
Anomaly Detection in Network
Traffic using Multivariate State
Machines

Vasileios Serentellos

Anomaly Detection in Network Traffic
using Multivariate State Machines

by

Vasileios Serentellos
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday August 25, 2020 at 2:00 PM.

Student number: 4843789
Project duration: November 28, 2019 – August 25, 2020
Thesis committee: Dr. ir. S. Verwer, TU Delft, supervisor

Prof. dr. ir. R. L. Lagendijk, TU Delft
Dr. A. Panichella, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Computer networks have nowadays assumed an increasingly important role in the expression of modern hu-
man activity through the ongoing rapid development in the field of Information and Communication Tech-
nologies (ICT). More and more individual users and businesses around the world are gaining access to net-
works online, while the range of services offered by these networks span multiple domains of human life,
leading them to grow in terms of both size and complexity, and in parallel handle a constantly growing vol-
ume of user-generated data. As with every important aspect of human life, computer networks need to be
protected from malicious adversaries aiming to degrade the quality of the offered services and acquire unau-
thorised access to them, so as for their intended functionality to be uneventfully maintained. The broad suc-
cess of Machine Learning (ML) based techniques in applications originated from a wide range of fields has led
to the wide adoption of such techniques in the premises of automated network traffic analysis systems aim-
ing to detect malicious activity within computer networks, with a notable portion of these systems employing
solutions inspired from the field of anomaly detection. Such an automated system for anomaly detection in
network traffic, attempting to address as many of the major shortcomings of earlier relevant works as possi-
ble, constitutes the content of this thesis. In particular, the proposed system is designed to offer fine-grained
analysis of the recorded traffic, by leveraging powerful sequential learning models, like multivariate state ma-
chines, equipped with well known anomaly detection algorithms in their structure, towards the extraction
of benign behavioral profiles from NetFlow traces of aggregated network entities, like hosts or connections,
so as to use these profiles towards the identification of any behavior not conforming to them as anomalous.
Three publicly available Netflow-based datasets, incorporating a diverse set of cyber attacks, are utilized to
evaluate the detection potential of the proposed methodology. First, the effectiveness of multiple different
settings of the designed detection system is quantified, so that the configurations with the most promising
detection potential can be identified. Subsequently, the proposed system is compared with various easily
developed baseline detection methodologies for the extent of the impact of its inherent complexity to be
evaluated. Finally, the designed system is examined in comparison to a state-of-the-art detection technique
operating on one of the three datasets used in this thesis, achieving higher or similar detection performance
on all the scenarios considered.

iii

Acknowledgements

I am grateful to many people that contributed with one way or another to the completion of this thesis.
First of all, I would like to thank my supervisor, Dr. ir. Sicco Verwer, who provide me with the opportunity

to engage a highly interesting topic in the premises of this work. Throughout these nine months, he was con-
stantly available for consultation and willing to offer his advice and suggestions when needed. His inspiring
ideas contributed a lot into shaping both the goal and the content of this thesis.

Second, I would like to thank Prof. dr. ir. R. (Inald) L. Lagendijk, and Dr. Annibale Panichella for agreeing
to be part of my Thesis Examination Committee, as well as their cooperation in organizing and carrying out
my Thesis Defence.

Third, I would like to thank everyone from my supervisor’s group for the weekly meetings, through which
we could share our ideas and concerns for successfully undertaking the final milestone of MSc studies, the
Thesis project.

Last but not least, I would like to express my gratitude to my family for their nonstop support throughout
my studies, especially during the difficulties that I faced over the past two years, as well as my friends, many
of which were also my classmates, for being there for me throughout this course.

Vasileios Serentellos
Delft, August 2020

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Proposed Solution . 3
1.4 Research Questions . 4
1.5 Contributions . 5
1.6 Thesis Structure. 5

2 Background 7
2.1 Network Traffic . 7

2.1.1 Flow Monitoring and NetFlow Data . 7
2.2 Sequential Data . 8

2.2.1 Data Aggregation & Window Extraction . 9
2.2.2 Discretization . 10

2.3 Finite State Automata . 10
2.3.1 Deterministic Finite State Automata . 11
2.3.2 Probabilistic Deterministic Finite Automata . 12
2.3.3 Real-Time Automata . 12
2.3.4 Probabilistic Deterministic Real-Time Automata. 13
2.3.5 DFA Inference . 14

2.4 Graphs . 15
2.5 Anomaly Detection . 15

2.5.1 Local Outlier Factor . 16
2.5.2 Isolation Forest . 17
2.5.3 Multivariate Gaussian Kernel Density Estimation . 18

2.6 Evaluation Metrics . 18

3 Related Work 21
3.1 Standard Anomaly Detection Techniques . 21

3.1.1 Classification Techniques . 21
3.1.2 Nearest Neighbour Techniques . 22
3.1.3 Clustering Techniques . 22
3.1.4 Statistical Techniques . 22
3.1.5 Spectral Techniques . 23

3.2 Anomaly Detection in Network Traffic . 23
3.2.1 Randomized Approaches . 24
3.2.2 Clustering Approaches . 25
3.2.3 Combined Machine Learning Approaches . 25
3.2.4 State Machine Learning Approaches . 28

3.3 State Machine Inference . 29

4 Data Exploration 31
4.1 Datasets Overview . 31

4.1.1 The CTU-13 Dataset . 32
4.1.2 The UNSW-NB15 Dataset . 33
4.1.3 The CICIDS2017 Dataset . 34

vii

viii Contents

4.2 Data Preprocessing . 35
4.3 Feature Exploration and Selection . 37
4.4 Challenges . 39

5 Model Creation 41
5.1 Red-Blue State Merging Algorithm . 41
5.2 Learning from Labelled Data: The RTI Algorithm . 42
5.3 Learning from Positive Data: The RTI+ Algorithm . 43
5.4 The Multivariate Approach . 44
5.5 Additional Constraints & Tunable Parameters. 45

6 Modelling Benign Flows 47
6.1 Preliminaries . 47
6.2 Main Pipeline Analysis . 48

6.2.1 Levels of Abstraction . 49
6.2.2 Traces Extraction. 50
6.2.3 Model Extraction and Training . 54
6.2.4 Model Testing . 54

6.3 Some Thoughts on Complexity . 56

7 Experiments 57
7.1 Experimental Configuration . 57
7.2 Training and Test Sets Selection . 59
7.3 Baseline Methods . 59
7.4 Parameter Tuning . 60
7.5 Results . 62

7.5.1 Results on CTU-13 Dataset. 62
7.5.2 Results on UNSW-15 Dataset. 66
7.5.3 Results on CICIDS2017 Dataset . 70
7.5.4 Comparison to State-of-the-art . 73

7.6 Discussion . 74

8 Conclusion and Final Remarks 75
8.1 Main Conclusions. 75
8.2 Strong Points . 76
8.3 Limitations . 76
8.4 Future Work. 76

Bibliography 79

List of Figures

1.1 High level illustration of the detection process on a virtual network topology 4

2.1 A sample bidirectional NetFlow recording . 8
2.2 Sample DFA with 3 states, 2 symbols, and an accepted language of 0∗1(0|1)∗ 11
2.3 Sample DRTA with 3 states, 2 symbols, and 6 delay guards . 13
2.4 Illustration of the different categories of anomalies . 15
2.5 Sample 2-D data scatter plot with both global (o1) and local (o2) outliers 17
2.6 Sample confusion matrix . 19

4.1 Network topology of the CTU-13 dataset (retrieved from [28]) . 32
4.2 Network topology of the UNSW-NB15 dataset (retrieved from [64]) 33
4.3 Network topology of the CICIDS2017 dataset (retrieved from [75]) 35
4.4 Flow distribution plots in CTU dataset . 36
4.5 Flow distribution plots in UNSW-NB15 dataset . 36
4.6 Flow distribution plots in CICIDS2017 dataset . 37
4.7 Visualization of basic NetFlow features for CTU dataset . 38
4.8 Visualization of basic NetFlow features for UNSW-NB15 dataset 38
4.9 Visualization of basic NetFlow features for CICIDS2017 dataset . 39

5.1 A snapshot of a sample DFA during the determinization process in the red-blue framework . . . 42
5.2 A real-time APTA generated from the timed sample with S+ = {(a,1), (a,1)(b,3)(b,4), (b,2)(b,3)}

and S− = {(a,1)(b,3)(a,4), (b,2), (b,1)(b,2)} . 42
5.3 Example of a multivariate model extracted from NetFlows with 5 states and 3 attributes in each

state . 44

6.1 High level flowchart of the detection pipeline . 48
6.2 High level flowchart of the training pipeline . 54
6.3 High level flowchart of the testing pipeline . 55

7.1 Aggregated evaluation metrics per detection method and feature set for the CTU-13 dataset
with only the major hosts included . 63

7.2 Aggregated evaluation metrics per detection method and feature set for the CTU-13 dataset
with all hosts included . 65

7.3 Comparison between the aggregated evaluation metrics of the proposed system and the base-
line methods for the CTU-13 dataset . 66

7.4 Aggregated evaluation metrics per detection method and feature set for the UNSW-NB15 dataset 67
7.5 Aggregated evaluation metrics per detection method and feature set for the UNSW-NB15 dataset

with all hosts included . 68
7.6 Comparison between the aggregated evaluation metrics of the proposed system and the base-

line methods for the UNSW-NB15 dataset . 69
7.7 Visualization of the aggregated points in the LOF clustering context for the the UNSW-NB15

dataset . 70
7.8 Aggregated evaluation metrics per detection method and feature set for the CICIDS2017 dataset

with only the major hosts included . 71
7.9 Aggregated evaluation metrics per detection method and feature set for the CICIDS2017 dataset

with all hosts included . 72
7.10 Comparison between the aggregated evaluation metrics of the proposed system and the base-

line methods for the CICIDS2017 dataset . 73

ix

List of Tables

4.1 Distribution of records in each scenario of the CTU-13 dataset . 33
4.2 Distribution of records in each scenario of the UNSW-NB15 dataset 34
4.3 Distribution of records in each day of the CICIDS2017 dataset (morn. and aft. refer to morning

and afternoon respectively) . 35

6.1 Comparative results on the CTU dataset only for major hosts when two different window ex-
traction techniques are used . 53

7.1 Training and Test sets split for each dataset . 59
7.2 Detection results per feature set and detection algorithm used on the CTU-13 dataset with only

the major hosts included . 63
7.3 Detection results per feature set and detection algorithm used on the CTU-13 dataset with all

hosts included . 64
7.4 Comparative results on the CTU dataset between the proposed system and the baselines 65
7.5 Detection results per feature set and detection algorithm used on the UNSW-NB15 dataset with

only the major hosts included . 67
7.6 Detection results per feature set and detection algorithm used on the UNSW-NB15 dataset with

all hosts included . 68
7.7 Comparative results on the UNSW dataset between the proposed system and the baselines . . . 69
7.8 Detection results per feature set and detection algorithm used on the CICIDS2017 dataset with

only the major hosts included . 70
7.9 Detection results per feature set and detection algorithm used on the CICIDS2017 dataset with

all hosts included . 71
7.10 Comparative results on the CICIDS dataset between the proposed system and the baselines . . 72
7.11 Comparative results between the designed system and BotFP on the CTU-13 dataset 73

xi

1
Introduction

The rapidly increasing rate of development in the field of Information and Communication Technologies
(ICT) recorded over the last years has rendered computer networks an indispensable part of modern human
activity. Nowadays, more and more individual users and businesses around the world are gaining access to
networks online, while the pool of services offered by such networks is being constantly enriched. Computer
networks provide important assistance in various domains of modern human life, ranging from simple web
search to business intelligence and medical foresight, rendering the operation and prosperity of organisms,
and human societies in general, inherently dependent to the proper functioning of these networks. On top
of that, the remarkable development observed in the fields of Artificial Intelligence (AI) and Machine Learn-
ing (ML), along with the notable ongoing success of projects and applications related to these fields, have
contributed significantly to the tremendous growth on both the size and the complexity of computer net-
works. This progress is inherently linked to the enormous increase in the volume of data stored on public or
privately owned cloud structures, and transferred within and across networks online, while the number and
variety of smart devices connected to the internet and communicating with other such smart devices online
are continuously rising too.

As with every important aspect of human life, the proper functioning of computer networks needs to
be protected and secured by malicious adversaries aiming to degrade the quality of the provided services
and acquire unauthorised access to such networks. Of course, the degree of difficulty associated with secur-
ing businesses and individuals against cyber attacks grows proportionally to the number of interconnected
devices, services offered and transactions conducted online, since the pool of potential attack targets is con-
stantly widening. On top of that, the inherent dependence of multiple human activities on computer net-
works renders the consequences of successfully performed cyber attacks quite severe. In fact, according to
Cybersecurity Ventures 2019 Official Annual Cybercrime Report1, global cybercrime damages are predicted
to cost up to 6 trillion dollars annually by 2021, while the research conducted by the AV-TEST IT-Security Insti-
tute2 suggests that 144.91 million new malware samples were recorded in 2019, with 57.8 million new samples
having been recorded already in 2020. These figures, along with the importance regarding the management
of computer networks illustrated above, indicate the eminent need for designing and developing automated
systems capable of accurately detecting malicious traffic activity among the vast amount of available traffic
information.

The broad success of machine learning techniques in applications originating from a wide range of fields
has led to the increasing deployment of such techniques as pivotal components of automated network traffic
analysis systems aiming to detect malicious activity within networks. A significant portion of such techniques
are inspired from the field of anomaly detection, since identified anomalies in the traffic of the network under
examination could indicate the presence of malicious behaviour in the premises of that network. The core
functionality of such techniques can be roughly summarised as the development of a learning model, ex-
tracted from a set of observed data points, capable of distinguishing between the benign and malicious data
points being present in the traffic of the monitored network. Of course, such systems need to meet certain
requirements regarding both the type of data used as the input of the system, and the way that such data are

1https://www.herjavecgroup.com/the-2019-official-annual-cybercrime-report/ - Date accessed: 12/06/20
2https://www.av-test.org/en/statistics/malware/ - Date accessed: 12/06/20

1

https://www.herjavecgroup.com/the-2019-official-annual-cybercrime-report/
https://www.av-test.org/en/statistics/malware/

2 1. Introduction

processed, while delivering high detection and low false alarm rates. Such an automated system for anomaly
detection in network traffic constitutes the content of this thesis. In particular, the proposed system aims to
provide fine-grained analysis on the recorded traffic, by leveraging powerful sequential learning models, like
multivariate state machines, towards the extraction of benign behavioral profiles from the recorded traffic.
The motivation behind the designed system, as well as a brief summary of its structure and characteristics,
along with the problems that it aims to address, are presented in the sections to follow.

1.1. Motivation
As mentioned above, the increasing complexity in the structure of computer networks, as well as the mas-
sive loads of data transported both within and between networks online, have significantly complicated the
task of properly securing such networks, as well as the endpoint devices connected to them, from malicious
activity. The effective identification of malicious behaviour in computer networks is of pivotal importance
for the network administrator in order to ensure that such behavior cannot significantly impact the quality
of services offered to end users. It can be easily understood that the manual inspection of network traffic to-
wards the goal of detection constitutes an impossible task, especially in the current era of big data. As a result,
there is the need of developing automated systems able to identify anomalies in the recorded traffic of a given
network, so that possible threats can be detected and mitigated. To that end, various automated approaches
have been proposed over the years, with each of them associated with various advantages and disadvantages.
The purpose of the current thesis is to develop a fully automated end-to-end detection system able to address
as many of the major shortcomings of earlier works as possible, while providing high detection performance.

The earliest attempts made towards the development of such systems were mostly based on the inspec-
tion of the payload of the packets transmitted across the monitored network, under the assumption that
anomalies in the payload could indicate the existence of malicious traffic associated with the examined pack-
ets. Despite the fact that such methods initially provided high detection rates, the great volume of data ex-
changed in modern networks, along with the enforcement of strict data privacy regulations, like the General
Data Protection Regulation (GDPR)3, and the increasing attempt made by malicious adversaries to evade de-
tection using techniques such as code obfuscation, encryption, and polymorphic code, have rendered the
adoption of such approaches unrealistic. A way of addressing such issues, that has received increasing atten-
tion during the last years, regards the analysis of high-level aggregated network communication information,
like NetFlows. The collection of such data is considered relatively easy and cheap, while a system based on
the analysis of such data is able to both respect any existing privacy requirements due to the utilization of
solely high-level features of the recorded inter- and intra-network communication, and separate its detec-
tion algorithm from the content of the examined packets’ payload. Yet, extracting meaningful information
towards detection solely from high-level features of the monitored traffic constitutes a quite challenging task.

The ongoing success recorded in the field of Machine Learning has led many network management and
intrusion detection systems to employ ML techniques towards the goal of identifying malicious behaviour in
a network. Most of such approaches perceive the whole network traffic as a dataset on which a classification
algorithm needs to be fitted, so that benign data samples can be distinguished from malicious ones. Such ap-
proaches, though, may commonly entail some of the following drawbacks. First, deriving a detection model
from the entire recorded network traffic does not provide a fine-grained representation of the communica-
tion behavior in the network under examination. Instead, a detection system that could associate specific
hosts or connections with malicious activity seems a more meaningful choice for a network administrator
operating on the traffic of the monitored network. In addition, the robust operation of many machine learn-
ing algorithms is founded on the existence of a training set of representative data samples from all classes of
the problem. It can be easily understood that, especially when dealing with malicious activity, having access
to malware is not always the case. To that end, various unsupervised approaches have been developed in
the field of anomaly detection for identifying outlying data in the provided dataset, and have been leveraged
in malware detection systems. Yet, many of such approaches are of black-box nature, meaning that the de-
tection procedure cannot be easily interpreted. Such a characteristic is significantly undesired, especially in
an era that privacy concerns are constantly raised. Finally, capturing any underlying temporal relation be-
tween data points is crucial when dealing with timed data like NetFlow traces, thus it would be beneficial for
a detection system to consider such information.

In the anomaly and malware detection literature there have been various noteworthy works [33, 34, 68, 79]
trying to address the aforementioned issues, that are associated with impressive results, yet the proposed ap-

3https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679 - Date accessed: 12/06/20

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

1.2. Problem Statement 3

proaches were based on the development of detection models learnt from malicious traffic. However, as
explained before, acquiring representative samples of malware is not always easy, while the diversity of mal-
ware and the constant attempts of malicious adversaries to adapt themselves on the detection mechanisms,
so as to structure their attacks in such a way that they would demonstrate a behaviour similar to normal
traffic, render the applicability of such techniques quite restrictive. Learning from benign traffic, which a
network produces during its normal execution, constitutes a more flexible solution that could be associated
with higher possibilities of generalising across different kinds of malware. Of course, since network traffic
analysis constitutes a domain, in which normal behavior keeps evolving, meaning that the current notion
of normal behavior might not be adequately representative in the future, it would be beneficial for an auto-
mated detection system to make use of as little prior information as possible. All things considered, the de-
tection system proposed in the premises of this thesis aims to address the aforementioned issues by utilizing
powerful sequential models, like multivariate state machines, equipped with well known anomaly detection
algorithms in their structure, in order to extract benign behavioral profiles from NetFlow traces of aggregated
network entities, like hosts or connections, and use these profiles towards the identification of any behavior
not conforming to them as anomalous.

1.2. Problem Statement
The problem faced in the premises of the current thesis can be typically formulated as an anomaly detection
task, since, given a set of both normal and anomalous data points, a model capable of distinguishing between
these two categories shall be developed, achieving both high detection performance and a relatively low false
alarm rate. In the context of malware detection, NetFlow-based data capturing basic traffic summary statis-
tics about the connections between endpoint devices in the monitored network are frequently utilized as
the data points on which the detection system will operate, with the normal set of points representing the
benign traffic of the network, and abnormal points referring to malicious activity. Apart from the ability to
identify malicious activity, the proposed system should be able to associate the detection results with specific
aggregated network entities, like hosts or connections, characterizing in that way their behavior and offering
a greater level of analysis to the network administrator. It can be easily understood that, if the detection sys-
tem is capable of identifying malicious hosts or connections, the task of identifying the origin of a possible
threat and securing the monitored network against it can be effectively simplified. Furthermore, the general-
ization potential of the modelling procedure should be evaluated, since the proposed method should be able
to identify different types of malware activity. Towards that end, three different datasets of NetFlow traces
incorporating a diverse set of cyber attacks are used to evaluate the performance of the proposed detection
system. More information on these datasets can be found in Chapter 4 of this work. On top of that, the im-
pact of the inherent complexity of the proposed detection model needs to be examined, thus the proposed
system is compared with various easily developed baseline detection methodologies across all the NetFlow
datasets taken into account in this thesis. Finally, it is considered beneficial to compare the detection perfor-
mance of the proposed system with the one attained by a state-of-the-art detection technique, so as to better
comprehend the contribution of the work conducted in this thesis in the field of network-oriented anomaly
detection. This comparison is conducted against a recently published (2020) method operating on one of the
three NetFlow based datasets used in this thesis, and is presented in Chapter 7.

1.3. Proposed Solution
The functionality of the proposed detection system is founded on the assumption that, if models are extracted
from the normal operation of a monitored system, then any behavior rejected from these models is consid-
ered an anomaly, thus it could be potentially associated to malicious activity. In more detail, the proposed
architecture builds upon this assumption, while attempting to address the issues mentioned in the previous
sections in the following way: State-of-the-art automata learning algorithms are used to extract multivariate
state machines from the benign NetFlow traces of certain network entities, like hosts and connections. As
a result, depending on the preferred level of analysis (host or connection level), each state machine can be
perceived as a communication profile capturing the benign behavior of the corresponding network entity.
Each state of the derived state machines can be further perceived as a temporal cluster of the general behav-
ior of the corresponding network entity, so that underlying temporal relations can be captured by the model.
Subsequently, the benign traces can be replayed on each corresponding state machine, and an anomaly de-
tection model can be learnt in each state. As a result, each state can be used as a detection predictor when
unseen NetFlow traces are replayed on the associated state machine. At this point, it should be mentioned

4 1. Introduction

that the proposed system utilizes multivariate state machines, meaning that there is no need for the creation
of a symbolic alphabet out of the raw NetFlow features, which as a matter of fact allows a straightforward
learning process on each state of the extracted automata. Finally, each fitted multivariate state machine can
be utilized as a benign communication profile providing predictions on unseen sets of NetFlow traces, with
the benignity of each set depending on the extent of its match to the extracted benign profiles.

Figure 1.1: High level illustration of the detection process on a
virtual network topology

A high level illustration of the detection process described above can be seen in Figure 1.1. In brief, the
NetFlow traffic of a set of benign hosts is collected through some monitoring devices and used to extract mul-
tivariate state machines capable of capturing the temporal relations in the communication traffic of a specific
benign network entity (host or connection). Subsequently, the benign set of flows (traces) associated with
each network entity are replayed on the corresponding state machine, and a outlier detection algorithm is fit-
ted on the flows captured in each state of that machine. In the premises of this thesis, three well-known outlier
detection techniques, namely Local Outlier Factor (LOF), Isolation Forest, and a Gaussian Kernel Density Es-
timation (KDE) based method, are evaluated on the designed detection system. After fitting the detection
algorithm on each state of every multivariate state machine inferred from the considered benign network
entities, these state machines can act as behavioral communication profiles of the corresponding entities,
composing in that way a "database" of benign profiles learnt from the benign traffic recorded in the network
under examination. Finally, when NetFlow traces are collected from unknown hosts or connections, these
traces can be replayed on each benign model in the database and a local prediction can be made from the
detection algorithm fitted in the states of these models. The aggregated predictions from all states of a model
define the extent to which a set of traces from an unknown network entity match the benign behavior repre-
sented by that model. If there is no confident match between the traces of the unknown network entity and
any benign model, then this entity is considered as anomalous and an alarm is raised. As it was mentioned
earlier, the implemented detection process is briefly illustrated through Figure 1.1 for the reader to acquire
an initial understanding of the proposed methodology. The detailed presentation of the proposed solution
can be found in Chapter 6.

1.4. Research Questions
The primary research questions, that are addressed in this work, are the following:

1. How effective can multivariate behavioral communication profiles extracted solely from basic NetFlow
features of benign data be proved for the purpose of malware detection in network traffic?

2. What type of malicious behaviour can be successfully identified from the proposed detection system?

3. What is the impact from the incorporation of outlier detection models in the structure of multivariate
state machines towards the goal of detection?

1.5. Contributions 5

1.5. Contributions
The most prominent contributions of this thesis can be summarized as follows:

• A fully functional pipeline for identifying malicious behavior in NetFlow data, with the use of behav-
ioral communication profiles extracted from multivariate sequential models, that has not been imple-
mented before, to the best of our knowledge

• An anomaly detection system that does not require any complex feature preprocessing steps, since the
NetFlow features are directly and transparently used in the detection process

• An anomaly detection system with great generalization potential, originating from the fact that this
system is capable of operating on basic NetFlow features available in all types of captures

• A dynamic window extraction technique capable of adjusting the window length and stride according
to the temporal information incorporated in the examined data sequences

• The introduction of a multivariate approach for learning sequential models, without the need of a sym-
bolic alphabet, and the loss of information that it entails

• An empirical evaluation on effectively identifying malicious activity on NetFlow data based on multiple
publicly available datasets, the promising results of which illustrate the high detection potential of the
proposed pipeline

• A well-founded comparison between the proposed system and a state-of-the-art detection technique
found in the literature on a common dataset, in which the designed methodology attains competitive
detection performance to that of the latter technique

1.6. Thesis Structure
In this section the structure of the current thesis is discussed and explained. In Chapter 2, the required back-
ground knowledge, for the reader to properly comprehend the main terms and concepts used throughout
this thesis, is presented. In Chapter 3, previous works on anomaly detection in network traffic, as well as state
machine learning, are listed and discussed. In particular, this chapter includes the works from which inspi-
ration towards the design of the developed system was derived, as well as those that gave birth to the main
research questions of this work. Chapter 4 contains an extensive presentation on the NetFlow datasets used
to train and test the effectiveness of the proposed system, along with some exploratory analysis conducted on
these datasets towards the achievement of a better understanding about the nature of the data. In addition,
in this chapter the main choices regarding the preprocessing are highlighted and explained.

Chapter 5 constitutes an in-depth presentation of the sequential model used as the primary building
block of the designed pipeline. The framework used for learning the sequential model from NetFlow traces
is introduced, while the learning algorithm, as well as the additional features taken into consideration in the
learning process, are explained and discussed. In chapter 6, the main contribution of this thesis is presented.
The pipeline developed in the premises of this thesis is analysed, and design choices are explained and jus-
tified. In more detail, this chapter touches upon the different levels of abstraction, in which the NetFlow
data are processed, the trace extraction process, needed to transform raw NetFlow data into their sequential
representation compatible with the input format of the learning algorithm, the different outlier detection al-
gorithms applied on each state of the extracted models, as well as the way in which these models were used
towards the goal of anomaly detection. Chapter 7 contains a presentation of the experimental procedure fol-
lowed, along with the results obtained through the undergone experiments, expressed in terms of accuracy,
precision, and recall achieved. Finally, Chapter 8 concludes on the results of the conducted research, while
introducing its limitations and some possible future directions.

2
Background

The goal of this chapter is to introduce the reader to the theoretical background needed to properly compre-
hend the main terms and concepts used throughout this thesis, thus it does not constitute by any means a full
analysis on the presented topics. More detailed information of these topics can be addressed through the ref-
erences provided in each section. This chapter starts with an introduction to the simplest and most generic,
yet important, concepts, and gradually arrives to the presentation of more complex notions and ideas upon
which the proposed detection methodology is built.

2.1. Network Traffic
Computer networks constitute the primary components of the digital infrastructure that supports inter-
personal communication, services and resources sharing, as well as the unprecedented data propagation
recorded across the world, as the field of Information and Communications Technology (ICT) keeps evolving.
Data transmission, both between computer networks and between nodes of the same network, constitutes
the primary procedure on which the functionality of all the services, and applications supported nowadays
online, is based. The data moving across a network at a given point of time comprise the traffic of this net-
work, and are mostly encapsulated in network packets. Accordingly, these packets consist of two main kinds
of data: control information and user data (payload). The former type of data is used for regulating the cor-
rect transmission of the data, while the latter constitutes the data, on which the functionality of the network
is structured. As a result, it can be easily seen that disruptions in the data traffic, intentional (cyber attacks)
or not (critical endpoints malfunction), can lead to unwanted behaviour within a computer network that
eventually may hinder its operation. To avoid such unpleasant situations, large organisations tend to invest
substantial resources for protecting and monitoring their enterprise networks, consisting of all connected de-
vices and communications infrastructure within the organisation. Proper capturing and analysis of network
traffic provides the organization the ability to identify such anomalies in the transmitted data and develop
protection and recovery mechanisms from any anomalous network states.

2.1.1. Flow Monitoring and NetFlow Data
As it was mentioned above, network monitoring has been proven to be one of the most important network
management processes, since it can provide significantly valuable information to a network administrator
regarding the nature of the traffic recorded within the network under examination. As a result, various net-
work monitoring approaches have been developed throughout the years. These approaches can be divided
into two main categories, namely the active and the passive ones [39]. Active approaches interfere with the
examined network by injecting traffic towards the end of performing different types of measurements in the
network, while passive approaches, an example of which this work utilizes, solely observe the existing traffic
as it passes by a measurement point (usually a router), on which the data exporter has been attached. In
the past, passive network monitoring was primarily based on packet capture, since deep packet inspection
provides significantly insightful information on the network traffic. Nevertheless, there are two main prob-
lems concerning such approaches. Firstly, when used in high-speed networks, as most networks are nowa-
days, packet capture requires expensive hardware and infrastructure for storage and analysis of the massive
amount of data recorded. Secondly, inspecting the payload of packets could reveal information, that should

7

8 2. Background

not be disclosed to a third party, raising multiple privacy concerns over the procedure. To deal with such
issues, passive monitoring approaches based on flow export have been developed. In such approaches, flows
constitute the basic traffic recording unit, which, according to [17], can be defined as "a set of IP packets
passing an observation point in the network during a certain time interval, such that all packets belonging to
a particular flow have a set of common properties". Thus, the main functionality of such approaches can be
summarized as the aggregation of packets into flows so that they can exported for further processing.

NetFlows constitute a flow export protocol, incorporating network flow event summaries collected typi-
cally from routers within the examined network. In more detail, NetFlow records contain information about
connections between endpoint devices either with both of them residing in the premises of the examined net-
work, or with one of them originating outside of the studied network. Such flow-based data include extensive
meta information about the recorded connections, and typically encompass a Timestamp with the date and
time that a connection has been initiated, the Source and Destination IP addresses of the endpoints included
in the connection, the Source and Destination Ports used, the Protocol used for the communication between
the included devices, the Duration of the connection, as well as the number of Packets and Bytes transferred
while the connection was maintained. Of course, even more descriptive features might be included in a
NetFlow record, like the TCP-flags used or the number of Missed Bytes in the connection, nonetheless, the
attributes mentioned above constitute the ones captured in the majority of cases. An example of a set of
two NetFlow records can be seen in Figure 2.1. In this example, apart from the aforementioned features, the
symbol -> is included, denoting the direction of each flow. Such information is incorporated in bidirectional
NetFlow captures, so that the direction, in which the transmission of bytes and packets occurred in each con-
nection, can be described. At this point, it should be mentioned that the scope of this section is to introduce
the reader to the concept and the functionality of NetFlows, since such type of data were used as the input of
the designed pipeline. For a more in depth presentation of the concept, as well as the process of flow export,
the reader is directed to [39].

Figure 2.1: A sample bidirectional NetFlow recording

As it was explained earlier, flow export demonstrates important advantages comparing to packet captur-
ing and inspection, especially in terms of scalability and privacy preservation, yet deep packet inspection
provides more insight into the network traffic, which as a matter of fact could render flow-based techniques
less suited for security analysis and threat detection tasks. In practice, this is not the case, since multiple
types of cyber attacks, like DoS attacks, network scans, and botnet communication, affect metrics that can be
directly derived from flow records, such as the volume of packets and bytes transferred, the number of active
flows in a specific time interval, or suspicious port numbers and blacklisted destination hosts [39]. Thus, the
fact that flow-based data, like NetFlows, can be leveraged in threat detection, combined with the increasing
need for scalable and privacy-preserving solutions in the network monitoring process of an organization or
an enterprise, renders methods working with such data highly beneficial. In fact, various anomaly and threat
detection systems operating on flow-based data have been developed, as it will be presented in great extent
in Chapter 3. Finally, given that, as mentioned above, NetFlows include a timestamp among their features,
it can be said that such data demonstrate a sequential nature. Therefore, some basic understanding on the
nature of sequential data and the ways in which such data can be handled and processed in the premises
of a learning pipeline is needed, in order for the reader to be able to comprehend the data processing steps
followed in this work.

2.2. Sequential Data
Data incorporating temporal information among their features are characterized as sequential. This tempo-
ral information can range from the association of time values with each data instance, as in the case of time
series, to simply the consideration of the relative position of a data instance within the series of available
instances, as in the case of text. The common characteristic in these examples is the presence of a notion
of ordering between the data instances. In a more formal way, the general classification framework com-

posed by a set of data instances (or samples)
{
(xi , yi)

}N
i=1, where N is the number of data instances, xi is

the attribute vector of instance i , and yi is the class label of instance i , can be transformed to fit the no-
tion of sequential learning by representing each data instance by a temporal sequence of its attributes, as

2.2. Sequential Data 9

xi =
〈

xi ,1, xi ,2, . . . , xi ,Ti

〉
and yi =

〈
yi ,1, yi ,2, . . . , yi ,Ti

〉
, where Ti denotes the temporal index in the sequence of

the i-th data instance. Typical machine learning algorithms tend to perform well when the data samples x,
as well as the class labels y , in which they belong, are drawn independently and identically (iid) from some
joint distribution P (x, y), which, as a matter of fact, is not the case with sequential data. As a result, when
such kind of data are provided, the use of standard machine learning techniques might lead to the creation of
a system that neglects the underlying temporal information, as well as the structural dependencies between
subsequent instances. Such dependencies are quite important when modelling the behaviour of sequential
systems, thus the learning algorithm to be applied should take into account such information in order for
a model of high quality to be developed. Apart from that, modelling methods that consider the sequential
structure of the input data can provide significant assistance in better understanding and analysing the sys-
tem under learning, since the sequential dependencies can be depicted in the inferred model too. All things
considered, in order to leverage the sequential nature of NetFlow data in the developed learning system, a
model capable of capturing sequential patterns should be incorporated. Towards the fulfillment of that need,
state machines are utilized, since they have been proven quite effective in modelling such data. More infor-
mation on state machines in general, and specifically about the models used in the premises of this work, can
be found both later in this chapter and in Chapter 5.

