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1. Introduction

For nuclear safety it is of the highest importance to be able to predict the exact power
production in a nuclear reactor during a transient. Such a transient might occur during
regular operation, but also in an accident scenario. It is of vital importance to calculate
the temperature during such a transient accurately, in order to predict fuel damage and
other consequences. When performing this kind of dynamic analyses there are multiple
problems to be solved, involving both thermal-hydraulics and neutronics which can be
tightly coupled.

The main part of this thesis describes the development of a novel method, utilising Monte
Carlo simulation to calculate the neutronics during a transient, which is more accurate
than the present state-of-the-art methods. This novel Monte Carlo method is then coupled
to a thermal-hydraulics solver and a demonstration is given of a coupled transient in a mini
core.

NURISP project

This work is part of the European FP7 project NURISP, which develops the nuclear reactor
simulation platform NURESIM (Chauliac et al., 2011) and a large part belongs to task T1.1.4
of the NURISP project: Development of the basic Monte Carlo techniques for long-time
kinetic and dynamic calculations. This task is part of subproject 1 (SP1), Core Physics, and
in this subproject it is part of work package 1 (WP1.1), Advanced Monte Carlo Core Physics
development.

1.1 State-of-the-art transient-analysis methods

Up to now, it was only possible to calculate the neutronic part of a transient using de-
terministic or hybrid methods. Currently many state-of-the-art methods are based on the
improved quasi-static method, but this method is now well over 50 years old (Henry, 1958)
and this method relies on the factorisation of the neutron flux in a shape and an amplitude
function. The shape function can be solved by performing a steady-state calculation using,
for example, discrete ordinates (C. Bentley, R. DeMeglio, M. Dunn, et al., 1997; Goluoglu
and Dodds, 2001) or Monte Carlo (Bentley et al., 1997; Shayesteh and Shahriari, 2009; Yun
et al., 2008). Factorisation is not always a good approximation, especially not with strong
transients, when the positive or negative reactivity is larger than a dollar and when the flux
profile changes.

Another issue with these methods is the need of kinetic parameters to solve the time-
dependent part. These parameters are time dependent and there are many different
definitions and options to calculate them (Carta et al., 2011; Meulekamp and Van Der Marck,
2006; Verboomen et al., 2006), with each definition yielding a slightly different result.
Furthermore, although many optimizations have been proposed (Dulla et al.; Meulekamp
et al., 2005; Picca et al., 2011), these methods still rely on the factorization of the flux.
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1.2. Stochastic methods for reactor analysis

Also direct methods are used for transient analysis, but they depend on simplified trans-
port models, e.g. diffusion theory (Boer et al., 2010) and SN methods (Alcouffe and Baker,
2005). These methods all discretise phase space: splitting the problem not only geometric-
ally, but also angularly and energetically. The geometry is split into cells, the direction in
discrete angles and the neutron energy in groups. All these parts of the phase space are
connected and the result of one part of phase space is the boundary condition of the next
part and for the outer boundaries a boundary condition is needed. The solution is being
iterated until it has converged. The main difference between the methods is in the way the
transport from one cell to another is modelled. Here the key features of a few methods are
described and more extensive descriptions can be found in Bell and Glasstone (1979) and
Lewis and Miller. (1984).

With diffusion theory, the neutrons are assumed to diffuse through the system according
to Fick’s law. Neutron diffusion ignores the possible angular dependency of the neutron
flux and when a large density gradient is present it is not accurate. For more details about
diffusion theory, see Duderstadt and Hamilton (1976).

More advanced methods model the neutron transport itself. These methods need to
discretise the angular dependence of the neutron flux. The neutrons will be transported
along discrete angles, defined by spherical harmonics (Pn -theory) or discrete ordinates
(Sn -theory). Also the method of characteristics, which solves the integral neutron transport
equation, uses discrete angles. These methods describe the anisotropic behaviour of
neutron transport better than diffusion theory, but it can prove difficult to use enough
angles to describe the neutron transport. If too few angles are used, ray effects can occur
(Cho and Chang, 2009).

However, the main limitation of these direct deterministic methods is the required
discretisation. The neutron flux exists in a 7-dimensional phase space (x,y,z,ω1,ω2,E,t) and
when each of these dimensions is discretised in 100 intervals, the problem already consists
of (102)7 = 1014 unknowns. This yields an astronomically large system of equations, several
orders of magnitude beyond the capacity of any existing computer to solve (Larsen, 2011).
Therefore a stochastic method might be an interesting option.

1.2 Stochastic methods for reactor analysis

A stochastic method does not try to find a deterministic solution of a problem, but tries
to find a stochastic process which has the same mean result as the original problem. In
physics this results often in simulating the actual physics, although non-analog techniques
can be applied to increase the efficiency of the simulation.

This method yields, just like the deterministic ones, a numerical approximation of the
solution. However, with this method the accuracy can be exactly determined and increased
if necessary; the error is only statistical in nature. Therefore Monte Carlo is used regularly
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1. Introduction

in reactor physics to find steady-state solutions for a nuclear reactor and to perform source-
detector calculations.

Time-dependent Monte Carlo is applied in other fields, such as implicit Monte Carlo for
non-linear radiation transport (Fleck Jr. and Cummings Jr., 1971; Martin and Brown, 2001)
or neutrino transport (Abdikamalov et al., 2012). Some investigations on time-dependent
neutron transport were performed by Kaplan (1958). His paper proposes some methods
which can be used for transient analysis, such as population control at the time boundaries,
moving weight windows and collision biasing. However, it was not possible at that time to
perform an analysis on the kinetic or dynamic behaviour of a nuclear reactor.

The major drawback of the Monte Carlo method is its computational cost. However, the
required computer time is being reduced rapidly via two ongoing developments. The first
development is the rapid increase in computer power, which is described by Moore’s law,
which predicts a doubling of computing power every 18 months. Although this law is not
exact, in some periods the development was slower (Schaller, 1997), it does illustrate the
exponential increase in computing power. Recently, the processors have not increased in
speed, but the number of processors has been increasing instead. These developments do
not reduce the computational cost, but do reduce the cost of the computation.

Monte Carlo can also take full advantage of the extra processors, since the method is
made of independent processes, from which an average is calculated and these processes
can all be simulated on separate processors. Although the scaling to many processors is
not as straight forward as it may seem (Hoogenboom, 2012), Monte Carlo codes can be
adapted to run in a massively parallel fashion (Romano and Forget, 2013).

With more computing power, the results of the Monte Carlo method automatically
improve. The simplest way of reducing the variance is simply to calculate more samples.
Identifying this automated improvement, Kord Smith calculated in 2003 that with the
techniques of that time, it would be possible to perform a routine Monte Carlo calculation
of an entire core, with 1 % accuracy in 2030 and he challenged the Monte Carlo community
to demonstrate that this could be achieved much sooner (Smith, 2003).

In fact, the method had already been much improved over the years, with many re-
searchers who are working on variance reduction techniques, i.e. techniques to reduce the
variance without increasing the computational effort. Many of these variance reducing
methods are hybrid methods, using a deterministic calculation to improve the Monte Carlo
method. One of the more effective improvements is the FW-CADIS method by Wagner
et al. (2007), which calculates deterministically the best weight windows for a complex
system. Also a zero-variance scheme (Christoforou and Hoogenboom, 2011; Christoforou,
2010) has been investigated, which also uses a deterministic method to bias the Monte
Carlo simulation in such a way that, if the deterministic solution is perfect, there will be no
variance in the final result of the Monte Carlo calculation. A more exotic method is the cor-
recton method, which actually redefines the problem and uses Monte Carlo techniques to
calculate the multiplicative error of a deterministic solution (Becker et al., 2007; Huisman,
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1.3. Aim and structure of this thesis

2012; Hennink, 2012).

To monitor the advancement in the speed of Monte Carlo calculations a benchmark has
been set up by Hoogenboom and Martin (2009) and although the Kord Smith challenge has
not been met, the Monte Carlo community is getting close (Kelly et al., 2012).

With this increased computer power and advanced Monte Carlo methods, new possibil-
ities become available. Therefore it is the right moment to investigate another drawback
of the Monte Carlo method, which is its limitation to the two simulation modes: source-
detector and criticality. Although this limitation is not mentioned in literature, this is a
large hiatus, which will be addressed in this thesis.

1.3 Aim and structure of this thesis

As explained, the current methods for transient analysis, deterministic and hybrid, although
in general fast, still require numerous approximations, e.g. homogenisation, diffusion
theory, few-group cross sections and factorisation. With such approximations it is difficult
to predict the error in the final result and their validity for each specific case must be
determined separately, which is especially difficult for new and unique reactor designs.
For transient analysis, which is crucial for safety calculations, it is desirable to have an
higher-fidelity method. Therefore, the Monte Carlo method is an interesting option to
perform reliable and accurate transient analysis.

In this thesis a new and unique dynamic Monte Carlo method is developed, which
extends the possibilities of the Monte Carlo method and which enables the possibility
to analyse the transient behaviour of a nuclear reactor, without any approximations to
the geometry or any discretisation. This method can perform transient analysis on the
milliseconds to minutes scale and can handle changing system properties, feedback effects,
delayed neutrons and prompt neutron fluctuations.

Monte Carlo calculations are, however, computationally expensive. Therefore the aim of
this thesis is not to develop a tool for the design of reactors, but a tool to perform validation
calculations on reactors, which is much cheaper than performing experiments.

The first part of the development of this novel method is the development of new Monte
Carlo simulation techniques. In Chap. 2 an innovative way of sampling precursors and
delayed neutrons is developed. This enables the modelling of long-lived particles such as
delayed-neutron precursors together with short-lived particles such as prompt neutrons.
Next, in Chap. 3 a new variance reduction technique is introduced to reduce the variance
caused by the fluctuations in prompt neutron chain lengths.

Then, in the second part of this thesis, the development of the dynamic method is
addressed. In this part the focus is more on the implementational details of the dynamic
Monte Carlo method. The simulation scheme has to be adjusted, the initial conditions must
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1. Introduction

be calculated and the tallying is adjusted. First, a purpose-built kinetic Monte Carlo code is
developed and tested in a simple system in Chap. 4 and then the method is extended to be
generally applicable in Chap. 5. Next, the kinetic model is coupled to thermal-hydraulic
feedback, making the method truly dynamic in Chap. 6. Finally, Chap. 7 gives conclusions
and an outlook to possible further developments of and improvements in the method.
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2. Simulation of Precursors

Precursors play a crucial role in nuclear reactor physics. They are the reason why reactors
can be controlled by mechanical means. In this chapter first the physics of precursors will
be discussed in section 2.1. Then the sampling techniques used to simulate precursors in a
Monte Carlo calculation are developed in section 2.2 and in section 2.3 variance reduction
techniques are created, for controlling the precursor population. Finally the sampling of a
source distribution is addressed in section 2.4 and there is a conclusion on the precursor
simulation in section 2.5.

2.1 Physics of nuclear fission

2.1.1 Neutron production

When simulating the kinetic or dynamic behaviour of nuclear reactors delayed neutrons
and therefore precursors play an important role. In static calculations all fission neutrons
are considered to be released without any delay (prompt). A prompt neutron is released
within a time scale of approximately 10−14 s (Keepin, 1965), this is a shorter time span than
the accuracy of a simulation and therefore the release can be considered instant. In reality
not all neutrons are prompt, some of the neutrons are released after a considerable delay.

The total number of neutrons emitted at a fission event can vary from zero up to even
more than six. The average number of neutrons is denoted by ν . The number of neutrons
released can be described as a Gaussian distribution around this number ν with a standard
deviation of 1.08 (Terrell, 1957). The value of the standard deviation is independent of ν .

Prompt neutrons

A prompt neutron is emitted by an exited fission product (Bohr and Wheeler, 1939). The
energy level of the exited fission product is much higher than the binding energy of a
neutron. One of the options is then to emit a neutron as depicted in Fig. 2.1. Here E ∗ is
the energy of the exited state of the fission product, which is much larger than the binding
energy of a neutron E Bn . Now a gamma or a neutron can be emitted, both reducing the
energy of the nucleus. When a neutron is emitted, the nucleus changes and has a new the
binding energy E Bn . In the figure A represents the number of nucleons and Z is the atomic
number of the isotope. This process can happen multiple times until the energy of the
fission product is below the binding energy of a neutron. The average number of prompt
neutrons produced is denoted by νp .
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2.1. Physics of nuclear fission

BnE

-


(A,Z) 

Prompt fission product 

neutron 
E (neutron) 

(A-1,Z) 

Fission product 

*E

Figure 2.1: A prompt neutron can be produced when the energy of a fission product is
higher than the binding energy.

Delayed Neutrons

Delayed neutrons are also emitted by the fission products of a fission event. In this case
however, the fission product decays via beta emission. This process is depicted in Fig. 2.2.
After this beta decay, again the energy of the resulting nucleus can be higher than the
binding energy of a neutron, directly resulting in the release of a neutron. The beta decay
is not instantaneous, but happens after some time, delaying the release of the neutron.
Therefore this neutron is called a delayed neutron.

The fission product which will emit the neutron is called a delayed neutron precursor,
or in short a precursor. Not all nuclei that have a beta-decay will emit a delayed neutron,
because it is also possible to emit a gamma instead of a neutron. Also if the beta particle
has too much energy, the energy of the resulting nucleus can be too low to emit a neutron.
By definition, only the fission products that eventually will decay and produce a delayed
neutron are called precursors. The average number of delayed neutrons released per fission
is called νd .

The so-called β-fraction is defined as the delayed fraction of total number fission neut-
rons released at a fission event:

β ≡
νd

ν
(2.1)
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Figure 2.2: A delayed neutron can be produced after the beta-decay of an unstable isotope.

2.1.2 Precursor decay

The decay of a precursor is a stochastic process, which can be described by an exponential
distribution:

p (t ) =λe−λt (2.2)

where p (t ) is the probability the precursor has its beta-decay at time t and λ is the decay
constant of the precursor. The average lifetime of a precursor is:

l =

∫ ∞

0

t p (t )dt =
1

λ
(2.3)

There are many different precursors, a few hundred have been identified so far (Pfeiffer
et al., 2002), and each of them has its own decay time. A few well known examples are 87Br,
88Br, 137I. To make this more practical for reactor applications, precursors are combined
into six or eight precursor families. These families all have their own characteristic, average
precursor lifetime. The precursor families are considered to have a pure exponential decay
probability with decay constant λi .

