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Abstract

An explanation is given of the convergence behaviour of the IDR(s) methods.
The convergence of the IDR(s) algorithms has two components. The first consists of
damping properties of certain factors in the residual polynomials, which becomes less
important for large values of s. The second component depends on the behaviour of
quasi-Lanczos polynomials that occur in the theoretical description.

In this paper, this second component is analysed, the convergence behaviour of the
methods is explained, and an expectation is given on the rate of convergence.

Keywords: Iterative methods, IDR, Krylov subspace methods, Bi-CGSTAB, nonsym-
metric linear systems.

1 Introduction.

The IDR(s) method is a family of short recurrence Krylov subspace methods for solving
a linear system Ax = b, based on the following proposition [15]:

Proposition 1.1 Let A be an N × N complex matrix, let b be a vector in CN , let G0 be
the full Krylov subspace K(A, b). let S be a proper subspace of G0 of codimension s, and
let the sequence of spaces Gj , j = 1, 2, . . . be defined recursively by

Gj = (I − ωjA)(S ∩ Gj−1)

where ωj are nonzero complex numbers, then the spaces are nested in the following way:

Gj ⊂ Gj−1

Moreover, apart from really exceptional circumstances, the dimensions of the spaces satisfy

dim(Gj) = dim(Gj−1) − s

This is the so-called dimension reduction phenomenon, and it is proved in two theorems
in [15].
The IDR(s) algorithms make use of this property by constructing a sequence of residual
vectors rn = b − Axn that are forced to be in Gj for increasing values of j. The space
S is chosen to be the null space of P∗, where P is a randomly chosen N × s matrix.
The construction principle is as follows: Suppose we have s + 1 independent residuals
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rj1, rj2, . . . , rj,s+1 in Gj, we can make a nontrivial combination
∑s+1

k=1 ckrjk in S ∩ Gj by
solving c1, c2, . . . , cs+1 from the homogeneous linear system

P∗

(
s+1∑

k=1

ckrjk

)
= 0

By applying the mapping I − ωj+1A to this combination, we obtain a vector in Gj+1.
By suitable scaling this vector can be made a residual rn+1, and also an update xn+1

for the solution can be found. This process can be repeated using also this new residual,
because the G-spaces are nested. After s + 1 steps, we have found s + 1 vectors in Gj+1,
and therefore we can enter the space Gj+2 etc.
Every s + 1 iterations, we enter a new space of which the dimension is s less than the
former. Therefore in about s+1

s N steps, the space Gj with js ≥ N has dimension zero,
and hence the residuals in it are zero. In this sense, the IDR(s) method is finite.

This behaviour is illustrated in the upper plot of Figure 1, showing the convergence his-
tory of IDR(s) applied to a discretized one-dimensional diffusion equation, leading to 60
equations (Problem 1).
In the lower plot of Figure 1, the same graph is shown, but now with the horizontal axis
stretched by a factor s

s+1 . This plot confirms the s+1
s N behaviour as predicted by the

theory. Plots in which this scaling has been applied will be called normalized plots. In
these plots, the horizontal axis shows no longer the number of matrix-vector multiplications
but only s

s+1 times that number.

Now similarly as in the CG-algorithm, the method usually converges as an iterative method
in a number of steps that is far below the theoretical bound s+1

s N . This is illustrated in
the upper plot of Figure 2, showing the convergence history for a system of 3900 equations
arising from a two-dimensional convection diffusion equation on a 60×65 grid, with mesh-
Peclet numbers [0.5, 0] (Problem 2). Here only about 200 iterations are required to gain
10 decimal digits.
If the IDR(s) methods are compared with full GMRES, the convergence characteristic
seems to ‘converge’ at increasing s to a limiting curve close to the full GMRES curve for the
same problem. Now GMRES is a ‘lower bound’ for all Krylov subspace methods, because
it minimizes the residual norm ‖rn‖ over the Krylov space span{r0,Ar0, . . . ,A

nr0}, and
the observed increasing similarity of GMRES and IDR(s) for increasing values of s is quite
promising.
If we take a closer look to the upper plots of Figure 1 and Figure 2, it can be observed
that the relative positioning of the convergence curves for the values s = 1, 2, 8, 16 in both
plots are a bit similar. So apparently the ‘speeds of convergence’ for different s are more
or less proportional to s+1

s .
Whether this is true can be verified by applying the same stretching, with s

s+1 , of the
horizontal axis as done in the left-lower plot. The result is shown in the lower plot of
Figure 2.
We can make two observations in the right-lower plot.
1. The curves for s = 1 and s = 2 seem to show faster convergence than GMRES, which
is not possible.
2. The curves for s = 8 and s = 16 are nearly covering the fast convergence part of the
full GMRES curve.