Before feeding the data into the learning algorithm, though, significant decisions on the way in which
such data will be preprocessed need to be taken. The way, in which the sequential data will be processed, can
significantly impact the quality of the produced model. If the sequential patterns and dependencies present
in the data are not appropriately captured, misleading representations of the underlying temporal behaviour
may be extracted, which as a matter of fact will eventually degrade the learning procedure. There are many
choices to be made when preprocessing sequential data, with the primary ones involving the aggregation of
the data into meaningful sequential clusters, as well as the way in which the attributes associated with each
data instance are represented within an extracted sequence. These choices, and their effects on the quality of
the produced models, are discussed in the following section.

2.2.1. Data Aggregation & Window Extraction
Data aggregation, in the context of sequential learning, can be primarily expressed as the clustering of data
according to their temporal values. Yet it should be noted that, apart from any temporal features, attributes
capable of uniquely characterising the clusters to be extracted can be leveraged in the data aggregation pro-
cedure too. For instance, network connections can be grouped according to both their timestamps and their
source-destination IPs pairs. This sequence-aware clustering is usually conducted through the use of time
windows, with different techniques having been developed around this strategy. Some of the most frequently
used time-windowing methods are the following:

• Time slicing: This strategy suggests the grouping of data instances according to fixed non-overlapping
time periods. Thus, each temporal cluster is composed of the data instances the temporal index of
which lies within the time period associated with that cluster.

• Context-aware time slicing: The rationale of this approach is the same as that of the previous one,
with the main difference being that the clustering of the data is also dependent on a subset of features
that can uniquely identify each data instance. For instance, if NetFlows were to be considered, as it is
the case in the current thesis, the flow could be clustered both in terms of their Timestamps and their
source IP address.

• Static sliding windows: In the case of static sliding windows clustering is again conducted on a tempo-
ral level, as in the previous two strategies, with the main difference being that there can be an overlap
between consecutive time bins. In particular, a window of fixed length is "slid" upon the data sequences
under a predetermined sliding step (stride). It can be easily seen that if the length of the stride equals
the length of the time window, the sliding windows strategy is equivalent to time slicing. An interest-
ing point regarding the implementation of this strategy arise by the fact that the window, as well as
the stride used, can be of either a timed or a numerical nature. In the first case, fixed time periods are
used to define the window and the stride of the windowing process, leading to clusters with a varying
number of data instances, while, in the second case, a fixed number of data instances is used instead,
meaning that each cluster contains the same number of instances.

• Dynamic sliding windows: The adoption of static sliding windows has been proven to be quite effective
when applied to data measured at a fixed temporal rate. Nevertheless, when timings are not fixed,

10 2. Background

which, as a matter of fact, is usually the case, static methods tend to neglect sequential dependencies
that fall out of the fixed length history taken into account by each window. Methods residing in this
category adopt a more sophisticated windowing version, aiming to deal with the aforementioned issue.
In more detail, instead of specifying the length of the time window and the stride to some constant
values, these values are dynamically inferred by the sliding procedure, based on some user-defined
metrics regarding the nature of the captured data. In fact, the windowing method implemented in the
main pipeline of this work utilizes dynamic windows, thus a better understanding of such approaches
can be achieved after reading Chapter 6.

One of the main advantages of time slicing/windowing approaches can be addressed by the fact that they
facilitate the application of standard machine learning algorithms on the data captured in each slice or win-
dow. In particular, a given sequence X can be truncated in windows and a standard machine learning predic-
tor can be applied to each window. Apart from that, distance metrics, either standard, like the Euclidean dis-
tance, or temporal ones, like Dynamic Time Warping (DTW) [7], can be utilized to measure the (dis)similarity
between patterns captured by different windows, with such information used as an additional classification
rule for the data in each window. Subsequently, the predicted labels ŷt of each window are concatenated
according to their temporal index and the final predicted sequence Ŷ is formed. In addition, the extraction of
temporally local correlations between data samples achieved through a temporal clustering procedure, can
benefit pure sequential learning methods, like state machines, and hidden Markov models (HMMs). Never-
theless, as it was mentioned above, the parameters associated with the structure of the adopted windowing
strategy (length of the window, stride, etc) shall be chosen with caution, since improper choices could lead to
falsely extracted sequential dependencies, and, as a result, to a sequential model of poor quality.

After grouping the data into meaningful temporal clusters, the strategy of aggregating the features of the
clustered is sometimes adopted as a way of lowering the computational complexity that long data sequences
entail. In particular, especially when extremely long data sequences (in the order of millions of data samples)
are considered, it is common practice to reduce the number of data instances captured in each window ei-
ther by fully aggregating the attributes of the windowed samples through the use of some statistical quantities
(median, mean, standard deviation, mode, etc) to construct an aggregated view over the window, or by con-
structing smaller aggregation windows within the premises of the initial windows, with the aforementioned
aggregation happening on these smaller windows [28]. Attribute aggregation can produce both positive and
negative results on the learning process. On the one hand, significant reduction in the computational com-
plexity of the learning process can be attained, while, the additional information originating from the incor-
poration of attributes statistics could improve the generalization ability of the model. On the other hand, the
aggregation of consecutive instances could lead to significant temporal information loss, since the learning
process would be applied to a "compressed" version of the data.

2.2.2. Discretization
In most cases discretization is employed as another measure to reduce the computational complexity in se-
quential learning tasks through dimensionality reduction. To this end, the features associated with each
data instance, except from the temporal index, are combined into a symbolic representation, leading to a
sequence of symbolic events derived from a finite alphabet [51]. In the current thesis, such approaches are
not adopted, since the mapping of the data attributes into symbolic events degrades the interpretability of
the developed model. Instead, a multivariate approach is followed, so that in case of detected anomalies,
the actual attributes of the potentially anomalous flows can be inspected. Such approaches can be signifi-
cantly helpful when the root cause of a detected anomaly is investigated. To this end, it can be concluded
that in the premises of this work NetFlows are perceived as multivariate sequences, rather than discrete event
sequences.

2.3. Finite State Automata
As it will be explained in greater depth in the chapters to follow, the developed methodology is based on
the extraction of models able to capture any underlying patterns in a given series of network flows. The
models used in the premises of this thesis fall into the category of Finite State Automata (FSA), or Finite State
Machines (FSM), or simply State Machines. Before elaborating further on the nature and characteristics of
these models, it should be pointed out that the current section constitutes a brief, yet insightful, introduction
to automata theory, aiming to communicate the basic notions used in the premises of this project to a reader
unfamiliar with this specific field. More information on the field can be found in [40, 76, 78].

2.3. Finite State Automata 11

FSMs are mathematical models of computation used to formally describe the behaviour of systems that
perform a predetermined sequence of actions depending on the sequence of events received as input. In
more detail, FSMs can be in exactly one of a finite number of states at any given point in time, and they
can "transit" from one state to another as a response to a received input [88]. As a result, a FSM can be de-
fined by the list of its states, its initial state, as well as the inputs that fire each transition from one state to
another. FSMs can be classified either as deterministic or as non-deterministic, with the main distinction
between those two categories being the fact that in the case of deterministic state machines each transition
can be uniquely specified by the source or origin state and the input symbol observed. In the current the-
sis, modelling is based solely on deterministic state machines. The general structure and characteristics of
such models will be briefly explained in this section, while more information about the specific nature of the
models that are eventually used in the proposed methodology will be presented in Chapters 5 and 6.

2.3.1. Deterministic Finite State Automata
A Deterministic Finite Automaton (DFA), or Deterministic Finite State Machine (DFSM), M can be formally
defined as a quintuple

〈
Q, Σ, δ, q0, F

〉
, with each term denoting the following:

• Q : a finite set of states

• Σ : a finite set of symbols, also referred as the alphabet of the state machine

• δ : a transition function Q ×Σ→ Q, mapping each state q ∈ Q and an input symbol σ ∈ Σ to the next
state q ′ ∈Q

• q0 : an initial or starting state, where q0 ∈Q

• F : a set of accepting or final states, where F ⊆Q

A given string s = σ1σ2...σn of n symbols over the finite alphabet Σ (which can be also called as word)
is considered as accepted by the automaton M , if a sequence of states q0, q1, ..., qn exists in Q meeting the
following conditions:

• q0 is the starting state of M

• qi+1 = δ(qi ,σi+1), for i ∈ [0,n −1], meaning that each state in the sequence is produced by feeding the
transition function δ with the previous state and the corresponding input symbol from s

• qn ∈ F , meaning that qn is an accepting state

In any other occasion, it can be said that M rejects the string. Strings, or words, that are accepted by M ,
are considered as positive words over its alphabet, while those that are rejected as negative words over its
alphabet. The set of all positive words of M constitutes the language recognized by M , denoted as L(M).

DFAs can be visualized as directed graphs, with nodes representing states and edges representing transi-
tions. Transitions (or edges) are labelled with the corresponding input symbols capable of firing them, while,
typically, accepting states are denoted with a double circle. Finally, the starting state is indicated by an in-
coming sourceless arrow. A sample DFA is presented in Figure 2.2, so that its structure and characteristics
can be better illustrated. This DFA consists of 3 states, namely q0, q1, q2, with the starting state q0 denoted by
the sourceless arrow, as explained earlier, and an alphabet Σ= {

0,1
}

of two symbols, while q2 constitutes the
only accepting state and is indicated through a second circle, as described above. It can be easily seen that
the accepted language of the considered DFA can be expressed as 0∗1(0|1)∗, where the superscript ∗ can be
interpreted as "zero or more occurrences" of the preceding symbol.

Figure 2.2: Sample DFA with 3 states, 2 symbols, and an accepted
language of 0∗1(0|1)∗

12 2. Background

After presenting the main structure and the primary features of a simple DFA, some more complex DFA
variants, the characteristics and the inference procedure of which resemble more to the models used in
the core of the main pipeline of the detection system developed in the premises of this thesis, should be
discussed. In particular, the nature of Probabilistic Deterministic Finite Automata (PDFA) [70], Real-Time
Automata (RTA) [21], as well as their probabilistic version, Probabilistic Deterministic Real-Time Automata
(PDRTA) [85], will be introduced, in an attempt to provide the needed ground knowledge upon which the
multivariate models presented in Chapter 5 build. These "special" types of automata incorporate more in-
formation in their structure, like probabilities and time, which as a matter of fact renders them capable of
modelling systems or processes with a more complex nature comparing to that of the systems modelled suf-
ficiently by simple DFAs.

2.3.2. Probabilistic Deterministic Finite Automata
A Probabilistic DFA can be formally described as a quintuple

〈
Q, Σ, δ, q0, π

〉
, where the first 4 terms have the

same meaning as that in the case of simple DFAs, and the final term π : Q ×Σ→ [0,1] denotes the next symbol
probability function, which returns the probability of observing an event (or symbol) σ ∈Σ in state q ∈Q. The
probability function needs to satisfy the two following constraints: (1) π(q,σ) = 0 i f δ(q,σ) =∅, where q ∈Q
and σ ∈Σ, and (2)

∑
σ∈Σπ(q,σ) = 1,∀q ∈Q. In simple words, these constrains state that (1) the probability of

observing the symbol σ at state q is equal to 0, if the transition from state q is undeclared, or unseen, and (2)
the discrete probabilities of observing each symbol of the alphabet Σ in a state q sum up to 1. Furthermore,
similarly to the functionality of a simple DFA, a PDFA starts in the start state q0 and generates strings by
traversing transitions and drawing events using π. As a result, given the discrete probability distribution of
all the symbols, that can be drawn from the alphabet Σ, in each state of a PDFA M , the probability PM (s) of
generating a string s =σ1σ2...σn can be expressed as

PM (s) =π(q0,σ1)
n−1∏
i=1

π
(
δ(qi−1,σi),σi+1

)
(2.1)

, where σi ∈ Σ and qi ∈ Q. The incorporation of probabilities related to the labelled transitions between
states has rendered PDFAs quite powerful in modelling real-life systems, since the data extracted from most
systems in practice are noisy and lack the formal syntax that simple DFA modelling implies.

2.3.3. Real-Time Automata
In real-time systems, the occurrence of an event is not only associated with the state in which the system was
previously residing, but also with a relative time value denoting the time period that the system remained in
that state before reacting to the observed event. A series of such time-dependent events can be expressed in
the form of a sequence τ= (σ1, t1)(σ2, t2)...(σn , tn) of symbols σi ∈ Σ coupled with time values ti ∈N, named
as timed string. The time values can be modelled using natural numbers, since in practice real-time systems
adhere to a finite precision of time, like milliseconds. Each time value ti in a timed string, therefore, repre-
sents the time delay between the occurrences of the events σi and σi−1. It can be easily seen that (P)DFAs are
not capable of modelling such timed strings since they only take into account the sequence in which events
occur, rather than their exact timing.

In automaton theory, the computational model that captures such timed events is called Timed Automa-
ton (TA) [2]. In this model, the timing conditions associated with transitions, are expressed through the use of
a finite number of clocks, accompanied by a finite set of clock guards and resets on each labelled transition.
Given the fact that, it has been shown that Deterministic Timed Automata cannot be identified efficiently in
the limit from labeled data [86], this section will focus on a special type of TAs, that demonstrate the latter
characteristic [84], named Real-Time Automata (RTA). RTAs possess solely one clock capturing the time delay
between two consecutive events observed in the system, with clock guards, again, representing constraints
on the time delays capable of firing a transition. Similar to the case of Finite Automata, an RTA is considered
deterministic, if it does not contain two transitions with the same symbol, the same source state, and over-
lapping delay guards. In a more formal way, a Deterministic Real-Time Automaton (DRTA) can be defined
as a quintuple

〈
Q, Σ,∆, q0, F

〉
, where each term has the same meaning as its corresponding one in the case

of non-timed DFAs, while ∆ denotes a finite set of timed transitions. A timed transition δ ∈ ∆ is a quadru-
ple

〈
q, q ′, σ, [n,n′]

〉
, where q, q ′ ∈ Q are the source and destination states, σ ∈ Σ a symbol, and [n,n′] with

n,n′ ∈N a clock (delay) guard, and can be interpreted as follows: whenever the automaton resides in state q ,
observing a timed symbol (σ, t) such that t ∈ [n,n′], then the DRTA will move to the next state q ′.

2.3. Finite State Automata 13

Figure 2.3: Sample DRTA with 3 states, 2 symbols, and 6 delay
guards

A sample DRTA can be seen in Figure 2.3. This DRTA has 3 states, with the leftmost state being the start
state and the topmost state being the final state, following the visualization conventions introduced in the
case of simple DFAs. In addition, the alphabet of the depicted DRTA consists of two symbols a and b, with six
delay guards included in the transitions. It is worth noting that missing transitions lead to a garbage rejecting
state, not depicted in the visualized example. This DRTA accepts and rejects sequences based both on their
event symbols, and on their time values. For instance, it accepts (a,5)(b,3), while it rejects (a,5)(b,2). Finally,
it should be stated that, even though (R)TAs are not directly used in the modelling part of the developed
pipeline, their inference procedure constitutes the basis of the inference procedure used in the premises of
this work, thus a brief presentation of their structure is considered essential.

2.3.4. Probabilistic Deterministic Real-Time Automata
Probabilistic DRTAs introduce a probability distribution over the structure of simple DRTAs by incorporating
the probability of observing a particular timed event (σ, t) given the current state q of the automaton, i.e.
P

(
O = (σ, t)|q)

. The probability distribution of the random variable O can be determined through the com-
bination of the probability distributions of the two variables associated to each state of the PDRTA, meaning
the probability distributions of the symbols and the time values, or more formally the values P (S =σ|q) and
P (T = t |q). The first distribution can be determined in the same way as in the case of PDFAs, while the latter
can be estimated using histograms [85], which seem like a reasonable and flexible way of estimating distribu-
tions of random variables drawn from a domain with great variance (as it is the set of possible time values). A
final decision to be made when modelling the symbol and time distributions concerns the possibility of mak-
ing these distributions dependent or not. As mentioned in [85], modelling these distributions in a dependent
fashion would lead to a polynomial increase in the size of the model, resulting to a proportional increase
in the number of data needed to sufficiently learn a model, thus an independent modelling is considered
preferable.

Formally, a PDRTA can be described as a quadruple
〈

A′, H , S, T
〉

, where A′ = 〈
Q, Σ,∆, q0

〉
is a DRTA with-

out final states, H is a finite set of bins (or time intervals) [u,u′], u,u′ ∈ N comprising the aforementioned
histogram, S is a finite set of symbol probability distributions, with Sq = {

P (S = σ | q) | σ ∈ Σ, q ∈ Q
}
, and T

is a finite set of time-bin probability distributions Tq = {
P (T ∈ h | q) | h ∈ H , q ∈ Q

}
. Given the fact that the

probability distribution over symbols follows the same rules as those presented in the case of PDFAs, more
attention will be paid on the time-bin probability distribution. In particular, the probability that the next time
value equals t given that the current state is q can be defined as

P (T = t | q) = P (T ∈ h | q)

u′−u +1
(2.2)

, where h = [u,u′] ∈ H constitutes the time bin containing the time value t , with the probabilities of the
individual time points being modeled uniformly in each time bin. As a result, the probability of observing the
timed event (σ, t) in state q can be calculated as P (O = (σ, t) | q) = P (S = σ | q)×P (T = t | q), meaning that
the probability of moving from state q to state q ′ can be defined as

P (X = q ′ | q) = ∑
〈q, q ′,σ, [u,u′]〉∈∆

∑
t∈[u,u′]

P
(
O = (σ, t) | q

)
(2.3)

Finally, as in the case of PDFAs, the probability of a PDRTA M generating a timed string τ= (σ1, t1)(σ2, t2)...(σn , tn)
can be defined as,

14 2. Background

PM (τ) =
n∏

i=1
P

(
O = (σi , ti) | qi−1, H , S, T

)
(2.4)

It should be noted that the incorporation of probabilities, both in the cases of timed and non-timed au-
tomata, is mostly associated with the need to infer models able to learn only from a set of approved event
sequences S+ (positive words) originating from the system under learning (SUL), which, as a matter of fact,
is much easier to collect, since such sequences constitute the normal behaviour of the system, comparing
to the set of rejecting (negative words) ones S−. More information on the identification process of a Finite
Automaton can be found in the section to follow.

2.3.5. DFA Inference
Various approaches have been developed throughout the years regarding the identification of a model capa-
ble of generalizing over the observed behaviour of a system. In the case of Deterministic Finite Automata, this
process is called DFA inference, with the developed approaches falling within two categories, namely passive
and active learning [32]. The distinction made between these categories is founded on the different kind of
interaction between the learning algorithm and the examined system during the identification process. More
information on the nature and the main differences of the methods originating from these two categories can
be found as follows.

Passive Learning
In passive learning a finite set of observations, produced during the execution of the system under learning,
is gathered, and provided as input to the learning algorithm. These observations can consist either from both
a set of positive words S+ ⊂ Σ∗ and one of negative words S− ⊂ Σ∗ or from solely the former one, with the
goal of the learning algorithm being the derivation of the minimal model consistent to these data. In the
context of DFA, "minimal" means that the inferred model should be as simple as possible in terms of the
number of states and transitions, so that its ability of generalizing on unseen data would be high, while "con-
sistent" means that the produced model should accept every positive word and reject any negative word (if
any) present in the input data. In practice, labelled execution traces are not always available, especially when
it comes down to "negative" ones, since they do not represent the normal behaviour of the examined sys-
tem. To meet such requirements, probabilistic approaches are deployed, the inference of which has the same
target as that in the case of simple DFAs, meaning the extraction of the minimal consistent model. In the
case of probabilistic approaches, though, the term "minimal" addresses the need of few probabilistic param-
eters, while the term "consistent" refers to the creation of a model with small distance from the input sample
distribution. It has been proved that the problem of identifying a DFA with the minimal number of states,
using passive learning methods, is NP-complete [29]. Nevertheless, multiple passive learning approaches
have developed throughout the years, ranging from the TB [5] and Traxbar [47] algorithms, to the more re-
cent RPNI [66] and Blue-Fringe evidence-driven state-merging [48] algorithms. In fact, the latter algorithm
constitutes the basis for most modern passive learning approaches, like the one used in the premises of this
thesis, with analytical information on this approach provided in Chapter 5.

Active Learning
In active learning the inference process may also start from a given set of system-generated observations, yet
the learning algorithm will continue collecting evidence on the behaviour of the system by interacting with
it. In particular, the notion of an oracle or an expert is introduced, the purpose of which is to answer queries
provided by the learning algorithm regarding its current hypothesis on the structure of the system under
learning, and in that way guide the learning procedure accordingly. In the field of automata learning the most
well-known algorithm operating under the concept of active learning is Angluin’s L∗ algorithm [4], which in-
troduced the MAT (Minimally Adequate Teacher) framework to infer models with a number of queries poly-
nomial to the number of states of the state machine to be learnt. In this framework, there are two classes
of queries to be asked to the teacher, the Membership and the Equivalence queries. Through Membership
queries, the learner can ask the teacher whether an input word w belongs to the language L of the automaton
and receive a binary answer (yes or no) on that question. Through Equivalence queries, the learner presents
a hypothesis automaton H (the automaton that in its belief models sufficiently the system) and the teacher
confirms or disproves the hypothesis that L is the language of H . In case of confirmation the algorithm ter-
minates, while in the opposite case a counterexample is provided to the learner as evidence that L is not the
language of H , and the learning process continues.

2.4. Graphs 15

2.4. Graphs
As it was seen earlier, finite automata can be represented in a straightforward way as graphs, if their states
are perceived as nodes and their transitions as edges. In particular, the graphs capable of capturing the na-
ture and structure of finite automata are called Directed Labelled graphs, meaning that each edge is directed
from a source to a destination node, like transitions are directed from a source to a target state, and possesses
a label describing the conditions under which the edge can be crossed. More formally, a Directed Labelled
Graph is a triple

〈
N , L, A

〉
, where N is the set of nodes, L is the set of labels, and E ⊆ N × N ×L is a set of

edges. It can be easily seen that generating a string from a Finite Automaton is equivalent to following a path
in a directed graph. The labels on the edges crossed along the path correspond to the symbols comprising
the generated string. Similarly, many operations on finite automata can be easily mapped to equivalent op-
erations on directed graphs, which as a matter of fact proves the usefulness of the graphical representation of
automata.

2.5. Anomaly Detection
In a group of data, those data points that deviate to such an extent from other points, so as to inflame sus-
picion that their generation mechanism differs from that of the majority of the data [36], can be character-
ized as anomalies, or outliers. In other words, the anomalous instances of a dataset tend to display patterns
and characteristics significantly different to other data instances, that are considered normal, or benign. In
the anomaly detection literature [15], three main categories of anomalies are addressed: (1) point anoma-
lies, which refer to data points that can be observed as anomalous against other data points, (2) contextual
anomalies, which concern data points that, when perceived from a global point of view on the dataset seem
as normal, yet in some specific context are identified as anomalous, and (3) collective anomalies, which refer
to data points that can be considered anomalous only when they occur in a collection. The last two categories
are applicable mostly to data with an implicit or explicit notion of ordering (spatial, sequential, etc). In such
data the context can be easily defined trough the notion of ordering to which they adhere (time, coordinates,
etc.), while a collection of data can be defined as a sequence of neighbouring data points with respect to the
implied notion of ordering. A visual illustration of all three categories can be found in Figure 2.4.

(a) Illustration of point anomalies (denoted with O) in a 2-D dataset

(b) A contextual anomaly example (denoted again with O)

(c) A collective anomaly example (denoted by the dotted circle)

Figure 2.4: Illustration of the different categories of anomalies

The detection of anomalies is considered of high relevance in the provision of critical actionable infor-
mation in a wide range of application domains. For instance, the detection of an unusual computer network
traffic pattern could indicate a cyber attack or an event of unauthorized access, while anomalous behaviours
in credit card transactions could be related to fraudulent credit card use. As a result, the development of ro-
bust anomaly detection systems characterized by a high detection rate, and, in parallel, a significantly low
number of false alarms, so that the manual inspection of the identified anomalies will remain feasible, con-

16 2. Background

stitutes an inherent requirement for the orderly operation of such systems. At first glance, the detection of
anomalies, potentially existing in a dataset, might seem like a simple task, yet, in practice, it can be quite
challenging. First of all, defining or modelling normal regions in the space of the data is a particularly diffi-
cult task, since, in many cases, the boundaries between anomalies and normal data are blurred. On top of
that, if the anomalous instances in a dataset are considered of malicious origin, as in the cases mentioned
above, the attackers tend to adapt the instances that they generate so that they seem more similar to the be-
nign ones. Finally, in domains that the characteristics of the data change dynamically, the notion of normality
constantly changes, which as a matter of fact renders the development of a robust anomaly detection system
a complex undertaking.

Anomaly detection can be perceived as a learning problem, thus the approaches, aiming to tackle it, can
be classified as the conventional problems in the field of Machine Learning into three categories, namely su-
pervised, semi-supervised, and unsupervised. In the premises of this work, an unsupervised approach based
on the normal data points of the facing problem is developed. In particular, the selected approach involves
the construction of profiles of the normal instances of the given dataset, and the utilization of these profiles to
identify instances that deviate significantly from them. Of course, such approaches are accompanied by both
advantages and disadvantages. The main advantages of methods following this direction can be addressed
by the fact that, during modelling, they require solely examples of the normal behaviour of the system, the
retrieval of which is considered, in most cases, an easy task. In addition, the process of learning from normal
data in order to recognize abnormal ones fits the natural procedure that most humans adopt to identify odd
or rare phenomenons in real life. Nonetheless, a major drawback can be encountered in such approaches.
The anomaly detectors developed are optimized to identify normal instances, rather than actually detecting
anomalies, which could lead to either highly sensitive models (too many false alarms), in case the normal
data samples on which the model was learnt are not representative enough, or excessively generic models,
with low detection rates.

Another interesting direction in the field of anomaly detection is encountered within the semi-supervised
context, according to which the abnormal data instances are leveraged during training. The methods, resid-
ing within this category, follow the tactic of creating behavioural profiles for each class of anomalous in-
stances known in the premises of the facing problem. These anomalous profiles are then compared against
the data instances, and in case of a match an anomaly is identified. The obvious shortcoming of such ap-
proaches is that they need sufficiently representative malicious samples for the anomalous profiles to be
created, which in most cases are not available. In addition, if a type of anomaly, not existing in the training
process of the model, appears, then it is highly likely that no anomalous profile will match it, thus leading
to that anomaly being undetected. In a dynamic environment, where anomalies are the product of mali-
cious behaviour, such behaviour is significantly unwanted, since it would result to low detection rates. On
the other hand, models extracted from malicious instances tend to produce quite low false alarms, since they
are optimized to detect specific types of anomalies. In case that the majority of anomalies found in the data
resemble to the ones used during the training procedure, this low false alarm rate can be accompanied by a
proportionally high detection rate.

In the next two sections, the main approaches included on the designed detection pipeline are discussed.
At this point it should be noted that, approaches belonging to different learning paradigms were evaluated
in this work, so that the anomaly identification problem could be tackled from multiple directions. Briefly,
Local Outlier Factor (LOF) [13] can be characterized as a density-based approach, Isolation Forest [54] as a
classifier-based one, while the Multivariate Gaussian approach as a statistical one. More information on the
functionality and the characteristics of these methods can be found as follows.

2.5.1. Local Outlier Factor
Local Outlier Factor builds upon the idea of assigning a "degree of outlierness" to each object in a given dataset
by considering how isolated that object is with respect to its surrounding neighborhood. The strategy fol-
lowed for quantifying the "outlierness" of an object can be perceived as a variant of density-based clustering.
In more detail, the calculation of the LOF of an object is based on the number of nearest neighbours used
when defining its local neighbourhood. The notion of the local neighbourhood of each object is leveraged
to deal with objects that are outlying relative to their close neighbours, with their outlying nature not being
easily identifiable in a global scale. In fact, both the cases of contextual and collective anomalies, presented
earlier in this work, can be considered special cases of local outliers. An example of a dataset with both global
and local outliers can be seen in Figure 2.5.

Given the data distribution presented above, it is clear that there are two clusters of data, a dense one

2.5. Anomaly Detection 17

Figure 2.5: Sample 2-D data scatter plot with both global (o1) and
local (o2) outliers

(C2), and a sparser one (C1), as well as two more data samples, o1 and o2. In the notion of local outliers, both
objects o1 and o2 should be identified as outliers. Nevertheless, when viewing the data from a global point of
view solely object o1 would be considered as an outlying point due to the sparse nature of cluster C1. To deal
with such shortcomings, two main terms, namely the k-distance and the reachability distance of an object p,
are introduced in the LOF algorithm. In more detail, the k-distance of an object p is defined as the distance
between this object and one of each neighbouring objects, such that there are at most k − 1 objects with
lower and at least k objects with lower or equal distance to object p. As far as the reachability distance of an
object p with respect to an object o is concerned, it can be expressed as the maximum of the actual distance
between these objects and the k-distance of o. Intuitively, the former distance metric is used to introduce the
notion of the k-distance neighbourhood of an object, while the latter one is used to assign the same value to
the distance metric between objects residing in the same neighbourhood. Furthermore, as it was mentioned
above, LOF constitutes a variant of density-based clustering, thus a notion of local density shall be defined.
In particular, the local reachability density (lrd) of an object p can be formally defined as follows:

l r dMi nP t s (p) = 1/

(∑
o∈NMi nP t s (p) r each_di stMi nP t s (p,o)

|NMi nP t s (p)|
)

(2.5)

, where Mi nP t s denotes the minimum number of points used to define the neighbourhood of an object,
and NMi nP t s (p) the MinPts-neighbourhood of object p. Practically, the local reachability density of an object
p constitutes the inverse of the mean reachability distance based on the MinPts-neighbourhood of p. All
things considered, the outlier score of an object p in the context of LOF can be calculated as

LOFMi nP t s (p) =
∑

o∈NMi nP t s (p)
l r dMi nP t s (o)
l r dMi nP t s (p)

|NMi nP t s (p)| (2.6)

Given equation 2.6, the outlier factor of an object p is expressed as the mean ratio of the local reachability
density of p and those of its MinPts-nearest neighbors. Intuitively, this means that LOF measures the local
deviation of density of a given object p with respect to its neighbors. It can be easily seen that the lower local
reachability density of p is, and the higher the local reachability densities of its MinPts-nearest neighbors are,
the higher is the outlier score assigned to p.

2.5.2. Isolation Forest
Isolation Forest constitutes a tree-based method for anomaly (or outlier) detection, aiming to isolate anoma-
lous points in a dataset, rather than profiling the normal ones. The intuition behind Isolation Forest is
based on two quantitative properties of anomalous instances: (1) they constitute the minority class in a
given dataset, and (2) they demonstrate attributes with significantly different values from those of normal
instances. As a result, these "few and different" anomalous instances can be isolated more easily than nor-
mal data points. To that end, a tree structure is leveraged to isolate every single point in the dataset, with the
expectation that anomalies will be isolated closer to the root of the tree, while normal points will be isolated
much deeper inside the tree. Such trees are called Isolation Trees, and in the context of this approach an
ensemble of Isolation Trees is built for a given dataset, with instances with short average path lengths being
identified as anomalies.

18 2. Background

The core functionality of the Isolation Forest algorithm is based on the recursive random partitioning of
data instances until all instances are isolated. In more detail, partitions are generated by randomly select-
ing an attribute of the data and a split value between the maximum and minimum values of that selected
attribute. Since the recursive partitioning undertaken can be represented by a tree structure, the number of
partitions needed to isolate an instance can be considered equivalent to the path length from the root to the
leaf of the tree, in which this instance resides. Given the fact that, the partitions are generated in a random
fashion, each Isolation tree is constructed under a different set of partitions. Thus, averaging the path length
of each instance seems the natural choice to calculate the expected isolation score of that instance. The lower
that score is, the higher the possibility of the examined data sample being an anomaly is.

The parameters that primarily have an effect on the quality of the results produced from this model are
the number of isolation trees to be used as base estimators in the ensemble, and the number of samples to
draw from the input data to feed each tree. Since each isolation tree acts as an estimator of the anomaly score
of an instance, the higher the number of estimators, the more accurate the expected path length of each in-
stance will be. In practice, the estimated path lengths converge after some specific number of trees is reached.
In fact, the authors of the algorithm suggested a number of trees equal to 100 as a value that produces sta-
ble results [54]. Before addressing the second parameter, the value of subsampling in the premises of this
algorithm should be highlighted. Subsampling is used as a measure against swamping and masking, which
constitute significant problems in the field of anomaly detection. The first term refers to the incorrect identi-
fication of normal instances as anomalies due to close proximity between normal and anomalous instances,
while the second term refers to the concealment of the presence of anomalies due to their high cardinality in
the input data. Since both issues originate from the inclusion of too many data in the anomaly detection task,
subsampling is used to both regulate the data size and enable the creation of tree "specializing" on different
set of anomalies.

2.5.3. Multivariate Gaussian Kernel Density Estimation
The rationale behind the Multivariate Gaussian Kernel Density Estimation approach is based on the assump-
tion that the distribution of the provided data instances can be estimated through the application of Gaussian
kernels (or windows) on those instances. After estimating the probability density function (pdf) of the data, a
threshold value e can be set through experimentation, so that, if the pdf value of a data instance is lower than
e, this instance is considered as an anomaly. Kernel-density (KDE) constitutes a non-parametric approach to
estimate the probability density function of a random variable, and can be perceived as an improved gener-
alisation of histogram density estimation. Originally, such approaches were utilized in the case of univariate
data [67, 71], and later were developed to also address the case of multivariate data. Intuitively, the goal of
density estimation is, given a finite sample of data points, to infer the underlying probability density func-
tion for any point on the attributes’ space of the data, including regions where no data were observed. The
contribution of each data point is smoothed out into a region of space surrounding it, defined by the use of a
window. By aggregating the smoothed contributions of each data point an overall estimate of the structure of
the data and its density function can be achieved.

