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INTRODUCTION

The first chapter provides an introduction to the field of energy harvesting and discusses
the relevance and opportunities of energy harvesting. Then, mechanical energy harvest-
ing will be discussed and examples of energy harvesters applied in quartz watches will be
shown and evaluated. Hereafter, the shortcomings of current energy harvester transduc-
ers will be explained, and an alternative transduction method is proposed. Finally, the
problem statement will be formed followed by an outline of the remainder of this thesis.



2 1. INTRODUCTION

1.1. RELEVANCE OF ENERGY HARVESTING

With the advancements in micro-electromechanical systems (MEMS), the emergence of
more complex Wireless Sensor Networks (WSN), and the Internet of Things (IoT), im-
provements to the energy supply of devices and sensors become increasingly important
[1, 2]. There are two conventional methods for powering devices and sensors.

* Energy is provided by means of an energy reservoir, which has a finite amount of
energy. When all the energy in the reservoir is used up, either the energy reservoir
has to be refilled or replaced entirely. Examples of energy reservoirs are batteries,
fuel cells, and springs.

* Energy is provided by the means of connection to a central power supply, such
as an electrical grid. In this way, the device can be powered indefinitely, as long as
the electrical grid remains operational.

Both of these methods have considerable downsides. When using an energy reser-
voir, the lifetime of the device is limited by its capacity. The energy reservoir also gen-
erally takes up a large volume of the device. The energy reservoir can be refilled or re-
placed, but this increases cost and wastage, and poses issues with reliability. Connection
to a central power supply requires significant infrastructure and limits the flexibility of
use [3].

This calls for alternative methods to power devices. There is a third method that
has garnered attention in recent years, namely energy harvesting. With energy harvest-
ing, ambient environmental energy is harvested and converted into energy that can be
used to power a device, as is shown in Figure 1.1. When an energy harvester is suitably
designed for the device it has to supply of power and the environment it operates in, it
allows the device to run indefinitely. This increases the long-term reliability of the device
and decreases cost, as the lifetime is not limited by the capacity of an energy reservoir. It
also ensures that the device is flexible, which is an advantage compared to powering the
device through a connection to a central power supply.

N =0
oy [~ D
\l

Figure 1.1: The principle of energy harvesting: environmental energy is used by an energy harvester that con-
verts it into useful electrical energy.

A number of energy harvesting methods are displayed in Table 1.1. The energy har-
vesting methods are categorized based on the energy type, the transduction method (i.e.
the method of converting said energy source into electrical energy), the source of the
energy, and the fundamental limits of the energy harvesting methods.
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Table 1.1: Energy harvesting methods.

Energy type Transduction Method Energy source Fundamental limits
Waste heat, body heat, Temperature gradients,
Thermal Seebeck effect
geothermal energy Carnot efficiency
. . U Irradiance of light,
. Photovoltaic Sunlight, artificial light
Radiant Solar cell efficiency
Transmitter’s distance
Electromagnetic Mobile phones, wifi-routers,
& emitted power,
(recieving antenna) radio broadcast stations
RF to DC conversion efficiency
Electromagnetic Equipment vibration, Source acceleration & frequency,
Mechanical Piezoelectric building & vehicle vibration, Proof mass displacement range,
Electrostatic human motion, wind, tides Transduction efficiency

Large-scale energy harvesting plays a large role in our every day lives. Think of solar
panels, wind turbines, and geothermal power stations. These energy harvesters have
been deployed around the world, supplying power to the central grid.

On the other end of the spectrum, micro-energy harvesting has received a lot of at-
tention in recent decades for the purpose of powering small wearable devices, such as
pacemakers, heart rate monitors, and quartz watches. The lifetime of these types of de-
vices is typically limited by the battery capacity. Replacing or recharging the battery can
be a nuisance at best. But in the case of pacemakers, this can result in the replacement of
the entire device, needing a highly invasive procedure that has a large impact on the pa-
tient’s life. Because of the forenamed reasons, energy harvesting is an attractive solution
for these kinds of devices.

The power necessary to run these types of devices is generally on the microwatt scale
[1, 4, 5]. To power these devices effectively, the energy harvester should be able to oper-
ate regardless of the environment that the wearer is in, making mechanical energy har-
vesting from human motion a promising energy type to harvest. Mechanical energy har-
vesting from human motion solely depends on the activity of the wearer. This allows
for a robust embedded device whose performance does not depend on external envi-
ronmental factors, such as the irradiance of light and the temperature, as is the case for
photovoltaic and thermal energy harvesting respectively.

1.2. MECHANICAL ENERGY HARVESTING

A mechanical energy harvester consists of three fundamental components; mechanical
conversion, mechanical-to-electrical transduction, and power processing, as is shown
in Figure 1.2.

* Mechanical conversion: Before mechanical energy can be converted into electri-
cal energy, it has to be conditioned in such a way that it can be efficiently handled
by a transducer. Think of a wind turbine. The mechanical source energy is the
kinetic energy of the air molecules, but this energy cannot be directly converted
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into electrical energy. It first has to be converted into motion of the blades, before
it can be transduced.

* Transduction: When the mechanical energy is converted into an appropriate form,
it is ready to be transduced. Transduction is the conversion of mechanical energy
into electrical energy. Several transduction mechanisms have been identified. The
three most common transduction methods; electrostatic, electromagnetic, and
piezoelectric transduction are discussed in more detail in chapter 2.

* Power processing: Although power processing can have a large influence the per-
formance and design of an energy harvester, it is out of scope for this thesis and
deserves a separate study in its own right. Therefore, power processing has largely
been omitted from this study. The potential efficiency of power processing is used
as a consideration for specific cases where low efficiency and difficulty of power
processing pose obvious significant problems.

Human motion

Mechanical conversion

v

Transduction

k+/

Power processing

Electrical energy

Figure 1.2: Schematic of the fundamental parts of an energy harvester, with the research focus highlighted in
blue.

1.3. ENERGY HARVESTING FOR QUARTZ WATCHES

This thesis focuses on energy harvesting for the purpose of powering quartz watches.
Quartz watches are watches that use a piezoelectric quartz crystal to regulate time. Con-
ventional quartz watches are powered using electrical energy that is stored in a but-
ton cell, which is a type of primary battery. Primary batteries are portable voltaic cells
that are not rechargeable, whereas secondary batteries are rechargeable portable voltaic
cells. In 2018, only 48 % of portable batteries sold in the EU were collected for recycling.
This means that large amounts of valuable resources are lost. Of these, some 35 kilo-
tonnes of portable batteries end up in municipal waste annually (with possible leaching
of hazardous substances). The European Commission is currently reviewing the Bat-
teries Directive 2006/66/EC with the main focus on environmental sustainability. The
proposed measures under discussion include a restriction or even a total ban of primary
batteries [6].
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Because of the forenamed reason, an alternative to the conventional button cell in
quartz watches is necessary. One solution would be replacing the button cell with a sec-
ondary battery, which can be recharged by the user. The downside is that secondary
batteries have a lower volumetric energy density than primary batteries. Although the
secondary (rechargeable) batteries have improved, a regular household alkaline primary
battery can provide 50% more energy than a ithium-ion battery, one of the highest energy-
dense secondary batteries [7]. This means that the wearer would have to recharge the
battery regularly, which is not preferable from the perspective of the user experience.
For this reason, human motion energy harvesting is a better solution. The power con-
sumption of a quartz watch is approximately 3 uW [8]. This low level of energy con-
sumption means that the available energy from human wrist motion is large enough to
power quartz watches using an appropriate energy harvester [3, 9].

1.3.1. DEVELOPMENT OF QUARTZ WATCH ENERGY HARVESTERS

Energy harvesting in quartz watches is not a totally new concept. The first implemen-
tation of energy harvesting in quartz watches is the Seiko Automatic Generation System
(AGS) launched in 1988. A schematic of the Seiko AGS energy harvester is shown in Fig-
ure 1.3. The main components comprising the energy harvester are shown in Figure 1.4.
The Seiko AGS energy harvester uses a watch rotor (in Figure 1.3 referred to as oscillat-
ing weight’) that rotates as a result of human motion. This rotation is then amplified
by means of a gear train and transferred to a magnet. The magnet will thus rotate at a
higher angular velocity than the watch rotor, and through electromagnetic transduction
induce a potential difference in the wound coil next to the magnet. The average power
that can be generated using the seiko AGS system has been determined to be 0.5 uyW
during daily use [10]. This is lower than the energy consumption of the quartz watch as
stated in section 1.3.

Oscillating
weight

Oscillating
weight gear

Transmission gear

Figure 1.3: Schematic of the Seiko Automatic Generation System (AGS) energy harvester. (Courtesy of Paradiso
and Starner (2005) [11])

Human motion —>» Watch rotor —> Gear train | —> EM Transducer —> Button cell

Figure 1.4: Block diagram showing the main components of the Seiko AGS energy harvester. The green block
represents the input energy, the blue blocks represent the energy harvester components, and the yellow block
represents the energy reservoir.
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In 1996, ETA introduced the ETA autoquartz Self-Winding Electric Watch, as shown
in Figure 1.5. The working principle is much the same as the Seiko AGS, with a notable
exception being the micro-spring that is used to store the mechanical energy from the
user before it is transferred to the transducer. In this way, energy in the spring can build
up. When the spring is fully wound, it unwinds rapidly, transferring energy to the trans-
ducer at its optimal rate of 15,000 rotations per minute. The transducer is pulsed for 50
ms at a time, yielding a current of 6 mA at a potential greater than 16V [11]. The gen-
erated power is stored in a battery as an energy buffer for the quartz watch to extract
energy from. The main components of the ETA autoquartz can be seen in Figure 1.6.

MASSE OSCILLANTE Z

SCHWUNGMASSE
OSCILLATING WEICH

Ve
ad .~ MIKROFLDLRHAUS
f f -7 MICROBARREL
| < =
LY N\
I\ A
RN /
NN MICRO- GENERATRICE
N \\\ /// ~ /' MIKROGENERATOR
Q\ e I — =" MICROGENERATOR
0 e
f -//
b\
N
ACCUMULATELUR ™.~

AKKUMULATOR .~ ————
ACCUMLLATOR ™

CIRCUIT INTEGRE

MOTEUR
MOTOR ——
MOTOR

Figure 1.5: ETA Autoquartz energy harvester. (Courtesy of Paradiso and Starner (2005) [11])

Human motion —>» Watch rotor —>| Gear train —> Spring —> Gear train —> EM Transducer —>  Button cell

Figure 1.6: Block diagram showing the main components of the ETA autoquartz energy harvester. The green
block represents the input energy, the blue blocks the energy harvester components, and the yellow blocks the
energy reservoir.

In 1999, Seiko introduced the spring drive energy harvester. In Figure 1.7, a schematic
figure of the Seiko spring drive mechanism is shown. In the Seiko spring drive energy
harvester, a main spring is used to store energy. The main spring is wound by the rota-
tion of a watch rotor, much the same as with traditional mechanical watches. The main
spring unwinds slowly at a constant rate. The energy released is used to turn the watch
hands, and also induces a rotation of the electromagnetic transducer. This transducer
converts mechanical energy into electrical energy. The generated electricity powers the
integrated circuit (IC) and the piezoelectric quartz oscillator linked to it, with the latter
generating a precise reference signal. The IC compares this signal to the rotating speed
of the transducer. The regulator periodically applies an electromagnetic brake to ensure
that the transducer’s rotation is aligned with the reference signal from the quartz oscil-
lator. The IC monitor compares the speed of the transducer with the reference signal
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and intermittently extracts more energy to prevent excessively fast rotation [12]. In this
way, the battery is entirely omitted, and the main spring is used as an energy reservoir
instead. The main components of the Seiko spring drive can be seen in Figure 1.8.

Second Hand

Quartz Oscillator

Figure 1.7: Seiko Spring drive energy harvester (Courtesy of Seiko [13]).

oscillator

o A . A < Quartz
Human motion Watch rotor —>| Geartrain > Spring —> Geartrain —>EM Transducer
—

Figure 1.8: Block diagram showing the main components of the Seiko spring drive energy harvester. The green
block represents the input energy, the blue blocks the energy harvester components, and the yellow block the
energy reservoir.

In Table 1.2, the main properties of the three quartz watch energy harvesters dis-
cussed in this section is presented.

Table 1.2: Properties of energy harvesters applied in quartz watches.

Energy harvester Seiko AGS ETA Autoquartz Seiko Spring Drive
Year of introduction 1988 1996 1999

Maximum output voltage [V] 0.6 [14] 16 [11] 1.5[15]

Average output power [uW] 0.5[10] 5[9] 0.025 [16]

Energy storage method Battery Battery & Spring Spring
Transduction method Electromagnetic Electromagnetic Electromagnetic

1.3.2. ELECTROMAGNETIC TRANSDUCTION

Although the three quartz watch energy harvesters discussed in subsection 1.3.1 all use
different mechanical designs, their transducers are much the same. They all use an elec-
tromagnetic transducer, consisting of a magnet rotor and a wound coil. Electromag-
netic transduction is the most well-established transduction method and offers a robust
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method to achieve high power densities. However, for micro-energy harvesters, electro-
magnetic transducers have several major drawbacks. For electromagnetic transducers,
the voltage scales proportionally with the angular velocity and the number of coil turns
squared.

U x wN? (1.1)

Where U is the output voltage, w is the angular velocity, and N is the number of coil
turns. For micro-electromagnetic transducers, the number of coil turns is limited due
to the size limitations of the device. If the rotational velocity of the watch rotor is not
amplified through a form of transmission or frequency-up-conversion, the voltage out-
put would be very low, in the mV range. The generated potential would be AC voltages
that need to be rectified to be used as a power source for micro-electronics. To rectify
the voltages, they would have to be transformed up to the range of two to several Volts,
necessitating a transformer with a conversion ratio on the order of 100 [17]. Such a trans-
former in turn increases the volume and reduces the efficiency of the energy harvester
drastically.

To increase the output voltage of the transducer without the need for a transformer,
as is the case for the forenamed quartz watch energy harvesters, transmission is used
in the form of a gear train between the watch rotor and the transducer. This gear train
amplifies the angular velocity of the watch rotor, increasing the angular velocity of the
transducer and thus increasing the output potential. However, transmission is not a per-
fect solution, as the added gear train increases the cost and volume of the device, and
is subject to wear and tear. For the Seiko AGS, the energy harvester only generates suf-
ficient energy during high angular velocity of the watch rotor, which is only achieved
through activities such as running or forcibly shaking. When the angular velocity is too
low, the transducer output potential is too low to generate any energy [10].

To solve this problem, the ETA autoquartz first stores the energy harvested from hu-
man motion as potential energy in a micro-spring. The energy stored in the micro-spring
is released in short pulses, achieving very high angular velocities of the transducer. The
Seiko spring drive also stores the energy harvested from human motion as potential en-
ergy in a spring, but instead, the spring is allowed to unwind slowly. The angular velocity
of the unwinding of the spring is amplified by a gear train.

What can be concluded from the analysis of the current quartz watch energy har-
vesters, is that they all use similar electromagnetic transducers. These electromagnetic
transducers have inherent disadvantages when applied for energy harvesting on the micro-
scale. The main disadvantage is that high angular velocities are needed to achieve a high
output voltage. Other disadvantages are the difficulty in miniaturization due to the need
for coils, integrated permanent magnets, and ferromagnetic materials for the flux path.

1.3.3. ELECTRET TRANSDUCTION

In the forenamed energy harvesters, the solutions offered to the problems posed by elec-
tromagnetic transduction are merely in the mechanical design of the energy harvesting
mechanism. The transducers are all similar. In this thesis, an alternative transducer is
proposed, which would make complicated mechanisms, such as the mechanisms used
in the energy harvesters discussed in subsection 1.3.1 largely redundant.
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Electret transduction is a promising alternative transduction method for quartz watch
applications. Electrets are dielectric materials that have embedded quasi-permanent
electric charges. They are electrostatic dipoles, analogous to permanent magnets (which
are magnetic dipoles) that can embed stable charges for decades [18].

Electret

Electrode

Figure 1.9: Magnet with its magnetic field vs. electret with its electrostatic field.

Electret transducers use capacitive structures made of two electrodes separated by
air, vacuum, or a dielectric material. The electret is used to induce charges on an elec-
trode, which allows for an energy cycle that does not require an energy source to polarize
the structure. The change in capacitance induces an output voltage directly. A relative
movement between the two electrodes, and thus a capacitance variation, leads to a dif-
ference in voltage according to the following relation.

U= C (1.2)

Where U is the voltage, Q is the charge, and C is the capacitance. In Figure 1.10,

the simplest schematic representation of an electret transducer is shown. The electret

delivers the bias voltage V., and the variable capacitor C, changes capacitance due to

displacement of the capacitor structure changing the charge, which flows across the load
resistance R. This current across the load resistance in turn dissipates energy.

Variable
capacitor
Cy
Electret
voltage —— Ve R Loéd
8 resistance

Figure 1.10: Schematic showing the electric circuit representation of an electret transducer.
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An advantage of electret transducers at a small scale is that the output voltage is on
the order of tens of volts, at low angular velocities [19-22]. This is because the output
voltage at the matched load resistance is independent of the angular velocity in electret
transducers. It is merely a function of the induced charge magnitude on the electrodes
and the geometry of the transducer, which will be discussed in more detail in chapter 4.
The continuous power generated by an electret transducer is dependent on multiple fac-
tors, but scales according to the following relation.

P ﬁQ? (1.3)
dt

Where P is the power generated, % is the instantaneous change in capacitance, and
Q; is the induced charge.

1.4. PROBLEM STATEMENT

To summarize, quartz watches are powered using non-rechargeable batteries. These
batteries are difficult to recycle and harmful to the environment. Therefore, there is a
push for more legislation, including a restriction or even a ban on non-rechargeable bat-
teries. An alternative method of powering quartz watches is thus necessary.

A promising alternative is energy harvesting from human motion. Energy harvesting
in quartz watches is not a completely new concept, but conventional energy harvesters
used in quartz watches have inherent flaws related to their transduction method, as they
use electromagnetic transduction, which cannot achieve a high output potential from
human motion at a small scale. To compensate for the flaws of electromagnetic trans-
duction, conventional energy harvesters make use of elaborate mechanical designs, am-
plifying the input motion using gear trains and springs. This in turn increases the com-
plexity and cost.

Micro-electret transducers do not suffer from a low output potential, as the output
potential is not dependent on the angular velocity of the rotor. This reduces the need for
elaborate mechanical designs amplifying the input motion. For a micro-electret trans-
ducer to be a viable alternative to conventional electromagnetic transducers, several re-
quirements need to be fulfilled.

* The micro-electret transducer needs to have an average output power of at least 3
microwatts, such that it can power a quartz watch continuously.

* The voltage output of the micro-electret transducer must be at least 3 volts, such
that the power generated can be conditioned by conventional integrated circuits.

* To ensure that the transducer can be manufactured used in quartz watches, it
needs to be able to be manufactured at a large scale.

In accordance with the forenamed requirements, the following research objective is
defined.

Research objective: Design, model, and experimentally verify a microfabricated elec-
tret transducer that can be used to power a quartz watch.
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To be able to achieve this research objective, several research questions have to be
answered. To be able to design and model a micro-electret transducer, an accurate
model must first be developed. Then, the output power of an electret transducer needs
to be maximized to ensure that the transducer can generate enough energy to power a
quartz watch. The research questions are thus the following.

Research question: How to accurately model and predict the output power character-
istics of a micro-electret transducer?

Research question: How to maximize the output power of a micro-electret trans-
ducer?

1.5. THESIS OUTLINE

This thesis will describe the design, fabrication, and experimental verification of a micro-
electret transducer. In chapter 2, the literature study that was performed prior to the
thesis works will be presented in the form of a literature review paper. The literature
study is a review of human motion energy harvesting methods for the application of
powering quartz watches. In chapter 3, the micro-electret transducer concept is intro-
duced, and concept design decisions are explained and justified. In chapter 4 a novel
electrostatic model for micro-electret transducers is introduced and experimentally ver-
ified, answering the first research question. In chapter 5, a novel 'unipolar’ electret de-
sign is proposed and experimentally verified, which allows for maximizing the output
power of electret transducers. In chapter 6, the experimental results from the fabricated
micro-electret transducer prototype are used to develop a complete design of an energy
harvester using a micro-electret transducer. Using a numerical model, the power gen-
erated by the energy harvester is compared under different activities of the wearer, such
as computer work, walking, and running. In chapter 7 the results and the thesis process
are discussed and conclusions are drawn. Recommendations are made for directions
for future research. In Appendix A, Appendix B, and Appendix C, an extended theoret-
ical background of electrets is given, design and fabrication details are discussed, and
supporting measurements and experimental data are shown.






HUMAN MOTION ENERGY
HARVESTING FOR QUARTZ WATCHES

In this literature review paper, energy harvesting methods for the purpose of powering
wearable devices, specifically quartz watches, are investigated. Energy harvesters are cat-
egorized based on the characteristics of their mechanical design and their transduction
method in a framework. The performance of reported energy harvesting methods is com-
pared. For the transduction method, electret transducers look most promising due to their
direct mechanical to electrical transduction, the improvements in charge stability, and the
microfabrication compatibility.

13
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Human motion energy harvesting for quartz watches

F. Schilperoort

Abstract— Energy harvesting is a well-developed field of
research with a broad spectrum of reported working principles
and architectures that have been theorized and experimentally
verified. In this review, designers are provided with an
overview of energy harvesting methods that can be applied to
power wearable electronic devices, specifically quartz watches.
Reported energy harvesters are categorized according to
their working principles in a novel framework. The qualities
and drawbacks of energy harvesting working principles are
reviewed based on defined key parameters. Finally, conclusions
are drawn based on the performance analysis of reported
energy harvesters and the theoretical limitations of energy
harvesting methods.

Keywords: Energy harvesting, Non-r
Human motion, Microsystems, Quartz watch

t, Low-freq Ys

I. INTRODUCTION

With the advancements in microelectromechanical systems
(MEMS), the emergence of more complex Wireless
Sensor Networks (WSN), and the Internet of Things
(IoT), improvements to the energy supply of devices and
sensors become increasingly important [1,2]. There are two
conventional methods for powering devices and sensors.

o Either energy is supplied by means of an energy
reservoir, which has a finite amount of energy, and
when all the energy is used up, either the energy
reservoir has to be refilled or replaced entirely. Think
of batteries, fuel cells, and mechanical springs.

« The second option is supplying energy by the means
of connection to a central power supply, such as
an electrical grid. In this way, the sensor can be
used indefinitely, as long as the electrical grid remains
operational.

