As a consequence, convergence may slow down
or even stagnate if important spectral information is lost at the restart [1, Ch. 6.5]. In practice, the
choice of m represents a trade-off between robustness and efficiency, and is often problem dependent.
In the numerical experiments of this thesis, we use GMRES(m) with different values of m to analyse
this trade-off.

2.3. Summary of Iterative Method Properties

Table 2.1 provides an overview of common iterative methods found in literature. The table shows when
each method is most useful and notes key considerations for their use.



2.3. Summary of Iterative Method Properties

Table 2.1: Comparison of lterative Methods for Linear Systems: Algorithmic Properties and Requirements. The table combines
properties discussed in [1], [3] and [5].

agonally dominant or certain SPD A4;
fully parallelizable updates.

Method \ Key Properties and Requirements \ Primary Algorithmic Limitations
l. Classical Stationary Methods (Fixed Iteration Matrix)

Richardson Requires A to satisfy spectral radius | Highly sensitive to A,.x(4); conver-
p(I — aA) < 1; minimal computational | gence is slow (linear) and parameter-
cost per iteration. dependent.

Jacobi Convergence guaranteed for strictly di- | Slow linear convergence; iteration ma-

trix p(D~Y(L + U)) is often close to
unity.

Gauss-Seidel

Convergence faster than Jacobi for
many systems; guaranteed for SPD A.

Sequential nature of updates strictly
limits modern parallel efficiency.

convergence by local residual mini-
mization; low memory.

SOR Potential for significant convergence | Performance critically dependent on a

acceleration through parameter w. priori unknown optimal parameter w.
Il. Krylov Subspace Methods (Projection Techniques)

Conjugate Gradient | Optimality: Minimizes the A-norm of | Breaks down or diverges for nonsym-

(CG) the error; requires A to be SPD. metric or indefinite A.

Conjugate Residual | Optimality: Minimizes the residual | Less efficient than CG per iteration; re-

(CR) norm for SPD A; short recurrence. stricted to SPD systems.

GMRES Optimality: Minimizes the Euclidean | High memory and computational cost
residual norm; applicable to general | due to full orthogonalization; necessi-
nonsymmetric A. tates restarting.

BiCG Extends short recurrence to nonsym- | Non-monotonic, irregular conver-
metric A via bi-orthogonality; low mem- | gence; susceptible to numerical
ory. breakdown (division by zero).

BiCGSTAB Stabilized BiCG; achieves smoother | No global optimality guarantee; prone

to stagnation or breakdown in the
smoothing step.




Preconditioning Techniques

The iterative methods discussed in Chapter 2 depend on the properties of the system matrix for their
efficiency. For many algorithms, including the Conjugate Gradient method, the convergence rate is
closely related to the condition number, x(A), of the system matrix A [1, Ch. 6, 9]. For a symmetric
positive definite (SPD) matrix, this number is defined as the ratio of the largest to the smallest eigenvalue

AI‘I"la,)(

Alarge condition number indicates an ill-conditioned system, which is more sensitive to numerical errors
and often results in slow convergence of iterative solvers. Consequently, such systems may require a
large number of iterations. In practice, the sparse matrices that arise from fine discretizations of Partial
Differential Equations (PDEs) are frequently ill-conditioned [1, Ch. 9].

Preconditioning is a technique designed to improve the conditioning of a linear system Az = b, making
it more suitable for iterative methods [5, Ch. 3]. The idea is to introduce a preconditioner matrix M,
which approximates A in a way that is easier to invert. For instance if a M approximates the coefficient
matrix A in some way, the system is transformed into

M™'Az = M~ .

The iterative solver then operates on this modified system, using M ' A as the coefficient matrix and
M~'b as the right-hand side, while still solving for the original unknown z [5, Ch. 3].

An effective preconditioner M should approximate A such that M~ A is well-conditioned, ideally with
its eigenvalues clustered around one [1, Ch. 10]. The extreme case M = A yields M~'A = I, and
the system would be solved in a single iteration. Although trivial, this example illustrates the goal of
preconditioning, which is to make the transformed system as close to the identity as possible while
keeping the preconditioner cheap to apply.

As noted in [5], "There is a trade-off between the cost of constructing and applying the preconditioner
and the gain in convergence speed.” A complex preconditioner might reduce the iteration count dra-
matically but be so expensive to apply at each step that the total computational cost increases.

3.1. Classes of Preconditioners

3.1.1. Stationary Methods as Preconditioners

In this section we will go over different classes of preconditioners. The stationary methods introduced
in Chapter 2 are based on a matrix splitting A = M — R. This same splitting can be used to define a
preconditioner, where M serves as an approximation to A.

10
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Jacobi Preconditioner
The Jacobi preconditioner sets M equal to the diagonal of A:

M; =diag(A) = D.

The preconditioning step z = Mjlr then reduces to element-wise division, z; = r;/A;;. Its main
advantage is that each component can be computed independently, which makes the method well
suited for parallel computation, though the improvement in conditioning is often limited [1, Ch. 10].

Gauss-Seidel Preconditioning

The Gauss-Seidel (GS) method, defined in Section 2.1.3, uses the splitting M¢s = D + L, where D is
the diagonal and L the strictly lower-triangular part of A. While Mg often leads to faster convergence
than Jacobi, it is not symmetric, even when A is. This prevents its direct use in the Conjugate Gra-
dient method, which requires both the system matrix and the preconditioner to be symmetric positive
definite [1, Ch. 9].

A symmetric alternative is the Symmetric Gauss-Seidel (SGS) preconditioner, defined by
Msas = (D + L)D_l(D + U),

where U is the strictly upper-triangular part of A. For symmetric problems, U = L7, and Msgs is
symmetric by construction. The preconditioning step z = Mg/ ¢r consists of:

1. Solving (D + L)y = r (forward substitution),
2. Solving (D + U)z = Dy (backward substitution).

Although SGS typically reduces the number of iterations compared to Jacobi, the forward and backward
solves introduce sequential dependencies that limit parallel performance [1, Ch. 10].

3.1.2. Incomplete LU Factorization

Incomplete LU factorization (ILU) preconditioners [1, Ch. 10.3] extend the idea of matrix splitting by
constructing approximate lower and upper triangular factors of A. Instead of computing a full LU de-
composition, which often destroys sparsity, ILU methods retain only selected nonzero entries. The
resulting matrices L and U form the preconditioner

M=1LU ~ A.

The simplest version, ILU(0), restricts the sparsity pattern of L and U to match that of A. Any fill-in
that would appear during a full factorization is discarded [1, Ch. 10]. This keeps the memory cost and
computational effort similar to those of a sparse matrix-vector product.

Applying an ILU preconditioner involves two triangular solves:

1. Solve Ly = r (forward substitution),
2. Solve Uz = y (backward substitution).

ILU(O) is often effective for a wide range of problems because it balances quality and cost without
requiring problem-specific tuning. However, the triangular solves remain sequential, which limits the
scalability on parallel architectures.

3.1.3. Multigrid Methods

Multigrid (MG) methods [1, Ch. 13] form a class of algorithms designed to efficiently eliminate errors
on all spatial scales. They can be used both as standalone solvers and as preconditioners for Krylov
methods such as CG.

The key idea is that different error components behave differently across grid levels: high-frequency er-
rors can be reduced effectively by simple smoothers (like Jacobi or Gauss-Seidel), while low-frequency
errors are better handled on coarser grids. Multigrid methods combine these effects through a hierarchy
of grids.

A single V-cycle—often used as a preconditioner—proceeds as follows:
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1. Pre-smoothing: Apply a few iterations of a simple smoother (e.g., Jacobi) on the fine grid to
reduce high-frequency errors.

2. Restriction: Compute the residual » = b — Az and transfer it to a coarser grid, where low-
frequency components appear as higher-frequency ones.

3. Coarse-grid solve: Solve the residual equation on the coarser grid. This step can itself call
another V-cycle recursively or use a direct solve if the grid is small enough.

4. Prolongation: Interpolate the coarse-grid correction back to the fine grid and update the fine-grid
approximation.

5. Post-smoothing: Apply the smoother again to remove high-frequency errors reintroduced by
interpolation.

Each V-cycle acts as an approximate inverse of A and can therefore serve as a powerful preconditioner.
In ideal cases, the total computational cost grows linearly with the number of unknowns, O(N), which
represents optimal efficiency. However implementing this is beyond the scope of this work.



Problem Setup

4.1. From PDE to Weak Formulation

We consider the Laplace equation on the unit square with homogeneous Dirichlet boundary conditions.
In strong form, the problem reads

~Au=f(x) forxecQ=(0,1)2  u=0o0noQ. (4.1)

In this formulation, the differential operator involves second derivatives of u, and the equation is required
to hold at every point x € €. A classical (strong) solution therefore has to be sufficiently smooth
(roughly speaking, twice differentiable) and satisfy the PDE pointwise. For finite element methods,
which are based on piecewise polynomial functions, this is inconvenient. To avoid these difficulties, we
reformulate the problem in a weak form. The idea is to test the equation against a family of functions
and integrate over the domain. In this way we obtain an identity that only contains first derivatives and
that has to hold in an integrated (or averaged) sense rather than pointwise.

We start by multiplying the PDE by a test function v that vanishes on the boundary and integrating over
Q:

/ (- Au)vde = / f(x)v(x) dz. (4.2)
Q Q

For the moment, v can be thought of as an arbitrary smooth function with v = 0 on 99, later we will
specify the function space more precisely.

Next, we apply integration by parts to the left-hand side. This moves one derivative from « to v and
produces a boundary term:

/(—Au)vdx:/Vu-Vvdm— Vu-nvds, (4.3)
Q Q o0

where n is the outward unit normal vector on 9€). Because we choose test functions v that vanish on
0%, the boundary integral is zero, and we obtain

Vu-Vude = | f(x)v(x)dx for all test functions v. (4.4)
Q Q

The homogeneous Dirichlet boundary condition © = 0 on 9% is now enforced through the choice of
function space. Both the unknown u and the test functions v are taken from a space of functions
that are weakly differentiable and have zero boundary values on 952 [8]. More precisely, we work in
the Sobolev space H (), which consists of functions with square-integrable gradients and vanishing
boundary values on 0.

We can now state the weak formulation:

13
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Find v € H{ () such that

/ Vu-Vvdr = / f(x)v(x) dz Yo € HY(Q). (4.5)
Q Q

Compared to the strong form, this weak formulation has two main advantages for the finite element
method. First, it only involves first derivatives of v and v. Second, it is formulated in the Sobolev space
H}(Q). This space is large enough to contain the relevant solutions of the PDE, but structured enough
to be approximated by piecewise polynomial functions on a mesh [8], [9]. We will not go into further
detail on Sobolev spaces here. A formal introduction can be found, for example, in [8], [9]. In the next
section we construct a finite-dimensional approximation space and derive the corresponding discrete
linear system.

4.2. Finite Element Approximation

The weak formulation is still an infinite-dimensional problem, we seek v € H} () such that the equation
holds for all v € H}(£2). Computers, however, can only handle finitely many unknowns. The main idea
of the finite element method is therefore to approximate H{ () by a finite-dimensional subspace V},
and to look for an approximate solution in V, [8], [9].

Triangulation and finite element space. We start by partitioning the domain Q into smaller pieces.
To do this we introduce a mesh (triangulation) 7;, of 2, where h denotes a mesh size (e.g. the maximal
edge length). Each subregion of 7, is called an element, and the points at which elements meet are
called nodes [10]. On the unit square, we obtain a collection of triangles that cover the domain without
overlaps or gaps.

Next, we define a finite element space V;, on this mesh. In this thesis we use the standard space of
continuous, piecewise linear functions on 7, that vanish on the boundary. The space V), serves as our
approximation of the infinite-dimensional space in the weak formulation.

Shape functions and degrees of freedom. The space V), is spanned by a set of shape functions.
To each node i we associate a shape function N; with the property

Ni(x;) = b;;.

In other words, N; takes the value 1 at node i, the value 0 at all other nodes, and varies linearly on the
elements that touch node i. In Figure 4.1 we illustrate such a “hat-shaped” basis function [11].

Figure 4.1: Hat function created using Geogebra [12]

The functions {V;}7_, form a basis of a finite-dimensional subspace V;, C HE (). Any function u;, € V},
can therefore be written as

up(x) = Z u; Ni(7),

where the coefficients u; are the degrees of freedom. Thus, the finite element method replaces the prob-
lem of finding an unknown (infinite-dimensional) function « by the problem of finding a finite collection
of unknown numbers {u;}_;, which we can solve using computers.
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Discrete weak problem and linear system. To derive the discrete problem, we restrict the weak
formulation from equation (4.5) to the finite element space V},. We then try to find u;, € V}, such that

/ Vuy, - Vo, doe = / f(x)vp(x) dz Yo, € Vp,.
Jo Q

And since the basis functions Ny, ..., N, span V}, itis enough to impose this equation for test functions
v, = N;, i = 1,...,n. Substituting the expansion

un(a) = 0Ny ()

into the left-hand side gives

/vuh.w\a— d:c:zuj/ VN; - VN, dz.
Q = Q

This leads to the linear system
ZAijuj:Ea iil,...,n,
j=1

or in matrix form
Au=F,

where
Aijz/VNi~VNj dx, Fiz/fNidx.
Q Q

The matrix A is called the stiffness matrix. It is symmetric and positive definite, and it is sparse. Each
shape function N; overlaps only with shape functions associated with adjacent elements, so each row
of A contains only a small number of nonzero entries [9]. These properties are crucial for the efficient
solution of the linear system with iterative methods.