In a more formal way, given a set of N d-variate data instances x1, x2, ..., xN drawn from some distribution
described by the density function f , the kernel density estimate of that function can be calculated as:

f̂H (x) = 1

N

N∑
i=1

KH (x −xi) (2.7)

, where H is a d ×d positive semi-definite matrix, called the bandwidth, K is a symmetric multivariate
density, called the kernel function, with KH (x) = |H |−1/2K (H−1/2x). When the multivariate Gaussian kernel

function is used, the last relation obtains the form KH (x) = (2π)−d/2|H |−1/2e−
1
2 xT H−1x , where the bandwidth

H acts as the covariance matrix. The choice of the bandwidth H influences the estimate obtained from the
KDE to a great extent, thus its selection shall be carefully undertaken. In the premises of this work, Scott’s
rule of thumb [74] is utilized towards that end, meaning that Hi j = 0, i f i 6= j , and

p
Hi i = N−1/(d+4)σi , with

σi denoting the standard deviation of the i-th attribute.

2.6. Evaluation Metrics
The facing problem conforms under the general principle of machine learning problems, in the essence that
the main goal is to achieve the objective of classifying a number of objects (network flows), given as an input,
into two categories (malicious and benign). Therefore, the most frequently used machine learning evaluation

2.6. Evaluation Metrics 19

metrics, meaning accuracy, precision, and recall, are leveraged to evaluate the performance of the designed
system. In order to better understand the meaning of each metric, the notion of the confusion matrix and its
content need to be firstly introduced. A confusion matrix, also known as error matrix, is a specific type of table
allowing the visualization of the performance of a machine learning algorithm, with each row representing
the instances in an actual class, and each column the instances in a predicted class (or vice versa). In the
case of binary classification, where the facing problem belongs, there are two classes, the positive and the
negative one. Thus, the instances that are correctly classified as positive are called True Positives, while the
ones that are wrongly classified as positive (meaning that their real label is negative) are called False Positives.
Correspondingly, the instances, which are correctly classified as negative are called True Negatives and the
wrongly classified as negative (meaning that their real label is positive) are called False Negatives. With respect
to these terms, Figure 2.6 depicts the visualization of a confusion matrix.

Figure 2.6: Sample confusion matrix

Building upon the insight provided by the confusion matrix, the formulas of the evaluation metrics uti-
lized in the premises of this thesis can be seen as follows:

Accur ac y = T P +T N

T P +T N +F P +F N
(2.8)

Pr eci si on = T P

T P +F P
(2.9)

Recal l = T P

T P +F N
(2.10)

In more detail, accuracy measures the fraction of correctly classified (predicted) instances, with precision
denoting the fraction of actual positive instances out of the predicted positive instances, and recall measuring
the fraction of positive instances identified correctly. The latter two metrics are considered of great impor-
tance in the context of anomaly detection, since they provide significant insight on the ability of the designed
systems to not only identify the anomalies, but also to raise as few false alarms as possible. In particular, if
anomalies are considered the positive class in an anomaly detection task, and given the fact that anomalies
constitute typically the minority class among the available instances, accuracy could attain high values even if
few (or none) anomalies (positive instances) were identified, which as a matter of fact explains the usefulness
of recall in system evaluation. In the opposite scenario, that an anomaly detection system identifies many
instances as anomalous (despite their actual nature) and the anomalies represent a considerable portion of
the dataset, both accuracy and recall would attain high values, while in practice there would be many false
alarms. Of course the development of a system so sensitive to anomalies would render the manual examina-
tion of the alarms an infeasible task. Such cases highlight the importance of high precision as one of the core
characteristics of a well-designed anomaly detection system. All things considered, the desired performance
of anomaly detection systems is reflected by the achievement of high values in all these metrics.

3
Related Work

In this chapter various approaches relevant to the two primary fields that this thesis touches upon, namely
anomaly detection and state machine inference, are presented and discussed. The primary purpose of this
discussion is to help the reader familiarize with the research relevant to the development of the current work,
as well as present in a concise, yet enlightening way the undergone progress in the aforementioned two fields
throughout the years. Firstly, works spanning the field of anomaly detection are briefly presented and dis-
cussed. In particular, a more generic view of anomaly detection methods is initially presented, followed by
works purely drawn from the field of network traffic, with the focus being shed upon flow-based methods,
since, such an approach has been also adopted in the premises of this thesis. These techniques are dis-
tributed in different sections according to the data analysis concept lying in their core. Finally, important
works in the field of state machine inference are presented, so that the broad learning capabilities of such
approaches can be highlighted.

3.1. Standard Anomaly Detection Techniques
Throughout the years, researchers have adopted concepts from multiple disciplines, such as classification,
nearest neighbour, clustering, statistics, and spectral theory, to deal with anomaly detection tasks [15]. Of
course, this section will not demonstrate the full extent of such approaches, since such an undertaking lies
beyond the scope of this thesis, rather it will briefly illustrate the primary key assumptions, which the tech-
niques of each category utilize to identify anomalies, and provide a representative sample of some influential
approaches. Thus, most of the approaches presented in this section might not be considered currently as the
state-of-the-art, yet they laid the foundation for the majority of anomaly detection systems used nowadays.

3.1.1. Classification Techniques
This category includes techniques mostly operating under the typical supervised machine learning assump-
tion that, given a representative set of samples of both normal and abnormal instances into a defined feature
space, a classifier can be learnt to differentiate between samples originating from different categories. Apart
from the typical binary setting, these approaches have been extended to include one-class and multi-class
data samples. Anomaly detection techniques of the first category assume primarily that only normal in-
stances are included in the training phase, and try to learn discriminative boundaries around these normal
instances. A typical example of such technique can be found in [3], where two modified one-class SVM [73]
based approaches are introduced to increase the robustness of one-class SVMs and render them less sensitive
to outliers by regulating the extent in which outlying samples can contribute to the decision boundary. As far
as the second category is concerned, multi-class classification based anomaly detection techniques, which
typically include also the binary classification methods, operate under the assumption that the training data
contain instances from multiple normal classes, thus the classifier needs to distinguish between each nor-
mal class against the other classes. Similarly to the case of one-class SVM, a modified version of SVM, called
Robust Support Vector Machines (RSVM) [77], and aiming to solve the over-fitting problem produced by the
presence of outliers in the training dataset, has been used in [41] to differentiate between normal usage and
intrusive profiles of computer programs.

Of course, the works belonging in this category span also various other machine learning concepts, rang-

21

22 3. Related Work

ing from complex neural networks to simpler rule based approaches. In [58], stacked Long Short Term Mem-
ory (LSTM) networks were utilized for anomaly detection in time series. In particular, the LSTM network is
trained on normal data, with the produced prediction errors over a number of time steps being modeled by a
multivariate Gaussian distribution. Subsequently, the probability density function of this fitted error distribu-
tion is used to assess the likelihood of anomalous behaviour. As far as rule-based approaches are concerned,
the main intuition lies on the fact that rules can be learnt about the normal behaviour of the examined data,
thus data instances not conforming to those rules can be identified as anomalies. This idea might seem
simplistic, yet Isolation Forest, an algorithm originating from this category, constitutes, as explained earlier
in this thesis, one of the most well-known anomaly detection techniques delivering great results in various
settings.

3.1.2. Nearest Neighbour Techniques
The main assumption in such techniques lies on the fact that normal instances tend to occur in dense data
neighbourhoods, while anomalous instances are placed far from their closest neighbours. Nearest Neigh-
bour based approaches typically require a distance (dissimilarity) or a similarity measure defined on a pair
of instances, and can be broadly classified into methods that use such metrics to quantify the (dis)similarity
between a data instance and its k-th nearest neighbours as the anomaly score, and those that utilize the rel-
ative density of the neighborhood of each data instance to assign such an anomaly score. In fact, LOF, one
of the outlier detection algorithms presented in Chapter 2, constitutes one prominent example of density
based techniques. As far as the k-th nearest neighbours approaches are concerned, in [50], a k-NN classifier
was used to identify intrusions in computer system calls, by comparing the average distance of each data
instance to its k nearest neighbours and identifying as anomalies those instances with an average distance
below a user-defined threshold.

3.1.3. Clustering Techniques
Techniques from this category are mainly founded on one of the following three assumptions regarding the
behaviour of normal and anomalous data:

1. Normal data instances can be grouped in clusters, while this is not the case for anomalous instances.

2. Normal data instances tend to lie close to their nearest cluster centroid, while anomalies lie far from
their closest centroid.

3. Normal data instances tend to form large dense clusters, while anomalous instances are mostly en-
countered in small or sparse clusters.

Before presenting a sample of works belonging in this category, the distinction between clustering and
nearest neighbour techniques shall be discussed. At first, it seems hard to differentiate between approaches
belonging to one of these categories, yet there is a key difference between them. This difference can be ex-
pressed by the fact that clustering techniques consider typically each data instance with respect to the cluster
in which it resides, while nearest neighbour techniques evaluate each instance within the context of its local
neighbourhood. Having addressed the former, the first clustering category includes clustering techniques
that do not assign all available data instances to a specific cluster, rather they treat such non-clustered in-
stances as outliers. DBSCAN [24], as well as its improved hierarchical version, HDBSCAN [61], constitute two
representative approaches meeting the previous condition. In the second category, approaches involving the
use of k-means clustering and Self-Organizing Maps (SOMs) [44] to first cluster the provided data and then
use the distance of each data point to its closest centroid to measure its degree of normality are mostly con-
sidered. The main disadvantage of the approaches belonging in the first two categories may arise in case that
the anomalies in a dataset form clusters by themselves. In such scenarios, approaches from the third category
can be adopted. Cluster-Based Local Outlier Factor (CBLOF) [37] constitutes a paradigm of such techniques,
incorporating the density-related outlier detection capabilities of LOF into a clustering mechanism.

3.1.4. Statistical Techniques
The main intuition supporting the foundation of techniques in this category lies on the fact that, if a stochas-
tic model is used to capture the behaviour of normal instances in a dataset, then anomalies should occur in
low probability regions of the fitted model. Typically, such approaches fit a statistical model on the normal
instances of a dataset, and use some statistical inference test to identify data instances not belonging to the

3.2. Anomaly Detection in Network Traffic 23

inferred model as anomalous. As in standard machine learning tasks, statistical approaches include both
parametric and non-parametric methods, with the main distinction between them lying on the fact that the
first ones assume the knowledge of the underlying distribution of the observed data.

A typical and simple anomaly detection approach followed in the parametric setting assumes that the
observed data are generated from a Gaussian distribution with the parameters of that distribution been es-
timated using Maximum Likelihood Estimates (MLE) [15]. After estimating these parameters, measures like
the distance from the distribution mean and the Inter Quantile Range (IQR) are used to determine if a given
data instance is anomalous or not. In a similar manner, complex statistical tests have been applied towards
the goal of anomaly detection [90], while in case that a temporal component is associated to the provided
data, regression models, like ARIMA (Autoregressive Integrated Moving Average) [11] and ARMA (Autoregres-
sive Moving Average) [35], are employed. The intuition, on which regressive anomaly detection approaches
are founded, can be roughly expressed as follows: Given a model fitted on a set of past data values, the feature
data values can be predicted through the regression technique applied. Then, the data points that produce
a regression error above some user-defined threshold can be identified as anomalies. Finally, the mixture of
parametric distributions is also employed to model either the normal and anomalous instances as different
parametric distributions, or solely the normal instances, and use the learnt distributions towards the identi-
fication of anomalies.

In the non-parametric setting, histogram-based approaches and kernel density estimation constitute the
most frequently used concepts in the development of anomaly detection pipelines. Histogram-based ap-
proaches attempt to firstly model the distributions of the data features through the use of binning methods,
and then assign an anomaly score according to the bin heights in which the features of a data instance fall.
An important consideration in the case of histogram based approaches regards the size of the bins, since too
small bins could lead to an overfitting model with a high false alarm rate, while too broad bins could lead
to an underfitting model falsely labelling anomalous behavior as benign. As far as kernel density estimation
is concerned, as it was discussed in Chapter 2, Parzen windows estimation [67] constitutes one of the most
well known methods falling under this category, while the intuition behind such techniques is similar to that
of parametric methods, with the main difference identified in the way that probability density estimation is
conducted.

3.1.5. Spectral Techniques
Spectral anomaly detection techniques are founded on the assumption that, if the provided data instances
are embedded into a lower dimensional subspace, normal and abnormal instances can obtain a distinctively
different representation. As a result, such techniques search for such subspace mappings (projections, em-
beddings, etc.), which can render the identification of anomalous instances more profound than working
with the data in the original feature space. The subspace method is most frequently implemented with the
application of Principal Component Analysis (PCA) [23] on the data. The general setting of this approach
can be explained as follows: Given a set of data samples with p features, it is assumed that there is a under-
lying correlation between these features, meaning that the typical variation of the entire feature set can be
expressed as a linear combination of less than p variables. By applying PCA on the dataset, a partition of
the feature space into two orthogonal subspaces, namely the principal-component (normal) subspace, and
the residual subspace, can be achieved. Given the fact that the normal subspace is assumed to describe the
normal variation of the data, if each data instance is decomposed into its normal and residual components,
unusually large values in the residual components could act as indicators of the degree to which that partic-
ular instance is anomalous. Such an approach was utilized in [46] towards the goal of anomaly detection in
large-scale network flow captures, by applying the subspace method on the entropy of the distributions of
simple traffic features, like IP addresses and port numbers.

3.2. Anomaly Detection in Network Traffic
In the domain of computer networks, anomaly detection methods can be broadly classified into two com-
plementary categories: signature-based vs. profile-based techniques [27]. The methods of the first category
base their functionality on the use of prior knowledge about the characteristics associated with each kind of
anomaly, so that potential incidents can be matched to there previously known patterns. The profile-based
systems, on the other hand, aim in the development of a behavioural profile representative of the normal
traffic and identify as anomalies the events not conforming to such profile. Despite the fact that the lat-
ter approaches tend to produce more false alarms, since it is difficult to model efficiently every aspect of

24 3. Related Work

the normal traffic behaviour, such systems are considered more promising, since they can be used towards
the detection of previously unknown anomalies. In the sections to follow, a taxonomy of various interesting
network-related anomaly detection approaches is presented. The main categories identified are the follow-
ing:

• Randomized approaches: Systems residing in this category incorporate some notion of randomness
in the detection procedure, mostly by utilizing random aggregation of the network samples available.

• Clustering approaches: This category is populated by approaches that attempt to cluster the examined
network data in groups with similar underlying network behaviour, and use these clusters to detect and
group anomalies.

• Combined Machine Learning approaches: This category is comprised of the systems that employ var-
ious ML techniques (sometimes clustering techniques are included) in a combined fashion to detect
anomalies. Most approaches of this category need labelled data of both classes in order to operate
properly.

• State Machine Learning approaches: Finally, the systems of this category attempt to leverage the un-
derlying temporal patterns of the behaviour of the examined network samples by inferring state ma-
chines, so that sequential models of this behaviour can be extracted.

Systems originating from all these categories are discussed in brief in the following sections.

3.2.1. Randomized Approaches
In [49], a technique, based on the use of random aggregations (sketches) of IP flows collected from two back-
bone networks, is developed as a solution towards the identification of anomalies on a flow level. This tech-
nique, called Defeat, is founded on the insight that sketching the global traffic preserves the normal variation
of the flow traffic, as well as most of the residual subspace. To this end, Defeat, initially, constructs multiple
sketches of the entropy of the empirical distribution of various flow-related features (source and destination
IP addresses and port numbers), and, subsequently, applies the subspace method to these sketches, aiming to
identify time points at which unusual traffic distributions are detected and in parallel identify the "infected"
IP flows. The main intuition behind this approach is based on the fact that, by using random projections,
anomalous patterns hidden under some aggregations can be exposed under others, which is not the case
when fixed mappings, like the origin-destination flow aggregation, are utilized. On top of that, the authors
suggest that, since anomalies are shuffled randomly across different sketch entries, approximate agreement
among sketches can be used for robust anomaly detection, by developing a voting scheme to be applied on
the results of each sketch to reduce the false alarms.

In a similar manner, the researchers in [20] combine sketches with multiscale non-Gaussian marginal dis-
tribution modeling to develop a profile-based anomaly detection approach towards the real-time detection
of both short-lived and long-lasting low-intensity anomalies in a series of network packet captures. In more
detail, the proposed method is based on the extraction of a statistical profile capable of characterizing anoma-
lies, by firstly dividing the traffic data into sketches using the source or destination IP address as a hashing key,
and secondly by retrieving the shape parameter of the marginal distributions of the traffic for each sketch at
multiple scale levels through non-Gaussian modelling. Subsequently, the Mahalanobis distance is leveraged
to draw comparisons between the evaluated sketch distributions and some reference distributions derived by
average behaviors and typical variabilities estimated on the traffic. Despite the use of packet captures, deep
inspection is not conducted, since solely the source and destination IP addresses, the port numbers, and the
packet arrival time are used during modelling.

Another interesting approach was presented in [12] through the introduction of association rules theory
in the context of anomaly detection. Firstly, the authors used multiple histogram-based detectors applied
on different flow-related features (e.g. source and destination IP addresses and port numbers, as well as
the number of transmitted packets) to acquire a divergent view of the examined network traffic and extract
various candidate sets of anomalous flows. The flows were processed in fixed time intervals, and for each
interval multiple randomized histogram clones are used to estimate the distribution of each feature across
time. Subsequently, the Kullback-Leibler (KL) distance [45] is utilized to detect significant differences be-
tween the distribution estimated by each clone of the current interval and the corresponding distribution
from the previous interval. In that way, histogram bins with significant difference with the reference bins are
detected and the feature values residing in them are extracted as potentially anomalous. In order to avoid

3.2. Anomaly Detection in Network Traffic 25

high false alarm rates, due to the randomized placement of feature values in each bin, only the intersection
of the feature values extracted by each clone is taken into account. Finally, a modified version of the Apriori
algorithm [1], one of the most influential algorithms in the field of association rule mining, is used to create
the general profiles of the anomalous flows. This work shows high potential since it combines the detection
of anomalous flows from a real backbone network, and some partial interpretability on the results, yet the
evaluation procedure seems a bit unnatural since the identification of anomalies is conducted on an interval
level.

3.2.2. Clustering Approaches
The researchers in [6] proposed a clustering approach to identify and group malware samples with similar
behavioural profiles, focusing, according to their statements, in the scalability of their system. Their system
operates on traces of system calls generated by the execution of some malicious binary, rather than network
flows, which as a matter of fact sets their research apart from the majority of works presented in this chapter,
yet the idea of extracting behavioural profiles from a set of data points, and clustering these profiles to identify
similar behaviours in the data, is used extensively in the anomaly detection literature. Briefly, behavioural
profiles are created for each executed program by abstracting its associated system calls through the use of
a dynamic malware analysis system of their development, called ANUBIS, and Locality Sensitive Hashing
(LSH) [42] is employed to cluster efficiently these behavioural profiles in such a way that samples exhibiting
similar behavior are combined in the same cluster.

Under a similar principle, the authors of [69] introduced a network-level behavioural clustering approach,
based on single-linkage hierarchical clustering, and operating on the malicious HTTP traffic generated by
various malware samples. Initially, some simple statistical features (like the total number of HTTP requests
the malware generated, the number of GET and POST requests, the average length of the URLs, etc.) are ex-
tracted from the HTTP traffic and coarse-grained clusters of malware samples are created from these feature
representations. Subsequently, these coarse-grained clusters are split into fine-grained ones by examining
the structural similarity of the HTTP queries used by the malware samples in each cluster. Finally, given the
set of fine-grained malware clusters created, the cluster centroids of each one of them is calculated and used
as network signatures that summarize the HTTP traffic generated by the samples in the cluster. In the end,
fine-grained clusters with similar centroids are merged for the final partitioning of the original malware set
to be obtained.

In [10], one of the most recent anomaly detection approaches operating on NetFlow records is presented.
The authors of that work introduce a bot detection technique, named BotFP, which aims to characterize
hosts’ behavior in a given network using attribute frequency distribution signatures extracted from each host.
As in many anomaly detection approaches, the operation of the technique proposed in that work is divided
between a training and a testing phase, with the available NetFlow records in both phases grouped according
to their source IP address, so that host level detection can be performed. After retrieving the flows associated
with each host, a set of basic NetFlow attributes, like the source and destination port numbers and the desti-
nation IP address, are used to extract a frequency distribution signature for each host. In particular, the flows
linked with each host are further separated according to the communication protocol used, and the concate-
nation of the normalized frequency distributions of the aforementioned attributes of each protocol-based
category of flows is used to construct each host’s signature. Subsequently, the well-known clustering algo-
rithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [24] is used to cluster the hosts
composing the training set according to their signatures, and a label of benignity is assigned to each cluster
based on the existence of at least one malicious host in its premises. Finally, each host in the testing phase
is classified according to the label of the closest signature-based cluster derived during training. It should
be mentioned that this technique is evaluated on one of the datasets used also in the premises of this thesis.
As a result, it was considered beneficial to compare the results attained in [10] with the ones achieved in the
current work over this common dataset, with this comparison presented in Chapter 7.

3.2.3. Combined Machine Learning Approaches
The authors of [9] present a botnet detection system, named DISCLOSURE, aiming to distinguish C&C chan-
nels from benign client-server communication using features extracted from NetFlow records. In particu-
lar, features related to the flow sizes, client access patterns, and the temporal behaviour of flows are taken
into consideration. Furthermore, the authors address the false alarm problem, commonly encountered in
anomaly detection techniques operating on NetFlow data, by incorporating a number of external reputa-
tion scores into the detection process. Their system is evaluated on NetFlow data collected from a university

26 3. Related Work

network, and a Tier 1 ISP, where sampling was used to deal with the massive number of flows. In brief, the
proposed system architecture was split in two phases, the detection models’ generation and the real-time
detection. The first phase constituted the training phase of the system, in which features from the afore-
mentioned categories are extracted using some basic NetFlow attributes, like the source and destination IP
addresses and port numbers, the start and finish timestamps, and the bytes and packets transferred. This
feature representation of the NetFlow data is used as input to a group of supervised machine learning algo-
rithms (decision tree, support vector, and random forest classifiers) for the detection models to be developed.
Finally, in the detection phase, a FP reduction module is implemented, leveraging the information obtained
by three public services, providing reports about a wide range of malicious activities on the Internet, to create
a reputation-based set of weights for each server encountered in the test set.

The system presented in [79] is bot-oriented too. The functionality of this approach is founded on the
observation that C&C connections associated with a certain bot family tend to demonstrate specific regular
patterns, thus the proposed system is trained on groups of NetFlow traffic produced by a set of bot families,
so that a detection model from each bot activity can be extracted. In more detail, during the training phase,
the system extracts the statistical properties able to characterize the C&C traffic of different bot families,
and leverages these properties to build models capable of identifying similar traffic. The examined flows are
aggregated in chronologically ordered sequences of connections between two IP addresses on a specific des-
tination port, and five statistical features, namely the average time between the start times of two subsequent
flows in each connection, the average duration of a connection, the average number of bytes transferred to
and from the source IP, and a Fourier Transformation over the flow start times in each connection, are ex-
tracted. These statistical feature values are individually clustered according to the CLUES (CLUstEring based
on local Shrinking) algorithm [89], so that a model out of a set of five clusters can be derived for each bot
family. Finally, the identification part is conducted through the application of feature matching between the
connections of the test set and the modelled bot clusters.

Remaining in the field of botnet detection, the researchers in [28] developed two methods, both operat-
ing on NetFlow data, towards that goal. The first one, named CAMNEP (Cooperative Adaptive Mechanism
for NEtwork Protection), constitutes a Network Behaviour Analysis system performing detection in three ab-
straction layers. Initially, eight different anomaly detectors, drawn from the relevant literature, are applied on
different sets of NetFlow features, in an attempt to search for an anomaly from different perspectives towards
a two-fold purpose. These detectors aim to both extract meaningful features associated with each NetFlow
and assign an anomaly score to each of the examined NetFlows. Subsequently, their output is aggregated
into events with the use of different statistical functions and passed to the trust models layer. The role of the
trust models is to cluster Netflows with similar behavioural patterns, as they are extracted by the anomaly
detectors. Each cluster centroid acts as the trustee for each model and is used to measure the trustfulness
of each NetFlow residing in its vicinity. The trust value of each centroid is updated by new artificial flows
added in the first layer through the introduction of malicious and legitimate challenges attempting to "fool"
the aggregators, which are the output layer of the system. This layer produces a combined output integrating
the separate "opinions" of the anomaly detectors as they are expressed by the trust models. This combined
output constitutes the final anomaly score of each NetFlow.

The second method introduced in [28], called BClus, can be characterized as a behavioural-based botnet
detection approach, and resembles primarily a clustering mechanism. The purpose of this approach is to
cluster the Netflow traffic sent by each IP address in the dataset and identify the clusters that have similar
behaviour to the botnet traffic. Firstly, the flows are separated in time windows, and in each time window
a number of new aggregation windows are defined. In these aggregation windows the flows are aggregated
by their source IP address and six NetFlow-related features are extracted for each source IP address. The
feature set comprises of the number of unique source and destination ports used, the number of unique
destination IP addresses contacted, the number of flows used, as well as the number of packets and bytes
transmitted by each source IP address. Subsequently, the Expectation-Maximization (EM) algorithm [63]
is utilized to cluster the aforementioned aggregated representations. Each cluster is represented by a new
feature set consisting of the mean and standard deviation of the previously derived features. In addition,
labels are assigned to each cluster according the percentage of botnet NetFlows belonging to the cluster.
Finally, the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) classification algorithm [18]
is fitted on the labelled clustered groups. In the detection phase the flows residing on the test set are processed
in a similar way, with the fitted classification algorithm used for the prediction of the cluster labels.

An interesting anomaly detection approach, operating on network samples of lower granularity compar-
ing to NetFlows, yet offering the inclusion of both classification and clustering-based methods in the detec-

3.2. Anomaly Detection in Network Traffic 27

tion process, is presented in [62]. The proposed system, named AMAL, consists mainly of two subsystems,
AutoMal and MaLabel, with the first one aiding in the extraction of behavioural artifacts through the execu-
tion of malware samples in virtualized environments, and the latter one leveraging the information associ-
ated with these artifacts to classify and cluster malware samples into families of similar characteristics. In
more detail, AutoMal uses memory and file system forensics, as well as network activity logging, and registry
monitoring to create profiles able to summarize the behaviour malware samples. Accordingly, MaLabel is
employed by offering the options of binary classification and clustering. In the case of classification, mul-
tiple well known ML algorithms are employed, including SVM, decision trees, linear regression, and k-NN,
among others, and models are trained on some manually labelled training samples, while, in the case of clus-
tering, hierarchical clustering is applied on the data, aiming to group samples with similar low-granularity
behaviours.

Another work that introduces two approaches towards anomaly detection in network traffic is presented
in [27]. Both approaches aim, firstly, in developing a traffic profile, called Digital Signature of Network Seg-
ment using Flow analysis (DSNSF), able to capture the normal network behaviour, and, secondly, in utilizing
these profiles to identify anomalous events by comparing them with the real network traffic by means of a
modified version of the Dynamic Time Warping (DTW) metric [72]. The two methods used for extracting the
aforementioned behavioural profile of the benign traffic are based on Principal Component Analysis and a
modified version of the Ant Colony Optimization metaheuristic [22]. Both methods operate on a daily ag-
gregation level of the network flows, and use historical data recorded on multiple days of a month to extract
a digital signature for each day. According to the authors, the main intuition behind the utilization of such
level of temporal aggregation lies on the fact that network-wide behaviors are severely affected by the working
hours and the workdays period of people using the examined network. As far as the two flow characteriza-
tion procedures are concerned, the first method aims to characterize the normal traffic by identifying time
intervals with a medium variance among the provided historical data, with the intuition that such intervals
would be associated with normal behaviour, while the second method constitutes a clustering mechanism
attempting to achieve near-optimal solutions in clustering the data through the use of self-organised agents.
Again, as seen in other NetFlow-based works, some relatively simple IP flow features were used in the mod-
elling procedure, namely source and destination IP addresses and port number, as well as bytes, packets, and
number of flows transmitted per second.

In [25], the authors mainly focus on the development of a statistical approach for predicting the future
behaviour of a device conditioned on a features vector extracted from observed historic NetFlow records as-
sociated with that device. The analysis is conducted on host level, in the sense that the behaviour of the indi-
vidual devices in a network is examined. To do so, the NetFlow data associated with each device are grouped
into separate time intervals by examining whether a given NetFlow record crosses temporally a given time
interval. The authors suggest that the behaviour of each device can be represented by the NetFlow records
assigned to each time bin. Subsequently, for each time bin 31 features regarding the timing characteristics of
the associated NetFlows (start time, end time, working hours indicator, etc.), the corresponding event types
(number of records starting or ending in a bin, etc.), some NetFlow-specific characteristics (median number
of packets and bytes transmitted, median duration, etc), and the nature of the captured connections (the
protocols used, the entropy of the ports, etc.), are extracted and assigned to it. The correlation between the
features extracted for each time bin is evaluated through the calculation of the Pearson’s correlation coeffi-
cient, and features with high correlation are either discarded manually or through the application of PCA on
the binned data. Finally, the dataset is split temporally in two groups of days, and a regression tree is fitted
on the data retrieved for each IP on the temporally first group of days, with the predictions evaluated on the
data extracted during the remaining days. This approach does not directly relates to an anomaly detection
mechanism, yet the utilization of regression models as a means of capturing the temporal behaviour of a
host points towards a promising direction, which is highly leveraged by more complex sequential models,
like state machines.

A comparative work incorporating approaches from different aspects of Machine Learning is presented
in [31]. This work constitutes an attempt of investigating the existence of features extracted from user net-
work traffic able to differentiate between infected and uninfected user behaviours, by examining various su-
pervised and unsupervised approaches. In more detail, 36 features are extracted from network traffic, ranging
from the number of unique source and destination IP addresses and port numbers to the mean time differ-
ence between session start times, with PCA applied on them so that the 13 principal components explaining
the greatest percentage of variance in the dataset can be retrieved. In the supervised environment, ten well-
known ML techniques are utilized, while in the unsupervised setting k-means clustering is employed. Algo-

28 3. Related Work

rithms from both settings were evaluated on both the entire feature set and the PCA-preprocessed one. The
main contribution of this work can be identified in the wide variety of ML algorithms evaluated towards the
goal of anomaly detection in network traffic, since a rough understanding about the effectiveness of different
ML techniques in similar tasks can be acquired.

3.2.4. State Machine Learning Approaches

In [33], the authors focus on the extraction of behavioural communication profiles for each host in the exam-
ined network, so that these hosts can be classified according to their traffic summary statistics. To do so, they
design a system based on the use of complex sequential models, derived by finite state machines, towards the
extraction of fine grained communication profiles from the NetFlow traffic of each host. In the premises of
this work, the communication profile of a host is practically a PDFA inferred from its IP flows. In more detail,
the IP flows of each host are encoded into a symbolic string by concatenating five NetFlow features, namely
the protocol used, the duration of the flow, the number of packets exchanged, and the number of incoming
and outgoing bytes transferred. Of course, in order for this symbolic encoding to be concise the ids of the dis-
cretization bins, in which numerical values reside, are utilized instead of their actual values. After obtaining
this symbolic representation, flows are aggregated into a fixed time period by sliding a window over all flows,
while incrementing the start of the window one flow at a time. The main motivation behind this process is
to capture the short-term temporal behaviour of a host and use it to learn an representative communica-
tion profile over it. Finally, after the extraction of the communication profiles for each host is completed, the
identification of a malicious host is conducted by feeding its communication profile with a set of windows
collected from an evaluation set, and calculating the ratio of the accepted versus the rejected windows.

A continuation of this work is presented in [34], where an online method for identifying change points
in the recorded traffic of network flows is proposed. Again communication profiles are learnt for each host,
yet since each host can get involved in multiple activities, meaning that it can be associated with multiple di-
vergent behaviours, the profiling process is conducted on the groups of flows residing between the identified
change points. The main motivation is to cluster the continuous flow traffic originating from a particular host
into segments according to the different associated activities over time, so that a new model can be learnt on
each segment, and a more fine-grained representation of the communication behavior of a host over time
can be extracted. As in [33], aggregated features are used for modelling, and PDFAs are extracted from these
aggregated views as the communication profiles of the hosts. Finally, the identification of change points is
achieved through the introduction of the freshness metric. This metric is expressed as the ratio between the
number of newly added transitions to the APTA under development, while processing a new word w , and
the total number of transitions included in that APTA. Under a clustering perspective, a period of monotone
falling freshness with low values would indicate the lack of new behaviour, while extreme spikes could relate
to the identification of new behaviour in the data. Thus, this metric is calculated on multiple segments of a
host’s flows and a PDFA is learnt between every two consecutive minima.

Another interesting approach leveraging the capabilities of state machines is presented in [68]. In fact,
this work constitutes the main inspiration for the system designed in the premises of this thesis. The authors
introduce a behavioural fingerprinting system, named BASTA (Behavioral Analytics System using Timed Au-
tomata), which uses PDRTAs to extract identity fingerprints of hosts from their corresponding Netflow traces.
As in the rest state machine based works presented above, a host based approach is adopted, with each host
ranked according to an indicator of suspiciousness derived from its outgoing and incoming flows. This indi-
cator is calculated by comparing the overlap in communication behavior between a candidate and a known
infected host, with a low indicator denoting that there is small overlap between the behavioural patterns ex-
tracted from the flows of the candidate host and those of the malicious one. To learn PDRTAs on NetFlow data,
consecutive flows are, first, mapped into timed events by keeping the associated timestamp and combining
the NetFlow features (protocol, direction, duration, bytes, packets) into a symbolic representation, and, sec-
ondly, grouped into small subsequences at regular and predefined time intervals. Finally, two methods for
identifying PDRTA fingerprints in previously unseen Netflow data are proposed, with both of them founded
on the detection of suspicious pairs of states and events (infection symptoms) obtained from the models of
infected hosts. The first approach, called error-based, compares the occurrence counts of similar infection
symptoms between a candidate and known malicious hosts, while the second approach, called fingerprint-
based, utilizes a configuration dataset of known benign hosts to identify symptoms that never occur to these
hosts, and leverages this information to identify malicious symptoms in new candidate hosts.