Both of these methods have considerable downsides.
When using an energy reservoir, the lifetime of the device
or sensor is limited by the capacity of the energy reservoir.
The energy reservoir also usually takes up a large volume
of the total device or sensor. The energy reservoir can be
refilled or replaced, but this increases cost, and wastage, and
poses issues with reliability. Connection to a central power
supply requires significant expensive infrastructure and limits
the flexibility of use [3]. This calls for alternative methods
to power devices and sensors. A third method has garnered
attention in recent years, which is energy harvesting. In
energy harvesting, power is delivered through a device that
harvests energy from the environment, and converts it into
energy that can be used to power a device.

For quartz watches, energy harvesting is a promising
solution to prolong the lifetime of devices and reduce
wastage. This is because the power consumption of a quartz
watch is on the scale of 3 uW [4]. This low energy

consumption means that the energy from human wrist motion
is high enough to power quartz watches indefinitely using an
appropriate energy harvester (EH) [3].

Vibration energy harvesting has attracted a lot of attention
over the past decade. Many researchers have attempted
to design EHs based on different electrical to mechanical
transduction mechanisms [5]-[7]. However, some of the
energy harvesting devices fail to meet the requirement of the
original goals as the transduction efficiency from mechanical
vibrations to electrical energy is often lower than expected.
This unsatisfactory result can occur for two reasons. Either
the resonant frequency of the EHs is not matched with the
frequency of the environmental vibrations, or the frequency
bandwidth of the EH is limited to a specific range that cannot
cover the stochastic vibration frequencies of external sources.
The resulting output power of most EHs is drastically
reduced when the frequency of the input motion deviates
slightly from the resonant frequency of the EH [&].

The problem with human motion is that the accelerations
induced on the EH are highly stochastic and the frequencies
are very low, below 12 Hz [5,9]. An additional challenge is
that the amplitude of the input motion is large, on the order
of millimeters to meters, compared to the maximum internal
displacement in a quartz watch which is on the order of
millimeters. The motion ratio is defined as the ratio between
the internal displacement Z; and the input displacement,
which is equal to twice the input amplitude Yy, as can be seen
in Figure 2 [10]. For human motion energy harvesting, the
motion ratio is smaller than one, as can be seen in Equation 5.
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2Y,

Fig. 1: Schematic of the internal displacement of an energy
harvester Z;, and the input amplitude Y.

This poses strict constraints on the EH, as resonance
cannot be used to amplify the input motion which is
a common method to achieve an efficient EH. Besides
the maximum motion ratio, the bandwidth of a simple
resonant EH is also too narrow to effectively harvest
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energy from a non-resonant energy source. This shows that
making a miniaturized efficient EH for non-resonant input
accelerations is a difficult problem to solve.

In the following sections, the methods are explained,
covering the search method, the definition of the
classification, and key parameters found in the current
research. Subsequently, the results are presented; EHs are
categorized in a novel framework and their performance is
judged according to this framework and experimental results
from the literature. Lastly, the results are discussed and the
conclusions are presented.

II. METHOD

In this section, the methods used for this review are
presented. First, the search method is discussed, followed
by the categorization, and then the key properties that are
addressed.

A. Categorization

An EH consists of three fundamental components:
mechanical conversion, mechanical-to-electrical
transduction, and power processing. In this paper, the
focus is on mechanical conversion and transduction.
Although power conditioning is an essential part of an EH
that has a great influence on its performance and design, it is
out of the scope of this paper and deserves a separate study
in its own right. Therefore, power processing has largely
been omitted from this study. In this paper, the potential
efficiency of power processing is used as a consideration for
specific cases where low efficiency and difficulty of power
processing pose obvious significant problems. A Schematic
showing the fundamental components of an EH can be seen
in Figure 2.

Human motion

Mechanical conversion

v

Transduction

\_l_/

Power processing

Fig. 2: Schematic of the fundamental components of an energy
harvester, with the research focus highlighted in blue.

B. Key parameters
The performance of EHs is addressed according to

several key parameters. For some parameters, a quantitative
comparison cannot be made as there are too few EHs

reported in the literature that publish data on the performance
of these parameters, such as fabrication cost, lifetime,
and bandwidth. Within these parameters, a qualitative
comparison is still possible by comparing the fundamental
theoretical principles used in the design of the EHs. The key
parameters that are used to discuss the performance of EHs
are defined as follows.

o Power density: The power density pp of an EH is
an essential parameter. It is calculated as the output
power of the energy harvester divided by the volume
as follows.

P
PP = @)

The power density indicates the power that can be
generated by EHs relative to their size and allows for
the comparison of the performance of similar EHs.

« Effectiveness: The effectiveness of an energy harvester
describes the performance of an energy harvester
compared to the theoretical maximum energy harvested
for a given input vibration as described by Roundy [11].

_ Useful power output
" Maximum possible output

Ey (3
For a single degree of freedom (sDoF) inertial
vibrational energy harvester this results in the following
expression.

_ Useful power output
"= %YOZ,oﬂm

This concept is expanded in this paper to also
include non-vibrational energy harvesters, such as the
non-inertial rotational energy harvester described by
Yeatman [12] and the sprung rotational inertial energy
harvester described by Halim [I3]. The maximum
energy harvested from these devices is calculated using
the theoretical relations described by Yeatman [14]. The
effectiveness allows for a more objective comparison of
EHs by accounting for the frequencies and amplitudes
of the input motion. In this way, it is possible to
compare EHs that operate in different conditions.
« Miniaturization: The EH must stay below certain
dimensions for it to be possible to incorporate the EH in
a quartz watch. If the EH has a significant impact on the
size of the device it becomes an unattractive solution.
o Fabrication cost: The cost of the EH must be low
enough such that it does not dominate the cost of
the quartz watch. Otherwise there would not be an
economic incentive to implement EHs in wearable
electronic devices.
Lifetime: The lifetime of the EH should be long enough
such that it can outlive quartz watches that make use
of a conventional disposable battery. The lifetime of
a disposable battery in quartz watches is around five
years.
« Motion ratio: The motion ratio of the EH is strictly
constrained as described in section I and is calculated

“)
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2. HUMAN MOTION ENERGY HARVESTING FOR QUARTZ WATCHES
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Fig. 3: Mechanical conversion design tree. 1: Elaborated on in subsubsection I1I-B.2. 2: Elaborated on in subsubsection III-B.1, 3:

Elaborated on in subsection I1I-C.

according to Equation 5. The motion ratio greatly
influences the design of the EH and should therefore
be taken into account.

III. RESULTS
A. Mechanical design

Besides the transduction method, the human input motion
needs to be conditioned such that kinetic energy can be
efficiently transduced into electrical energy. This component
of the EH is referred to as mechanical design.

To systematically compare all mechanical designs, a
decision tree is made that uses multiple aspects of the designs
found in existing research that can be seen in Figure 3. The
different levels of design can be seen in the table in the
rounded boxes on the left of Figure 3 and are more closely
explained in the subsubsection III-A.l-subsection III-B. By
using this method, designs can be compared more accurately
and trends can be discovered between reported EH designs.
This method also allows the decoupling of the mechanical
design and the transduction methods, as these are largely
mutually exclusive and are thus discussed separately.

1) Non-inertial and inertial: The first level of the design
tree divides EHs into two categories; those that utilize the
non-inertial direct application of force and those that make
use of inertial forces acting on a proof mass.

The operating principle of a non-inertial EH is shown in
Figure 20a. In this case, the driving force on a proof mass
m supported on a suspension with spring constant &, with a
damping element f(Z) present to provide a force opposing
the motion. The variable Z; represents the displacement
limit, z(¢) the time-dependent displacement and fg,(t) the
driving force.

If the damper is implemented by using a suitable
transduction mechanism, then by opposing the motion,
mechanical energy is converted to electrical energy.
Non-inertial force generators must make mechanical contact
with two structures that move relative to each other, and can
thus apply a force on the damper. The operating principle of
inertial EHs is shown in Figure 20b. In this figure, y(¢) is
the displacement of the EH frame relative to the fixed world,
and z(t) is the displacement of the inertial proof mass m
relative to the fixed world. A proof mass is supported on a
suspension, and its inertia results in a relative displacement
when the frame experiences acceleration. Energy is converted
when work is done against the damping force, which opposes
the relative motion. Inertial generators require only one point
of attachment to a moving structure. In order to generate
power, the damper must be implemented by means of a
suitable transducer. This can be done using one of the
methods described in section I11-C.

2) Rotational and translational: The second subdivision
is dividing energy harvesters into rotational and translational
energy harvesters or in some special cases a combination of
the two.

A translational EH is one where the proof mass moves
in a straight line. This is the most common architecture for
EHs. Most translational EHs only translate in 1 DoF and
thus can also only harvest energy from accelerations applied
in the respective direction. Translational EHs also have a
limited internal displacement. An example of a schematic of
a translational EH can be seen in Figure 20b.

In a rotational EH, the mover rotates around a point
instead. A schematic of a rotational inertial EH can be seen in
Figure 5 below. In this schematic, an eccentric mass m is able
to rotate due to translations z(¢) and y(¢) and rotation w(t)
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x(1)

(a) (b)

Fig. 4: Schematic of non-inertial and inertial EHs. (a) Non-inertial
or direct EH that uses direct application of force on the proof mass
m to generate relative motion between the proof massand the EH
frame. (b) Inertial EH that uses inertial forces to generate relative
motion between the proof mass m and the EH frame. (Courtesy of
Mitcheson et al. (2008) [3])

applied to the EH frame. A transducer delivers the damping
force f(6).

Fig. 5: Schematic of a non-inertial rotational energy harvester.
(Courtesy of Fu et al. (2021) [15])

3) Degrees of Freedom (DoF): EHs are further split up
into single DoF (sDoF) and multiple DoF (mDoF) designs.
The number of DoFs of an EH is important as it determines
which methods to increase the bandwidth can be applied.

B. Bandwidth improvement

To ensure that an EH functions optimally, its bandwidth
needs to match the bandwidth of the input motion. Only by
ensuring that the resonance frequency of the EH matches
that of the motion, the EH will function optimally. For some
devices, this is a relatively simple task. For example, EHs
that are made to harvest energy from equipment connected
to 50 Hz mains electricity have a specific narrow bandwidth
to target.

However, for human motion energy harvesting this is
not that straightforward. The motion of a human wrist is
stochastic, intermittent, and mainly distributed in the low
frequency (< 12Hz) as stated in section I. This means
that many sDoF inertial EHs will struggle to efficiently
extract energy as their bandwidth is too narrow. To combat

this problem, multiple ways to increase the bandwidth
of the EH can be used. Many EHs that use bandwidth
improvement methods have been reported in the literature
[51-[7,12,16]-[22]. To be able to categorize the different
methods that exist to increase the bandwidth of EHs, a
framework has been made that encompasses all methods
reported in the existing research. The framework can be seen
in Figure 6.

1) Frequency up-Conversion (FupC): One well-reported
method to increase the bandwidth of EHs is through the
use of FupC. In FupC, a proof mass is put in motion by
a low-frequency input motion. The transduction mechanism
is actuated at its higher natural frequency through impact or
a plucking mechanism. This is by definition only possible
in mDoF energy harvesters. An example of a FupC EH can
be seen in Figure 10. Where the revolving host excites the
cantilever by magnetic forces between the revolving host
magnet and the magnet on the cantilever.

z /,l}' Piezoelectric Beam Fmag
¥ - Tip
Het——x tﬂl/‘/ Magnet

Driving
Magnet

- Revolving
Host

Fig. 7: Example of an energy harvester using frequency-up
conversion. (Courtesy of [12])

FupCs can be further split up into plucking FupCs
(Figure 8a), and impact FupCs (Figure 8b) [10], and are
discussed respectively below.

(a) Plucking

7

(b) Impact

Fig. 8: Plucking and impact frequency-up-conversion. (Courtesy of
Blad and Tolou (2019) [10])
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Fig. 6: Design tree showing the methods to increase the bandwidth of an energy harvester.

a) Plucking: In plucking FupC, a mass-spring system
is actuated by a second system through means of contact
or magnetic coupling. This induces a high force on the
mass-spring system exciting all frequencies which causes the
system to resonate.

b) Impact: In impact FupC, the main proof mass is
constrained by end-stops and when accelerations are applied
to the system, the main proof mass impacts these end-stops.
This excites all frequencies of the second mass, which is
attached to the proof mass through a spring, leading to
resonance. An example of the output motion of an impact
energy harvester can be seen in Figure 9.
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Fig. 9: Simulated waveform of an impact driven FupC energy
harvester. (Courtesy of Halim and Park (2014) [23])

2) sDoF methods: sDoF methods can also be applied to
increase the bandwidth of EHs. The sDoF methods discussed
are resonance tuning, end-stops, transmission, multi-stability,
and neutral stability.

a) Resonance tuning: Resonance tuning can increase
the bandwidth of EHs by changing the resonance frequency

to fit the frequency of the motion that is applied to
the EH. Several configurations have been reported in
the existing research. Tunable resonance frequency EHs
were developed on open-loop ([24,25]) and closed-loop
([26]) configurations. The open-loop configuration allows
for adjusting the resonance frequency when the EH is not
in operation, while the closed-loop configuration allows
resonance tuning when it is in operation.

b) End-stops: Another method to widen the bandwidth
is through the introduction of end-stops that constrain the
displacement of the proof mass. During the vibration, the
proof mass strikes the stopper. This affects the stiffness
and causes the oscillation response to change from linear
to non-linear. The new effective stiffness causes a widening
of the operating range close to the resonance frequency of
the vibrating structure [10], as is shown in Figure 10.

Two kinds of end-stops are identified in the current
research. Soft-stops are end-stops that employ repelling
magnets or mechanical springs such that the end-stop force
on the proof mass gradually increases after initial impact with
the end-stop. Hard-stops allow for minimal displacement,
inducing a large load on the proof mass. The mechanics of
hard-stops can be approximated by a non-linear spring of
which the stiffness can be approximated by a static analysis
of Hertz’s contact [27].

¢) Transmission: ~ One straightforward bandwidth
improvement method that has been applied in EHs such as
Seiko’s AGS EH, shown in Figure 16 is transmission. With
transmission, a low-frequency input acceleration can be
increased by means of a transmission such as a belt drive,
gears, or a gear train.

d) Multi-stability: Multi-stable EHs make use of a
mechanical design that allows for multiple stable states in
their displacement range. This can be done by means of
magnets as shown in Figure 11, or mechanical multi-stability
such as bistable buckling beams as shown in Figure 12.
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Fig. 10: The effect of end-stops on an up sweep for a gap of 50 pum
and a stiffness ratio between the spring and end-stops /3. (Courtesy
of Ai et al. (2019) [28])

Fig. 11: Schematic of a magnetic multi-stable EH (Courtesy of
Vocca et al. (2012) [29]).
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Fig. 12: Schematic of a buckling multi-stable EH (Courtesy of
Ando et al. (2014) [30]).

e) Neutral stability: Neutral stability and statically
balanced are synonyms for systems that exhibit constant
potential energy over a certain range of motion. This
means that the system can be put in a range of different

stable positions. Zero-stiffness adds another aspect to this.
Zero stiffness systems are neutrally stable and also exhibit
quasi-zero stiffness throughout a certain range of motion.
Zero stiffness EHs can be used to harvest low-frequency
input motion as the resonance frequency is proportional to
the square root of the stiffness of the spring for a simple
mass-spring system.

Wy X Vk 5)

Where w, is the resonance frequency and k is the spring
stiffness. Tolou et al. (2010) have shown that a stiffness
reduction of 99% is possible, resulting in a decrease of the
resonance frequency of factor ten [31]. Neutral stability in
EHs can be achieved in several ways. An example of a zero
stiffness EH is shown in Figure 13. In this EH, the proof
mass moves with respect to the frame of reference using
a linear guide supported by micro-balls [32]. Other zero
stifness EHs are fabricated by omitting the spring entirely
by having a loose mass in a constrained volume [22], or by
using negative stiffness. Although the last method has not
yet been applied for the application of energy harvesting.

Guard electrode
Spring

Microball F s
Proof mass

Collector electrode

Collector electrode .

Guard electrode

Motion

Electret

L Current o

Fig. 13: Schematic of a zero stiffness EH (Courtesy of Suzuki
(2011) [32)).

C. Transduction methods

There are broadly three different ways of converting
mechanical energy into electrical energy: electromagnetic,
electrostatic, and  piezoelectric  transduction.  These
transduction methods are shown in Table I with their
main advantages and drawbacks.

1) Electromagnetic transduction: The most researched
and  well-established method of transduction is
electromagnetic transduction. The majority of EHs used
today are based on rotation and are used in numerous
applications, from the large-scale generation of power in
power stations to smaller-scale applications such as in cars
to recharge the battery. Electromagnetic EHs (EMEHs)
can also be used to harvest micro- to milliWatt levels of
power. Provided an EMEH is correctly designed, they can
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TABLE I: Advantages and drawbacks of the three common transduction methods [33][34] .

Transduction

method Advantage

Drawbacks

Electromagnetic | -High output currents
-Long lifetime

-Low output voltage
-Complicated assembly

-Robustness -Not very MEMS compatible
-Low efficiency for low frequencies and small
device sizes
Electrostatic -High output voltages -Low capacitances

-Possibility to build low cost systems
-Easily adjustable coupling coefficient

-High coupling coefficient possible

-Size reduction increases capacitances

-High impact of parasitic capacitances
-Need for micrometer dimension control
-No direct mechanical-electrical conversion
for electret free converters

Piezoelectric -High output voltages
-High capacitances
-No need to control any gap

be efficient converters of kinetic energy into electrical.
However, attempts to miniaturize the technique using
MEMS technology to fabricate an EH, reduce efficiency
levels considerably [35].

EMEHs are based on Faraday’s law of electromagnetic
induction. Faraday’s law states that when an electric
conductor is moved through a magnetic field, a potential
difference is generated between the ends of the conductor.
The voltage induced in a circuit is proportional to the time
rate of change of the magnetic flux linkage of that circuit.

U:_E (6)

Where U is the generated voltage and ¢ is the flux linkage.
A schematic of an EMEH is shown in Figure 14.

[ Fixed base
Spring [ South pole
Coil [ North pole

<> Direction of Motion

Fig. 14: Schematic of an electromagnetic energy harvester.
(Courtesy of Batra and Alomari (2017) [36])

Power is extracted from the EH by connecting the coil
terminals to a load resistance, allowing a current to flow
through it. This current creates its own magnetic field
which acts to oppose the field generated by the permanent
magnet. By acting against this electromagnetic force, F,,,
the mechanical energy is transformed into electrical energy.
The electromagnetic force is proportional to the current and
hence the velocity. Therefore, the product of electromagnetic
damping D.,, and the velocity % can be expressed in the
following way.

dx
F‘(%T”, - D(’,’"l, dt (7)

There are two main designs of coils. The conventional
way to construct a coil is by winding copper wire around
a cylinder [5,6,18,19]. This is difficult to miniaturize.
For this reason, micro-fabricated planar coils have become

-Expensive (material)
-Coupling coefficient linked to material properties
-Degradation

increasingly popular for micro-EHs. An example of a
microfabricated planar coil can be seen in Figure 15. Many
examples of microfabricated coils in EHs have been explored
[13,37].

ol

Fig. 15: Images of a micro-fabricated planar coil. (Courtesy of
Podder et al. (2015) [38])

The first implementation of electromagnetic energy
harvesters (EMEHs) in watches is the Seiko Automatic
Generation System (AGS) as seen in Figure 16 below. The
Seiko AGS EH uses an eccentric mass that rotates as a
result of the applied accelerations. This rotation is amplified
utilizing a gear train by a factor of 100 and is transmitted to
a magnet rotating next to a coil.

Oscillating
weight

Oscillating
weight gear

Transmission gear

Fig. 16: Schematic of the Seiko Automatic Generation System
(AGS) EH. (Courtesy of Paradiso and Starner (2005) [39])

2) Electrostatic  transduction:  Electrostatic  energy
harvesters (ESEH) are EHs that use a change in capacitance
of a variable capacitor to generate a potential difference.

There are broadly two different ways to operate an ESEH;
switched mode or continuous electret mode [34]. In switched
mode, the ESEH is a passive device that requires an energy
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Fig. 17: Standard energy conversion cycles for electret-free
electrostatic devices. The voltage-constrained cycle is shown in red
and the charge-constrained cycle is shown in blue. (Courtesy of
Boiseseau et al. (2012) [34])

cycle to convert mechanical energy into electricity. Many
such cycles can be envisioned, but the two most common
are defined as charge-constrained and voltage-constrained,
demonstrated by the voltage-charge plane in Figure 17.

The relation between charge @, voltage U and capacitance
C' is shown in Equation 8 below.

Q=U-C ®)

A step in the Q-U cycle with constant capacitance results
in a straight line with the magnitude of the derivative being
equal to the capacitance during that step.

In the charge-constrained cycle, the structure is polarized
when its capacitance is maximum (C,qz). An electric charge
is stored in the capacitor at a predefined voltage (Uin)-
When no charge can flow in or out, the structure moves away,
decreasing the capacitance. As the capacitance decreases, the
voltage increases as the charge is constant. The reservoir does
not provide any energy during this step (Q3) as all the energy
gained in the system comes from mechanical energy. At this
step, the energy can be removed from the structure and the
cycle can restart. The maximum energy that can be harvested
per cycle is equal to the area enclosed by the Q-U-cycle and
is equal to AF as can be seen in Equation 9 [40].

1
AE = éACUminUmaw ©

Where AC' is the difference between the minimum and
maximum capacitance in the cycle, Uy, is the minimum
voltage during the cycle, and Uy, is the maximum voltage
during the cycle.

In the voltage-constrained cycle, the structure is polarized
when its capacitance is maximum with a high voltage. The
structure is then moved to a lower capacitance whilst the
voltage is kept constant by an external power source. Because
the voltage is kept constant and the capacitance decreases, the
charge of the capacitor increases, generating a current that
can be scavenged. After the capacitance reaches its minimal
state, the charge can be collected and stored. The maximum
energy that can be harvested per cycle is equal to AF as can
be seen in Equation 10, which is higher than the maximum

energy that can be collected during the charge-constrained
cycle [40].

AE -ACU2

mazx (10)

Where AC is the difference between the minimum
and maximum capacitance in the cycle, and U,,q, is the
maximum voltage during the cycle. The voltage-constrained
cycle needs an external power source to polarize the structure
when the capacitance is maximum.

A way to achieve direct mechanical to electrical
conversion without the need for energy cycles is by using
an electret-based ESEH. An electret is the electrostatic
equivalent of a magnet. Electrets contain a quasi-permanent
embedded charge. The electret is used to induce charges on
an electrode, which allows for an energy cycle that does
not require an energy source to polarize the structure. The
structure deformation induces an output voltage directly.