The problem setup in this chapter focused on the Laplace equation with a scalar unknown «. Later in
this thesis we also consider a flow problem where the unknown is a velocity field u = (u, u,) with two
components. The underlying ideas remain the same: we write the equations in weak form, choose
suitable finite element spaces, and obtain a large sparse linear system that we solve with iterative
methods. The details for this Stokes-like model problem are outlined in the next subsection.

4.2.1. Extension to a vector-valued Stokes-like problem
In the GMRES experiments we move from a scalar problem (the Laplace equation) to a flow problem
in a two-dimensional channel, derived from an NGSolve example [13]. The unknown is no longer a
single scalar u, but a velocity field

U= (Ug,uy) : QX — R2,

so there are two components at each point in the domain.
The geometry is a rectangular channel of length 2.0 and height 0.41. The left boundary is treated as an

inlet, the right boundary as an outlet, and the top and bottom boundaries as solid walls. On the walls
we impose a no-slip condition « = 0, and at the inlet we prescribe a horizontal parabolic inflow profile

uin(y) = (1.5 - 4y(0.41 — y)/0.41%, 0),

which is zero at the walls and maximal in the centre of the channel. At the outlet we use a natural
(do-nothing) boundary condition. Informally, this means that we do not prescribe any additional forces
at the outlet and let the flow leave the domain freely. There is no body force (such as gravity) in the
domain, so the flow is driven purely by the imposed inflow.
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As a model for the velocity we consider a Stokes-like equation of the form
—vAu+eu=f inQ,

with viscosity v = 10~2, a small mass term ¢ = 10~ for improved conditioning, and a body force f that
we set to zero in the experiments [13]. The boundary conditions are given by the inflow profile and the
no-slip walls as described above.

The weak form is obtained in the same way as for the Laplace problem: we multiply the equation by a
vector-valued test function v = (v,, v, ), integrate over the domain, and integrate by parts. This leads
to

/VVU:Vvdm+€/ u'vdx:/f%)dz for all test functions v,
Q Q Q

where “:” denotes the Frobenius (component-wise) inner product of the Jacobian matrices, i.e.

2 2 6’(1,1' 8%‘
Vu: Vv = ZZ du, Dz,

i=1 j=1

so we multiply all corresponding partial derivatives of « and v and sum them up [1, Ch. 1.5].

To discretise this problem we again use a finite element space built from continuous, piecewise poly-
nomial functions on a triangular mesh. As in the Laplace case, the mesh size controls how fine the
grid is, and the polynomial order k controls how high the degree of the shape functions is (with £ = 1
corresponding to piecewise linear functions, k& = 2 to quadratics, and so on) [8, Ch. 3.2].

For a given polynomial order k we first define a scalar space V}, of order k£ and then form the vector-
valued space
V};/ec = Vh X Vh,

so that each node carries two degrees of freedom, one for each velocity component. The discrete
solution u;, € V,'*¢ and test functions v;, € V;’° are expanded in vector-valued shape functions in the
same way as before. This leads to a linear system

Au=F

)

where A is a sparse matrix.

In the GMRES chapter we use this Stokes-like system for several polynomial orders (in particular & =
1 and k£ = 3) to study how increasing the approximation order, affects preconditioning and parallel
performance.

4.2.2. Stokes flow around a NACA airfoil
Besides the model problems on simple geometries, we also consider a more realistic fluid flow example
taken from the NGSolve documentation [13]. Here we describe the mathematical setup.

The domain Q C R? represents a two-dimensional channel with a NACA 2412 airfoil placed inside and
rotated by 4° to model a small angle of attack. The unknowns are the velocity field v : O — R? and the
pressure p : ) — R. We consider the steady Stokes equations

—vAu+ Vp =0, V-u=0 ingQ,

with viscosity v = 1074,

The boundary is divided into four parts: an inflow boundary, an outflow boundary, the airfoil surface,
and the outer channel walls. On the inflow boundary we prescribe a constant horizontal velocity

u=(50)7,

while on the airfoil and the outer walls we impose no-slip conditions v = 0. And as before, at the outflow
boundary we use the natural “do-nothing” condition that comes directly from the weak formulation.
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For the finite element discretisation we use a vector-valued H! space of order 3 for the velocity and a
scalar H' space of order 2 for the pressure, this is called a Taylor-Hood pair.

V = VectorH1(Q, k = 3), Q=H"(Uk=2), X=VxQ.

As in the Laplace case, we obtain a weak formulation by multiplying the equations with test functions
(v,q) € X and integrating by parts [8, Ch. 12]. This leads to the following problem: find (u,p) € X such
that

o((u.p). .0)) = [

VVu:Vvdxf/
Q

(V~u)qu7/(v~u)pdx:0 forall (v, q) € X,
Q

Q

with the boundary conditions imposed as described above.

Realization in NGSolve. In this thesis, the meshes, finite element spaces, and linear systems are
generated with NGSolve/Netgen. NGSolve constructs a triangular mesh and a piecewise linear finite
element space H'. From this, it assembles the stiffness matrix A and load vector F' matching the
bilinear and linear forms above. Different problem sizes are obtained by varying the global mesh size
parameter maxh; the resulting meshes and matrix sizes are described in more detail in Chapter 6.



Paralle] Computing on Multi-Core
Architectures

In the previous chapters we introduced the numerical methods that can be used to solve linear systems
that arise from the finite element discretization of the Laplace problem. This chapter introduces the
concepts needed to understand how the methods from Chapter 2 are optimized on modern multi-core
hardware, such as the compute nodes of the TU Delft DelftBlue supercomputer [14]. We first compare
serial and parallel execution, then discuss memory architectures and programming interfaces, and
finally look at limits to parallel scalability [15].

5.1. From Serial to Parallel Execution

In theory parallelism allows the execution time of suitable algorithms to decrease significantly. For
large-scale simulations, such as those involving fine finite element meshes, running computations in
serial on a single core quickly becomes impractical. Moreover, memory capacity on a single core is
limited, which further increases the need for parallel computation [15].

Figure 5.1 shows the serial execution model: the program is viewed as a sequence of instructions, and
a single processor executes them one after another. Each step must wait for the previous one to finish

before it can start.

instructions

llllllllll | l | | d
w I

13 2

Figure 5.1: Taken from [15]. Serial execution model: a single processor executes one sequence of instructions step by step.
An alternative to this is a parallel execution model, shows in Figure 5.2. Here, the problem is decom-
posed into multiple parts that can be processed at the same time by different processors or cores. If

the work can be divided into equal parts that do not need to communicate, the total runtime can be
significantly reduced.

18
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instructions
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Figure 5.2: Taken from [15]. Parallel execution model: the work is split into four sequences of instructions that are executed
simultaneously using four processors.

In this thesis, the main examples of parallelizable work are the vector operations and sparse matrix-
vector products in the Conjugate Gradient and GMRES solver. Each entry of the solution and residual
vectors can often be updated independently, which makes these operations well suited for parallel
execution on multi-core CPUs.

5.2. Memory Architectures

In this section we will look at two common hardware configurations: shared memory and distributed
memory. This thesis uses shared-memory parallelism, but both models are briefly introduced here for
completeness.

5.2.1. Shared Memory
In a shared-memory architecture, all processor cores read and write from the same global memory [15].
This simplifies programming.

Shared-memory machines work well for tasks that can be broken into small parts, like processing rows
in sparse matrix—vector multiplication. Single compute nodes in high performance computing (HPC)
systems typically have this architecture.

Figure 5.3: Taken from [15]. This illustration shows a shared-memory architecture, where four CPU cores access the same
global memory.

5.2.2. Distributed Memory

In a distributed-memory architecture, each processor has its own local memory and cannot directly
access the memory of other processors. Processors communicate by sending data over the network.
Although programming is more complex, distributed-memory systems can scale to thousands of nodes
and form the basis of most large supercomputers. Distributed-memory parallelism is not used in this
thesis, but it is common in large-scale finite element software that runs with meshes having hundreds
of millions of unknowns [16].
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network

Figure 5.4: Taken from [15].This illustration shows a distributed-memory architecture, where four CPU cores all access there
private memory.

5.3. Parallel Programming Interfaces
Parallel computations can be implemented using different programming interfaces, depending on the
underlying hardware.

For shared-memory systems, the OpenMP APl is widely used. OpenMP is often used for multi-threaded
programming where multiple CPU cores share the same main memory [17, Ch. 11]. The code written
is similar to a serial program and then marks certain regions (typically loops) as parallel by adding small
OpenMP pragmas before them [17]. These pragmas are compiler hints that tell the compiler how to
parallelize a given region of code. A typical example is a loop where each iteration updates a different
entry of a vector; such a loop can be turned into a parallel loop by adding an OpenMP pragma [17,
Ch. 11.3]. The compiler and OpenMP runtime then create the threads, divide the iterations between
them, and synchronize the threads at the end of the loop.

For distributed-memory systems, the Message Passing Interface (MPI) is the standard programming
model [18]. In MPI, each process has its own private memory and holds a portion of the data. Processes
communicate by explicitly sending and receiving messages. This makes it possible to run simulations
on large clusters with many nodes.

In this thesis, we focus on shared-memory parallelization. The Conjugate Gradient solver is parallelized
using OpenMP-style threading through the PyKokkos library [19], a Python interface to the Kokkos
performance-portable programming model [20]. PyKokkos allows the user to express parallel loops in
Python, while the library translates these kernels to optimized C++/Kokkos code that can run efficiently
on different backends (such as OpenMP on multi-core CPUs) without changing the solver code. In this
way, we can take advantage of the multi-core CPU nodes of the TU Delft DelftBlue supercomputer [14]
while keeping the implementation close to the mathematical description of the algorithm.

5.4. Limits to Scalability

Adding more threads does not automatically reduce the execution time. How effective parallelization
can be depends on the structure of the algorithm and on the overhead introduced by the parallel exe-
cution model [15]. In this section we introduce the notions of speedup and parallel efficiency, discuss
sources of parallel overhead, and summarize the limits imposed by Amdahl’s Law.

5.4.1. Speedup and Parallel Efficiency
Let 77 denote the execution time of a program on a single core, and Ty the execution time on N cores.

The speedup is defined as
T

=Ty
Ideally, we would like to obtain linear speedup, i.e. S(N) ~ N [21].

S(N)

The parallel efficiency measures how well the available cores are used:

E(N):ﬁzNgN'

An efficiency of E(IN) = 1 would correspond to perfect scaling. In practice, parallel overhead and serial
parts of the algorithm reduce both speedup and efficiency as N increases [15].
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When analysing the performance of the Conjugate Gradient solver, we will use speedup and efficiency
to interpret the timing results obtained on DelftBlue.

5.4.2. Parallel Overhead
The term parallel overhead refers to all work that would not be present in serial execution. Common
sources of overhead are:

» synchronization between threads,
+ thread creation and scheduling,
* load imbalance, where some threads finish their work earlier than others.

For example, in iterative solvers, computing inner products requires combining results from all threads,
which introduces synchronization and adds noticeable overhead. These effects become larger as the
number of threads increases [15].

5.4.3. Strong and Weak Scaling and Amdahl's Law

There are two commonly used metrics for scaling:

Strong scaling: measures the speedup obtained when solving a fixed problem on increasing numbers
of processors. This is relevant when the goal is to reduce the time-to-solution [15].

Weak scaling: measures how well a computation scales as the workload grows together with the num-
ber of processors, so that the amount of work per processor remains (approximately) constant.
This is relevant when additional resources are used to increase resolution, for example by refining
the mesh in a finite element simulation [15].

In practice, both views are important for iterative solvers: strong scaling indicates the performance on
a given mesh, while weak scaling shows how well the implementation handles growing problem sizes
on larger parallel systems [15].

Amdahl’s Law describes the theoretical limit on strong scaling. Let P denote the fraction of the program
that can be parallelized, and S = 1 — P the serial fraction. Then the maximum speedup on N threads

is
1

= @.
Even a small serial component places a strict upper bound on the achievable speedup. For example,

a serial fraction of S = 0.05 (i.e. 5%) limits the speedup to at most 20x, regardless of how many cores
are used.

Speedup(N)

In the context of the CG solver, the serial fraction includes, for example, sequential setup phases
and parts of the algorithm that rely on global reductions. In Chapter 7 we will see that these serial
components and parallel overheads explain why the measured speedups on DelftBlue deviate from
ideal linear scaling.



Implementation

sIn this chapter we describe how the linear systems assembled in Chapter 4 are turned into data struc-
tures suitable for solving computationally. And we will look how the Conjugate Gradient (CG) method
with different preconditioners is implemented in PyKokkos. First, we will look how the finite element
matrices are assembled in NGSolve and how we vary the problem size. Next, a sparse storage format
will be introduced. We explain how the CG method from Chapter 2 is used to solve these systems, and
how the Jacobi and symmetric Gauss-Seidel preconditioners can be used to mathematically improve
the efficiency of the solver. Then we explore how GMRES is implemented. Finally, we discuss how
PyKokkos views and memory spaces are used to run these algorithms efficiently.

The source code implementation for the experiments presented in this thesis can be found on the
repository [22].

6.1. Discretization with NGSolve and Mesh Generation

The finite element discretisations used throughout this thesis are generated with NGSolve [13]. NG-
Solve is used to define the geometry, construct a mesh, choose a finite element space, and assemble
the corresponding matrices and vectors.

For the model problem in Section 4.1, the domain is the unit square Q = (0,1)2. In NGSolve, this
geometry is available as unit_square, and a mesh is obtained by

ngmesh = unit_square.GenerateMesh(maxh = h),

and then passed to Mesh (ngmesh). The argument maxh specifies the desired maximal global mesh size:
smaller values of maxh produce finer meshes with more elements and degrees of freedom [13].

On a given mesh, we use a finite element space of order one (H'),

Vi, = H*(Q) N (piecewise linear functions),
implemented in NGSolve via

Vi, = Hl (mesh, order=1, dirichlet=...).