3.3. State Machine Inference 29

3.3. State Machine Inference
In the previous sections some interesting applications of state machine modelling in the field of anomaly
detection are presented. Yet, the learning capabilities associated with state machine learning and the theory
of automata have been leveraged in various other fields. Especially when there is a sense of sequentiality in
the examined data, state machines can be proven to be quite powerful in capturing the underlying sequen-
tial patterns. These modelling capabilities are further highlighted in this section through the presentation of
various state machine related works and applications. In [55], the effectiveness of incorporating data flow
information in finite state automata inference on execution traces retrieved from software systems is eval-
uated. In particular, the authors attempt to question whether the introduction of data specific parameters
along with the observed event sequences produced by a given software system can lead to the inference of
state machines able to represent more accurately complex program behaviours. To do so, they compared
the performance of two simple passive learning algorithms, namely kBehavior [60] and kTail [8], against two
more advanced learning methods capable of inferring extended FSMs, namely KLFA [59] and gkTail [56],
when learning on execution traces with different levels of sparseness produced by different software systems.

Furthermore, in [14], state machine inference is used as the core component in a project regarding the
validation and testing of security properties of services and web applications. In particular, the so called SPa-
CIoS project includes two state machine based approaches to reverse engineer models from their implemen-
tations. The first approach utilizes an EFSM (Extended Finite State Machine), with parameterized transitions,
guards, and a function for each output parameter, to infer models capable of capturing the behavioural pat-
terns present in remote HTTP connections of web applications in black-box mode. The second approach, on
the contrary, operates in white box mode, by inferring an EFSM for each servlet of the system under exami-
nation. Extended FSMs has been also used in [65] as the building block of a passive learning system, called
Perfume, able to infer behavioral resource-aware models of software systems from logs of their executions,
so that a better understanding about the system’s behaviour and resource use can be acquired. According to
the authors, the main distinction between the proposed system and typical FSM inference approaches can
be identified on the fact that it manages to differentiate behaviorally similar execution traces associated with
different resource consumption. To evaluate the appropriateness of their modelling technique, Perfume’s in-
ference ability is compared with two other FSM inference approaches found in the literature, on two case
studies drawn from a set of TCP communication traces, and a web log retrieved from a real estate website.

In [26], a reverse engineering method for security protocols, named SPREA (Security Protocols Reverse
Engineering Approach), is proposed, aiming to infer protocol state machines based on network traces fea-
tures, like the protocol invariable and variable fields, the ciphertext fields and their length. To do so, a 4-stage
approach is followed. First, the captured network packets are clustered according to a set of statistical features
(packet length, offset, and direction). Subsequently, sequences of protocol constants, like protocol name, ver-
sion, and control codes, are extracted from the packets in each cluster as ordered keywords using sequential
pattern mining. These keywords constitute the protocol invariable fields, while the bytes between two key-
words are considered as variable fields, with byte sample entropy used to locate ciphertext fields within these
invariable fields. Finally, the Exbar algorithm [19] is leveraged to identify the minimal DFA able to represent
the protocol behaviour associated with the clustered packets.

State machine learning has been also applied on mobile applications, as it can be seen in [81]. This work
introduces a testing methodology involving the application of state machine learning on mobile Android
applications towards the goal of vulnerability detection. To this end, an active learning approach is adopted,
and two well known active learning algorithms, namely the L∗ [4] and TTT [43] algorithms, are employed for
the model inference part, while two methods, namely the straightforward random walk approach, and the W-
method [16], are considered for the equivalence checking part of the models produced during the inference
procedure. The state machines were learnt on an alphabet extracted from internal actions of the Android
applications, under the intuition that, since the state machine model would include the sequences of actions
allowed within the application, a better understanding on the cohesion between logical components could
be achieved. Finally, the detection part was performed through the identification of behavioural patterns
conforming to a publicly available list of crucial vulnerability classes in the field of mobile security.

In [52], the learning capabilities of timed automata are leveraged towards anomaly detection in Indus-
trial Control Systems (ICS). In particular, a graphical model-based approach, named TABOR (Time Automata
and Bayesian netwORk), is proposed for profiling the normal operational behaviour of the sensors and ac-
tuators used in an automated water distribution system. This profiling procedure is conducted through the
application of timed automata inference on the sensors signals, and the use of bayesian networks to capture
the dependencies between the sensors and actuators. In that way, the extracted timed automata can act as

30 3. Related Work

one-class classifiers capable of recognizing abnormal behavioral patterns and dependencies. Of course, as
in most state machine learning applications, a symbolic representation of the sensors signals is extracted,
before the timed automata can be inferred. The class of timed automata used is PDRTAs and the learning
algorithm utilized is RTI+ [85]. More information about this algorithm can be found in Chapter 5, since it is
also used in the premises of the current work. Finally, the authors argue that, through the inclusion of timed
automata, the proposed detection system provides both interpretable and localized results, in the sense that
a graph-based model can be easily visualized, while modelling the behaviour of each sensor can significantly
aid in the identification of the exact malfunctioning components of the system under examination.

On similar grounds, PDRTAs were used in [53] to model car-following behaviours. The goal of this work
was to effectively model the changes in individual drivers’ behaviour throughout the data collection period
associated with the examined dataset. The functionality of the proposed system, named MOHA (Multi-mOde
Hybrid Automaton model), can be briefly described as follows: Initially, k-means clustering is utilized to ob-
tain temporal symbolic representations (timed strings) from the time series representing the values of mul-
tiple vehicle trajectory features, like the speed, and the relative distance and speed, over time. Subsequently,
as in [52], the RTI+ algorithm is employed, so that PDRTAs able to capture frequent temporal patterns in the
observed timed events can be produced. After the PDRTA inference is complete, a mapping between the orig-
inal timed strings and the individual states in the extracted model is constructed, so that these mapped state
subsequences can be clustered according to their associated timed events into different driving behaviour
modes. Finally, the learnt models equipped with the driving behaviour mode information can be used for
online predictions on the longitudinal acceleration associated to an incoming stream of vehicle data.

4
Data Exploration

Before designing the detection methodology and experimenting on the provided network traffic, it is highly
important to acquire an insightful view regarding the nature of that traffic. The development of the detec-
tion module, as well as its detection performance, are highly dependent on the acquisition of a clear under-
standing about the data on which the system is expected to operate. This understanding can be attained by
inspecting the provided data and visualising useful summary statistics regarding their nature and the corre-
lations between the available data features. This data exploration procedure can significantly aid the deci-
sion making process in several steps of a machine learning pipeline, like the preprocessing of the input data,
the feature selection, the training and test set split of the input data, as well as the development of the core
learning module of the pipeline. This chapter includes an overview of the datasets used to evaluate the per-
formance of the proposed detection system, along with the analysis performed on the nature of the provided
data.

4.1. Datasets Overview
As it was mentioned earlier, the designed system should be able to operate on high-level network traffic sum-
mary statistics, without having access to the payload of the packets transmitted within the examined network.
As a result, only NetFlow datasets are taken into account for the evaluation of the proposed detection method-
ology. Apart from this datatype specification, the datasets to be selected for the evaluation process should
fulfill three additional requirements, namely availability, reliability, and diversity. The first requirement refers
to the need of publicly available datasets, since in that way the data could be directly acquired, while the
public availability of data enhances the reproducibility of the conducted work. The second of these require-
ments reflects the confidence around the quality of a given dataset. When working with publicly available
datasets, trusting the procedures followed by the creators of the dataset regarding the collection and labelling
of the data constitutes a necessity. To address this requirement, it was considered beneficial for the selected
datasets to have been cited in multiple malware/intrusion detection works. Finally, the diversity requirement
refers to the range of attacks and malicious behaviors included in the selected datasets. As it was stated in
Chapter 1, the designed system should be able to detect as many types of attacks as possible, thus it should
be evaluated on datasets containing a diverse set of malicious behavior. As it will be better illustrated in the
sections to follow, the selected datasets cover a wide range of malicious network activity, fulfilling in that way
this final dataset selection condition. Taking all these requirements into consideration, the following three
publicly available NetFlow datasets were used:

• CTU-13: This dataset was first presented in [28], containing botnet traffic captured in the CTU Univer-
sity, Czech Republic, in 2011.

• UNSW-NB15: This dataset was introduced in [64], and was generated by the IXIA PerfectStorm tool4 in
the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) in 2015 with the goal of creating
a NetFlow-based dataset that would incorporate various synthetic attack behaviours.

4https://www.ixiacom.com/products/perfectstorm

31

https://www.ixiacom.com/products/perfectstorm

32 4. Data Exploration

• CICIDS2017: This dataset was initially presented in [75], and was created by researchers of the Cana-
dian Institute for Cybersecurity (CIC), based at the University of New Brunswick (UNB), Canada, in
2017, as an attempt to address issues in earlier intrusion detection datasets.

Deeper insight on these datasets is provided in the sections to follow, yet, if a detailed presentation of the
datasets is sought, the aforementioned cited papers should be considered.

4.1.1. The CTU-13 Dataset
As it was mentioned above, the CTU-13 dataset includes a large capture of real botnet traffic, along with nor-
mal (benign) and background traffic. In more detail, the CTU-13 dataset is composed of thirteen captures
(called scenarios by the creators of the dataset) of various botnet samples. The topology used for the pro-
duction of the dataset consisted of a set of virtualized computers running on a Linux host being connected
to the CTU University network, as it can be seen in Figure 4.1, which is retrieved from the original work pre-
sented in [28]. The traffic included in the dataset was captured both on the malicious Linux host and on one
of the university routers. The traffic originating from the Linux host was purely malicious, while the traf-
fic associated with known and controlled computers in the network was labelled as normal. The rest traffic
was attributed to background communication, meaning that the benignity of that traffic cannot be safely as-
sumed. Each scenario is associated with a specific malware performing a set of different malicious actions,
ranging from sending SPAM, and doing Click-Fraud, to port scan, and DDoS attacks. A detailed presentation
of the main characteristics of the scenarios, along with the corresponding Botnet behavior can be sought
in [28].

Figure 4.1: Network topology of the CTU-13 dataset (retrieved
from [28])

After capturing the packets transmitted across the network, the dataset was preprocessed and converted
into the NetFlow file standard, consisting of both a unidirectional and a bidirectional set of NetFlows. In
the premises of the current work, the bidirectional set was used, since, as the creators of the dataset advise,
this capture offers a more detailed representation of the network communication comparing to that offered
by the unidirectional flows. Each bidirectional flow is composed of the following fields: start time, duration,
protocol, source IP address, source port, direction, destination IP address, destination port, state, source Type
of Service (sToS), destination Type of Service (dToS), total packets and bytes transmitted, and source bytes.
Apart from the aforementioned attributes, a label was assigned to each flow, denoting the class of the host
that this flow either originated from or was directed to. The initial distribution of labels in each scenario
can be found online5 on the Stratosphere Lab repository, with the majority of the recorded flows assigned
to the background class. Nevertheless, in the greatest part of this work, solely the flows associated with the
normal and botnet traffic are taken into consideration, since the primary goal of this thesis is to evaluate the
detection performance of the proposed methodology, and the lack of a ground rule regarding the benignity
of the background traffic would question the reliability of the prediction results. Thus, as it is suggested by
the creators of the dataset in their online blog5, only the flows originating from either the malicious hosts or
the acknowledged normal computers are retained in the datasets comprising each scenario. The distribution
of the labels in the retained flows can be seen in Table 4.1 below.

5https://www.stratosphereips.org/datasets-ctu13

https://www.stratosphereips.org/datasets-ctu13

4.1. Datasets Overview 33

Scenario Total Flows Normal Flows Botnet Flows
Number of Number Type

Benign Hosts of Bots of Bots

1 71219 30258 40961 6 1 Neris
2 30023 9082 20941 5 1 Neris
3 143125 116303 26822 6 1 Rbot
4 27775 25195 2580 6 1 Rbot
5 5561 4660 901 6 1 Virut
6 12101 7471 4630 6 1 Menti
7 1732 1669 63 5 1 Sogou
8 78766 72639 6127 7 1 Murlo
9 214880 29893 184987 7 10 Neris

10 122157 15805 106352 7 10 Rbot
11 10873 2709 8164 6 3 Rbot
12 9783 7615 2168 6 3 NSIS.ay
13 71782 31779 40003 6 1 Virut

Table 4.1: Distribution of records in each scenario of the CTU-13 dataset

Apart from the distribution of the labels among the included flows, Table 4.1 presents also the number of
benign and malicious hosts, along with the type of bots used to generate the malicious traffic in each scenario.
It should be mentioned that the traffic associated with each host in the CTU-13 dataset originates strictly from
one class, meaning that each host can be either strictly benign or strictly malicious. Finally, it can be seen
that scenario 3 contains the highest number of benign flows, with scenarios 9, and 10 containing the highest
number of botnet flows. Despite the obviousness of this observation, it is pointed out since the distribution
of scenarios between the training and testing phases is based on that observation, as it will become apparent
in Chapter 7.

4.1.2. The UNSW-NB15 Dataset
As stated by the creators of this dataset in [64], the motivation behind its generation can be identified in the
attempt to address the issues of the previous Network Intrusion Detection System benchmark datasets found
in the literature through the incorporation of various up-to-date synthetic attack behaviors in a flow-based
dataset. As mentioned earlier, the network traffic included in this dataset was generated synthetically by the
IXIA PerfectStorm tool4 in an attempt to create a mixture of the contemporary (at the time of course) normal
and abnormal network traffic. In particular, this dataset includes nine attack families, namely Fuzzers, Anal-
ysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms, simulated by the aforemen-
tioned tool based on its inherent attack set that is continuously updated by a dictionary of publicly known
information security vulnerabilities and exposures. Finally, the network topology used for the creation of this
dataset can be seen in Figure 4.2, which is retrieved from the original work presented in [64].

Figure 4.2: Network topology of the UNSW-NB15 dataset
(retrieved from [64])

34 4. Data Exploration

As it can be seen in Figure 4.2, the traffic generator was configured with three virtual servers, two of which
(servers 1 and 3) were responsible for generating the normal traffic, and the last server (server 2) was injecting
the malicious activities in the network traffic. These servers were connected through two routers to the hosts
of the network, with each router being connected to the firewall of the network too. Apart from routing traffic
within the network, one of these routers (router 1) was used for capturing the network traffic, originating from
the traffic generator, that was dispersed among the network nodes. After capturing the transmitted packets
within the network, a flow-based monitoring system and a network traffic analyser are used to extract features
from the raw network traffic, resulting to a set of 47 flow and packet based features. Of course, since the
packet-based features include information about the payload of the packets, they are disregarded within the
scope of the current thesis, and solely basic flow-based features are used in the analysis and the experiments
conducted. Yet, in case the reader desires to inspect the full feature set of the dataset, this can be found in
[64], where this dataset was introduced. Finally, the derived dataset was split in a timely fashion into four
chunks of data, as it can be seen in Table 4.2.

Scenario
Total Normal Malicious Number of Number of Type
Flows Flows Flows Benign Hosts Malicious Hosts of Attack

1 700000 677785 22215 36 4 Multiple
2 700000 647251 52749 36 4 Multiple
3 700000 542575 157425 36 4 Multiple
4 440043 351149 88894 34 4 Multiple

Table 4.2: Distribution of records in each scenario of the UNSW-NB15 dataset

As it can be easily seen from the table above, the first three chunks contain an equal number of flows,
with the last chunk containing the remaining flows, while there are 40 hosts (source IP addresses) in the
dataset, with four of them being considered as malicious. At this point, it should be mentioned that these
four malicious hosts do not demonstrate purely malicious behaviour, meaning that only a part of the flows
associated with them are labelled as malicious. Nevertheless, in the premises of this thesis it is assumed that
if a host is linked with at least one malicious flow, then it should be considered as malicious. Finally, it shall be
pointed out that Table 4.2 does not contain an analytical overview of the attacks associated with each split of
the dataset, since each split contains flows associated with all types of attacks injected in the network traffic.

4.1.3. The CICIDS2017 Dataset
This dataset is characterised by its creators as an Intrusion Detection Evaluation dataset containing malicious
traffic resembling a wide variety of the most commonly encountered attacks. The traffic capture is organised
across five weekdays, and was performed on a network topology consisting of two separate networks, namely
the Attack-network and the Victim-Network, in an attempt to create a topology resembling to the greatest
extent a real-life setting. Towards that end, the Victim-network constitutes a complete network topology, in-
cluding switches, routers, a modem, and a firewall, along with a group of different benign machines operating
on various operating systems, while the Attack-network is composed by a number of machines with public IP
addresses responsible for executing the designed attacks, along with a switch and a router used for bridging
this network to the Victim-network. This topology is better illustrated in Figure 4.3, retrieved from the orig-
inal work presented in [75]. Finally, it should be mentioned that the benign traffic is generated by an agent
responsible for profiling the abstract behavior of human interactions through the use of machine learning
and statistical analysis techniques.

After capturing the packets transmitted within the presented network topology, the CICFlowMeter tool6

is used to extract a bidirectional flow representation of the recorded traffic, incorporating more than 80 flow-
level statistical features. Of course, as it was mentioned earlier in this work, the designed system should be
able to work on universally available features, thus solely some basic NetFlow attributes are utilized out of
the extended feature set provided in this dataset. Yet, in case the reader wants to inspect the full feature
set provided by this dataset, this can be accessed on the online CIC repository7. As mentioned above, these
flows are captured within a period of five consecutive days, including a wide range of attacks. The first day
(Monday) contains only benign traffic, while each of the following days is associated with different types of
attacks. The distribution of these attacks for each day is presented in Table 4.3, along with the number of

6https://github.com/ahlashkari/CICFlowMeter
7http://www.netflowmeter.ca/netflowmeter.html

https://github.com/ahlashkari/CICFlowMeter
http://www.netflowmeter.ca/netflowmeter.html

4.2. Data Preprocessing 35

Figure 4.3: Network topology of the CICIDS2017 dataset (retrieved
from [75])

distinct benign and malicious hosts in the network. In the premises of this dataset, the condition of hosts
demonstrating solely one class of behaviors is not satisfied. Thus, for the purpose of host level analysis it was
assumed that only hosts associated entirely with normal flows are considered as benign. Finally, it can be eas-
ily seen that the number of benign hosts is significantly greater than the handful of machines comprising the
Victim-network, meaning that there is also some unknown background traffic captured within the designed
network topology. In the premises of this thesis, solely the benign hosts associated with a significant amount
of traffic are utilized in the modelling and detection procedure.

Scenario
Total Normal Malicious Number of Number of Type
Flows Flows Flows Benign Hosts Malicious Hosts of Attack

Monday 529918 529918 0 8239 0 -
Tuesday 445909 432074 13835 7191 1 Brute Force

Wednesday 692703 440031 252672 7688 1 DoS
Thursday (morn.) 179366 168186 2180 4202 1 Web Attack

Thursday (aft.) 288602 288566 36 5100 1 Infiltration
Friday (morn.) 191033 189067 1966 4461 3 Bot

Friday (aft. - DDoS) 225745 97718 128027 2066 1 DDoS
Friday (aft. - port scan) 286467 127537 158930 3666 1 Port scan

Table 4.3: Distribution of records in each day of the CICIDS2017 dataset (morn. and aft. refer to morning and afternoon respectively)

4.2. Data Preprocessing
After acquiring the datasets on which the proposed detection system would be trained and evaluated, an
initial preprocessing of the raw data should be performed in order for them to be converted into a format
that the designed system is able to process. Since the provided captures consisted of a series of timestamped
flows stored in .txt or .csv formats, they should be "translated" into a format that would enable the machine
to understand the type of each feature, while handling the case of missing or uncommonly formatted values.
Towards that end, the following preprocessing steps were adopted:

1. The timestamp fields were parsed according to the timing format specified in each dataset, so that the
input data could be properly handled as multivariate time series.

2. The missing values in categorical features, like the protocol used, were filled with the keyword "miss-
ing", while, in the case of numerical features an invalid value, like -1, was used instead.

3. There was the case that the port numbers, apart from the expected Integer representation, would be
given in a hexademical form. Thus, in order to maintain a universal format for the port attributes, the
conversion of any hexademical values to their decimal representation was performed.

4. Each categorical feature to be processed by the detection system, like the protocol attribute, was en-
coded into a numerical representation, by assigning a unique number to each distinct value of that
attribute.

36 4. Data Exploration

5. As a final preprocessing step, a datatype was assigned to each numerical attribute, as an indicator for
the way that they should be handled by the machine.

After this initial preprocessing was completed, an analysis of the distribution of flows in each dataset was
undertaken, so that a better understanding on the way that the data should be processed, before entering
the designed detection system, could be acquired. As it was mentioned earlier, and will be further explained
in Chapter 6, the proposed system is based on a multivariate sequential model, which operates on traces ex-
tracted in a timely fashion from the raw input data, while aggregating these data according to a user-specified
level of analysis (host or connection level). As a result, by visualising the distribution of flows both across time
and within each analysis level would be beneficial on the decisions made regarding the trace extraction and
data aggregation procedures. These visualization can be seen in Figures 4.4, 4.5, and 4.6 for each dataset ex-
amined. In particular, Figures 4.4a, 4.5a, and 4.6a depict the number of flows recorded every second in each
dataset. These figures illustrate the problems that could arise, in case a static windowing technique would be
used for the trace extraction process. It can be easily seen that there are multiple data spikes in all datasets,
while in the case of the CICIDS2017 dataset the problem of time regions with low to zero flow recordings is
encountered too. Such issues led to the adoption of a dynamic windowing technique, the functionality and
effectiveness of which are analysed in Chapter 6.

(a) Number of flows per second
(b) Number of flows per connection

Figure 4.4: Flow distribution plots in CTU dataset

(a) Number of flows per second
(b) Number of flows per connection

Figure 4.5: Flow distribution plots in UNSW-NB15 dataset

Figures 4.4b, 4.5b, and 4.6b constitute box plots visualising the number of flows belonging to each unique
connection for the majority of the recorded connections in each of the examined datasets. It can be easily
seen that, in two of the three datasets used (CTU-13 and CICIDS2017), most connections are short-lived,
consisting of a handful of flows, with solely few major connections present in the dataset (these connections
are not depicted in these figures, since they constitute outlying points in the given context and have been
excluded for visualization purposes). As long as the UNSW-NB15 dataset is concerned, the range of the num-
ber of flows in each distinct connection is significantly greater comparing to the rest datasets, meaning that a
connection level analysis could be meaningful for this dataset. Nevertheless, if Figure 4.5b is inspected with

4.3. Feature Exploration and Selection 37

(a) Number of flows per second
(b) Number of flows per connection

Figure 4.6: Flow distribution plots in CICIDS2017 dataset

greater attention, it can be seen that the line representing the median of the number of flows per connection
is close to the left part of the visualised box plot, meaning that despite the fact that there is a notable num-
ber of connections with a significant number of flows contributing to the visualized range, the majority of
connections consist of few flows.

It can be easily understood that connections with such a low communication load cannot be used to
derive robust behavioral models in the training phase of the proposed system, which as a matter of fact would
lead to the creation of too few models solely from the major connections present in the dataset. To avoid such
scenarios, a host level analysis was selected in the premises of this thesis. Yet, in the case of the UNSW-NB15 a
connection level analysis could be applicable, and possibly beneficial, for the major hosts of the dataset. This
possibility is not examined in the premises of this thesis, yet the discussion about the quality of the results
regarding this dataset refers to this possibility in Chapter 7. Finally, it should be mentioned that the figures
presented above are derived from benign captures of the datasets. This decision was made to maintain the
integrity of the conducted analysis, since one of the desired characteristics of the developed detection system
was its ability to learn solely from benign data.

4.3. Feature Exploration and Selection
As it became apparent from the discussion regarding the overview of the datasets presented in Section 4.1,
each dataset offers a different set of flow-based features, with the CTU dataset providing the most limited set,
and the rest datasets offering significantly extended ones. Yet, as it was discussed earlier in this thesis, the
proposed system should be capable of operating in a way as universal as possible, meaning that its detec-
tion performance should not depend on highly sophisticated features that are not existent in the majority of
NetFlow datasets. On top of that, in order to fairly evaluate the performance of the designed system across
the three datasets included in this work, it is considered necessary to come up with a unified set of features
that are available in all datasets. As a result, the following basic NetFlow features were taken into consider-
ation in this work: the timestamp of each flow, the source and destination IP addresses and port numbers,
the protocol of communication, the packets transmitted, as well as the bytes originating from the source and
destination hosts. Not all of these features were used in the learning process though. Some of them were
eventually discarded, while others were only used implicitly. In particular, the timestamps of the flows were
used for the extraction of traces from the flows of the dataset, while the source IP address was used to group
the data in a meaningful manner for a host level analysis to be conducted. In case a connection level analysis
had been considered, then both the source and the destination IP addresses would have been used in the
grouping procedure. The number of transmitted packets was another feature that was not taken into account
eventually, since this feature is directly related to the number of transmitted bytes, thus its incorporation was
considered redundant. The rest features were directly used in the benign communication profiles’ learning
process.

A visualised overview of these features in each dataset is presented in Figures 4.7, 4.8 and 4.9. Of course, as
it was mentioned in Section 4.2, the figures presented above are derived from benign captures of the datasets.
In more detail, in Figures 4.7a, 4.8a, and 4.9a the range of the source and destination port numbers recorded
for the majority of benign flows of each dataset is depicted. It can be easily seen that in the case of CTU-13 and
CICIDS2017 datasets the recorded destination port numbers attain significantly lower values comparing to

38 4. Data Exploration

(a) Source and destination port range (b) Number of flows per protocol type

(c) Range of source and destination bytes (d) Duration range

Figure 4.7: Visualization of basic NetFlow features for CTU dataset

(a) Source and destination port range (b) Number of flows per protocol type

(c) Range of source and destination bytes
(d) Duration range

Figure 4.8: Visualization of basic NetFlow features for UNSW-NB15 dataset

the source port numbers, which makes sense since the benign communication is directed to ports associated
with specific services (like 53 for DNS, 80 for HTTP, and 443 for HTTPS), while, in most cases, the source ports
are ephemeral ports allocated automatically from a predefined range by the IP stack software. Nevertheless,
this does not seem to be the case for the UNSW-NB15 dataset, since a much higher range of destination
port numbers is recorded. As far as the communication protocols are concerned, Figures 4.7b, 4.8b, and
4.9b, presenting the number of flows associated with each protocol type in each dataset, clearly illustrate
the dominance of TCP and UDP protocols in the benign network traffic. Subsequently, Figures 4.7c, 4.8c,
and 4.9c, illustrate the range of bytes sent (src_bytes) and received (dst_bytes) within benign flows in each
dataset. It can be observed that, despite the fact that the ranges between source and destination bytes tend to
differ, their median values lie close together. Finally, in Figures 4.7d, 4.8d, and 4.9d, the range of the duration
of flows across each dataset is illustrated. It can be easily seen that the majority of flows in the CTU-13 and
UNSW-NB15 datasets demonstrate a significantly low duration, while this is not the case for the CICIDS2017
dataset. Yet, since the measurement unit of the duration for this last dataset was not provided, there cannot

4.4. Challenges 39

(a) Source and destination port range (b) Number of flows per protocol type

(c) Range of source and destination bytes
(d) Duration range

Figure 4.9: Visualization of basic NetFlow features for CICIDS2017 dataset

be any safe assumptions regarding the actual extent of the duration values recorded.

4.4. Challenges
Developing an anomaly detection system able to operate on basic high-level statistics of network traffic, while
learning multivariate sequential models only from benign network behavior constitutes a task inherently
connected with various challenges, the primary of which can be seen as follows:

• Representative benign traffic modelling: Extracting benign traces representative enough to properly
capture the behavioural patterns that encompass every possible normal sequence of NetFlows is con-
sidered a particularly difficult task. In many cases, the boundary between normal and anomalous be-
havior is quite unclear, which as a matter of fact renders the identification of anomalous observations
lying close to the boundary significantly complex.

• Selection of the windowing strategy: In order to learn a sequential model from a series of NetFlows,
a set of traces shall be extracted from this series. This extraction is based on a window applied on the
series, so that partial subsequences can be retrieved and offered as input to the learning algorithm.
The quality of this extraction procedure is highly correlated to the quality of the learning process. If the
applied windows fail to capture the underlying temporal patterns, then the developed model will not
reflect the intended traffic behaviour.

• Noisy data: Often, the benign network traffic contains noise, and in case this noise is incorporated into
the training traces used to create the models of the benign behavioural patterns, it is highly likely that
some models could relate to actual anomalies, rendering the identification of such anomalies impossi-
ble. Thus, the development of a system robust to noise is of high importance.

• Sensitivity to deviations: Elaborating further on the previously presented challenge, the phenomenon
of deviating patterns in benign NetFlow data is quite common, given the fact that these data are ex-
tracted through a monitoring process of real-life network traffic. Thus, the designed system should be
as insensitive as possible to such deviations, so that the extraction of overfitting models can be avoided.

5
Model Creation

Flexfringe [83], the tool used for learning behavioural models from NetFlow traffic, constitutes a passive au-
tomaton learning package with multiple functionalities and tunable parameters affecting the learning proce-
dure. Both topics will be discussed in the current chapter, along with a high level description of the algorithms
supporting the state machine learning process offered by flexfringe. First, such core algorithms, and the intu-
ition behind them, will be presented in short. Subsequently, the attention will be focused on the multivariate
version of this tool, since this approach was adopted in the modelling part of this thesis. Finally, the decisions
made regarding the tunable parameters of the system will be discussed and justified.

5.1. Red-Blue State Merging Algorithm
Flexfringe bases its functionality on a well-known greedy state-merging method, the Evidence-Driven blue-
fringe State-Merging algorithm (EDSM), introduced in [48]. This algorithm was the winning DFA inference
algorithm of the Abbadingo One DFA Learning Competition and is based on the introduction of a red-blue
framework for labelling and merging consistent states. EDSM starts by constructing an Augmented Prefix
Tree Acceptor (APTA) consistent with the input data and attempts to reach a compact hypothesis by repeat-
edly merging compatible pairs of states. A state merge is considered compatible (or consistent), when both
states to be merged are associated with the same operation (accepting or rejecting). During the merging
procedure, the incoming and outgoing transitions of a newly merged state consist of the incoming and out-
going transitions of the corresponding pair of candidate states. On top of that, when a merge introduces a
non-deterministic choice, in the form of a set of similarly labelled outgoing transitions to different states,
these target states are merged as well. This procedure is called determinization, and is repeated until no non-
deterministic choices are left. Of course, if at some point of this determinization process two inconsistent
states are to be merged, the whole process aborts and the originating pair of states cannot be merged. Two
conclusions can be easily drawn from such a procedure. First, EDSM constitutes a passive DFA learning al-
gorithm based on the availability of both positive and negative training samples. Second, each state merge
introduces new constraints for future merges, which could be proved wrong in case an incorrect merge is
made. As a result, it is highly important for the algorithm to follow a well-founded merging strategy sup-
ported in the highest extent possible by the evidence provided through the input data, especially during the
initial merging attempts, since a wrong merge could have an avalanche effect on the learning process.

In the red-blue framework, the merging procedure and the calculation of the evidence score are based on
the maintenance of a core of red nodes and a fringe of blue nodes, aiming to effectively reduce the search
space of the possible merge pairs by solely performing red-blue merges. The red nodes represent the iden-
tified parts of the automaton, while the blue ones are the children of red nodes acting as merge candidates.
Given the aforementioned setting, three actions are eligible during the learning procedure: (1) compute the
score for merging a red/blue pair, (2) color a blue node red if there is no possible merge with any red node,
and (3) merge a blue with a red node. Of course, the aforementioned actions along with the red-blue state
representation can lead to multiple algorithms of varying performance depending mainly on the way that
the evidence score is calculated and the order in which the three actions presented above are performed. In
the original work presented in [48], the difference in accepting and rejecting states before and after perform-
ing a potential merge was used as the evidence score associated with that merge, while, as far as the order

41

42 5. Model Creation

of actions is concerned, a highest priority was given to coloring the shallowest unmergeable blue node red,
followed by the action of performing the highest scoring blue/red merge, in case no unmergeable blue node
could be found. Of course the first node to be colored red is the root of the APTA, and the aforementioned
procedure is repeated until there are only red nodes left.

Figure 5.1: A snapshot of a sample DFA during the determinization process in the red-blue framework

A snapshot of a sample DFA during its determinization process in the red-blue framework can be seen
in Figure 5.1. The red nodes are the red states representing identified parts of the automaton, while the blue
nodes constitute the blue states acting as the current candidates for merging. Furthermore, there are some
uncoloured nodes denoting the unexplored parts of the initially created APTA. Since the initial development
of the algorithm, various proposals have been made regarding the search techniques employed in the merg-
ing process of EDSM. Flexfringe builds upon this algorithm, as well as some of the proposed search tech-
niques, by adding numerous functionalities, so that the identification of Deterministic Real Time Automata
(DRTA) can be achieved, as it will be seen in more detail in the following sections.

5.2. Learning from Labelled Data: The RTI Algorithm
The core functionality of flexfringe was initially based on an extension of the classic red-blue fringe EDSM
approach for DFA identification to the field of Deterministic Real-Time Automata (DRTA). As it was explained
earlier in this thesis, DRTAs provide better modelling capabilities for capturing the behaviour of real-world
systems, the operation of which is affected greatly by the timing of their observed events. To deal with such
real-time systems, the RTI (Real Time Identification) algorithm was proposed in [82]. This algorithm follows a
similar merging process as the one described in the previous section with two primary differences: (1) unlike
the case of simple DFAs, each transition is associated with a delay guard representing the timing condition
connected with that transition, which as a matter of fact renders the introduction of a timed evidence value
necessary, and (2) a new SPLIT operation is added in the merging process, along with the MERGE and COLOR
operations, that are originally included in the EDSM algorithm. Through the addition of the split operation
the authors of the algorithm aimed in aiding the resolution of inconsistencies introduced by the delay guards
initially set in the APTA, as it is explained in greater depth below.