The creation of precursors happens in a fraction of all the fission reactions, so the net
production of precursors becomes, as explained in Duderstadt and Hamilton (1976):

∂ C i (r, t )
∂ t

=βiνΣ fφ(r, t )−λi C i (r, t ) (2.4)
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2.1. Physics of nuclear fission

Table 2.1: Delayed fraction and
decay constants of 235U when the
incident neutron has an energy of
1eV

Table 2.2: Delayed fraction and
decay constants of 239Pu when the
incident neutron has an energy of
1eV

Family i λ (s−1) βi /β

1 0.0127 0.0340
2 0.0283 0.1501
3 0.0425 0.0992
4 0.1330 0.2001
5 0.2925 0.3122
6 0.6665 0.0932
7 1.6348 0.0872
8 3.5546 0.0240

Family i λ (s−1) βi /β

1 0.0127 0.0288
2 0.0283 0.2250
3 0.0425 0.0951
4 0.1330 0.1490
5 0.2925 0.3510
6 0.6665 0.0370
7 1.6348 0.0974
8 3.5546 0.0168

Here βi is the delayed fraction, considering only family i . C i is the precursor concentration
of the i th family. All βi together form the total delayed fraction,

∑

βi =β , and all precursor
concentrations together give the total precursor concentration,

∑

C i =C . The first term on
the right hand side describes the precursor production rate density and the second term
the decay rate density.

2.1.3 Precursor yield at fission

The yields of precursors and precursor families are material constants. There are huge
differences between the main fissionable isotopes (Wimett et al., 1957). For example 239Pu
yields on average fewer delayed neutrons than 235U, making a system with plutonium
more difficult to control. Examples of typical yields for some common isotopes are given
in Tables 2.1 and 2.2. The data for these tables and the following plots is taken from the
JEFF3.1.1 data library (A. Santamarina, D. Bernard, P. Blaise, et al. , 2009).

In reality there is also a small material dependence for the average decay constant of the
precursor families, but this difference is relatively small, often smaller than the uncertainty
in the data. Therefore it is common practice to define the decay constant per family
independent of energy and material. This can also be seen in the tables.

The yield of prompt neutrons at a fission is not only material dependent, it is also energy
dependent. A typical dependence can be seen in Fig. 2.3. The neutron yield is fairly
constant for a large range of incident neutron energies, but for high energies, the prompt
yield starts to increase linearly, whereas the delayed yield starts to decrease.
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2. Simulation of Precursors
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Figure 2.3: The prompt and delayed neutron production at a fission event for 235U and
239Pu. The nuclear data is from the JEFF3.1.1 library (A. Santamarina, D. Bernard, P. Blaise,
et al. , 2009).

2.1.4 The start of a prompt fission chain

When a system is at steady state, the number of precursors compared to the number of
neutrons can be approximated. Let’s assume a system with one precursor family with decay
constant λ= 0.0785 s−1, β = 0.00685 and a mean generation time of Λ = 7× 10−5 s. The
mean generation time is the average time it takes a neutron to produce one new neutron.
At steady state the production rate of precursors is equal to its decay rate:

λC =
β

Λ
n (2.5)

yielding a precursor concentration of

C =
β

Λλ
n (2.6)

This shows that for every neutron present there will be approximately 103 precursors.

In a time interval from t to t+∆t both prompt neutrons and delayed neutrons will initiate
chains of successive fission events. The delayed neutrons are produced by precursor decay
during the time interval and they can induce fission, physically initiating a prompt fission
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2.2. Sampling precursors

chain. Prompt neutrons do not physically initiate a prompt fission chain, but they do
initiate the chain in this specific interval; they are the neutrons crossing the time boundary
at t . The fraction of prompt neutron chains initiated by a prompt neutron in a time interval
is given by:

n 0

n 0+d 0
(2.7)

Here n 0 is the number of prompt neutrons at the start of the interval and d 0 is the number
of delayed neutrons that are created during the time interval. The number of delayed
neutrons can be calculated as:

d 0 =C0

∫ t+∆t

t

λe−λ(t
′−t )dt ′ (2.8)

This turns into

d 0 =
β

Λλ
n 0(1− e−λ∆t ) (2.9)

Substituting this equation into Eq. (2.7) leads to

n 0

n 0+d 0
=

1

1+ β

Λλ (1− e−λ∆t )
(2.10)

When using the same system properties as above and a time interval of 100 ms, approx-
imately 10 % of the neutron chains is initiated by the prompt neutrons of the previous
interval and 90 % is started by delayed neutrons, which demonstrates the importance of
the delayed neutrons.

2.2 Sampling precursors

The fact that precursors have on average a much longer lifetime than neutrons, makes
it possible to control a reactor with mechanical control rods. A neutron has a lifetime
of approximately 10−4 s for a light water reactor and 10−7 s for a fast reactor, but the
lifetime of a precursor can go up to 102 s. When making a crude approximation it can be
demonstrated that the small fraction of delayed neutrons makes a large difference in the
dynamic behaviour of a nuclear reactor.

The effective average lifetime, `eff , of a neutron can be calculated combining the average
lifetime of prompt and delayed neutrons:

`eff = (1−β )`+

 

∑

i

βi
1

λi
+ `

!

(2.11)

Here ` is the average lifetime of a prompt neutron. This yields an effective average lifetime
of approximately 0.1 s, which is much more controllable with a mechanical moving device
than in the case of 10−4 s.
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2. Simulation of Precursors

For Monte Carlo simulation however, this difference in time scales poses a big challenge.
Tallies are scored only when there are neutrons moving around and not when waiting for a
precursor to decay. The time, during which neutrons are moving around is given by the
lifetime of a prompt fission chain.

Lifetime of a prompt fission chain

The flight path of a neutron will end, when the neutron induces fission, is captured, or leaks
out of the system. In a critical system most of the neutrons will end by inducing fission,
creating new fission neutrons. When assuming only one prompt neutron can be created
per fission, the probability to create such a new neutron is given by:

Pp = keff (1−β ) (2.12)

Here keff is the effective multiplication factor. The newly formed neutron also has a prob-
ability of Pp to create a new prompt neutron. The probability to create a chain of length n
is given by:

P(n ) = (1−Pp )
n
∑

i=1

P (i−1)
p (2.13)

The average chain length is now given by:

n =
∞
∑

n=1

nP(n ) = (1−Pp )
∞
∑

n=1

nP (n−1)
p =

1

1−Pp
(2.14)

When assuming β to be 0.00685 and the system to be critical, the average chain length
becomes close to 150 neutrons. The average lifetime of a neutron in a light water reactor is
approximately 10−4 s, making the average lifetime of a prompt fission chain in the order of
10−2 s.

The lifetime of a precursor can range roughly from 10−2 s to 102 s. This demonstrates
that for each fission chain there is also a period, which may be orders of magnitude larger,
without neutrons. If the reactor is at critical state, each prompt fission chain will on average
produce one precursor, which will start a new prompt neutron chain after decay. During
this time there are no neutrons of this chain, and there will be no power produced by this
chain, see Fig. 2.4.

In a real power reactor this effect is averaged out by the large number simultaneous
fission chains present in the reactor. If the total power of a reactor is 1 GW and the average
energy released per fission is 3.2×10−11 J(200 MeV) the total number of fissions per second
is approximately 3× 1016. Sadly, a Monte Carlo simulation does not have the luxury of
sampling that many particles. Therefore the precursors will have to be simulated in a clever
way.
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Figure 2.4: A schematic representation of a neutron chain with precursors. The difference
in lifetime between precursors and prompt fission chains creates variance in the power
production.

2.2.1 Combined precursor

The first step to simulate precursors more effectively than analog, is to combine all families
into one Monte Carlo particle: the combined precursor. The probability of a precursor
decaying in dt around time t is defined by

Pi (t )dt =λi e−λi (t−t0)dt (2.15)

Here t0 is the time when the precursor was created.

Now combine all precursor families into one with a decay probability of

Pcombined(t ) =
∑

i

fd iλi e−λi (t−t0) (2.16)
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2. Simulation of Precursors

Here fd i is the fraction of delayed neutrons of the i -th family. This is defined by

fd i =
βi

β
, (2.17)

In special cases this must be defined differently (see section 2.4).

Using the combined precursor, the variance caused by the different decay times of the
different precursor families is addressed. The combined precursor incorporates the decay
probability from all precursor families and is still exact. A precursor no longer has pure
exponential decay when combining the different decay probabilities and therefore the age
of the combined precursor becomes a factor.

2.2.2 Weight of neutrons from forced decay

To solve the problem of long periods without precursor decay and hence no prompt
neutrons, the time is divided into intervals and the tallies of the Monte Carlo calculation
are also scored in these intervals. Each precursor is forced to produce a weighted delayed
neutron in every time interval, see Fig 2.5. This is described by Legrady and Hoogenboom
(2008). The probability that the precursor has a forced decay at time t inside a time interval
between t1 and t1+∆t is chosen to be uniformly distributed:

p (t ) =
1

∆t
(2.18)

To keep the game unbiased, the statistical weight of the resulting delayed neutron must
be adapted so the probability of the forced decay times the weight equals the probability of
a natural decay at that time. With the statistical weight of the precursor, wC , considered,
the weight of the delayed neutron becomes:

wd (t ) =wC
p (t )
p (t )

=wC∆t
∑

i

fd iλi e−λi (t−t0) with t1 < t < t1+∆t (2.19)

Forced decay starts a prompt fission chain in every time interval to ensure the presence of
fission chains in all intervals.

2.2.3 Energy of delayed neutrons

When sampling a energy for the resulting delayed neutron, it should be taken into account
that the different precursor families have a slightly different energy spectrum (Ott and
Neuhold, 1985). Since these energy spectra are given per family it is best to select a pre-
cursor family from which the delayed neutron is originating and select an energy from the
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Figure 2.5: A schematic representation of a precursor with forced decay. Now there are
scores in all time intervals.

spectrum, applicable to that family. The distribution of probabilities between the families
changes over time and is given by:

Pi (t ) =
fd iλi e−λi (t−t0)

∑

j fd jλj e−λj (t−t0)
(2.20)

The probabilities at the time of decay must be used to select the correct family for the
energy spectrum.

2.2.4 Demonstration of improved precursor sampling

To demonstrate the effectiveness of the newly developed sampling methods, the following
simple example is illustrative. In this example there is a precursor concentration at t = 0
and the delayed neutron source is sampled in time intervals of 100 ms. The distribution
of the precursor families is βi /β and the decay constants per precursor family are taken
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2. Simulation of Precursors

Table 2.3: The precursors are divided into six families. Here the fractions and decay
constants per precursor family i are given. Also the total delayed fraction and inversely
weighted average decay constant are shown.

Family λ (s−1) β

1 0.0127 0.000260
2 0.0317 0.001459
3 0.1156 0.001288
4 0.3110 0.002788
5 1.4000 0.000877
6 3.8700 0.000178

av/tot 0.0784 0.006850
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Figure 2.6: The average delayed neutron source in a time interval of 100 ms per source
precursor is calculated using four different methods. All methods yield an unbiased result.

from Dam et al. (2005) and are given in Table 2.3. In this example three cases are tested: the
analog case, forced decay and forced decay with a combined precursor.

In the analog case, first one of the precursor families is selected and then a decay time
is selected. For the forced decay case, also a precursor family is selected, but then the
precursor is forced to produce a delayed neutron in each time interval. In the last case
the precursor represents all precursor families and this combined precursor is forced to
produce a delayed neutron in each time interval.

24



2.2. Sampling precursors

0 50 100 150 200
10

0

10
5

10
10

10
15

Time (s)

F
ig

u
re

 o
f 

M
e

ri
t

 

 

Analog

Forced decay

Combined forced decay

Figure 2.7: The figure of merit for all three methods of sampling precursor decay.

In Fig. 2.6 the delayed source per precursor is plotted with a time interval of 100 ms.
All lines in this figure are on top of each other, demonstrating that all methods yield an
unbiased result. It can already be seen that the analog case has more variance towards the
larger time scales than the cases with forced decay, when inspecting the plot more closely.
The black line starts to show more noise, which can be observed as a wider black line at the
end of the plot. However, this is still within the statistical error of the analog case.

Fig. 2.7 shows the Figure of Merit (FoM) for the different methods. The FoM is calculated
using the relative uncertainty of a time interval (σr ) and the calculation time of the total
simulation (T ).

FoM=
1

σ2
r T

(2.21)

It shows that forced decay is more effective than the analog case, but it becomes much
more effective when combining all precursor families.

In this example only the delayed source is calculated, but in a real simulation, the
calculation time of the precursor decay most likely does not contribute significantly to the
total calculation time. Therefore also the relative uncertainty per delayed neutron is plotted
in Fig. 2.8. The calculation time is proportional to the total number of delayed neutrons
produced, since these start the prompt fission chains. The method with a combined
precursor and forced decay has a relative uncertainty which is also several orders smaller
than for the other methods.
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Figure 2.8: The relative uncertainty for all three methods of sampling precursor decay.

2.3 Precursor population control

With the technique described in the previous section, all combined precursors are stored
to have a decay in all time intervals, with a decreasing delayed neutron weight, if the time
intervals are equal in size. At the same time, new combined precursors are created by the
fission reactions in the simulation. This is a situation with only production of combined
precursors and no termination. Even in a sub-critical system the number of combined
precursors would continue to increase. This calls for population control.

2.3.1 Precursor weights

Population control for precursors is somewhat different from population control for neut-
rons. There are three different statistical weights that can be distinguished for precursors:
the main statistical weight of the precursor, the expected weight of the delayed neutron
and the timed statistical weight.

The first weight is the weight which can be altered when applying population control.
The other two weights are derived weights, which can be used to determine the importance
of the precursor. They represent physical quantities, the expected delayed neutron source
strength and the precursor concentration, respectively.
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2.3. Precursor population control

Main precursor weight

The first quantity is the main statistical precursor weight, denoted by wC . This is the
base weight from which the weight of the delayed neutron is calculated. This weight
represents the number of physical precursors this Monte Carlo precursor represented at
time of creation. This is also the weight which can be adjusted by variance reduction
techniques. The main weight will not change over time, it is only changed by variance
reduction techniques. The other weights are derived from this weight.

Expected delayed neutron weight

The precursor has interaction with the system via its delayed neutrons, which are generated
by forced decay. It is logical to use the weight of these neutrons for population control.
However, this weight is dependent on the exact decay time, which is sampled uniformly
over the time interval.