The first observation has a simple explanation: For s = 1, only half of the work is shown,
and for s = 2, only 66%.
The second observation will be analysed in the following sections.
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Figure 1: History for Problem 1
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Figure 2: History for Problem 2

2 The polynomial background of the IDR(s) residuals.

2.1 Damping and Lanczos part of the convergence.

In each step of an IDR(s) algorithm a new residual is constructed, involving one matrix-
vector multiplication. Therefore, as in most Krylov subspace methods, we can write

rn = Φn(A)r0 (1)

where Φn is an n-th degree polynomial, satisfying Φn(0) = 1. We call this the IDR-
polynomial
Furthermore, as described in [15], for residuals that are in Gj, the IDR-polynomial Φn can
be explicitly written as a product of two polynomials:

Φn(A) = Ωj(A)Ψn−j(A) (2)

where

Ωj(t) =

j∏

k=1

(1 − ωkt), Ψn−j(t) = 1 −
n−j∑

l=1

clt
l (3)

The choice c0 = 1 is required for the possibility to construct iterates xn that satisfy
rn = b − Axn.
We call the factors Ωj(A) damping factors or stabilization factors, and the polynomials
Ψn−j(A) Lanczos factors.
The damping factors have their name because the coefficients ωj are usually calculated
with the purpose of minimizing the norm of rj(s+1) = (I − ωjA)s for some vector s that
arises in the algorithm at that stage.
It is plausible to expect that the matrix polynomial Ωj(A) will act as a contraction, but
this is not allways the case. In many cases however, the damping-factors in the residuals
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are at least partly responsible for the convergence. So we remain calling them ‘damping
factors’ or ‘stabilization factors’, even if they do not damp or stabilize at all.
The name Lanczos factors for the polynomials Ψn−j(A) is chosen because the polynomials
Ψn−j have some similarity with the Lanczos polynomials.

We define the reduced residuals r̃n−j by

r̃n−j = Ψn−j(A)r0 (4)

Plots for the norms of these reduced residuals show the contribution of the Lanczos factors
to the convergence of IDR(s). Unfortunately the reduced residuals are not explicitly
present in the IDR(s) algorithm. However, in the variant of the algorithm that is presented
in [7], it is possible to calculate them by applying a shadow process, using the calculated
coefficients of the algorithm, but skipping the explicit multiplication with I −ωjA at step
j(s + 1).
Note that this skipping procedure leads to the same reduction by a factor s

s+1 as are
applied in the normalization of convergence plots. This is quite natural after all, since for
n = j(s + 1):

degree of Φn

degree of Ψn−j
=

degree of Φj(s+1)

degree of Ψjs
=

s + 1

s

2.2 Experiments on damping- and Lanczos parts.

We can view the contributions of the ‘Lanczos part’, and the ‘damping part’ of the resid-
uals, by comparing the plots of the reduced residuals with the normalized plots of IDR(s)
residuals.
In Figure 3 we compare the normalized IDR(s) with the reduced (= undamped) resid-
uals. It is quite clear that IDR(1) has rather large profit from the damping part of the
convergence. For larger s-values this effect becomes smaller.
Problem 2, on which IDR(s) is applied in Figure 3 represents a case in which the damping
factors actually produce damping. For Figure 4, the same convection diffusion equation
as in Problem 2 is used, but with a large mesh-Peclet numbers [20, 0] (Problem 3). For
classical iterative procedures this is disastrous, and the same effect can be concluded from
Figure 4. Upper and lower plots in Figure 4 show no damping at all, and one would
be better off in using the reduced residual. But producing this requires a lot of extra
computational work.
The cause of the failing damping property is that the calculated real values for ωj would be
very small, causing stagnation of the procedure (as in Bi-CGSTAB). Therefore a modified
calculation of ωj is done, described in [13], which in these circumstances may cause growth
instead of a damping.
So it is quite reasonable to look seriously for alternative criteria for choosing the param-
eters ωj. For the case s = 1, which is equivalent to Bi-CGSTAB, Gutknecht in [6], and
Sleijpen and Fokkema in [11] have developed look-ahead -like variants of the algorithm,
in which the factors I − ωjA are combined into higher degree polynomials, allowing for
actual minimization in this kind of cases. Recently, Simoncini and Szyld in [10] developed
alternative criteria for the ω-values, based on the field of values of A.
One extremely easy way to handle the non-damping problem in IDR(s), is shown in [15].
By choosing the matrix P complex, the algorithm is forced to use complex arithmetic,
and therefore may find better factors. The result is shown in the upper and lower plots of
Figure 5. Apart from the increase of computational work caused by complex arithmetic,
this seems to be a perfect remedy.
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Figure 3: Normalized versus reduced residuals in Problem 2

The lower plot in Figure 3 and the lower plot in Figure 5 show an interesting property of
the reduced residuals. They follow the GMRES-behaviour quite closely in the observed
examples. This behaviour is a property of the Lanczos part of the residuals. This will be
analysed in the next sections.

3 Analysis of the Lanczos factors.

It is shown in [15] that the polynomials Ψn−j satisfy relations of the following type:

p∗
rA

lΨn−j(A)r0 = 0, l = 0, 1, . . . , j − 1, r = 1, 2, . . . , s (5)

where s is the ‘order’ of the IDR(s) algorithm. Since Ψn−j has n − j coefficients to be
determined, the above relations can be consistent as long n − j ≥ s ∗ j. If the equality
sign holds, the coefficients are determined uniquely, which is the case if n = (s + 1) ∗ j,
corresponding exactly with the calculation of the very first residual in the space Gj. In
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Figure 4: No damping in Problem 3.
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Figure 5: Remedy by complex P

the calculatuions for the residuals rn for intermediate values of n, there is freedom, which
can be used for stability reasons.
One important conclusion can be drawn from the relations in (5): the Lanczos factor Ψn−j

is independent from the damping polynomial Ωj. So the Lanczos part of the convergence
is not influenced by the damping strategy, at least as long finite precision issues are not
taken into account.