The H1 space in NGSolve consists of continuous, element-wise polynomial functions and is well suited
to the Laplace problem with Dirichlet boundary conditions [13]. The stiffness matrix A and load vector
F are assembled from the standard Laplace bilinear form and right-hand side linear form, matching the
expressions in Section 4.2.

Listing 6.1: Assembly of the Laplace stiffness matrix in NGSolve.

1 from ngsolve import *
2 from netgen.geom2d import unit_square
3

22
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h = 0.01 # global mesh size parameter

mesh = Mesh(unit_square.GenerateMesh (maxh=maxh))

fes = Hil(mesh, order=1, dirichlet="top|bottom|left|right")
u, v = fes.TnT()

a
f

BilinearForm(grad(u) * grad(v) * dx).Assemble()
LinearForm(v * dx).Assemble ()

mat # stiffness matrix in NGSolve format

A_ng a.
f.vec.FV() # load vector

b_ng

Listing 6.1 shows a minimal version of the assembly code used in the implementation. The actual code
in the repository also extracts the matrix in a SciPy-compatible sparse format and exports the right-hand
side as a NumPy array [22].

6.1.1. Mesh Sizes Used in This Thesis
To study both convergence and performance, the problem size is varied by changing the global mesh
parameter maxh. Throughout the experiments, the following values are used:

maxh € {0.1, 0.01, 0.005, 0.001}.

For each choice of maxh, NGSolve generates a triangular mesh of the unit square with consistent
element sizing throughout the domain. This sequence of meshes provides a controlled way to increase
the problem size without changing the PDE, the finite element space, or the boundary conditions. It is
used in the analysis of the convergence in Chapter 7. The exact numbers of elements, unknowns, and
nonzero entries in the stiffness matrix A for each mesh are summarised in Table 6.1.

Table 6.1: Mesh sizes and matrix dimensions used in the implementation.

maxh #elements #unknownsn nnz(A)

0.1 230 136 600
0.01 23170 11386 78910
0.005 92504 46653 319379
0.001 2310100 1153051 8063365

6.2. Sparse Storage and Computational Structure

Although A has n? possible entries, the number of stored entries nnz(A) grows only linearly with n. For
this reason, we store the matrix in the Compressed Sparse Row (CSR) format (see Figure 6.1). In CSR
form, the matrix A is stored in three arrays:

* row pointers, indicating the starting position of each row within the values array,
» column indices, recording the column index of each stored value,
* data, containing all nonzero entries.

Sparse matrix
Compressed Sparse Row (CSR)

o [al[ Jfelfe Row pointers [ 0| 3 [ ['6
feoes
3 DDEE Data |E| b E' d ng

Figure 6.1: Taken from [23]. Compressed Sparse Row (CSR) data structure.

Column offsets | 0 ‘2 S 1 ‘3 3
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The CSR format is compact and enables efficient sparse matrix—vector multiplication (SpMV), which
is the dominant computational kernel in CG, GMRES, and their preconditioned variants. Because the
rows of the matrix are independent, SpMV can be parallelised by distributing rows across threads. By
contrast, operations such as dot products gather partial results from all threads and require synchroni-
sation before the algorithm can proceed.

In the implementation, the CSR arrays produced by SciPy are copied once into PyKokkos views
A_data_view, A_indices_view, and A_indptr_view. All kernels that access the matrix read from these
views only.

Listing 6.2: Creating CSR arrays for use in PyKokkos.

# 1. NGSolve -> SciPy CSR (simplified, see full code in repository)
a = BilinearForm(fes)

a += grad(u) * grad(v) * dx

a.Assemble ()

A_scipy_full = sp.csr_matrix(a.mat.CSR(Q))

A_csr = A_scipy_full[np.ix_(free, free)]

# 2. Allocate CSR data on device

self.A_data = pk.View([A_csr.data.size], pk.double)

self .A_indices = pk.View([A_csr.indices.size], pk.int32)
self .A_indptr = pk.View([A_csr.indptr.size], pk.int32)

# 3. Copy NumPy arrays into views

self.A_data.datal[:] = A_csr.data.astype(np.float64)
self.A_indices.datal[:] = A_csr.indices.astype(np.int32)
self .A_indptr.datal[:] = A_csr.indptr.astype(np.int32)

6.3. Preconditioned Conjugate Gradient Solver and Kernels

With the linear system Ax = b assembled and A stored in CSR format, we solve it with the Conjugate
Gradient (CG) method. As discussed in Chapter 2, CG is designed for symmetric positive definite
matrices, soitis well suited for the systems obtained from the finite element discretisation in Section 6.1.
In this implementation, each CG iteration is expressed in terms of a small set of basic operations, and
each of these operations is implemented as a PyKokkos kernel. The complete implementation of the
solver can be found on the repository [22].

The convergence rate of CG depends strongly on the condition number x(A). To improve the condition
number, and with it the convergence, we implement the Jacobi and symmetric Gauss-Seidel precondi-
tioners introduced in Chapter 3. We first discuss the choice of tolerance and maximum iteration count,
then describe the kernel-level decomposition and the preconditioner implementations.

6.3.1. Choice of Tolerance and Maximum Iteration Count
The stopping test for CG is based on the relative residual, as introduced in Section 2.2.1. Let r, =
b— Axy, denote the residual after k iterations. To obtain a measure that is independent of the magnitude
of b, we monitor the relative residual

lI7l2

1bll2

In the implementation, the iteration is terminated as soon as

I&ll2 < tol - [|bll2, (6.1)

where tol is a user-specified tolerance. Multiplying by ||b||2 in (6.1) therefore imposes a bound on the
relative residual. This makes the stopping criterion comparable across different mesh sizes [5, Ch. 2.3].

Throughout the experiments, we use
tol =105,

This value is small enough to ensure reliable results; reducing the tolerance further would increase the
computational cost without significant improvements in the solution [5, Ch. 2.3].
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Besides (6.1), we also limit the maximum number of iterations. In the code [22] we set
kEmax = 10000.

If condition (6.1) is not satisfied within k,,.. iterations, the solver stops and reports non-convergence.
This limit prevents the algorithm from running indefinitely, which can occur if the matrix is ill-conditioned
and the solver fails to converge. In practice, k.. is chosen larger than the number of iterations ob-
served for convergence in the experiments.

6.3.2. Decomposition of CG into Basic Operations
In algorithmic form, one preconditioned CG iteration consists of four basic operations on vectors and
matrices:

1. a sparse matrix—vector product (SpMV),
2. dot products,
3. vector updates of the form y < ax + y (axpy),

4. application of the preconditioner z = M ~1r.

This can be written in pseudocode as

SpMV: q = Ap,
dot: = (T’z),
(p,q)
axpy: T 4 T+ ap,
axpy: T T —aq,
precond.: z=M1r,
dot: p= 02
(Told; Zold)
update p: p + z+ Bp.

For the unpreconditioned solver, z is simply taken as r.

In the PyKokkos implementation, this translates to a loop of the form

Listing 6.3: Structure of one CG iteration in the implementation.

# Ap = A p
pk.parallel_for(

self.n,

spmv_kernel,

y_view=self.Ap,

x_view=self.p,

A_data=self.A_data,

A_indices=self.A_indices,

A_indptr=self.A_indptr)

# alpha = rsold / (p, Ap)
pAp = self._dot_product(self.p, self.Ap)
if abs(pAp) < 1e-30:
break
alpha = rsold / pAp

# x = x + alpha p
pk.parallel_for(self.n, axpy_kernel, alpha=alpha, x=self.p, y=self.x)

# r = r - alpha Ap
pk.parallel_for(self.n, axpy_kernel, alpha=-alpha, x=self.Ap, y=self.r)

# Apply preconditioner: z = M°{-1} r
self.apply_preconditioner ()

# rsnew = (r, z)
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rsnew = self._dot_product(self.r, self.z)
res_hist.append(np.sqrt(max(rsnew, 0.0)))

# Convergence test

31 ...

32
33
34
35
36
37
38

#
beta = rsnew / rsold

# p =z + beta p

pk.parallel_for(self.n, scale_kernel, alpha=beta, x=self.p)
pk.parallel_for(self.n, axpy_kernel, alpha=1.0, x=self.z, y=self.p)
rsold = rsnew

As the above code chunk shows, each of the basic operations is mapped to a PyKokkos workunit:

* SpMV: spmv_kernel computes y = Az using the CSR arrays A_data, A_indices and A_indptr
(Figure 6.1). For a given row index 4, it loops over the nonzero entries in that row and accumulates
the products with the corresponding entries of x:

Yi = Z Aijlij.

jEIlz(i)

* Dot product: reduce_dot_kernel computes the inner product of two vectors. It takes two one-
dimensional views x_view and y_view and a scalar accumulator acc of type pk.Acc [pk.double].
For each index i it adds the product z;y; to the accumulator, acc += x_view[i] * y_view[il],
and PyKokkos performs a reduction over all i to obtain the global dot product.

» AXPY: axpy_kernel performs the vector update y + ax + y component-wise. It is used for both
the xz-update and the residual update.

Scale: in the search-direction update p + z + Sp we first scale p by 8 using scale_kernel and
then add z with a call to axpy_kernel. This is the only place where scale_kernel is used in the
CG iteration.

+ Preconditioner application: the operation = = M ~'r is implemented by separate kernels for

each preconditioner: apply_jacobi for the Jacobi preconditioner and apply_symmetric_gauss_seidel

for the symmetric Gauss-Seidel preconditioner (see Section 6.3.3).

Furthermore, two support kernels are used to handle vector initialization and copying: zero_kernel
sets all entries of a vector to zero, and copy_kernel copies one vector into another. All kernels operate
on one-dimensional pk.ViewlD objects and are parallelized over the vector index i, except for the
symmetric Gauss-Seidel kernel, which is implemented as a sequential sweep over the rows.

In this way the CG solver is expressed entirely in terms of a small set of kernels. This matches the steps
of the algorithm and separates the numerical method from the parallel implementation. The concrete
python code for these kernels can be found in the repository [22].

6.3.3. Preconditioner Kernels
The Jacobi and symmetric Gauss-Seidel preconditioners are introduced and analysed in Chapter 3.
Here we describe how they are implemented as kernels.

Jacobi Kernel
The Jacobi preconditioner uses only the diagonal of A (Chapter 3). The inverse diagonal entries D;Z.l =
1/A;; are pre-computed and stored in a vector d_inv_view. The kernel apply_jacobi then applies the
preconditioner by looping over all indices ¢ and computing

z = Dy'ri,
implementedas z_view[i] = d_inv_view[i] * r_view[i]. Theloop runsin parallel over i, and each
entry can be updated independently.
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Symmetric Gauss-Seidel Kernel
The symmetric Gauss-Seidel (SGS) preconditioner is implemented in the kernel apply_symmetric_gauss_seidel.
Mathematically it consists of one forward Gauss-Seidel sweep followed by one backward sweep. In

the forward sweep the entries are updated in the order 0,1,..., N — 1,
1
SR ZAUZj )
v j<i

so z; uses the current values z; for all j < 4 that have already been updated in this sweep. The
backward sweep runs in the opposite direction and updates the entries in the order N — 1, ..., 0, using
the already updated values with j > i. Because each new value depends on previously updated entries,
the updates along a sweep cannot be carried out independently.

If the rows were updated in parallel, different threads would either have to use only the values from the
previous iteration, or they would read and write overlapping entries at the same time. In the first case,
the method reduces to a Jacobi-type iteration and is no longer Gauss-Seidel. In the second case, the
result would depend on the order in which threads access the data and is not well-defined. For this
reason, a standard Gauss-Seidel sweep is inherently sequential.

This dependency is reflected in the kernel design. The workunit apply_symmetric_gauss_seidel has
an index parameter i, but only the case i == 0 performs any work. Inside this branch, the kernel
executes two explicit loops over the rows:

* Forward sweep: for row = 0, ..., N-1 the kernel computes zw Using the entries z; with j <
row, obtained from earlier steps in the same loop. The CSR arrays A_data, A_indices and
A_indptr are used to access the nonzero entries in each row.

» Backward sweep: for row = N-1, ..., 0 the kernel updates z_view[row] by subtracting the
contribution from entries with column index greater than row, corresponding to the upper triangular
part.

All work is carried out inside this single workunit instance, so the SGS preconditioner processes the
rows one after another. Other CG operations (SpMV, dot products, axpy) are executed by parallel
kernels, but SGS is kept sequential to preserve the standard Gauss-Seidel update and to make the
dependence between rows explicit. The impact of this sequential preconditioner on parallel scaling is
visible in Chapter 7.

6.3.4. Serial Fraction and Amdahl's Law

From the perspective of parallel performance, it is important to look at the serial fraction S of the total
runtime, i.e. the fraction that cannot be parallelised. As discussed in 5.4.3 Amdahl’s law states that the
speedup(N) achievable on N processors is bounded by

1

1-5-
S+——

Speedup(N) <

Even if most of the work is parallel, any non-negligible serial fraction limits the speedup.
In the CG implementation the following components contribute to S:

+ the symmetric Gauss-Seidel preconditioner, which must run as a sequential sweep (Section 6.3.3),

+ global dot products, which require reductions over all threads and synchronisation between iter-
ations,

+ the residual norm evaluations for the stopping criterion.

Jacobi preconditioning does not add serial work beyond the dot products, so its serial fraction is rela-
tively small. By contrast, the SGS preconditioner introduces an explicitly sequential kernel inside every
CG iteration. This can be clearly seen in the strong-scaling results. As the number of threads increases,
the speedup is well below the ideal linear scaling prediction for a parallel code that is dominated by the
SpMV kernel.
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6.4. GMRES Implementation, Orthogonality, and Givens Rotations
Now that we can solve symmetric positive definite systems with the Krylov solver CG, we also want a
method for nonsymmetric matrices. For this purpose we implement the Generalized Minimal Residual
method (GMRES) [6]. The GMRES solver reuses many of the kernels from CG. The main difference
lies in the iteration structure. GMRES builds an orthonormal Krylov basis with the Arnoldi process and
chooses the next iterate by solving a small least-squares problem.