When making an electret, a dielectric layer is charged.
The most common method is charging through means of
corona discharge. Corona discharge is a process in which a
strong electric field generates ions that are projected onto the
dielectric layer, thus transferring charge [34]. An advantage
of electrets is that the polarization voltage can be very
high, on the order of 100s of Volts, with the dielectric
breakdown imposing an ultimate limit on the stable charge
of all electrets [41]. The continuous power generated by an
electret energy harvester is dependent on multiple factors,
but scales according to the following relation.

P ‘fifU? (11

Where P is the power generated, %
change in capacitance and U,

. dt is the instantaneous
is the electret surface

voltage. Besides the operation methods that can be used
to generate energy using ESEHs, there are also several
capacitor shapes that can be used with their own advantages
and disadvantages. The most common capacitor shapes are
shown in Figure 18.
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(b) In-plane overlap

(d) In-plane converter with variable
surface

(a) In-plane gap closing

e

(¢) Out-of-plane gap closing

Fig. 18: Basic capacitor shapes that can be used in ESEHs. In the
schematic, blue represents the stator and red represents the mover.
The yellow arrows indicate the movement direction. (Courtesy of
Boisseau et al. (2012) [34])
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In Table II, the main advantages and drawbacks of the
different capacitor shapes are shown. As can be seen, the
best capacitor architecture depends on many factors and is
specific for each EH.

TABLE II: Advantages and drawbacks of the four different
capacitor shapes.

Capacitor shape | Advantage Drawback
in-plane gap -Simple fabrication _Srmall dicnlac .
closing -High power density Small displacement range
in-plane Qi - Qenciti
overlap Simple fabrication Sensitive to stability issues [40]

. -Simple electret application -Non-planar fabrication
out-of-plane . : ol N

o -Small influence of -High influence of
gap closing . 3 Lo N
parasitic viscous damping

|r’|-|Aa'lanc lel? -V_cry large dlsp]fxccrpcvnl_ range Non-planar fabrication
variable surface | -Simple electret application

Another consideration for EHs is the electrostatic force
variation. The electrostatic force variation for out-of-plane,
in-plane overlap, and in-plane gap closing capacitors can be
seen in Table III below, where F, is the electrostatic force
and z is the displacement of the mover. This electrostatic
force variation can add electrostatic stiffness to the ESEH,
changing the dynamics of the system, and should therefore
be taken into account in the mechanical design.

TABLE III: Electrostatic force variation for different system
configurations. (Courtesy of [42])

Structure Q constrained | V constrained
Out-of-plane F. constant Fer~1/z
In-plane overlap Fe ~1/27 Fe constant
In-plane gap closing | Fe ~ z Fe ~1/22

3) Piezoelectric  transduction:  Piezoelectricity is a

property of certain crystalline materials such as quartz
that gemerate electricity when pressure is applied. This is
called the direct piezoelectric effect. Piezoelectric materials
undergo deformation when an electric field is applied, which
is termed the converse effect. The converse effect can be
used as an actuator, and the direct effect can be used as
a transducer [43]. The direct electromechanical behavior
of piezoelectric materials can be modeled by the following
constitutive equation [44].

D =dT +¢E (12)

where D is electrical displacement, d piezoelectric
coefficient, T' stress, e permittivity of the material, and
E electric field. Piezoelectric transduction has drawn
significant attention due to its simplicity in structure, high
energy density, and good compatibility with microfabrication
methods [45,46].

The most common method of piezoelectric energy
harvesting is utilizing a cantilever beam with a proof mass
attached on the end, as demonstrated in Figure 19. A
piezoelectric layer is attached on one side (unimorph), or
both sides (bimorph), of the cantilever. When accelerations
are applied to the base, the proof mass moves, bending the
cantilever and thus applying stress. This stress induces a
charge in the piezoelectric layer.

Electrode
Piezoelectric
layer
Substrate
Electrode

External
force

Piezoelectric
beam

Beam

holder
Tip mass

Fig. 19: Schematic diagram of a general bimorph piezoelectric
energy harvester with a substrate and two electrodes. (Courtesy of
Fu et al. (2018) [47])

Piezoceramics are most used in energy harvesting
applications for their high electromechanical coupling factor.
The electromechanical coupling factor is an indicator of the
effectiveness with which a piezoelectric material converts
electrical energy into mechanical energy [48]. Piezoceramics
are characterized by their large dielectric and piezoelectric
coefficients, and electromechanical coupling factors, as well
as their high energy conversion rates. However, they are
very brittle so they cannot absorb large strains without being
damaged [49]. More flexible piezopolymers can be used, but
this comes at a cost of lower electromechanical coupling
[50].

D. Harvester performance

Evaluating and comparing the performance of EHs is not
a straightforward task. Several figures of merit (FoM) are
proposed in the existing research that can be used in the
evaluation. One of the most widely used FoM is power
density [51]. The power density of an EH is defined as
the power generated per volume of the EH as mentioned
in section II-B. The problem with this metric is that the
power that an EH generates is very dependent on the
environment it operates in. To solve part of this issue,
the normalized power density (NPD) can be used as an
FoM as introduced by Beeby et al. (2007) [52]. The NPD
can be determined by calculating the power density and
dividing it by the maximum acceleration applied squared.
This takes away the dependency of the power output on
the amplitude/acceleration of the vibrations. This still leaves
environmental influences such as the frequency unaccounted
for. For this reason, another FoM has been introduced that is
now widely used. This FoM is the harvester effectiveness 7,
[11] as mentioned in section I. The harvester effectiveness
compares the power output of the EH with the theoretically
maximum power harvested and is a function of the input
vibrations and the EH dimensions and proof mass weight.

Thus far, EH principles have been characterized and
discussed according to theory. In this section, an effort is
made to determine whether reported EHs in the literature
follow expectations. This is done by comparing EHs reported
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in existing research according to the key parameters outlined
in section II-B. 19 EHs reported in the literature have
been used for the comparison and the result can be seen
in Table IV below. The EHs are characterized in the
table according to the framework outlined in section III.
Only EHs that have been experimentally validated have
been considered, and also only those that contain enough
information to be able to determine the FoMs.

10
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IV. DIsCUSSION

The results will be discussed according to the same
categorization presented in section II1.

A. Mechanical design

Evaluating the performance of the mechanical design is
split up based on the same subdivision as presented in
Figure 3 and used in section I1I-A.

1) Inertial/non-inertial:  Inertial EHs have superior
useability in a wider range of applications due to the
flexibility of requiring one point of contact with the source.
This also allows a greater degree of miniaturization [3].
Non-inertial EHs require two points of contact. This makes
non-inertial EHs unappealing for an EH incorporated in a
quartz watch, as the EH will be contained within the device
and thus there are no two structures that can move relative
to one another. For the forenamed reasons, inertial EHs are
seen as preferable for quartz watch applications.

2) Rotational/translational: Rotational EHs  have
the advantage of having a potentially infinite inertial
displacement. They can harvest energy from input
accelerations from an entire plane and rotations, instead
of just from one direction as is the case with most
translational EHs. The disadvantage is that because of the
large displacements, a compliant suspension is not possible
when taking advantage of the infinite internal motion range
for rotational EHs. To solve this, micro-bearings have to be
implemented. Micro-bearings are difficult and expensive to
fabricate, subject to wear, and have large tolerances. Due
to the need for a more complex connection to the device,
rotational EHs perform worse on miniaturization, as can
be seen in Figure 22. The upside of this large internal
displacement ratio is a theoretically larger power density,
although this could not be verified using the data collected
from the reported EHs in existing research. Rotational EHs
also have the benefit of easily being made neutrally stable,
increasing their bandwidth. An example of a rotational EH
that has a neutrally stable eccentric mass can be seen in
Figure 16.

B. Bandwidth improvement

1) Frequency up-conversion: FupC has been shown
to increase the bandwidth of EHs considerably and is
thus a good candidate for achieving high efficiency at
low frequencies. Impact and Plucking FupC are discussed
separately.

a) Plucking:  Plucking FupC can achieve high
normalized bandwidth whilst keeping a high efficiency
when properly designed [10]. The two reported methods of
achieving plucking FupC are magnetic interaction and using
contact. Magnetic plucking is preferred as contact increases
friction and wear and leads to lower efficiency. Magnetic
plucking does pose a problem in terms of miniaturization
as magnets have to be embedded into the EH.

b) Impact: With impact FupC, a large part of the
energy that is contained in the proof mass is dissipated by
the impact. This results in a low efficiency [10]. For this
reason, plucking FupC is seen as preferable.

2) sDoF methods:

a) Resonance tuning: In resonance tuning, a distinction
was made between open-loop and closed-loop configurations.

Open-loop configurations are impractical and do not
comply with the ’install and forget’ benefits of EHs. For
quartz watches especially, open-loop configurations are not
possible. Closed-loop configurations are more practical but
require advanced measurement and actuation methods. Those
EHs have a more complex design and a lower overall
efficiency for the active case.

More importantly, resonance tuning is only useful when
the input motion has one dominant frequency. When the input
energy is highly stochastic, as is the case with human motion,
resonance tuning is close to useless to increase efficiency.

b) End-stops: End-stops are an effective method to
increase the bandwidth of EHs, increasing the normalized
bandwidth by a factor of 10-100 [10]. The downside of
end-stops is that part of the kinetic energy of the proof mass
is dissipated in the impact with the end-stop. This effect is
smaller when soft-stops are used, and reduced to nearly zero
when magnetic soft-stops are used. For miniaturized EHs,
magnetic soft-stops are impractical due to their relatively
large size, but soft-stops in the form of microfabricated
springs have been reported in literature, as is shown in
Figure 20.

Interdigited fingers Movable electrode

Fixe:

= (b) Image of the
fabricated EH with
the soft-stop shown at
the top right.

(a) Schematic of an ESEH utilizing soft-stops

Fig. 20: Example of an EH reported in literature that uses soft-stops.
(Courtesy of Lu et al. (2015) [58])

¢) Transmission: Multiple EHs that use transmission
have been reported, and the first EHs used for quartz watches
employ transmission as can be seen in Figure 16. The
drawback of using a transmission is that the gears take up a
large volume, are expensive to manufacture, and generate
friction and thus dissipate energy. This also causes the
transmission to be subject to wear and tear, limiting the
lifetime.
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d) Multi-stability: An extensive review of these
multi-stability methods was made by Pellegrini et. al [59].
The review concludes that multi-stable EHs are capable
of coping with vibrations of frequencies much lower than
typical resonance frequencies, outweighing the increased
complexity of the design. This makes multi-stability an
attractive method to increase the efficiency of broadband
energy harvesting.

e) Neutral stability: There are several reported ESEH
designs that successfully implement neutral stability in their
design. Most notably the rolling designs from [7,32], or an
unconstrained proof mass in a box [22]. Although these EHs
exhibit a large bandwidth and a high energy density, they
lack in the ease of fabrication and assembly, and are highly
sensitive to wear. When the proof mass is underconstrained,
end-stops are also generally necessary for neutrally stable
EHs. Employing negative stiffness to achieve neutrally stable
EHs can be a promising alternative to achieve zero-stiffness
whilst still having a monolithic, easy-to-fabricate design.
Statically balanced MEMS have already been proposed by
Tolou et. al, but not yet applied in EHs [31].

C. Transduction methods

1) Electromagnetic transduction: Electromagnetic
transduction is the most well-established method for energy
harvesting and has been used for quartz watch applications
for decades. EMEHs offer a robust method to achieve high
power densities but have several drawbacks. The voltage
output of EMEHs is typically very low, which results
in the need for transformers. This increases losses and
increases the size of the device. EMEHs are also difficult to
scale down due to the need for coils, integrated permanent
magnets, and ferromagnetic materials for the flux path.
This means that miniaturization is still a big challenge for
EMEHS.

Planar microfabricated coils exist, but as the voltage
generated scales quadratically with the number of coil turns,
and as planar coils are a 2D planar technology, as opposed
to the wire-winding 3D technology, the amount of turns that
can be achieved is limited. This limits the voltage generated.
Another downside is that the electromechanical damping
scales proportionally with the number of coil turns squared,
divided by the resistance of the coil wire as follows.

2
Dy, g—c

As the resistance of the coil wire for planar coils increases
quadratically for each turn due to the increasing radius,
the overall electromechanical coupling is decreased. This
effect is smaller for wire-winding coils as the radius of the
coil is constant and the electromagnetic damping is thus
independent of the number of turns.

In Seiko’s AGS EH, a gear train is used to amplify the
rotational velocity to increase the voltage. This increases
the volume of the device and also increases the cost of
fabrication. However, the main problem is that the voltage
generated when the eccentric mass rotates below a certain

(13)

rotational velocity is too low for any power to be left after
power processing. The generated potential would be AC
voltages that need to be rectified to be used as a power
source for electronics. To rectify the voltages, they would
have to be transformed up to the range of two to several
Volts, necessitating a transformer with a conversion ratio on
the order of 100 [40]. Such a transformer in turn increases the
volume of the EH drastically. The average power that can be
generated using the Seiko AGS system has been determined
to be 0.5 uW during daily use [60]. This is lower than the
energy consumption of a quartz watch as stated in section I.

2) Electrostatic  transduction:  Electrostatic — energy
harvesting is an attractive solution as the output voltages
generated are high and can be adjusted straightforwardly
by varying the load cycle for electret-free ESEHs, or the
electret charge for electret-based ESEHs. ESEHs perform
well because of their high electromechanical coupling and
their compatibility with microfabrication methods, making
them a cost-effective method to produce miniaturized EHs.

Electret-free ESEHs need an energy cycle to generate
energy which results in the need for complex control through
electronic circuits, and an external power source to start
the energy cycle. Electrets can solve this issue but come
with their own drawbacks of increased cost of fabrication,
complex handling, and stability issues.

Several microfabrication compatible electret materials
exist, such as CYTOP and silicon-based inorganic electrets.
These materials solve most of the issues related to electrets.
Their high charge stability and compatibility with IC
and micromachining technologies make them an excellent
candidate for ESEHs [61].

In terms of fabrication, in-plane gap closing and in-plane
overlap converters are the most simple as they exist of simple
planar structures. Roundy (2003) [40] has shown that by
making realistic assumptions about dimensions based on
fabrication technology and parasitic capacitances, an estimate
can be made for the maximum power density that can be
achieved. This analysis demonstrated that the performance
of in-plane gap closing EHs had superior performance.
However, it should be noted that the in-plane patterned
capacitance structure was not taken into account in the
analysis. Furthermore, the result is not necessarily the same
for any EH design as the mechanical design has a large effect
on performance.

3) Piezoelectric  transduction: — Piezoelectric  energy
harvesting offers high energy densities, making it an
attractive energy harvesting solution. Piezoelectric devices
provide high voltages and low currents. Modeling and
experiments performed by Roundy show that voltages
in the range of two to several volts and currents on
the order of tens to hundreds of micro-amps are easily
obtainable [40]. Therefore, like electrostatic converters, one
of the advantages of piezoelectric conversion is the direct
generation of appropriate voltages. Another advantage is that
separate voltage source is needed to initiate the conversion
process, as is the case for electret-free ESEHs.

A drawback of piezoelectric conversion is the difficulty of
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miniaturization and integration with microelectronics. While
it is true that piezoelectric thin films can be microfabricated
[62,63], this greatly reduces the piezoelectric coupling
[63, 64]. The piezoelectric coupling is a unitless quantity that
is used to compare the efficiency of different piezoelectric
materials in converting mechanical energy to electrical
energy. PZT-based thin-films, one of the most widely
used piezoelectric materials, contain a high percentage of
lead (Pb). This toxic element prevents their employment
in biomedical devices and their large diffusion due
to environmental concerns [62]. For these reasons, the
miniaturized PEHs in quartz watches have several problems
that need to be overcome before they can be integrated into
quartz watches.

D. Harvester performance

An effort is made to quantitatively compare EHs using
the data of the harvesters that are presented in Table I'V. The
results are plotted in Figure 21, Figure 22 and Figure 23.
Each dot in the graph represents an EH.

In Figure 21, the volume and effectiveness are plotted
for the three transduction methods. What can be concluded
is that ESEHs excel for small volumes, achieving similar
effectiveness for volumes on the order of 10-100 times
smaller than their EMEH and PEH counterparts. This agrees
with the expectations based on the theory.
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Fig. 21: The volume and effectiveness of the energy harvesters

analyzed in Table IV categorized based on their transduction
method.

In Figure 22, the volume and effectiveness are plotted
for rotational and translational EHs. What can be concluded
is that translational EHs perform better on miniaturization
and effectiveness. This is due to the fact that the rotational
EHs make use of their large internal displacement, resulting
in a non-monolithic design. This design is less efficient in
terms of volume as components such as bearings need to be
included.
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Fig. 22: The volume and effectiveness of rotational and translational
energy harvesters analyzed in Table IV.

In Figure 23, the NPD and effectiveness are plotted for the

three transduction methods. The resulting analysis shows that
there is no clear relation between the two FoMs.
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Fig. 23: The NPD and volume of different transduction mechanisms
energy harvesters analyzed in Table IV.

V. CONCLUSION

Energy harvesting is an area of research that has
been investigated thoroughly, and numerous physical
principles, designs, and applications have been theorized and
experimentally verified. A number of key parameters have
been presented in this paper that can be used to compare the
performance of energy harvesting principles and designs for
the application of quartz watches.

A framework is presented that is used to categorize EHs.
EHs found in the literature are subdivided based on their
working principles and design according to the framework,
and subsequently compared.

For quartz watch applications, inertial energy harvesting
should be used. Rotational and translational inertial EHs each
have their own advantages and disadvantages. Rotational
EHs have a higher theoretical maximum energy due to

14
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their infinite internal displacement and can harvest energy
from motions in multiple DoFs. Translational EHs allow for
a monolithic design which would aid miniaturization and
decrease friction, and thereby the resulting wear.

For the transduction method, electret-based transducers
look most promising due to their direct mechanical to
electrical transduction, the recent improvements in charge
stability, and microfabrication compatibility of electret-based
transducers.

Due to the stochastic low-frequency nature of human
motion, bandwidth improvement methods have to be
employed. Based on the analysis, FupC is less promising
due to the complex design, low efficiency of impact FupC,
and limited miniaturization possibilities of plucking FupC.
Instead, sDoF methods should be used. Of the sDoF
bandwidth improvement methods, soft-stops, multi-stability,
and neutral stability look the most promising. This is due
to their volume effectiveness, large bandwidth improvement,
and simple design. The most appropriate sDoF bandwidth
improvement method also depends on aspects of the
mechanical design such as the displacement orientation and
the suspension method.
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CONCEPT DESIGN

In this chapter, several micro-electret transducers are explained in more detail, and a con-
ceptual design for a micro-electret transducer is presented. This concept is further elabo-
rated in chapter 4 and chapter 5.
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3.1. VARIABLE CAPACITOR ORIENTATION

As is concluded in chapter 2, electret transduction looks promising for the purpose of
micro-energy harvesting for quartz watches. There are a number of different configura-
tions that have been identified that can be used to create variable capacitors, shown in
Figure 3.1.

—
Electrode 1 Electrode 1
+++++++++++++ ++++++++++

- i

(a) (b)

+++++++4+
Electrode 1 Electrode 2

(©

Figure 3.1: Schematic representations of several variable capacitor orientations used in electret transducers.
(a) Out-of-plane gap closing. (b) In-plane variable area. (c) Freestanding electret.

In Figure 3.1a, the out-of-plane gap-closing configuration is shown. In Figure 3.1b,
the in-plane variable area configuration is shown. Both of these methods use two elec-
trodes that are connected with a load resistance R. An electret is used to induce charge
on the electrodes. When the electrodes move relative to one another, the capacitance
changes, and thus the charge on the electrodes changes. This charge then moves across
the load resistance, dissipating energy.

In Figure 3.1c, the freestanding electret configuration is shown. It is called freestand-
ing, as there are no electrical connections to the electret mover. This transducer works
by varying the charge which is induced on the two counter electrodes. As the electret
moves, it first induces charge on electrode 1, and then it induces a charge on electrode 2,
and vice versa. This induced charge moves across the load resistance, dissipating energy.

The out-of-plane gap closing and the in-plane variable area configurations use elec-
trodes on the mover and the stator. Because of this, signal lines have to be used that are
connected to the mover. These signal lines have to withstand the stress of deformation
due to the displacement of the mover. With a device lifetime of five years and a fre-
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quency of just 1 Hz, the fatigue limit of the signal lines should be larger than 108 cycles.
Moreover, the signal lines limit the displacement range. As the mover can only move as
far as the signal lines allow. From a manufacturing point of view, it is typically difficult
to lead out the signal lines from both sides of the device, where additional wiring or 3D
structures such as metal stud bumps are demanded [23].

The freestanding electret configuration only has signal lines connected to the sta-
tor. The metal signal lines stay static during the movement of the mover and the signal
lead-outs are fabricated easily by simple metal patterning. This means that the mover
can have a significantly larger displacement than the out-of-plane gap closing or the in-
plane variable area electret transducers.

Yeatman has shown that under harmonic excitation motion, the theoretical maxi-
mum power harvested by an energy harvester is a function of only a few parameters
[24].

1
Prax =3 YoZjwdim (3.1)

Where Py, is the maximum output power, Yy is the source motion amplitude, Z;
is the displacement range inside the device, w; is the frequency of the source motion,
and m is the proof mass. This simple relation shows that the output power of the de-
vice scales linearly with the displacement range. Furthermore, it is preferable that the
electret transducer can achieve full rotation such that it is compatible with conventional
mechanical systems used in quartz watches. Such a design is only possible if the mover is
freestanding. Because of the forenamed reasons, the freestanding electret configuration
is seen as the most suitable electret transducer for quartz watches.

3.2. FREESTANDING ELECTRET TRANSDUCER

The schematic of the freestanding electret transducer shown in Figure 3.1c only shows
one 'unit cell. To increase the output power of the electret transducer, interdigitated
electrode pairs can be used to increase the working frequency of the transducer [20], as
the output power of an electret transducer scales linearly with the working frequency of
the transducer.

Px w;=nw (3.2)

Where P is the output power of the transducer, w; is the working frequency of the
transducer, n is the number of electrode segments and w is the rotor frequency.
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Figure 3.2: Schematic showing the resulting energy harvester concept. The electret segments are shown in
yellow, and the interdigitated electrode is shown in blue and red.

A more detailed schematic of the rotational electret transducer, including the inter-
digitated electrode pair, is shown in Figure 3.2. The electret rotor rotates relative to the
electrode pair. The electret segments are shown in yellow. The electrode pair is con-
nected by a load resistance R.