To remove the weight fluctuation caused by the sampling of the exact decay time, the
expected weight of a delayed neutron is defined:

wd ,av =
1

∆t

∫ t1+∆t

t1

wd (t )dt (2.22)

Here t1 is the start of the next time interval. Using (2.19), wd ,av becomes:

wd ,av =wC

∑

i

fd i (e−λi (t1−t0)− e−λi (t1+∆t−t0)) (2.23)

The evolution of the expected delayed neutron weight is shown in Fig. 2.9 by the dotted
line. This shows the decrease of the statistical importance of a precursor over time.

Timed weight of the precursor

The third statistical weight is the timed weight of the precursor. This is the weight the
precursor represents at time t . As time progresses the probability of a real precursor
decaying increases and therefore the precursor particle represents less physical precursors.
The timed weight is determined by the probability it did not have its decay before time t :

w timed =wC

 

1−
∫ t

t0

∑

i

fd iλi e−λi (t−t0)dt

!

=wC

∑

i

fd i e−λi (t−t0) (2.24)

The evolution of the timed precursor weight is represented by the dashed line in Fig. 2.9.
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Figure 2.9: The different statistical weights of a precursor when using forced decay. The
precursor is created at t = 0 and the time interval is 0.1 s.

2.3.2 Weight windows for precursors

A common method for variance reduction is the use of weight windows. These keep the
weights of the different particles in the same range, to ensure that all particles have a similar
contribution. The precursor weight which is monitored is either the timed weight or the
expected delayed neutron weight.

Russian roulette

If the expected delayed neutron weight is below the Russian roulette threshold for neutrons,
w l , and the survival weight for neutrons would be wsurv, then Russian roulette can be
played on the precursor. The surviving probability and survival weight can be calculated
using:

wC ,new = wC
wsurv

wd ,av
ρ <

wd ,av

wsurv
(2.25)

wC ,new = 0 ρ >
wd ,av

wsurv
(2.26)

with ρ a random number with a uniform distribution between 0 and 1.
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2.3. Precursor population control

Splitting

Splitting can be handled in a similar way, although it will be less common due to the
decreasing importance of the precursors. In this case the precursor will be split when
the expected delayed neutron weight is above the splitting threshold. The number of
precursors in which it will be split is given by:

n split =

�

wd ,av

wsplit

�

(2.27)

with the square brackets denoting the integer part of the fraction. The new precursor
weight then becomes:

wC ,new =
wC

n split
(2.28)

2.3.3 Combing technique

An other technique for population control, which is less well known, is the combing tech-
nique (Booth, 1996). The applicability of this method for population control in Dynamic
Monte Carlo has been investigated by Kuilman (2012).

The idea of the combing method is to adjust the number of particles, while retaining
the total particle weight. This is achieved by making a list of all particle weights and then
selecting M particles which are equally spaced in weight. This is depicted in Fig. 2.10.

The length of the comb is defined as the total weight of all K particles, W :

W =
K
∑

k=1

wk (2.29)

Now the average weight of a particle will be the length divided by the new total number of
particles M

wav =
W

M
(2.30)

This is the distance between the teeth of the comb.

Each location of a tooth in the comb selects a particle, which will be stored and given
weight wav. If two teeth select the same particle, it is stored twice. In Fig. 2.10 this is the
case for particles 3 and 5. If a particle is not selected, it is discarded, in this case particle 4.

The location of the first tooth is determined by a random number. The locations of the
teeth now become:

tm =ρwav+(m −1)wav with m = 1, . . . , M (2.31)
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Figure 2.10: Combing the particles. All new particles have weight wav. In this case one copy
of particles 1 and 2 are stored, two copies of particles 3 and 5 are stored and particle 4 is
terminated. The total weight is conserved.

with ρ a random number with a uniform distribution between 0 and 1.

The location a tooth hits is therefore uniformly distributed over the entire weight domain.
Now the probability a tooth hits a weight interval of size wk is given by:

Phit,k =
wk

wav
(2.32)

If this probability becomes larger than one, more than one tooth will hit the particle and
the particle will be sampled multiple times.

The expected weight of a particle is conserved, using Eq. (2.32):

E [wk,after] = Phit,kwav =wk (2.33)

Precursor combing

Combing precursors is more complicated, since there is a difference in the weight which
must be altered and the weight which is monitored. To accomplish this, a variation to the
importance-weighted comb of Booth (1996) is made.

The weight which must be conserved is the timed precursor weight, since this is the
weight which represents the physical quantity of the total number of precursors present at
time t . With Tk defined as the timed weight operator for particle k :

Tk =
∑

i

fd i ,k e−λi ,k (t−t0,k ) (2.34)
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and using Eq. (2.24) the timed weight of combined precursor k becomes:

w timed,k = Tk wC ,k (2.35)

and the total timed weight is

Wtimed =
K
∑

k=1

Tk wC ,k (2.36)

The total timed weight is equal to the total precursor concentration C (t ). In this case the
tooth size is

w timed,av =
Wtimed

M
(2.37)

and the probability to select a specific precursor is given by

Phit,timed,k =
w timed,k

w timed,av
(2.38)

The weight of the selected precursor becomes:

wC ,k ,after =
w timed,av

Tk
(2.39)

When combining the last two equations it can be shown that the expected main precursor
weight is conserved and therefore also the expected delayed neutron weight:

E [wC,k,after] = Phit,timed,k
wav

Tk
=wC ,k (2.40)

In a similar fashion it can be shown that it is also possible to comb over the expected
delayed neutron weight, while conserving the timed precursor weight. To do this only
the factor Tk must be changed accordingly. Also importance, based on user knowledge or
adjoint calculations can be taken into account in this factor.

2.4 Precursor source distribution

Now that we can simulate precursors, it is time to create a starting distribution for the
precursors. It is possible to let the user input a precursor distribution, but this can be
cumbersome and the exact distribution might be unknown.

In general a transient will start from a steady state. This might be a critical system or a
sub-critical system with an external source. The first task is to determine this steady state
distribution.
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2.4.1 Geometrical distribution

To determine the initial distribution of neutrons and precursors, first a criticality calculation
is done until the fission source is converged. For a critical system this is the proportional to
the steady state neutron distribution. From this fission source distribution the precursor
and prompt neutron distribution can be obtained.

Prompt neutron fraction

When the system is at steady state (keff = 1), the precursors density can be calculated using

Eq. (2.4) in stationary form, ∂ C i

∂ t
= 0:

C i 0(r ) =
βi

λi
νΣ fφ(r ) (2.41)

For all precursor families together this becomes:

C0(r ) =
∑

i

βi

λi
νΣ fφ(r ) (2.42)

with an inversely weighted λ

λb ≡
β
∑ βi

λi

(2.43)

this becomes

C0(r ) =
β

λb
νΣ fφ(r ) (2.44)

The fraction of prompt neutrons is defined as:

n 0(r )
n 0(r )+C0(r )

=
1
v
φ(r )

1
v
φ(r )+ β

λb νΣ fφ(r )
=

1

1+ β

λb vνΣ f

(2.45)

Note, this fraction is between prompt neutrons and precursors, whereas Eq. (2.10) gives
the fraction between prompt and delayed neutrons. Also this fraction does not use the
generation time Λwhich is difficult to determine exactly (Verboomen et al., 2006). Instead it
only uses well-defined quantities, like the neutron speed and the total fission cross section.

The values used in this work for a mono-energetic case are taken from Appendix A.1.
The neutron speed is chosen to be 10 times lower than thermal speed, because this will
give the artificial system a generation time of Λ = 72.7 µs, which is more realistic for a
thermal nuclear reactor. With these numbers the fraction of prompt neutrons in steady
state becomes 0.08 %.
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2.4. Precursor source distribution

When we use weighted neutrons and precursors, the number of weighted precursors
is calculated from the flux of weighted neutrons, φw (r ), times the average weight of the
neutrons:

w timedC0(r ) =
β

λb
νΣ fφw (r )wn (2.46)

Now use this in (2.45) to obtain:

1
v
φw (r )

1
v
φw (r )+

β

λb νΣ fφw (r )wn/w timed

=
1

1+ β

λb vνΣ f wn/w timed

(2.47)

2.4.2 Family distribution

With exponential decay a precursor has no age: there is always the same probability that a
precursor has its decay in the next time interval, no matter what time it has lived before.
However, with combined families a precursor does not have a pure exponential decay
probability any more, as stated in section 2.2.1.

In this case the combined precursor represents all precursor families. Each precursor
family is represented by a fraction of the combined precursor:

fraction of family i =
C i

C
(2.48)

The precursors from different families decay with different decay constants. Therefore
the fractions per family that one combined precursor represents evolve. The precursor
concentration which is represented by the combined precursor is the original precursor
concentration minus the decay:

C i (t ) =
βi

β

 

1−
∫ t

t0

λi e−λi (t−t0)dt

!

(2.49)

C (t ) =
∑

i

βi

β

 

1−
∫ t

t0

λi e−λi (t−t0)dt

!

(2.50)

Now the evolution of the precursor families in a combined precursor can be calculated:

C i (t )
C (t )

=

βi

β
e−λi t

∑

j
βj

β
e−λj t

(2.51)

When the precursor is created, t = 0, the fraction per precursor family is simply

C i (0)
C (0)

=
βi

β
(2.52)
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Figure 2.11: The ratio between the precursors families in a combined precursor. All families
together add up to 1, but over time different precursor families are most important.

Then the fractions change overtime as shown in Fig. 2.11. The decay constants and delayed
fractions are given in Table 2.3.

In a stationary case, the percentage of precursors per family remains the same. This
number can be calculated combining Eqs. (2.41) and (2.44)

C i 0

C0
=
βi

β

λb

λi
(2.53)

The difference between the precursor family distribution at the creation of a precursor and
the family distribution in steady state is shown in Fig. 2.12.
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Figure 2.12: The distribution of precursor families is different for the moment of creation
and at steady state.

Sampling creation time

One way to look at this problem is to realise that for a steady state the production of
precursors has been constant before t = 0. When using forced decay all precursors that
have been produced before t = 0 still have a contribution to the delayed neutron source.
These are all precursors from −∞ to 0.

Now the steady state distribution can be achieved by sampling a precursor source with a
creation time t0 uniformly between −∞ and 0. This way the ratios between the different
precursor families are correct:

C i ,0 =
∫ 0

−∞βiνΣ fφe−λi (0−t0)dt0 =
βi

λi
νΣ fφ (2.54)

C0 =
∑

i
βi

λi
νΣ fφ (2.55)

combining these equations yields Eq. (2.53):

C i ,0

C0
=

βi

λi
νΣ fφ

∑

i
βi

λi
νΣ fφ

=
βi

β

λb

λi
(2.56)

It can also be demonstrated that the precursor concentration remains constant with
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2. Simulation of Precursors

constant neutron flux, when continuing from this starting point:

C (t ) =
∑

i

βi

λi
νΣ fφe−λi t +

∑

i

∫ t

0

βiνΣ fφe−λi (t−t ′)dt ′ =
β

λb
νΣ fφ (2.57)

Now the timed weight of the precursor is altered since it has already undergone a portion
of its decay probability before t = 0. The timed weight can be calculated using Eq. (2.24).
This timed weight is the weight which is used in Eq. (2.47), and therefore the total sum of
all timed weights of the precursors must add up to C0.

To achieve a uniform distribution between −∞ and 0 there are two approaches. The first
is to use an exponential distribution and adjust the weights of the resulting precursors,
with the random number ρ uniformly between 0 and 1:

t =
ln(ρ)
λ

(2.58)

wC =
1

λ
e−λt0 (2.59)

A good choice for λ is the average decay constant: λb . Since this is the average decay
constant, the sampled distribution will not differ too much from the actual distribution,
making the rejection scheme more efficient.

Although this method is exact, a more practical method is to sample a starting time
uniformly between −T and 0, where T is a large number, typically a few times the average
lifetime of the longest lived precursor family 1

λ1
:

t = −ρT (2.60)

wC = 1 (2.61)

Next the timed weight of the precursor at t = 0 is used for a rejection scheme:

w timed(0)≥ w timed, accept, w timed(0) =w timed(0) (2.62)

w timed(0)≥ ρw timed, accept, w timed(0) =w timed (2.63)

w timed(0)< ρw timed, reject. (2.64)

The average timed weight, w timed can be chosen freely. If the precursor is rejected, a new
starting time is sampled for that location.

Changing the family distribution

A more elegant method is to start precursors that are present at t = 0 with a different family
distribution. When a precursor is created the probability per family is given by:

Pi =
βi

β
(2.65)
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2.5. Summary of the simulation of precursors

For a precursor that is created at t = 0, with steady state conditions this probability is
changed to:

Pi =
βi

β

λb

λi
(2.66)

The combined precursors can take this into account nicely by altering the starting
distributions of the families. The starting distributions are denoted by the fraction delayed,
fd i :

fd i =

(

βi

β
, precursor created during simulation, (t0 ≥ 0)

λb

λi

βi

β
, precursor created at start of simulation, (t0 < 0)

(2.67)

2.5 Summary of the simulation of precursors

In this chapter the challenge of simulating precursors and neutrons in one simulation
has been addressed. A precursor operates at a typical time scale of seconds and neutrons
operate at a time scale of milliseconds and shorter. This difference can cause a lot of
variance in the tallies, due to the fact that tallies are only scored when there are prompt
neutrons being simulated. In nature there are enough neutrons to average out to steady
neutron flux, but in a Monte Carlo simulation this can create large time intervals with only
precursors present.

A scheme to combine neutrons and precursors into one time scale is proposed. In this
scheme each precursor is forced to produce a delayed neutron in each time interval, in
order to start a prompt-fission chain contributing to the tallies in that interval. In this way
there are always at least as many prompt-fission chains as there are precursors in each time
intervals. Although there can be moments in an interval without neutrons. Since the tallies
are averaged over the interval, this is not an issue.

The statistical weight of a neutron resulting from forced decay is altered to ensure a fair
game, but this decreases the weight of the resulting neutron. If the weight of this delayed
neutron is too low, a Russian roulette game can be played on the precursor. The difference
with a normal Russian roulette game is that the weight monitored is either the expected
weight of the delayed neutron in the next time interval or the timed weight of the precursor.
If this weight is below a threshold, the game is played and if the precursor survives, the
main statistical weight of the precursor is increased, increasing automatically the derived
weights.