The mathematical description of GMRES is given in Section 2.2.2. In this section we focus on how we
can implement the Arnoldi process, the least-squares problem, and how we can use preconditioners
obtain a more stable method.

6.4.1. Arnoldi Process and Krylov Basis
As seen in Section 2.2.2, GMRES constructs iterates of the form

xp = 20 + Viyr,

where Vi, = [uvy,... ,_vk] contains an orthonormal basis produced by Arnoldi, and the basis and the
Hessenberg matrix Hj, satisfy the Arnoldi relation

AVy = Vi1 Hy,

with A, € R(+Dxk ypper Hessenberg [1, Ch. 6.5]. Equivalently, each new vector is expanded in the

current basis as
J+1

A?)jz E h,‘J’U“
i=1

and these coefficients form the entries of Hj,.

In the implementation we do not repeat this derivation, instead we map the Arnoldi step directly to
the available kernels. Conceptually, the basis vectors v; from Section 2.2.2 are stored as an array of
PyKokkos views q[j]. One Arnoldi step (without considering restarts) then has the form

given vy, . .. , Uj and Hj_l = [hl, s 7]1.7'_1}, compute Vj4+1 and H7

We use a right-preconditioning, so in each Arnoldi step we apply the preconditioner first and then the
matrix:
z:M_lvj, w= Az.

The operation z = M ~'v; uses exactly the same Jacobi or symmetric Gauss-Seidel kernels as in CG
(Section 6.3.3), and w = Az is computed by the SpMV kernel. Orthogonalisation is then performed by
a short serial loop that calls dot-product and axpy kernels. In simplified form, one Arnoldi step in the
code looks as follows:

Listing 6.4: One Arnoldi step in the GMRES implementation (right-preconditioned).

qlo]l, ..., q[m] : Krylov basis vectors, stored as PyKokkos ViewlD
H : (m+1) x m Hessenberg matrix (NumPy array on host)
j : current Arnoldi step (0O-based index)

H H o

# Apply right preconditioner and matrix
apply_preconditioner(ql[jl, z_view) #z = M{-1} v_j
spmv_kernel (A_data_view, A_indices_view,

A_indptr_view, z_view, w_view) # w = A z

# Classical Gram-Schmidt orthogonalisation
for i in range(j+1):

h_ij = dot_kernel(w_view, ql[il) # h_{i,jr = (w, v_i)
H[i, j]l = h_ij
axpy_kernel(-h_ij, qlil, w_view) # w -= h_{i,j} v_i

# Normalise and append new basis vector
H[j+1, j] = norm2_kernel(w_view)
if H[j+1, j]1 !'= 0.0:
scale_kernel (1.0 / H[j+1, jl, w_view)
qlj+1] = copy_view(w_view) # v_{j+1} = w / h_{j+1,j}
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Listing 6.4 is slightly different from the actual code, but shows the key ingredients:

« the Arnoldi matrix-vector product AM ~!v; is implemented as a preconditioner call followed by
the SpMV kernel,

+ the coefficients h, ; are computed with the dot-product kernel,
* the orthogonalisation step w < w — h; jv; uses the axpy kernel,
+ the normalisation and storage of v;,; use the norm and scale kernels and a simple copy.

The orthogonality property of the basis vectors and the Hessenberg relation AV}, = Vj1H; remain
exactly as stated in Section 2.2.2. The only difference is that, in the implementation, the inner loop
overi =1,...,j appears as a short serial loop over columns of H, while the vector operations inside
this loop are executed in parallel by PyKokkos. For more details on Arnoldi and the structure of Hj,
see [1, Ch.6.5] and [3, Ch. 6.1].

6.4.2. Givens Rotations and Residual Minimisation
We have seen the GMRES iterate z,,, = xo9 + V,,,y», is Obtained by solving the least-squares problem

Ym = arg minyecrm Hﬂel — Hmy’|2,

where e, is the first unit vector [1, Ch. 6.5]. This reduces the large n x n system Ax = b to a problem
of dimension m < n.

The least-square problem can be solved by computing a QR factorisation of H,,,,
Hrn = QTRv

with @ orthogonal and R upper triangular. Using ||8e; — H,,yll2 = ||QBe1 — QH,yll2 and QH,,, = R,
the minimisation becomes
minlg — Ryl2,  g:= QBer.

This minimum is then obtained by solving the upper-triangular system Ry = ¢ using backward substi-
tution.

Givens rotations
GMRES builds @ as a product of Givens rotations. A Givens rotation acts on two rows i and i+1 and
is defined by the 2 x 2 sub-matrix

G — cost; sinf;
7 \—siné; cosb;)’

Given two numbers a and b, we can choose cos 6; and sin §; so that

a T
()= ()
the important thing to notice here is that the second component zeros out. Setting

a ) b
r=+va?+ b2, cosf; = —, sing; = —,
r r

cosf; sinb;\ fa\ (r
—sinf; cosf; ) \b) \0)’
In the full matrix H,,, the 2 x 2 rotation is integrated into an (m+1) x (m+1) identity matrix so that it only
mixes rows i and i+1 and leaves all other rows unchanged. When this extended rotation is multiplied
from the left with H,,, it replaces the entries in rows 7 and i+1 by the rotated values and leaves the other

rows unchanged. By choosing the parameters (cos6;,sin6;) so that the subdiagonal entry becomes
zero, each rotation eliminates exactly one entry below the diagonal. Repeating this process for all

we obtain
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subdiagonal entries turns H,,, into an upper-triangular matrix R. The product of all applied rotations is
the orthogonal matrix @ that satisfies QH,, = R.

In the implementation we do not store @ explicitly. Instead, for each GMRES step j we store the two
scalars cos 6; and sin §; that define the corresponding Givens rotation. These values are kept in small
arrays cs[j] and sn[j]. Every time a new subdiagonal entry H, ; is produced in column j of H,,, a
new pair (cos6;,sin6;) is computed to eliminate it, and this rotation is then applied to both the matrix
H and the vector g.

Incremental update of H and ¢

The theory from above is implemented in the following steps. At Arnoldi step j; we have computed the
column H{(:, j) of the Hessenberg matrix and the basis vector v,,;. The update with Givens rotations
proceeds as follows:

1. Apply previous rotations. Fori =0,...,j— 1, apply the stored rotation (cos 8;, sin 6;) to the pair
(H; ;,Hiy1,5). This keeps the already processed part of H upper triangular.

2. Compute new rotation. Use the current diagonal/subdiagonal pair (H; ;, H;11 ;) as (a,b) and
form a new Givens rotation (cos 6;,sin 6;) such that H;,, ; becomes zero.

3. Update H and g. Apply the same rotation (c;, s;) to (H; j, H;11 ;) and to (g;, g;+1)- This corre-
sponds to multiplying the j-th column of H,,, and the right-hand side Se; by the same orthogonal
matrix Q.

One thing that comes with this GMRES QR update is that the current residual norm is now given by

Ir5ll2 = lgj+1-
In the implementation, the stopping criterion is therefore based on the ratio |g;+1]/8-

The arrays H, g, cos §; and sin #; all have a size proportional to 1 and are updated in serial outside the
Pykokkos kernels. The main GMRES operations (Arnoldi, preconditioners application, sparse matrix-
vector multiplication and vector updates) still act on vectors of size n and on the n x n matrix A. And
since n > m, the extra cost from the Givens updates are relatively small. However, since these updates
are sequential in each GMRES iteration, they do contribute to the serial fraction of the code that limits
the parallel speedup, this is further discussed in Chapter 7.

6.5. PyKokkos Views, Memory Spaces, and Data Movement

An important part of the implementation is how data is stored and accessed inside PyKokkos kernels.
PyKokkos is based on Kokkos, a C++ framework designed for portable, high-performance comput-
ing. Kokkos manages parallel execution and data handling across both CPUs and GPUs [19]. In
Kokkos, data is stored in Kokkos: :View objects, which represent multidimensional arrays. Such a
Kokkos view carries information about where the data lives and how it is laid out in memory. PyKokkos
brings this concept to Python through the pk.View type, for example pk.ViewlD [pk.double] for a
one-dimensional array of doubles. These Python objects are bindings to the underlying Kokkos imple-
mentation [24].

Kokkos separates execution spaces from memory spaces. Execution spaces describe where code
runs (in this thesis that is OpenMP). Memory spaces describe where the data is stored (for example
HostSpace or CudaSpace). For most code, the default memory space is chosen to match the default
execution space. In practice, this means that when a CPU backend is selected, pk.View objects are
allocated in host memory, and when a GPU backend is selected, the same views are allocated in device
memory, without changing the kernel code [24].

In the implementation, we try to minimize data movement by loading matrix and vector data into pk. View
objects once, and reusing these views across iterations. Operations such as sparse matrix—vector
products, preconditioner applications, and vector updates are implemented as PyKokkos kernels that
run entirely on these views in the chosen execution space. The data is only copied back to standard
Python or NumPy arrays when required for analysis or output.



6.5. PyKokkos Views, Memory Spaces, and Data Movement 31

In early versions of the code, data was transferred between NumPy arrays and pk.View objects more
often than necessary, and the first SpMV kernel used untyped Python scalars instead of the pk.double
and pk.int32 types used in the final implementation. In practice this led to a much higher runtime. It
seems like this has to do with workunits that use typed views and scalar types that are translated to
compiled Kokkos kernels, and additional data movement reduces the benefit of this translation [19]. The
finalimplementation [22] therefore keeps all main loops inside PyKokkos workunits and uses pk.double
and pk.int32 consistently inside those kernels.



Results

In this chapter we analyse the performance of the Krylov solvers implemented in PyKokkos. The focus
is on two methods:

+ the Conjugate Gradient (CG) method for symmetric positive definite systems, applied to a Laplace
problem, and

» the Generalized Minimal Residual (GMRES) method for nonsymmetric systems, applied to a
Stokes-like problem, and finally in a more realistic setting, a flow around a NACA airfoil.

For both solvers we investigate (i) convergence and preconditioning and (ii) parallel scalability. For CG
we additionally analyse the kernel performance of the underlying PyKokkos kernels.

The first part of the chapter is devoted to CG for the Laplace problem. We analyse the effect of Jacobi
and symmetric Gauss-Seidel (SGS) preconditioning, the strong and weak scaling behaviour, and the
kernel-level performance. In the second part we look at GMRES. We use the same PyKokkos kernels,
but change the model to a Stokes-like problem. We analyse the convergence for different restart pa-
rameters and preconditioners, and we look at how the GMRES results compare to the CG experiments.
Finally, we apply GMRES to a more realistic Stokes flow around a NACA-like geometry to illustrate how
these methods can be used in practice.

7.1. Conjugate Gradient for a Scalar Laplace Problem

7.1.1. Model problem and solver parameters

For the CG experiments we consider the Laplace equation on the unit square, discretized with linear
finite elements as described in Chapter 4. The problem size is varied by changing the global mesh
parameter maxh as discussed in 6. We use maxh € [0.1,0.01,0.005,0.001]. For the largest mesh (maxh =
0.001) the system contains 1,153,051 unknowns and 8,063,365 non-zero entries.

All solvers use the relative residual stopping criterion

Iellz o oy (7.1)
[10]|2

with tolerance tol = 10~® and a maximum of k.. = 10,000 iterations. Unless stated otherwise, all
reported runs satisfy the stopping criterion before reaching k..

The experiments are performed on a shared-memory machine with OpenMP parallelism. For each
configuration we run with
Nthreads € {17 2a 45 87 16}

The reported time-to-solution is the total runtime of the full CG solve, this includes the cost of applying
the preconditioner for the preconditioned cases. The speedups and parallel efficiency in Section 7.1.5
are measured relative to the single-thread runtime.

32
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7.1.2. Convergence and Effect of Preconditioning
Table 7.1 shows the iteration counts and total runtimes for the three CG variants on all meshes using

4 threads.

Preconditioner Iterations Time (s), 4 threads
maxh = 0.1, DOFs = 96

None 31 0.047
Jacobi 31 0.039
Gauss-Seidel 15 0.019
maxh = 0.01, DOFs = 11 386

None 273 0.315
Jacobi 262 0.288
Gauss-Seidel 115 0.200
maxh = 0.005, DOFs = 45853

None 494 0.683
Jacobi 476 0.624
Gauss-Seidel 221 0.660
maxh = 0.001, DOFs = 1153051

None 1976 16.891
Jacobi 1808 16.227
Gauss-Seidel 973 56.255

Table 7.1: Performance of the CG solver with different preconditioners using 4 threads. All runs reached the stopping criterion
tol = 108 before hitting the iteration limit kmax = 10,000.

The following things stand out:

* For all three methods the iteration count increases strongly as the mesh is refined.

» The SGS preconditioner consistently reduces the iteration count by roughly a factor of two com-
pared to unpreconditioned CG.

» The Jacobi preconditioner only slightly decreases the amount of iterations. On the finest mesh
we see a reduction from 1976 to 1808 iterations. On the coarser meshes the iteration counts of
Jacobi and the unpreconditioned method are almost identical.

» Forthe coarser meshes, SGS not only reduces the iteration count, but also has the fastest runtime.
On the finer meshes however (maxh < 0.005), SGS still converges in fewer iterations, but the
total runtime is much larger than for the other methods.