NOVEL ELECTROSTATIC MODEL FOR
ELECTRET TRANSDUCERS

In this chapter, the shortcomings of the conventional electret transducer models are dis-
cussed. A novel electrostatic model is proposed which takes fringing fields into account
which allows for a more accurate prediction of the output power characteristics of micro-
electret transducers. To verify the model, a comparison is made between the novel model
predictions and the measured output power characteristics of a reported electret trans-
ducer. The output power characteristics of the electret transducer are found to closely fol-
low the novel model predictions.
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Novel electrostatic model for electret transducers

F. Schilperoort

Abstract— Energy harvesting by means of micro-electret
transducers is a promising method to power small-scale devices.
Micro-electret transducers can be fabricated using conventional
microfabrication processes at a large scale, and exhibit a
large electromechanical coupling with favorable output power
characteristics such as a high output voltage.

One-dimensional models have been developed to predict the
output power of electret transducers. However, fringing fields
play a large role in the electrostatic domain for micro-electret
transducers. Therefore, the one-di ional electret transducer
model is inaccurate and can lead to a significant overestimation
of the output power.

To be able to more accurately predict the output power
characteristics of micro-electret tr ers, a two-di ional
electrostatic model is proposed which accounts for fringing
fields. This two-dimensional model allows for more accurate
optimization of design parameters early in the design phase,
leading to an improved transducer performance. To verify
the model, a comparison is made between the novel model
predictions and the measured output power characteristics of
a reported electret transducer. The output power characteristics
of the electret transducer are found to closely follow the novel
model predictions.

Keywords: Energy harvesting, Electret, Electrostatic
transduction, two-di I model, Fringing fields

I. INTRODUCTION
A. Mechanical energy harvesting

Mechanical energy harvesting is the method of
transforming ambient mechanical energy into electrical
energy by means of an appropriate transduction mechanism.
For mechanical energy harvesters, a number of methods
have been identified that can be used to cnvert mechanical
energy into electrical energy, such as electrostatic
transduction [1]-[4], piezoelectric transduction [5]-[7]
and electromagnetic transduction [8]-[11].

For micro-energy harvesters, electromagnetic transduction,
the most well-established transduction method, does not
perform well [12, 13]. For electromagnetic transducers, the
output voltage scales proportionally with the magnet velocity
and the number of coil turns squared. Due to size limitations,
the number of coil turns is limited. This means that the
magnet velocity needs to be extremely large to achieve a
sufficient output voltage.

Electrostatic transduction is a promising alternative
transduction method for micro-energy harvesters. This is
due to their compatibility with microfabrication methods,
high electromechanical coupling, small size, and high output
voltage [14, 15]. Electrets have been identified as a method of
inducing charge, allowing for power generation without the
need for an external power source and power management
circuit as bias, which is the case for electret-free electrostatic
transduction [16].

B. Freestanding electret transducers

Freestanding electret transducers are a type of electret
transducer in which the electret is decoupled from the
electrodes. In Figure 1, a section view of a rotational
freestanding electret transducer is shown. The electret
is attached to a mover and moves relative to pair of
interdigitated electrodes, on which the electret induces
charge. In such an electret transducer configuration, infinite
mover displacement is possible, as the electrodes with the
attached signal lines are attached to the stator [15].

The ability to achieve very large mover displacements
enables an energy harvester using a freestanding electret
transducer to harvest energy from low frequency and
large amplitude signals effectively [15]. Because of this,
freestanding electret transducers are promising electret
transducer configurations for harvesting energy from human
motion. As the frequency of human motion is very low
(< 12Hz) [9,17], and its amplitude is on the order of
millimeters to meters.

f

Fig. 1: Section view showing one ’unit cell’ of a freestanding
rotational electret transducer with the electret segment (pink) on
the rotor and the two electrodes (orange).

For freestanding electret transducers, the output power
scales inversely proportional with the electrode width.

P x l (1)

w
Where P is the output power and w is the electrode width.
To ensure that the electret transducer has high output power,
electret transducers with increasingly narrow interdigitated
electrodes have been fabricated [15, 18, 19]. These so-called
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micro-electret transducers achieve a higher output power
with an output voltage on the order of tens of Volts.

Bi et al. have proposed a one-dimensional (1D)
electrostatic model that predicts the output power
characteristics of electret transducers [20]. The model

predicts the output power characteristics of larger electret
transducers accurately, where fringing fields can be ignored,
but for micro-electret transducers, the model greatly
overestimates the performance.

For micro-electret transducers, the width of the electrode
and the distance between the electret and the electrode are
on the same order of magnitude. This is because the gap
distance between the electret and the electrodes is limited
by manufacturing tolerances and dielectric breakdown of air.

As a result, fringing fields can no longer be ignored and
a more accurate two-dimensional (2D) model has to be
used that takes fringing fields into account. In this work, an
improved 2D model is proposed, and verified by comparing
the model predictions with measurement results from a
reported electret transducer.

II. WORKING PRINCIPLE AND MODEL

A. Theory

Electret transducers generate energy using an electret
with embedded charge density o to induce a charge o; on
interdigitated electrodes. When the electret moves relative to
the two electrodes, which are connected by a load resistance
R, the induced charge moves from one to the other electrode.
Part of the charge is stored in the capacitance C, which
exists due to the proximity of the two electrodes, and
part of the charge flows through the load resistance. A
schematic representation of an electret transducer is shown
in Figure 2 below. This simple schematic representation can
be used to model the output power characteristics of electret
transducers.

Fig. 2: Schematic of a freestanding electret transducer that is used
as a basis for the transducer model.

1) Conventional one-dimensional model: The derivation
of the conventional 1D model is explained to show the
difference between the conventional 1D model and the novel
2D model.

By applying Kirchhoff’s first law, we can balance the
current in the circuit.

di=0 ®)

This results in the following expression for the total
current across the load resistance.
di di
i) + 292 4 19 g
dt dt
Where i(t) is the current across the load resistance, @'—E
is the change of the electrode charge and ’iQC is the change
in the capacitor charge.
The charge stored in the capacitance can be expressed as a
function of the charge across the load resistance as follows.

dQc di
=C- = =e 4
Qec=C-u=—u=i R=— il RC— 7 4)

This results in the following expression for the current
across the load resistance.
dQgp

()+7+R0E* 5)

When assuming that fringing fields are negligible, the
induced charge is constant on the area below the electret
and equal to o;, and O everywhere else. This can be used
to calculate the total charge on the electrode which is equal
to the area of the electret superimposed on the electrode,
multiplied by the induced charge. The area of the electrode
that has an induced charge is equal to the total electret area
So, multiplied by a time-dependent factor.

nwt

So(1===) ©)

Where Sy is the total electret area, n is the number of
electret segments, @ is the angle of the rotor, w is the angular
velocity of the rotor and ¢ is the time. Now the total charge
on the electrode can be calculated by multiplying the induced
charge density o; with the area of the induced charge S(t)
as defined in Equation 6.

S() = so(1 - 22 =

nwt m

QE_O.’L ( )—0150(1__) te {07_) (7)

™ nw

By taking the time derivative of the electrode charge @,
the charge that is flowing from the electrode can be found.

dQE T
i o) ®

This expression can be plugged into Equation 5, which
results in the following differential equation.

= —(I,;SUE te [0
™

i(t)folSo +RC—: te[(),%) ©
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Electret

Oj

Electrode 1

Electrode 2

a.

Electret

[ —
Electrode 1 Electrode 2
b.

Fig. 3: (a) Schematic representation of the charge distribution on the electrodes for the conventional one-dimensional model. (b) Schematic
representation of the charge distribution on the electrodes for the novel two-dimensional model.

Solving this differential equation with the initial boundary
condition |~ + i|f,=ﬁ = 0 and the periodic boundary
condition ili—g = i|,—2x, an expression for the current
across the load resistance is found, which can be used to
calculate the average power. The resulting equation for the

average power is shown in Equation 43.
02 S3nw
ZiP0 o
m2C
Where P,, is the average power generated and x is an
expression dependent on the dimensionless factor a.

2a? 2
k=a+—|1-—F—r
m 1+exp(—§)

a equals the product of the time constant (RC') of charge
transfer and the working frequency (nw) of the freestanding
electret transducer.

Py = (10)

an

a=nwRC (12)

2) Novel two-dimensional model: The novel 2D model
uses a new expression for the induced charge on the
electrode. The difference in the induced charge on the
electrode is shown qualitatively in Figure 3.

a) Method of image charges: First, Gauss’ law is used
to determine the electric field as a result of a point charge.
To simplify the calculations, the calculation is performed for
a charge in a 2D plane, as opposed to a three-dimensional
space. This simplification results in only a minor deviation
between the model predictions and the actual result as the
length of electrode segments are orders of magnitude larger
than the width for most electret transducers.

]{E}-dZ:@
€o

13)

Where E is the Electric field, Z is the surface area, ¢enc
is the enclosed charge and ¢ is the vacuum permittivity.
For a point charge ¢ in two dimensions, this reduces to the
following expression.

E(r)-2mry = ifq (14)
€0

Where 7, is the distance from the point charge and 7%
is the radial unit vector. Rearranging gives the following
expression for the electric field induced by a point charge.

E(rg) = 1y

271’1”(1607(1 1)

Now the method of image charges can be applied to
determine the charge density on an electrode as a result of
a nearby point charge. The method of image charges can
be used to simply calculate the distribution of the electric
field of a charge in the vicinity of a conducting surface. A
visualization of the method of image charges can be seen in
Figure 4.

Fig. 4: The electric field of a charge near a flat conducting surface,
found by the method of images.

The distance between the charge and the image charge
is equal to twice the distance between the image charge
and the electrode which is equal to z. The electrostatic field
perpendicular to the electrode surface as a result of a charge
q is given as follows.

q .
Bolrd) = o
q

(16)

Where Z is the unit vector perpendicular to the electrode
surface.
2=

an

z
Z g = Va2 + 22
r

a
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By substituting 7, and Z as functions of the dimensions
z, and z, the equation can be simplified as follows.

1 q N q z
Eg)= ot =1 % (18
=(%) 2meq \/x2+222 2meg 22 + 22 as

When accounting for the charge and the image charge
by the method of superposition, the following expression is
found.

1 q-z 1
T 2meg a2 + 22

—q-—z q z

meg a2 + 22 meq aF + 22
(19)

From the electric field, the charge density as a function of
2 and z can be found.

E.(x)

_4_ =

T ra? 422
The charge density on an electrode surface as a result of

a point charge is schematically represented in Figure 5.

o(x) = eo - E.(2) (20)

o q
0 (x) o, z
X

Fig. 5: Charge distribution on a conductive surface as a consequence
of a point charge g.

The charge density induced on an electrode by a point
charge can be used to make a numerical model for the charge
distribution. Using the principle of superposition, the charge
distribution o(x) on an electrode as a result of a charged line
segment w at a distance z above the conductive surface can
be approximated as a combination of n, number of point
charges spaced a distance dx away from each other.

w
dr = 21
v ng +1 @n

The charge magnitude g is equal to the area of one electret

segment divided by the number of point charges n,.

nng

The charge distribution is then calculated as follows.

n/2 n/2
N — q i
w@= 2 D)= D i apra @
i=—n/2 i=—n/2

This charge distribution is calculated as a function of the
ratio between the width of the electrode and the distance
between the electret and the electrode » = %. This is plotted
in Figure 6.

What can be seen in Figure 6, is that when the value of
r decreases, the charge distribution looks less like a square
wave, which is the assumption made by the 1D model, and
more like a sine wave.

o o o
= (=2 o —

o
o

Relative charge density o / o [-]

-W -w/2 0 w/2 w
Location on the electrode [-]

Fig. 6: Normalized charge distribution as a function of 7.

b) Curve fitting: For micro-electret transducers, the
value of r is generally lower than ten. This is because the
width w of the electret segments is narrow as this leads
to higher output power, whereas the distance between the
electret and the electrode z is limited by manufacturing
tolerances and dielectric breakdown of air. For these
values of r, a sine fit can be made to approximate the
charge distribution on the electrodes. The charge distribution
according to a sine fit is equal to the following expression.

0(x) = Oavg + Acos(%) (24)

Where 04,4 is the average charge density, and A is the
amplitude of the charge density. The amplitude of the charge
density is calculated by taking the maximum and minimum
value of o(z) as calculated according to Equation 23 for a
range of values of 7.

Ao mazx(o(z)) — min(o(z))
B 2
In Figure 7, the dimensionless charge amplitude ”A is
plotted for values of r ranging from 1 to 100. A rational fit
can be made to find an analytical expression for the charge
amplitude as a function of r.
A r—1

—=— 26
) 2T+% ( )

(25)

Where o0 is the maximum possible induced charge, that
would be achieved if fringing fields would not influence the
charge distribution.
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o Calculated value
Rational fit
[] L L L L )
0 20 40 60 80 100
r [
Fig. 7: Normalized charge amplitude as a function of the ratio r
as calculated using the method of image charges (red circles) and
the rational fit (black).

To verify whether the charge distribution on the electrodes
is well-approximated by the sine fit, the normalized charge
difference AQporm 1is compared between the calculated
value, the conventional model, and the novel model. The
normalized charge difference is the difference in charge
between electrode 1 (Q1) and electrode 2 (Q2), divided by
the total charge induced (Qo).

Q11— Q2

Qo

Electrode 1 and electrode 2 are schematically represented
in Figure 3. The calculated value of ()1 and Q5 are found by
numerically integrating the charge distribution as calculated
in Equation 23.

AQnm"m = @7

w/2 3w/2
Q= > ol@dr Q= ) olz)dx (28)
i=—w/2 i=w/2

The conventional model makes the following assumption
for Q1 and Q.

Qi=oi(r)w Q2=0

The novel model value of ()1 and @2 can be found by
integrating o (z) as calculated according to Equation 24.

w/2 3w/2
Q= / o@)dr Q= / o(z)da

—w/2 w/2

(29)

(30)

This results in the following expressions for ()1 and Qs.

Q1 = Cusg+ 24 Qo= wgu— 24 (D)
w w

In Figure 8, the normalized charge difference is shown for

the novel model, the calculated value, and the conventional

model. What can be seen is that for a value of r € [0, 10], the

novel model predicts the charge distribution on the electrodes

significantly more accurately than the conventional model.
At larger values of 7, the charge distribution looks more like
a square wave. As a result, the sine fit will underestimate
the total charge difference. The normalized charge difference
prediction of the novel model asymptotically approaches the
average value of a sine wave of an amplitude of one, which
is approximately equal to 0.637.

* [

Qo

Q1-Q
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®
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>
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=
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Normalized charge difference

=}
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Fig. 8: The normalized charge difference between the two

electrodes is calculated using the novel sine fit (red) compared to
the actual value (black) and the old one-dimensional model (blue).

¢) Rotational electret transducer: For a rotational
electret transducer, the width of an electrode segment is
not constant, but can instead be approximated by viewing
the electrode as an isosceles trapezium, as can be seen in
Figure 9. This assumption neglects the effects of the circular
segments at the inner and outer radius, but these effects
are small when the angle of the electrode segment is small,
which is the case for micro-electret transducers as the number
of electret segments is large in order to maximize the output
power.

In such a case, the width increases linearly with the radius
from w; at the inner radius r;, to w, at the outer radius r,.
The average charge amplitude is calculated by integrating
the expression for the charge amplitude over the electrode
length as follows.

A 1 /‘”z”A 1 Lo, <%+§>
I R A L S
(32)
Where A is the average charge amplitude along the radius
of a rotational electrode segment.

d) Dynamic model: When the relative movement
between the electret and the electrodes is taken into account,
the following traveling wave represents the charge on a
location on the electrode at a certain location x and time
t on the electrode.

(33)

o(z,t) = Oavg + Acos(ﬂ'—w — nwt)
‘ w
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Fig. 9: The difference in the electrode shape of a translational (a)
and a rotational (b) interdigitated electrode configuration.

The total charge on one electrode segment can be
calculated by integrating the charge distribution over the
width of the electrode, and assuming that fringing fields in
the lengthwise direction of the electrode are small due to the
relatively large length L of the electrode relative to the width
w.

Qe = // o(x,t)dS = So(0avg + %cos(nwt)) (34)
s

To calculate the current flowing across the electrode, the
electrode charge can be differentiated with respect to time.
dQg 2ASynw

5 = Tsin(nwt)
The current flowing across the electrode is then plugged

into Equation 5 which results in the following differential
equation for the current across the load resistance.

(35)

. dQg di
t)= ——~_RC— =

i) a %
Solving this differential equation using the initial boundary
condition 44— + i[;== = 0 leads to the following result

nw

for the current through the load resistance.

Msin(nwt) —RC% (36)

_ 2ASynw
T TR2C?n2W? +

i(t) (nwRCcos(nwt) — sin(nwt))
(37
The voltage u(t) can be found by multiplying the current

by the load resistance.

2ASonwR

ulh) = iR = et

(38)
The open circuit voltage u,s can be found by setting R to
00, resulting in the following expression.

- (nwRCcos(nwt)—sin(nwt))

- %cos(nwt)

wC

The short circuit current i,, can be found by setting R to
0, resulting in the following expression.

Ups(t) = (39)

_ 2ASynw
- T

iss(t) sin(nwt) (40)

The output power P can be calculated by multiplying the
current squared with the load resistance.

P=i(t)’R 41

The average output power Fg,, can be calculated by
integrating the power over one period and then dividing it
by said period.

1 (7 2
Pavg = —/ i?R , T=-" 42)
0 nw

T
This results in the following expression for the average
output power.

2A%2RSEnw?
w2 (C2R*n%w? + 1)

The matched load R,, that leads to the highest output
power can be easily found by taking the derivative of the
power with respect to the load resistance and equating this
to zero.

P(wg = (4‘3)

dP, avg
dR
The matched load is then found to be equal to the
following expression.

=0 (44)

1
™ Cnw
Plugging this result into Equation 43 results in the
following expression for the average output power at matched
load P,.avg-

(45)

A%S3nw
n2C
III. RESULTS AND DISCUSSION

To verify the novel model, a comparison can be made
between the novel model, the conventional model, and the
experimental results of published electret transducers. In
Table 1, the parameters of an electret transducer fabricated
by Bi et al. are shown.

(46)

Pm,avg =

TABLE I: Parameters of the electret transducer of Bi et al. [20].

Parameter ~ Value Description
z 300 [pm] Gap between the rotor and stator
g 500 [pm] Gap between electrodes
n 16 [-] Number of electret segments
o 7.5 [mm] Inner radius electret rotor
To 50 [mm] Outer radius electret rotor
o 0.045 [mC/m?]  Surface charge density
70 [pF] Capacitance
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4. NOVEL ELECTROSTATIC MODEL FOR ELECTRET TRANSDUCERS

Using the parameters of the electret transducer, the charge
amplitude and the total electret area can be calculated. The
electret area is equal to half the rotor area.

(3 —17)

By filling in Equation 32 with the parameters stated in
Table I, the following charge amplitude is found.

= 3800mm? 47)

A

— 0407 = Ax 18.3uC/m?
0

48)

If the values of Sy and A, together with the capacitance
C and the number of electret segments n noted in Table |
are plugged into Equation 43, the output power as a function
of the load resistance can be calculated and compared to the
conventional model and the experimental results published
by Bi et al.

In Figure 10, the conventional model prediction versus
the experimental measurements can be seen for two fixed
rotational velocities of 750 rpm and 375 An average
overestimation of the output power of 54% is found.

= = +750 rpm conv. model

= = 375 rpm conv. model .
[ —8— 750 rpm meas. LAY

—B— 375 rpm meas.

Output Power [mW]

107! 10° 10! 10% 10°
Load resistance [M$)]

Fig. 10: RMS Power as a function of load resistance at a fixed

angular velocity of 750 (red) and 375 (blue) rad/s according to

the conventional model predictions (dashed line) and measurements
(markers).

In Figure 11, the novel model prediction versus the
experimental measurements can be seen for two fixed
rotational velocities of 750 rpm and 375 rpm. The novel
model predictions are very accurate, with an average
underestimation of the output power of just 11%. The model
underestimates the output power since the charge distribution
is assumed to be a sine fit. Whereas, for this transducer
with a relatively large ratio of r, the charge distribution is
somewhere in between a square wave and a sine wave.

IV. CONCLUSION

A novel two-dimensional model is proposed which can be
used to accurately predict the output power characteristics
of micro-electret transducers. The novel model is conceived
as the conventional one-dimensional models for electret

=750 rpm novel model

=375 rpm novel model
[ —8—750 rpm meas.

—B—375 rpm meas.

—
o

Output Power [mW]
S

Load resistance [M]

Fig. 11: RMS Power as a function of the load resistance at a fixed
angular velocity of 750 (red) and 375 (blue) rad/s according to the
novel model predictions (solid line) and measurements (markers).

transducers assume that fringing fields can be neglected when
calculating the magnitude of the charge which is induced by
an electret. For micro-electret transducers, this assumption
does not hold, as the distance between the electret and the
electrodes is on the same order of magnitude as the width
of the electret segments.

The novel model includes the effects of fringing electric
fields by applying the method of image charges in a
numerical model. An analytical fit for the charge amplitude
as a function of the transducer parameters is made which
is used to calculate the output power characteristics of the
micro-electret transducer. The model is straightforward to
apply and allows for taking fringing fields into account in
the early design phase. This means that no iterative design
processes using finite element analyses are necessary, which
has been the standard method of accounting for fringing
fields. The novel model significantly simplifies the process
of designing micro-electret transducers.

To verify the novel two-dimensional model, a comparison
is made between the novel two-dimensional model
predictions, the conventional one-dimensional model
predictions, and the output power characteristics of an
electret transducer reported by Bi et. al. It is found that the
model accurately predicts the output power characteristics of
the reported electret transducer, with an average deviation of
11 % in RMS output power for the novel two-dimensional
model, compared to a 54 % deviation for the conventional
one-dimensional model.
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IMPROVED ELECTRET TRANSDUCER
PERFORMANCE THROUGH NOVEL
UNIPOLAR ELECTRET

In this chapter, the performance of electret transducers is improved through a novel ‘unipo-
lar’ electret design. Conventional electret transducers only induce a fraction of their em-
bedded charge on the counter electrodes. In conventional electrets, the electret is deposited
and charged on a conductive substrate. As a result, most of the charge is induced on this
conductive substrate. This charge is ’idle’ and does not aid in energy transduction. It is im-
portant to maximize the induced charge on the counter electrodes, as the power output of
an electret transducer scales quadratically with the induced charge. In the novel unipolar
electret design, the conductive substrate is replaced with a thin dielectric substrate. As a
result, charges of only one polarity are embedded, maximizing the charge the electret can
induce and thus increasing the power output of the electret transducer. The novel unipo-
lar micro-electret transducer is found to achieve a power output that is twice as high, and
better charge stability compared to conventional electret transducers.
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Improved electret transducer performance through novel unipolar
electret

F. Schilperoort

Abstract— Electret transducers are a class of transducers that
utilize the electric field generated by an electret to induce a
charge on an electrode. When the electret is moved relative to
the electrode, the induced charge magnitude changes and this
generates a current that can be used to convert mechanical
energy into electrical energy.