Define the Krylov vectors kl, and the reduced Krylov matrices Kl by

kl = Alr0, l = 0, 1, 2, . . . , Kl = (k1 k2 . . . kl), l = 1, 2, . . . (6)

Then the equations for the coefficients cl read explicitly:

p∗
rA

l[Kn−jc − r0] = 0, r = 1, 2, . . . , s, l = 0, 2, . . . , j − 1

These relations can be written in the following form:

T∗Kn−jc = T∗r0 (7)

where

T = (t1 t2 . . . tsj) , , tls+r = (A∗)lpr, l = 0, 1, . . . , j − 1, r = 1, 2, . . . , s

The vectors ti can be considered as test vectors, and the matrix T as a test matrix, in
a Galerkin context. In fact, the reduced residuals can be regarded as Galerkin residuals,
produced by a Galerkin approximation of the overdetermined system

r̃n−j = Kn−jc, with Kn−jc = r0 (8)

The interpretation described here is restricted to the case n = (s + 1) ∗ j, and is valid for
every variant of IDR(s). In the variant described in [7], the inner freedom in choice for
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(s + 1)j < n < (s + 1)(j + 1) is used in such a way that the Galerkin connection holds for
all n.
The construction of the IDR(s) residual rj(s+1)+k requires j(s +1) + k matrix vector mul-
tiplications. Within the context of calculating a Galerkin approximation, with a ‘Galerkin
dimension’ n− j, about j of these matrix vector products can be considered as ‘overhead’.
This overhead may be paid back partially by the (possible) contraction properties of the
damping factors Ωj(A).

We call the procedure defined by (6) and (8) Krylov-Galerkin approximation.

3.1 Galerkin versus least squares.

The following analysis applies to any Galerkin procedure for finite linear problems.
In classical least squares problems, the objective is to find a best fit of a certain linear
‘model’ to a set of measured data. Let there be given N measured data bj, and let the
model be represented by the N ×k model matrix M, then we have to minimize the 2-norm
of b − Mc. The residual r = b − Mc is then called the model error for the least squares
approximation.
The residual is minimized if it is orthogonal to the range of M:

‖Mx − b‖ is minimal ⇔ M∗(Mx − b) = 0

The same solution will be obtained by requiring M̃
∗

(Mc − b) = 0, for any N × k matrix

M̃ sharing its range with M. In general all matrices satisfying this requirement can be
written as M̃ = MC, with C a k × k nonsingular matrix.
If we replace M̃ by a ‘testmatrix’ T, of which the range differs from R(M), we call the
approximation a Galerkin approximaton. It is obtained by solving T∗(Mc − b) = 0. The
Galerkin approximation equals the least squares solution if R(T) = R(M).

Write down the Galerkin approximation of the model coefficients explicitly:

c = (T∗M)−1T∗b

then the model error satisfies

b − Mc = b − M(T∗M)−1T∗b =
(
I − M(T∗M)−1T∗

)
b = (I − P)b

where P = M(T∗M)−1T∗ represents a, generally oblique, projection on R(M) (Obviously
P2 = P, so this is a projection allright).
The quality of a Galerkin approximation can be measured by the (norm of the) residual
r = (I − P)b. The matrix I − P also represents a projection, and by inspection we find
R(I − P) = N (T∗).

A priory statements on ‖r‖ in Galerkin approximations are rather restricted. In contrast
with least squares approximations, there is no positive quantity to be minimized. Only
if the test matrix has certain connections with the model matrix, there might be some
possibility for an analysis. On the other hand, relations between the test matrix and the
model matrix can also turn out to be disastrous for the quality of the approximation.
A simple example of a bad choice of test space is the case that T∗M is (nearly) singular.
If M is a proper model matrix, its columns are linearly independent (otherwise we would
drop a dependent column, since it does not contribute to the model). So (near) singularity
of the Galerkin equations are caused by a bad match between model space and test space.
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Consider the case that T∗M is singular. Let y be in the left null space of T∗M, then

y∗T∗M = 0∗ =⇒ (Ty)∗(Mx) = 0 ∀x =⇒ Ty ⊥ R(M)

So the test space contains a vector perpendicular to the whole model space.
Similarly, in the case that T∗M has a bad condition (is nearly singular), it may be expected
that the test space contains a vector that is nearly perpendicular to the model space.

These heuristic considerations will be quantified now. We compare the Galerkin approxi-
mation with the least squares method, by comparing the corresponding projection opera-
tors.
The following lemma reveals a remarkable property of projection operators with the same
range.