Figure 7.1 shows the relative residual ||74||2/||b]|2 versus iteration count for the three methods on the
finest mesh with 4 threads. The SGS curve decreases much faster than the other two, whereas the
Jacobi curve is very close to the unpreconditioned one. This shows that SGS is much more effective
at improving the spectral properties of the system.
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CG convergence with different preconditioners
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Figure 7.1: Convergence of the CG solver with different preconditioners for maxh = 0.001 and 1,153,051 DOFs, using 4 threads.

Relation to CG theory. For a symmetric positive definite system Az = b, the CG error satisfies the

bound )
[z — zk|a Kk(A)—1  Amax(4)
e —zolla = ° <\/@+1> A =T (7.2)

Here x(A) is the condition number of A, x — =}, is the error after k iterations and ||z||% = 27 Az. For a
preconditioned system M ~! Az = M ~'b the same estimate holds with x(M~1A) [1, Thm. 6.29].

Preconditioning aims to reduce (M ~1A) and thereby the iteration count. In the ideal situation, the
CG iteration count would become independent of the mesh size. In practice, Jacobi preconditioning is
known to only slightly reduce the condition number. This is why in our results, the iteration count with
Jacobi preconditioning remains similar to CG without preconditioning. The SGS preconditioner, on the
other hand, is much more effective at clustering the eigenvalues and therefore at reducing the condition
number [1]. Which is exactly the reason why SGS significantly reduce the iteration count in Table 7.1.
The convergence curves in Figure 7.1 show this as well. The SGS residual decays much faster, while
the Jacobi curve stays close to the unpreconditioned one.

The number of CG iterations required to reach a fixed tolerance grows proportionally to \/x(A4) [1,
Thm. 6.29]. For the Laplace model problem considered here, the condition number of matrix A in-
creases when the mesh is refined, so we expect the CG iteration count to grow as we decrease the
maximum element size maxh. This is exactly what we see in Table 7.1: the number of iterations for
unpreconditioned CG increases from 31 on the coarsest mesh to 1976 on the finest mesh.

7.1.3. Sequential SGS preconditioner

As discussed in Section 6.3.3, SGS is implemented as one forward sweep followed by one backward
sweep over all rows, corresponding to a symmetric Gauss-Seidel step. In each sweep, the update for
row ¢ depends on previously updated entries from earlier rows (in the forward sweep) or from later rows
(in the backward sweep). This prevents parallelisation over the rows. In the PyKokkos implementation
the kernel apply_symmetric_gauss_seidel executes both sweeps inside a single workunit instance.
Even when more threads are available, only one logical thread performs the SGS sweeps, while the
other CG operations (SpMV, dot, axpy) run in parallel.

On the coarser meshes, the overhead of launching kernels dominates the runtime. This is because
there is relatively little work to be done, using more threads brings only a small benefit. So here reducing
the number of iterations is the main advantage. This makes SGS the fastest method for coarse meshes.
On the finest mesh, the downside of SGS being more sequential dominates. Also the cost of applying
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SGS in each iteration becomes large, this outweighs the benefit of fewer iterations. Which results in a
total runtime that is much higher than for the other methods, even on a single thread as we will see in
the next section.

7.1.4. Small Differences in Iteration Counts Across Threads

The iteration counts in Table 7.1 are reported for 4 threads. When repeating the same experiment with
different thread counts, the number of iterations can differ by a few steps, even though the algorithm
and tolerance are the same. This behaviour is expected for Krylov methods in parallel arithmetic. Dot
products and norms are computed via parallel reductions, and the order in which floating-point numbers
are summed depends on the number of threads and the scheduling [25]. Different summation orders
lead to slightly different round-off errors, which can be just enough so that the stopping criterion is met
a few iterations earlier or later. These differences are small and the effect is negligible for the computed
solutions.

7.1.5. Parallel Scalability and Time-to-Solution

In Chapter 5 we made a distinction between strong and weak scaling. Strong scaling refers to changing
the number of threads for a fixed problem size, while weak scaling means increasing the problem size
together with the number of threads so that the work per thread stays approximately constant. In this
section we examine both aspects for the CG solver.

Strong scaling
For strong scaling we fix the finest mesh (maxh = 0.001, 1,153,051 DOFs) and vary the number of
OpenMP threads. The time-to-solution for all three preconditioners is shown in Table 7.2.

Table 7.2: CG solver time-to-solution (in seconds) for maxh = 0.001 (1,153,051 DOFs) as a function of the number of threads.

Method 1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
None 54.34 31.19 16.89 11.90 9.34
Jacobi 48.38 27.59 16.23 9.78 9.69
Gauss-Seidel 79.36 67.91 56.25 50.90 50.60

To relate these results to the theory of Chapter 5 we define, for each method, the strong-scaling speedup

T Speedup(N)
N)=— Ey= —~""""\V

Speedup(N) Ty’ N N ,

where T7 and Ty denote the runtimes of that method with 1 and N threads, respectively, and E is the

parallel efficiency [21]. Table 7.3 summarises Speedup(/N) and Ey for the finest mesh. Here we see

the parallel efficiency drop as we increase the number of threads. For SGS the speedups are small for

all thread counts, this is because of the dominant serial portion of each iteration.

Table 7.3: Strong-scaling speedup Speedup(N) and parallel efficiency E on the finest mesh (maxh = 0.001).

Method Speedup(2) (E;) Speedup(4) (F4) Speedup(8) (Es) Speedup(16) (Fig)

None 1.74 (0.87) 3.22 (0.80) 4.57 (0.57) 5.82 (0.36)
Jacobi 1.75 (0.88) 2.98 (0.75) 4.95 (0.62) 4.99 (0.31)
SGS 1.17 (0.58) 1.41(0.35) 1.56 (0.19) 1.57 (0.10)

For the unpreconditioned solver the runtime decreases from 54.34 seconds on 1 thread to 9.34 seconds
on 16 threads, corresponding to a speedup of about 5.82x. Hence the parallel efficiency,

5.82
FEig=——=0.
16 16 0 367
is far from ideal (an efficiency of 1 would correspond to perfect linear scaling), but the solver still clearly
benefits from additional threads. The Jacobi-preconditioned solver shows similar behaviour: its runtime
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decreases from 48.38 seconds to 9.69 seconds, with almost identical speedups. For a small number
of threads, the total runtime is slightly lower because the iteration count is somewhat reduced and the
Jacobi kernel itself is cheap and fully parallel. When running with 16 threads the efficiency of Jacobi
goes down and the difference in runtime disappears. Hence, for this problem the Jacobi preconditioner
is not strong enough to give a substantial speedup, but it also does not introduce much overhead.

The SGS-preconditioned solver behaves quite differently. Although it has the smallest iteration count
on this mesh, its runtime on a single thread (79.36 seconds) is already larger than for the other meth-
ods. As the number of threads increases, the SGS runtime only decreases slightly and then stagnates
around 50 seconds. This poor strong scaling is a consequence of the sequential SGS sweeps (see Sec-
tion 7.1.3). According to Amdahl’s law, the presence of such a large serial fraction S in each iteration
limits the achievable speedup
1

S+ %

even if the parallel part P (SpMV and vector kernels) scale well. Unpreconditioned CG and Jacobi pre-
conditioning have a relatively larger parallel portion and therefore benefit more from additional threads.

Speedup(N) =

It is therefore not surprising that, on the finest mesh and for many threads, unpreconditioned CG be-
comes the fastest method in total runtime, despite having the largest iteration count: it avoids the extra
serial work inside each iteration.

Weak scaling

For weak scaling we aim to keep the workload per thread approximately constant while increasing both
the problem size and the number of threads. Table 7.4 shows such a sequence, when doubling the
number of threads, the total number of DOFs is roughly doubled as well, so that the number of DOFs
per thread stays close to 4.6 x 103.

Table 7.4: Weak scaling results for CG: approximately constant DOFs per thread while increasing the total problem size and
the number of threads.

Threads maxh DOFs Prec. Time (s) Iterations
1 0.005 45853 None 0.80 494
1 0.005 45853 Jacobi 0.80 476
1 0.005 45853 Gauss-Seidel 0.57 221
2 0.00354 92000 None 1.1 668
2 0.00354 92000 Jacobi 1.10 644
2 0.00354 92000 Gauss-Seidel 1.05 300
4 0.0025 184004 None 1.67 951
4 0.0025 184004 Jacobi 1.59 880
4 0.0025 184004 Gauss-Seidel 2.18 384

In an ideal weak-scaling scenario the runtime would remain roughly constant as the number of threads
and the problem size increase, because each thread handles the same amount of work and the iteration
count stays fixed. In our experiments the runtimes grow noticeably: for the unpreconditioned solver the
time increases from 0.80 seconds (1 thread) to 1.11 seconds (2 threads) and 1.67 seconds (4 threads).
The Jacobi-preconditioned solver shows almost identical results.

This growth has two main causes. First, even though the number of DOFs per thread is kept approx-
imately constant, the total number of iterations increases with the global problem size, from 494 to
668 and 951 iterations for the unpreconditioned solver. Second, additional threads introduce parallel
overheads such as synchronisation and contention for memory bandwidth, which further increase the
runtime.

The SGS-preconditioned solver shows an even stronger increase in runtime: from 0.57 seconds on 1
thread to 1.05 seconds on 2 threads and 2.18 seconds on 4 threads. Here the combination of a growing
iteration count and the largely sequential preconditioner reduce the weak-scaling performance even
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further. As the mesh is refined, the SGS sweeps become more expensive, and the serial work per
iteration dominates the runtime.

Overall, the weak-scaling results show that the current CG implementation does not achieve ideal
weak scaling. The total time increases with the number of threads and the problem size, primarily
because the iteration count grows with mesh refinement, and for SGS also because a substantial serial
component and additional overhead is introduced. The unpreconditioned and Jacobi-preconditioned
solvers degrade more gracefully than SGS, but none of the variants maintain a constant time-to-solution
under weak-scaling refinement.

7.1.6. Kernel-Level Performance

To understand where the speedups come from, we measure the average execution time of the main
kernels on the finest mesh. Tables 7.5-7.7 report the times for the SpMV, dot, axpy and scale kernels
for each method.

Table 7.5: Average per-iteration kernel time (in ms) for the unpreconditioned CG solver on the finest mesh (maxh = 0.001,
1,153,051 DOFs).

Threads SpMV Dot AXPY Scale

1 1252 475 648 1.67
2 7.02 280 3.80 0.96
4 3.67 158 207 0.54
8 255 111 147 0.38
16 1.88 092 117 0.32

Table 7.6: Average per-iteration kernel time (in ms) for the Jacobi-preconditioned CG solver on the finest mesh.

Threads SpMV Dot AXPY Scale

1 1190 456 6.07 1.57
2 6.33 278 3.62 0.95
4 366 167 210 0.56
8 215 099 1.28 0.36
16 1.98 1.02 1.30 0.38

Table 7.7: Average per-iteration kernel time (in ms) for the Gauss-Seidel-preconditioned CG solver on the finest mesh.

Threads SpMV Dot AXPY Scale

1 19.66 7.04 9.58 2.74
2 13.31 487 6.34 1.87
4 722 321 3.70 1.19
8 412 221 217 0.76
16 3.14 193 1.65 0.57

From these tables we can draw several conclusions:

+ SpMV dominates the cost. For all methods and thread counts, the SpMV kernel is the most
expensive operation per iteration. It also shows the largest time reduction when the number of
threads increases, so most of the speedup in the total runtime comes from parallelising SpMV.

+ AXPY and vector kernels also scale well. The axpy kernel benefits from parallelism in a similar
way to SpMV, but its absolute cost is smaller. The dot and scale kernels are even cheaper, so
their contribution to the total runtime remains limited, even though they also parallelise well.

» SGS increases per-iteration cost. For the SGS-preconditioned solver, the SpMV, dot and axpy
kernels are noticeably more expensive per iteration than in the other two methods. This is mainly
because the sequential kernel of SGS dominates the total per-iteration cost and does not benefit
from additional threads.
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Overall, most of the parallel speedup comes from the SpMV and axpy kernels, which are both well suited
to OpenMP parallelism. The preconditioners behave quite differently, Jacobi adds only a small amount
of overhead and gives only a modest improvement in convergence, while SGS reduces the iteration
count much more strongly but introduces a sequential part that limits scalability for larger problems and
higher thread counts.

7.2. GMRES Results for a Stokes-like Vector Problem

7.2.1. Model problem and solver parameters

For the GMRES experiments we switch from the scalar Laplace problem to the Stokes-like channel flow.
The PDE and boundary conditions are as in Section 4.2.1. The velocity is discretised in a vector-valued
H' finite element space of order k (with £ = 1 and k = 3 in the experiments), with no-slip conditions on
the walls, a parabolic inflow profile at the inlet, and a natural outflow condition at the outlet.