Figure 5.2: A real-time APTA generated from the timed sample with S+ = {(a,1), (a,1)(b,3)(b,4), (b,2)(b,3)} and
S− = {(a,1)(b,3)(a,4), (b,2), (b,1)(b,2)}

Similar to the procedure described in the previous section, initially a timed version of an APTA is con-
structed from the input data samples. At first, the APTA is derived in the same manner as in the case of
plain DFAs by considering the untimed versions of the symbol sequences provided in the training set. Subse-

5.3. Learning from Positive Data: The RTI+ Algorithm 43

quently, each transition is enriched by a delay guard, with the starting values of the lower and upper bounds
of such guards being set to the minimum and maximum delay values recorded in the training set. It can be
easily seen that such an initialization could lead to the existence of inconsistent states in the APTA. Such an
example is presented in Figure 5.2, where the lower right state of the depicted APTA is both accepting and
rejecting. Such inconsistencies can be resolved by splitting the transition leading to inconsistent states ac-
cording to its delay guard. In more detail, given a transition δ with a delay guard g = [t1, t2], a split at time
t ∈ [t1, t2) would lead to the generation of two transitions with the same label as the original one, but with
delay guards equal to g ′ = [t1, t] and g ′′ = [t +1, t2] respectively. Of course, in case of a split, apart from the
inconsistent state split into two new states, the part of the APTA starting from the previously inconsistent
state needs to be separated into two parts too. The first part is reached by timed strings that fire δwith a delay
t ′ ≤ t , and the second by those that fire δ with a delay t ′ > t . Finally, since RTI is based also on the red-blue
framework, only transitions targeting blue states constitute split candidates.

The future of each state plays a pivotal role in the calculation of the evidence score used to evaluate the set
of actions available at a given step of the learning process. In more detail, the derivation of the evidence value
is driven by the intuition that suffixes (or tails) lying far away from each other are more likely to be separated
by a future split operation. Thus, the evidence value is based on the amount of overlap among the tails of each
blue node, with a high overlap being achieved when two tails share a common untimed representation and
their probability of being pulled apart is low. Various heuristics attempting to express the aforementioned
intuition into a measurable score has been proposed [87], ranging from naive untimed approaches, like the
one used in the original EDSM setting, to more sophisticated ones taking into account the consistency value
of both compatible (associated with same label) and incompatible (associated with different labels) pairs of
tails. Every possible type of action is evaluated in every iteration of the algorithm, with the action recording
the highest score being eventually performed. In case of equally scoring actions, preference is given first to a
merge, then to a split, and finally to a color operation.

5.3. Learning from Positive Data: The RTI+ Algorithm
As it was discussed earlier in this thesis, in most real-life scenarios, when learning the behaviour of a system,
traces from the normal execution of the system are mostly available. This is the case also in data extracted
from network traffic, since it is much easier to collect NetFlow data from the benign operation of the exam-
ined system or network. It can be easily seen that in such cases the application of RTI for the purpose of
extracting behavioural models of the system under examination is impossible. To deal with such issues, an
extension of the original RTI algorithm, called RTI+, capable of learning solely from positive data, was intro-
duced in [85]. This extended version models the input data with the use of probabilistic DRTAs (PDRTA), and
constitutes the core of the multivariate approach used in the premises of this thesis to model the underly-
ing behavioral patterns in sequences of NetFlow data. In the premises of this algorithm, the identification of
PDRTAs able to effectively model the input data is dealt as the following two-fold problem: (1) the problem
of identifying the correct DRTA structure, and (2) the problem of appropriately setting the probabilistic pa-
rameters associated with each transition of the model. Finally, a likelihood-ratio statistical test for evaluating
the statistical difference between the tails of a pair of states is introduced as the new evidence value used to
decide on the available actions during the determinization process.

Similarly to RTI, initially, an APTA consistent with the input data is generated. Of course, in the case of
RTI+, the generated APTA will not include any accepting or rejecting states, since solely positive data are used
for modelling. The rest of the learning procedure followed is identical to that of RTI, with the only difference
identified on the evidence value used. As it was mentioned above, a likelihood-ratio test is used to determine
the statistical difference between the suffixes of a pair of states, which as a matter of fact could provide insight
on whether the examined states should be merged. Intuitively, a merge between two states with significantly
different futures should be considered inconsistent, therefore it should not be performed. The likelihood-
ratio statistical test used to test the null hypothesis that the suffixes of strings occurring after two different
states follow the same PDRTA distribution is based on the concept of nested hypotheses. A hypothesis H is
considered nested within another hypothesis H’, if the possible distributions under H form a strict subset
of the possible distributions under H’. In the context of a PDRTA identification process, these concepts can
be mapped to the PDRTA distributions before and after a merge (or respectively after and before a split)
is performed, since before the merge (respectively after the split) more parameters are present in the model
(hypothesis H’), while after the merge (respectively before the split) a more compact model should be created
(nested hypothesis H). Given these two hypotheses, and an input dataset S, the likelihood ratio test statistic

44 5. Model Creation

can be computed as

LR = l i kel i hood(S, H)

l i kel i hood(S, H ′)
(5.1)

, where the likelihood of each hypothesis in the context of RTI+ is calculated as the joint PDRTA distribu-
tion associated with each hypothesis, and is extracted through the use of the occurrence counts of the events
in the dataset. Subsequently, the random variable y =−2ln(LR) is compared to a χ2 distribution and the p-
value of this test is use to determine whether the null hypothesis should be rejected. Typically, if the p-value is
lower than 0.05, the two hypotheses are considered statistically different with 95% confidence. This statistical
evidence is used in RTI+ to decide on the possible set of operations in the following way: If there is a split
resulting to a p-value lower than 0.05, the split with the lowest p-value is selected. If there is a merge resulting
to a p-value greater than 0.05, the merge with the highest p-value is selected. If none of the previous actions is
available, a colouring operation is selected. Finally, it should be mentioned that in the initial version of RTI+
only the most visited transition from a red state to a blue state was examined at each iteration, so that the
run-time of the algorithm could be effectively reduced. As it will be seen in the final section of this chapter,
such decisions can be tuned according to the conditions introduced by the facing problem.

5.4. The Multivariate Approach
In most cases, when modelling the behaviour of real-time systems, the extracted traces are composed of
events characterized by various features. As a matter of fact, this is the case when dealing with NetFlow data,
as it is better illustrated in Chapter 2. Each NetFlow record incorporates various features, ranging from the
communication protocol used, and the duration of the flow, to the number of bytes and packets transferred
between the source and destination IP addresses of the flow. Yet, state machines operate on a symbolic lan-
guage, which drives most researchers using state machine learning approaches to develop a symbolic repre-
sentation out of the original features by compressing the information provided by different feature values into
a set of symbols [33, 34, 68]. It can be easily seen that when such symbolic representations are used, a great
amount of attention should be paid on the mapping between the raw features and the symbolic alphabet,
so that the produced symbolic sequence will be representative of the original multivariate time series. Yet,
even if the obtained mappings are of high quality, there will be some information loss between the original
traces and the symbolic ones, since each set of feature values is compressed into one symbol. To avoid such
information loss, a model operating on the raw features associated with each record can be used.

The multivariate version of flexfringe offers such capability, by extending the process used for dealing
with delay guards in the RTI+ algorithm to each numerical feature associated with the event types under
examination. As in the case of timed symbolic event sequences, each feature of a timed event (a NetFlow
record in the premises of this thesis) is dealt in the same way as the timing information in the original RTI+
algorithm, since, after all, time is just one numerical feature of the sequence. Again, solely positive data are
used for modelling and the probability distribution of each feature is estimated independently through the
use of histograms, as it was explained in Section 2.3.4. The automaton learning process is mostly identical
to that of the RTI+ algorithm, with two primary differences: (1) there are multiple types of guards in each
transition, with each one of them associated to a particular feature, and (2) there is no need for symbols,
since each event is represented by the set of features associated with it. For completeness reasons, there is
one symbol used in the learning process, yet its contribution to the identification procedure is null.

Figure 5.3: Example of a multivariate model extracted from NetFlows with 5 states and 3 attributes in each state

A sample multivariate model extracted from a sequence of Netflows is depicted in Figure 5.3. It can be
easily seen, that three features of NetFlow records have been used in this model, namely the communication
protocol, and the number of incoming and outgoing bytes. It should be noted that since the protocol is

5.5. Additional Constraints & Tunable Parameters 45

a categorical feature (e.g. TCP, UDP, ICMP, etc.), a mapping to numerical values is used in the modelling
process. Each transition in the depicted model is fired according to a set of feature guards, meaning that each
of the conditions introduced by the guards should be met for the transition to be fired. For instance, in order
to move from state 2 to state 4, the number of bytes sent by the source IP address should be less than 100,
while the number of bytes received should be at least 73. On top of that, each node is accompanied by some
additional information on the nature of records reaching the associated state, like the quantile distribution
of each feature value (the quadruple next to each feature label), the number of traces ending in that state (the
number next to the fin symbol), as well as the total number of records reaching the state (the number on the
top of each node next to the # symbol). Another advantage of using such models, apart from the inclusion
of the raw data in the learning process, can be identified on the interpretability originating from that exact
inclusion of raw data features in the visualization of the extracted model. Finally, it should be pointed out
that, as depicted above, the time parameter is not included in the model. The inclusion of time into the
modelling procedure can be achieved with two ways, either explicitly by adding the difference between the
timestamps of each consecutive pair of records as one of the features to be modelled or implicitly through
the trace extraction process, which is the case in this thesis. More insight on the latter implicit inclusion of
temporal information to the model is provided in Chapter 6.

5.5. Additional Constraints & Tunable Parameters
Flexfringe offers a great number of tunable parameters able to affect significantly the learning process. Most
of these parameters have been developed as additional merge constraints that, given the nature of the prob-
lem, could enhance the learning process, or as a way to manually set the variables associated with the learning
heuristic utilized. For instance, when the likelihood ratio test, mentioned before, is selected as the learning
heuristic, the p-value used to decide on the action to be performed at each merging step of the learning pro-
cess can be manually set according to the amount of confidence that is needed when making a decision. In
this section the parameters primarily affecting the multivariate state machine modelling procedure are pre-
sented and discussed, so that the rationale behind the choices made can be transparently explained. These
parameters can be seen as follows:

• method: This parameter sets the type of method to be used when selecting the action to perform at
each inference step. The obvious choice would be to select the action providing the highest evidence
value, yet, since each action accounts for local optimality, it could lead eventually to a suboptimal path.
To deal with such issues, the random greedy selection technique was introduced in [38]. The basic
functionality of this technique is the multiplication of the evidence value of each action by a value in
[0,1] drawn uniformly at random. Thus, this greedy procedure will sometimes try actions that do not
seem locally optimal, under the rationale that these actions may lead to optimal paths. This technique
has been selected also in the modelling procedure of the current thesis. It should be also mentioned
that, when this random greedy technique is utilized, the number of times that it will be repeated to get
more robust results can be also tuned.

• largestblue: Setting this parameter suggests that the learning algorithm should solely consider the
most frequent candidate for a merge, rather than evaluating all possible candidates. Again this param-
eter can lead to significant improvements in the execution time, while also aiding the learning process
since the most frequent candidate is associated with the greatest amount of information available at
the given phase of the learning process.

• blueblue: This parameter can be used to enable the merge of a candidate (blue) state with another
candidate (blue) state, instead of solely merging candidate states with identified red states. The use
of such parameter alters the merging concept expressed in the red-blue framework, yet after some
experimentation conducted on that parameter, it was observed that more concise models of the input
NetFlow based traces were developed when this parameter was set.

• extrapar: Through this parameter, any variable, associated with the statistical tests performed by the
learning heuristic used, can be manually set. In the premises of the current work, this parameter corre-
sponds to the p-value of the likelihood ratio test, and was set to 0.05, as it is suggested in the work [85]
introducing this likelihood heuristic.

6
Modelling Benign Flows

The goal of this thesis is to develop a system capable of extracting behavioral profiles from the benign network
traffic of a computer network under examination, as well as leveraging these profiles towards the identifica-
tion of malicious (or abnormal) traffic. The functionality of the developed detection system is based on the
assumption that the behavior associated with malicious traffic should not conform to the profiles extracted
from benign flows. The intention behind the design and deployment of the proposed pipeline was to create a
system able to effectively identify malicious network behaviour, while operating on a privacy preserving ab-
straction of packet captures (NetFlows), and leveraging to the maximum extent both the temporal relations
between sequences of flows and the multifaceted information accompanying NetFlow records. To do so, a
sequential modelling approach was adopted through the use of multivariate state machines to capture the
benign network behaviour, accompanied by the incorporation of three well-known anomaly detection algo-
rithms in the structure of the derived state machines to further boost the detection process. In the sections
to follow, the questions raised while developing this detection system are discussed, and the implementation
details of the proposed pipeline, as well as the design choices made, are presented and explained.

6.1. Preliminaries
As it was mentioned in the introductory paragraph of this chapter, when designing the pipeline of the anomaly
detection system developed in the premises of this thesis, multiple questions regarding the nature of the com-
ponents comprising it, as well as their connection and integration into an end-to-end fully functional system
were raised. Such questions should be transparently communicated to the reader for a better understanding
on the design choices described in the following sections to be achieved. Thus, the most important questions
needed to be answered during the system design and development process are enumerated as follows:

1. What is the modelling entity?

This question refers to the way in which the data, the NetFlows in this case, should be abstracted,
grouped, and analysed, so that a meaningful behavioral profile can be extracted for every group of
data. Host and connection levels of analysis are the two obvious options in the case of NetFlow data,
with each one associated with different advantages and disadvantages. In the current work both levels
were initially examined, yet the host level of analysis was adopted in the experimental setting devel-
oped. More information about the characteristics, as well the advantages and disadvantages of each
approach, are discussed in Section 6.2.1.

2. In which way can NetFlow traces be extracted for each modelling entity, so that temporal relations
existent in the data flows can be retained at the greatest extent?

After grouping the NetFlows according to the preferred level of abstraction, a set of temporal sequences
(traces) shall be extracted and provided as input to the behavioral model extraction process. Since each
flow is associated with a specific timestamp, a windowing technique can be used for extracting traces,
yet, the choices concerning the implementation details of this technique are highly important towards
the creation of meaningful behavioral models able to accurately capture the underlying behavioral pat-
terns. For that reason, a sliding window technique along with a mechanism for dynamically adjusting

47

48 6. Modelling Benign Flows

the window length and stride are employed, with more information on that technique being provided
in Section 6.2.2.

3. How will the behavioral profiles of the benign traffic be represented and extracted?

As it was explained earlier, multivariate state machines have been deployed as the sequential models
attempting to capture the underlying behavioral patterns in the corresponding set of flow sequences
of each modelling entity, while flexfringe [83] has been used to extract these multivariate models from
the set of traces of each entity. Yet, this chapter will not focus on the learning algorithm, since such
information was provided in Chapters 2 and 5.

4. In which way can the extracted profiles be used to distinguish between benign and malicious traffic?

The final question to be answered refers to the training and testing phases of the developed system. Af-
ter the extraction of the behavioral profiles from the benign flows comprising the training set, a mecha-
nism shall be developed for the utilization of such models towards the goal of detection. In the current
thesis, a replay approach involving both the training and testing NetFlow traces has been adopted as
a part of the training and testing methodologies. In depth analysis of the training and test approaches
followed can be found in Sections 6.2.3 and 6.2.4 respectively.

All the aforementioned questions are answered in the following section, where the designed pipeline is
extensively presented and the implementation details are discussed and explained.

6.2. Main Pipeline Analysis
A high level presentation of the components comprising the pipeline of the proposed detection system can
be seen in Figure 6.1. As it can be seen, the designed pipeline consists of two main sets of components. The
first of these sets is associated with the training phase of the developed system and includes the components
residing in the area defined by the blue dotted line in Figure 6.1, while the second set consists of the compo-
nents associated with the testing phase and its members reside in the area defined by the red dotted line in
Figure 6.1. In addition, there are two initial components used in both phases, which are mostly connected
to the needed preprocessing of the input NetFlows, so that they can be transformed into a representation
suitable for the learning process followed.

Figure 6.1: High level flowchart of the detection pipeline

Briefly, the procedure adopted during the training phase is the following: Initially, the input NetFlows of
the training set are grouped either according to their source IP address in case of host level analysis or accord-
ing to the pair of their source and destination IP addresses in case of connection level analysis. Subsequently,
the dynamic windows extraction procedure is employed for each group of data, so that a set of traces from
the NetFlows belonging to each group can be produced. These traces are fed into the multivariate version
of flexfringe, so that the multivariate FSM capturing the behaviour of each group can be extracted. After the
creation of the multivariate behavioral model, the corresponding traces are run (or replayed) on the directed
graph representing the structure of the model. Through that process, each state of the derived multivari-
ate FSM is associated with the subset of events leading to that state, and this subset of events is treated as
a state-local training set on which three different models (LOF, Isolation Forest, Gaussian KDE) can be fit-
ted. Finally, each multivariate FSM with its incorporated state-local detection models is stored as a reference
benign behavioral profile.

6.2. Main Pipeline Analysis 49

The first two steps are the same also in the testing phase of the proposed system, as it can be clearly seen
in Figure 6.1. After the extraction of the testing traces for each modelling entity (host or connection), these
traces are replayed on all the behavioral models extracted during the training phase, so that state-local test
sets can be assigned to each of their states in a similar manner as the state-local training sets are created.
Subsequently, weighted predictions on the events included in the test set of each state are produced from the
corresponding state-local model. After the collection of all predictions from a particular model, the ratio of
benign to total predictions is used as an indicator of the benignity of the testing entity. Of course, all steps
comprising both the training and testing phase of the developed pipeline will be discussed in greater depth
in the sections to follow.

6.2.1. Levels of Abstraction
As it was mentioned earlier, when employing a detection solution that involves the creation of behavioral
profiles of the NetFlow data, an abstraction level of analysis on that data needs to be applied. The obvious
choices for such strategy constitute the host level and the connection levels of abstraction. The selection of
one of these abstraction types is affected by multiple conditions, with the primary ones related to the nature
of the detection purpose that the developed system aims to serve, as well as the available data. Of course,
both levels of abstraction entail particular advantages and disadvantages, the significance of which should
be properly weighted when selecting the type of analysis to adopt for the facing detection task. These exact
advantages and disadvantages, as well as the choices made regarding the analysis level of the flows in the
current thesis, are discussed in the following paragraphs.

The adoption of host level analysis means that the available NetFlows are grouped according to their
source IP address, with the flows associated to each host used as input data to the behavioral model extraction
process. Systems operating on such level of analysis perform also their detection process on hosts, rather than
raw NetFlow data. For instance, such level of analysis would be appropriate for a detection system keeping
track of possibly infected hosts through the retention of a blacklist, meaning that every time a host would
be labelled as suspicious (or malicious), this host would be included in the blacklist and would be treated
as infected by the system. Host level analysis offers a coarse-grained view on the flows, since the behavioral
profile created by a group of flows incorporates multiple distinct connections of the host under modelling,
including in that way multiple diverse individual behaviours of the host. In addition, in case that profiles of all
modelling entities in a network are extracted and compared during the detection phase, as it is the case in the
proposed system, modelling the hosts of the network offers a much more efficient modelling and detection
procedure comparing to a connection level modelling approach, since the number of hosts is usually much
smaller than the number of connections in a network. Finally, in order to create a behavioral profile out of
a group of data, a sufficient amount of data points is needed for the created model to accurately capture the
behavior of the modelling entity. It is evident that when hosts are considered, more flows can be provided as
input to the learning algorithm comparing to the case of the connection level of analysis.

Of course there are also some disadvantages associated with the adoption of a host level of analysis. First,
a behavioral model created from the set of flows associated with a host could incorporate significant amount
of noise, since the different connections in which the host is included could demonstrate a quite diverse
range of behaviours. In addition, a host-based modelling procedure suffers from the assumption that a host
is either strictly benign or strictly malicious. Nevertheless, when a host is associated with both benign and
malicious traffic, a host-based detection procedure might fail in identifying this partial behaviour. Especially,
when the percentage of malicious traffic associated with a host is relatively low, such a scenario is highly
probable, and of course undesired. In the case of the proposed system, there is an attempt of handling such
situations by setting an adjustable decision threshold regarding the benignity of a host, when host level anal-
ysis is employed, with more information about this strategy provided in Section 6.2.4.

As far as the connection level of analysis is concerned, such an analysis involves grouping the available
NetFlows by the distinct pairs of source and destination IP addresses, and creating a behavioral model for
each of these pairs. Such a modelling procedure offers a fine-grained view on the data, since the behaviour
associated to each connection is much less noisy comparing to that in the case of hosts. As a result, the
extracted models offer specific views of the benign behavioral patterns existent in the examined NetFlows,
possibly leading to the creation of models capable of identifying even abnormalities associated with a small
portion of flows. Of course, not everything is ideal when adopting a connection level of analysis. As it was
mentioned earlier, in order for the extracted multivariate models to adequately capture the behavioral pat-
terns of a group of flows, without overfitting on that group of flows, a sufficient number of traces should be
provided. When connections are taken into account, it is highly likely that most of these connections consist

50 6. Modelling Benign Flows

of a relatively low number of flows, rendering the modelling procedure impossible. In fact, as it was illus-
trated in Chapter 4, in the majority of the datasets used in the premises of this thesis most connections are
short-lived including less than 100 flows, with only few connections consisting of thousands of flows. In such
cases, two approaches can be followed: either only the major connections will be used during training, which
entails sufficient information loss, or even small connections are modelled, leading to many small, and possi-
bly unreliable, models. The latter choice would also entail a significant burden in the detection module since
a much higher number of models should be taken into account, comparing to the case of host based analysis.
In the premises of this thesis, both levels of analysis were initially examined, yet due to the nature of the data
the host level of analysis was eventually selected in the experimental procedure implemented.

6.2.2. Traces Extraction
After grouping the data flows according to the desired level of analysis, a set of traces consisting of subsequent
flows grouped in a temporal manner should be extracted and provided as input to the FSM inference algo-
rithm used for the production of the needed behavioral models. Such a trace extraction procedure involves
two main considerations. The first one regards the selection of the NetFlow related features to be included in
each event of each trace, while the second one concerns the mechanism used to temporally group the events
into different traces. Both decisions affect significantly the quality of the modelling procedure, since the first
decision affects the content of the multivariate sequences used to derive the behavioral model of each mod-
elling entity, while the second decision affects the degree to which temporal patterns are properly mapped
across the different set of traces extracted. For example, if traces included temporally unrelated flows, the
creation of sequence models able to capture the actual underlying temporal behavior would be severely im-
peded.

As far as the first decision is concerned, different combinations of some basic NetFlow features, like the
source and destination ports, the protocol used, the number of bytes sent and received, and the duration
of a flow, were used, avoiding the incorporation of other highly sophisticated features, aiming in that way
to create a system able to operate on features that are as universal as possible among flow representations.
A deeper discussion on the different combinations of NetFlow features used in the modelling process can
be found in Chapters 4 and 7, where the nature of the data and the experimental procedure respectively
are presented and analysed. Regarding the temporal grouping of NetFlows, sliding window approaches are
commonly employed in works [33, 68] related to similar tasks. In most cases, windows of static length and
stride are rolled upon a timely ordered set of flows in order for the flows residing inside the same window to
be concatenated into a sequence of timed events comprising each trace. Such a procedure is preferred mostly
due to its simplicity, yet it can potentially lead to unfortunate results in the modelling process.

The main implication in using a static windowing technique rises from the fact that NetFlow records tend
to appear in a non-periodic fashion, meaning that within a timely ordered set of flows, there could be tem-
poral regions with high volume of traffic, as well as sparse regions with few dispersed flows. In such cases, if
a windowing technique with a static time window was to be employed, traces with highly imbalanced "tem-
poral load" would be extracted. In particular, there would be many traces with few timed multivariate events,
corresponding to the sparse temporal regions, accompanied by few traces with a high number of records,
corresponding to the dense temporal regions. On top of that, when sliding a static time window over a sparse
temporal region, it is highly likely that multiple windows will include the same data points, since the stride of
the window would not be able to immediately push the window into capturing new data. Traces of such na-
ture are highly undesired, since the highly loaded traces would tend to dominate in the multivariate inference
process leading to the creation of models ignoring a significant number of traces. An easy solution to such
an unfortunate scenario could be expressed through the adoption of a static window grouping a predefined
number of subsequent flows, so that all traces would be of the same length regardless of the temporal distance
within the flows in each trace. Such a technique, though, suffers from the obvious drawback of disregarding
the actual temporal information associated to each flow. It can be easily understood that such a technique
could potentially group temporally distant flows, leading to noisy traces, and therefore noisy models.

As it was illustrated in Chapter 4, the datasets considered in the evaluation phase of this work demonstrate
the aforementioned characteristics in their temporal nature. Thus, to deal with any of aforementioned short-
comings of the static windowing techniques, a mechanism for extracting traces with sliding windows able to
dynamically adjust their length and stride according to the observed temporal contention is developed. The
functionality of this mechanism is illustrated in Code Snippet 1, and is further explained as follows. The main
two considerations taken into account when designing this dynamic windowing mechanism regarded the ex-
traction of windows incorporating a sense of well-distributed traffic load, and in parallel respecting the tem-

6.2. Main Pipeline Analysis 51

poral distances between consecutive flows. To facilitate the first concern two manually set limits regarding
the minimum and maximum number of flows allowed in a window were utilized, while the second concern
was dealt with through the introduction of a high level split in non-overlapping windows and a dynamically
adjustable striding technique adopted in sparse temporal regions. Thus, the developed mechanism starts
by sorting in ascending time order and splitting the provided flows into non-overlapping high level windows
according to the observed time difference of consecutive flows, before proceeding into a dynamic processing
of each of these windows independently.

The intuition behind the aforementioned decision is based on the fact that flows lying temporally far from
each other should be separated and not included in the same window. After temporally clustering the input
flows, each cluster (or high level window) is being individually processed. Initially, the window length is set
proportional to the median time differences of the flows residing in the cluster, while the stride was set as the
1/5 of the window length, so that overlapping traces could be extracted through the sliding window process.
While sliding the window over the flows of the temporal cluster, three primary conditions are repeatedly
evaluated:

1. The new traces condition: This condition is evaluated in lines 12-19 of Code Snippet 1 and aims in
dealing with sparse temporal regions, in which the sliding process could move slowly leading to the ex-
traction of consecutive traces with the exact same information captured within their content. To deal
with such unfortunate occasions, a condition regarding the incorporation of unseen flows in the ex-
tracted trace at every phase of the trace extraction process is evaluated. If there is no new information
included in the trace, the trace is discarded and the stride of the window is increased, so that a previ-
ously unseen flow can be reached faster. Such an approach runs the risk of skipping unseen flows in
case the stride is increased excessively. To avoid such a situation, if the index of the first unseen flow
encountered in the process is not equal to the highest index seen so far incremented by one, the begin-
ning of the window is reset to match the flow with the aforementioned index. In that way, the integrity
of the process is ensured.

2. The maximum trace length condition: This condition is evaluated after a window with new infor-
mation has been identified and can be seen in lines 22-27 of Code Snippet 1. This condition aims in
keeping the length of the window lower than a predefined number of flows, so that the extraction of
extremely long traces in temporally dense areas can be avoided. To do so, as long as a trace, the length
of which is higher than the maximum permitted length, is encountered, the window is decreased by
a dynamically adjustable scale (initialized at 2, meaning that initially the window length is repeatedly
decreased by half).

3. The minimum trace length condition: This condition is complementary to the aforementioned one
and is evaluated in lines 28-33 of Code Snippet 1. It can be easily understood that this condition aims in
maintaining the length of the window higher than a predefined number of flows, so that extremely small
traces are not extracted. To do so, as long as a trace, the length of which is lower than the minimum
permitted length, is encountered, the window is increased by a dynamically adjustable scale (initialized
at 2, meaning that initially the window length is repeatedly doubled).

As it can be seen in lines 21-35 of Code Snippet 1, the last two conditions must be met in parallel, thus
they have been encapsulated in a while-loop aiming to enforce both of them. Such an approach runs the
risk of leading to an infinite loop, in which the maximum trace length condition decreases the window length
too much, and in parallel the minimum trace length condition increases the decreased length proportionally
much, not enabling the process to converge in an acceptable window length. To avoid such an unfortunate
situation, the scale used to increase or decrease the window (initially set to 2) is also slightly decreased after
each unsuccessful run of the outer while-loop (starting at line 21 of Code Snippet 1) until it reaches the value
of 1, which would mean that the window is no longer changed. If that condition is met, meaning that an
acceptable window was not found, the window associated with the closest length to the specified limits is
selected. Finally, it should be pointed out that in all of the above conditions the stride of the window should
be kept lower than the length, so that there is no possibility of flow loss in the extraction process.

As a final step of the trace extraction process, the developed mechanism offers the possibility of using
another aggregation window inside the window identified by all the steps presented above. The application
of aggregation windows is controlled through a flag provided in the trace extraction mechanism. In case
this flag is set, non-overlapping aggregation windows of one second (or the length of the outer window in

52 6. Modelling Benign Flows

Algorithm 1 Dynamic Windows Extraction

Input: A list with timestamped flows f low sLi st ; The minimum permitted trace length mi nTr aceLen; The
maximum permitted trace length maxTr aceLen; A flag for producing aggregation windows within each
window ag g r eg ati onF l ag

Output: A list of traces tr aceLi st
1: Sort f low sLi st in ascending time order
2: hi g hLevelW i ndow s ← Extract high level non-overlapping time windows from f low sLi st
3: tr aceLi st ← []
4: for hi g hLevelW i ndow : hi g hLevelW i ndow s do
5: medi anDi f f ← Calculate the median time difference between flows in hi g hLevelW i ndow
6: Initialize wi ndowLen and wi ndowStr i de as multiples of medi anDi f f
7: cur r Tr ace ← []
8: seen ← empty set
9: pr evF low s ← null

10: while not all flows of hi g hLevelW i ndow in seen do
11: cur r F l ow s ← Apply the time window of wi ndowLen on the flows of hi g hLevelW i ndow
12: while cur r F l ow s == pr evF low s do
13: Increase wi ndowStr i de
14: cur r F l ow s ← Apply the time window of wi ndowLen on the flows of hi g hLevelW i ndow
15: if wi ndowStr i de surpassed last seen flow then
16: Set the start of the window at that flow
17: end if
18: Ensure that wi ndowLen ≥ wi ndowStr i de
19: end while
20: numW i ndowF low s ← count (cur r F l ow s)
21: while numW i ndowF low s < mi nTr aceLen or numW i ndowF low s > maxTr aceLen do
22: while numW i ndowF low s > maxTr aceLen do
23: Decrease wi ndowLen
24: cur r F l ow s ← Apply the time window of wi ndowLen on the flows of hi g hLevelW i ndow
25: numW i ndowF low s ← count (cur r F l ow s)
26: Ensure that wi ndowLen ≥ wi ndowStr i de
27: end while
28: while numW i ndowF low s < mi nTr aceLen do
29: Increase wi ndowLen
30: cur r F l ow s ← Apply the time window of wi ndowLen on the flows of hi g hLevelW i ndow
31: numW i ndowF low s ← count (cur r F l ow s)
32: Ensure that wi ndowLen ≥ wi ndowStr i de
33: end while
34: Ensure that the loop is not infinite after an amount of unsuccessful attempts has been made
35: end while
36: if ag g r eg ati onF l ag == Tr ue then
37: Append cur r F l ow s to cur r Tr ace
38: else
39: ag g F low s ← Create aggregated view of cur r F l ow s
40: Append ag g F low s to cur r Tr ace
41: end if
42: pr evF low s ← cur r F l ow s
43: Slide time window
44: end while
45: Append cur r Tr ace to tr aceLi st
46: end for
47: return tr aceLi st

6.2. Main Pipeline Analysis 53

case that length is less than one second) are applied on the flows of each time window, with the features of
all flows inside each aggregation window being compressed to one value leading to an aggregated view of
these flows. This aggregation is conducted by using the median values of numerical features and the mode of
categorical ones. This functionality is inspired by the work conducted in [28] and aims in serving a two-fold
purpose. First, by compressing the flows into aggregation windows the average length of the traces extracted
is reduced, which as a matter of fact leads to a proportional reduction in the computational time needed
for the multivariate model extraction process that follows the dynamic trace extraction phase. The second
and most important reason justifying the adoption of aggregation windows lies on the fact that through this
process robust estimates of the feature values observed in a sequence of flows are extracted, rendering the
model extraction process less prone to outliers, and subsequently overfitting to the input traces. In fact,
without the application of aggregation windows there was a high number of cases when flexfringe could not
converge to a model able to represent the input sequential multivariate data, especially when significantly
long traces (in the order of thousands) were considered.

After implementing this dynamic window extraction technique, it was considered beneficial to quantify
its contribution to the learning and detection process by comparing the detection performance of the de-
signed system using that technique to that achieved when the two aforementioned static window techniques
are employed. To carry out this comparison, one of the datasets included in this thesis, the CTU-13 dataset,
was utilized, and an experimental process similar to the one presented in Chapter 7 was followed. Yet, since
the main purpose of these experiments was to quantify the appropriateness of the proposed dynamic win-
dow extraction technique, the experimental procedure adopted was simplified comparing to the one used
for the rest of the experiments carried out in this thesis. In particular, a feature selection step was not in-
corporated in the evaluation process, meaning that all the NetFlow features identified through the feature
exploration process (source and destination port numbers, protocol, duration, source and destination bytes)
were included, while the baseline detection technique introduced in Chapter 7 was fitted in each state of
the multivariate FSMs used by the designed system. It should be pointed out that the detailed information
regarding the training and testing phases of the designed methodology, as well as the experimental config-
uration are later presented in this thesis. Yet, for reasons concerning the reading coherence of this thesis, it
was decided to include the results of the window related experiments in the current section.