Conventional electrets consist of a thin electret layer on top
of a conductive substrate. As a result of this, most of the charge
induced by the electret is induced on this conductive substrate.
This means that the charge induced on a counter electrode is
only a fraction of the embedded charge of the electret.

For electret transducers, the induced charge on the substrate
is ’idle’ and is not used in energy transduction. In this work,
a novel electret design is proposed, consisting of a patterned
electret on ultra-thin glass. The novel electret design does
not have a conductive substrate as the electret layers are
deposited on a dielectric. Because of this, the electret only
contains charges of one polarity, and is thus ’unipolar’, as
opposed to conventional bipolar electrets. This unipolar electret
design achieves a higher induced charge on the electrodes,
as the electric field will be fully directed toward the counter
electrodes. Because the power of an electret transducer scales
quadratically with the magnitude of the induced charge, the
new design leads to a significantly improved output power. The
new unipolar electret design also has other benefits, such as
higher charge stability, and a decreased need for accurate gap
control. Keywords: Energy harvesting, Electret, Electrostatic
transduction, Unipolar electret, Freestanding electret

I. INTRODUCTION

To facilitate the development of the internet of things
(IoT), and industry 4.0, more data from our surroundings
needs to be collected. This results in the production of
more and more wireless sensors and small-scale devices.
The conventional method of powering these devices is
through connection to a central power supply or by battery
connectivity. Both of these methods have considerable
downsides, namely a reduction in flexibility and an increase
in cost, size, and maintenance [1,2].

Mechanical energy harvesting can be a solution for
the power supply of small-scale devices. In mechanical
energy harvesting, ambient energy from the surroundings is
converted to electrical energy and supplied to a device. This
allows for the device to work decoupled from a central power
grid indefinitely.

For micro-energy harvesters, electromagnetic transduction,
the most well-established transduction method, does not
perform well [3,4]. For electromagnetic transducers, the
voltage scales proportionally with the magnet velocity and
the number of coil turns squared. Due to size limitations, the
number of coil turns is limited. This means that the magnet
velocity needs to be extremely large to achieve a sufficient
output potential.

While piezo-based energy harvesters have enjoyed much
attention [5, 6], the electret has also attracted interest as a
method of transduction [7,8]. Electrets are materials that
have a quasi-permanent embedded charge. In other fields,
electrets have been widely used for decades, such as in
microphones [9].

In the last decade, electret-based energy harvesting
has garnered attention. This is due to its attractive
properties, such as high lifetime, ability to be manufactured
with traditional micro-machining technologies, high output
voltage, and a high electro-mechanical coupling [10]-[13].
However, the reported electret energy harvesters are lacking
in their output power due to the low amount of charge that
is induced on the electrodes using the conventional electret
transducer designs.

To maximize the output power of an electret transducer,
the induced charge on the electrode has to be maximized,
as the output power scales quadratically with the induced
charge magnitude [14]. In most research describing electret
transducers, the focus is on increasing the surface charge
density of the electret. However, in the context of

electret transducers, this focus on surface charge density is
misleading. For electret transducers, the charge induced on
the counter electrode, not the surface charge of the electret,
is to be maximized. For conventional electrets that use a
conductive substrate, most of the charge is induced on the
substrate, instead of on the counter electrodes. This induced
charge is ’idle’ and does not aid power generation.

Induced
chcu ge

Il

N bbb bbbt
Counter electrode

+ +  +  +

Counter electrode

a. b‘

Fig. 1: (a) Conventional electret design. (b) The novel unipolar
electret design. The red arrows represent the electric field lines and
the minus and plus signs represent the negative and positive charges
respectively.

In this work, an improved electret transducer design is
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proposed that fully utilizes the embedded charge in the
electret. This is done by depositing the electret on a thin
dielectric substrate, instead of on a conductive substrate, as
is the case in conventional electret transducers. The result of
this can be seen schematically in Figure 1. The novel unipolar
electret design has no ’idle charge’ and thus induces a larger
amount of charge on the counter electrodes. To verify the
concept, an experimental transducer is fabricated using the
novel unipolar electret design.

II. THEORY
A. Theoretical background

The charge induced by a conventional electret on a
conductive substrate is graphically represented in Figure 2.

Conductive substrate

+  + +0i +
Counter electrode

Fig. 2: Schematic showing the main dimensions and variables of
the conventional electret transducer design.

Where z is the distance between the electret surface and
the counter electrode, d is the electret thickness, o is the
electret charge density, o; is the counter electrode charge
density, and o is the substrate charge density.

An analytical expression for the induced charge can be
made by assuming that the electric field outside of this
system is zero, E = 0. This means that the substrate and the
counter electrode are at ground potential. If this hypothesis is
not met, analytical modelling is not possible as the induced
charges will be ill-defined. To ensure that the substrate and
the counter electrode are at ground potential, they can be
grounded together, ensuring that the analytical expression is
accurate.

When looking at a 1-dimensional situation, the
contribution of each charge density to the field in air
is equal to the following expression.

E, =~ )
v 260

Where E,, is the electric field caused by charge density
04, and €p is the vacuum permittivity. Using this equation,
an expression for the net field outside the system E, can be
made.

o+o0s+0;

E,=
260

(@)

As the electric field is zero outside the system, the sum
of all charge densities is equal to zero.

oc+0os+0;=0 3)

Equation 1 can now be used to calculate the electric field
inside the electret, Fy4, and the electric field inside the air
Ea
0, — 0 — 0

E,=2"7""% @
) %0 4)

By - 05— 0 — 0
2€p€q
Where ¢q is the relative permittivity of the electret.
Because the substrate and the counter electrode are grounded,
their potentials are equal. An expression can be made for the
induced charge by equating the potential drop in air and the
potential drop inside the electret.

VaZVd=>Ea'Z=Ed'd:>0i=—L 5)
d+€qz

Where V,, is the voltage drop inside the air, and Vj is the
voltage drop inside the electret.

By filling in Equation 5 using data from reported electret
transducers, the induced charge density as a factor of
the electret charge density can be calculated. For the
analyzed electret transducers, the induced charge is a factor
14-21 times smaller than the surface charge of the electret

[15]-[17].
B. Corona charging

The most common method to manufacture electrets is
through corona charging. This is due to the simple set-up,

low cost, and reliable results. In Figure 3, a schematic of a
corona charging set-up can be seen.

Fig. 3: Schematic of corona charging showing the main variables.

A needle at a high voltage V. is used to generate corona
discharge. This ionizes the air. The ions of the same polarity
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as the needle are then accelerated through a grid at a potential
V, towards the electret surface on top of a grounded plate
due to the electric field. These ions are then embedded into
the surface of the electret, increasing the surface voltage V.
When the surface voltage V; approaches the grid voltage V,,,
the electric field E, between the grid and the electret surface
decreases, and the ions stop being accelerated towards the
electret surface. The final surface charge of the electret can
be easily found using the following equation.

A

d ©)

C. Limits to induced charge

There are two limits to the induced charge, namely
dielectric breakdown and external breakdown in air.
Dielectric breakdown occurs when the surface charge of the
electret induces a sufficiently strong electric field £y, causing
the electret to conduct and allowing the charge to escape. In
Table I, the relative permittivity and dielectric breakdown
strength are shown for several common electret materials.

TABLE I: Parameters of common electret materials [18].

Material Relative Dielectric
permittivity strength (V/pm)

PTFE 2.1 11.22

Si04/SiN, 3.9/1.5 500

CYTOP 2.1 110

Parylene-HT 2.17 204.58

External breakdown in air happens when the surface
voltage of the electrode exceeds Paschen’s limit. Paschen’s
law states that discharge between two electrodes happens
when the surface voltage of the electrode exceeds a certain
voltage. The maximum voltage as a function of the gap size
in air at atmospheric pressure is shown in Figure 4.

The induced charge in most conventional electret
transducers is limited by dielectric breakdown. There are
numerous downsides to this.

Voltage [V]

10° 10 10? 10°
Gap size [pm]
Fig. 4: Paschen’s law in air at atmospheric pressure as a function
of gap size.

e When the induced charge is limited by dielectric
breakdown of the electret, the output power will be
lower than when Paschen’s limit for breakdown in air is
reached, which is the upper limit for the induced charge.

o It is well-reported that charging to the dielectric
breakdown limit results in a sharp initial decay of
charge and the stable surface charge density achieved
by charging up to the dielectric limit is significantly
lower than the initial surface charge density [14, 19].

« To achieve a high induced charge with the conventional
design, an extremely high electret surface charge is
needed, on the order of 14-21 times higher than the
induced charge as stated in a section [. It has been
shown by Olthuis et al. that a higher electret charge
density, and thus higher potential gradients lead to an
increased charge decay, and thus a decreased lifetime
of the device [20].

Even if a high enough stable surface charge of the electret
can be achieved such that the induced charge on the counter
electrode is limited by the external breakdown in air as stated
by Paschen’s law, the conventional design still has a major
downside. Namely that the electric field strength inside the
air is a function of the gap size, as can be seen when looking
at the expression for the electric field in air in Equation 7.

od od

Ep=————=
eo(d + €qz)

— = E, x 1 (7)

€0€qZ z

The magnitude of the electric field scales inversely
proportionally with the gap size. As a result of this, small
changes in gap size could lead to a higher electric field
strength in air, which causes a discharge of the electret. In
Table 1I, the power decrease due to electret discharging as
a function of parasitic motion in the z-direction is shown.
What can be seen is that a larger parasitic motion leads
to a significant decrease in output power. For a robust
design where breakdown cannot occur regardless of parasitic
motion, a decrease in output power of 90% is expected.

TABLE II: Output power decrease for conventional electret
transducer as a function of parasitic motion of the electret in the
out-of-plane direction for a design gap size of 100pm.

Deflection [;1m] Performance decrease [%]

0 0

10 9.1
20 19
50 52
No chance of breakdown 90

D. The unipolar electret concept

The conventional electret design is thus limited in
performance and is not robust when having to account for
tolerances, manufacturing defects, and parasitic motion in the
out-of-plane direction.

To improve the performance of conventional electret
transducers, Boland et al. suggested increasing the thickness
of the electret for an increased performance [21]. Increasing
the thickness is not a viable solution, as it leads to
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larger stresses, risk of cracking, bad charge stability when
charging up to the breakdown limit [14, 19], more expensive
fabrication, and does not solve the issues with discharge in
air due to tolerances, manufacturing defects, and parasitic
motion.

An alternative method to increase the maximum surface
charge is by removing the conductive substrate from the
electret. By removing the conductive substrate, o5 will be
equal to 0 and all the charge will be induced on the counter
electrode. this leads to a higher induced charge, which is
independent of the gap size. In such a situation, o; = —0o.
This type of electret design is called "unipolar’, as the electret
only contains charges of one polarity. Because of this, the
electric field inside the air will be constant, irrespective of
gap size, as is shown in Equation 8.

o e} o
Ea’ - 260 260 - €0 (8)

This means that dielectric breakdown in air will not occur
due to parasitic motion of the electret in the out-of-plane
direction, and the decrease in output power due to parasitic
motion is greatly diminished. This allows for electret
transducer designs with larger tolerances, a necessity for
electret transducers with large mover displacements such as
rotational electret transducers.

Another important benefit is that with the novel unipolar
electret concept, there is no direct path for the electret
charges to recombine with charges of opposite polarity. For
conventional electrets, charges can more easily recombine
with free charges of opposite polarity in the conductive
substrate, leading to charge decay. This effect is minimized in
the novel unipolar electret as there is no conductive material
in contact with the electret.

Several attempts have been made to fabricate a unipolar
electret by peeling off the electret layer [14,22] from
its conductive substrate. However, this is not a method
compatible with microfabrication processes, is costly and
time-consuming, and is thus not suitable for large-scale
fabrication. Furthermore, in the charging process, opposite
charges are embedded in the back of the electret that is
in contact with the conductive substrate. This reduces the
induced charge on the counter electrodes considerably [14].

E. Proposed concept

A new method is proposed by depositing the electret on
a dielectric substrate. This method uses MEMS-compatible
fabrication, and in this method, no charge will be embedded
into the backside of the electret. This is because the backside
of the electret is not in contact with the conductive backplate.
In Figure 5, a schematic of the novel electret design can be
seen.

Where d, is the substrate thickness. By replacing the
conductive backplate with a dielectric substrate, the electric
field generated by the electret is fully directed towards the
counter electrode.

During corona charging, the surface charge can be
calculated according to the same method as in Equation 6,

dg
:[d
a
Z
0
+++++++++++

- Counter electrode

Fig. 5: Schematic showing the main dimensions of the unipolar
electret transducer design.

but now the effect of the dielectric substrate on the
capacitance has to be taken into account. When this is done,
the following expression for the surface charge is found.

Vsﬁoedﬁs
des + dgeg
Where ¢ is the substrate dielectric constant. What can be

seen from Equation 9 is that when assuming that the electret
layer is significantly thinner than the dielectric substrate, the
induced charge scales according to the following equation.

‘/5
ds

This shows that when the substrate thickness increases, a
larger surface voltage is needed to achieve the same induced
charge. Furthermore, Zhang et al. have shown that implanting
charge on a thick dielectric layer can be difficult, potentially
due to the decreased electric field strength in the electret
layer F; during charging [23].

To ensure that charge implantation is not impaired and that
the grid voltage V;; does not exceed the corona discharge
voltage V., a thin dielectric substrate should be used.

o, =—0= )

10

0; X

F. Implementation of the concept

A freestanding rotational micro-electret transducer is
designed according to the unipolar electret concept. An
exploded view of the main components of the electret
transducer can be seen in Figure 6.

For the electret material, an organic electret is chosen,
as organic electrets have reliable electret properties. With
inorganic electrets, the electret properties depend greatly on
the deposition parameters. CYTOP (CTL-809M), hereafter
abbreviated to CYTOP, is chosen as it has superior charge
stability [24].

The rotor consists of a glass substrate with CYTOP
segments oriented radially. The rotor is charged using a
corona charging set-up. During charging, charge will be
deposited on the glass substrate as well as on the CYTOP
segments, but because the glass substrate does not contain
any trap sites, charge will not be trapped and will stay
’floating’ on the surface during charging, and dissipate
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- TABLE III: Parameters of the micro-electret transducer.
Glass —— > Parameter Value Description
\/ z 100 [pm] Gap between the rotor and stator
 Rotor d 4 [pum) Electret thickness
n 57 [-] Number of electret segments
S‘ '.!‘ T 4 [mm] Inner radius electret rotor
Electret ——
—,_/ \\\ To 10 [mm] Outer radius electret rotor
‘ _J €d 2 [-] Relative permittivity of the electret
— ds 100 [pm] Glass substrate thickness
€5 4.6 [-] Glass substrate relative permittivity
Copper ——
— Stator
I11. FABRICATION
Glass - — \ / Figure 8 shows the simplified microfabrication process of
the electret rotor and the electrode stator.

Fig. 6: Exploded schematic view of the freestanding electret
transducer showing the main components comprising the rotor and
the stator.

quickly thereafter. This leaves only the embedded charge on
the CYTOP segments. During operation, the rotor rotates
relative to the stator, consisting of a pair of interdigitated
copper electrodes on glass as seen in the section view in
Figure 7. By doing so, the induced charge on the counter
electrodes will alternate between electrode 1 and electrode
2 as it rotates. This generates a current that can be used to
harvest energy.

Electret

Electrode 2

Electrode 1

Fig. 7: Section view showing one ’unit cell’ of a freestanding
rotational electret transducer with the electret segment (pink) on
the rotor and the two electrodes (orange).

The most important parameters that are used in the design
of the electret-based transducer are shown in Table III.

a-1) Coat CYTOP b-1) Coat copper

a-2) Form photoresist b-2) Laser ablation

a-3) Etch CYTOP b-3) Laser cut substrate

a-4) Laser cut substrate

[ Glass

B CYTOP

W AZ ECI 3027
W Copper

Fig. 8: Simplified microfabrication process flow of the electret rotor
(a) and the electrode stator (b) for the micro-electret transducer.

A. Electret rotor

1) Electret deposition & patterning: A 100 mm diameter
Borofloat 33 glass wafer with a thickness of 100 um is used
as a substrate. The low thickness wafer allows the electret
to achieve a high charge density during charging.

e a-1) CYTOP is spin-coated on top of the glass wafer.

o a-2) AZ ECI 3027 positive photoresist is spin-coated on
top of the CYTOP layer. A photomask is used in the
lithography of the photoresist.

a-3) Reactive ion etching (RIE) is performed. After
etching, the average CYTOP layer thickness is 4 pm.

e a-4) The rotors are diced out of the wafer using

a femtosecond laser. The dicing is performed before
charging to ensure that the charge lost due to handling
of the rotor is minimized. A laser is used for dicing as
the circular shape of the rotor could not be achieved
with conventional saw dicing. For laser dicing, a Lasea
femtosecond laser is used. A photo of the fabricated
electret rotor is shown in Figure 9.

The photomask which is used in the lithography consists
of the rotor segments, as well as a set of linearly and
logarithmically decreasing electret segments. The photomask
is shown in Figure 15. The linear and logarithmic sets
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of electret segments serve the purpose of measuring and  B. Electrode stator
verifying the charge density and stability after charging,

o b-1) The stator is fabricated by sputtering a 312 nm
which will be explained in more detail in section V.

thick layer of high-density copper layer on glass.

e b-2) The interdigitated electrode pattern is then etched
in the copper layer by femtosecond laser ablation. This
results in a gap size g between the electrode pairs of 24
pm.

b-3) Finally, the electrode is diced using a femtosecond
laser in a similar way as is done for the electret rotor.
A photo of the fabricated electrode stator is shown in
Figure 12.

Fig. 9: Photo of the fabricated electret rotor. The segments of
CYTOP are faintly visible.

2) Corona charging: The wafers are charged using a
corona charging set-up. A schematic of the corona charging
set-up is shown in Figure 11. The corona needle potential
is equal to -8 kV, the grid potential is used as a variable to
control the final charge density. The wafers are charged for
30 minutes. The distance between the needle and the grid
and the distance between the grid and the electret surface
is approximately 15 mm and 5 mm respectively. To ensure
that the charge distribution across the wafer is homogeneous,
an array of 37 needles is used, spaced 15 mm apart in a
hexagonal pattern. C. Assembly

The total assembly consists of the electret rotor, the
Needle ﬁ

Fig. 12: Photo of the fabricated electrode stator showing the
interdigitated pattern.

electrode stator, a micro-ball bearing to suspend the rotor,
and a base that connects the micro-ball bearing and the stator.

== An exploded view of all the components of the assembly is
T shown in Figure 13.

voltage

Ground
connection

Ground plate

Fig. 10: Schematic section view of the corona charging set-up.

mﬂ "ml Fig. 13: Exploded view of the assembly with the ball bearing (1),
the electret rotor (2), the electrode (3), and the base (4).

Fig. 11: Photo of the needle array that is used to create a IV. MEASUREMENTS
homogeneous charge distribution. a) Capacitance: To measure the capacitance of the
electrodes, a Voltcraft LCR-300 LCR meter is used. The
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measured capacitance of the electrode is equal to 64.2
pF, in agreement with calculations performed following the
analytical formula proposed by Igreja et al. for interdigitated
electrodes [25]. The calculated value deviates only 11.1%
from the measured value. The deviation can be attributed to
the excess capacitance of the soldered connections.

b) Charge distribution and stability: To verify the
charge distribution and stability, a manually operated
scanning probe stage is made. The probe stage is shown in
Figure 14. The TREK 341B electrostatic volt meter is used
to measure the surface voltage of the electret surface after
charging.

a. b.

Fig. 14: (a) Probe stage render. (b) Close-up photo during
measurements (b).

The wafer with the patterned CYTOP electret layer is
positioned on top of a Thorlabs manual XY-motion stage,
allowing the wafer to move relative to the electrostatic
voltmeter probe. The distance between the electrostatic
voltmeter probe and the wafer surface is equal to 0.4mm £
0.1mm.

As can be seen in Figure 15, the wafer consists of 5
electret rotor patterns (lower half), and two sets of electret
segments that decrease in width linearly and logarithmically
respectively (top half).

Fig. 15: Mask layout showing the electret segments (black) and the
scanning direction during surface voltage measurements of the set
of logarithmic electret segments (red arrow).

The sets of electret segments of widths varying from 10
mm to 25 pm allow for investigating the relation between
the width of the electret segment and the chargeability
and charge decay. Chargeability is defined as the affinity
of electret segments to embed stable charge. The charge
decay is determined by performing several measurements
over time and looking at the decrease in measured surface
voltage. The wafer is stored inside a wafer box in between
measurements, at ambient temperature of around 21°C' and
ambient humidity of up to 70%.

By measuring the surface voltage of the sets of electret
segments, the chargeability and decay of the rotor electret
segments can be deduced. Because the distance between the
electrostatic voltmeter probe and the electret surface is on the
same order of magnitude as the width of the electret segments
on the rotor, fringing fields play a role when measuring
the surface voltage. Because of this, the voltmeter cannot
distinguish between narrow features. The resultant measured
surface voltage of narrow features will thus be an average of
the surface voltage on the glass and the surface voltage on
the electret segments.

¢) Output power characteristics: To measure the output
power characteristics of the electret transducer, wires are
soldered to the contact pads of the electrodes and connected
using a decade box that provides the necessary load
resistance. A rheometer is then used to induce rotation of the
electret rotor. A USB-6211 DAQ by National Instruments is
used to record the output voltage across the load resistance.
Using the output voltage and the load resistance, the power
and current across the load resistance can be calculated.

V. RESULTS AND DISCUSSION
A. Corona charging of wafer

The electret wafer is first charged with the charging recipe
is shown in Table V.

TABLE IV: Corona charging recipe.

Parameter Value Unit
Needle Voltage -8 kv
Grid Voltage -300 \%
Charging time 30 mins

In Figure 16, the measured surface voltage of the set of
logarithmic CYTOP electret segments for several moments
in time after charging is shown. What can be seen is that a
stable pattern of charge is achieved successfully. The surface
voltage of the electret segments is approximately equal to
-100 V. For an electret width equal to or narrower than
500 pm, the voltmeter cannot distinguish between features
and the measured surface voltage is the average voltage of
the glass surface and the electret segment, as described in
paragraph IV-.0.b.