As before, the problem size is varied by changing the global mesh parameter maxh. We use maxh €
[0.05,0.01,0.005,0.0025]. For the largest mesh (maxh = 0.0025) the system contains 301,086 unknowns.
Apart from switching from CG to GMRES, the solver settings are kept as close as possible to the
Laplace experiments. We use restarted GMRES with the relative residual stopping criterion

[P
161l

and a maximum of k., = 10,000 iterations. The experiments are run with varying restart parameter
m € {20,50,75} and the same three preconditioners as before (none, Jacobi and SGS). All runs are
performed on the same shared-memory machine as in the CG experiments, with

< tol, tol = 10_87

Nthreads € {17 23 4; 8» 16}3
so that the parallel behaviour can be compared directly.
7.2.2. Convergence, preconditioning and restart parameter (with & = 1)

We first analyse the convergence behaviour for the lowest-order vector discretisation. The iteration
counts and total runtimes are summarised in Table 7.8.

m = 20 m = 50 m =175

Preconditioner Iters Time (s) Iters Time(s) Iters Time (s)
maxh = 0.05, DOFs = 672

None 58 0.234 58 0.447 54 0.487

Jacobi 60 0.249 75 0.552 62 0.639

Gauss-Seidel 34 0.140 29 0.163 29 0.166
maxh = 0.01, DOFs = 18470

None 400 1.913 280 2.623 263 3.408

Jacobi 400 1.938 300 2.960 300 4.187

Gauss-Seidel 120 0.680 149 1.560 146 2.100
maxh = 0.005, DOFs = 74 590

None 1191 8.570 648 9.130 557 10.863

Jacobi 1180 8.698 650 9.347 600 13.452

Gauss-Seidel 280 3.017 250 4.484 225 5.420

maxh = 0.0025, DOFs = 301 086
None 4158 65.099 1865 53.958 1416  58.056
Jacobi 4000 65.657 1850 55.759 1425  59.206

Gauss-Seidel 740 20.647 500 21.052 450 24.308

Table 7.8: GMRES convergence for the Stokes-like problem with mesh sizes (maxh € {0.1,0.05, 0.01, 0.005}) for different
preconditioners and restart parameters, using 1 thread, for the lowest-order vector discretisation (k = 1).
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Influence of the restart parameter m. The restart parameter m controls the dimension of the Krylov
subspace between restarts. In each GMRES(m) cycle the method builds the m-dimensional Krylov
space

Ko (A, 7o) = span{rg, Arg,..., A" lry},

larger values of m allow GMRES to approximate the solution using higher-degree polynomials of A,
which can reduce the total number of iterations. At the same time, the per-cycle cost grows roughly
with m because orthogonalisation and the least-squares solve operate on an m-dimensional basis [1].

In the present experiments larger values of m always reduce the iteration count, but they do not lead
to shorter runtimes. On the coarsest mesh (maxh = 0.05) the unpreconditioned solver reduces the
iteration count from 58 to 54 when m is increased from 20 to 75, but the runtime increases from 0.23 s
to 0.49s. We see this as well with Jacobi and SGS, for this small problem the extra orthogonalisation
work for m = 50 and m = 75 only adds overhead. The problem is too small to draw more conclusions.
We see the same pattern on the intermediate mesh (maxh = 0.01), Jacobi and SGS both gain some
noticeable reduction in iteration count when m is increased, but the gains are too small to compensate
for the quadratic growth in orthogonalisation cost.

As the mesh is refined, the dependence on m becomes stronger. For example, for the unpreconditioned
solver on the mesh with maxh = 0.005 the iteration count drops from 1191 (m = 20) to 648 (m = 50)
and 557 (m = 75). However, the runtimes still increase from 8.57s to 9.13s and 10.86s. The same
pattern appears for Jacobi and SGS: increasing m gives a noticeable reduction in iterations, but the cost
per cycle grows roughly like O(m?) (see 2.2.2) due to orthogonalisation and the small least-squares
problem, so the total time does not improve [1].

On the finest mesh (maxh = 0.0025, 301,086 DOFs) the reduction in iteration count can outweigh the
additional orthogonalisation work for the first time. Without preconditioning the iteration count drops
from 4158 (m = 20) to 1865 (m = 50) and 1416 (m = 75). In this case m = 50 gives the shortest
runtime (65.10s — 53.96s), while m = 75 yields even fewer iterations but becomes slower again
(58.06 s) because the cost per cycle grows. Jacobi shows a very similar pattern. The iteration count
decreases from 4000 to 1850 and 1425 when m is increased from 20 to 50 and 75, respectively, with
m = 50 again giving the best time (65.66s — 55.76's, then up to 59.21s for m = 75). In contrast,
Gauss-Seidel is already a much stronger preconditioner. The iterations drop from 740 to 500 and 450,
but the runtimes increase from 20.65s to 21.05s and 24.31s. Here m = 20 remains the most efficient
choice. These results indicate that for weak or no preconditioning a moderate increase of m (e.g. to
m = 50) can be beneficial on large problems, while for a strong smoother such as Gauss-Seidel small
restart values are sufficient and larger m primarily increases the Krylov overhead.

Effect of preconditioning (order £ = 1). We now compare the three preconditioners, focusing on
m = 20, which gives the best runtimes in all cases. For this lowest-order discretisation the symmetric
Gauss-Seidel preconditioner is clearly the most effective. On the finest mesh, SGS reduces the iteration
count from 1191 (no preconditioner) to 280 and reduces the runtime from 8.57 s to 3.02 s. Similar gains
are observed on the other meshes.

In contrast, the Jacobi preconditioner is rather weak for £ = 1. On the coarse meshes (maxh = 0.05
and 0.01) it produces essentially the same iteration counts and runtime compared to the unprecondi-
tioned solver (400 iterations for m = 20 in both cases with maxh = 0.01). Even on the finest mesh the
differences between Jacobi and no preconditioner are small: for m = 20, Jacobi converges in 1180
iterations and 8.70 s, compared to 1191 iterations and 8.57 s without preconditioning.

This behaviour is similar to what we observed for CG in Section 7.1.2. The convergence plots in
Figure 7.2 show that the curves for the unpreconditioned solver and Jacobi are almost indistinguishable.
For this lowest-order discretisation (k = 1), the impact of Jacobi on GMRES is small, and it is never
clearly better than the unpreconditioned solver in terms of runtime.

Overall, the & = 1 results show a clear ordering: Gauss-Seidel consistently performs best, while Ja-
cobi and the unpreconditioned solver behave very similarly. In the next subsection we increase the
polynomial degree to &k = 3 and observe how the behaviour of Jacobi changes once the system matrix
becomes more ill-conditioned.
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Figure 7.2: GMRES convergence for different mesh sizes with £ = 1 and Nipreads = 1-

Numerical results for £ = 3. Table 7.9 summarises the GMRES results for £ = 3 and one thread. On
the coarsest meshes Jacobi still performs well. For example, for maxh = 0.1 and m = 20 the iteration
count drops from 387 (no preconditioner) to 60 (Jacobi), and the runtime decreases from 2.36 s 10 0.39 s.
SGS remains the most effective method: it converges in only 20 iterations and solves the system in
about 0.17s, essentially independent of m. For the second mesh (maxh = 0.05, 6528 DOFs) we see
similar behaviour, Jacobi reduces the iteration count from 438 to around 80-100, while SGS brings it
down to about 34-36 iterations.

The convergence curves in Figure 7.3 show the same trend. For the coarse meshes the SGS residual
decays much faster than the other methods, Jacobi gives a clear improvement over the unprecondi-
tioned solver, and the unpreconditioned curve shows the slowest decay.

As the mesh is refined and the problem size grows, Jacobi becomes less effective. On the finest mesh
(maxh = 0.005) the Jacobi-preconditioned solver even needs more iterations and more time than the
unpreconditioned solver. For m = 20 the iteration count increases from 1202 (no preconditioner) to
1700 (Jacobi), and the runtime increases from 72.3s to 105.6s. SGS still reduces the iteration count
to 280 and the runtime to 38.5s.

At first this might seem surprising: we start from an SPD system and add a preconditioner, yet GMRES
becomes slower. The explanation is not simply “preconditioning versus no preconditioning”, but how
well the chosen preconditioner matches the structure of the matrix. A detailed analysis of this can be
found in Appendix A, higher-order elements increase the number of neighbours each degree of freedom
is coupled to.

In our case the Jacobi preconditioner M keeps only the diagonal of A®) and discards all couplings
between neighbouring degrees of freedom. For the high-order discretisation this diagonal is a very
poor approximation of the full operator, most of the important interaction terms live off the diagonal and
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Figure 7.3: GMRES convergence for different mesh sizes with £ = 3 and Nipreads = 1-

are completely ignored. The left-preconditioned system
M7 A®z = M,

inherits almost all of the ill-conditioning of A®®) and has unfavourable spectral properties for restarted
GMRES. For m = 20 the degree-m GMRES polynomials cannot approximate the inverse of M ;' A®)
as well as they do for A®) itself, so each GMRES(m) cycle with Jacobi reduces the residual by a smaller
factor than in the unpreconditioned case, and the total number of iterations increases.

The symmetric Gauss-Seidel preconditioner does not have this problem. In each forward and back-
ward sweep, SGS processes all nonzero entries in a row and updates the unknowns sequentially, so
the preconditioned vector contains information from both the diagonal and the off-diagonal couplings.
This explains why SGS remains effective for £ = 3, whereas Jacobi can become worse than no pre-
conditioning.

These observations highlight an important limitation of scalar Jacobi: even in our uncoupled model
problem it already discards all couplings between neighbouring unknowns. For genuinely coupled
vector PDEs (such as the full Stokes or Navier-Stokes systems), the situation is even worse, because
scalar Jacobi would also drop the couplings between the velocity and pressure components. In other
words, it loses an even larger and more important part of the operator.

For such systems a more appropriate choice is a block Jacobi preconditioner, which inverts small blocks
associated with all vector components at a node (or a small group of nodes) instead of only the scalar
diagonal entries. Block preconditioners of this type are discussed, for example, in [26], [27]. We do not
implement them here, but they align better with the block structure of the discretised operators and are
a good candidate for future work.
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m = 20 m = 50 m="175

Preconditioner Iters Time (s) Iters Time(s) Iters Time (s)
maxh = 0.1, DOFs = 1410

None 387 2.359 230 2.708 188 3.039

Jacobi 60 0.393 50 0.610 63 0.972

Gauss-Seidel 20 0.166 23 0.165 23 0.166

maxh = 0.05, DOFs = 6 528

None 438 2.793 293 3.736 264 4.592

Jacobi 80 0.525 100 1.297 75 1.410

Gauss-Seidel 36 0.249 34 0.350 34 0.348
maxh = 0.01, DOFs = 168 630

None 563 10.960 354 11.670 324 13.874

Jacobi 480 9.433 400 13.341 375 16.838

Gauss-Seidel 120 4.659 150 7.786 146 9.127
maxh = 0.005, DOFs = 676 110

None 1202 72.339 652 58.969 560 65.509

Jacobi 1700 105.596 950 89.882 825 96.692

Gauss-Seidel 280 38.509 250 41.483 225 43.394

Table 7.9: GMRES convergence for the Stokes-like problem with k£ = 3 for different mesh sizes (maxh
€ {0.1,0.05,0.01,0.005}), preconditioners and restart parameters, using 1 thread.

7.2.3. Parallel Scalability and Time-to-Solution

For the Stokes-like benchmark we now investigate the parallel behaviour of the GMRES solver. Based
on the parameter study in Section 7.2.2, we fix the restart parameter to m = 20, as this gave the best
trade-off between iteration count and per-iteration cost. The polynomial order is fixed at £ = 3. All
GMRES runs use the same relative tolerance and maximum iteration count as in the CG experiments
of Section 7.1.5.

As before, we distinguish between strong and weak scaling. For strong scaling we vary the number of
OpenMP threads for a fixed problem size. For weak scaling we increase the problem size together with
the number of threads so that the work per thread remains approximately constant. The same notions
of speedup and efficiency as in Section 7.1.5 are used.

Strong scaling

For strong scaling we fix the finest GMRES mesh (maxh = 0.005, 676,110 DOFs) and vary the number
of threads Ninreadss € {1,2,4}. The time-to-solution and iteration counts for m = 20 and the three
preconditioners are shown in Table 7.10. Here we see that increasing the number of threads actually
slows down the computation.

Table 7.10: GMRES time-to-solution and iteration counts for the finest mesh (maxh = 0.005, 676,110 DOFs), restart parameter
m = 20, and different numbers of OpenMP threads.

Prec. 1 Thread 2 Threads 4 Threads

None  72.34s(1202iters) 81.21s(1202) 111.68 s (1201)
Jacobi 105.60 s (1700 iters) 119.01's (1700) 160.08 s (1700)
GS 38.51s (280 iters)  63.14 s (280)  106.84 s (280)

For the unpreconditioned GMRES solver the runtime increases from about 72.3 seconds on 1 thread
to 81.2 seconds on 2 threads and 111.7 seconds on 4 threads, even though the iteration count remains
constant. The corresponding “speedups” relative to the 1-thread case are therefore smaller than 1 (see
7.11).
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Table 7.11: Strong-scaling speedup Speedup (V) and parallel efficiency E for GMRES with m = 20 on the finest mesh (maxh
=0.005, 676,110 DOFs). The reference time is the 1-thread run.

Method Speedup(2) (E2) Speedup(4) (E4)

None 0.89 (0.45) 0.65 (0.16)
Jacobi 0.89 (0.44) 0.66 (0.16)
GS 0.61 (0.30) 0.36 (0.09)

In other words, adding threads introduces overhead (synchronisation, scheduling) which more than
cancels out any parallel benefit.

The Jacobi-preconditioned solver shows similar behaviour to the unpreconditioned case. lIts iteration
count on the finest mesh is around 1700 for all thread counts, so the total work per solve is fixed.
Nevertheless, the runtime grows from approximately 105.6 seconds (1 thread) to 119.0 seconds (2
threads) and 160.1 seconds (4 threads). The corresponding speedups and efficiencies, summarised
in Table 7.11, confirm that Jacobi GMRES also experiences a clear slowdown when increasing the
number of threads.

The Gauss-Seidel (GS) preconditioner is the most effective in terms of iteration reduction, requiring
only 280 iterations on this mesh. On a single thread it is the fastest configuration overall, with a run-
time of about 38.5 seconds. However, its parallel behaviour is even worse: the time increases to 63.1
seconds on 2 threads and 106.8 seconds on 4 threads. This corresponds to Speedup(2) ~ 0.61 and
Speedup(4) = 0.36, with very low efficiencies. Since the GS sweeps are sequential there is additional
parallel overhead from thread management and synchronisation dominates as soon as multiple threads
are used.