Another method for population control is the combing method. This method redistrib-
utes the total weight of all particles over a fixed number of particles of equal weight. Here
the total precursor concentration is conserved.

To reduce the variance even further, all precursor families are represented in one com-
bined precursor. This way all precursor families are represented in exactly the right number.
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2. Simulation of Precursors

The downside of combining the precursor families in one combined precursor is the loss of
the exponential decay. This implies that the behaviour of a combined precursor changes
over time and that the particle age must be taken into account, also when starting the cal-
culation. This can be done by sampling a negative creation time for the source precursors
or by giving the source precursors a steady-state distribution. This steady-state distribution
reflects the distribution of the different precursor family concentrations in steady state.
Precursors which are created during the simulation are given a fission distribution.
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3. Variance in Prompt Fission Chain Lengths

The decay of precursors is not the only source of variance in a time dependent calculation.
Also the variance in the length of prompt fission chains has a significant contribution to
the variance of the neutron flux and therefore to the variance in tallies. To investigate this
first the physics of such branching processes is discussed in section 3.1 and modelled in
sections 3.2 and 3.3. Then new variance reduction techniques are developed in section 3.4
and finally these new techniques are tested in a simple system in section 3.5.

3.1 Physics of fission chains

To study this variance caused by the prompt-fission chains, it is best to first study the
physical phenomena which cause these effects. This can be done at several levels, from
individual neutrons to average fission chains.

3.1.1 Microkinetics

In nuclear reactor physics it is common to look at the average neutron flux. The average
neutron flux is continuous in phase space, but when considering the actual neutron flux it
contains noise and it is not continuous. The neutron flux consists of individual neutrons,
grouped in fission chains and studying these average fission chains is called microkinetics
(Ott and Neuhold, 1985). The length of an average fission chain is finite, if a system is not
super prompt critical.

The behaviour of fission chains determines the behaviour of global and more abstract
quantities, e.g. the multiplication factor, the effective delayed fraction or alpha-modes.
These result in fact from a super-position of the average fission chains. The chains are
started by a delayed neutron, as explained in the previous chapter. This delayed neutron
can cause fission, releasing new prompt neutrons. The behaviour of an average chain
is depicted in Fig. 3.1. When a delayed neutron starts a chain, the neutron source is
one. The neutron can then release new prompt neutrons via fission, but on average, the
neutron population of the chain will decrease if the system is not super prompt critical
(keff (1−β )< 1). The average neutron source, started by the decay of a single precursor, will
therefore decrease exponentially.

From microkinetics few macroscopic features of a transient in a nuclear reactor can be
derived. For example, when the reactivity increases the population in the prompt fission
chains will decrease more slowly, creating more neutrons, which is a measure for the total
neutron flux. This increase in neutron flux occurs almost instantly and is called the prompt
jump.

Next, these longer fission chains will produce more precursors, which will start extra
fission chains. Therefore not only the number of neutrons per chain increases, but also
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Figure 3.1: A schematic representation of prompt neutron chains in the microkinetics
description. Each prompt fission chain has the same contribution to the power production.

the number of chains. This effect is not direct, but happens after the decay of the extra
precursors, causing the exponential increase over longer time scales.

3.1.2 Fission-chain kinetics

Unfortunately nature does not supply us with average fission chains. For reactor analysis
the model of an average fission chain may be illustrative, for Monte Carlo simulation most
fission chains are not average. This will change Fig. 3.1 to Fig. 3.2. On average each chain
will generate a new precursor in a critical reactor, but this is also only an average.

To reduce the variance introduced by this phenomenon it is needed to look more fun-
damentally to the neutron kinetics. When doing this there are some advantages, which
Monte Carlo kinetics has over neutron kinetics. The number of neutrons released in a real
fission event is mainly between 1 and 6 as explained in Sec. 2.1, but in Monte Carlo it will
usually be the average number of neutrons rounded to the higher or lower integer, with
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Figure 3.2: A schematic representation of the variance in the chain length of the prompt
fission chain, which is a major contributor to the variance in the power production. On
average each chain will produce one new precursor.

appropriate probability.

Moreover variance reduction techniques can be applied in the Monte Carlo simulation.
The question of which variance reduction techniques to use for controlling the fission
chains in a dynamic Monte Carlo simulation will be investigated in this chapter. In order to
study only the effect of variance due to the prompt fission chains, this chapter will utilises
a model with only prompt neutrons.
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3.2. A simple model for chain length statistics

3.2 A simple model for chain length statistics

3.2.1 Single branch

First, a simple model is introduced to show the size of the variance caused by a branching
process. More elaborate descriptions of branching processes are given by Pazsit and Pal
(2008).

In this model it is assumed that the system is not super prompt critical:

kp < 1 (3.1)

Here kp is the prompt multiplication factor:

kp = keff (1−β ) (3.2)

This holds if

keff <
1

1−β
(3.3)

First, lets assume that a neutron is able to produce only one new neutron during its
lifetime (ν = 1) and that the probability for a neutron to create a new neutron is constant.
The probability to create a new neutron becomes in this case simply:

Pp = kp = keff (1−β ) (3.4)

In such a system, the probability for a chain of prompt neutrons with a length of n
neutrons is given by

P(n ) = P (n−1)
p (1−Pp ) (3.5)

The sum over possible chain lengths must yield 1:

∞
∑

n=1

P(n ) = (1−Pp )
∞
∑

n=1

P (n−1)
p = (1−Pp )

∞
∑

n=0

P (n )p = (1−Pp )
1

1−Pp
= 1 (3.6)

Now the average chain length can be calculated:

n =
∞
∑

n=1

nP(n ) = (1−Pp )
∞
∑

n=1

nP (n−1)
p =

1

1−Pp
(3.7)

For a critical system with β = 0.685%, this average chain length is approximately 150
prompt neutrons. To calculate the variance, the average squared chain length is needed:

n 2 =
∞
∑

n=1

n 2P(n ) = (1−Pp )
∞
∑

n=1

n 2P (n−1)
p =

(1−Pp )

 

∞
∑

n=0

n 2P (n )p +
∞
∑

n=0

2nP (n )p +
∞
∑

n=0

P (n )p

!

=
1+Pp

(1−Pp )2

(3.8)
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3. Variance in Prompt Fission Chain Lengths

Now the variance can easily be calculated:

σ2 = n 2−n 2 =
1+Pp

(1−Pp )2
−
�

1

1−Pp

�2

=
Pp

(1−Pp )2
(3.9)

When Pp approaches 1, the variance becomes infinitely large, but since the chain length
also becomes infinitely long, the relative uncertainty becomes:

σr ≡
σ

n
=

q

Pp

(1−Pp )2

1
1−Pp

=
p

Pp (3.10)

This uncertainty is still large when Pp is close to 1, which is the case for many nuclear
systems.

To see how this influences the efficiency of the calculation, the Figure of Merit (FoM) is
defined. In this model the FoM is not straight forward, because there is no calculation time.
However, the calculation time needed would be proportional to the average prompt fission
chain length: T ∼ n . With this, the FoM can be defined as

FoM≡
1

σ2
r n
=

n

σ2
=

1−Pp

Pp
(3.11)

The influence of Pp on the FoM is shown in Fig. 3.3, for the curve labelled ν = 1 and where
Pp is equal to kp . It shows that the efficiency of the calculation deteriorates rapidly as the
system approaches prompt criticality.

3.2.2 Fission with branching

A similar model can be used in which each fission reaction yields 2 new prompt neutrons
(ν = 2). In this case the probability Pp that a neutron produces new prompt neutrons is

Pp =
kp

2
(3.12)

In this model the chain length can be defined in multiple ways, but for the present purposes
it is most useful to define the chain length as the total number of neutrons in a chain,
because this is a measure for the calculation time. The chain can only have a length of
2n +1 neutrons, with n a natural number. The probability that a fission chain has the size
of 2n +1 neutrons is given by

P(2n +1) =
(2n )!

(n +1)!n !
Pp

n (1−Pp )n+1 (3.13)

The factor 2n !
(n+1)!n !

is called the Catalan number and takes into account the possibility that
the same number of neutrons in a chain can be achieved by different permutations (Stanley,
1999).
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Figure 3.3: The figure of merit for the length of a prompt fission chain, as defined in
Eq. (3.11). Here kp is the prompt multiplication factor.

The total sum of all possibilities is equal to 1:

∞
∑

n=0

P(2n +1) = 1 (3.14)

With this series the average chain length and the average chain length squared can be
calculated again:

n =
∞
∑

n=0

(2n +1)P(2n +1) =
1

1−2Pp
(3.15)

n 2 =
∞
∑

n=0

(2n +1)2P(2n +1) =
1+2Pp −4P2

p

(1−2Pp )3
(3.16)

The resulting variance and FoM are

σ2 =
4Pp (1−Pp )
(1−2Pp )3

(3.17)

FoM=
(1−2Pp )2

4Pp (1−Pp )
(3.18)

Similarly to the case where ν = 1, theσr and the FoM can be calculated analytically. The
FoM for ν = 2 is also plotted in Fig. 3.3 and the plot shows that the FoM is lower if a neutron
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3. Variance in Prompt Fission Chain Lengths

can produce more than one new neutron; hence branching is not desired from a simulation
point of view.

3.3 Moments equations

3.3.1 The model using moment equations

A more exact way of modelling the neutron multiplication is to use moment equations
(Lux and Koblinger, 1991). With these equations the variance of a Monte Carlo calculation
can be calculated a priori, even when variance reduction methods are used (van Wijk and
Hoogenboom, 2011). In this model also the successive collisions of the particle are taken
into account. The flight time between two interactions is a fixed time t f and the total time
is finite. This implies that a fixed maximum number of interactions is possible per particle
in a time domain. This assumption will lead to a slight underestimation of the variance,
since the flight time is actually distributed exponentially, but this effect is assumed to be
small compared to the total variance.

The interactions inside a time domain are considered. They are numbered from 1 to
N ; the final interaction is tN , see Fig. 3.4. The interaction at tN+1 is not part of the time
domain of the calculation and therefore the contribution to the tally at tN+1 is set to 0.

Now the contribution of a particle to a tally can be calculated. Here we will take the
power production as an example, but the theory is valid for any tally. The average amount
of energy released in a fission reaction is given by Q f . Pf is the probability fission occurs at
an interaction and is given by

Pf =
Σ f

Σt
(3.19)

Then a particle at tN will generate Pf Q f energy. A particle at tN−1 will produce also Pf Q f ,
plus it has the probability Ps to scatter to the next collision at tN and produce energy at that
instance. Ps is equal to

Ps =
Σs

Σt
(3.20)

The average total production for a particle starting at tN−1 is Pf Q f +Ps Pf Q f .

3.3.2 Score probability equations

Next the score probability function π(tn , w , s ) is introduced. This quantity gives the prob-
ability that a neutron that starts at time tn , with weight w , will generate a score s . With the
introduction of the score probability equation, the model can easily take into account the
contribution of prompt fission neutrons as well as variance reduction techniques such as
implicit capture. For now the system will remain infinitely large.
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3.3. Moments equations

t1 t2 tN-1 tN tN+1
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...

Time
boundary

Time
boundary

Figure 3.4: When moment equations are used, a fixed time between collisions is needed to
calculate the variance of a tally a priori.

In reality at a fission reaction ν new neutrons are created and the present neutron is
terminated. In the current model the probability to generate this number of new neutrons
is lumped into the probability to generate one new neutron, while continuing the path of
the original neutron via implicit absorption. The probability that a neutron with statistical
weight w generates a new prompt neutron with weight 1 is given by Pm =wνΣ f /Σt .

The scoring, in our case the energy production, at one collision is represented by a delta
function, since in this model the score per collision is always exactly w Pf Q f . When the
particle scatters or produces a new particle from fission, the scores at the collisions of these
particles must also be taken into account. This is done by convoluting the score at time
t = tn with all possible scores at the following collisions. A convolution is defined as

f (s )⊗ g (s )≡
∫ ∞

−∞
f (s − s ′)g (s ′)ds ′ (3.21)

At a collision in this model, in which implicit absorption and forced fission are taken into
account, a neutron has two possibilities. The first possibility is that the neutron initiates no
fission and the power production at t = tn is only convoluted with the power production
of the scattering neutron. The second possibility is that the neutron creates a new fission
neutron and scatters as well. In this case the power production is convoluted with both the
scattering neutron and the fission neutron.
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3. Variance in Prompt Fission Chain Lengths

For clarity, the different terms in the equation for the score probability appear in colours.
The score of the first collision is in red, the score of the scattering particle is in blue. The
score of the fission neutron is in yellow. The scoring function is given by

π(tn , w , s ) =(1−w Pm )δ(s −w Pf Q f )⊗π(tn−1, w Ps , s )

+w Pmδ(s −w Pf Q f )⊗π(tn−1, w Ps , s )⊗π(tn−1, 1, s )
(3.22)

The first moment can be calculated by integrating over all possible scores:

M 1(tn , w ) =

∫ ∞

−∞
sπ(tn , w , s )ds (3.23)

Here the following relation, introduced by Micoulaut (1976), is needed :

〈s 〉 f 1⊗ f 2⊗...⊗ f N = 〈s 〉 f 1 + 〈s 〉 f 2 + . . .+ 〈s 〉 f N (3.24)

Now Eq. (3.23) results in

M 1(tn , w ) =w Pf Q f +M 1(tn−1, w Ps )+w Pm M 1(tn−1, 1) (3.25)

As for the first moment holds
M 1(tn , w ) =w M 1(tn ) (3.26)

the first moment becomes

M 1(tn ) = Pf Q f +(Ps +Pm )M 1(tn−1) (3.27)

and the first moment resulting from a weighted particle can be calculated by multiplying
this equation by the weight w .

For the second moment the calculation becomes more complicated and the following
theorem by Micoulaut (1976) is needed:

〈s 2〉 f 1⊗ f 2⊗...⊗ f N =
∑

j i=0,1,2

2!

j1!j2! . . . jN !
〈s j1 〉 f 1 〈s j2 〉 f 2 . . . 〈s jN 〉 f N (3.28)

where the summation is such that
∑N

i j i = 2. In the case where N = 3 this becomes:

〈s 2〉 f 1⊗ f 2⊗ f 3 =

∫ ∞

−∞
s 2 f 1⊗ f 2⊗ f 3ds = 〈s 2〉 f 1 + 〈s 2〉 f 2 + 〈s 2〉 f 3

+2〈s 〉 f 1 〈s 〉 f 2 +2〈s 〉 f 1 〈s 〉 f 3 +2〈s 〉 f 2 〈s 〉 f 3

(3.29)

The cross terms that appear in the second moment are given the following colours. The
cross term between the first collision and the scattering neutron is in purple. The cross

50



3.3. Moments equations

terms between the fission neutron and the first collision and the scattering neutron are in
green and in brown, respectively.