Scenario
Dynamic timed windows Static non-timed windows
TP TN FP FN TP TN FP FN

1 1 4 1 0 1 4 1 0
2 1 2 0 0 1 2 0 0
3 1 4 1 0 1 4 1 0
4 1 4 0 0 1 4 0 0
5 1 3 0 0 1 3 0 0
6 1 3 0 0 1 3 0 0
7 1 3 0 0 1 3 0 0
8 1 4 0 0 1 4 0 0
9 10 4 1 0 10 4 1 0

10 10 4 1 0 10 4 1 0
11 2 1 1 0 2 1 1 0
12 3 3 0 0 3 3 0 0
13 1 4 0 0 1 4 0 0

Total 34 43 5 0 34 43 5 0

Table 6.1: Comparative results on the CTU dataset only for major hosts when two different window extraction techniques are used

As far as these experiments are concerned, two major observations were made. First, the static timed
window extraction technique was proven to be 1000 times slower than the dynamic extraction technique
introduced in this section, which as a matter of fact is associated with the ability of the latter technique to
better handle sparse temporal regions, providing in that way a significant boost in the computational effi-
ciency of the entire detection methodology . In fact, the substantial overhead, that the static timed technique
entailed, led to its removal from the rest of these experiments. Second, the rest two techniques produced
the same detection results when applied to the designed methodology and evaluated on the CTU-13 dataset,
as it can be seen in Table 6.1. This last observation justifies the adoption of the dynamic window extraction
technique in the traces extraction process of the designed system, since it performed at least as well as the

54 6. Modelling Benign Flows

static non-timed window technique on the evaluated dataset, while taking into account the temporal nature
of NetFlows, a characteristic that could turn out to be valuable in the rest datasets evaluated in the premises
of this work.

6.2.3. Model Extraction and Training
After extracting a set of traces for each modelling entity (host or connection), the multivariate version of
flexfringe is employed to produce the sequential model representing the network behavior of each entity. The
learning algorithm used to model the extracted multivariate traces was covered in depth in Chapter 5, thus
there will not be a similarly extensive presentation of the process in this chapter too. Rather, the attention
will be focused on the training methodology applied on the produced multivariate FSMs, so that behavioral
profiles able to capture the underlying temporal patterns of the benign traffic associated with each mod-
elling entity can be extracted. The primary motivation behind the design of the training, as well as the testing
methodologies, lies on the perception of the multivariate state machines extracted trough flexfringe as tem-
poral clustering mechanisms. In particular, each state of the multivariate state machine can be perceived as
a temporal cluster capturing similar NetFlow activity. Thus, if the input traces used to derive a multivariate
FSM are replayed onto the directed graph structure of the FSM, each state can be associated with the indi-
vidual flows crossing it during the replay procedure, assigning in that way a local training set of flows to that
state.

Figure 6.2: High level flowchart of the training pipeline

In Figure 6.2 a more detailed presentation of the designed training pipeline is depicted. It can be seen
that after feeding flexfringe with the extracted multivariate traces, a dot8 file of the inferred FSM structure
is produced. This file is parsed and the obtained multivariate model is fed with its corresponding NetFlow
traces. After replaying the multivariate traces associated with each modelling entity on the corresponding
FSM, three well-known anomaly detection algorithms (LOF, Isolation Forest, Multivariate KDE) are fitted on
each state-local training set of the FSM. In that way, each state can be converted into a temporally aware pre-
dictor trained on the state-specific benign behavior represented by the flows comprising the corresponding
local dataset. At this point it should be mentioned that the functionality of these three models was analysed
in depth in Chapter 2, thus it will not be covered again in this chapter. As it was mentioned earlier in this
thesis, these three detection algorithms are selected, since they are extensively used in the anomaly detection
literature, while originating from different machine learning disciplines. Thus, it was considered beneficial to
evaluate the appropriateness of incorporating such techniques in the structure of a sequential model towards
the goal of detection. Following this state-local detection model fitting process, all three versions of each mul-
tivariate FSM are stored in memory, so that they can be used for matching any unseen benign network traffic
behaviour examined during the testing phase. Thus, the result of the training phase is a "database" of benign
behavioral profiles, which is accessed during test time to identify any non-matching behaviour as potentially
anomalous.

6.2.4. Model Testing
In the testing phase, a methodology similar to the one used during training is adopted. As in the training
phase, the flows comprising the test set are first grouped according to the preferred level of analysis (host or

8https://graphviz.gitlab.io/_pages/doc/info/lang.html

https://graphviz.gitlab.io/_pages/doc/info/lang.html

6.2. Main Pipeline Analysis 55

connection), and then sorted in an ascending timely order. Subsequently, the flows belonging to each mod-
elling entity are provided as input to the dynamic trace extraction process presented in Section 6.2.2, so that
a set of multivariate testing traces can be extracted for each entity. At this point, the testing phase is decou-
pled from the training phase, since, instead of inferring a multivariate model out of each set of traces, each
set is replayed on every multivariate behavioral model stored in the "database" created during the training
phase. Similarly to the replay procedure followed in the training phase, the testing replay process aims in
deriving state-local test sets for each modelling entity on every benign behavioral model extracted. Through
this process, the detection model fitted in each state can be used to make predictions on its local test set, so
that outlying points can be identified in each state. Finally, all these local predictions can be aggregated into
a final detection result on the modelling entity under examination.

Figure 6.3: High level flowchart of the testing pipeline

The testing pipeline is better illustrated in Figure 6.3. It can be easily seen that, after each state-local model
provides its predictions on the test set captured by the state on which it has been fitted, a weight is assigned
to duplicate predictions. This step is included in the prediction process, since it is possible that the same flow
has been captured by multiple states due to the sliding nature of the windowing technique used to extract the
traces. As a result, if a flow has been included in the test sets of multiple states, multiple predictions on that
flow will be produced. As a result, these predictions need to be combined into one final prediction for the
flow under examination, especially if the predictions include labels from both classes (normal or outliers). A
straightforward solution to that problem would be to assign the majority class of the individual predictions
as the final prediction on each flow. Yet, such solution does not take into account the confidence behind
each individual prediction, meaning that it would be possible that the majority predicted class was derived
by state-local models of low detection confidence. For example, state-local models trained on a low number
of flows provide less confident predictions comparing to models derived from a larger state-local dataset. To
take into consideration such parameters, a weighted average approach was employed. Each state si of the

behavioral model was associated with a weight equal to wsi =
num_o f _tr ai ni ng _i nst ancessi

maxs j ∈S num_o f _tr ai ni ng _i nst ancess j
, where S is

the set of all states in the model, and num_o f _tr ai ni ng _i nst ancessi is the number of training instances in
state si . This weight is associated with every prediction made on a state, and the final prediction for a flow f
spanning a set of states S f is calculated as the weighted average of the individual predictions on each state
s f ∈ S f , as it can be seen in Equation 6.1 below.

pr edi ct i on f =
∑

s f ∈S f
ws f ×pr edi ct i ons f∑

s f ∈S f
ws f

(6.1)

After the aggregated predictions of all flows comprising the testing behaviour of the entity (host or con-
nection) under examination are calculated, a final prediction on the benignity of that entity shall be pro-
duced. To do so, the ratio of the flows identified as benign to the total number of flows associated with the
examined entity is used as an indicator of the potential match between the behavior of the examined entity
and the benign profile captured by the behavioral models learnt during training. A match between a test-
ing entity and a benign model is considered to be successful if the predicted benign ratio is greater than a
predefined decision threshold. This threshold is dependent on the detection algorithm used in each model
(LOF, Isolation Forest, multivariate KDE) and can be either manually set according to the number of alarms
that a system is able to handle or through a validation procedure on the training traces of each model. If the
latter option is selected, then each inferred model is fed with the traces used during its training phase and
the threshold for each model can be tuned according to the benign ratio of the predictions made on these
training traces. More information on this tuning procedure is provided in Chapter 7. Finally, since the traces
of each testing entity are replayed on every benign model extracted during the training phase, a decision rule

56 6. Modelling Benign Flows

must be defined regarding the benignity of each entity. In the premises of this work, an all-anomalous/any-
benign rule is adopted. Since each behavioral model is learnt on benign traffic, it is assumed that if at least
one benign match is found during testing, then the examined entity is considered benign, otherwise an alarm
is raised for that entity. This strategy implies that the detection system needs to be highly confident that an
anomaly has been found to raise an alarm, and aims in reducing the number of false alarms, which is a com-
mon problem among anomaly detection systems trained on the normal data points, as it was explained in
Chapter 2.

6.3. Some Thoughts on Complexity
Before elaborating further on the computational complexity associated with the operation of the designed
detection system, it should be clarified that the work conducted in the premises of this thesis was not ori-
ented primarily towards computational performance. As a result, multiple choices made during the design
and the deployment process could be improved towards the pursuit of higher efficiency. In fact, Chapter 8
includes a brief discussion on such potential improvements. Of course, the aforementioned statement does
not imply the fact that the designed system does not provide adequate computational performance. This
section is utilized towards the provision of some rough insights regarding the complexity of each phase of the
designed pipeline, with the attention focused on the trace extraction process, the model creation with the use
of flexfringe, as well as the training and testing phases. Finally, it should be pointed out that big-O estimations
are not included in this section, rather a rough overview of the complexity is presented.

Starting the discussion with the dynamic trace extraction procedure, it should be pointed out that such
a process can easily turn into a significant performance bottleneck for the whole system, given the fact that
it is applied before both the training and the testing phase, while the proposed system handles data points
with irregular frequency of appearance. Yet, the trace extraction process is equipped with mechanisms for
handling potential edge cases associated with steep changes in the way that flows appear, either by spanning
fast through sparse temporal areas or by identifying and breaking potential infinite (or close to infinite) loops
associated with the dynamic nature of the process. As a result, the trace extraction process adds minimal
computational overhead to the pipeline. As far as the FSM inference process is concerned, it was observed
that there was a significant overhead added when sets of long traces (in the order of thousands) were provided.
As it was discussed in Section 6.2.2, this problem was overcome through the use of aggregation windows in
the trace extraction procedure. Of course the inclusion of this technique entailed a computational overhead
on the trace extraction process itself, yet this overhead was negligible comparing to that associated with the
provision of long traces to the inference tool.

Following the model inference, the training process is computationally dominated by the three factors:
(1) the detection model used, (2) the number of states in the FSM structure, and (3) the number of flows
captured in each state. It is obvious that the more states and flows involved, the higher the computational
overhead, which especially in the case of the LOF model could lead to some undesired results, since it con-
stitutes a nearest neighbour technique operating on the set of pairwise distances between all instances of the
training set. Lastly, the complexity of the testing phase is primarily associated with the number of benign
models available for comparison, since every trained behavioral model is taken into account. As a result,
the more benign models extracted in the training phase, the more comparisons are needed during the test-
ing phase. This problem could be partially solved if solely a part of the benign models were evaluated for a
potential match during testing, yet a robust mechanism regarding the selection of these models should be
implemented.

7
Experiments

After designing the detection system presented in the previous chapters, the establishment of an evaluation
procedure to quantify its detection performance is considered necessary. As it was explained in Chapter 4,
three publicly available datasets containing NetFlow captures from real network traffic were utilized to evalu-
ate the effectiveness of the detection pipeline. These datasets include a wide variety of cyber attacks, ranging
from bots, and DDoS attacks, to port scans and SQL injections. The purpose of the evaluation procedure is
fourfold. First, the detection performance of the system needs to be evaluated, since, as it was discussed in
Chapter 2, a robust and effective detection system should be characterized by high detection rate and a low
number of false alarms. Second, it is desired for the proposed system to detect as many types of attacks as
possible. To that end, datasets including a diverse set of attacks are selected, so that the evaluation procedure
can be as representative as possible of the actual detection performance of the system. Third, the perfor-
mance of the proposed system is compared to a series of baseline detection methods, to evaluate the impact
of its learning module regarding the goal of detection. Finally, it was considered beneficial to additionally
compare the detection performance of the proposed methodology to that demonstrated by a state-of-the-art
detection technique operating on one of the datasets used in this thesis, so as to further evaluate the detec-
tion potential of the proposed system in contrast to one recently developed and published technique. The
configuration of the experimental environment and procedure, as well as the obtained results, are discussed
in the premises of this chapter.

7.1. Experimental Configuration
The experimental procedure followed in the premises of this thesis resembles the typical evaluation proce-
dure of machine learning tasks, in the sense that each dataset was split into a training set, a validation set, and
a test set, with the experimental procedure being divided between the training phase, the tuning/validation
phase, and, finally, the testing phase. A descriptive presentation of the formation of these sets is provided
in Section 7.2, yet an initial brief illustration is included in this paragraph too. The training set was used
solely during the training phase of the system, while the two latter sets were used during the testing phase.
In particular, the training set consisted only of benign network traffic, and was utilized to create a "database"
of benign behavioral profiles by extracting multivariate FSMs from the NetFlow data, and using this data to
fit the detection models on each FSM. As far as the validation phase is concerned, two types of validation
sets were used. The first type consisted of benign traffic too, and was provided as a testing input to the de-
signed system, so that the parameters related to the learning process could be further tuned towards a low
false alarm rate. More information on this tuning procedure is provided in Section 7.4, thus it will not be
further discussed in this section. The second type comprised of mixed traffic and was utilized in the baseline
comparison experiments, so that the best performing configuration setting of the proposed system could be
selected. Again, more information regarding this process is reported later within this chapter, in Section 7.5
in particular. Finally, the testing set contains both benign and malicious traffic too, and is used to quantify
the performance of the detection methodology.

One important aspect of the experiments regards the selection of the level of analysis of the NetFlow data.
As it was discussed earlier, the proposed system is able to operate on both host and connection levels of anal-
ysis, yet the selection of the preferred level is based on the nature of the input data, and the wanted level of

57

58 7. Experiments

detection granularity. For example, if the connection level of analysis is selected, a more fine-grained detec-
tion procedure can be adopted, since the benign behavioral models derived from the traffic recorded within
each benign connection will incorporate much less noise comparing to the models extracted from the com-
munication traffic of each host in the network. On top of that, by operating on connection level, the detection
results can be better isolated and interpreted comparing to the results obtained for each host, especially when
a host is associated with both benign and malicious behaviors, with the malicious traffic constituting a low
minority of its recorded flows. Yet, in order to adopt a connection level detection strategy, a sufficient number
of flows shall be available both for the connections used in the training phase of the system, and those used in
the testing phase. It can be easily understood that a connection with tens or few hundreds of flows cannot be
utilized for the extraction of a robust behavioral profile, while, in case such a connection is encountered in the
test set, it is highly doubtful whether the obtained detection results regarding that connection are reliable. In
such case, it is preferable to conduct the detection procedure on host level, since the communication traffic
associated with each host is definitely of higher (or equal) volume to that associated with the connections of
each host. As it was explained in Section 4.2, this is the case for the majority of connections in the datasets
used, thus it was decided to evaluate the designed system on host level.

After selecting the level of analysis to be used in the detection procedure, the type of experiments to be
included in the evaluation procedure shall be discussed. There are primarily four categories of comparisons
performed within the experimental process. Initially, the contribution of the detection algorithms embedded
in the FSM structure shall be evaluated. As a result, the performance of the detection system per detection
algorithm used for the creation of the benign communication profiles is evaluated. In that way, meaningful
conclusions can be drawn regarding the contribution of each detection algorithm to the learning and detec-
tion procedures. Secondly, the importance of different NetFlow feature sets regarding the goal of detection
is evaluated. As it was mentioned earlier in this thesis, only basic NetFlow features are used in the multi-
variate learning procedure, in an attempt to render as universal as possible the application of the designed
system. Two of the utilized datasets included a wide variety of features derived from NetFlows, yet solely the
set of features that can be easily found in most NetFlow datasets is selected. Apart from the universality of the
model, this tactic aids in the creation of simple models and increases the interpretability level of the designed
system. Bearing this in mind, and taking the feature exploration presented in Section 4.3 into account, the
following four distinct feature sets are evaluated:

• Feature set 1: protocol, source bytes, destination bytes

• Feature set 2: destination port, protocol, source bytes, destination bytes

• Feature set 3: source port, destination port, protocol, source bytes, destination bytes

• Feature set 4: destination port, protocol, duration, source bytes, destination bytes

The third category of experiments regards the evaluation of the detection impact of the designed system
comparing to that of other baseline detection methodologies. This type of experiments aims to evaluate the
impact of the key characteristics of the designed system, like the detection techniques incorporated in the
FSM structure, as well as the multivariate and sequential nature of the models, towards the goal of detection,
by comparing its detection performance with baseline methodologies disregarding some or all of these char-
acteristics. The last category of experiments includes the examination of the detection performance of the
proposed methodology in contrast to a state-of-the-art detection technique introduced in [10], and evalu-
ated on the CTU-13 dataset. By comparing the desinged system to such a technique operating on one of the
datasets used in this thesis, the extent of the contribution made through this work on the field of anomaly
detection in NetFlow traffic can be better determined. More information about the configuration, as well as
the results, of these experiments is provided in the sections to follow. Finally, a brief presentation of the tools
used for implementing the proposed detection system, as well as the evaluation procedure, shall be provided.
Most components of the proposed system, the data exploration and preprocessing procedures, as well as the
experiments conducted, were implemented in Python. The only component of the system that did not con-
form to this pattern regards the multivariate state machine inference process, for which flexfringe was used.
Flexfringe is a tool implemented in C++, thus a Python wrapper was developed to invoke it from a Python
script. In addition, the well-known sklearn and scipy Python libraries were leveraged for the implementation
of the detection algorithms incorporated within each multivariate FSM, with sklearn being utilized for LOF
and Isolation Forest, and scipy offering the Gaussian KDE implementation. Finally, it should be mentioned
that all experiments were conducted locally on a MacBook Pro with a 16GB memory and a 2.6GHz 6-Core Intel

7.2. Training and Test Sets Selection 59

Core i7 CPU. All the code associated with the development of the proposed system, as well as the experimen-
tal procedure followed, can be publicly accessed through https://github.com/SereV94/MasterThesis

7.2. Training and Test Sets Selection
A decision that is capable of affecting extensively the performance of the designed detection system, as well
as the quality of the experimental evaluation procedure regards the division of the available data into a train-
ing and a test set. Similarly to any machine learning task, the training set will be used for both learning the
multivariate behavioral profiles from a sample of the available benign traffic, and tuning the learning param-
eters of the proposed methodology, while the test set will be used to evaluate the detection performance of
the followed methodology and hopefully provide answers to the research questions of the current work. The
main criteria used for splitting the datasets presented above into these sets are the following: (1) the number
of benign flows in each capture, and (2) the timing of each capture. In more detail, given the fact that the pro-
posed detection system is designed to learn behavioral profiles solely from benign network traffic, captures
with a high number of benign flows should be utilized as the training set of the system for each dataset. In
case that there are many captures with a similar amount of benign traffic, then the timing information incor-
porated in NetFlows is taken into account by selecting captures in an ascending timely fashion. Following
that strategy, the training and test set selection was conducted as it can be seen in Table 7.1.

Dataset Training set Test set

CTU-13
Benign flows Remaining Scenarios +

from Scenario 3 Malicious flows from Scenario 3

UNSW-NB15
Benign flows Remaining Scenarios +

from Scenario 1 Malicious flows from Scenario 1
CICIDS2017 Monday Rest Days

Table 7.1: Training and Test sets split for each dataset

For the CTU-13 dataset, the 3rd scenario was used for the training phase of this work, since it contains
the highest number of benign flows among all scenarios. At this point it should be mentioned that the benign
flows of other scenarios could have been selected additionally to extend the training set of the system for this
dataset, yet it was considered beneficial to see whether it was possible to acquire high detection performance
while avoiding the computational burden that an increase in the size of the training set would entail. For the
UNSW-NB15 dataset, the 1st scenario was utilized for training purposes mostly due to the timely precedence
of its flows. In this case, the timing information was given priority since most scenarios contained a similar
number of benign flows. As far as the CICIDS2017 dataset is concerned, the Monday’s capture comprised the
training set for this dataset since it consists solely of benign traffic, while constituting the earliest capture of
the dataset. Finally, it should be pointed out that portions of the training and test sets presented above were
utilized also as validation sets in the experimental procedure followed. As mentioned earlier in this chapter,
two types of validation sets were used. The first type was derived by further splitting the training set of each
dataset in a 80/20 timely fashion into a pure training set and a validation set meant for parameter tuning.
The second type consisted of both benign and malicious flows collected from the test set of each dataset, and
was used in the baseline comparison part of the experimental procedure followed within this thesis. More
information on both use cases of the validation sets can be found later in this chapter.

7.3. Baseline Methods
As it was mentioned above, in the premises of the third type of experiments conducted, the proposed method-
ology was compared to some baseline methods in order to evaluate the contribution of its primary charac-
teristics in the detection process. As a result, the best performing behavioral model identified through the
previous two experimentation categories is compared to three baseline methods with different characteris-
tics. First, the impact from the incorporation of the three selected detection algorithms (LOF, Isolation Forest,
Gaussian KDE) in the FSM structure is evaluated. To do so, the same methodology as the one followed in
the proposed system is used to create multivariate behavioral profiles from benign data, with the only dif-
ference being the fact that the aforementioned sophisticated detection algorithms, fitted in each state of the
models, are replaced by a much simpler detection technique. This technique is based on the calculation of
the distance between a given testing data point and the mean of the training data points residing in each

https://github.com/SereV94/MasterThesis

60 7. Experiments

state after the replaying procedure is completed. In more detail, during the training phase of the system
the mean and the standard deviation of each feature of the flows composing the state-local training sets of
each multivariate behavioral model are calculated. Subsequently, the absolute distance between the mean of
each feature and the corresponding feature value of the state-local testing flows is compared to the recorded
standard deviation multiplied by a threshold value. If the product of this comparison is positive in at least
one of the examined features, then the given testing flow is considered as anomalous by the state in which
the detection process is undertaken. This decision is made under the assumption that any positive results
would suggest that the given testing flow lies "far" from the mean of benign flows captured by the current
state within the context of the features producing these positive comparison results. As mentioned earlier,
this method adopts the exact same pipeline as the original system, apart from the detection technique used
in each state, thus it is referred as the baseline behavioral method for the rest of this thesis.

The second baseline method used in this type of experiments aims to evaluate the adoption of a multivari-
ate approach in the detection methodology employed within the designed system. Thus, a similar approach
to the one followed is adopted with the difference being the creation of behavioral profiles through the extrac-
tion of simple symbolic state machines, instead of multivariate ones. To do so, a symbolic encoding should
be derived from the features associated with each event in the set of traces extracted from the NetFlow data.
The strategy employed for the creation of this encoding is the same as that described in [68]. In particular,
the categorical features, like the communication protocol, are simply assigned a unique numerical value, as
it was explained in Section 4.2, while percentile clustering is used for the numerical features included in the
detection process, like the bytes transmitted, and the port numbers. The ELBOW method [30] is utilized to se-
lect the optimal number of percentiles for each numerical feature according to the identification of a "break
point" in the Within-Cluster Sum of Squares (WCSS) metric calculated for a selected range of bins (1 to 10
in this case). After this optimal number of percentiles is identified for every numerical feature, each feature
value is assigned the index of the percentile in which it resides. For example, if for a given feature v the op-
timal number of percentiles is 4, then the feature values residing before the 25th percentile will be assigned
with 0, those residing between the 25th and the 50th percentile will be assigned with 1, etc. This process is
called discretization and is used to provide a symbolic representation to the recorded feature values. After all
features are discretized, the encoding presented in [68] is used to derive a symbolic representation from the
combination of these discretized feature values. At this point, it should be mentioned that the discretization
bins are acquired only from the benign training data, so that the integrity of the learning process is main-
tained. Subsequently, flexfringe is utilized to learn state machines from the symbolic traces derived from the
benign training flows using the Alergia heuristic [80]. As in the case of the proposed multivariate methodol-
ogy, a state machine is learnt from each benign host in the training set, with the traces of the hosts in the test
set replayed to all these state machines and the "at least one" rule of detection, presented in Section 6.2.4,
employed to identify benign and anomalous hosts. In this context, the match between a state machine rep-
resenting some benign behavior and a given set of traces belonging to a host is expressed in a way similar to
the error-based symptom detection strategy presented in [68], which is based on the difference between the
transition distributions produced by the traces of the reference state machine and those of the host under
examination.

Finally, LOF-based clustering on aggregated views of the provided NetFlows is employed as the third and
final baseline method used in the premises of this thesis. Through the incorporation of this method in the
evaluation procedure, the contribution of the sequential nature of the proposed system towards detection
is evaluated. This method is quite naive, since it groups the provided NetFlows in host level, and applies
aggregation functions on the NetFlow features used for detection to create a basic profile of each host. For
numerical features the mean of the grouped values is used, while for categorical attributes the mode is utilized
as the aggregation function. Of course, this aggregation entails significant loss regarding the information
associated with each host, yet if the whole set of flows associated with each host were used, the application
of this clustering technique would become computationally infeasible due to the nearest neighbour nature
of LOF. Nevertheless, it was considered beneficial to also evaluate a clustering technique, which, surprisingly,
produced excellent results for one of the datasets used, as it will be seen in Section 7.5.

7.4. Parameter Tuning
Both the designed detection methodology, and the baseline methods included in the evaluation process, base
their operation on some tunable parameters, that affect their detection potential. As a result, it is considered
beneficial to adjust these parameters towards the achievement of a high detection performance, in terms of

7.4. Parameter Tuning 61

both high detection accuracy, and a low false alarm rate. As in most ML tasks, this tuning procedure is con-
ducted on a validation set, which, as mentioned in Section 7.2, was retrieved through a 80/20 timely split of
the training set of each dataset used in the experimental procedure, and belongs in the first category of valida-
tion sets used for the needs of this work. A tuning procedure was adopted mostly for the sequential methods
used in the premises of this thesis, since they include more hyperparameters, thus this section will focus in
the presentation of the tuning strategy followed on the designed system, as well as the baseline multivari-
ate and symbolic detection methods. Another interesting point that shall be discussed before presenting the
tuning procedure regards the type of parameters needed to be tuned in the aforementioned methodologies.
In this thesis, two types of parameters were taken into account in the tuning process. The first type refers to
the parameters associated with the detection algorithm fitted in each state of the state machines, while the
second type regards the detection threshold used to match a learnt benign model to the set of traces corre-
sponding to a given host from the test set. Finally, it should be mentioned that both types of parameters were
tuned solely on benign data, since one of the initial goals when designing the proposed detection system
regarded its ability to operate on an unsupervised level.

As it is mentioned above, the first type of hyperparameters regards the detection technique used in each
state of the sequential models extracted for each of the compared methods. In particular, since the proposed
system uses three different methods, namely LOF, Isolation Forest, and Gaussian KDE, the state-dependent
hyperparameters of each method included the number of neighbours used, the number of samples used for
fitting the base estimators, and the threshold to which the multivariate Gaussian pdf of each test point is
compared, respectively. In the case of the baseline multivariate model, the value with which the standard
deviation of the features of the training points is multiplied constitutes the state-dependent hyperparameter,
while in the case of the symbolic sequential model there is no such hyperparameter, since solely the exis-
tence of a symbol is evaluated in each state. As far as the second type of parameters is concerned, all these
sequential methodologies base their final detection decision regarding a given host on the match between
the benign profiles maintained by the system and the traces of the examined host. This match is expressed
through the comparison of a threshold value to the ratio of flows predicted as benign to the total number of
flows examined for the host in the case of the two multivariate approaches, and the difference between the
reference transition distribution and the one produced by the host in the case of the symbolic approach. It
can be easily seen that these values need to be tuned wisely. Given the fact that the "at least one" rule of
detection is used, meaning that the identification of one profile matching the set of testing traces of a host
is enough to consider the host as benign, the extent to which the second type of hyperparameters can affect
the detection performance can be easily perceived. In the case of the two multivariate approaches, if the de-
tection threshold is set too low, then it is highly probable that most hosts will be considered as benign, since
the low threshold would entail the need of high confidence when identifying a host as malicious. On the op-
posite case, if this threshold is set too high, then most hosts would be considered as malicious, resulting to a
system with a high detection rate, but in parallel a high false alarm rate. The exact opposite hold true in the
case of the symbolic approach, since a low threshold would entail the need of small difference between the
compared distributions for a host to be considered benign, leading to more alarms being raised. On the other
hand, a high difference threshold would lead to the inclusion of much less confidence when classifying a host
as benign, which as a matter of fact could lead to low detection rate. Thus, it is highly important to tune all
these parameters with caution, while bearing in mind that the detection method should avoid overfitting on
the training and validation data.

Taking all these things into consideration, a grid search was conducted on all the aforementioned param-
eters and the produced models were evaluated on the validation set derived from the timely 80/20 split of
the training set. Ideally, the values should be set in such a way that all the hosts in the validation set would
be identified as benign, yet a combination of values performing well for the benign hosts associated with the
majority of the communication traffic could also be accepted by the process. In fact, selecting a combination
of values that produces good results for the majority, rather than the entirety of hosts, would potentially lead
to models producing better detection performance in the test set, since the risk of overfitting can be better
mitigated. Apart from the grid search strategy, the tuning of the detection thresholds of each model can be
conducted in a manual way too. Since the value of the decision thresholds affects the number of alarms raised
in the testing phase, one can set these values according to the number of alarms a network administrator can
inspect within the time granularity in which the system operates. For example, if the aim is to create a system
with few false alarms then the detection threshold can be set quite low, so that only hosts for which the system
is highly confident about classifying them as malicious would actually raise an alarm. In such a case though,
the designed system should be associated with a high detection rate too, so that most of these few alarms

62 7. Experiments

raised represent actual malicious behavior too. In the premises of this thesis, the automated grid search ap-
proach was adopted, avoiding though cases where the threshold would be set in extreme values since they
were considered prone to overfitting.

7.5. Results
The detection performance of the proposed system was evaluated through a series of experiments on differ-
ent feature sets and datasets, with multiple baseline methods being employed to evaluate different charac-
teristics of the system, and a state-of-the-art detection technique included in the experimental procedure so
as to examine the effectiveness of the designed system against a recently published approach. The results of
these experiments were evaluated using the evaluation metrics presented in Chapter 2, meaning the number
of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions, as well as the
accuracy, precision, and recall of the predictions. As in most anomaly detection tasks, the malicious class was
considered as the positive one. In addition, it should be pointed out that for some parts of the experiments
two versions of results are presented. The first version includes the results obtained when only hosts with a
significant number of flows recorded in each dataset (major hosts of the dataset) were included in the experi-
mental procedure, while the second version includes the results obtained when all hosts are considered. The
decision of separately presenting the evaluation results regarding the major hosts of each dataset might seem
controversial, since it entails the exclusion of various hosts from the evaluation procedure, yet it is justified
by the goal of this thesis and the nature of the designed system.

As it was explained in Chapter 1, the goal of this thesis is to evaluate the feasibility of creating and design-
ing a detection system based on mutlivariate sequential models operating on basic NetFlow features, rather
than optimizing the performance of such a system. On top of that, the number of flows available for each
aggregation entity (host in this case) affects both the training and the testing phase of the proposed system.
In particular, in the training phase it can be easily understood that if there is not a sufficient number of flows
representing the communication behavior of a host, the derived sequential profile will most probably be of
poor modelling quality. Yet, even if all the benign profiles are extracted from hosts with a sufficient amount
of benign traffic, making predictions on hosts with few flows (tens or few hundreds) would lead to highly un-
reliable and possibly random results. Taking all these things into consideration, it was decided to apply the
proposed detection methodology solely on the major hosts available in each dataset in an attempt to secure
the robustness and integrity of the obtained results and conclusions on the designed system. As far as the
remaining non-major hosts are concerned, it was decided to be treated as benign, since the designed sys-
tem could not provide a robust prediction regarding the nature of their behaviour. Of course, such a strategy
could entail a significant increase in the number of unidentified malicious activities, in case these activities
are expressed through a low number of flows. Nevertheless, for the sake of the completeness of the con-
ducted experiments, this strategy was followed in order for the evaluation results obtained from all hosts to
be included in this work.

7.5.1. Results on CTU-13 Dataset
The initial experiments conducted on the CTU-13 dataset regard the evaluation of the detection performance
of the designed system using different detection algorithms and feature sets. The obtained results including
traffic solely from major hosts on each scenario of this dataset can be seen in Table 7.2, where the number
of TP, TN, FP, and FN predictions for each of the four feature sets and each of the three detection techniques
considered are reported. It is worth noting that the flows associated with the major hosts of the training set
of the CTU-13 dataset accounted for 99.9% of the total number of flows in the training set, which is true also
in the case of the flows in the test set of this dataset. Furthermore, it should be highlighted that the benign
flows of scenario 3 have been used in the training phase of the evaluation process, yet given the fact that this
scenario includes also one malicious host it was considered beneficial to include its detection results into this
table.