Lemma 3.1 Let P1 and P2 be projections, and let R(P1) = R(P2). Then
(i) P1P2 = P2.
(ii) (I − P1)(I − P2) = I − P1

Proof: The proof is simple: Let x be arbitrary, let y = P2x, then y ∈ R(P2), and since
R(P1) = R(P2), y = P1x̃, for some x̃. Hence (P1P2)x = P1P1x̃ = P1x̃ = y = P2x.
This being true for every x, property (i) follows. Property (ii) follows directly:

(I − P1)(I − P2) = I − P1 − P2 + P1P2 = I − P1

△
We apply this to the expression for the residual of a Galerkin approximation. Let P be the
Galerkin projection for the model matrix M and the test matrix T, and let P̂ denote the
least squares projection for the model M. Then P and P̂ share the column space R(M).
Hence (I − P)(I − P̂) = I − P, and we may write

r = (I − P)b = (I − P)(I − P̂)b = (I − P)r̂ = r̂ − Pr̂

where r̂ is the least squares residual. Now r̂ ∈ R(M)⊥, and Pr̂ ∈ R(P) = R(M), so
the Galerkin residual is divided into two mutually orthogonal components r̂ and Pr̂. For
convenience we analyse the residual surplus

dr = r − r̂ = Pr̂ =⇒ ‖r‖ =
√

‖r̂‖2 + ‖dr‖2 (9)

Let Q1 and Q2 be matrices of which the columns build orthonormal bases for R(M)
and R(M)⊥ respectively. Then P = Q1(T

∗Q1)T
∗, and the least squares residual can be

written as r̂ = Q2s, where s may be any vector in IR
N−k satisfying ‖s‖ = ‖r̂‖. Then the

residual surplus can be written as

dr = Q1(T
∗Q1)

−1T∗Q2s (10)

from which follows, since ‖Q1v‖ = ‖v‖ for every v:

‖dr‖ = ‖(T∗Q1)
−1T∗Q2s‖ ≤ ‖(T∗Q1)

−1‖.‖T∗Q2‖.‖r̂‖ (11)

We can also describe the test space R(T) by an orthonormal basis, for instance by making

a QR-factorisation of T: T = Q̃R, with Q̃
∗
Q̃ = I. Then (11) turns over into

‖dr‖ ≤ ‖(Q̃∗

Q1)
−1‖.‖Q̃∗

Q2‖.‖r̂‖ (12)
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Now the ranges of Q1 and Q2 together span the complete space, hence the matrix Q =
(Q1 Q2) is unitary. Therefore

Q1Q
∗
1 + Q2Q

∗
2 = I

Define

B1 = Q̃
∗

Q1, B2 = Q̃
∗

Q2 B = (B1 B2) = Q̃
∗

Q

then

B1B
∗
1 + B2B

∗
2 = BB∗ = (Q̃

∗

Q)(Q∗Q̃) = Q̃
∗

Q̃ = I (13)

The estimate (12) for ‖dr‖ can be written in the following simple form:

‖dr‖ ≤ ‖B−1
1 ‖.‖B2‖.‖r̂‖ (14)

Let C be any matrix, then

‖C‖ =
√

λmax(CC∗), and when C is square: ‖C−1‖ =
1√

λmin(CC∗)

Apply this to B1 and B2, and bearing in mind that B2B
∗
2 = I − B1B

∗
1, we get

‖B−1
1 ‖2 = λmin(B1B

∗
1)

−1, ‖B2‖2 = λmax(B2B
∗
2) = 1 − λmin(B1B

∗
1)

From which follows

‖dr‖ ≤ ‖B−1
1 ‖.‖B2‖.‖r̂‖ =

√
1 − c

c
‖r̂‖ (15)

where c = λmin(B1B
∗
1).

The eigenvalues of B1B
∗
1 are the squares of the singular values σj of B1. Let σmin be the

least singular value, then σmin =
√

λmin(B1B
∗
1), and (15) can be written as

‖dr‖ ≤
√

1 − σmin
2

σmin
‖r̂‖

This last formula suggests the use of trigonnometric functions. We can define a positive
angle ϑ, such that σmin = cos(ϑ). Then

‖dr‖ ≤ tan(ϑ)‖r̂‖ (16)

The angle ϑ has a geometrical interpretation with respect to the model space and the test
space. We give a short description.
The angle ∠(x,V) between a vector x and a subspace V can be defined as the minimum
positive angle between x and any nonzero y ∈ V:

∠(x,V) = min
yv∈V

∠(x,y)

where the angle between two vectors has the usual meaning.
Similarly the angle ∠(U ,V) between two subspaces U and V can be defined as the maximum
angle between x and V for any nonzero x ∈ U :

∠(U ,V) = max
x∈U

∠(x,V)

9



Using cosines instead of angles for computational convenience, and bearing in mind that
the cosine function is decreasing on (0, 1

2π), this can be expressed by

cos(∠(U ,V)) = min
x∈U

(
max
y∈V

x∗y

‖x‖.‖y‖

)

Let U and V have orthonormal bases, defined by matrices U and V respectively, and let
x = Ux̃, and y = Vỹ, with ‖x̃‖ = ‖x‖ and ‖ỹ‖ = ‖y‖. Then

cos(∠(U ,V)) = min
ex

(
max

ey

x̃∗U∗Vỹ

‖x̃‖.‖ỹ‖

)

Now according to the Cauchy Schwartz inequality we have

|x̃∗U∗Vỹ|
‖x̃‖.‖ỹ‖ ≤ ‖V∗Ux̃‖.‖ỹ‖

‖x̃‖.‖ỹ‖ =
‖V∗Ux̃‖
‖x̃‖

where the equality sign holds for ỹ = V∗Ux̃. Hence we have

cos(∠(U ,V)) = min
ex

‖V∗Ux̃‖
‖x̃‖ =

1

‖(V∗U)−1‖ = σmin(V
∗U)

In estimate (16), we have cos(ϑ) = σmin(B1) = σmin(Q̃
∗
Q1). Therefore ϑ in (16) repre-

sents the angle between the model space and the test space.