The second moment now becomes

M 2(tn , w ) =

∫ ∞

−∞
s 2π(tn , w , s )ds =

(1−w Pm )
�

w 2P2
f Q2

f +M 2(tn−1, w Ps )+2w Pf Q f M 1(tn−1, w Ps )
�

+

w Pm
�

w 2P2
f Q2

f +M 2(tn−1, w Ps )+2w Pf Q f M 1(tn−1, w Ps )+

M 2(tn−1, 1)+2w Pf Q f M 1(tn−1, 1)+2M 1(tn−1, 1)M 1(tn−1, w Ps )
�

(3.30)

This results in

M 2(tn , w ) =w 2P2
f Q2

f +M 2(tn−1, w Ps )+w Pm M 2(tn−1, 1)+

2w 2�Pf Q f Ps +Pf Q f Pm +Pm Ps M 1(tn−1)
�

M 1(tn−1)
(3.31)

which is in line with the derivations in Lux and Koblinger (1991) and Booth (1979)

Since the score probability function at t = tn only depends on the score at t = tn+1 and
since the score at t = tN+1 is known to be zero, these equations can be solved backwards.
The weight of a neutron is determined by the number of implicit absorptions it has had,
which is equal to the number of scatter interactions, p , it has had from its start at tn−p to
tn . The equation for the first moment can be solved directly:

M 1(n , p ) = nPp
s Pf Q f (3.32)

The second moment equation can be transformed into a matrix form:

M 2(n , p ) =P2p
s P2

f Q2
f +M 2(n −1, p +1)+Pp

s Pm M 2(n −1, 0)+

2(n −1)P2p
s Pf Q f

�

Pf Q f Ps +Pf Q f Pm +(n −1)Pm Ps Pf Q f
�

(3.33)

These equations can be solved when starting at n = N +1 and p = N +1 and working
backwards from there. Also note that p ≤ n max, where n max is the maximum number of
time steps possible.

3.3.3 Figure of Merit

The FoM in this model is defined differently from the definition in the model of section 3.2.
The calculation time can be estimated more accurately by assuming it is proportional to
the number of collisions simulated,c :

T ∼ c (3.34)

Now the FoM becomes

FoM=
1

σ2
r c

(3.35)
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tn Analytical Monte Carlo
M 1 M 2 FoM M 1 M 2 FoM

1 7.95×10−12 6.32×10−23 ∞ 7.95×10−12 6.32×10−23 109

2 1.59×10−11 2.66×10−22 7.05 1.59×10−11 2.66×10−22 7.05
3 2.38×10−11 6.41×10−22 1.53 2.38×10−11 6.42×10−22 1.53
4 3.18×10−11 1.23×10−21 0.56 3.18×10−11 1.23×10−21 0.56
5 3.97×10−11 2.07×10−21 0.26 3.98×10−11 2.07×10−21 0.27
6 4.77×10−11 3.20×10−21 0.14 4.77×10−11 3.21×10−21 0.15

Table 3.1: The moment equations and the resulting theoretical FoM, calculated with both
the moment equations and a Monte Carlo simulation

with

σr =
σ

M 1
(3.36)

To calculate the total number of collisions, a score probability function is used as well,
πc (tn , w , s ), which is given by

πc (tn , w , s ) = (1−w Pm )δ(s −1)⊗π(tn−1, w Ps , s )

+w Pmδ(s −1)⊗π(tn−1, w Ps , s )⊗π(tn−1, 1, s )
(3.37)

This function is similar to Eq. (3.22), but now the score is the particle’s collision, which is
one, convoluted with the number of collisions it makes after tn and the collisions of its
possible progeny. The total number of collisions thus becomes:

c (tn , w ) = 1+ c (tn−1, w Ps )+w Pm c (tn−1, 1) (3.38)

3.3.4 First results of the moment equations model

To show the validity of these moment equations, a sample problem is devised for a short
time interval. The system used in this problem has the following properties: Ps = 0.3,
Pm = 0.7, Pf = 0.25 and Q f = 200×1.60×10−13 J. Six collisions are calculated both via the
analytical route described above and via Monte Carlo simulation. The FoM calculated by
the Monte Carlo calculation the theoretical FoM defined by Eq. (3.35); the real calculation
time is not used. The results are shown in Table 3.1. It shows that the moment equations
can predict the variance accurately and the efficiency of a time dependent Monte Carlo
calculation on this simple model, a priori.
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3.4. Variance reduction methods

3.4 Variance reduction methods

3.4.1 Biasing fission

With the basic equations laid out before, the moment equation can now be used to find
biasing schemes which improve the efficiency and stability of time-dependent calculations.
High variance can initiate extremely long fission chains, making the total calculation time
unpredictable.

The first place to look is biasing of the fission probability. This can be done with two
different approaches. The first is by biasing the absolute fission probability. In this case the
probability of creating new neutrons is independent of the neutron weight. This method is
named biased fission probability. The second method does take into account the weight of
the neutron and this method is named biased forced fission.

Biased fission probability

When a biased fission probability is used, the probability to create a fission neutron at a
collision in the Monte Carlo simulation is set to P∗m ; the probability of creating a new fission
neutron in a weighted Monte Carlo game then becomes w P∗m and the resulting weight of
the fission neutron becomes Pm /P∗m , to ensure an unbiased result. Since both Pm and P∗m
are probabilities, they are between 0 and 1. Now the score probability function becomes

π(tn , w , s ) = (1−w P∗m )δ(s −w Pf Q f )⊗π(tn−1, w Ps , s )+

w P∗mδ(s −w Pf Q f )⊗π(tn−1, w Ps , s )⊗π(tn−1, Pm /P
∗
m , s )

(3.39)

This method does not change the first moment, otherwise the result would be biased, but
does change the second moment:

M 2(tn , w ) =

∫ ∞

−∞
s 2π(tn , w , s )ds =

w 2P2
f Q2

f +M 2(tn−1, w Ps )+w P∗m M 2(tn−1, Pm /P
∗
m )+

2w 2�Pf Q f Ps +Pf Q f Pm +Pm Ps M 1(tn−1)
�

M 1(tn−1)

(3.40)

The difference between this equation and Eq. (3.31) is in the yellow fission term, the third
term. To reduce the variance, this should be smaller.

To calculate the second moment, also the second moments for different starting weights
and starting times are needed. This time the weight is determined by the number of scatter
interactions p and the number of fission events q , with q = n max − n − p . The second
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moments can be calculated by starting at n =N +1 and p =N +1 and then solving

M 2(n , p ) =P2p
s P2

f Q2
f

�

Pm /P
∗
m

�2q
+M 2(n −1, p +1)+Pp

s P∗m M 2(n −1,q +1)+

2(n −1)P2p
s

�

Pm /P
∗
m

�2q
Pf Q f

�

Pf Q f Ps +Pf Q f Pm +(n −1)Pm Ps Pf Q f
�

(3.41)

Biased forced fission probability

It is also possible to bias the absolute probability of fissioning, setting the probability of
creating a new fission neutron to P∗n . In this case the weight of the new fission neutron
becomes w Pm /P∗n .

The first moment again returns an unbiased result and the matrix for the second mo-
ments can be calculated using

M 2(n , p ) =P2p
s P2

f Q2
f

�

Pm /P
∗
m

�2q
+M 2(n −1, p +1,q )+P∗m M 2(n −1, p ,q +1)+

2(n −1)P2p
s

�

Pm /P
∗
m

�2q
Pf Q f

�

Pf Q f Ps +Pf Q f Pm +(n −1)Pm Ps Pf Q f
�

(3.42)

with p +q = n max−n .

Full forced fission

A special case of this biasing constitutes w P∗n = 1, which implies the creation of a new
fission neutron, with weight w Pm , at every collision. Now the score probability function
becomes:

π(tn , w , s ) =δ(s −w Pf Q f )⊗π(tn−1, w Ps , s )⊗π(tn−1, w Pm , s ) (3.43)

To calculate the second moment, a pyramid of M 2s is needed.

M 2(n , p ) =P2p
s P2q

m P2
f Q2

f +M 2(n −1, p )+M 2(n −1, p +1)

+2(n −1)P2p
s P2q

m (Pf Q f +Pm Ps Pf Q f )(n −1)Pf Q f

(3.44)

again with p +q = n max−n .

Resulting efficiency

To see if these techniques help to reduce the cost of a calculation, these methods are tested
in a test case with a system where Ps = 0.3 and Pm = 0.7. The theoretical FoM has been
plotted against the amount of biasing used, P∗m , in Fig. 3.5.

The graph shows that using forced fission increases the efficiency of a calculation when
P∗m > Pm . The highest benefit is obtained when using complete forced fission, P∗m ≈ 1. This
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Figure 3.5: The analytical FoM for a system without leakage, when using biased fission and
biased forced fission; the unbiased case is P∗m = 0.7.

result is valid for this simple system with no leakage, because here there is zero variance
when forced fission and implicit absorption are used. This gives an unrealistic view, because
the calculation time can now approach infinity and still the FoM will be infinite. To make
the system more realistic and to shorten the fission chains, leakage and Russian roulette
are introduced in the next section.

3.4.2 Fission chain termination

A neutron fission chain can be ended in a few ways. It can cross the final time boundary;
when implicit capture and forced fission are used, as explained before, this is the only
method to end a chain. In a more realistic system, a neutron can also leak out of the system
and in this case the chain is also terminated. In most Monte Carlo simulations, the chain
can also end by Russian roulette. As the weight of a particle decreases, the importance of
this particle reduces until it is no longer worth spending simulation time on it. The particle
will then undergo a Russian roulette and can either be terminated or its weight is increased.
These mechanisms are also incorporated into the model, to obtain a more realistic view on
the variance.
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3. Variance in Prompt Fission Chain Lengths

Russian roulette

Long calculation times with implicit capture and forced fission can be reduced by Russian
roulette. The moment equations can take this also into account. With Russian roulette, the
particle can either survive or be killed at the end of a collision: z 1 indicates the particle’s
survival probability and z 0 the termination probability of the particle. These probabilities
are given by

z 1(tn , w ) =

¨

w /wsurv(tn ) w ≤wrr

1 w >wrr
(3.45)

z 0(tn , w ) =

¨

1−w /wsurv(tn ) w ≤wrr

0 w >wrr
(3.46)

The weight of the surviving particle is w ∗ and it is given by

w ∗(tn , w ) = w w >wrr (3.47)

w ∗(tn , w ) = wsurv(tn ) w ≤wrr (3.48)

Russian roulette can be applied on the scattering neutron and on the fission neutron. These
two roulette games are denoted by z 1s and z 1 f , respectively. The score probability function
now becomes

π(tn , w , s ) =z 0 f z 0sδ(s −w Pf Q f )+

z 0 f z 1s

�

δ(s −w Pf Q f )⊗π
�

tn−1, w ∗(tn−1, w Ps ), s
�

�

+

z 1 f z 0s

�

δ(s −w Pf Q f )⊗π
�

tn−1, w ∗(tn−1, w Pm ), s
�

�

+

z 1 f z 1s

�

δ(s −w Pf Q f )⊗π
�

tn−1, w ∗(tn−1, w Ps ), s
�

⊗π
�

tn−1, w ∗(tn−1, w Pm ), s
�

�

(3.49)

This results in the following equation for the second moment:

M 2(tn , w ) =w 2P2
f Q2

f+

z 1 f

�

M 2
�

tn−1, w ∗(tn−1, w Pm )
�

+

2w Pf Q f M 1
�

tn−1, w ∗(tn−1, w Pm )
�

�

+

z 1s

�

M 2
�

tn−1, w ∗(tn−1, w Ps )
�

+

2w Pf Q f M 1
�

tn−1, w ∗(tn−1, w Ps )
�

�

+

z 1 f z 1s 2w ∗(tn−1, w Ps )w ∗(tn−1, w Pm )M 1
2(tn−1)

(3.50)

To calculate the second moments, a few more simulation weights are now possible and
the M 2 matrix becomes 4 dimensional. In this equation n indicates the time step, p the
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number of scattering events since the start of the particle or its last Russian roulette survival,
q the number of fission events since the start or the roulette and u the starting weight,
which can be 1, ws,surv or w f ,surv.

M 2(n , p ,q , u ) =w 2P2
f Q2

f + z 1s M 2(n −1, p 1,q1, u 1)+

z 1 f M 2(n −1, p 2,q2, u 2)+

2w Pf Q f (z 1s w ∗
s + z 1 f w ∗

f )M 1(n −1)+

2z 1 f z 1s w ∗
f w ∗

s M 1(n −1)2

(3.51)

Here p 1, q1 and u 1 are the values in the case of a scattering event and p 2, q2 and u 2 in
the case of a fission event. The weights w ∗

f /s are the weights after either fission or scattering.

These equations are used to calculate the FoM in an infinite system, again with Ps = 0.3
and Pm = 0.7. The fission and scattering Russian roulette survival weights are varied from 0
to 1 and the Russian roulette threshold is half the survival weight.

The resulting FoM is plotted in Fig. 3.6, where one horizontal axis shows the survival
weight for fission and the other horizontal axis the survival weight for scattering. This
plot shows it might be beneficial to have different Russian roulette thresholds for different
interaction types. The results are difficult to compare with Fig. 3.5, since the addition
changed fundamentally

Leakage

Finally, leakage is introduced into the system to create a system that cannot be solved
with zero variance using implicit absorption and forced fission. Leakage can be simulated
implicitly, but typically it is simulated explicitly in Monte Carlo calculations. The leakage is
modelled in a simple way. After each collision, the particle has a probability 1−Pnl that it
will leak out of the system, with Pnl the average non-leakage probability. This is not an exact
model of leakage, because in reality the leakage probabilities at two consecutive collisions
are correlated: if the first collision was in the centre of the system, the following collision
also has a low probability of being outside the system. The leakage is modelled this way, to
be able to incorporate the leakage in the moment equations.