There are various interesting points that can be derived from the results presented in Table 7.2. Before
delving deeper into these points, it should be noted that the designed system should ideally have a high
number of TPs and TNs (high accuracy), and in parallel a low (or zero) number of FPs (high precision) and
FNs (high recall). Bearing this in mind, it can be easily seen that the configurations of the system associated
with the third feature set (source port, destination port, protocol, source bytes, destination bytes) seem to fit
the aforementioned conditions. The results obtained from these three configurations are relatively similar,
with the LOF based approach slightly outperforming the rest two settings. In particular, the systems associ-

7.5. Results 63

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 3 2 0 0 5 0 1 0 5 0 1
2 0 1 1 1 1 2 0 0 1 2 0 0
3 1 4 1 0 1 4 1 0 1 4 1 0
4 0 3 1 1 1 4 0 0 1 4 0 0
5 1 3 0 0 1 3 0 0 1 3 0 0
6 0 2 1 1 1 2 1 0 0 2 1 1
7 1 3 0 0 1 3 0 0 1 3 0 0
8 0 3 1 1 1 4 0 0 0 4 0 1
9 1 3 2 9 1 5 0 9 3 5 0 7

10 10 3 2 0 10 5 0 0 10 3 2 0
11 2 1 1 0 2 1 1 0 2 1 1 0
12 3 3 0 0 3 3 0 0 0 2 1 3
13 1 3 1 0 1 4 0 0 1 4 0 0

Total 21 35 13 13 24 45 3 10 21 42 6 13

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 3 2 0 0 4 1 1 0 4 1 1
2 1 1 1 0 1 2 0 0 0 2 0 1
3 1 3 2 0 1 4 1 0 1 4 1 0
4 1 4 0 0 1 4 0 0 0 4 0 1
5 1 3 0 0 1 3 0 0 1 3 0 0
6 1 2 1 0 1 2 1 0 0 3 0 1
7 1 3 0 0 1 3 0 0 0 3 0 1
8 1 4 0 0 1 4 0 0 0 4 0 1
9 1 4 1 9 0 4 1 10 0 4 1 10

10 10 4 1 0 10 4 1 0 10 4 1 0
11 2 1 1 0 2 1 1 0 2 1 1 0
12 3 3 0 0 3 3 0 0 3 3 0 0
13 1 4 0 0 1 4 0 0 0 4 0 1

Total 25 39 9 9 23 42 6 11 17 43 5 17

Results for feature set 1 Results for feature set 2

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 4 1 0 1 4 1 0 1 4 1 0
2 1 2 0 0 1 2 0 0 1 2 0 0
3 1 5 0 0 1 4 1 0 1 4 1 0
4 1 4 0 0 1 4 0 0 1 4 0 0
5 1 3 0 0 1 3 0 0 1 3 0 0
6 1 3 0 0 1 2 1 0 1 3 0 0
7 1 3 0 0 1 3 0 0 1 3 0 0
8 1 4 0 0 1 4 0 0 1 4 0 0
9 10 4 1 0 10 4 1 0 10 4 1 0

10 10 4 1 0 10 4 1 0 10 4 1 0
11 2 1 1 0 2 1 1 0 2 1 1 0
12 3 3 0 0 3 3 0 0 3 3 0 0
13 1 4 0 0 1 4 0 0 1 4 0 0

Total 34 44 4 0 34 42 6 0 34 43 5 0

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 3 2 0 0 4 1 1 0 4 1 1
2 1 1 1 0 1 2 0 0 1 2 0 0
3 1 3 2 0 1 4 1 0 1 4 1 0
4 1 3 1 0 0 4 0 1 1 4 0 0
5 1 3 0 0 1 3 0 0 1 3 0 0
6 1 2 1 0 1 2 1 0 1 2 1 0
7 1 3 0 0 1 3 0 0 1 3 0 0
8 1 3 1 0 1 4 0 0 1 4 0 0
9 1 3 2 9 0 4 1 10 1 5 0 9

10 10 3 2 0 10 4 1 0 10 4 1 0
11 2 1 1 0 0 1 1 2 2 1 1 0
12 3 3 0 0 3 3 0 0 3 3 0 0
13 1 3 1 0 1 4 0 0 1 4 0 0

Total 25 34 14 9 20 42 6 14 24 43 5 10

Results for feature set 3 Results for feature set 4

Table 7.2: Detection results per feature set and detection algorithm used on the CTU-13 dataset with only the major hosts included

ated with all three configurations manage to identify the entirety of the malicious hosts, yet the LOF based
approach demonstrates the fewest number of false alarms. It should be pointed out that there are also other
settings providing low false alarm rates, like the Isolation Forest based approach operating on the first fea-
ture set (protocol, source bytes, destination bytes), and the Gaussian KDE based approach operating on the
fourth feature set (destination port, protocol, duration, source bytes, destination bytes), yet these settings
are connected to a relatively lower detection rate, since they misclassify approximately 30% of the malicious
hosts.

Figure 7.1: Aggregated evaluation metrics per detection method and feature set for the CTU-13 dataset with only the major hosts
included

Moving on from the best performing settings, it shall be pointed out that the best performing detection
algorithm varies among the different feature sets used for evaluation. When the first feature set is used, the
Isolation Forest models clearly outperform the rest models in every metric presented in Table 7.2. For the
second feature set (destination port, protocol, source bytes, destination bytes) both the LOF and the Isolation
Forest algorithms demonstrate comparable results, with the first identifying slightly more malicious hosts,
and the second associated with slightly less false alarms. As it was mentioned above, in the case of the third
feature set the LOF algorithm seems to provide the best performance in all the considered metrics, while for
the last feature set the Gaussian KDE based models produce the most promising results. Finally, it is worth
noting that the designed system is able to detect all the malicious hosts only when the third feature set is taken
into account. In the majority of the best performing settings of the rest configurations, the designed system

64 7. Experiments

fails primarily to identify the malicious hosts of scenarios 1 and 9, resulting to the number of FNs being close
to 10 in these cases. Delving deeper into the cause of this behaviour, and revisiting Table 4.1 presented in
Chapter 4, it can be seen that both the aforementioned scenarios are associated with the NERIS bot, meaning
that the anomalous communication traffic of this bot unfortunately cannot be detected when the source port
is not included in the feature set on which the system operates.

In Figure 7.1 the achieved accuracy, precision, and recall metrics for each detection algorithm and feature
set used across the entire dataset are presented. It can be easily seen that the LOF based models operat-
ing on the third feature set attain the highest accuracy (95%) and precision (90%) among all configurations,
with the rest two model categories operating on the same feature set achieving a similar recall value (100%),
but slightly lower accuracy and precision values. This observation is justified by the fact that the LOF based
models produce a lower number of false alarms comparing to the rest two model categories operating on the
third feature set (in this case two less than the Isolation Forest based models, and one less than the Gaussian
KDE based ones). In addition, it is worth noting that the models operating on the third feature set seem to
dominate all the settings configured on the rest feature sets, with only the Isolation Forest based models oper-
ating on the first feature set demonstrating relatively similar precision, accompanied though by significantly
lower accuracy and recall values. This observation indicates the impact of the feature selection procedure on
the detection potential of the designed system, since as it was mentioned above the inclusion of the source
port in the third feature is highly beneficial towards the detection of the malicious behavior produced by the
NERIS bot.

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 4 2 0 0 6 0 1 0 6 0 1
2 0 4 1 1 1 5 0 0 1 5 0 0
3 1 5 1 0 1 5 1 0 1 5 1 0
4 0 5 1 1 1 6 0 0 1 6 0 0
5 1 6 0 0 1 6 0 0 1 6 0 0
6 0 5 1 1 1 5 1 0 0 5 1 1
7 1 5 0 0 1 5 0 0 1 5 0 0
8 0 6 1 1 1 7 0 0 0 7 0 1
9 1 5 2 9 1 7 0 9 3 7 0 7

10 10 5 2 0 10 7 0 0 10 5 2 0
11 2 5 1 1 2 5 1 1 2 5 1 1
12 3 6 0 0 3 6 0 0 0 5 1 3
13 1 5 1 0 1 6 0 0 1 6 0 0

Total 21 66 13 14 24 76 3 11 21 73 6 14

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 4 2 0 0 5 1 1 0 5 1 1
2 1 4 1 0 1 5 0 0 0 5 0 1
3 1 4 2 0 1 5 1 0 1 5 1 0
4 1 6 0 0 1 6 0 0 0 6 0 1
5 1 6 0 0 1 6 0 0 1 6 0 0
6 1 5 1 0 1 5 1 0 0 6 0 1
7 1 5 0 0 1 5 0 0 0 5 0 1
8 1 7 0 0 1 7 0 0 0 7 0 1
9 1 6 1 9 0 6 1 10 0 6 1 10

10 10 6 1 0 10 6 1 0 10 6 1 0
11 2 5 1 1 2 5 1 1 2 5 1 1
12 3 6 0 0 3 6 0 0 3 6 0 0
13 1 6 0 0 1 6 0 0 0 6 0 1

Total 25 70 9 10 23 73 6 12 17 74 5 18

Results for feature set 1 Results for feature set 2

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 5 1 0 1 5 1 0 1 5 1 0
2 1 5 0 0 1 5 0 0 1 5 0 0
3 1 6 0 0 1 5 1 0 1 5 1 0
4 1 6 0 0 1 6 0 0 1 6 0 0
5 1 6 0 0 1 6 0 0 1 6 0 0
6 1 6 0 0 1 5 1 0 1 6 0 0
7 1 5 0 0 1 5 0 0 1 5 0 0
8 1 7 0 0 1 7 0 0 1 7 0 0
9 10 6 1 0 10 6 1 0 10 6 1 0

10 10 6 1 0 10 6 1 0 10 6 1 0
11 2 5 1 1 2 5 1 1 2 5 1 1
12 3 6 0 0 3 6 0 0 3 6 0 0
13 1 6 0 0 1 6 0 0 1 6 0 0

Total 34 75 4 1 34 73 6 1 34 74 5 1

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 4 2 0 0 5 1 1 0 5 1 1
2 1 4 1 0 1 5 0 0 1 5 0 0
3 1 4 2 0 1 5 1 0 1 5 1 0
4 1 5 1 0 0 6 0 1 1 6 0 0
5 1 6 0 0 1 6 0 0 1 6 0 0
6 1 5 1 0 1 5 1 0 1 5 1 0
7 1 5 0 0 1 5 0 0 1 5 0 0
8 1 6 1 0 1 7 0 0 1 7 0 0
9 1 5 2 9 0 6 1 10 1 7 0 9

10 10 5 2 0 10 6 1 0 10 6 1 0
11 2 5 1 1 0 5 1 3 2 5 1 1
12 3 6 0 0 3 6 0 0 3 6 0 0
13 1 5 1 0 1 6 0 0 1 6 0 0

Total 25 65 14 10 20 73 6 15 24 74 5 11

Results for feature set 3 Results for feature set 4

Table 7.3: Detection results per feature set and detection algorithm used on the CTU-13 dataset with all hosts included

After analysing the results obtained when only major hosts were considered, the total host-related traffic
was evaluated too, with the attained results presented in Table 7.3. As it can be easily seen, if the major hosts’
results presented in Table 7.2 are compared to the total results presented in Table 7.3, the sole differences
recorded regard the number of TN and FN predictions. In particular, the number of TN has notably increased
in all settings, while the number of FN has been incremented by one in all settings. This phenomenon can
be easily explained if the tactic followed for the predictions made on minor hosts is taken into consideration.
As it was explained in the introductory paragraphs of this section, all minor hosts, for the malice of which
the proposed system is not able to provide robust predictions, were regarded as benign. If this strategy is
further inspected, it can be easily understood that the only metrics that can be affected, comparing to the
ones recorded for the major hosts, are the number of correctly identified benign hosts (TN), as well as the
number of unidentified malicious hosts (FN). The first metric is affected by the portion of minor hosts that
are actually benign, while the second is regulated by the portion of minor hosts that demonstrate malicious

7.5. Results 65

activity. As a result, it is apparent that, in the case of the CTU-13 dataset, the majority of the minor hosts are
indeed benign, while there is only one malicious minor host encountered in scenario 11.

Figure 7.2: Aggregated evaluation metrics per detection method and feature set for the CTU-13 dataset with all hosts included

As in the case of the major hosts’ results, the achieved accuracy, precision, and recall metrics for each
detection algorithm and feature set used across the entire dataset are presented in Figure 7.2. As expected,
the primary differences between the metrics presented in this figure and those presented in Figure 7.1 regard
mostly the accuracy, and in a much smaller extent the recall. In particular, the accuracy achieved in all settings
is prominently increased due to the proportional increase of the number of TN predicted by the models, while
the attained recall is slightly decreased due to the misclassification of one more malicious host when the total
network traffic is considered. Of course, the precision values remain the same across all settings, since the
metrics contributing to its calculation (TP, FP) are not affected by the prediction strategy followed for minor
hosts. Taking these things into consideration, it can be understood that the conclusions to be drawn from
the evaluation of the different settings of the proposed system are not affected from the incorporation of the
minor hosts’ results into the initial result set.

Scenario
Best Multivariate Baseline Multivariate Symbolic LOF

TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN
1 1 5 1 0 1 5 1 0 1 5 1 0 1 4 2 0
2 1 5 0 0 1 5 0 0 1 4 1 0 1 5 0 0
3 1 6 0 0 1 5 1 0 1 5 1 0 1 5 1 0
4 1 6 0 0 1 6 0 0 1 6 0 0 1 4 2 0
5 1 6 0 0 1 6 0 0 1 6 0 0 1 5 1 0
6 1 6 0 0 1 6 0 0 1 6 0 0 1 4 2 0
7 1 5 0 0 1 5 0 0 1 2 3 0 1 4 1 0
8 1 7 0 0 1 7 0 0 1 7 0 0 1 6 1 0
9 10 6 1 0 10 6 1 0 9 7 0 1 10 3 4 0

10 10 6 1 0 10 6 1 0 10 6 1 0 10 3 4 0
11 2 5 1 1 2 5 1 1 1 4 2 2 2 4 2 1
12 3 6 0 0 3 6 0 0 3 6 0 0 3 6 0 0
13 1 6 0 0 1 6 0 0 0 5 1 1 1 6 0 0

Total 34 75 4 1 34 74 5 1 31 69 10 4 34 59 20 1

Table 7.4: Comparative results on the CTU dataset between the proposed system and the baselines

Before discussing about the baseline comparison results, it should be pointed out that the proposed sys-
tem seems to provide a solid detection performance on the CTU-13 dataset, since at its best setting it attains
an accuracy of 96% (95% on major hosts), a precision of 90%, and a recall of 97% (100% on major hosts). Sub-
sequently, in order to proceed to the comparison of the designed detection system to the baseline methods
presented in Section 7.3, the best performing configuration of the proposed system shall be selected. For this
purpose, as mentioned in Chapter 4, a validation set comprising of the mixed traffic captured in scenarios
3, 4, 5, 7, 10, 11, 12, and 13 was utilized. The selection of these scenarios was based on the training/cross-
validation setting suggested by the creators of the CTU-13 dataset in [28]. At this point, it should be clar-
ified that the utilization of a validation set including mixed traffic in this part of the experiments does not
compromise the unsupervised nature of the system. This decision is made only so that the best performing
methodology can be identified and tested against the implemented baseline methods. Through this process,

66 7. Experiments

there were multiple configurations producing closely comparable results, yet the Isolation Forest based mod-
els operating on the first feature set, as well as the LOF based ones operating on the third feature set seem to
slightly dominate the rest configurations, with both of these approaches achieving the same exact metrics on
the validation set. In order to decide on which of these two settings should be promoted as the best perform-
ing one in the premises of the baseline experiments, the confidence of the predictions made was taken into
account. In particular, since the desinged system bases the final classification decision on the ratio of flows
predicted as benign to the total number of flows associated with a host, the setting that produced the higher
such ratio for benign hosts and the lower ratio for malicious hosts was chosen. Through this process, the LOF
based models were eventually selected and considered in the baseline experiments.

Figure 7.3: Comparison between the aggregated evaluation metrics of the proposed system and the baseline methods for the CTU-13
dataset

After identifying the best performing configuration of the designed detection system, a comparison be-
tween its performance and that attained by the three baseline methods presented in Section 7.3 is conducted.
The results achieved for each method on each scenario of the CTU-13 dataset (both those comprising the val-
idation set and those comprising the test set) are presented in Table 7.4, while Figure 7.3 summarizes the ac-
curacy, precision, and recall metrics achieved by each method across the entire dataset. It should be pointed
out that the baseline methods were evaluated on the same feature set as that used by the best configuration
of the proposed multivariate approach. On top of that, the minor hosts were treated, for all baseline methods,
in the same way as that followed within the experiments conducted on the designed methodology, meaning
that all minor hosts were by default predicted as benign. This decision was made to maintain the integrity of
the evaluation procedure, as well as to apply a sense of fairness among the experiments conducted for each
baseline method. Taken into account the results presented both in Table 7.4 and in Figure 7.3, it can be easily
seen that the proposed multivariate approach produces similar results to the ones achieved by the baseline
multivariate method. In particular, both methods identify the majority of the malicious hosts, with only one
malicious host being undetected, yet the proposed multivariate approach raises one less false alarm compar-
ing to the baseline multivariate approach, which as a matter of fact explains the slightly higher accuracy and
precision values attained by the first method. As far as the rest two baseline methods are concerned, it can
be clearly seen that the LOF clustering technique produces the worst results, which as a matter of fact was
expected due to the simplistic nature of this method, resulting to a system producing a high number of false
alarms, while the symbolic sequential approach produces obviously better results than the LOF clustering
technique, yet not comparable to the ones attained by the multivariate methods.

7.5.2. Results on UNSW-15 Dataset
As in the case of the CTU-13 dataset, the initial experiments conducted on the UNSW-NB15 regarded the
evaluation of the detection performance of the proposed methodology on different configurations of the
feature set and the detection algorithms fitted in the states of the multivariate models. The obtained results
including traffic only from major hosts for each of the four partitions of the dataset can be found in Table 7.5.
Again only the major hosts of the dataset were initially taken into account, so that the detection performance
of the proposed methodology could be better evaluated. As in the case of the CTU-13 dataset, the flows
linked with the major hosts represent the high majority of the total flows captured in the dataset, with the

7.5. Results 67

flows associated with the major hosts in the training set accounting for 97.1% of the total flows of that set,
and the flows associated with the major hosts in the test set accounting for 95.9% of the total flows included
in the test set. Table 7.5 incorporates also the results obtained in the first partition of the dataset, despite the
fact that the benign flows of that partition composed the training set of this dataset. The reason why these
results are reported too stems from the existence of malicious hosts among the hosts of this partition.

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 10 0 3 1 10 0 3 1 10 0 3
2 1 10 0 3 2 10 0 2 2 10 0 2
3 1 10 0 3 1 10 0 3 1 10 0 3
4 1 10 0 3 2 10 0 2 2 10 0 2

Total 4 40 0 12 6 40 0 10 6 40 0 10

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 10 0 3 0 10 0 4 0 10 0 4
2 2 10 0 2 0 10 0 4 2 10 0 2
3 1 10 0 3 0 10 0 4 1 10 0 3
4 2 10 0 2 1 10 0 3 2 10 0 2

Total 6 40 0 10 1 40 0 15 5 40 0 11

Results for feature set 1 Results for feature set 2

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 3 10 0 1 1 10 0 3 1 10 0 3
2 3 10 0 1 2 10 0 2 2 10 0 2
3 4 10 0 0 1 10 0 3 1 10 0 3
4 3 10 0 1 0 10 0 4 2 10 0 2

Total 13 40 0 3 4 40 0 12 6 40 0 10

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 10 0 3 0 10 0 4 0 10 0 4
2 1 10 0 3 0 10 0 4 4 10 0 0
3 1 10 0 3 0 10 0 4 1 10 0 3
4 0 10 0 4 1 10 0 3 2 10 0 2

Total 3 40 0 13 1 40 0 15 7 40 0 9

Results for feature set 3 Results for feature set 4

Table 7.5: Detection results per feature set and detection algorithm used on the UNSW-NB15 dataset with only the major hosts included

As far as the best performing configuration is concerned, it can be easily seen that the LOF based approach
operating on the third feature set provides by far the best metrics comparing to the rest configurations. Yet,
when examining the results obtained for each feature set, different detection algorithms tend to be the best
performing ones. In fact, it can be seen that the LOF-based approach dominates when the second and third
feature sets are used, with the Gaussian KDE based model performing the best on the fourth feature set. As far
as the first feature set is concerned, both the Isolation Forest and the Gaussian KDE based approaches seem
to be suitable. Finally, it is worth mentioning that all configurations manage to identify all the benign hosts
correctly, with the best performing configuration managing to identify approximately 80% of the malicious
hosts. These results are better visualised in Figure 7.4, in which the aggregated results over the entire dataset
are presented for each configuration.

Figure 7.4: Aggregated evaluation metrics per detection method and feature set for the UNSW-NB15 dataset

As it can be seen in Figure 7.4, the LOF-based approach operating on the third feature set provides the
best aggregated results among all the evaluation metrics. Of course, as it was mentioned above, the preci-
sion value of all configurations is equal to 100%, since all the benign hosts are identified successfully, yet the
recall values recorded are significantly low for most of the tested settings. In fact, solely the best performing
configuration achieves a relatively high recall value (81%), while the rest configurations manage to detect less
than half of the malicious hosts. After better inspecting the dataset to identify the reason of that result, it
was discovered that the hosts, that were not identified correctly in each of the partitions, were also associated
with a significant number of benign flows, which as a matter of fact worsens the detection procedure of the
proposed methodology. Yet, the combination of a LOF based approach with the third feature set produces a
system capable of partially mitigating the aforementioned phenomenon. To further deal with such an issue,
a more fine-grained detection approach could be employed, meaning that it might be beneficial to conduct
a connection level analysis in this dataset. This possibility was also discussed in Chapter 4, where the dataset

68 7. Experiments

was presented, yet it was not explored since a host level analysis was better suited for the rest two datasets.
Nevertheless, such a possibility could be considered highly interested as future work on this specific dataset.

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 36 0 3 1 36 0 3 1 36 0 3
2 1 36 0 3 2 36 0 2 2 36 0 2
3 1 36 0 3 1 36 0 3 1 36 0 3
4 1 34 0 3 2 34 0 2 2 34 0 2

Total 4 142 0 12 6 142 0 10 6 142 0 10

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 36 0 3 0 36 0 4 0 36 0 4
2 2 36 0 2 0 36 0 4 2 36 0 2
3 1 36 0 3 0 36 0 4 1 36 0 3
4 2 34 0 2 1 34 0 3 2 34 0 2

Total 6 142 0 10 1 142 0 15 5 142 0 11

Results for feature set 1 Results for feature set 2

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 3 36 0 1 1 36 0 3 1 36 0 3
2 3 36 0 1 2 36 0 2 2 36 0 2
3 4 36 0 0 1 36 0 3 1 36 0 3
4 3 34 0 1 0 34 0 4 2 34 0 2

Total 13 142 0 3 4 142 0 12 6 142 0 10

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
1 1 36 0 3 0 36 0 4 0 36 0 4
2 1 36 0 3 0 36 0 4 4 36 0 0
3 1 36 0 3 0 36 0 4 1 36 0 3
4 0 34 0 4 1 34 0 3 2 34 0 2

Total 3 142 0 13 1 142 0 15 7 142 0 9

Results for feature set 3 Results for feature set 4

Table 7.6: Detection results per feature set and detection algorithm used on the UNSW-NB15 dataset with all hosts included

As in the case of the CTU-13 dataset, after presenting and discussing the results obtained when only ma-
jor hosts are considered, the total host-related traffic is evaluated too, with the achieved results presented
in Table 7.6. If the results presented in this table are compared with those presented in Table 7.5, which re-
garded solely the major hosts, it can be easily seen that the only difference between these tables concern the
increased number of TN predictions. The explanation behind this observation is identical to the one provided
in the case of the CTU-13 dataset, with the difference being that all minor hosts in the UNSW-NB15 dataset
are purely benign. As a result, only the number of correctly identified benign hosts (TN) is affected by the
incorporation of the entire recorded traffic in the illustrated results. Of course, such an observation suggests
that the main conclusions drawn from the major hosts’ results are still valid when the entirety of the recorded
traffic is taken into account.

Figure 7.5: Aggregated evaluation metrics per detection method and feature set for the UNSW-NB15 dataset with all hosts included

In Figure 7.5, the achieved accuracy, precision, and recall metrics for each detection algorithm and feature
set used across the entire dataset are recorded and presented. As expected, the sole difference between the
metrics presented in this figure and those presented in Figure 7.4 regards the accuracy achieved. In more de-
tail, the accuracy attained in all of the examined configurations is visibly increased, which as a matter of fact
is explained by the proportional increase in the number of TN predicted by the models. Of course, the values
of the precision and recall achieved by each configuration remain the same across all settings, since the met-
rics contributing to their calculation (TP, FP, FN) are not affected by the prediction strategy followed for minor
hosts. Accordingly, in order to compare the designed system with the implemented baseline approaches, its
best performing configuration shall be identified. As in the case of the CTU-13 dataset, a validation set, in-
cluding mixed traffic from the first two chunks of the dataset, is used towards this purpose. The decision to
include these two chunks of the dataset was based mostly on the time precedence of their flows, since all four
chunks include the same kinds of attacks. This process pointed the LOF based models operating on the third
feature set out as the best performing configuration, since the system learnt on this setting managed to detect
a highest number of malicious hosts on the validation set.

After identifying the best performing configuration of the proposed multivariate approach, the baseline
comparison experiments are conducted. The results obtained from these experiments are presented in Table

7.5. Results 69

Scenario
Best Multivariate Baseline Multivariate Symbolic LOF

TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN
1 3 36 0 1 1 36 0 3 4 36 0 0 4 36 0 0
2 3 36 0 1 2 36 0 2 4 36 0 0 4 36 0 0
3 4 36 0 0 2 36 0 2 4 36 0 0 4 36 0 0
4 3 34 0 1 3 34 0 1 4 34 0 0 4 34 0 0

Total 13 142 0 3 8 142 0 8 16 142 0 0 16 142 0 0

Table 7.7: Comparative results on the UNSW dataset between the proposed system and the baselines

7.7 and visualised in Figure 7.6. It can be easily seen that the obtained results show a significantly different
pattern comparing to that observed in the CTU-13 dataset. In that dataset the proposed multivariate de-
tection methodology significantly overperformed the last two baseline methods, and demonstrated equally
high results with the baseline multivariate method. In this case, a completely opposite effect is recorded. In
particular, the baseline multivariate method produces degraded results, since it manages to correctly detect
only half of the malicious hosts existing in the dataset, while both the symbolic sequential method and the
LOF clustering method identified all the malicious hosts. This last observation is quite surprising, especially
when the simplistic nature of the LOF clustering approach is taken into account.

Figure 7.6: Comparison between the aggregated evaluation metrics of the proposed system and the baseline methods for the
UNSW-NB15 dataset

To further investigate the origin of this observation, the aggregated profiles of the hosts used within the
LOF clustering approach were visualised and the correlation between the utilized features and the benignity
of a host was examined, as it can be seen in Figure 7.7. In more detail, Figure 7.7a illustrates the τ-SNE [57]
projection of the aggregated profiles onto a 2D space, while Figure 7.7b depicts the heatmap of the relation
between the features of each aggregated host’s profile. As it can be easily seen from Figure 7.7a, the aggregated
representations of the hosts can be clearly separated according to the benignity of their nature. In particular,
the high majority of the malicious hosts form a relatively tight cluster depicted in the bottom part of Figure
7.7a, that lies relatively far from the cluster of benign hosts visualised on the top part of this figure. Of course
this 2D projection is not a totally accurate visualization of the relative placement of the aggregated profiles of
each host, yet it provides an insight on the reason behind the excellent results achieved by the LOF clustering
baseline approach. In order to better understand which features of these aggregated views contribute mostly
on the clear separability between the aggregated profiles of the benign and malicious hosts, the heatmap
presented in Figure 7.7b is leveraged. This heatmap depicts the relations between the features used and the
label of all 56 major hosts included in the dataset, with the 16 malicious ones visualised on the top part of
the heatmap, and the 40 benign ones following in the bottom of the heatmap. At this point, it should be
mentioned that all features have been scaled in the range [0,1] for visualization purposes. Having said that,
it can be easily seen that the destination bytes seem to be the feature that contributes mostly in separating
the aggregated profiles according to their label of benignity, since there is an evident contrast between the
normalized values associated with each set of hosts. All things considered, it can be concluded that detection
techniques of simple nature are sufficient for detecting malicious behavior in this dataset, yet performing

70 7. Experiments

the detection process through the proposed system in a connection level could be an interesting direction of
future work on this dataset.

(a) TNSE projection on 2 dimensions of the aggregated view of the data
from the UNSW-NB15 dataset

(b) Heatmap between the aggregated data points and the considered
features on the UNSW-NB15 dataset

Figure 7.7: Visualization of the aggregated points in the LOF clustering context for the the UNSW-NB15 dataset

7.5.3. Results on CICIDS2017 Dataset
The CICIDS2017 dataset constitutes the last dataset used in the evaluation process of the proposed detection
methodology, with the experiments conducted on this dataset following the same pattern as the one pre-
sented for the rest two datasets. Initially, only the traffic linked to the major hosts of the dataset was included
in the experiments, with the flows used in the training phase accounting for 80% of the total flows included
in the training set, and the flows used in the testing phase representing 91.6% of the total testing flows. These
major hosts’ results obtained for each day of this dataset on the different evaluations examined can be seen
in Table 7.8. In the contrary to the previously presented datasets, the training set in this case (Monday flows)
did not include any malicious hosts. Yet, the results recorded on that day are incorporated in this table for
reasons of completeness.

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 13 0 0 0 13 0 0 0 13 0 0
Tuesday 1 12 1 0 1 12 1 0 1 12 1 0

Wednesday 1 13 0 0 1 13 0 0 1 13 0 0
Thursday (morn.) 1 11 2 0 1 11 2 0 1 13 0 0

Thursday (aft.) 1 11 2 0 1 11 2 0 0 13 0 1
Friday (morn.) 1 10 1 2 1 10 1 2 1 11 0 2

Friday (aft. - DDoS) 1 11 2 0 1 12 1 0 1 13 0 0
Friday (aft. - port scan) 1 12 1 0 1 11 2 0 1 13 0 0

Total 7 93 9 2 7 93 9 2 6 101 1 3

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 13 0 0 0 13 0 0 0 13 0 0
Tuesday 1 12 1 0 1 12 1 0 1 12 1 0

Wednesday 1 13 0 0 1 13 0 0 1 13 0 0
Thursday (morn.) 1 11 2 0 1 11 2 0 1 13 0 0

Thursday (aft.) 1 11 2 0 1 11 2 0 1 11 2 0
Friday (morn.) 1 9 2 2 1 10 1 2 1 11 0 2

Friday (aft. - DDoS) 1 12 1 0 1 11 2 0 1 11 2 0
Friday (aft. - port scan) 1 12 1 0 1 12 1 0 1 12 1 0

Total 7 93 9 2 7 93 9 2 7 96 6 2

Results for feature set 1 Results for feature set 2

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 13 0 0 0 13 0 0 0 13 0 0
Tuesday 0 12 1 1 1 11 2 0 1 12 1 0

Wednesday 0 12 1 1 1 12 1 0 1 13 0 0
Thursday (morn.) 0 13 0 1 1 12 1 0 1 12 1 0

Thursday (aft.) 0 12 1 1 0 9 4 1 0 10 3 1
Friday (morn.) 1 11 0 2 1 10 1 2 1 11 0 2

Friday (aft. - DDoS) 1 13 0 0 1 12 1 0 1 12 1 0
Friday (aft. - port scan) 1 12 1 0 1 12 1 0 1 12 1 0

Total 3 98 4 6 6 91 11 3 6 95 7 3

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 13 0 0 0 13 0 0 0 13 0 0
Tuesday 0 12 1 1 0 12 1 1 1 12 1 0

Wednesday 0 13 0 1 1 12 1 0 1 11 2 0
Thursday (morn.) 0 12 1 1 1 11 2 0 1 11 2 0

Thursday (aft.) 1 12 1 0 1 11 2 0 1 11 2 0
Friday (morn.) 1 10 1 2 1 9 2 2 1 9 2 2

Friday (aft. - DDoS) 1 12 1 0 1 11 2 0 1 11 2 0
Friday (aft. - port scan) 0 13 0 1 1 11 2 0 1 11 2 0

Total 3 97 5 6 6 90 12 3 7 89 13 2

Results for feature set 3 Results for feature set 4

Table 7.8: Detection results per feature set and detection algorithm used on the CICIDS2017 dataset with only the major hosts included

It can be easily seen that the best results among all metrics are provided by the Gaussian KDE based
approach operating on the first feature set, recording only one false alarm among the predictions made. At
this point, it should be highlighted that there are multiple other settings that demonstrate a slightly higher
number of detected hosts (one more host in particular), yet the Gaussian KDE based approach operating on
the first feature set is considered as the best performing one, since it significantly outperforms all of these
configurations in terms of the number of false alarms raised. Another interesting observation regards the
fact that there is not such a great variation on the best performing detection algorithms among different
feature sets, as that observed in the other two datasets. In particular, the Gaussian KDE based models tend to

7.5. Results 71

outperform the other two kinds of models in all four feature sets. At this point it should be mentioned that the
malicious hosts in this dataset are associated with both malicious and benign flows, with the malicious flows
being the high majority in most occasions. This is not the case only for three hosts, the sole malicious host on
Thursday afternoon, and two of the malicious hosts on Friday morning. This observation explains the three
FNs recorded on these exact hosts by the best performing configuration. On top of that, this fact suggests that
the only attacks that are not captured by the proposed system include a minor infiltration, consisting of 36
flows, and two short bot communications, consisting of 2 flows each.

Figure 7.8: Aggregated evaluation metrics per detection method and feature set for the CICIDS2017 dataset with only the major hosts
included

Figure 7.8 presents the accuracy, precision, and recall values achieved in all of the evaluated configura-
tions across the entire dataset. It can be easily seen that the Gaussian KDE based approach operating on the
first feature set outperforms all other configurations in two of the three considered metrics, since it achieves
an accuracy of 96% and a precision of 86%. Yet, there are multiple configurations demonstrating better recall
with similar accuracy values. As it was explained above, the main reason why one of these methods is not
regarded as the best performing one instead regards their low precision values. The Gaussian KDE approach
connected with the first feature set records a precision that is almost double than any other value observed,
while maintaining a relatively high recall, even if it is not the highest one. Of course, as in the cases of the
other two datasets considered in this work, the total host-related traffic is evaluated too, with the associated
results presented in Table 7.9.