Obviously, Galerkin can be in trouble if ϑ is close to π/2, i.e. if some testvectors are
nearly perpendicular to the model space. On the other hand, if ϑ is small, the estimate
(16) garantees that ‖r − r̂‖ is small compared to ‖r̂‖.
Similar results can be found in [3], in which comparisons of orthogonal residual methods
with minimal residual methods are made. In [8], a similar analysis is done to find estimates
for the convergence of BiCG, QMR, FOM, and GMRES.

We shall apply the framework differently, because the test matrix in the Krylov Galerkin
procedure inside the IDR(s) algorithm has a completely different background. Instead of
being built up from images (A∗)nr̃0 of one shadow residual, the sequence of test vectors
is defined by p1,p2, . . . ,ps,A

∗p1,A
∗p2, . . . ,A

∗ps, (A
∗)2p1, . . .. So the amount of A∗-

influence in the test matrices is far less than in Bi-CGSTAB-like methods.

4 Random testvectors.

In the case of Krylov-based iterative methods, the model matrix in the Galerkin interpre-
tation is AK, where the columns of K contain a basis for a Krylov subspace. The choice
T = M, for which choice the GMRES method is a very efficient and stable implementation,
is the best choice with respect to the residual norm. The only disadvantage is the fact
that the recurrence relations in the algorithm grow in depth with the iteration count. So
after numerous steps, the overhead in linear combinations and inner product calculations
becomes a bottleneck with respect to both storage and computing time.
In de IDR(s) algorithms as presented in [15], the s shadow vectors are chosen randomly.
In the prototype code, every component of every vector is chosen independently uniformly
distributed in the interval [0, 1]. This choice however does not provide true random vectors
in CN , because the density of vectors in directions like [1, 1, . . . , 1]T is considerably higher
that in directions like [1, 0, 0 . . . , 0]T
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Since the algorithm is invariant for transformations like P̂ = PC for any invertible s × s
matrix C, the length of the vectors pk is not of importance. Now we want the vectors
uniformly distributed over the directions, so if we normalize them, we want the results to
be uniformly distributed over the unit sphere.
An excellent way to do this is: Choose vectors of which all components are independent
identically-distributed normally with zero mean and unit variance:

P
iid∼ N(0, 1)N×s

Since the simultaneous distribution for each random vector is invariant for unitary trans-
formations, the normed vectors are uniformly distributed over the unit sphere. Since the
scale of vectors is not relevant, we have chosen unit variance.
For simplicity and readability, we define the class N as the set of stochastic variables
normally distributed with zero mean and unit variance.

x ∈ N 7→ x
iid∼ N(0, 1)

Then by N k and N k×l we mean classes of vectors resp. matrices, of wich all entries are
in N , and are mutually stochastically independent.
In the practical IDR(s) algorithms, the Galerking testmatrices are build from the columns

p1,p2, . . . ,ps,A
∗p1,A

∗p2, . . . , (A
∗)jps

These columns are not stochastically independent for k > s, and therefore not easily to
be analysed. In the numerical tests of IDR(s), the convergence curves were shifted to the
left at increasing s, with a virtual limiting position close to the full-GMRES curve, which
is the optimal curve from the ‘number of matrix-vector operation’ point of view.
As a first attempt for analysing the role of random shadow vectors we choose a case where s
is greater than the number of iterations. In this case we might expect to get a convergence
curve that is to the left of all practical IDR(s) curves. Indeed, some experiments show
such behaviour. We refer to this – highly unpractical – method as ‘Full Random Galerkin
Krylov’ algorithm.

So we next assume T ∈ NN×s. Then dr = r − r̂ is a stochastic vector, and its norm is a
stochastic variable v = ‖r − r̂‖. We try to figure out properties for v. According to (10),
v satisfies

v = ‖(T∗Q1)
−1T∗Q2s‖

where s is a vector which is completely determined by the least squares approximation,
and satisfies ‖s‖ = ‖r̂‖.
If we would replace the random testmatrix T by the ‘Q̃’ from its QR factorisation, the
matrix Q̃ is not in NN×s, and therefore cannot easily to be analysed. For this reason the
analysis as done in Section 3.1, with angles between subspaces, is not appropriate at first
sight. However, we can base an analysis on a property of N -distributed vectors.
Let Q be a unitary N × N matrix, let v ∈ NN , and let ṽ = Q∗v, then according to an
elementary law of statistics ṽ ∈ NN as well.
Applying Q on T, all columns of Q∗T are in NN , and since the columns of T are stochas-
tically independent, also the images are, hence

T̃ = Q∗T ∈ NN×k

11



Now write T̃1 = Q∗
1T, T̃2 = Q∗

2T, then

T̃
∗

= T∗Q = T∗[Q1 |Q2] = [T̃
∗

1 | T̃
∗

2]

Now the stochastic variable v satisfies

v = ‖(T̃∗

1)
−1T̃

∗

2s‖

where T̃1 ∈ N k×k, and T̃
∗

2 ∈ N k×(N−k).