Compared to the CG results in Section 7.1.5, the GMRES implementation exhibits noticeably poorer
strong scaling.

Overall, the strong-scaling results for GMRES show that, on this Stokes-like problem and with the
current PyKokkos/NGSolve implementation, the most reliable way to minimise the time-to-solution on
the finest mesh is to use a proper preconditioner on a single thread. Increasing the thread count up to 4
does not provide any benefit and in fact significantly degrades performance for all three preconditioners.
This negative strong scaling is the reason we did not extend the GMRES experiments to 8 and 16
threads.

Weak scaling

For weak scaling we again aim to keep the workload per thread approximately constant while increasing
both the problem size and the number of threads. For GMRES we consider the sequence in Table 7.12,
where the mesh is refined and the number of threads is doubled at each step. The total number of DOFs
grows from 41,196 to 168,630, so that the number of DOFs per thread stays close to 4.1 x 10%.

Table 7.12: Weak scaling results for GMRES with m = 20: approximately constant DOFs per thread while increasing the total
problem size and the number of threads.

Threads maxh DOFs Prec. Time(s) Iterations
1 0.02 41196 None 4.27 428
1 0.02 41196 Jacobi 2.06 200
1 0.02 41196 GS 0.92 60
2 0.0141 83340 None 11.38 534
2 0.0141 83340 Jacobi 6.49 300
2 0.0141 83340 GS 3.31 80
4 0.01 168630 None 25.84 563
4 0.01 168630 Jacobi 22.40 480
4 0.01 168630 GS 15.20 120
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In an ideal weak-scaling scenario the runtime would remain roughly constant as the number of threads
and the global problem size increase, because each thread handles the same amount of work. This
is clearly not the case here. For the unpreconditioned GMRES solver the runtime grows from 4.27
seconds (1 thread) to 11.38 seconds (2 threads) and 25.84 seconds (4 threads), roughly a factor 6
increase when going from 1 to 4 threads while the DOFs per thread remain almost constant. The
iteration count also increases with the global problem size, from 428 to 534 and 563 iterations, which
already implies additional work per thread even in an ideal parallel scenario.

The Jacobi-preconditioned solver shows a similar trend, but the growth in runtime is even larger. The
iteration count increases with a greater margin, resulting in a greater increase in total runtime. The
total runtime increases from about 2.06 seconds on 1 thread to 6.49 seconds on 2 threads and 22.40
seconds on 4 threads. This is consistent with the discussion in Appendix A: Jacobi keeps only the
diagonal and ignores the strong couplings between neighbouring degrees of freedom, so for the high-
order discretisation the preconditioned system remains difficult to solve and the extra work per iteration
does not translate into faster overall convergence.

For the GS-preconditioned solver the relative increase is strongest: the runtime goes from 0.92 seconds
(1 thread) to 3.31 seconds (2 threads) and 15.20 seconds (4 threads). The iteration counts increase from
60 to 80 and 120, and the sequential components inside each GS sweep become more expensive on
the finer meshes. As a result, the serial fraction of the computation grows, and according to Amdahl’s
law this limits the achievable weak-scaling performance even more severely than for the other methods.

Overall, the weak-scaling results confirm that the current GMRES implementation does not scale well.
Even though the DOFs per thread are kept approximately constant, the total runtime increases sub-
stantially with the number of threads and the global problem size. The main reasons are the growth in
iteration counts with mesh refinement, the higher per-iteration cost of GMRES (orthogonalisation and
global reductions), and, for GS, the relatively large sequential part. Of these three preconditioners, GS
remains the most effective in terms of iteration reduction and time-to-solution.

7.3. Stokes flow around a NACA airfoil

7.3.1. Model problem and solver parameters

Finally, to demonstrate that the PyKokkos—NGSolve solver can also be applied to a more realistic
Computational Fluid Dynamics (CFD) problem, we consider a two—dimensional Stokes flow around a
NACA 2412 airfoil [13], as introduced in Section 4.2.2.

Table 7.13: GMRES performance for the NACA Stokes problem on the coarse mesh (maxh = 0.5, 4 865 DOFs), restart
parameter m = 20. An asterisk indicates that the maximum of 10 000 iterations was reached.

Prec. Time (s) Iterations Rel. residual

None 65.07 10000° 5.72 x 1074
Jacobi 0.75 116 5.00 x 1071
GS 72.49 10000 8.44 x 1074

Table 7.13 shows that on the coarse NACA mesh the preconditioners from before are no longer effective.
Neither the unpreconditioned run nor the Gauss-Seidel preconditioner reaches the desired tolerance
within 10 000 iterations. The Jacobi-preconditioned run stops after 116 iterations with a relative residual
of about 5 x 10~1, which is far above the target accuracy.

This seems to happen because the residual norm that GMRES estimates internally drops below the
tolerance, even though the true residual (recomputed afterwards) is still large. However, to be certain
about this more analysis would be needed. What we can say is that the Stokes system is strongly
coupled between velocity and pressure, while the Jacobi preconditioner implemented here ignores
this block structure. In such a setting the preconditioned system can behave poorly, and the residual
estimate may become less reliable.

So GMRES appears to have “converged” while the solution is in fact still far from the exact one. We
therefore regard the Jacobi preconditioner as failing for this test case.
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Figure 7.4: Velocity magnitude |u| for the Stokes flow around a NACA 2412 airfoil with 4° angle of attack (maxh = 0.5). Red
corresponds to high speed, blue to low speed.

Figure 7.4 shows the magnitude of the velocity |u| for the Stokes flow around the NACA airfoil. The
colours can be read as speed. The warm colours (yellow—red) indicate fast flow, and the cool colours
(blue) indicate slow flow. Far away from the airfoil the flow is close to the imposed inflow, so the speed
is almost constant, which appears as the large yellow—red region. On the airfoil itself we prescribe a no-
slip condition, which means that the fluid sticks to the surface and the velocity is zero. This creates the
thin dark-blue band of very low speed around the airfoil. Behind the trailing edge there is an extended
blue region where the flow is noticeably slower than in front of the airfoil. This is called wake, a region
where the fluid has been slowed down by the airfoil and only gradually speeds up again as we move
further downstream.

For the NACA test case the preconditioners we considered before (Jacobi and Gauss-Seidel) are no
longer sufficient. As shown in Table 7.13, for maxh = 0.5 none of the unpreconditioned, Jacobi or
Gauss-Seidel preconditioned GMRES runs converge to the target tolerance. In contrast, a block pre-
conditioner that respects the velocity-pressure structure of the Stokes system reduces the residual to
10~ in only 35 iterations for a restart parameter m = 50. On finer meshes with up to O(10°) unknowns
the iteration counts with this preconditioner remain modest (about 50-60 iterations for m = 50), with
runtimes below 15 seconds. This shows how important it is to use a preconditioner that takes the block
structure of the equations into account.

preconditioners. However, such an analysis would require an extension of the present work and could
not be included here due to time constraints. We therefore restrict ourselves to a brief description of
the approach and refer the reader to [27], [28], [26] for further details. A more systematic investigation
of the block preconditioner used here is good direction for future work.



Conclusions and Future

The goal of this thesis was to investigate how preconditioned Krylov subspace methods perform and
scale under shared-memory parallelism. To this end, we implemented a preconditioned Conjugate
Gradient (CG) solver in PyKokkos for a finite element Laplace model problem and extended the same
kernel infrastructure to a restarted GMRES solver for a Stokes-like vector problem. The solvers were
evaluated in terms of convergence behaviour, the effect of preconditioning, strong and weak scaling,
and kernel-level performance on a multi-core CPU.

This chapter summarises the main findings, answers the research questions from Chapter 1, and out-
lines directions for future work.

8.1. Summary of Main Findings
8.1.1. Behaviour of CG for the Laplace problem

For the scalar Laplace model problem, the PyKokkos implementation of CG behaves in line with the
theory.

» Convergence and mesh refinement. The iteration count increases significantly as the mesh is
refined, from a few dozen iterations on the coarsest mesh to almost two thousand on the finest
one. This is consistent with the dependence of CG on the condition number of the stiffness matrix,
which becomes worse as the mesh size decreases.

Effectiveness of preconditioning. The symmetric Gauss-Seidel (SGS) preconditioner consis-
tently reduces the iteration count by roughly a factor of two compared to unpreconditioned CG.
The Jacobi preconditioner has a much smaller effect. It's iteration count stays almost identical to
the unpreconditioned method.

» Time-to-solution versus iteration count. On coarse meshes, SGS is the fastest method in
total runtime. The problem is small and kernel launch overheads dominate. Therefore reducing
the iteration count is the main advantage here. On the finest mesh, however, SGS becomes
significantly slower than both Jacobi and the unpreconditioned solver, despite its lower iteration
count. The sequential forward/backward sweeps inside SGS make for a large serial fraction per
iteration, which limits parallel speedup and eventually outweighs the gains from fewer iterations.

« Parallel scalability. For the largest Laplace system (about 1.15 x 10 unknowns), CG with no
preconditioning or with Jacobi scales reasonably well up to 16 threads. The speedup is clearly
not linear, but the time-to-solution still improves from tens of seconds on a single thread to roughly
one sixth of that on 16 threads. The parallel efficiency is far from ideal, yet there is a clear benefit
of adding cores. In contrast, SGS exhibits very poor strong scaling. The runtime decreases
only slightly with more threads. Weak-scaling experiments show a similar trend: none of the
CG variants achieve ideal weak scaling, also here the degradation is much more pronounced for
SGS.
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Taken together, the CG experiments show that:

1. the iteration count is strongly influenced by the choice and quality of the preconditioner,

2. the amount of sequential work inside the preconditioner has a large effect on parallel scalability,
and

3. larger problems gain more from shared-memory parallelism, because the parallel kernels (in par-
ticular SpMV) dominate the runtime while overheads and serial work become relatively less im-
portant.

8.1.2. Behaviour of GMRES for a Stokes-like vector problem
For GMRES, the results are less straightforward. We see that the structure of the problem, between
preconditioning, problem structure, and parallel performance.

* Restart parameter. Increasing the restart parameter m always reduces the iteration count, how-
ever it doesn’t not improve, and often worsens, the runtime. The additional work in orthogonal-
isation and the small least-squares solve grows roughly like O(m?), while the time gained from
having to perform fewer iterations is comparatively small. Over all, m = 20 provided the best
balance between convergence and per-iteration cost.

* Preconditioning for low-order (¢ = 1) discretisations. For the lowest-order vector discreti-
sation, SGS is clearly the most effective preconditioner. It reduces both iteration counts and
runtimes by large factors compared to unpreconditioned GMRES. Jacobi behaves similarly to the
CG case on the scalar Laplace problem: it produces iteration counts and runtimes that are very
close to the unpreconditioned solver and therefore offers little benefit.

* Influence of polynomial order and neighbour couplings. For the higher-order vector discreti-
sation (k = 3), each scalar basis function interacts with more neighbours and the assembled ma-
trix contains more off-diagonal entries, as analysed in Appendix A. On coarse meshes the simple
scalar Jacobi preconditioner still performs reasonably well, but on finer meshes the convergence
even degrades, for k£ = 3 and the finest mesh the Jacobi-preconditioned GMRES solver requires
more iterations and more time than the unpreconditioned solver. The key reason is that scalar Ja-
cobi keeps only the diagonal entries and discards all off-diagonal couplings between neighbouring
degrees of freedom, so for high-order elements the preconditioned operator M;lA keeps most
of the ill-conditioning of A while changing its spectral properties in a way that is unfavourable for
restarted GMRES. In contrast, SGS remains effective because its forward and backward sweeps
process all nonzero entries in each row and therefore incorporate both diagonal and off-diagonal
neighbour couplings.

Parallel scalability. In contrast to CG, the GMRES implementation shows poor strong and weak
scaling. On the finest mesh, increasing the number of threads up to four does not reduce the
runtime. Instead, it even leads to a slowdown. The orthogonalisation and global reductions in
GMRES introduce additional synchronisation overhead on top of the kernels. And although SGS
shows the lowest iteration counts, the preconditioner itself is largely sequential, which makes the
limits the overall speedup even more, this makes that the best time-to-solution is obtained on a
single thread.

These findings show that for GMRES-like methods, simply adding more threads doesn’t help. Both
the preconditioner and the implementation of the Krylov subspace method need to be parallelizable,
otherwise, the additional cores only lead to memory overhead.

8.1.3. Kernel-level observations
The kernel-level timings show consistent results for both CG and GMRES:

+ SpMV dominates. Sparse matrix-vector products are the most expensive kernels in all experi-
ments and they account for a large fraction of the total runtime per iteration. They benefit most
clearly from increasing the thread count.

* Vector operations scale reasonably. The axpy, scaling and dot-product kernels also gain from
multi-threading, but their contribution to the runtime is smaller.



8.2. Answers to the Research Questions 48

» Preconditioners shift the balance. Stronger preconditioners reduce the number of outer itera-
tions but introduce additional work per iteration. For SGS, this extra work is largely sequential and
therefore limits the fraction of the code that can be accelerated by shared-memory parallelism.

Overall, the experiments confirm that, within the current PyKokkos design, the main performance gain
on CPUs is the combination of a parallelizable preconditioner and an SpMV-dominated workload large
enough to outweigh parallel overheads.

8.2. Answers to the Research Questions

Ql. How does the Conjugate Gradient method perform when solving the Laplace
equation, and what are the key computational bottlenecks?

For the Laplace equation on the unit square, discretised with linear finite elements, the CG method
behaves largely as the theory predicts. As the mesh is refined, the number of iterations grows notice-
ably, which reflects the increase in the condition number of the stiffness matrix. In terms of runtime,
CG performs well once the systems become large. On the finest mesh the strong-scaling experiments
show clear, although less than ideal, speedups up to 16 threads.