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 8239 0 0 0 8239 0 0 0 8239 0 0
Tuesday 1 7190 1 0 1 7190 1 0 1 7190 1 0

Wednesday 1 7688 0 0 1 7688 0 0 1 7688 0 0
Thursday (morn.) 1 4200 2 0 1 4200 2 0 1 4202 0 0

Thursday (aft.) 1 5098 2 0 1 5098 2 0 0 5100 0 1
Friday (morn.) 1 4460 1 2 1 4460 1 2 1 4461 0 2

Friday (aft. - DDoS) 1 2064 2 0 1 2065 1 0 1 2066 0 0
Friday (aft. - port scan) 1 3665 1 0 1 3664 2 0 1 3666 0 0

Total 7 42604 9 2 7 42604 9 2 6 42612 1 3

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 8239 0 0 0 8239 0 0 0 8239 0 0
Tuesday 1 7190 1 0 1 7190 1 0 1 7190 1 0

Wednesday 1 7688 0 0 1 7688 0 0 1 7688 0 0
Thursday (morn.) 1 4200 2 0 1 4200 2 0 1 4202 0 0

Thursday (aft.) 1 5098 2 0 1 5098 2 0 1 5098 2 0
Friday (morn.) 1 4459 2 2 1 4460 1 2 1 4461 0 2

Friday (aft. - DDoS) 1 2065 1 0 1 2064 2 0 1 2064 2 0
Friday (aft. - port scan) 1 3665 1 0 1 3665 1 0 1 3665 1 0

Total 7 42604 9 2 7 42604 9 2 7 42607 6 2

Results for feature set 1 Results for feature set 2

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 8239 0 0 0 8239 0 0 0 8239 0 0
Tuesday 0 7190 1 1 1 7189 2 0 1 7190 1 0

Wednesday 0 7687 1 1 1 7687 1 0 1 7688 0 0
Thursday (morn.) 0 4202 0 1 1 4201 1 0 1 4201 1 0

Thursday (aft.) 0 5099 1 1 0 5096 4 1 0 5097 3 1
Friday (morn.) 1 4461 0 2 1 4460 1 2 1 4461 0 2

Friday (aft. - DDoS) 1 2066 0 0 1 2065 1 0 1 2065 1 0
Friday (aft. - port scan) 1 3665 1 0 1 3665 1 0 1 3665 1 0

Total 3 42609 4 6 6 42602 11 3 6 42606 7 3

Scenario
LOF Isolation Forest Gaussian KDE

TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 8239 0 0 0 8239 0 0 0 8239 0 0
Tuesday 0 7190 1 1 0 7190 1 1 1 7190 1 0

Wednesday 0 7688 0 1 1 7687 1 0 1 7686 2 0
Thursday (morn.) 0 4201 1 1 1 4200 2 0 1 4200 2 0

Thursday (aft.) 1 5099 1 0 1 5098 2 0 1 5098 2 0
Friday (morn.) 1 4460 1 2 1 4459 2 2 1 4459 2 2

Friday (aft. - DDoS) 1 2065 1 0 1 2064 2 0 1 2064 2 0
Friday (aft. - port scan) 0 3666 0 1 1 3664 2 0 1 3664 2 0

Total 3 42608 5 6 6 42601 12 3 7 42600 13 2

Results for feature set 3 Results for feature set 4

Table 7.9: Detection results per feature set and detection algorithm used on the CICIDS2017 dataset with all hosts included

If the results presented in this table are compared with those presented in Table 7.8, which regard solely
the major hosts, it can be easily observed that the number of TN predictions is significantly increased. This
phenomenon can be explained by the "physiology" of this dataset. In more detail, the CICIDS2017 consists of
a considerably large set of benign hosts involved in short-lived network communication, along with a handful
of major hosts associated with the high majority of the recorded traffic. Thus, the incorporation of the afore-
mentioned large set of minor benign hosts in the evaluation procedure results to the significant increase of
the number of correctly identified benign hosts (TN) recorded. Of course, given the fact that all the added

72 7. Experiments

minor hosts are benign, the primary conclusions drawn from the major hosts’ results remain valid also when
all the captured flows are taken into account.

Figure 7.9: Aggregated evaluation metrics per detection method and feature set for the CICIDS2017 dataset with all hosts included

In Figure 7.9 the achieved accuracy, precision, and recall metrics for each detection algorithm and fea-
ture set used across the entire dataset are visualised. As expected, accuracy constitutes the only metric the
value of which has changed comparing to that presented in Figure 7.8. In particular, the accuracy attained
in all of the examined configurations is close to 100%, which as a matter of fact is explained by the signifi-
cantly larger number of TN predictions included in the result set. Of course, as in the case of the UNSW-NB15
dataset, the same precision and recall values are recorded for each configuration across all settings, since the
metrics affecting their calculation (TP, FP, FN) are not altered by the prediction strategy followed for minor
hosts. Subsequently, as in the rest datasets, the designed detection system is compared to a series of baseline
methods. To do so, the configuration performing the best on a validation set should be identified. The vali-
dation set used in the premises of this dataset consists of three captures with mixed network traffic, namely
the Tuesday, Wednesday, and Thursday morning captures. These captures were selected since they included
a considerable amount of malicious flows, with the time order of the flows among all captures taken into
account again in this validation process. The Gaussian KDE based models operating on the first feature set
were promoted through this process as the best performing configuration of the designed system, since they
produced the lowest number of false alarms, while identifying the same number of malicious hosts as the
other configurations did.

Scenario
Best Multivariate Baseline Multivariate Symbolic LOF

TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN
Monday 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0
Tuesday 1 12 1 0 1 13 0 0 1 11 2 0 0 13 0 1

Wednesday 1 13 0 0 1 13 0 0 1 13 0 0 0 13 0 1
Thursday (morn.) 1 13 0 0 1 13 0 0 1 13 0 0 0 13 0 1

Thursday (aft.) 0 13 0 1 0 12 1 1 0 11 2 1 0 13 0 1
Friday (morn.) 1 11 0 2 1 11 0 2 1 11 0 2 1 11 0 2

Friday (aft. - DDoS) 1 13 0 0 1 13 0 0 0 12 1 1 0 13 0 1
Friday (aft. - port scan) 1 13 0 0 1 13 0 0 0 13 0 1 0 13 0 1

Total 6 101 1 3 6 101 1 3 4 97 5 5 1 102 0 8

Table 7.10: Comparative results on the CICIDS dataset between the proposed system and the baselines

Finally, the baseline comparison results on each day of the dataset are presented in Table 7.10, and vi-
sualised in Figure 7.10. It should be noted that, in contrary to the previous two datasets, the comparison
results include only the major hosts of the dataset. This decision was made in order to achieve better in-
terpretability of the results, since the excessively large amount of minor benign hosts of this dataset would
significantly bias the accuracy values (all of them would be set close to 100%). It can be easily seen that the
only baseline method providing comparable results to those achieved by the best performing configuration
of the proposed methodology is the multivariate one, demonstrating actually the same results as those of
the proposed system. As far as the rest two baseline methodologies are concerned, the symbolic sequential
approach demonstrates equally moderate precision and recall value, originating from the same number of
misclassified benign and malicious hosts, while the LOF based clustering approach, despite attaining an ex-
cellent precision due to the lack of false alarms, fails to detect more than one malicious host, resulting to a
remarkably low recall value. As a result, it can be concluded that in the premises of this dataset, the multi-
variate sequential nature of the designed system is quite impactful towards the goal of detection, which as a
matter of fact is not true for the sophisticated outlier detection algorithms introduced in the structure of the

7.5. Results 73

sequential models.

Figure 7.10: Comparison between the aggregated evaluation metrics of the proposed system and the baseline methods for the
CICIDS2017 dataset

7.5.4. Comparison to State-of-the-art
The final part of the experimental procedure includes the comparison of the detection performance of the
proposed system with that of a state-of-the-art detection technique, so as to examine the potential of the
proposed methodology against a recently developed and published approach. To do so, the detection tech-
nique presented in [10] was selected, since the authors of this work evaluate their method, named BotFP, on
one of the datasets used in this thesis, the CTU-13 dataset in particular. The functionality of this technique
was touched upon in Chapter 3, yet a brief overview will be provided in this section too. In particular, as in
the premises of this work, the creators of BotFP perform detection on host level by grouping the available
flow records according to their source IP address. The feature set on which the detection procedure is based
includes basic NetFlow attributes, like the source and destination port numbers and the destination IP ad-
dress, and a frequency distribution signature is extracted for each host on each feature with the flows being
separated by the communication protocol used. Since in the case of the CTU-13 dataset only three types of
protocols are encountered (TCP, UDP, ICMP), the aforementioned procedure results to a feature set of 9xb
features, where b denotes the number of bins used to extract the frequency distributions of each feature on
each protocol category. After extracting the signature of each host in the training set, the DBSCAN clustering
algorithm is utilized to cluster the hosts according to their signatures, and a label of benignity is assigned to
each cluster based on the existence of at least one malicious host in its premises. In the testing phase each
host is classified according to the label of the closest signature-based cluster derived during training. Finally,
it should be pointed out that, as in [28], where the CTU-13 dataset was introduced, the creators of BotFP de-
cide to use scenarios 3, 4, 5, 7, 10, 11, 12, and 13 for training purposes, utilizing in that way scenarios 1, 2, 6, 8,
and 9 during testing. The comparative results attained by the designed system and BotFP on those scenarios
are presented in Table 7.11 in a way similar to the one used in [10].

Scenario
Best Multivariate BotFP

TP TN FP FN TP TN FP FN
1 1 166 0 0 1 163 3 0
2 1 131 0 0 1 131 0 0
6 1 111 0 0 1 111 0 0
8 1 167 3 0 1 165 5 0
9 10 133 1 0 10 133 1 0

Method 1 2 6 8 9
Best Multivariate 1 1 1 0.98 0.99

BotFP 0.98 1 1 0.97 0.99

Confusion results Accuracy results

Table 7.11: Comparative results between the designed system and BotFP on the CTU-13 dataset

After an initial inspection of the results presented in Table 7.11, it can be easily seen that there is a signif-
icant increase to the number of hosts included in these experiments comparing to those considered in the
CTU-13 related experiments conducted so far in the premises of this thesis. This increased number of hosts

74 7. Experiments

results from the attempt made to directly compare the detection performance of the designed methodology
to that of BotFP, since its creators included a proportionally high number of hosts in their experiments. As
a result, instead of considering as benign solely the hosts from which benign flows are originated, all hosts
connected with benign as well as background flows were treated as benign. Subsequently, as in the work pre-
sented in [10], only the hosts, the source IP address of which is in the host network, while linked with at least
150 packets, were eventually utilised in the experimental procedure. Finally, an important difference between
the designed system and BotFP regarding the training set used in the evaluation process of each technique
should be pointed out. In the premises of this work, solely the benign hosts of scenario 3 are utilized to train
the designed system, while this is not true in the case of BotFP, where both the benign and the malicious hosts
of scenarios 3, 4, 5, 7, 10, 11, 12, and 13 are used for training purposes, meaning that BotFP is of a supervised
nature. Bearing all these things in mind, it can be seen that both systems manage to identify all malicious in
the test set, with the system designed in this work raising a lower number of false alarms comparing to BotFP.
In particular, the proposed methodology produces the same results with BotFP in scenarios 2, 6, and 9, while
raising less false alarms in scenarios 1 and 8 (three less and two less respectively). Given the aforementioned
observations, it can be concluded that the proposed detection methodology manages to provide comparable
detection performance to that of a state-of-the-art technique.

7.6. Discussion
Taking into consideration all the results presented so far, multiple conclusions can be drawn regarding the
detection performance of the proposed methodology. The most important of these conclusions are briefly
discussed in this section, yet a more comprehensive presentation of the main conclusions regarding the en-
tirety of the current work can be found in Chapter 8. First, the fact that the best performing version of the
proposed detection pipeline for each dataset varies in terms of the detection algorithm and the feature set
used suggests that the nature of the dataset highly affects the appropriateness of the detection technique.
Yet, the fact that the proposed methodology achieves quite promising results in most cases implies that an
unsupervised multivariate sequential approach operating on basic NetFlow features can indeed be used in
the premises of a network-oriented anomaly detection task. In fact, the undetected malicious hosts, in most
cases, were associated with either mixed flows (both benign and malicious), with the benign flows represent-
ing the majority of the host-specific traffic, or with a significantly low traffic volume (tens of flows). In such
cases it would be potentially beneficial to use a more fine-grained detection approach by modelling the com-
munication traffic of benign connections instead of hosts. In addition, it is worth noting that the selection
of the NetFlow features to be included in the learning process is of high importance for the detection perfor-
mance of the designed system. In fact, in the case of the CTU-13 dataset the identification of the malicious
behaviour of a specific bot (Neris) was achieved only after the source port numbers associated with each
flow were incorporated in the learning process. As far as the baseline comparison results are concerned, it is
important to note that in two out of the three datasets used in the experimental procedure the baseline mul-
tivariate approach demonstrated similar results to the ones attained by the best performing configuration
of the proposed system. This observation suggests that simpler detection techniques could be also used in
each state, which as a matter of fact would reduce significantly the detection complexity and render the pro-
posed system more efficient, especially in cases that the computationally demanding LOF based approach is
selected. Furthermore, the multivariate sequential approach followed in the proposed methodology seems
to outperform the symbolic and clustering baselines, with the surprisingly good results of these two methods
in the UNSW-NB15 dataset being attributed to the direct correlation of the benignity of hosts to certain Net-
Flow features. Finally, the competitive detection results that the designed system produced, when examined
in comparison to a state-of-the-art detection technique on the CTU-13 dataset, indicate its high detection
potential.

8
Conclusion and Final Remarks

The primary goal of this work was the development of an effective anomaly detection system able to oper-
ate in an unsupervised manner on aggregated privacy preserving representations of network traffic. Towards
that end, the designed system was based on the assumption that, if robust models reflecting the various be-
nign behavioral patterns in the recorded communication traffic of a given network are extracted, behaviors
not conforming to the derived benign models can be labelled as malicious. As a result, a multivariate state
machine learning approach boosted by multiple well-known detection techniques was utilized to model the
benign communication traffic of hosts in multiple datasets. The designed system was evaluated both on
different configurations of its own components, and in comparison to some baselines and a state-of-the-
art methodology, so that meaningful conclusions regarding its nature and its detection capabilities can be
drawn. This chapter aims to summarize these conclusions and answer the main questions set in the begin-
ning of this thesis, while presenting the primary strong points and limitations of the designed system. Finally,
some directions, towards which the work conducted in this thesis can be extended in the future, are briefly
discussed.

8.1. Main Conclusions
An initial discussion on the conclusions drawn from the evaluation procedure followed in this thesis was
conducted at the end of Chapter 7. In this section, these conclusions will be reflected on the primary research
questions set in the beginning of this work in the following question-to-answer format:

1. How effective can multivariate behavioral communication profiles extracted solely from basic Net-
Flow features of benign data be proved for the purpose of malware detection in network traffic?

As it can be seen from the results obtained on all the datasets used in the evaluation procedure, the
best performing configurations of the proposed system manage to attain relatively high detection per-
formance, along with a low number of false alarms. Apart from few cases, which will be addressed
further in Section 8.3 of this chapter, the high detection performance achieved on different datasets
incorporating a great variety of malicious network behavior indicates the capabilities of the proposed
methodology. The high detection prospect of the designed system is further supported by the fact
that it provides competitive results when examined in comparison to a state-of-the-art detection tech-
nique on the CTU-13 dataset. Of course, there are certain shortcomings associated with the designed
pipeline, yet the attained results seem promising regarding its detection potential.

2. What type of malicious behaviour can be successfully identified from the proposed detection sys-
tem?

The datasets used for evaluating the designed detection system contain different types of attacks, rang-
ing from bots, DoS attacks, and port scans, to infiltration, web attacks, and sql injection attacks. The
proposed methodology manages to identify the majority of these malicious behaviors, which as a mat-
ter of fact strengthens the opinion that the utilization of benign traffic in the training phase of the pro-
posed pipeline provides great detection flexibility to the designed system, allowing it to identify dif-
ferent types of malicious behaviors not conforming to the normal communication patterns captured
during the learning process.

75

76 8. Conclusion and Final Remarks

3. What is the impact from the incorporation of outlier detection models in the structure of multivari-
ate state machines towards the goal of detection?

As it was discussed in Chapter 7, the multivariate baseline method, which utilized the same structure as
the designed system, with the main difference being the incorporation of a simple model in each state
of the derived state machines, tended to produce comparable results to those achieved when more
complex outlier detection algorithms were fitted in each state. Given the significant boost in the com-
putational performance of the system, when a simple detection technique is fitted in each state, it is
considered beneficial to further examine the possibility of using much simpler detection algorithms fit-
ted in each state of the multivariate sequential models used for profiling the benign behavior recorded
in the network under examination.

8.2. Strong Points
The strongest point of the work presented in the premises of this thesis can be summarised by the fact that
the proposed pipeline provides a solid overall detection performance in all the datasets taken into account in
this thesis, which as a matter of fact was the primary goal of this work. This result is of high importance given
the characteristics of the designed pipeline. First, the designed system operates in an unsupervised manner,
since it only needs benign communication traffic in its training phase, the acquisition of which is a much eas-
ier task comparing to the case of malicious traffic. In addition, the behavioral models used within the system
are learnt from basic features of NetFlow data, avoiding the use of highly sophisticated attributes that might
not be provided by some network monitoring tools. Furthermore, it utilizes a multivariate sequential model
in order to learn benign communication profiles from certain network-related aggregation entities, like hosts,
and connections, enabling in that way the incorporation of underlying temporal patterns in the learning and
detection processes, while providing a more fine-grained analysis on the network data comparing to the typ-
ical ML dataset-like representation. To the best of our knowledge, this is the first work that incorporates all
the aforementioned characteristics in one system. On top of that, the relatively high detection performance
achieved in datasets containing different type of cyber attacks and malicious network behaviours indicates
that the designed system is able to detect a wide variety of malicious activity, while the competitive detection
results attained, when the proposed system is examined in comparison to a state-of-the-art technique, high-
light further its high detection potential. Finally, the adoption of a multivariate sequential approach frees the
detection process from the information loss associated with the needed encoding procedure in most sequen-
tial methodologies.

8.3. Limitations
There are three main limitations of the work conducted in this thesis. The first is reflected by the malicious
hosts that were not identified in the evaluation process. Most of these hosts were associated either with a
significant number of benign flows along with their malicious traffic or with a short-lived malicious behavior
comprising of tens of flows. The first observation suggests that the designed system is not able to identify
hosts of mixed nature, when the malicious flows associated with them constitute the minority of their entire
traffic. The second observation is linked to the fact that the designed system is able to provide robust pre-
diction only when a sufficient number of flows is available for each network entity, which as a matter of fact
suggests that when the malicious traffic is expressed through short-lived connections the proposed method-
ology would most probably fail to provide high detection performance. Finally, the detection phase of the
proposed system involves the replay of the set of traces of the examined network entity on all the benign
behavioral models extracted during the training phase. Such a strategy can work when there is a relatively
low number of benign profiles, yet, if the number of benign profiles is increased up to a significant extent, the
detection process could become computationally infeasible especially if computationally intensive detection
algorithms, like LOF, are fitted in each state of the benign behavioral models.

8.4. Future Work
As with every newly developed method, there is significant room for improvement, while there are several
promising research paths that have not been explored or thoroughly covered in the premises of this work.
This section provides a brief presentation of the main future directions that could be followed in continuance
of the work presented in this thesis. These directions can be seen as follows:

• As it was mentioned in the discussion regarding the experimental results presented at the end of Chap-

8.4. Future Work 77

ter 7, it would be interesting to evaluate the proposed system on connection level, since such an anal-
ysis could offer more fine-grained detection results. Especially, in cases where the number of flows per
connection is large enough, as it is in the case of the UNSW-NB15 dataset, such an approach could
potentially lead to better results than the host level based approach, since each modelling entity would
be associated with less noise.

• In the premises of this thesis, the inference algorithm implemented in flexfringe was utilized without
any task-specific adjustments made. Such adjustments could lead to the extraction of models that
could capture even better the communication patterns in the premises of a network.

• The multivariate FSMs used as the behavioral profiles of certain network entities are capable of captur-
ing any sequential temporal patterns present in the recorded traffic, yet, if an anomaly is of a collective
nature, like the excessive increase in the number of attempted connections to a host during a DoS at-
tack, it is possible that such models will be unable to detect it. As a result, it could be beneficial to
examine the incorporation of aggregated features in the modelling process, so that such cases can be
effectively treated.

• The baseline multivariate method seems to produce comparable detection performance to that achieved
when more complex and computationally intensive detection algorithms are fitted in each state of the
derived profiles. As a result, it would be of great interest to fit a detection technique that would combine
both effectiveness and simplicity in the structure of the multivariate FSMs.

• Finally, in order to deal with the latency introduced in the detection process by the exhaustive search
for a match between the set of testing traces examined and all the benign models used by the system,
a hashing scheme could be utilized to reduce the number of models that need to be evaluated for a
potential match.

Bibliography

[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association rules. In Proc. 20th
int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

[2] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science, 126(2):183–235,
1994.

[3] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. Enhancing one-class support vector ma-
chines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD Workshop on Outlier
Detection and Description, pages 8–15, 2013.

[4] Dana Angluin. Learning regular sets from queries and counterexamples. Information and computation,
75(2):87–106, 1987.

[5] Ia M Barzdin. Finite automata-behavior and synthesis. North-Holland Publishing Company, 1973.

[6] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and Engin Kirda. Scal-
able, behavior-based malware clustering. In NDSS, volume 9, pages 8–11. Citeseer, 2009.

[7] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series. In KDD
workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[8] Alan W Biermann and Jerome A Feldman. On the synthesis of finite-state machines from samples of
their behavior. IEEE transactions on Computers, 100(6):592–597, 1972.

[9] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher Kruegel. Disclosure:
detecting botnet command and control servers through large-scale netflow analysis. In Proceedings of
the 28th Annual Computer Security Applications Conference, pages 129–138, 2012.

[10] Agathe Blaise, Mathieu Bouet, Vania Conan, and Stefano Secci. Botfp: Fingerprints clustering for bot
detection. In NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, pages 1–7.
IEEE, 2020.

[11] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis: forecast-
ing and control. John Wiley & Sons, 2015.

[12] Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, and Kavè Salamatian. Anomaly extraction
in backbone networks using association rules. In Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement, pages 28–34, 2009.

[13] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-based
local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data,
pages 93–104, 2000.

[14] Matthias Büchler, Karim Hossen, Petru Florin Mihancea, Marius Minea, Roland Groz, and Catherine
Oriat. Model inference and security testing in the spacios project. In 2014 Software Evolution Week-IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pages
411–414. IEEE, 2014.

[15] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3):1–58, 2009.

[16] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE transactions on software
engineering, (3):178–187, 1978.

79

80 Bibliography

[17] Benoit Claise, Brian Trammell, and Paul Aitken. Specification of the ip flow information export (ipfix)
protocol for the exchange of flow information. RFC 7011 (Internet Standard), Internet Engineering Task
Force, pages 2070–1721, 2013.

[18] William W Cohen. Fast effective rule induction. In Machine learning proceedings 1995, pages 115–123.
Elsevier, 1995.

[19] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda. Prospex: Protocol
specification extraction. In 2009 30th IEEE Symposium on Security and Privacy, pages 110–125. IEEE,
2009.

[20] Guillaume Dewaele, Kensuke Fukuda, Pierre Borgnat, Patrice Abry, and Kenjiro Cho. Extracting hidden
anomalies using sketch and non gaussian multiresolution statistical detection procedures. In Proceed-
ings of the 2007 workshop on Large scale attack defense, pages 145–152, 2007.

[21] Catalin Dima. Real-time automata. Journal of Automata, Languages and Combinatorics, 6(1):3–24, 2001.

[22] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2006.

[23] Ricardo Dunia and S Joe Qin. Subspace approach to multidimensional fault identification and recon-
struction. AICHE journal, 44(8):1813–1831, 1998.

[24] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[25] Marina Evangelou and Niall M Adams. Predictability of netflow data. In 2016 IEEE Conference on Intel-
ligence and Security Informatics (ISI), pages 67–72. IEEE, 2016.

[26] Yudan Fan, Yuna Zhu, and Lin Yuan. Automatic reverse engineering of unknown security protocols from
network traces. In 2018 IEEE 4th International Conference on Computer and Communications (ICCC),
pages 1139–1148. IEEE, 2018.

[27] Gilberto Fernandes Jr, Luiz F Carvalho, Joel JPC Rodrigues, and Mario Lemes Proença Jr. Network
anomaly detection using ip flows with principal component analysis and ant colony optimization. Jour-
nal of Network and Computer Applications, 64:1–11, 2016.

[28] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empirical comparison of botnet
detection methods. computers & security, 45:100–123, 2014.

[29] E Mark Gold. Complexity of automaton identification from given data. Information and control, 37(3):
302–320, 1978.

[30] Cyril Goutte, Peter Toft, Egill Rostrup, Finn A Nielsen, and Lars Kai Hansen. On clustering fmri time
series. NeuroImage, 9(3):298–310, 1999.

[31] Margaret Gratian, Darshan Bhansali, Michel Cukier, and Josiah Dykstra. Identifying infected users via
network traffic. Computers & Security, 80:306–316, 2019.

[32] Roland Groz, Nicolas Bremond, Adenilso Simao, and Catherine Oriat. hw-inference: A heuristic ap-
proach to retrieve models through black box testing. Journal of Systems and Software, 159:110426, 2020.

[33] Christian Hammerschmidt, Samuel Marchal, Radu State, Gaetano Pellegrino, and Sicco Verwer. Effi-
cient learning of communication profiles from ip flow records. In 2016 IEEE 41st Conference on Local
Computer Networks (LCN), pages 559–562. IEEE, 2016.

[34] Christian Hammerschmidt, Samuel Marchal, Radu State, and Sicco Verwer. Behavioral clustering of
non-stationary ip flow record data. In 2016 12th International Conference on Network and Service Man-
agement (CNSM), pages 297–301. IEEE, 2016.

[35] Edward James Hannan. Multiple time series, volume 38. John Wiley & Sons, 2009.

[36] Douglas M Hawkins. Identification of outliers, volume 11. Springer, 1980.

Bibliography 81

[37] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers. Pattern Recog-
nition Letters, 24(9-10):1641–1650, 2003.

[38] Marijn JH Heule and Sicco Verwer. Software model synthesis using satisfiability solvers. Empirical Soft-
ware Engineering, 18(4):825–856, 2013.

[39] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna Sperotto, and Aiko Pras.
Flow monitoring explained: From packet capture to data analysis with netflow and ipfix. IEEE Commu-
nications Surveys & Tutorials, 16(4):2037–2064, 2014.

[40] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages,
and computation. Acm Sigact News, 32(1):60–65, 2001.

[41] Wenjie Hu, Yihua Liao, and V Rao Vemuri. Robust anomaly detection using support vector machines. In
Proceedings of the international conference on machine learning, pages 282–289. Citeseer, 2003.

[42] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimen-
sionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604–613,
1998.

[43] Malte Isberner, Falk Howar, and Bernhard Steffen. The ttt algorithm: a redundancy-free approach to
active automata learning. In International Conference on Runtime Verification, pages 307–322. Springer,
2014.

[44] Teuvo Kohonen, MR Schroeder, TS Huang, and Self-Organizing Maps. Springer-verlag new york. Inc.,
Secaucus, NJ, 43(2), 2001.

[45] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951.

[46] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic feature distribu-
tions. ACM SIGCOMM computer communication review, 35(4):217–228, 2005.

[47] Kevin J Lang. Random dfa’s can be approximately learned from sparse uniform examples. In Proceedings
of the fifth annual workshop on Computational learning theory, pages 45–52, 1992.

[48] Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. Results of the abbadingo one dfa learning compe-
tition and a new evidence-driven state merging algorithm. In International Colloquium on Grammatical
Inference, pages 1–12. Springer, 1998.

[49] Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca Iannaccone, and
Anukool Lakhina. Detection and identification of network anomalies using sketch subspaces. In Pro-
ceedings of the 6th ACM SIGCOMM conference on Internet measurement, pages 147–152, 2006.

[50] Yihua Liao and V Rao Vemuri. Use of k-nearest neighbor classifier for intrusion detection. Computers &
security, 21(5):439–448, 2002.

[51] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: a novel symbolic represen-
tation of time series. Data Mining and knowledge discovery, 15(2):107–144, 2007.

[52] Qin Lin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. Tabor: A graphical model-based approach
for anomaly detection in industrial control systems. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pages 525–536, 2018.

[53] Qin Lin, Yihuan Zhang, Sicco Verwer, and Jun Wang. Moha: a multi-mode hybrid automaton model for
learning car-following behaviors. IEEE Transactions on Intelligent Transportation Systems, 20(2):790–
796, 2018.

[54] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE International
Conference on Data Mining, pages 413–422. IEEE, 2008.

[55] David Lo, Leonardo Mariani, and Mauro Santoro. Learning extended fsa from software: An empirical
assessment. Journal of Systems and Software, 85(9):2063–2076, 2012.

82 Bibliography

[56] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic generation of software behavioral
models. In Proceedings of the 30th international conference on Software engineering, pages 501–510,
2008.

[57] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[58] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term memory networks
for anomaly detection in time series. In Proceedings, volume 89. Presses universitaires de Louvain, 2015.

[59] Leonardo Mariani and Fabrizio Pastore. Automated identification of failure causes in system logs. In
2008 19th International Symposium on Software Reliability Engineering (ISSRE), pages 117–126. IEEE,
2008.

[60] Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze. Dynamic analysis for diagnosing integration
faults. IEEE Transactions on Software Engineering, 37(4):486–508, 2010.

[61] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering. Journal
of Open Source Software, 2(11):205, 2017.

[62] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. Amal: High-fidelity, behavior-based automated
malware analysis and classification. computers & security, 52:251–266, 2015.

[63] Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing magazine, 13(6):47–60,
1996.

[64] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection
systems (unsw-nb15 network data set). In 2015 military communications and information systems con-
ference (MilCIS), pages 1–6. IEEE, 2015.

[65] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart, Ivan Beschastnikh, and
Yuriy Brun. Behavioral resource-aware model inference. In Proceedings of the 29th ACM/IEEE interna-
tional conference on Automated software engineering, pages 19–30, 2014.

[66] José Oncina and Pedro Garcia. Inferring regular languages in polynomial updated time. In Pattern recog-
nition and image analysis: selected papers from the IVth Spanish Symposium, pages 49–61. World Scien-
tific, 1992.

[67] Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathematical
statistics, 33(3):1065–1076, 1962.

[68] Gaetano Pellegrino, Qin Lin, Christian Hammerschmidt, and Sicco Verwer. Learning behavioral finger-
prints from netflows using timed automata. In 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pages 308–316. IEEE, 2017.

[69] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering of http-based malware and sig-
nature generation using malicious network traces. In NSDI, volume 10, page 14, 2010.

[70] Michael O Rabin. Probabilistic automata. Information and control, 6(3):230–245, 1963.

[71] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann. Math.
Statist., 27(3):832–837, 09 1956. doi: 10.1214/aoms/1177728190. URL https://doi.org/10.1214/
aoms/1177728190.

[72] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word recog-
nition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

[73] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and John C Platt. Support
vector method for novelty detection. In Advances in neural information processing systems, pages 582–
588, 2000.

[74] David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons,
2015.

https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190

Bibliography 83

[75] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating a new intrusion detec-
tion dataset and intrusion traffic characterization. In ICISSP, pages 108–116, 2018.

[76] Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1), 1996.

[77] Qing Song, Wenjie Hu, and Wenfang Xie. Robust support vector machine with bullet hole image clas-
sification. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 32(4):
440–448, 2002.

[78] Thomas A Sudkamp and Alan Cotterman. Languages and machines: an introduction to the theory of
computer science, volume 2. Addison-Wesley Reading, Mass., 1988.

[79] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. Botfinder: Finding bots in net-
work traffic without deep packet inspection. In Proceedings of the 8th international conference on Emerg-
ing networking experiments and technologies, pages 349–360, 2012.

[80] Franck Thollard, Pierre Dupont, Colin De La Higuera, et al. Probabilistic dfa inference using kullback-
leibler divergence and minimality. In ICML, pages 975–982, 2000.

[81] Wesley van der Lee and Sicco Verwer. Vulnerability detection on mobile applications using state ma-
chine inference. In 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 1–10. IEEE, 2018.

[82] SE Verwer, MM De Weerdt, and Cees Witteveen. An algorithm for learning real-time automata. In Bene-
learn 2007: Proceedings of the Annual Machine Learning Conference of Belgium and the Netherlands,
Amsterdam, The Netherlands, 14-15 May 2007, 2007.

[83] Sicco Verwer and Christian A Hammerschmidt. flexfringe: a passive automaton learning package. In
2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 638–642.
IEEE, 2017.

[84] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. One-clock deterministic timed automata are ef-
ficiently identifiable in the limit. In International Conference on Language and Automata Theory and
Applications, pages 740–751. Springer, 2009.

[85] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. A likelihood-ratio test for identifying probabilis-
tic deterministic real-time automata from positive data. In International Colloquium on Grammatical
Inference, pages 203–216. Springer, 2010.

[86] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. The efficiency of identifying timed automata and
the power of clocks. Information and Computation, 209(3):606–625, 2011.

[87] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. Efficiently identifying deterministic real-time
automata from labeled data. Machine learning, 86(3):295–333, 2012.

[88] Jiacun Wang. Formal Methods in Computer Science, pages 34–36. CRC Press, 2019.

[89] Xiaogang Wang, Weiliang Qiu, and Ruben H Zamar. Clues: A non-parametric clustering method based
on local shrinking. Computational Statistics & Data Analysis, 52(1):286–298, 2007.

[90] Nong Ye and Qiang Chen. An anomaly detection technique based on a chi-square statistic for detecting
intrusions into information systems. Quality and Reliability Engineering International, 17(2):105–112,
2001.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Proposed Solution
	Research Questions
	Contributions
	Thesis Structure

	Background
	Network Traffic
	Flow Monitoring and NetFlow Data

	Sequential Data
	Data Aggregation & Window Extraction
	Discretization

	Finite State Automata
	Deterministic Finite State Automata
	Probabilistic Deterministic Finite Automata
	Real-Time Automata
	Probabilistic Deterministic Real-Time Automata
	DFA Inference

	Graphs
	Anomaly Detection
	Local Outlier Factor
	Isolation Forest
	Multivariate Gaussian Kernel Density Estimation

	Evaluation Metrics

	Related Work
	Standard Anomaly Detection Techniques
	Classification Techniques
	Nearest Neighbour Techniques
	Clustering Techniques
	Statistical Techniques
	Spectral Techniques

	Anomaly Detection in Network Traffic
	Randomized Approaches
	Clustering Approaches
	Combined Machine Learning Approaches
	State Machine Learning Approaches

	State Machine Inference

	Data Exploration
	Datasets Overview
	The CTU-13 Dataset
	The UNSW-NB15 Dataset
	The CICIDS2017 Dataset

	Data Preprocessing
	Feature Exploration and Selection
	Challenges

	Model Creation
	Red-Blue State Merging Algorithm
	Learning from Labelled Data: The RTI Algorithm
	Learning from Positive Data: The RTI+ Algorithm
	The Multivariate Approach
	Additional Constraints & Tunable Parameters

	Modelling Benign Flows
	Preliminaries
	Main Pipeline Analysis
	Levels of Abstraction
	Traces Extraction
	Model Extraction and Training
	Model Testing

	Some Thoughts on Complexity

	Experiments
	Experimental Configuration
	Training and Test Sets Selection
	Baseline Methods
	Parameter Tuning
	Results
	Results on CTU-13 Dataset
	Results on UNSW-15 Dataset
	Results on CICIDS2017 Dataset
	Comparison to State-of-the-art

	Discussion

	Conclusion and Final Remarks
	Main Conclusions
	Strong Points
	Limitations
	Future Work

	Bibliography