The stable surface voltage of the electret is significantly
lower than the grid voltage. The reason for the lower stable
surface voltage of the unipolar electret is most likely due to
the phenomenon of floating charge, as described by Zhang
et al. [23]. Floating charge is charge that is loosely deposited
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Fig. 16: Surface voltage at several moments in time of the set of
logarithmic electret segments. A stable pattern of charge is achieved
successfully.

on top of the electret surface and thus does not penetrate the
electret. This floating charge masks the electret and prevents
further charging. This floating charge does not occur with
conventional electrets. The reason that floating charge occurs
during the charging of the unipolar electret and not during the
charging of conventional electrets is theorized to be caused
by the lower electric field strength inside the unipolar electret
during charging. The dielectric substrate increases the total
dielectric thickness and thus decreases electric field strength
inside the electret. For an identical grid voltage, the electric
field inside the unipolar electret is approximately five times
lower than that of a conventional electret.
Ed.uni _ €sd =0.19

esd + €qds

Where Eg4.ni is the electric field inside the unipolar
electret during charging and FEg.con, is the electric field
inside the conventional electret during charging.

an

Ed,cmw

B. Corona charging with revised charging recipe

Figure 16 shows that charge patterning is possible, but to
achieve an electret transducer with the maximum possible
output power, a higher charge density is necessary. To
achieve this higher charge density, a revised charging recipe
is used, that uses a higher grid voltage, as can be seen in
Table V.

TABLE V: Revised corona charging recipe.

Parameter Value Unit
Needle Voltage -8 kV
Grid Voltage -1.5 kv
Charging time 30 mins

The grid voltage is increased fivefold to achieve as high
of an electric field as with the conventional electret as shown
in Equation 11. If the decreased chargeability of the unipolar
electret can indeed be attributed to a lower electric field

strength, increasing the electric field should result in an
improved chargeability.

The measured surface voltage after charging according to
the revised recipe is shown in Figure 17. Electret segments
down to a width of 100um are effectively charged. With
a higher grid voltage, a higher stable surface voltage is
achieved. The ratio between the stable surface voltage
and the grid voltage is equal to what was found in
subsection V-A, and approximately one third. This indicates
that the electric field strength inside the electret is not the sole
reason for the occurrence of floating charge, as the electric
field strength inside the electret during charging is as high
as in the conventional electret design, but floating charge
still occurs. This suggests that the implantation of charges of
opposite polarity is an important factor in the chargeability of
an electret, but further research is necessary to fully explain
the phenomenon of floating charge.

10 mm
v
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Fig. 17: Surface voltage at several moments in time of the set
of logarithmic electret segments after charging with the revised
charging recipe.

What can also be seen in Figure 17 is that there is a peak in
surface voltage at the edge of the wafer, at around 5 mm and
95 mm. The reason for this is that during charging, ions are
accelerated to the edge of the wafer as here there is a small
gap between the charging housing and the wafer, allowing
the ions to go directly to the ground. This leads to a high
density of ions here, resulting in more charge implantation
near the edge of the wafer. For several electret segments, at
around 50 mm, and 75 mm, an increased rate of discharge
occurs. This can most likely be attributed to contamination
of the wafer during surface voltage measurements.

In Figure 18, the difference in chargeability as a function
of the width of the electret segments can be seen for electret
segments ranging from a width of 500um down to 100um.
There is a weak dependency of the chargeability as a result
of the electret segment width. As the electret segments get
more narrow, their stable surface voltage decreases.

In Figure 19, the average surface voltage over time,
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Fig. 18: Surface voltage of narrow electret segments after charging

with the revised recipe. The error bars indicate the standard
deviation of each measurement.

normalized to the initial surface voltage of the set of
electret segments is shown. What can be seen is that a
logarithmic decreasing trend is visible, with the rate of charge
decay decreasing over time. The small uptick in surface
voltage at 15 days is most likely due to a deviation of
the measurements, and not an actual increase of surface
voltage. A relation between the electret segment width and
charge decay cannot be statistically proven with the unipolar
electret concept. The voltage decreases by no more than 5 %
over a period of 28 days, which is significantly better than
the results for conventional patterned electrets of previous
published work, such as the work by Crovetto et. al [17].
Crovetto et. al found a decrease in surface voltage of
83% over the course of 21 days for conventional patterned
CYTOP (CTL-M) electret of a width of 200 pm.
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Fig. 19: Normalized average surface voltage across the set of
logarithmic electret segments. In the center right of the figure, a
close-up can be seen. The total charge decay is not more than 5%
over the course of 28 days at ambient temperature and humidity.

C. Corona charging of individual rotor

Individual rotors are charged according to the revised
charging recipe as stated in Table V. An adapted aluminium
ground plate is fabricated for the charging of individua
Irotors. The part of the ground plate which is not covered by
the electret rotor is shielded using PMMA inserts, preventing
a direct path to the ground during charging. A schematic
section view of the aluminium ground plate with the PMMA
inserts is shown in Figure 20.

Charging
needle

PMMA

Fig. 20: Schematic showing a section view of the electret rotor
(pink) on top of the aluminium ground plate (grey) with the PMMA
inserts (red) used to shield the ground plate.

The scanning probe stage is used to scan the surface of
the electret rotor after charging. The rotor surface is raster
scanned and the voltage is recorded every 2 mm. The result
of the raster scan is shown in Figure 24. When comparing
the pattern of electret segments shown in Figure 21a with the
measured surface voltage shown in Figure 23c, it is clear that
the voltmeter cannot distinguish between individual features.

The average measured voltage across rotor is 177 V.
This means that the average electret voltage, which is
approximately equal to twice the average voltage, as only
the electret segments contain stable charge, is 354 V. This
is slightly lower than the results in Figure 18. This can be
attributed to small gaps between the electret rotor and the
aluminium ground ring, creating a direct path to ground for
the ions during charging, reducing the local chargeability of
the electret segments. As a result, the surface voltage is not
homogeneous across the rotor.
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Fig. 21: (a) Rotor CYTOP segments shown in black for reference. (b) Measured surface voltage across the rotor.

D. Calculation results of the output characteristics

Using the parameters of the fabricated micro-electret
transducer as stated in Table I11, the amplitude of the charge
distribution can be calculated. This results in the following
charge amplitude.

4

g0

~ 0.237 (12)

Using the charge amplitude, the transducer parameters
stated in Table 111, and the surface charge density calculated
using the voltmeter measurements in Equation 9, the output
power characteristics of the micro-electret transducer can be
determined.

1) Comparison of the novel unipolar electret transducer
and a conventional electret transducer: In Figure 22, the
predicted RMS output power as a function of the load
resistance at a fixed angular velocity of 207 rad/s of the
designed unipolar electret transducer is compared with the
predicted output power of a conventional electret charged to
the same surface voltage of 354 V. What is found is that the
novel unipolar electret outperforms the conventional electret
when it comes to output power by a factor of four.

40 ¢
——— Unipolar electret
Conventional electret

20 -

10 +

TN

0 L .
107! 10° 10! 10?
Load resistance [M€Q)]

RMS Output Power [pWW]

Fig. 22: Predicted RMS output power, as a function of the load
resistance at a fixed angular velocity of 207 rad/s for the novel
unipolar electret (red) and a conventional electret (blue) charged to
the same surface voltage of 354 V according to the novel model.

2) Comparison of the novel model and the conventional
model predictions: In Figure 23a, the voltage waveform of
the conventional model and the novel model are plotted
for a rotational velocity w of 207 rad/s and a matched
load resistance of R,, el 2.733M€Q. This
calculation result is then compared with the conventional
model predictions. What can be seen is that the conventional
model shows a significantly higher peak-to-peak output
voltage.

In Figure 23b, the calculated maximum RMS output power
is shown as a function of the load resistance, at a fixed
angular velocity of 207 rad/s. The maximum output power
occurs when the load resistance is equal to the matched
load resistance R,,. When comparing the output power
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Fig. 23: Calculated output power characteristics of the fabricated unipolar micro-electret transducer. (a) Output voltage waveform at
matched load for a rotational velocity of 20 7 rad/s at matched load according to the conventional model (blue) and the novel model
(red). (b) RMS output power according to the conventional model (blue) and the novel model (red), as a function of the load resistance
for a rotational velocity of 207 rad/s. (¢) RMS output power, as a function of the rotational velocity for matched load.

predictions of the conventional and the novel model, a similar
trend can be seen, with a peak in output power at the
same load resistance. The difference being that the maximum
calculated output power of the device is a factor 7.4 higher
using the conventional model.

In Figure 23, the calculated RMS output power at matched
load is shown as a function of the angular velocity of the
rotor. What can be seen is that at matched load, the output
power scales proportionally with the angular velocity. The
matched load scales inversely proportional to the rotational
velocity.

E. Measurement results of the output power characteristics

In Figure 24a, the output voltage waveform of the
assembled transducer at 100 rad/s and a matched load
resistance of 2.733 M is shown contrasted with the novel
model. The shape of the waveform closely resembles the
sinusoidal output voltage of the model. The amplitude of
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the measurement waveform is approximately 64% of the
amplitude of the novel model prediction. The measured
voltage amplitude is equal to 10.8V.

In Figure 24b, the measured maximum RMS output power
as a function of the load resistance at a fixed angular velocity
of 207 rad/s is shown. When comparing the output power
measurement with the predictions of the novel model, a
similar trend can be seen, with a peak in output power at
the same load resistance. The measured output power of
17.7 uW is approximately half the magnitude of the novel
model prediction, which is 33.6 pIV at a load resistance
of 4349 M. When comparing the measurement results
in Figure 24b with the conventional model predictions in
Figure 23b, it can be seen that the conventional model
overestimates the output power of the electret transducer by a
factor of 15. This shows that the novel model is significantly
more accurate.

In Figure 24c, the measured RMS output power at



57

30 - 40 -
Novel model Novel model
Measurement, —E— Measurement
20+

— % 30
~ =
i’ 8
o
¥ 10 g
= [a¥
g 5%
+ [
= 0r i
=} =
5 o
) Z 10

-10 + é

20 . . . . 0 . . .

0 1 2 3 4 10! 10° 10 10?
Time [ms] Load resistance [M(Q)
(a) (b)
200

Model matched load
O Meas. matched load
Model power
O Meas. power
— = -Meas. fit

Maximum RMS power [pV]

100

Matched load [MQ)]

0 20 40 60 80 100
Angular velocity of the rotor [rad/s]

(©

Fig. 24: Comparison between the novel model output power characteristics and the measured output power characteristics. (a) Voltage
waveform according to the novel model (red) and measurements (black) at a fixed angular velocity of 100 rad/s and a matched load
resistance of 2.733 M. (b) RMS output power as function of the load resistance at a fixed angular velocity of 207 rad/s according to
the novel model (solid line) and measurements (markers). (¢) RMS output power, as a function of the rotational velocity at matched load
according to the novel model (solid line) and measurements (markers).

matched load is shown as a function of the angular velocity 20mm, a slight angular misalignment can lead to
of the rotor. The measured RMS output power scales a large deviation in gap size.

proportionally with the angular velocity of the rotor, just 2) Axial misalignment: Due to the limited resolution
like the model prediction. Again, the measured output power of the 3D printer, a deviation of up to 28um in
is approximately half the magnitude of the novel model axial alignment is expected, leading to a deviation
prediction. in gap size.

3) Warp of the rotor: Due to the extremely thin

substrate, the rotor is not very stiff. Stresses
The reason for the consistent overestimation of the output induced by the CYTOP coating and the laser

power by the novel model can be attributed to several factors.

F. Factors causing overestimation of the output power

cutting have been seen to lead to warp of the rotor.
« Difference in gap between rotor and stator: A This rotor warp results in a deviation in effective
deviation in effective gap size from the design gap size gap size.
of 100um can result in a larger value of r, and thus a
smaller charge amplitude A. The following factors can
attribute to this difference in gap size.

« Parallel misalignment: Due to the limited resolution
of the 3D printer, up to 42pm in parallel misalignment
is expected. This parallel misalignment leads to a

1) Angular misalignment: Because the gap size is decreased charge difference between the electrodes,
only 100 pum and the rotor has a diameter of reducing the output power.

12
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o Charge loss during handling and assembly: During
handling and assembly, the rotor has to be manipulated
and carefully attached to the micro-ball bearing. As the
surface voltage is measured before assembly, the effects
of charge loss during handling and assembly are not
taken into account.

To get a quantitative insight into the influence of these
factors, the output power as a function of the load resistance
at an angular velocity of 207 rad/s is compared between the
model predictions for several values of the gap size z and the
surface voltage Vs and the measurements in Figure 25. An
increase in effective gap size of 50pum, a decrease in surface
voltage of 30%, or a combination of the two results in a
model prediction that very closely follows the measurements.

1 z=100 pm, Vy = 354 V
1 z=150 um, Vy = 354 V
1 z=100 pm, Vy = 248 V
4: Measurement

o @ N
S S S

RMS Output Power [pW]
= .

0
107!
Load resistance [M)]

Fig. 25: RMS output power, as a function of the load resistance at
a fixed angular velocity of 207 rad/s.

1: According to the novel model predictions for the design gap size
(z=100 pm) and the surface voltage as measured (V; = 354V).
2: According to the novel model predictions for a 50 pum increase
in gap size (z=150 pm) and the surface voltage as measured (Vs
354V).

3: According to the novel model predictions for the design gap size
(z=100 pum) and a 30% decrease in surface voltage (Vs = 248V").
4: Measurements.

VI. CONCLUSION

In this work, a novel unipolar electret design is proposed.
In this novel design, the electret is deposited on a dielectric
substrate. This allows the electret to contain charges of
only one polarity, as opposed to the conventional bipolar
electrets. This unipolar electret can be used to significantly
improve the magnitude of charge it can induce on a counter
electrode, as its generated electric field is fully directed
towards the counter electrodes. This increased induced
charge magnitude results in a higher output power of an
electret transducer. Further benefits include better charge
stability, simple fabrication, and reduced risk of dielectric
breakdown in air.

The unipolar electret concept is verified in two ways.
First, a glass wafer with CYTOP electret segments of widths
varying from 10 mm to 25 pm is fabricated. This wafer is
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charged using a corona charging set-up. By measuring its
surface voltage, the relation between electret segment width,
chargeability, and charge stability is explored. Stable charge
has been achieved for electret segments with a width down
to 100 pm. The chargeability of the unipolar electret is lower
than the conventional electret design, with a stable surface
voltage of approximately one-third of the grid voltage. This
reduced chargeability can be compensated by applying a
higher grid voltage during charging. The reason for this
worse chargeability of the unipolar electret concept cannot be
attributed to the electric field strength in the electret during
charging and should be explored further.

The charge stability of the patterned unipolar electret
is found to outperform comparable conventional patterned
electrets, losing less than 5 % of its charge after a period of
28 days. A relation between the electret width and charge
stability could not be statistically proven. The improved
charge stability of the novel unipolar electret can be
attributed to more efficient use of the charge embedded in the
electret and to the omission of a conductive substrate, which
in the conventional electret leads to a high electric field
resulting in charge mobility and recombination of charges.

The second way in which the unipolar -electret
concept is verified is through the fabrication of a
rotational micro-electret transducer consisting of 57 electret
segments using the unipolar electret design. The fabricated
micro-electret transducer achieves a voltage amplitude of
10.8 V at an angular velocity of 100 rad/s and a matched
load resistance of 2.733 M2, and an RMS output power of
17.7 uW at an angular velocity of 207 rad/s and a matched
load resistance of 4.349 M. The fabricated micro-electret
transducer shows that a unipolar micro-electret transducer
can successfully generate power.
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OUTLOOK

In this chapter, a design for an entire energy harvester is proposed, incorporating a
unipolar micro-electret transducer. First, changes to the micro-electret transducer de-
sign are proposed based on the findings of chapter 4 and chapter 5. Then, the novel
electrostatic model verified in chapter 4 will be incorporated into a dynamic model. Ac-
celerations from computer work, walking, and running will be used as the input motion
for the energy harvester model. The dynamic model solves the equations of motion,
which include the influence of the micro-electret transducer. The output power charac-
teristics of the micro-electret transducer are then calculated as a result of these wearer
activities. The dynamic model shows that it is feasible to generate approximately twice
as much energy as a quartz watch consumes for a day of the median wearer.
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6.1. ADAPTATIONS TO THE EXPERIMENTAL PROTOTYPE

The findings of chapter 4 and chapter 5 show that the experimental prototype of the
micro-electret transducer works in line with model expectations. However, in its current
design, it is not yet directly applicable as a transducer inside a quartz watch. To get closer
to a design of an electret transducer that can be applied inside quartz watches, several
changes have to be made to the experimental prototype.

6.1.1. SUSPENSION

The experimental verification thus far is limited to the transducer itself. The mechanical
design has not been taken into account, and thus the experimental verification does not
include a watch rotor. The watch rotor is the component of a watch that consists of an
eccentric mass that rotates due to the motion of the wearer. An example of a watch rotor
can be seen in Figure 6.1. Watch rotors are usually suspended using small ball bearings.
These ball bearings are relatively cheap components that have large tolerances.

Figure 6.1: Photo of a Seiko AGS watch rotor.

As the tolerances of the electret transducer rotor need to be small, it would be good
to decouple the suspension of the watch rotor from the suspension of the electret rotor.
This can be done by connecting the watch rotor with the electret rotor through a gear
transmission. An added benefit is that the gear transmission can be used to amplify the
angular velocity of the electret rotor. A higher angular velocity of the electret rotor leads
to higher output power, as shown in chapter 4. Efforts can also be made to better inte-
grate the electret transducer inside a watch movement. In the experimental prototype,
the electret rotor is suspended using a micro ball bearing. Ball bearings are relatively
large and have large tolerances. For the forenamed reasons, jewel bearings should be
used to suspend the electret rotor. Jewel bearings are plain bearings made out of syn-
thetic sapphire or synthetic ruby. Jewel bearings are used in precision instruments where
low friction, long life, and dimensional accuracy are important, and have thus been used
in the watch industry for centuries to suspend moving parts. In Figure 6.2, a close-up
photo of a jewel bearing, and jewel bearings inside a mechanical watch is shown.

6.1.2. ELECTRODE SUBSTRATE
The substrate material of the prototype electrode is D263M glass. D263M glass has a
relative permittivity of 6.7, resulting in high capacitance. Replacing the substrate with a
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a. b.

Figure 6.2: Close-up photo of a jewel bearing made from synthetic sapphire (a) and jewel bearings inside a
mechanical watch movement (b). (Courtesy of Monochrome Watches [25])

high-frequency PTFE PCB substrate with a relative permittivity of 2 can reduce the ca-
pacitance by a factor of 2.6 [26]. The output power of electret transducers scales inversely
proportional to the capacitance, increasing the output power by a factor of 2.6 as well.

6.1.3. GRID VOLTAGE

Finally, a higher grid voltage can be used to increase the surface voltage of the electret,
and thus the electret charge density. This would result in Paschen’s limited design, the
ultimate limit of the induced charge. Maximizing the induced charge will lead to a higher
electromechanical coupling, and thus a larger output power.

6.2. DYNAMIC MODEL

A dynamic model is made to simulate how the unipolar micro-electret transducer would
perform inside a watch in combination with the mechanical design. The dynamic model
is structured around the equations of motion for the watch rotor. The watch rotor pa-
rameters of interest are the mass m, the eccentricity of the center of mass r;,;, and the
moment of inertia around its point of rotation I,,. For the watch rotor parameters, the
Seiko AGS eccentric proof mass is used as a reference. The parameters are shown in
Table 6.1.

Table 6.1: Rotor parameters used in the dynamic model.

Parameter Value Description

m 4.66 [g] Mass

'm 7.01 [mm] Center of mass relative to point of rotation
Iy, 293 [g-mm?] moment of inertia

The following equation of motion is to be solved.

Im-a=m-rpy-cos0)-ay—sin@)-ax— (cw, )+ cp) - sgn(w) (6.1)
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Where «a is the angular acceleration, 6 is the angle of the proof mass, a, is the ac-
celeration in the y-direction, and a, is the acceleration in the x-direction. The x- and
y-directions are defined according to the axis system fixed to the wrist shown in Fig-
ure 6.3. c(w, t) is the electromechanical coupling, ¢;, (w) is the mechanical damping, and
w is the angular velocity.

Figure 6.3: Axis system used in the dynamic model.

The acceleration data are collected using accelerometers attached to the wrist of a
test subject. Acceleration data acquired from computer work, walking, and running are
used to give an overview of the performance under different wearer activities. The elec-
tromechanical coupling can be calculated using the power extracted from the system by
the transducer.

_ P(w, 1)

clw, ) = (6.2)

The output power can be calculated for a given value of w and ¢ by plugging these
values into the transducer output current equation in chapter 4, adapted to include the
transmission ratio p. From this expression for the output current, the output power can
be calculated.

2ASonwp . . 2
TRC? n2w2p2 = (nwpRCcos(nwpt) - sin(nwpt)) = P(w, ) =i(w, ))°R
(6.3)
Cm is the mechanical friction due to friction losses in the system, which is approxi-
mated by comparing the impulse response of a watch rotor with the impulse response
of the model. In this way, a coulomb friction value of 154N m is found.
By numerically integrating Equation 6.1 with respect to time, w and 0 can be calcu-
lated. The numerical model is graphically shown in a flowchart in Figure 6.4. The goal
of this model is to find the transducer parameters that result in the largest output power

and to quantify this output power. There are several constraints to the design.

i(w,t) =
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* The outer radius of the generator r, should stay below 6 mm to ensure that the
transducer fits inside a watch movement.

» The gap distance z between the electret and the electrode should not be smaller
than 50um to ensure that tolerances necessary to manufacture the transducer are
not excessively stringent.

e The gear ratio p should stay below 20 to ensure that the gear transmission is not
excessively large or expensive to fabricate.

Start

v v v ’

Initialization of Define transducer Define watch rotor Load acceleration
variables parameters parameters data
t=0 ro,Ti, 1,2 R, Vg Im, 'm, m ax(t), ay(t)
a(0)=0 v
®(0)=0
6(0)=60 Calculate transducer’
cm=0 parameters

¢(0)=0

C, A, So

Solve equations of
motion

a(t), (1), 6(t)
\ 2

ti1 = ti+At S
i+ Calculate damping
& electromechanical

coupling

] m(to), o(tw)
Y

Calculate output

power
characteristics

I(t), T(t), P(t)

Figure 6.4: Flowchart showing the operations performed in the numerical model necessary to calculate the
output power characteristics.
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6.3. MODEL RESULTS

Through iteration, the micro-electret transducer parameters are adjusted between said
constraints to maximize the output power. The parameters that result in the highest
output power can be found in Table 6.2.

Table 6.2: Generator parameters that result in highest output power.

Parameter Value Description

To 6 [mm] Outer radius generator

T 2 [mm] Inner radius generator

g 10 [um] Gap between electrode pairs

p 20 [-] Gear ratio

n 50 [-] Number of electret segments

z 50 [um] Distance between electret and electrodes
R 1[MQ] Load resistance

Vs 600 [V] Electret surface voltage

In Figure 6.5, the voltage-time signal of the transducer can be seen for a ten-second
time signal of walking accelerations.