The main computational bottleneck is the sparse matrix—vector product, followed by the vector updates
and global reductions. These operations are memory-bandwidth bound and dominate the cost of each
iteration. In the PyKokkos implementation these kernels are parallelised with OpenMP, and for suffi-
ciently large problems the speedup in SpMV translates directly into a shorter time-to-solution.

Q2. How do different preconditioners affect the convergence and performance
of CG when solving the Laplace equation?

Both Jacobi and symmetric Gauss—Seidel (SGS) preconditioners reduce the CG iteration count, but in
very different ways and with different consequences for runtime.

Jacobi preconditioning only modestly reduces the number of iterations, especially on the finer meshes,
but it is cheap to apply and fully parallel. In practice this means that the Jacobi-preconditioned solver
has runtimes that are comparable to, and sometimes slightly better than, unpreconditioned CG, with
similar scaling behaviour.

SGS, on the other hand, often cuts the number of iterations roughly in half. On coarse meshes, where
launch overheads dominate and the total amount of work is small, this makes SGS the fastest option.
On fine meshes and for many threads the picture changes: the forward and backward SGS sweeps
are essentially sequential, so they limit the speedup that can be achieved. As a result, the total runtime
becomes much worse than for the Jacobi and unpreconditioned solvers, despite the smaller iteration
count. This shows a key trade-off: a useful preconditioner must not only improve convergence, it also
has to fit the parallel execution model, otherwise the extra work can cancel out its benefits.

Q3. How does the performance of a preconditioned GMRES method compare
when solving the Stokes system, and how do the results relate to those observed

for the Laplace equation?

For the Stokes-like vector problem, preconditioned GMRES shows a similar ordering of preconditioners
as CG. SGS is again the most effective in terms of reducing iterations, Jacobi is relatively weak for
low-order discretisations, and for higher-order elements it becomes clear that the coupling between
neighbour of the system matrix should not be ignored.

In terms of raw performance and scalability for a SPD problem, GMRES is clearly less favourable than
CG. This is not very surprising as CG is designed for symmetric positive definite systems and make
use of that structure, whereas GMRES is designed for more general (in particular nonsymmetric or
block-structured) linear systems such as the Stokes problem. The restarted GMRES implementation
has a higher per-iteration cost because of orthogonalisation and global reductions, and these parts are
difficult to parallelise efficiently on shared-memory architectures. On the finest mesh, the strong-scaling
experiments show that increasing the number of threads up to four does not reduce the runtime and
can even slow the solver down for all three preconditioners. The weak-scaling experiments point in
the same direction: growing iteration counts, more expensive iterations, and sequential work inside the
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preconditioners together prevent GMRES from achieving good parallel efficiency. In other words, the
extra generality of GMRES comes with a noticeable performance penalty on this hardware and with
the simple preconditioners used here.

Compared to the Laplace/CG case, the Stokes-like/GMRES results indicate that:

+ the quality and structure of the preconditioner are even more important for nonsymmetric or block-
structured systems, and

+ the choice of Krylov method and its implementation details (restart strategy, orthogonalisation
scheme, communication pattern) play a crucial role in determining scalability.

In short, the Stokes experiments show that simply switching from CG to GMRES on a more complicated
system, while reusing the same basic preconditioners, is not enough to obtain good performance on
multi-core hardware.

8.3. Recommendations and Future Work

The results in this thesis suggest several practical recommendations for designing Krylov solvers on
shared-memory architectures, and point to a number of promising directions for further work. The main
themes are the role of preconditioning, the interaction with parallelism, and the choice of architectures.

8.3.1. Preconditioners and Solver Design

A recurring observation throughout the experiments is the large effect of preconditioning for both CG
and GMRES. For the Laplace problem, we saw that symmetric Gauss—Seidel can roughly halve the
number of CG iterations compared to the unpreconditioned solver, while scalar Jacobi only gives a mod-
est improvement. For the Stokes-like GMRES tests, SGS again clearly reduced the iteration counts,
whereas Jacobi often behaved similarly to no preconditioning for low-order discretisations and even
degraded convergence for higher-order vector problems. This underlines that a “good” preconditioner
must be judged in context: it has to improve convergence for the specific discretisation, and at the
same time it must fit the parallel execution model.

These observations motivate two concrete recommendations. First, for vector-valued and higher-order
finite element spaces, preconditioners should respect the local coupling between neighbouring degrees
of freedom and, in genuinely coupled systems, the natural block structure of the equations. As dis-
cussed in Appendix A, higher-order elements make each unknown interact with many neighbours, so
a purely diagonal preconditioner like scalar Jacobi discards almost all of the important off-diagonal
couplings and quickly becomes ineffective. The Stokes and NACA experiments further show that for
mixed velocity—pressure systems simple pointwise preconditioners can fail completely, whereas block
preconditioners that treat the coupled fields together can give mesh-robust convergence [26], [27].

Second, the strong reduction in iteration counts obtained with SGS indicates that preconditioners which
incorporate the full row-wise couplings can be very effective, but their sequential sweeps are a bottle-
neck on many cores. This points towards preconditioners that use Gauss—Seidel or Jacobi-type up-
dates as local smoothers inside more parallel-friendly multilevel methods, such as multigrid, where only
a few sequential smoothing steps are combined with coarse-grid correction and most of the work can
be distributed efficiently across threads.

Beyond this, it might be good to look at more advanced preconditioning strategies that are standard
in the literature but not yet implemented here. Incomplete factorisation methods (ILU) and multigrid
are known to yield iteration counts that are essentially independent of the mesh size. Given that the
current PyKokkos implementation already provides parallel SpMV and vector kernels, integrating such
preconditioners would be a way to reduce the overall cost, especially for large problems. For true
Stokes or Navier—Stokes systems, block preconditioners that approximate the Schur complement of the
pressure block are a particularly promising direction, as they explicitly target the saddle-point structure
that GMRES has to deal with.

On the Krylov side, the GMRES experiments show that the choice of restart parameter and orthogonal-
isation strategy has a large impact on both robustness and scalability. In the present work, a standard
restarted GMRES with fixed m and classical orthogonalisation was used. Communication-avoiding
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or pipelined variants, as well as flexible GMRES with varying preconditioners may be better suited to
modern multi-core architectures. Exploring such variants would help to clarify whether the poor parallel
scalability observed here is intrinsic to GMRES in this setting, or mostly a consequence of the simplest
possible implementation.

8.3.2. Parallel Implementation and Architectures

From a performance point of view, the experiments show that problem size and parallelism cannot
be considered separately. For the Laplace/CG case, small meshes are dominated by kernel launch
overheads and serial work, and scaling is poor. As the mesh is refined, the sparse matrix—vector product
and associated vector operations become the main cost per iteration, and the CG solver shows clear,
though not optimal, speedups up to 16 threads. For GMRES on the Stokes-like problem, however,
the additional orthogonalisation and global reductions largely cancel the gains from parallel SpMV, and
increasing the number of threads can even slow the solver down.

A practical recommendation is to treat parallelism as part of the algorithmic design, rather than as an
afterthought. Preconditioners and Krylov variants should be chosen not only for their convergence
properties, but also for how well their internal operations can be parallelised. In particular, reducing
the serial fraction of the computation, such as sequential sweeps in SGS, is important. The current
PyKokkos implementation already makes it possible to parallelise the core kernels (SpMV, axpy, dot,
scale). The main limitations observed in this thesis are therefore due to the chosen algorithms and
preconditioners, rather than to PyKokkos itself. This suggest that more advanced preconditioners and
parallel-friendly Krylov variants could be integrated without changing the overall design.

Another possible extension is to test the developed solvers on other architectures. All experiments here
were carried out on a shared-memory CPU, but PyKokkos is designed for performance portability. Re-
peating the study on GPU backends and in hybrid MPI+OpenMP settings would give a more complete
picture of the strengths and weaknesses of the current approach. On GPUs, for example, the balance
between computation and memory bandwidth is different, and simple preconditioners such as Jacobi
may be more attractive, for instance as smoothers inside multigrid methods.

In summary, this thesis shows that preconditioned Krylov methods implemented in PyKokkos can
achieve good performance and reasonable parallel scalability on multi-core CPUs for large finite el-
ement problems, provided that the preconditioner and problem size are chosen carefully. At the same
time, the results highlight that there is still room for improvement, in particular through preconditioners
that exploit block structure and multilevel ideas, and through Krylov variants that are designed explicitly
with modern parallel hardware in mind.
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Influence of polynomial order

To investigate how the polynomial order impacts the behaviour of the preconditioners, we repeat the
GMRES experiments with a higher-order vector space

V}fg) = VectorH1(order = 3),

which uses cubic vector-valued basis functions. As a reference, we compare to the linear space V}fl) =
VectorH1(order = 1). Increasing the polynomial order raises the number of degrees of freedom per
element and changes both the sparsity pattern and the conditioning of the system matrix.

Local degrees of freedom and element matrices. We conside the Stokes-like model as introduced
in Section 4.2.1, where the unknown is the velocity

U= (Ug, uy),
and both components satisfy a scalar reaction-diffusion equation
—vAu, +euy = fr iNQ, ug; = 0 on 9L,

—vAuy +euy = f, in€, uy = 0 on 9.

Let V}, be the scalar finite element space of continuous piecewise polynomials of degree &k on a shape-
regular triangulation 7, of 2. On a single triangle K € T}, the local scalar space is the polynomial space
Py (K), which has
(k+1)(k+2)

2

local basis functions. For k = 1,2, 3 this gives ni,c = 3,6,10, which matches the vertex, edge and
interior nodes shown in Figure A.1.

Njoc =

5 ®10 8

5
k=1 k=2 k=3

Figure A.1: Distribution of nodes (degrees of freedom) on the reference triangle for polynomial orders k = 1, k = 2, and k = 3,
created using Geogebra [12].
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As in Section 4.2, let { N, }™ be the scalar basis functions on K. For one velocity component w, or u,
the local matrix A% (%) has entries

AK®) :y/ VN; - VN; dx—f—s/ NiNjdz,  1<i,j < e
K K

ij

The vector-valued space we use for the velocity is the product
Ve = Vi x Vi = {(vg, vy) : 0,0y € Vi }.
With test functions v = (v,, v, ), the weak form of the problem splits into two parts,
a(u,v) = az(Ug, vz) + ay(uy, vy),
with
Ay (Ug, V) = 1// Vug - Vug dx + 5/ Uy Uy AT,
Q Q

and

ay(uy,vy) =v | Vuy,-Vu,de+ 5/ Uy vy di.
Q Q

We see the discrete system consists of two independent scalar problems with the same operator.

On each element K we have a matrix A%(®) with entries Ag’(k). This matrix couples the unknowns
from that triangle. To get the matrix for the whole problem, we first number all unknowns from 1 to
n. Then, for each triangle K, we take its matrix AK:(F) and add its entries to the large matrix at the
positions corresponding to the numbers of the involved unknowns.

After this assembly step over all elements in 7, we obtain two matrices Agf), Ag(,k) € R™*"™ one for each
component, where n is the number of degrees of freedom in V},. These matrices are assembled from
the same local matrices A%(¥) and are therefore identical up to possible differences in boundary rows,
both are n x n symmetric positive definite matrices. With the ordering

Ug,1

the global matrix has the block-diagonal form

a0 (A0 )
0o AP

Consequences for Jacobi preconditioning. The Jacobi preconditioner for the vector-valued system
is defined as the diagonal of A(%),

. diag (A% 0
M, = diag(A"W) = ( g(o ) diag(A(k))> ’
Yy

so each degree of freedom is scaled only by its diagonal entry and all off-diagonal entries are ignored.

For k = 1 each row of A% and A?(,k’) contains relatively few off-diagonal entries, and the diagonal still
represents a reasonable fraction of the local stiffness-plus-mass operator. In this case Jacobi provides
a slight improvement over no preconditioning, as seen in the GMRES iteration counts for Vh(l) (see
Figure 7.2).
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For k = 3 the situation is different. Each row now couples to many more neighbouring unknowns with
entries of comparable magnitude, while M still uses only the diagonal. The preconditioned matrix
M;lA(’“) therefore remains strongly ill-conditioned and its eigenvalues are poorly clustered. This is

reflected in the experiments: for Vh(g), the Jacobi-preconditioned GMRES method requires a similar or
even larger number of iterations than the unpreconditioned method (see Figure 7.3). This behaviour
is consistent with the theory that GMRES(m) convergence depends on the spectral properties of the
preconditioned operator M ;' A®*) rather than on A*) alone [1], and with the fact that higher-order
elements lead to worse conditioning and weaker diagonal dominance.



	Preface
	Layman's Abstract
	Abstract
	Introduction
	Iterative Methods for Linear Systems
	Classical Stationary Iterative Methods
	Krylov Subspace Methods
	Summary of Iterative Method Properties

	Preconditioning Techniques
	Classes of Preconditioners

	Problem Setup
	From PDE to Weak Formulation
	Finite Element Approximation

	Parallel Computing on Multi-Core Architectures
	From Serial to Parallel Execution
	Memory Architectures
	Parallel Programming Interfaces
	Limits to Scalability

	Implementation
	Discretization with NGSolve and Mesh Generation
	Sparse Storage and Computational Structure
	Preconditioned Conjugate Gradient Solver and Kernels
	GMRES Implementation, Orthogonality, and Givens Rotations
	PyKokkos Views, Memory Spaces, and Data Movement

	Results
	Conjugate Gradient for a Scalar Laplace Problem
	GMRES Results for a Stokes-like Vector Problem
	Stokes flow around a NACA airfoil

	Conclusions and Future
	Summary of Main Findings
	Answers to the Research Questions
	Recommendations and Future Work

	References
	Influence of polynomial order