Let y = T̃
∗

2s, then

yj =
N−k∑

l=1

t̃l,jsl

This is a stochastic variable, distributed N(0, ‖s‖), since the entries of j-th column of T̃2

are stochastically independent standard normally distributed variables. This holds for all
j = 1, 2, . . . , k, and since all k columns of T̃2 are stochastically independent, the variables yj

are also stochastically independent. Hence the vector y is a stochastic vector, distributed
iid∼ N (0, ‖s‖)k, and we may write:

y = ‖s‖z, with z ∈ N k

Therefore dr = r − r̂ can be written as

dr = T̃
−H

1 y = ‖r̂‖.T̃−1

1 z =⇒ v = ‖r̂‖.‖T̃−1

1 z‖ (17)

with T̃1 ∈ N k×k and z ∈ N k.
Usually in numerical mathematics, one is interested in the worst case that can happen.
In the case of (17), this is not a trivial thing since ‖T−1

1 ‖ is a stochastic variable with
unbounded range. So we must apply statistical concepts like expectations, and standard
deviations.
The norm of the inverse of a matrix is the reciprocal of the smallest singular value of the
matrix. Edelman, in [2] has derived an asymptotic probability density for the smallest
sigular value of a matrix in N k×k. Denote this singular value by σ1, then the probability
density for σ1

√
k reads

f(σ) = (1 + σ)e−σ2/2−σ (18)

This means that σ1

√
k ≥ C for moderate C, and consequently ‖T−1

2 ‖ ≤ C̃
√

k with proba-

bility close to 1, for moderate C̃.
For the random vector z in (17), we may expect, by elementary statistics, that ‖z‖ ≤
D
√

k with probability close to 1, again for moderate D. Therefore, since T1 and z are
stochastically independent, we may expect

‖dr‖ ≤ Ĉ.k.‖r̂‖

with probability close to 1, and Ĉ = C̃D a moderate constant.
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4.1 Completely random linear systems.

We do this analysis in order to examine the convergence behaviour of the IDR(s) method,
rather than upper bounds. So we really are interested in expectations . For the expectation
of ‖dr‖, we may expect a behaviour like C

√
k instead of Ck. In fact, according to (17),

the quantity ‖drk‖/‖r̂k‖ behaves like the stochastic variable ξ = ‖x‖, in which x is the
solution of a system Bx = b, with B ∈ N k×k and b ∈ N k. Such a system we call a
completely random linear system, and we give a description in this section.

Definition 1 1. A k×k linear system Ax = b is called a completely random real system if
all entries of A and b are independent standard, normally distributed stochastic variables.
2. The class of solutions x of a completely random k × k system is denoted by Qk if the

matrix and the righthand side are real, and by Q̂k
if they are complex.

We start with constructing an experimental probability density function (E-Pdf ) of ‖x‖, for
x ∈ Qk, by computing 500 samples of this stochastic variable, for sizes k = 25, 50, 100, 200.
We actually plotted the histograms of u = log10(‖x‖) instead of ‖x‖, since they represent
E-Pdf ’s for the number of decimal digits that Galerkin will ‘be behind’ the least squares
method. The results are shown in Figure 6. The histograms for each k are plotted in
different colors. A slight shift to the right can be seen for increasing size. The heuristically
expected behaviour ‖x‖ ≈ C

√
k for a k × k completely random system, would require the

shift to be log10(k)/2.
Therefore we also plot the histograms shifted to the left, with an amount of log10(k)/2 for
the case corresponding to size k. The result is shown in Figure 7.
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Figure 6: E-Pdf of log10(‖x‖), x ∈ QN
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Figure 7: E-Pdf of log10(‖x‖/
√

k), x ∈ Qk

The calculated means and variances are given in Table 1. For the classes Q̂k
, the complex

completely random sytems, similar histograms can be made; these can be found in [14].
The relevant statistical quantities are present in Table 2.

k mean shifted var stdd

25 0.953 0.254 0.239 0.488

50 1.099 0.249 0.226 0.476

100 1.270 0.270 0.211 0.459

200 1.413 0.263 0.264 0.514

Table 1: Params. for log10(‖x‖), x ∈ Qk

k mean shifted var stdd

25 0.816 0.117 0.080 0.283

50 0.996 0.146 0.083 0.288

100 1.097 0.097 0.064 0.253

200 1.270 0.120 0.068 0.261

Table 2: Params. for log10(‖x‖), x ∈ Q̂k
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The calculated means as well as the histograms indicate that the variable log10(‖x‖/
√

k)
has a distribution function that is nearly independent of k.

Recent developments in the theory of completely random systems have produced analytic

density functions for stochastic vectors in Qk and Q̂k
and their norms, described in [14].