The particle can already leak before the first interaction. Therefore the score probability
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Figure 3.6: The analytical FoM at different values for the scattering and fission Russian
roulette thresholds.

function becomes

π(tn , w , s ) = Pnl

�

z 0 f z 0sδ(s −w Pf Q f )+

z 0 f z 1s

�

δ(s −w Pf Q f )⊗π
�

tn−1, w ∗(tn−1, w Ps ), s
�

�

+

z 1 f z 0s

�

δ(s −w Pf Q f )⊗π
�

tn−1, w ∗(tn−1, w Pm ), s
�

�

+

z 1 f z 1s

�

δ(s −w Pf Q f )⊗π
�

tn−1, w ∗(tn−1, w Ps ), s
�

⊗

π
�

tn−1, w ∗(tn−1, w Pm ), s
�

�

�

(3.52)

The first moment becomes

M 1 =Pnlw Pf Q f +Pnlz 1s M 1
�

tn−1, w ∗(tn−1, w Ps )
�

+

Pnlz 1 f M 1
�

tn−1, w ∗(tn−1, w Pf Q f )
� (3.53)
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and the second moment

M 2(tn , w ) = Pnl

�

w 2P2
f Q2

f+

z 1 f

�

M 2
�

tn−1, w ∗(tn−1, w Pm )
�

+2w Pf Q f M 1
�

tn−1, w ∗(tn−1, w Pm )
�

�

+

z 1s

�

M 2
�

tn−1, w ∗(tn−1, w Ps )
�

+2w Pf Q f M 1
�

tn−1, w ∗(tn−1, w Ps )
�

�

+

z 1 f z 1s 2w ∗(tn−1, w Ps )w ∗(tn−1, w Pm )M 1
2(tn−1)

�

(3.54)

Since these equations are similar to the ones without leakage, the calculation of the
variance has a similar complexity. The M 2-matrix now becomes

M 2(n , p ,q , u ) = Pnl

�

w 2P2
f Q2

f + z 1s M 2(n −1, p 1,q1, u 1)+

z 1 f M 2(n −1, p 2,q2, u 2)+2w Pf Q f (z 1s w ∗
s + z 1 f w ∗

f )M 1(n −1)+

z 1 f z 1s 2w ∗
f w ∗

s M 2
1(n −1)

�

(3.55)

For the Monte Carlo simulation this case with leakage is more interesting, because the
leakage is usually not simulated implicitly. In the previous cases zero variance could be
achieved, if the appropriate variance reduction techniques were used. Without a relative
uncertainty, it is difficult to define a useful FoM for a calculation. Also, the robustness of
the variance reduction is now shown. Leakage introduces a stochastic process that is not
directly targeted by one of the variance reduction techniques and therefore the robustness
can be investigated.

In this test case, Pm is increased to 0.77 and Ps is increased to 0.33, ensuring the same
ratio between the two probabilities as in the infinite system. The non-leakage probability is
set to Pnl = 1

Pm+Ps
= 0.91. This way the system remains critical.

The results are plotted in Fig. 3.7 and it shows that the difference between the ideal
scattering and fission Russian roulette thresholds has become smaller, but it is still present.
Also, it shows the importance to have both the implicit absorption and forced fission
Russian roulette thresholds at a similar level.

3.4.3 Tailoring the variance reduction per time step

Another variance reduction technique that can be used for a system with time evolution is
to divide the system into time steps. Now the Russian roulette can be adjusted during the
simulation, creating a more effective particle weight distribution in time. When the contri-
bution of a fission chain to the power production in a certain time interval is calculated,
only the interactions in that specific interval score power, but all previous interactions have
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Figure 3.7: The analytical FoM at different values for the scattering and fission Russian
roulette thresholds in a system with leakage.

to be considered as well to incorporate all possible branches of a fission chain that will
contribute to the power tally in the time interval that is tallied.

The particles that cross a time boundary undergo a Russian roulette, which creates
particles at the beginning of the next time step that have equal weights. This way the
expected contribution of all particles at the beginning of a time interval is the same.

The score probability function stays the same as in Eq. (3.52), but now:

Q f = 0 if t < tb (3.56)

Here tb is the lower time boundary of the time interval where the power is tallied and
the power production is set to zero for all the time intervals before tb . The z -values of
the Russian roulette have different values in the different time intervals and at the time
boundaries. The Russian roulette threshold is set to 0.25 times the mean particle weight
in the last interval, and the survival weight is set to 2 times the Russian roulette threshold.
These values are very commonly used (X - 5 Monte Carlo Team, 2005). At time boundary
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tn , the threshold is equal to the survival weight and is set toφ(tn )/φ(t1). Hereφ(tn ) is the
neutron flux at the beginning of the time interval andφ(t1) is the flux at the beginning of
the calculation. This will scales the weight of the particles to the increase in neutron flux: if
the neutron flux is twice as high, the weight of the neutrons also becomes twice as high,
retaining the total particle number roughly constant.

3.4.4 Branchless method

Besides biasing the fission probability, a second new method aims at reducing the variance
in the power production via the chain lengths. This method uses analog scattering com-
bined with forced fission. At a collision only one neutron will continue, either the scattered
neutron or a fission neutron. The neutron has an analog probability Ps to have a scattering
interaction, with an unchanged simulation weight.

If the neutron does not scatter, it terminates, producing a new fission neutron with
weight:

wbls =w
νΣ f

Σa
(3.57)

Here Σa is the absorption cross section which is equal to

Σa =Σt −Σs (3.58)

This method ensures that the fission chain will not branch. However, because the weight
of the neutron can increase significantly using this method, particle splitting is used in
combination with this method. The neutron can be split, due to its high weight. The score
probability function in this case becomes

π(Tn , w , s ) =Pnl

�

Ps
�

z 0sδ(s −w Pf Q f )+

z 1sδ(s −w Pf Q f )⊗π(tn−1, w , s )
�

+

(1−Ps )
�

δ(s −w Pf Q f )⊗
Nsplit
∏

j=1

⊗z 1 f πj (tn−1, w ∗, s )
�

�

(3.59)

with

Nsplit
∏

j=1

⊗z 1 f πj (tn−1, w ∗, s ) = z 1 f π1(tn−1, w ∗, s )⊗ . . .⊗ z 1 f πNsplit (tn−1, w ∗, s ) (3.60)

and πj is the score probability function of the j -th particle. As all particles resulting from
splitting behave identically:

πj (tn−1, w ∗, s ) =π(tn−1, w ∗, s ) (3.61)
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This represents the splitting of the particle into Nsplit particles and the convolution of
all resulting particles. The splitting is used for the case where k∞ = νΣ f /Σa > 1. Then the
weight of the fission neutron will be larger than the weight of the original neutron. The
particle is split when its weight rises above a threshold wsplit . For applying Russian roulette
on the time boundaries the factors z s and z f are used again. In this case these factors are
equal to 1, except if the particle crosses a time boundary. In this case the factor is

z 1 =







wbls

wsurv
fission at time boundary crossing and wsurv ≥wbls

w
wsurv

scattering at time boundary crossing and wsurv ≥w

1 otherwise
(3.62)

and wsurv the weight at the start of the new time interval. The new weight of the neutron
which continues after the collision is given by

w ∗=











wsurv fission at time boundary crossing and wsurv ≥wbls
wbls

Nsplit
fission otherwise

wsurv scattering at time boundary crossing and wsurv ≥w
w

Nsplit
scattering otherwise

(3.63)

with

Nsplit =

�

wbls

wsplit
+1

�

(3.64)

The square brackets denote the integer part of the fraction.

3.5 Comparison of different variance reduction methods

It is interesting to compare these new variance reduction techniques with existing methods
in production codes. However, when comparing these codes the calculation speed of the
code becomes an important factor. Therefore the actual production codes are not used,
instead the methods used in the codes are implemented in a simple Monte Carlo program.
The variance and calculation speeds are also calculated analytically. An analytical FoM, as
defined by Eq. (3.35), is calculated using these quantities to determine the efficiency of the
methods used in the different production codes.

The sample problem on which all calculations in this section are performed, is a finite
homogeneous system with one energy group and isotropic scattering. Only prompt neut-
rons are considered. The calculation is done for a 1 second time range and the power
production is sampled in ten time intervals of 100 ms.
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3.5.1 MCNP

The computer code MCNP5 (X - 5 Monte Carlo Team, 2005) is used in shielding mode with
a neutron source at t = 0 and the scores are tallied in time bins. When a neutron enters
a collision in MCNP5, implicit capture is applied first and then fission is sampled, with a
probability of

Pfission =
Σ f

Σ f +Σs
(3.65)

If fission takes place the number of new fission neutrons is sampled using

n =
�

ν +ρ
�

(3.66)

where ρ is a random number uniformly distributed between 0 and 1, ν is the average
number of new neutrons in a fission reaction. The weight of the resulting neutrons is the
same as that of the original neutron. The score probability function becomes in this case:

π(tn , w , s ) =Pnl

�

z 0sδ(s −w Pf Q f )+ z 1s (1−Pfission)
�

δ(s −w Pf Q f )⊗π(tn−1, w , s
�

+ z 1s Pfissionν
−

�

δ(s −w Pf Q f )⊗π(tn−1, w , s )⊗π(tn−1, w , s )
�

+

z 1s Pfissionν
+�δ(s −w Pf Q f )⊗π(tn−1, w , s )

⊗π(tn−1, w , s )⊗π(tn−1, w , s )
�

�

(3.67)

Here ν− denotes the probability that the number of fission neutrons is rounded to the lower
integer and ν+ the probability that the number is rounded to the higher integer.

The Russian roulette threshold is set to 0.25 and the survival weight to 0.5, which is
standard in MCNP5.

3.5.2 Tripoli

To do this kind of calculation with the Tripoli 4.7 computer code (TRIPOLI-4 Project Team,
2010), the fixed sources criticality mode has to be used. Tripoli uses implicit absorption and
the probability that a new fission neutron will be produced is given by

Pfission =
νΣ f

Σt
(3.68)

In general, only zero or one new neutron will be generated, unless Pfission becomes larger
than one. In this case the number of new neutrons will be given by

n =
�

νΣ f

Σt
+ρ

�

(3.69)
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Again n is rounded down to an integer. The weight of the fission neutrons is the same as
the weight of the original neutron. In this case the score probability function becomes:

π(tn , w , s ) = Pnl

�

z 0s (1−Pfission)δ(s −w Pf Q f )+

z 1s (1−Pfission)
�

δ(s −w Pf Q f )⊗π(tn−1, w , s )
�

+

z 0s Pfission
�

δ(s −w Pf Q f )⊗π(tn−1, w , s
�

+

z 1s Pfission
�

δ(s −w Pf Q f )⊗π(tn−1, w , s )⊗π(tn−1, w , s )
�

�

(3.70)

The Russian roulette threshold is 0.8 and the survival weight is 1, which are the standards
for Tripoli4.

3.5.3 Forced fission and branchless method

These two methods from general purpose codes are compared to two methods that have
been deduced using the method described in the previous sections. The first method
uses forced fission and implicit absorption, but also uses Russian roulette and adjusts the
weight windows each time step. The score probability function of this method is shown in
Eq. (3.52). The Russian roulette threshold has been set to 0.25 and the survival weight to
0.5 for both fission and scattering. The other method is the branchless collision method.
This method also adjusts the weight windows each time step and uses particle splitting.
The score probability function is given by Eq. (3.59) and wsplit is set to 1.

3.5.4 Improved Branchless method

The branchless method has been extended, to incorporate heterogeneous systems. The
general philosophy remains the same, but it has been extended to be used in a more general
case. When a neutron interacts with a purely absorbing material or a material with a small
probability for fission: (νpΣ f � Σa ) the resulting neutron can have zero or a very low
statistical weight. The particle will then be killed soon by Russian roulette, terminating
the fission chain. Therefore in the improved method the resulting particle always gets the
same statistical weight after each interaction. This statistical weight is given by

wbls =w
νpΣ f +Σs

Σt
(3.71)

Now the probability of having a scattering has to be modified and becomes for scattering

Pscattering =
Σs

νpΣ f +Σs
(3.72)
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and for fission

Pfission =
νpΣ f

νpΣ f +Σs
(3.73)

Using this method the total scattering weight and total fissioning weight stay unbiased
and the method remains useful in extreme conditions. In the case of a purely fissioning
material this turns the method into forced fission method, whereas if there is no fission,
the method behaves as implicit scattering.

In this case the equation for the scoring function becomes more simple. In a system
with continuous energy and anisotropic scattering the distinction between fission and
scattering neutrons must be made, but in our mono-energetic and isotropic case they can
be treated the same.

π(tn , w , s ) = Pnl

�

�

δ(s −w Pf Q f )⊗
Nsplit
∏

j=1

⊗z 1πj (tn−1, w ∗, s )
�

�

(3.74)

with

z 1 =

¨

wbls

wsurv
at time boundary crossing and wsurv ≥wbls

1 otherwise
(3.75)

and wsurv the weight at the start of the new time interval. The new weight of the neutron
which continues after the collision is given by

w ∗=
¨

wsurv at time boundary crossing and wsurv ≥wbls
wbls

Nsplit
otherwise (3.76)

with

Nsplit =

�

wbls

wsplit
+1

�

(3.77)

For this improved branchless technique the equation for the second moment becomes

M 2(tn , w ) =Pnl

�

w 2P2
f Q2

f+

z 1Nsplit

�

M 2
�

tn−1, w ∗�+2w Pf M 1(n −1, w ∗)+

z 1Nsplit (Nsplit −1)M 2
1(n −1, w ∗)

�

�

(3.78)

3.5.5 Results

The first step is now to verify the results of the analytical calculation with the results of
actual Monte Carlo calculations, by means of a system with a short timespan. This short
timespan ensures that the Monte Carlo simulations will get reliable results in a reasonable
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Figure 3.8: The analytically calculated variance of the different simulation schemes com-
pared with the variance observed in the Monte Carlo simulations that use the methods
as designated, but have the simplifications of the model in place. The lines indicate the
analytical solution and the markers are the Monte Carlo results.

amount of time. To compare the different methods fairly the analytical FoM, defined
in Eq. (3.35), is used again and the calculations are performed by a simple Monte Carlo
program that can also incorporate the methods of MCNP5 and Tripoli4 in such a system.

For the test problem, the following probabilities have been used: Ps = 0.4118, Pm = 0.625,
Pf = 0,25, ν = 2.5, Q f = 200× 1.59× 10−13J, Pnl = keff /(Ps +Pm ) = 0.96458 and the keff =
1.00008. The keff is not precisely one, because this system mimics the finite block described
in Chap. 2. The time of flight between two consecutive collisions is set to 45 µs.