© [degrees|

wnp [rad]

20
=
=
N
20 ! | ! ! ! ! ! ! ! ]
0 1 2 3 4 5 6 7 8 9 10
Time [s]

Figure 6.5: Time signals of the optimized electret transducer during the walking motion. Top: Angular dis-
placement of the watch rotor (©). Middle: Angular velocity of the electret rotor (wnp). Bottom: output voltage
of the electret transducer (Vyyz).

A quartz watch movement uses approximately 3uW of power [8]. This amounts to an
energy usage of 259 mJ per day. This means that the electret transducer should generate
259 m] in a day on average to ensure that the watch will keep running. Using these data,
the time it takes to practice activity to recharge the watch battery can be determined.
The result can be seen in Table 6.3.
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Table 6.3: Output power and time to recharge the battery per day based on the wearer’s activity .

Activity Output power [LW] Time to recharge battery hours per day
Computer work 8.78 6.3

Walking 22.3 2.5

Running 447 0.12

Johansson et al. studied the time spent on certain activities through a cross-sectional
analysis of accelerometer data from 1670 adults. It was found that the median time walk-
ing, running, standing, and sedentary was 82.6, 0.1, 182.5, and 579.1 min/day, respec-
tively [27]. If it is assumed that the power generated by the transducer during computer
work is the same as for standing and sedentary, a calculation can be made of the total
energy generated in a day.

Eday = Pcomp. “fecomp. + Puaik.* twaik. + Prun. - trun. = 514mJ (6.4)

Where Eqqy is the energy generated in an average day of wearing the watch, Peomp.,
Pyaik., and Py, is the average power generated whilst doing computer work, walking,
and running respectively. tcomp., fwalk., and &, are the average times spent doing com-
puter work, walking, and running respectively.

It is found that an average of 514 m] is generated, which is approximately double the
necessary energy to power a quartz watch. This shows that the unipolar micro-electret
transducer is a viable transducer for powering quartz watches. In Figure 6.6, a visualiza-
tion of the electret transducer including the watch rotor, the gear transmission, and the
jewel bearing suspension is shown. The outline of the total size of the watch movement
is shown as the semi-transparent footprint.

Figure 6.6: Render of the energy harvester containing the micro-electret transducer using optimized parame-
ters highlighting the component showing the watch rotor (1), the micro-ball bearing (2), the gear transmission
(3), the jewel bearing suspension of the electret rotor (4), the electret rotor & electrode stator (5) and the outline
of the whole watch movement (6).






REFLECTION, CONCLUSIONS, AND
RECOMMENDATIONS

This chapter provides an overview of all activities performed throughout this research.
The entire process is being reflected upon and the most important conclusions are drawn.
Furthermore, future research recommendations are listed.
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7.1. PROJECT OVERVIEW

To get a clear overview of the entire process of this thesis, the main research activities
and their relations are shown in an overview in Figure 7.1.
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Figure 7.1: Overview of activities during the project. Green indicates the main focus of this thesis, which is also
the topic of the literature review, blue indicates the research activities, and yellow indicates articles.
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7.2. LEARNING PROCESS

The start of the thesis project was difficult. The topic for the literature review was hu-
man motion energy harvesting for quartz watches. During the literature review, an ef-
fort was made to categorize energy harvesters and describe the essence of their working
principles. Very quickly it was found that the field of energy harvesting is broad, and fur-
ther sectioning of the thesis works had to be done. The decision was made to focus on
the transduction mechanism, as this is the most fundamental component of an energy
harvester, and because there are clear limitations of the current designs that could be
improved upon.

From the literature review, electret transduction was identified as a promising alter-
native to conventional electromagnetic transduction. As electret transduction was only
a small part of the literature review, a lot of time was spent getting familiar with the the-
ory and the state of the art of electret transduction. If a narrower focus was made earlier
in the thesis project, a lot of time could have been saved, as much of the research per-
formed for the literature review was not directly applied in the thesis.

A start was made by finding an accurate way to model the performance of electret
transducers to see whether they would be promising alternatives for the electromagnetic
transducer. The limitations of the conventional models for micro-electret transducers
quickly became apparent. This led me to develop the novel model. This was a relatively
straightforward process. Developing the unipolar electret concept, and then verifying
it experimentally through a prototype was significantly more challenging. Going from
concept to prototype took numerous changes to the design, experimental set-ups, and
changes to the manufacturing process.

7.3. UNSUCCESSFUL ATTEMPTS

There were several unsuccessful attempts in fabricating the corona charging set-up. First,
a corona charging set-up was made in which the steel ground plate could not be re-
moved from the charging set-up. This made removing the charged sample very difficult,
as the electrostatic forces attracted it to the ground plate. The ground plate was also
not smooth enough to ensure that no air gaps were present between the sample and
the ground plate during charging, which is why a silicon wafer was added between the
charged sample and the steel ground plate. It was also found that one needle does not
lead to an equal charge distribution on the sample, which is why an array of needles was
used instead. Finally, to charge individual rotors, the set-up had to be altered again to
ensure the ground on which the rotor was charged was shielded off to prevent a direct
path to the ground for the corona discharge ions.

For the electret rotor, an attempt was first made to use a silicon oxide/silicon nitride
double layer as an electret, as it showed promising results in published literature. There
was no success in replicating the reported results, and the electret properties of the fab-
ricated silicon oxide/silicon nitride double layer were disappointing. This caused a lot
of delays, as the time it took to go from a concept to a fabricated wafer took months.
After the initial failure, CYTOP was used instead. Luckily, the results using CYTOP were
promising, and the unipolar electret concept using CYTOP was successful.

For the electrode rotor, a lot of trial and error was necessary to find the exact laser
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parameters to pattern the copper layer. This was a time-consuming and headache-
inducing process. A lot of samples were damaged in the process and thus not useful.

When making the 3D-printed base, multiple prototypes were necessary to reach a fi-
nal design. First, a base was designed in which the electrode stator would be press-fitted.
This was unsuccessful, as the electrode stator is too fragile to be press-fitted. Then, a
small spring steel flexure was fabricated instead and form-fitted into the base. The steel
flexure delivers a nesting force, wedging the stator in place against two pins.

When measuring the output power characteristics of the micro-electret transducer,
a stepper motor was first used to induce the rotation of the electret rotor. This stepper
motor created a lot of noise in the output voltage signal. Therefore, a rheometer was
used instead, as it uses a motor that can induce a very smooth and precise rotation of
the electret rotor. This removed the noise in the measured signal.

An oscilloscope was used to measure the output voltage. However, because the in-
ternal resistance of the oscilloscope was just 1MQ, which is in the same order as the
load resistance, accurate measurements were not possible. For this reason, a USB-6211
DAQ by National Instruments was used to record the output voltage, which has an inter-
nal resistance of more than 10GQ. The DAQ allowed for successfully logging the voltage
output of the micro-electret transducer.

7.4. CONCLUSIONS
The research objective as stated in the introduction is as follows.

Design, model, and experimentally verify a microfabricated electret transducer that
can be used to power a quartz watch.

The research objective has been achieved, by answering the two research questions.
The first research question is as follows.

How to accurately model and predict the output power characteristics of a micro-
electret transducer?

* One-dimensional electrostatic models have been developed to predict the output
power of electret transducers. However, for micro-electret transducers, fringing
fields play a large role in the electrostatic domain. To be able to more accurately
predict the output characteristics of micro-electret transducers, a novel electro-
static model has been proposed which accounts for fringing fields. The novel
model is verified experimentally by comparing the novel model predictions with
the output power characteristics of a fabricated micro-electret transducer for var-
ious angular velocities and load resistances. There is a close resemblance of the
time signals, and the magnitude of the RMS output power is overestimated by a
factor of two. This is a significant improvement compared with the conventional
model, which overestimates the output power of the same micro-electret trans-
ducer by a factor of fifteen.
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The output power of an electret transducer needs to be maximized to ensure that the
transducer can generate enough energy to power a quartz watch. This led to the second
research question.

How to maximize the output power of a micro-electret transducer?

* A design of a novel unipolar micro-electret transducer is proposed. The novel
unipolar concept allows the micro-electret transducer to embed charges of only
one polarity, increasing the output power of the micro-electret transducer. The
unipolar electret concept is verified experimentally by measuring the chargeabil-
ity and decay over time. Charge patterning with the unipolar electret has been
successful and stable charge on electret segments down to a width of 100 um has
been achieved. An electret rotor is charged to 354 V on average, resulting in an av-
erage charge density of approximately 62uC/m?. The average charge decay over
a period of 28 days is found to be less than 5%, outperforming conventional elec-
trets. A micro-electret transducer is fabricated according to the unipolar electret
concept. The fabricated micro-electret transducer achieves a voltage amplitude of
10.8 V and an RMS output power of 17.7 uW at an angular velocity of 20 rad/s
at matched load.

Finally, to see whether the unipolar micro-electret transducer can perform well in-
side a quartz watch, a dynamic model is made which uses the accelerations of a wearer
as input. The dynamic model shows that a unipolar micro-electret transducer can gen-
erate an average of 514 mJ per day, which is approximately double the necessary energy
to power a quartz watch. This shows that the unipolar micro-electret transducer is a
viable transducer for powering quartz watches.

7.5. FUTURE RESEARCH RECOMMENDATIONS

When it comes to micro-electret transducers, there is much work to do before they have
practical implementations. Several research topics are listed below, that have been iden-
tified throughout the thesis project.

7.5.1. NOVEL MODEL

 Increase the applicability of the novel model: The novel model is found to make
significantly more accurate predictions of the output power characteristics of micro-
transducers where the value of r is smaller than ten. When the value of r gets
larger, the sine fit is not a good approximation of the charge distribution. To make
the model more broadly applicable, several Fourier series terms can be taken into
account with an amplitude dependent on the value of r. This would result in a
charge distribution waveform that changes shape from a sine wave to a square
wave as the value of r increases, making the model applicable for electret trans-
ducers of all values of .
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7.5.2. ELECTRET
* Investigate the cause of the initial charge decay of the unipolar electret: It was
found that after charging unipolar electrets, a very rapid charge decay occurs, re-
sulting in a stable surface voltage of about one-third of the grid voltage. The reason
for this initial charge decay cannot be attributed to the electric field strength, as
discussed in chapter 5. More work has to be done to understand what is the cause
of this 'floating charge’ and how to mitigate it.

* Research of long-term charge stability: Charge stability has been explored over a
time period of about one month. This is not representative of the intended lifetime
of the electret transducer, which should be several years. Longer-term testing of
the charge stability, or accelerating the charge decay through thermally simulated
discharge (TSD) can be performed to get a better insight into the long-term charge
stability of the unipolar electret.

» Explore alternative applications of unipolar electret application: The unipolar
electret concept has been applied for the purpose of micro-electret transducers,
but a unipolar electret could be applied in other fields as well, such as sensing, air
filters, and grippers utilizing the electrostatic force.

7.5.3. TRANSDUCER DESIGN

* Parameter optimization: Most of the effort in the design of the micro-electret
transducer has gone into maximizing the induced charge, in order to achieve the
highest possible output power of the transducer. One element which has not been
covered extensively in this thesis is the optimization of the dimensional parame-
ters of the electret transducer. A significant increase in output power is expected
when the dimensional parameters of the electret-transducer design are optimized
in combination with the mechanical design of the energy harvester.

* Experimental set-up incorporating the mechanical design: In chapter 6, the out-
put power of the energy harvester consisting of the transducer in combination
with the mechanical design is predicted through means of a numerical model.
Only the transducer has been experimentally verified. In the numerical model,
several simplifications are made, regarding frictional losses for example. The im-
pact of these simplifications on the resulting output power has not been checked.
An experimental set-up incorporating the mechanical design would allow for a
better prediction of the output power of the energy harvester.

7.5.4. LARGE SCALE FABRICATION
* The findings of the dynamic model show that the energy harvester containing the
micro-electret transducer has an output power high enough to power a quartz
watch. But before the micro-electret transducer can be successfully applied to
power quartz watches, low-cost large-scale fabrication needs to be possible. This
is not the case with the manufacturing methods used in the prototype.

— For the electrode stator, the problem with the prototype fabrication method
is the need for expensive laser cutting equipment and the bad scalability due



7.5. FUTURE RESEARCH RECOMMENDATIONS 75

to long laser cutting times, on the order of an hour per electrode. PCB fab-
rication methods can be used to fabricate interdigitated electrodes at high
throughput at low cost. This would omit the time-intensive laser ablation
step. This would also improve the performance by reducing the parasitic ca-
pacitance, as stated in section 6.1

For the electret rotor, there are multiple problems with the prototype fabri-
cation method.

1. The expensive substrate material: The borofloat 33 ultra-thin glass wafers
are expensive at 52.01$ per wafer [28].

2. Time-consuming cleanroom fabrication: Coating and patterning of the
CYTOP electret layer is time-consuming and expensive. Due to the trans-
parent substrate, manual loading of the wafer is necessary, resulting in
a lot of expensive manual labour. The need for multiple layers of spin
coating CYTOP in combination with the long baking time also results in
along processing time.

instead of spin coating CYTOP on ultra-thin glass wafers in a cleanroom, and
then patterning using lithography and etching, polymer inkjet-printing can
be used. This would allow for printing of CYTOP on glass sheets in mere sec-
onds, instead of a fabrication time of multiple hours per wafer. An important
dimensionless number for inkjet printing is the Ohnesorge number. In inkjet
printing, liquids whose Ohnesorge number is less than 1 and greater than 0.1
are jettable.

Oh=—Hd (7.1)
VPoDg
Where Oh is the Ohnesorge number, yp is the dynamic viscosity of the liquid,
p is the density of the liquid, o is the surface tension and Dy is the droplet
diameter. In Table 7.1, the properties of CYTOP solution are shown.

Table 7.1: CYTOP solution properties.

Parameter Value Description

Ha 20-2000 [mPa s] [29] Dynamic viscosity
0 2 [kg/m3] [29] Density

o 13.4 [mN/m] [30] Surface tension

When 20 mPas is taken for the dynamic viscosity, and a droplet diameter
D, of 100 um is chosen, the Ohnesorge number is 0.3835. This shows that
inkjet printing is a promising alternative production method and should be
explored further.
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APPENDICES






THEORY AND MODELLING

In this chapter of the appendix, the background theory used to develop the novel model
and the detailed design of the micro-electret transducer is discussed more extensively. First,

the properties of electrets are discussed. Then, methods of charging electrets are covered.
Finally, the theory governing the electrostatic domain is explained in detail.
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A.1. PROPERTIES OF ELECTRETS

An electret is a dielectric material able to hold a quasi-permanent electrical charge. If
there is a non-zero charge, or if charges are not compensated everywhere in the ma-
terial, the electret produces an external electric field. This field can be used to induce a
charge on a conductor. Many different types of electrets, electret materials, and charging
methods exist. In this section, the properties of electrets are explained.

A.1.1. TYPES OF ELECTRETS
Electrets can be subdivided into several categories, based on the way they influence the
electric field.

* Real charges: Real charge electrets are electrets that have an excess implanted real
charge. These can be either positive or negative charge carriers. These implanted
charges are trapped in so-called energy traps. A trap consists of either a chemi-
cal impurity or an imperfection in the regular spacing of the atoms that make up
the solid. The depth of this trap is the height of the energy barrier that the charge
carrier has to overcome to escape the trap. Real charges are typically trapped in
surface or bulk levels located in the energy gap between the valence and conduc-
tion band. The implanted charges can occur at the surface of an electret, in the
volume, or a combination of the two.

 Polarization charges:

— Molecular polarization charges: When a dielectric is composed of polar molecules,

they are randomly oriented in the absence of an electric field. If an electric
field is applied, polar molecules will align with the field against the thermal
drifts. To create permanent polarization, an electric field has to be applied
whilst the temperature is increased to above the glass-transition tempera-
ture. This will cause the molecules to align with the electric field. If the tem-
perature is then decreased again whilst still applying the electric field, the
polarization is frozen and shows slow thermal decay [31]. In the early days,
electrets were made of wax-based materials, such as carnauba wax, which
were poor in thermal stability [32].

— Electronic polarization charges: Non-polar materials can be polarized by
the electric field produced by their own real charge distributions. This field-
induced polarization is due to the orientation of atomic dipoles in the dielec-
tric. This is the reason why the relative permittivity €, is always greater than
1, even in non-polar materials.

For all types of electrets, the general expression for the electric displacement is the
following.

D=¢E+P (A1)

Where D is the electric displacement field, E is the electric field, and P is the polar-
ization. P is a result of the permanent field-independent polarization f’perm, and the
induced polarization P; .
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(a) Surface charge. (b) Volume charge. (c) Polarization charge.

Figure A.1: Schematic representation showing several different types of electrets.

f’ = f)perm + f,ind (A.2)

The field in an electret E can thus be found by knowing P ¢, and P;,4, and by ap-
plying Gauss’ law for a dielectric.

f DdS = Qune (A.3)

Where Qg is the sum of all the real enclosed charges. For electrets that only have
real charges, all polarization charges are self-induced, and when assuming that the elec-
tret is a homogeneous, linear, non-dispersive, and isotropic dielectric medium, the self-
induced polarization can be found using the following equation:

Pina = xeoE (A.4)

Where y is the electric susceptibility, defined as y = €, — 1. This means that for real
charge electrets, the electric displacement can be easily found, as the permanent polar-
ization charge is equal to zero: f’per m=0.

ﬁ=€0E+f)ind =€0E+(€r—l)€0E:€0€rﬂ (A.5)

Equation A.5 can be used to find an expression for the charge as a function of the
electric field at the interface between two different materials. The difference between the
electric displacement at the interface between the two materials is equal to the charge:

D; — D2 =¢€g€;,1E1 —€o€r2Ex = 01,2151 (A.6)
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Figure A.2: Materials of different relative permittivity e, with a surface charge at the interface.

Equation A.6 is applied in section A.2 to derive the electric fields in the regions around
real charge electrets with surface charge density.

A.1.2. ELECTRET MATERIALS
Many types of dielectric materials can be employed as electrets. Electret materials can
be broadly divided into two categories; organic and inorganic electrets.

* Organic electrets consist of organic molecules, usually polymers. The charge stor-
age capacity is determined by the chemical structures, composite ratio, and mor-
phology of the charge trapping electrets [33]. A few examples are organic polymer
electrets such as PTFE (Teflon), Cytop, and Parylene HT.

* Inorganic electrets are a more novel field of research. Two of the most promising
inorganic electret materials are silicon oxide, and silicon nitride, or a multilayer
combination of said materials. In inorganic electrets, the charge traps are associ-
ated with defects in the electret layer [34].

Electrets are typically thin films, ranging from 100 nm to 100 pum in thickness, de-
pending on the material and the deposition method used. Organic electrets are usually
spin-coated onto a conductive substrate. Inorganic electrets such as silicon oxide and
silicon nitride are deposited using chemical vapor deposition (CVD). Some popular di-
electric materials with relevant properties are shown in Table A.1. In the following sec-
tions, the properties will be explained in more detail.

Because the energy harvester will be fabricated using MEMS-compatible cleanroom
processes, inorganic electret materials are seen as favorable. Namely the SiO,/SiN,
double layer electret. The properties of such inorganic electrets will be explained further.

A.1.3. CHARGE DENSITY

The charge density is an expression of the amount of charge that can be stored in an
electret. When talking about surface charges, the unit is C/m?. When talking about
volume charges, the unit is defined as C/m3. The maximum charge density that can be
achieved is constrained by several limits.
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Table A.1: Parameters of several electret materials [32].

Material Dielectric Dielectric Strength Max. Operating Surface Charge

Constant (V/um) Temperature (C) Density (mC/m?)
PTFE 2.1 11.22 260 0.1
SiO./SiN, 3.9/75 500 1700 13.5
Cytop 2.1 110 350 1.5
Parylene-
HT 2.17 204.58 500 3.69

* Dielectric breakdown: The dielectric strength of the electret poses an upper limit
on the charge density. When the electric field that results from the charge exceeds
the dielectric strength of the material, the electrical current breaks through the
material and the charge escapes the electret.

L]

External breakdown: Electrets are used in freestanding energy harvesters to in-
duce a charge on an electrode. This is done by generating an electric field in the
space between the electret and the opposing electrode. When this electric field be-
comes too large, the air will break down and the electret will discharge. Paschen’s
law describes this phenomenon, and the breakdown voltage as a function of the
gap distance can be seen in Figure A.3. The equation for the breakdown voltage
can be seen below.

apg

=P A7
In(pg) +p A

Vmax

Where V4 is the breakdown voltage, a, and § are two constants depending on
the composition of the gas, p is the atmospheric pressure, g is the gap size. For
ambient atmospheric conditions (ambient air O, (20%), N»(80%)), the pressure p
is equal to 1 atmosphere, a is equal to 43.6 E6V /(atm - m), and § = 12.8 [35, 36].
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Figure A.3: External breakdown voltage as a function of the gap size, according to Paschen’s law in air at atmo-
spheric pressure.

A.1.4. CHARGE STABILITY

An important metric for the performance of an electret is charge stability. The time scale
of the discharge of the electret needs to be larger than that of the lifetime of the device
to function properly. When this is not the case, the performance of the device degrades
during use. Charge stability of electrets is a large focus and many papers have been pub-
lished reporting on the discharge mechanisms, and the methods to improve charge sta-
bility.

To understand charge stability, one must first look at the ways for an electret to dis-
charge. At room temperature, the thermal energy alone is not enough for charge carriers
to escape their charge traps. However, all electrets still slowly discharge, with half-lives
ranging from several days to hundreds of years [37]. This discharge at room temperature
is mainly due to two processes.

* Humidity: Water vapor in the air is attracted to the electret surface. This is due to
two reasons. Water is attracted to hydrophilic silicon oxide bonds at the surface
of the electret and due to the electric field that attracts water due to its bipolar-
ity. This water is then absorbed by the electret surface and increases the surface
conductivity. This increased surface conductivity decreases the energy trap depth
which causes the charge carriers to move into the conduction band and dissipate
[34, 38].

* Airions: Ions in the air with an opposite charge of the electret surface are attracted
due to the generated electric field. The ions with opposite charges in turn mask the
charge and thus neutralize the electric field.
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A.2. ELECTRET CHARGING

A.2.1. CHARGING METHODS

There are multiple methods that can be used to charge an electret. The methods covered
in this section are methods that are compatible with MEMS fabricated micro-electrets,
in a highly controlled environment.

* Corona charging: The most well-established and reported method to fabricate
electrets is through corona charging. This method uses a needle at a high voltage
(on the scale of multiple kVs) to create a corona discharge. Corona discharge is
the creation of plasma due to the high electric field in the vicinity of the needle.
The plasma zone of the corona extends only a few millimeters in the direction of
the electric field. Outside this region, uni-polar ions produced in the plasma are
transported by the electric field [39].