These are given in the following theorem:

Theorem 4.1 Let x belong to Qk, and let the stochastic variable x = ‖x‖ have the prob-
ability density function fk, then

fk(x) = C
xk−1

(1 + x2)(k+1)/2
, with C =

2√
π

Γ(k+1
2 )

Γ(k
2 )

(19)

If x is in Q̂N
, the density function for ‖x‖ reads

f̂k(x) =
2kx2k−1

(1 + x2)k+1
(20)

In Figure 8 the densities fk for the real case are plotted against log10(x) for k = 25, 50, 100, 200.
log10(x).
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Figure 8: Pdf ’s for log 10(‖x‖), x ∈ Qk
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Figure 9: Pdf ’s for log 10(‖x‖/
√

k), x ∈ Qk

For this family Pdf ’s, the quantities µk = E(log10(x)) and σ2
k = σ2(log10(x)) can be

derived analytically. We give the asymptotic behaviour for large k:

µk ≈ 1

2
log10(k) +

γ + log(2)

2 log(10)
≈ 1

2
log10(k) + 0.27586 (real case) (21)

σ2
k ≈ π2

8 log2(10)
≈ 0.23269 (real case) (22)

µk ≈ 1

2
log10(k) +

γ

2 log(10)
≈ 1

2
log10(k) + 0.12534 (complex case) (23)

σ2
k ≈ π2

24 log2(10)
+ ≈ 0.077563 (complex case) (24)

where γ is Eulers constant:

γ = lim
k→∞




k∑

j=1

1

j
− log(k)
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For practical use, it is interesting for which values of ‖x‖, the probability is less than, say
10−j . It is easy to give estimates, that are quite sharp for j ≥ 2.
For x ∈ Qk:

P
(

log10(x) >
1

2
log10(

2k

π
) + j

)
< 10−j (25)

For x ∈ Q̂k
:

P
(

log10(x) >
1

2
log10(k) + j/2

)
< 10−j (26)

The graphs in Figure 9 are nearly identical, and this can be explained by an asymptotic
approximation. Let the stochastic variable y be defined by x = y

√
k, then the probability

density of y satisfies

gk(y)dy = fk(x)dx = fk(
√

ky)
√

kdy =⇒ gk(y) = C
xk−1

√
k

(1 + x2)
1

2
(k+1)

with C as defined in (19).

With help of Stirlings formula we find C ≈
√

2k
π . Then by applying the elementary

approximation (1 + a)b ≈ eab(1 + O(a2b)) for |a| < 1, to [1 + 1
ny2 ]−

1

2
(n+1), we arrive at

gk(y) ≈
√

2

π

exp(− 1
2y2 )

y2

For y → 0 and k fixed, gk(y) = O(yk−1), so it tends to zero rapidly. The asymptotic
approximation tends to zero expremely fast as y2 becomes small. Although there is a dif-
ference in behaviour, this difference is hardly visible in practice. Therefore the asymptotic
formula might replace the original distribution perfectly well if only k is not too small, say
k > 20.
This analysis explains the coinciding graphs in Figure 9, and the suggestion raised by
Figure 7.

5 Experimental verification.

5.1 Irregularities, residual replacents, and residual smoothing.

As many other short recurrence Krylov subspace solvers, the behaviour of the residuals
can be very irregular. These irregularities can influence the convergence dramatically, and
although this problem is not the subject of this paper, we must deal with it properly.
First, in the basic form of the IDR(s) method, it can be observed that the occurrence
of residuals that are some orders of magnitude larger than the initial residual, lead to a
final (stagnation) level that is similarly higher than the theoretical possibility. Roughly
speaking: Occurrence of a residual ‖rk‖ > 10d‖r0‖ leads to a loss of d digits in the end.
This is explainable on very elementary grounds.
Backgrounds of these phenomena can be found in [5], and remedies are proposed in [18].
Most remedies are based on a careful application of residual replacement. This means
that at a certain stage the recursively calculated residual is replaced by the actual one:
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b − Axk, at the cost of one extra matrix vector product. This may not be done near the
end of the process, since then the convergence will detoriate by an other cause.
In the experiments, we used a very primitive variant of this principle: As soon as some
residual is higher than the starting residual, (which is practically always the case in the
beginning of the process), a repair flag is set. As soon as a residual arises which is a factor
10 smaller than the initial level, and the repair flag is set, the current residual is replaced
by the true residual, and the repair flag is reset.
In many experiments, the stagnation level turned out to be comparable to the stagnation
level of full GMRES. The number of extra matrix vector products never exceeded 3, so it
is done at marginal cost.
In some rare cases, the primitive strategy did not help, although it did not harm either.
But it is highly probable that a strategy based on [18] will work in all circumstances, at
an acceptable price.

In testing the convergence theory for the Lanczos part of the residuals, we can accept the
irregularities as a consequence of the stochastic basis of the theory, and as such, it can
serve as a possible confirmation of the theory. But in order to visualize what the theory
means for practical use, we may drop all irregularities, and apply some kind of residual
smoothing. Such a technique does not influence the algorithm as such, but makes a more
reliable use of the algorithm’s results. In this paper, we use an extremely primitive variant,
and call it lower bound smoothing. Here we define the smoothed residual rk as follows

r0 = r0, rk = min{rk−1, rk}, k ≥ 1

In practice, one should only use xk as approximation of the solution x, if rk = rk, but
this will automatically be the case in most stop criteria.