The first calculation has its final time boundary at t = 1 ms. In this case the neutrons
have 22 collisions before the end of the simulation. Since the time span of the calculation
is short, the result can be calculated very accurately with Monte Carlo and the validity of
the analytical solution can be checked. The results are plotted in Fig. 3.9. The results of
the real Monte Carlo simulations are given by the markers. The results of the analytical
solutions are given by the lines. The markers overlap the lines, demonstrating that the a
priori calculation of the result and the variance is correct.

Next, the calculated σr is compared to the σr that is actually present in MCNP5 and
Tripoli4. This time the power production is calculated over a period of 1 s. The results are
shown in Fig. 3.10. This plot shows that the analyticalσr agrees nicely with theσr in the
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Figure 3.9: The analytically calculated variance of the different simulation schemes is
compared with the variance observed in the Monte Carlo simulations that use the methods
as designated, but have the simplifications of the model in place. The lines indicate the
analytical solution and the markers are the Monte Carlo results.

simulations. The difference that can be noticed is due to the assumption for the leakage
and the fixed time between two collisions. It can also be seen that the σr in this kind of
calculation is high, although it should be noted that thisσr is per source neutron.

Finally, the power production in this system is calculated for all five methods. The
resulting FoMs have been plotted in Fig. 3.11. It shows that the newly developed methods
have a higher efficiency than the methods currently used in general purpose Monte Carlo
codes. The forced-fission method only alters the way fission is treated and is therefore only
a modest change. When the branchless method is used, the scheme is quite different from
current methods, but shows that it can be worth simulating fission chains differently in
a multiplying system, when power (or flux) is to be calculated as a function of time. The
efficiency is more than an order of magnitude better using the branchless methods. The
difference between the two branchless methods is not shown in this simple case. The
improved method is applicable in a more general way.
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3.6 Summary of improving chain length statistics

In this chapter new methods for reducing the variance have been introduced, which can be
used when performing a Monte Carlo calculation in a multiplying system. These methods
have been deduced using a priori variance calculations in a simplified model.

The first part of this chapter describes an analytical framework that can be used to calcu-
late a priori the variance in a simplified model of a fixed-source Monte Carlo calculation.
This method uses moment equations to calculate the first and second moment and from
that the variance of the calculation. This is exact for a simple homogeneous system, with
no or simplified leakage, no energy dependence and a fixed time step length. It was also
shown that this model is valid for the variance in a mono-energetic, homogeneous system.

Promising new variance reduction methods have been deduced using this analytical
frame. The first new method is the implementation of forced fission. It has been shown
that the reduction of the variance in the prompt fission chains is maximal when the biased
forced-fission probability is set to one, creating a new fission neutron at every collision.
The weight of this fission neutron is adjusted to ensure a fair game. Secondly, it was shown
that it can be useful to use analog scattering together with forced fission. In this case the
fission chain will not branch, which is better for the efficiency of the calculation.

These new methods have been used in a simple case and compared with the variance
that a general purpose Monte Carlo code would give. To ensure a fair comparison, a
theoretical FoM was introduced to compare methods and not computer codes. In the test
problems, the methods deduced with the a priori calculations outperform the methods in
the general purpose codes MCNP5 and Tripoli4 in a multiplying system. In a test problem
the branchless method had a FoM which was more than 10 times higher compared to the
conventional methods. This will make it possible to use Monte Carlo in a wider spectrum
of applications, since the methods can be applied in a general case.

The improved method has been successfully implemented in a purposely built Dynamic
Monte Carlo code and the Tripoli4 code. The variance reduction achieved in a simulation
of a more realistic geometry is shown in Chap. 4 and Chap. 5.
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4
THE DYNAMIC MONTE CARLO METHOD:

PROOF OF PRINCIPLE
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4. The Dynamic Monte Carlo Method: Proof of Principle

In this chapter the development of some practical Monte Carlo techniques for long-time
kinetic and dynamic calculations is described. To demonstrate the principle of dynamic
Monte Carlo the new techniques are developed for a mono-energetic, homogeneous system
with isotropic scattering in a purpose-built Monte Carlo code, the Dynamic Monte Carlo
code (DMC).

The necessary modifications to the simulation scheme are discussed in section 4.1. In a
dynamic calculation the time domain is cut into time intervals and these time intervals
are simulated consecutively. This is needed for the implementation of a system in which
the geometry or materials change in time and for calculating thermal-hydraulic feedback
with an external code. Extra attention is given to parallel computing issues, since dynamic
calculations are expected to be computationally expensive. When computing in parallel it
is useful to be able to reproduce the results and this requirement determines the way to
generate the random numbers and restricts the parallel dynamic Monte Carlo scheme.

Not only the simulation scheme is modified, but also the tallying; in a steady-state
calculation the time dependence in a Monte Carlo tally is only present implicitly, but in the
case of a dynamic calculation there is an explicit time factor that needs to be handled. Also
it is desirable that the tallies in the initial state of a dynamic calculation can be compared
to the tallies in a criticality calculation. Furthermore, special attention must be paid to the
variance estimation in a dynamic calculation. These issues are discussed in section 4.2.

Finally a numerical example is given in section 4.3 on a critical system with a positive
reactivity insertion from t = 10 s to t = 40 s. After this insertion the system returns to its
critical state, with the power stabilising at a new level.

4.1 Simulation scheme

Currently, Monte Carlo codes are mainly used for steady-state problems. However, in a
dynamic problem the neutron flux can vary when system properties, such as temperature,
density and material composition, change in time. For a Monte Carlo code to cope with
such changing circumstances, the calculation scheme needs to be adapted. This will be
explained in section 4.1.1.

The variance reduction techniques used in the dynamic calculation and the way to
determine the thresholds of the weight windows are described in section 4.1.2.

Another issue is the determination of the initial conditions. The neutron and precursor
sources must be determined, which is in fact a separate calculation performed prior to the
dynamic part. This is discussed in section 4.1.3.

Finally there the parallelisation scheme applied to this calculation is discussed in sec-
tion 4.1.4. In this stage of the development of a new method it is important to be able to
reproduce the results of a calculation and therefore special attention must be paid to the
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conservation of random number seeds.

4.1.1 Dividing the problem into time intervals

Start time interval

Reading  and setting
system properties

Simulate particle
and its progeny

Store particles for 
next time interval

Next particle
No

Process tallies

Next time step

Yes

Figure 4.1: The scheme for performing a dy-
namic Monte Carlo calculation.

The first step is to divide the problem into
separate time intervals and each time inter-
val is simulated consecutively, as schemat-
ically represented in Fig. 4.1. The duration
of the time intervals can be chosen freely
and can even vary during the calculation
and all precursors are forced to have a de-
cay in every time interval.

First the system properties of the new
time interval are read, such as the geomet-
rical layout of the system and the material
properties. These properties can be altered
in each time interval to represent external
manipulation, or feedback mechanisms.

Next the particles are simulated, both
precursors and neutrons. A particle is
followed, until it is either killed by Rus-
sian roulette, leaked or it crosses the time
boundary. A particle can create new
particles due to decay, fission and splitting
and these new particles are simulated dir-
ectly after the current particle.

When a precursor is created, it is forced
to have its first decay directly in the re-
mainder of the time interval in which it is
created. The decay time is sampled uni-
formly between the creation time of the
precursor and the end of the time interval.
The weight of the resulting particle is cal-
culated with Eq. (2.19), but in this case∆t
is the time remaining in the interval after precursor creation. The weight of the resulting
neutron might be low, since the precursor is forced to have its decay in a fraction of the time
interval and therefore it might be killed instantly by Russian roulette, but these particles
need to be simulated to ensure an unbiased result.
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Time boundary crossing

When a neutron crosses the time boundary of a time interval, it is stopped at the boundary
and stored for the next time interval. The path length between two interactions is given
by an exponential distribution and therefore it is allowed to simply stop the neutron at
the time boundary and sample a new path length in the new time interval, using the new
system properties.

A precursor which has created a delayed neutron via forced decay is always stored for
the next time interval. Its creation time is stored as well, since this is needed to calculate
the weight of the delayed neutron in the next interval.

Changing the dynamic system

When all particles have been simulated, the tallies are calculated. Before starting the next
interval, changes can be applied to the system. This can be a mechanical change, such
as the movement of a control rod or the injection of boron, but it can also be a feedback
mechanism, which has to be calculated with an external code or within the Monte Carlo
code itself (Griesheimer et al., 2008).

In case of thermal-hydraulic feedback the Dynamic Monte Carlo code outputs a power
profile to the thermal-hydraulics code whereafter the thermal-hydraulics code calculates
a new temperature profile. Next the Monte Carlo code continues with the following time
interval, taking into account the cross sections at the new temperatures. This is discussed
in more detail in Chap. 6.

4.1.2 Variance reduction

The variance reduction techniques deduced in Chap. 3 are applied in the program. At the
collision the branchless method is used to keep the prompt neutron chains from branching
unnecessarily. The weight of a particle leaving a collision is given by:

wnew =wold
νΣ f +Σs

Σt
(4.1)

which implies a weight that increases for a critical finite system. Therefore particle splitting
is used to keep the weights within reasonable limits.

Weight monitoring

At the beginning of a time interval the thresholds of the weight windows can be set. To
keep the statistics in each time interval similar, the number of particles per interval is kept
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roughly constant at the initial number of particles N . From this number of particles a
desired average weight, Wav, can be calculated using the total weight of all M particles at
the end of the previous interval.

Wav =
1

N

M
∑

i=1

w i (4.2)

This desired average weight is used to set the new Russian roulette and splitting thresholds:

Wx =wx Wav (4.3)

with Wx the absolute value of the threshold and wx the relative threshold. The subscript x
can be either RR for the Russian roulette threshold, surv for the survival weight, or split for
the splitting threshold.

Population control

At the time boundary it is also possible to perform population control. This is mostly needed
to prevent the accumulation of precursors. With the forced decay scheme, precursors are
forced to have a decay in all time intervals. However, the importance of the precursor
decreases with time, as explained in section 2.3.

For this first demonstration of the dynamic method, Russian roulette is used when
storing particles for the next time interval. First the desired average weight is determined
by Eq. (4.2) and then Russian roulette is played to give all particles which are stored at least
the desired average weight. The probability for a neutron to be stored for the next interval
is given by

Psurv =
w

Wav
, with w <Wav (4.4)

and the weight of the surviving neutron is

w ′ =Wav w ≤Wav (4.5)

w ′ =w w >Wav (4.6)

For precursors the survival probability is given by:

Psurv =
wd,av

Wav
, with wd,av <Wav (4.7)

and the weight of the surviving precursor is given by

w ′
C =wC

Wav

wd,av
wd,av ≤Wav (4.8)

w ′
C =wC wd,av >Wav (4.9)
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4.1.3 Source sampling

To sample a source distribution a criticality calculation is preformed. When a system is in a
critical state the steady-state neutron flux distribution will be equal to the fundamental
mode.

After the final cycle of the criticality calculation the fission source is, in the case of a ho-
mogeneous mono-energetic system, a good representation of the neutron flux distribution.
To generate also a precursor source, a percentage of the source neutrons is converted to
become precursors according to Eq. (2.45).

To create a proper precursor family distribution the precursors are given an age, using a
uniform distribution, Eqs. (2.60) and (2.61) and a rejection scheme, Eqs. (2.62)-(2.64). After
sampling the source, the actual dynamic program can start its calculation as described
above.

4.1.4 Parallel calculation

To use this calculation scheme also in parallel, it is useful for research and validation
purposes to keep the results independent from the number of processors used (Brown,
2008), ensuring reproducibility. To accomplish this, the random numbers used need to be
the same, independent of the number of processors used.

To this end every particle is assigned a unique number. The particle generates a random
number seed depending on this number. In the dynamic Monte Carlo scheme this is more
difficult than in a steady state calculation, since a large number of new particles can be
produced in a time interval, but a priori it is unknown what the number of new particles
is. The solution is to continue the new particles with the random number sequence of the
parent particle. This ensures the same random numbers are used independently of the
number of processors.

At the beginning of a time interval all particles get a new unique particle number from
which a random seed is produced. Then the particles are distributed over the available
processors together with the particle numbers. Next, all processors will simulate particles
and all their progeny; if a particle reaches the end of the time interval it will be stored.
When all particles have finished, the stored particles are returned to the master processor,
which will combine the stored particles in the right order and assign a new particle number
to these particles and redistribute them over the processors. This is shown in Fig. 4.2.

As a particle (including its progeny) suffers many more collisions than usual in a criticality
calculation, the period of the random number generator should be large enough. The
random number package of the MCNP code contains such a generator, which is used in
the dynamic Monte Carlo code. This random number generator has a period of 246, which
is much larger than the expected number of interactions.
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Figure 4.2: In a parallel calculation, the master processor distributes the N particles over all
P processors. These processors simulate the particles, generating M new particles for the
next time interval. These particles are sent back to the master processor and the master
sorts them by ancestry. Then a new unique particle number is assigned to the particles for
the next time interval.

The downside of this scheme is the extra communication between the master processor
and its “slaves”. For development purposes, for which this first Dynamic Monte Carlo
program is made, it is useful to be able to reproduce the results.

4.2 Tallies

4.2.1 Time averaged tallies in steady state

In most Monte Carlo calculations it is not the power production which is calculated, but
the recoverable energy produced per neutron. This is a convenient quantity because
the calculation of the power distribution in a nuclear reactor is usually done with a keff

calculation. In a keff calculation the energy production is tallied per cycle. There is no time
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component present and the exact number of neutrons at the start of a cycle is known. 1

4.2.2 Tally normalisation for a dynamic calculation

Time-dependent calculations cannot apply the same normalisation as steady-state calcu-
lations. The number of neutrons in a time-dependent calculation is not exactly known,
since many neutrons are produced in that specific time interval and many will cross into
the next time interval. Also, the results can not be implicitly averaged over time, since the
variation over time is the reason to do transient analysis. However this explicit presence of
time in a transient analysis can also be considered to be an advantage: instead of applying
tricks with implicit averaging, time is explicitly present.

The total power tally in volume V during a time interval from t until t +∆t is given by:

PV (t ) =
1

D

∫ ∞

0

dE

∫ t+∆t

t

dt ′
∫

V

dV
QΣ f (E )
Σt (E )

ψ(x , E , t ′) (4.10)

where D is the normalisation constant for a dynamic tally, Q is the average energy released
at a fission event andψ(x , E , t ) is the interaction density. There are multiple possibilities to
define the normalisation constant D and here two possibilities are discussed, which enable
a comparison of a dynamic result with a steady-state result.