If the electret is positioned between the ground and the needle, the uni-polar ions
generated by corona discharge are accelerated to the surface of the electret due
to the electric field. These ions then come into contact with the surface, and the
charge is embedded in the surface of the material.

The corona charging method has merits including a simple set-up and a short time
for reaching the desired surface potential.

* Electron beam: One method to manufacture an electret is through the injection of
amonoenergetic particle beam (e.g., electron beam) that has a smaller wavelength
than the thickness of electret films. This method has been shown to produce re-
liable electrets. The high resolution that can be achieved makes electron-beam
charging a more reliable and also more convenient method of obtaining electrets
with better control over charge density, lateral charge position, and most impor-
tantly its control over the depth of the charge in the electret. The latter is related to
the range of the electrons in a material which, in turn, depends on the beam en-
ergy. The depth of the charge is an important factor with respect to charge lifetime
(40, 41].

 Soft X-ray charging: A novel charging method has been proposed to improve the
compatibility of electret-based devices with available MEMS techniques. Soft X-
ray radiation of high energy (up to tens of keV) can be used to charge electrets
inside MEMS devices after fabrication. Soft x-rays can penetrate the assembled
device and ionize the air inside the device. These ions are then attracted to the
surface of the electret by applying a bias voltage across the electret [42, 43]. The
method with which the charges are trapped inside the electret is similar to corona
charging.

All the methods mentioned above are suitable methods to embed the charge in the
electret for the application of electret-based energy harvesters. For the reasons of sim-
plicity and the availability of the equipment, corona charging is chosen as the most fa-
vorable method.
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A.2.2, PHYSICS OF CORONA CHARGING

In this section, the theory that dictates the properties of electrets when manufactured
using corona charging will be explained in depth. As mentioned in subsection A.2.1,
corona charging is performed by applying a large voltage to a needle leading to corona
discharge. When the electret is then put on a grounded substrate, the ions generated by
the corona discharge are accelerated towards the electret surface by the electric field. To
generate corona discharge, a large voltage has to be applied (on the scale of several to
tens of kVs). If the charging would be left to go uninterrupted, the charge density and
the charge uniformity will be difficult to control.

To improve the charge distribution uniformity and to have better control of the mag-
nitude of the charge density, a grid is inserted between the discharge needle and the
sample. A potential Vg is applied to the grid, which is lower than the corona discharge
needle potential V.. A schematic of the charging set-up is shown in Figure A.4.
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Figure A.4: Corona charging.

The role of the grid is to regulate the charge density on the surface of the electret.
During charging, ions are accelerated from the needle through the grid towards the sur-
face of the electret. But as the surface of the electret charges, the surface voltage V; in-
creases. When the surface voltage of the electret approaches the grid voltage, the electric
field E, between the grid and the electret approaches 0, and ions stop being accelerated
towards the surface. This ensures that the surface voltage of the electret is equal to the
grid voltage after significant charging time.

V=V, (A.8)

The relation between the surface voltage Vi of the electret after charging and the
surface charge density of the electret o can be easily found by applying Equation A.6.
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€o€qEg—€oEs =0 (A9)

Where €, is the relative permittivity of the dielectric and E, is the electric field inside
the dielectric. As E, is zero and E; is equal to %, Equation A.30 reduces to the following
equation:

€o€; V. €oegVs  €0€rV,
eoedEdz%za:a: 0(‘; Sz% (A.10)

Rearranging this gives an expression for the surface charge density, as a function of
the relative permittivity of the dielectric €4, the grid voltage V¢, and the electret thickness
da.
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Figure A.5: After Corona charging.

A.2.3. MEASUREMENT OF IMPLANTED CHARGES
The surface potential measurement is done using an electrostatic voltmeter (ESVM). An
ESVM is used as it allows for measuring the surface potential without being in physical
contact with the electret. This non-invasive measurement method allows for surface po-
tential measurements without discharging the electret. Electric potential and/or charge
is detected by the voltmeter by the means of non-contact capacitive coupling between
the voltmeter electrode and the electret surface. A vast majority of ESVMs use a vibrat-
ing grounded conductor that periodically shields the probe electrode from the electric
field generated by the electret. This causes the induced charges on the probe electrode
to be modulated, and an AC voltage signal is created in the probe. This technique is used
since it allows for fast and accurate measurements. A DC voltage V,, is applied to the
probe electrode, which is increased until the probe electrode is at the same potential as
the electret surface. When this happens, the electric field in air E, drops to zero, and no
more charge is induced on the probe electrode, so no AC voltage is observed. Accord-
ing to Kirchhoff’s voltage law, the ESVM measurement voltage V;, is then equal to the
surface voltage of the electret V;. In Figure A.6, a schematic of the ESVM measurement
set-up is shown.

If the distance between the probe electrode and the electret surface z increases, fring-
ing fields start to play more and more of a role in measuring the surface charge of small
features, such as narrow patterns of charge. A general rule for accurate measurement is
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Figure A.6: Electrostatic voltmeter.

that the distance z much be significantly smaller than the size w of the feature that you

try to measure, in order to get an accurate reading.

ifw>z,Vi=Vy

(A.11)
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A.3. ELECTRODE CAPACITANCE CALCULATION

The electrode capacitance is an important parameter for the performance of an electret
transducer. It is important to be able to make an accurate estimation of the electrode
capacitance in the early design phase. To be able to do this, the conformal mapping
method as described by Igreja et al. is adapted to fit rotational interdigitated electrodes
[44].

An important parameter, for the electrode capacitance, the 'metalization factor’ 7, is
the ratio of the surface which is covered by electrodes and can be calculated as follows.

w

n= (A.12)
w+g

Where w is the width of an electrode strip and g is the gap between the electrodes.

Because the width of an electrode strip w is not constant for rotational electret transduc-

ers, as is also shown in chapter 4, this equation has to be adapted.

Ti

Figure A.7: Parameters used to calculate the capacitance for a rotational interdigitated electrode.

First, the inner and outer width w; and w; of the individual electrode segments can
be calculated respectively using the number of electrode pairs #, the gap size g, and the
inner and outer radius r; and r,. The parameters necessary in the calculation can be
seen in Figure A.7.

27r; 27T,

w;=——-— Wy =
! 2n § ° 2n

Using the inner electrode width and the outer electrode width, the metalization can
be calculated by integrating the expression for ) along the width of the electrode seg-
ment.

-g (A.13)

1 Wo + .
n=——— ndw=1+ g log(g i
Wo— Wi Ju, Wo — Wi g+ w,

) (A.14)

Then, the modulus of the elliptical integral can be calculated for the internal and
external capacitance contribution.
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k= sin(?) (A.15)

Using the elliptical integral, Cy, half the capacitance of one interior electrode relative
to the ground potential can be calculated.

K (k)
K(K")

Cr=eoleg+1)L (A.16)

Where K (k) is the complete elliptic integral of the first kind with modulus k, k' the
complementary modulus, k' = /(1 — k%) and L is the length of the interdigitated elec-
trodes, which is equal to the outer radius minus the inner radius: L = r, — r;. Using net-
work analysis to evaluate the equivalent circuit, one finds the total capacitance between
the two electrodes is found to be equal to the following expression.

C=n(Cy (A.17)

Where 7 is the number of electrode pairs.

A.4. INDUCED CHARGE

A.4.1. CONVENTIONAL ELECTRETS

In most research describing electret transducers, the focus is on increasing the surface
charge density of the electret. However, in the context of electret transducers, this focus
on surface charge density is misleading. For electret transducers, the charge induced by
the electret, not the surface charge of the electret, is to be maximized. For conventional
electrets that use a conductive substrate, most of the charge is induced on the silicon
base electrode, instead of on the counter electrodes. This induced charge is 'idle’ and
does not aid power generation. The charge induced by a conventional electret on a con-
ductive substrate is graphically represented in Figure A.8.

Conductive substrate

+ + +0i +
Counter electrode

Figure A.8: Conventional electret.
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Where z is the distance between the electret surface and the counter electrode, d is
the electret thickness, o is the electret surface charge density, o; is the counter electrode
surface charge density and o is the substrate charge density.

An analytical expression for the induced charge can be made by assuming that the
electric field outside of this system is zero, E = 0. This means that the substrate and the
counter electrode are at ground potential. If this hypothesis is not met, analytical model-
ing is not possible as the induced charges will be ill-defined. To ensure that the substrate
and the counter electrode are at ground potential, they can be grounded together, en-
suring that the analytical expression is accurate.

When looking at a 1-Dimensional situation, the contribution of each charge density
to the field in air is equal to the following expression.

Ox

Ey, = — (A.18)
26()

Using this expression, the net field outside the system can be calculated

_ O+0;+0;
Ey=—— (A.19)
260

As the electric field is zero outside the system, the sum of all charge densities is equal
to zero.
o+05;+0;=0 (A.20)

Equation A.18 can now be used to calculate the electric field inside the electret, E,
and the electric field inside the air E,

_0s—0—0;
Ej=—— (A.21)
2€0€4
_0;—0—05
Ej=— (A.22)
260

By filling in Equation A.27 into Equation A.21 and Equation A.29 and rearranging, the
following expressions can be found for the electric fields.

O —0—0;
Eg= =—2 (A.23)
€0€4q €0€4
gj
a= .
E A.24
€o

Because the substrate and the counter electrode are grounded, their potentials are
equal. From this, an expression can be made for the induced charge.

od

V,-:Vd=>Ea-z:Ed-d=>0i=—d+€dZ

(A.25)

For the analyzed electret energy harvesters, the induced charge is a factor 14-21 smaller
than the surface charge of the electret [45-47].
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A.4.2, UNIPOLAR ELECTRET CONCEPT
To improve the performance of conventional electret transducers, Boland et al. sug-
gested increasing the thickness of the electret for an increased performance [48]. In-
creasing the thickness is not a good idea, as it leads to larger stresses, risk of cracking, bad
charge stability when charging up to the breakdown limit [49, 50], and does not solve the
issues with discharge in air due to tolerances, manufacturing defects, and deflections.
Abetter method to increase the maximum surface charge is by removing the conduc-
tive back plate from the electret. By removing the conductive backplate, o will be equal
to 0 and all the charge will be induced on the counter electrode. In such a situation,
o; = —0o. An added benefit of this is that the electric field inside the air will be constant,
irrespective of gap size.

ds

+4++++++++++

- Counter electrode

Figure A.9: Novel electret schematic.

For the unipolar electret concept, the induced charge o; can be calculated as a func-
tion of the electret surface charge o using Equation A.18 as is done for the conventional
method. The difference this time is that there is no substrate charge o. s

Using Equation A.18, the net field outside the system is equal to

O+0;
0:

A.26
260 ¢ )

As the electric field is zero outside the system, the sum of all charge densities is equal
to zero.

o+0;=0 (A.27)

Rearranging, shows that the induced charge is equal and opposite from the electret
surface charge:

oi=-0 (A.28)

Equation A.18 can now be used to calculate the electric field inside air E,
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_ o;—0 _ (o]
E,= =— (A.29)
2€0 €0

During corona charging, the surface charge can be calculated according to the same
method as in subsection A.2.2, but now we have to account for the effect of the dielectric
substrate.

The relation between the surface voltage V; of the electret after charging and the
surface charge density of the electret o can be easily found by applying Equation A.6.

€o€qEqg—€oEqa=0 (A.30)

Where € is the relative permittivity of the electret and Ej is the electric field inside
the electret. As E, is zero, Equation A.30 reduces to the following equation:

o =¢cpeqE, (A.31)

Where Vg, is the substrate voltage, the only unknown in the equation. An expression
can be found for V¢ when looking at electric displacement at the interface between the
electret and substrate. The difference between the electric displacement at the interface
between the two materials is equal to the charge, which for the interface between the
dielectric substrate and the electret substrate gives the following expression:

V.
€0€qEg —€o€sEss = 0ss = €€ Eg = €o€sEss = 0 = €O€d§ (A.32)
N

As there is no charge o, at the interface between the electret and the substrate, the

electric displacement fields are equal in both layers. Where ¢; is the substrate relative

permittivity and Ej; is the electric field inside the substrate. Replacing the expressions

for the electric field with the potential difference divided by the layer thickness, the fol-
lowing equation is found.

Vg — Vss Vs

eoedT = €0€sd— (A.33)
S

Rearranging gives the following expression for the substrate voltage Vi

€0€q Vg

VSS:g—
€0€d | €0€s
a=z=+=7%)

(A.34)
Plugging this result into Equation A.32, yields the following expression for the electret

surface charge o, as a function of the electret and substrate thickness and properties.
Vg€o€g€s

— o T4 A.35
des +dgeg ¢ )






DETAILED DESIGN AND
FABRICATION

In this chapter, several design and fabrication details will be covered which have not been
discussed in the main body but are still useful to people interested in designing and fabri-
cating electret-transducers.
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B.1. ELECTRET MATERIAL

Initially, a silicon oxide/silicon nitride (SiOy/SiNy) double layer was chosen as electret
material. This decision was made due to the high charge stability, MEMS-compatible
manufacturing, and straightforward fabrication. However, the chargeability and the charge
stability of the fabricated SiO,/SiN, electret layers were found to be insufficient. The
reason for the bad performance can most likely be attributed to the material properties
of the deposited layers, which are highly dependent on the deposition parameters. The
electret properties of the layers are largely dependent on the material properties.

After recognizing the shortcomings of the fabricated SiO,/Si N, electret, CYTOP (CTL-
M), hereafter abbreviated to CYTOP, is chosen as the electret material due to the reliable
electret properties of CYTOP, including high charge stability. CYTOP is a fluoropolymer
and can be spin-coated on top of the substrate. In CYTOP, the charge trapping capa-
bility is strongly related to the end group [51]. Multiple types of CYTOP exist, with the
difference being the end group. Kim et al. have shown that CYTOP has superior charge
stability and chargeability, owing to the deeper charge traps [52]. For this reason, CYTOP
is selected. The molecular structure of CYTOP can be seen in Figure B.1.

CTL-M 0—CHs
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Figure B.1: Molecular structure of CYTOP (CTL-M). (Courtesy of Kim et. al [52])

The rotor consists of a glass substrate wafer of a thickness of only 100 um with 4um
thick CYTOP segments oriented radially. The rotor is charged using a corona charging
set-up. During charging, charge will be deposited on the glass substrate as well as the
CYTOP segments, but because the glass substrate has a very low trap density and a rela-
tively high conductivity, the charge will dissipate quickly. This leaves only the embedded
charge on the CYTOP segments.

This is shown in graphically in Figure B.2. Right after charging, the surface voltage
Vs is equal, and because of this, the CYTOP and the glass have surface charge o and
o ss respectively, which can be calculated according to Equation A.35 and Equation A.10
respectively. Because the capacitance of the substrate layer is thinner than that of the
CYTOP-substrate double layer, o, has a sligthly higher charge density, this unstable
charge dissipates quickly however.

B.2. ELECTRET CHARGING

A render of the charging set-up of the wafer is shown in Figure B.3. The wafer is clamped
onto a ground plate by a sleeve that also holds the grid. This ensures a good connection
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(a) Directly after charging. (b) When all the floating charge has dissipated.

Figure B.2: Surface charge of the CYTOP electret segments on top of a dielectric substrate.

Needle ﬁ

Ground
connection

Figure B.3: (a) Schematic of the charging set-up showing the main components. (b) photo of the needle array.

between the wafer and the ground plate. The ground plate is connected to the ground
through a spring that comes into contact with threaded ground connection. d

To ensure a constant distribution of charge across the whole surface of the wafer, it
was found that one needle was not sufficient, as this leads to a concentration of charges
on the surface of the wafer directly below the needle. Instead, an array of needles is used,
spaced 15 mm apart in a hexagonal pattern, as is shown in Figure B.3. The needles are
connected to each other by soldering them to a copper wire. This ensures that the resis-
tance between the voltage source and each needle tip is approximately equal. Therefore,
when applying a high potential, the corona discharge current is equal at all needles. This
is necessary to achieve an equal surface voltage across the sample. Two HCN 35 - 12500
FuG Elektronik power supplies are used that apply a voltage to the grid and the needle.

B.3. COPPER SPUTTERING OF THE ELECTRODE

For the electrode, D 263 M borosilicate glass is used as a substrate. Copper is sputter
coated on top of the glass substrate using an AJA sputter coater. An average thickness of
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312 nm was achieved, with a standard deviation of 38 nm over 10 samples.

B.4. LASER CUTTING

The laser cutting settings used in laser ablation and laser cutting be found in Table B.1.
The laser power must be low enough to ensure that the sample does not heat past 350
°C. At this temperature, thermal decomposition of CYTOP occurs and this may generate
hazardous substances such as hydrofluoric acid [29].

Table B.1: Lasea laser settings.

Substrate Lens Speed  Jump Speed Burst Burst Repetitions Pulse Laser power
[mm/s] [mm/s] rate [Hz] time [fs] [-] rate [Hz] [%] (of 3 W)

Copper electrode patterning  F-theta515 100 100 25000 10 20 75018 1

Borofloat 33 dicing F-theta515 200 200 25000 10 1000 75018 40

D 263 M dicing F-theta515 200 200 25000 10 1600 15003 80




MEASUREMENTS AND RESULTS

In this chapter, measurements and results that have not been covered in the previous chap-
ters will be shown and elaborated upon.
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C.1. MEASUREMENTS

C.1.1. ELECTRODE MEASUREMENTS

To verify that the electrode works as intended, the resistance and the capacitance are
measured using the Voltcraft LCR-300 LCR meter. First, the electrode is cleaned using a
cotton swab with isopropanol.

¢ To verify that there are no shorts between the two electrode pairs, the resistance is
measured. A resistance that is lower than tens of MQ suggests that there are shorts
between the two electrode pairs.

* To verify that the wires make electrical contact with the contact pads and that there
are no breaks in the electrode, the capacitance is measured. A capacitance that is
in line with the measurements (= 57.7pF), means that the soldered connections
make contact and that the interdigitated electrodes function are successfully fab-
ricated. The measured capacitance is equal to 64.2 + 0.4pF. The capacitance cal-
culation underestimates the capacitance by only 11.1%. This can be attributed to
the excess capacitance of the soldered connections.

C.1.2. POWER OUTPUT MEASUREMENT SET-UP
In Figure C.1, the measurement set-up which is used to record the power output charac-
teristics of the micro-electret transducer is shown.

* One wire is soldered to the contact pads of each electrode. These wires are con-
nected to a TENMA 72-7270 decade box. This allows for quick adjustment of the
load resistance ranging from 1 to 10 MQ.

* The NI-USB 6211 DAQ is used as its high input resistance (> 10GS2) means that
the influence of the input resistance on the measured signal is minimal. The input
capacitance is on the same order of magnitude as the capacitance of the electrode.
The total capacitance of the DAQ and the decade box is measured to be 49 pF, and
independent of the resistance of the decade box. This capacitance has to be taken
into account and corrected for in the measurements.

* The rotation of the electret rotor is induced using the HR10 rheometer by TA in-
struments. A flexible coupling comprising a spring is used to allow for slight mis-
alignment between the suspension of the electret and the axis of rotation of the
rheometer.
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NI-USB 621
DAQ

Micro-electret
transducer

TENMA 72-7270
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Figure C.1: Schematic of the measurement set-up used to record the power output characteristics of the micro-
electret transducer.

C.2. RESULTS

As mentioned in section B.1, an effort was first made to verify the unipolar electret con-
cept using a SiO,/SiN, double-layer electret. A borofloat 33 glass wafer was fabricated
with patterned SiO,/SiN, double-layer electret segments using the same electret pat-
tern layout as can be seen in chapter 5. In Figure C.2, the surface voltage after charging
the set of logarithmic SiO,/Si N, double-layer electret segments is shown. The wafer is
charged for 30 minutes with a needle voltage of -8 kV and a grid voltage of -300 V. It is not
possible to distinguish between the electret segments and the glass wafer, showing that
the SiO,/Si Ny double layer electret cannot trap charges. After just two days, the surface
voltage was reduced to 0 V across the entire wafer.
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Figure C.2: Surface voltage directly after charging of the set of logarithmic SiOy/SiNy double layer electret
segments after charging.

In order to find the right etching parameters to successfully fabricate patterned CY-
TOP electret segments, a conventional CYTOP on silicon patterned wafer was fabricated
first. This silicon wafer also doubles as a baseline measurement to verify whether charg-
ing is successful. In Figure C.3, the surface voltage at several moments in time of the set
of logarithmic CYTOP electret segments on top of a silicon wafer is shown. The wafer
is charged for 30 minutes with a needle voltage of -8 kV and a grid voltage of -300 V. As
predicted, the chargeability of narrow electret segments is poor due to the direct path of
ions to the silicon ground during charging. The chargeability decreases proportionally
with the electret segment width.
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Figure C.3: Surface voltage at several moments in time of the set of logarithmic electret segments on silicon
after charging.
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What can also be seen is that the chargeability of the wider electret segments is very
high, with a stable surface voltage which is almost as high as the grid voltage. In Fig-
ure C.4, the chargeability is compared between the electret segments of a width of 7.74
mm for the conventional CYTOP on silicon electret and the novel unipolar electret. As
stated in chapter 5, the chargeability of the unipolar electret is relatively poor, with the
stable surface voltage being about one-third of the conventional electret.
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Figure C.4: The stable surface voltage divided by the grid voltage of an electret segment with a width of 7.74
mm for the conventional electret and the unipolar electret.

In Figure C.6, the surface voltage of charging an individual rotor on top of the origi-
nal charging ground plate can be seen. The rotor is charged for 30 minutes with a needle
voltage of -8 kV and a grid voltage of -1.5 kV. The schematic layout of the original charg-
ing ground plate can be seen in Figure C.6. The charging is unsuccessful due to the direct
path to the ground for the corona discharge ions. The direct path to the ground prevents
them from embedding inside the CYTOP electret segments on the rotor. Therefore, the
charging ground plate is adapted. The adapted charging ground plate comprises an alu-
minium ground plate on which the rotor is placed. The part of the ground plate which is
not covered by the electret rotor is shielded using PMMA inserts, preventing a direct path
to the ground during charging. The successful charging result of an individual rotor is
shown in chapter 5. A photo of the fabricated ground plate including the PMMA inserts
is shown in Figure C.7
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Figure C.5: (a) Rotor CYTOP segments shown in black for reference. (b) Measured surface voltage across the
rotor when charged using the original charging ground plate.
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Figure C.6: (a) Original charging ground plate used to charge an entire wafer showing that when charging rotors
in this way, there is a direct path for the ions to the ground. (b) Adapted charging ground plate to effectively
charge individual rotors with a shielded ground.
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Figure C.7: Photo of the adapted ground plate comprising an aluminium ring with PMMA inserts (white).
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