5.2 Test examples.

For the test of the stochastic convergence theory, we need a sequence of reduced residuals
r̃k = Ψk(A)r0, as defined in (4). These reduced residuals satisfy the same recurrence
relations as the ordinary residuals, except at the steps k = j(s + 1), in which the explicit
factor (I −ωjA) that occurs in the computation of rk, is not applied in the calculation of
r̃k−j.
Unfortunately, we have no x-recurrence for these reduced residuals, hence we only have
the recursively calculated residuals. We assume that these are reliable as long as the true
IDR(s) residuals are reliable, i.e. are above their stagnation level.
According to the theory described in Section 3, the reduced residuals can be regarded as
Krylov Galerkin residuals, with increasing Galerkin dimension k. The GMRES residuals
are considered as least squares residuals, and denoted by r̂k. The residual surplus, as
defined in (9), is then drk = r̃k − r̂k, and its norm is calculated as

‖drk‖ =
√

‖r̃k‖2 − ‖r̂k‖2

The k-th iteration step provides a realization of a stochastic variable log10(‖drk‖) =

log10(‖r̂k‖) + log10(‖z‖), with z ∈ Qk (or Q̂k
in the case of complex P).

The test problems are Problem 2 (convection diffusion with mild Peclet numbers) and
Problem 3 (similar, but with high Peclet numbers), as described in Section 1, and Section
2.1.
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Figure 11: log
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(‖dr̃‖/‖r̂‖), Prob. 2, P ∈ CN×s
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Figure 12: log
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Figure 13: log
10

(‖dr̃‖/‖r̂‖), Prob.3, P ∈ CN×s

In Figure 10–13, a solid black curve denotes the expectation of this stochastic variable; a
dashed black curve depicts the number of digits that the reduced residual is behind the
GMRES curve with a probability of at most 1 %.
The theoretical formulae are designed for s = ∞. For finite s, they can be considered as
valid as long as k < s. From the pictures we can see wether the theory remains valid for
iteration steps beyond this bound.
We run IDR(s) for various s-values, and with real P as well as with complex P. The
results for real P are shown in Figure 10 and Figure 12. Figure 11 and Figure 13 show
the results for complex P.
In order to get a view on the expectation for practical use of the method, we added the
plots based on lower bound smoothed residuals in Figure 14–17.

6 Conclusions

Convergence mechanisms. We have shown that the convergence of IDR(s) depends
on two mutually independent regimes. The Lanczos regime is determined completely
by the choice of P, whereas the damping regime depends also on the choice of the ω-
parameters. The example shown in Figure 4 shows that the polynomials Ωj(A) are not
damping at all for that problem. Only for high values of s, the Lanczos component of
the convergence is stronger, because the relatively low degree of the Ωj(A) polynomials in
these circumstances.
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Real versus complex P. The results shown in Figure 5, Figure 11 and Figure 13 justify
the use of complex P, in any case for complex problems. The last two examples also show
a significantly lower level of the residual surplus. This is in agreement with the theory
(formulae (21), (23), (25) and (26)).
For real problems, the complex choice of P is a bit expensive. The work load for inner
product calculations and linear combinations is about four times as high compared to
the real choice of P. Only the matrix vector multiplications can be carried out in only
two times the work for the real case. This can be done by calculating ℜ(y) = Aℜ(x),
and ℑ(y) = Aℑ(x) instead of simply y = Ax. But besides that, contributions as in [6],
[11], [10], and recently in [12] are important for mastering the stabilization/damping issue
completely.
Bad damping by the Ωj(A) factors also occur in cases where A has eigenvalues to both
sides of the imaginary axis, as in Helmholtz equation. In [15] is shown that IDR(s)
converges very well in these cases. Unfortunately we could not test the theory on this kind
of problems, since it appeared to be impossible to obtain reliable reduced residuals.

Lanczos part of the convergence. The stochastic theory developed in Section 4 ap-
pears to be confirmed rather well by Figure 10–13. So the theory is a plausible explanation
of the observed limiting behaviour of the IDR(s) residual curves for increasing s. But al-
though the use of a normally distributed stochastic matrix P is essential for the proof
of this limiting behaviour, other choices for P may work equally good. It appears that
higher values for s are only necessary for problems where methods like Bi-CGSTAB per-
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form poorly. These are the problems for which the angle between the Krylov subspaces
belonging to A and A∗ respectively is close to 1

2π. A high value of s keeps the ‘bad
influence’ of the adjoint Krylov space down.

Practical expectations. Concluding from Figure 14–17, it appears that for a wide

range of problems and Krylov dimensions, ‖rIDR(s)
k ‖ . 10‖rGMRES

k ‖, as long as the ‘damp-
ing factors’ are not too expanding. If complex P is chosen, the damping problem appears
to be of no importance.

If IDR(s) is compared to full GMRES when the latter is in its fast convergence regime,
the factor 10 is visible as only a slight shift to the right, meaning IDR(s) is only a few
iteration steps behind.
The IDR(s) method therefore provides a relatively cheap and reliable alternative for full
GMRES.
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