The first option is to normalise with the total weight of the particles, neutrons and
precursors, starting the calculation, Wtot and the size of the time interval which is tallied:

D =∆t ×Wtot (4.11)

Now Eq. 4.10 will yield a power produced per starting particle.

To enable a comparison between steady-state and dynamic calculations, the power
production per neutron chain must also be calculated in a criticality calculation. The
power tally in a criticality calculation is given by:

PV (t ) =
1

C

∫ ∞

0

dE

∫ ∞

0

dt ′
∫

V

dV
QΣ f (E )
Σt (E )

ψ(x , E , t ′) (4.12)

This tally is integrated over all time, but to convert energy released to a power tally the
actual time used by the neutrons is needed. The average lifetime of a neutron in a neutron
chain is given by the effective lifetime of this neutron, `eff , which includes the lifetime of

1In fact, most tallies do not contain a time factor. For example the flux tally of MCNP is defined as
particles/cm2 per source particle (X - 5 Monte Carlo Team, 2005). The user can transform this into a time-
dependent quantity by defining the source as particles per second. In this case the unit for the flux tally becomes
�

particles s−1 cm−2 neutron−1
�

= flux/neutron In the same way the energy production per neutron is often trans-
formed into power produced per neutron

�

Js−1neutron−1
�

. This is allowed because most Monte Carlo problems
are steady state. The results are implicitly averaged over time.
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delayed neutrons and of prompt neutrons, since they are both present in neutron chains.
In this case to convert the released energy in a criticality calculation to power produced,
the normalisation constant C becomes:

C = `eff ×Wtot (4.13)

The second option is to normalise the dynamic calculation to the number of neutrons
present in the system. In this case the delayed neutrons are considered as an external
source. The normalisation constant D now becomes:

D =∆t ×Wneutrons (4.14)

here Wneutrons is the total weight of the neutrons starting the simulation. With this normal-
isation constant Eq. (4.10) will yield the power produced per starting neutron.

The energy deposition in a criticality calculation can also be converted to the power
production per neutron in a dynamic calculation. This time only the prompt neutrons
are considered and therefore the average lifetime of a prompt neutron, `, must be used to
normalise the power produced:

C = `×Wtot (4.15)

The different normalisation constants will yield a different power level, but in most
practical applications the initial power production is a starting condition. However, these
definitions do allow for a comparison between a dynamic and a steady-state calculation.

4.2.3 Calculating statistics

When tallying it is important to consider in what way the statistics are calculated. It is
common to either calculate the variance between particles or between batches of particles
(Hoogenboom, 2008). This is allowed, when the conditions of the central limit theorem are
met. This theorem is a refinement of the law of large numbers and states (Laplace, 1820):

The average of a large number of independent identically distributed ran-
dom variables approximately has a normal distribution, no matter what the
distribution of the random variables is.

In case of a Monte Carlo simulation of a nuclear system, the randomly distributed vari-
ables are the tallies of the neutrons and because the theorem is only valid if the variables are
independent, the statistics must be calculated between the tallies scored per independent
neutron. Since the neutrons are created in chains, some caution is required here. The
source particles at the start of the calculation can be considered independent of each other,
but after the source particles are released, the neutrons in the same chain are correlated.
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4. The Dynamic Monte Carlo Method: Proof of Principle

For example, with forced precursor decay, a precursor creates delayed neutrons in all
time intervals and therefore the power production in two time intervals are correlated. If
the precursor population in interval n is higher than the true mean, then the precursor
population in interval n + 1 will have a high probability to be also above the true mean.
Furthermore, if due to variance, the neutron flux is above the mean, this can cause a higher
flux in the next interval as well.

To incorporate these effects in the variance estimation, the variance is calculated per
source particle. To do this the identity of the original starting particle is passed along to
new fission neutrons. The scores are collected per N original particles and the variance is
calculated between these N scores.

4.3 Numerical Example

To demonstrate the dynamic Monte Carlo scheme, a sample problem has been set up. In
this problem there is a small rectangular box of fissile material. The system has one energy
group and there are six precursor families. The detailed description of the system can be
found in Appendix A.1 and the system is designed in such a way that it is practically critical.
The system is started at t = 0 s and at t = 10 s there is a reactivity insertion: Σa is decreased
from 0.5882 cm−1 to 0.5870 cm−1 while keeping Σt constant and therefore increasing Σs .

The fundamental mode source distribution is calculated using 1000 cycles, starting
the criticality calculation with a cosine shaped neutron source, which is calculated using
standard diffusion theory. From this source the dynamic part of the calculation is started,
and until the reactivity insertion the power level is nearly constant.

Then after the reactivity insertion there will be a prompt jump, followed by a neutron
population which grows exponentially. Then at t = 40 s the system is returned to the critical
state and after a negative prompt jump the system will return slowly to a new stable state,
which is higher than the initial state.

The simulation is started with 107 particles and the time interval is 100 ms. The weight
window thresholds are given by:

wRR = 0.25

wsurv = 0.5

wsplit = 2

To verify the results produced by the Dynamic Monte Carlo code, the same problem
has been calculated using a point-kinetics code and the results are plotted in Fig. 4.3. The
results agree nicely with each other, which is expected, since the point-kinetics model is
an accurate model for such a simple geometry and homogeneous cross-section change.
The kinetic parameters, used in the point-kinetics, are calculated using a Monte Carlo
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Figure 4.3: A critical system with a reactivity insertion at t=10 s. After a prompt jump the
power starts to increase further, until the reactivity is set back to 0 at t=40 s. Now the system
returns to a new stable state. The results dynamic Monte Carlo simulation agree very well
with the point-kinetics analysis of the system.

calculation in criticality mode, both for the unperturbed and perturbed system. The
generation time and the eigenvalue are sampled, while the effective delayed fraction is
equal to the actual delayed fraction for a mono-energetic system.

When looking at the start of the calculation more closely, Fig. 4.4, it can be seen that the
steady state power level of the dynamic calculation is not exactly equal to the power level
calculated by the criticality calculation. This is due to the fact that the system is not exactly
critical. The neutron and precursor source are calculated for steady state and therefore
a small prompt jump can be observed at the start of the calculation, in agreement with
point-kinetic theory.

The relative uncertainty for all time intervals in the calculation is less than 1% and the
calculation time is approximately 100 CPU hours 2.

4.3.1 Variance reduction

It is also interesting to see how the variance reduction techniques help to increase the
efficiency of the calculation. To this end, the FoM of the branchless method of Sec. 3.4.4 is

2 A CPU hour is the one hour of calculation time on a single processor. If the calculation takes 30 minutes on
two processors, it is also one CPU hour.
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Figure 4.4: The first second of the power production in a near critical system calculated
with dynamic Monte Carlo and point kinetics. A small prompt jump at the beginning of the
calculation can be observed, which is due to the fact that the system is not exactly critical.

compared to the case where implicit absorption is used. With implicit absorption the new
fission neutrons are selected using the method of Tripoli, Eq. (3.69). Also, forced precursor
decay is compared to the analog method.

The difference in FoM can be seen in Fig. 4.5. This FoM is calculated using the total
calculation time of the dynamic part and the relative uncertainty per time interval. It
demonstrates the effectiveness of both variance reduction techniques.

The difference for the branchless method can be explained with the decreased variance
in the prompt neutron chains. The relative standard deviation in the neutron chain length
is plotted in Fig. 4.6. This demonstrates the effectiveness of the branchless method in
improving the chain length statistics.

4.4 Summary of the proof of principle for the Dynamic Monte Carlo
method

In this chapter the dynamic Monte Carlo method has been implemented and put to the test.
For the implementation there are some issues which must be taken care of. The simulation
scheme had to be adapted to incorporate a dynamic system properties. This is done by
splitting the simulation domain into time intervals and simulating these time intervals
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Figure 4.5: The figure of merit in each time interval of the calculation. The effect of the
different variance reduction techniques is shown.
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Figure 4.6: The relative standard deviation in the chain length estimation is shown. The
branchless method has less variation in its chain lengths.

85



4. The Dynamic Monte Carlo Method: Proof of Principle

consecutively. However, some consideration had to be taken for neutrons crossing the time
boundary.

The variance reduction techniques developed in the previous chapters have been im-
plemented and to maintain the desired level of the weight windows, weight monitoring
is performed. The thresholds of the weight windows are set proportional to the desired
average neutron weight.

The geometrical source distribution is calculated using a criticality calculation. The
precursor family distribution is calculated by sampling a uniformly distributed initial
precursor age, together with a rejection scheme.

The tallies can be normalised either to the total particle weight at the beginning of the
calculation, or to the total prompt neutron weight at the start. To calculate the variance of
a tally, the statistics between the results of different source particles must be considered.
This is due to the fact that particles in a time interval might be correlated, whereas the
source particles are not.

Finally a parallel simulation scheme for is devised for the dynamic calculations. Since
these calculations tend to be computational expensive, it is useful to be able to run the
calculations in parallel. In such a scheme it is desirable to be able to reproduce the results,
independent of the number of processors, in order to validate the calculation and compare
results.

A sample case has been simulated. This sample case is a 3D block of homogeneous ma-
terial, placed in vacuum. The neutrons are considered mono energetic and have isotropic
scattering. A transient is introduced by changing the absorption cross section. The results
of the Dynamic Monte Carlo method are compared with the results of a point-kinetics
calculation. They agree nicely, as expected in this case.
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5. The Dynamic Monte Carlo method: Simulation of Realistic Geometry

In the previous chapter, the possibility of simulating a dynamic system with the Monte
Carlo method has been demonstrated. However, the demonstration only showed the
applicability of the dynamic scheme for simple geometry. To show general applicability, the
theory is further generalised and the scheme is implemented in a general purpose Monte
Carlo code.

There are many general purpose Monte Carlo code available, but two codes are the
main candidates to implement the new method. The first possibility is MCNP5 (X - 5
Monte Carlo Team, 2005), which is one of the most commonly used Monte Carlo codes for
nuclear reactor physics and deep knowledge and experience with this code is present in our
group. The second possibility is Tripoli 4.7 (TRIPOLI-4 Project Team, 2010), which is the
reactor physics Monte Carlo code of the NUclear REactor SIMulation platform, NURESIM
(Chauliac et al., 2011). This is the Monte Carlo code of choice for the implementation of the
dynamic Monte Carlo scheme, because it is written in a modern programming language
and because of the support and new developments which are available via the NURISP
project. The source of Tripoli version 4.7 was kindly made available by CEA1, with the
support of its development team.

5.1 Implementation of the dynamic method into Tripoli 4.7

To implement the dynamic scheme into Tripoli, the source code is adapted at several
points, creating the Dynamic Tripoli code. In this section the focus is on the theoretical
background, the general applicable methods and some specific design choices. The details
of the implementation and the new keywords introduced in the input of Tripoli for the
dynamic calculation can be found in App. B. The new simulation sequence chosen close to
the Tripoli standard, in order to apply only the necessary changes and to utilise the intrinsic
methods in Tripoli.

First, special attention is paid to the particle tracking. Although this is simply simulating
the physics as is already present in the code, there are some issues which have to be
implemented more carefully in a kinetic calculation, such as time boundary crossings.
Then, the source sampling will be addressed, which extends the source sampling theory of
the previous chapter to incorporate energy dependence. The energy-dependent source
distribution can be sampled from an eigenvalue calculation. Finally the new variance
reduction techniques are discussed which are implemented in the Dynamic Tripoli code.
These techniques are specific for the simulation of kinetic and dynamic problems.

1Commissariat à l’énergie atomique et aux énergies alternatives
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5.1. Implementation of the dynamic method into Tripoli 4.7

5.1.1 The dynamic simulation scheme for Tripoli

Tripoli has three simulation modes, criticality, fixed-sources criticality and shielding, it
divides the total number of particles in a calculation into batches, which are simulated con-
secutively. The statistical uncertainty is estimated from the variance between the batches.
When calculating in parallel, there is no communication between the different simulators.
Each simulator samples its own source and starts to simulate batches. Only the results of
these batches are returned to the master process, which determines if the simulation is fin-
ished.

Start time interval

Reading  and setting
system properties

Simulate particle
and its progeny

Store particles for 
next time interval

Next particle
No

Next time step

Yes

Start batch

Calculated source

Process tallies

Next batch

Figure 5.1: The simulation scheme for
Dynamic Tripoli.

To implement time stepping into Tripoli
there are two options. The first one is trans-
forming batches into time intervals. How-
ever, Tripoli estimates the variance of its
results by calculating the variance between
different batches. This is not possible when
transforming the batches into time steps,
since each batch will have scores in sep-
arate time bins. The variance can also be
calculated between individual particle his-
tories. Although this gives also an accurate
estimation of the variance (Hoogenboom,
2008), it is not in line with the structure and
philosophy of the Tripoli code and would
require major modifications.

The second option is to add an extra loop
in the code, which runs over all time in-
tervals during each batch, as depicted in
Fig. 5.1. This implementation has the ad-
vantage that it utilises the native variance
estimation of Tripoli, which can now also
take into account the variance introduced
into the result by reactivity feedback. The
downside of this method is that the feed-
back has to be calculated for every batch
separately, which is more expensive and
the result might not be physical valid solu-
tion in some cases, but an average of dif-
ferent possible states. The implication of
adding feedback will be discussed in more
detail in the Chap. 6.
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5.1.2 Time-dependent particle tracking

In a shielding calculation, a particle is followed until it is either killed, leaked or out of
bounds in some other way and a particle cannot create new fission neutrons, since these
fission neutrons are already present in the source distribution. When doing a criticality cal-
culation, a particle is followed in the same way, but now fission neutrons can be produced
and are stored for the next batch. In a fixed-sources criticality calculation the particle can
also produce a fission neutron, but now this progeny will be followed in the same batch.

In the dynamic mode, the simulation of particles is very similar to the fixed-sources
criticality mode. The only difference is in the time boundary crossing. In the dynamic
mode the neutron simulation is stopped at the time boundary and then stored for the next
time step.

Time boundary crossing

In a normal Tripoli calculation the crossing of a time boundary does not influence the
trajectory of a particle. When using a collision estimator the score of the particle is simply
added to the time bin of the collision and for a track-length estimator the part of the
track before the boundary is counted in a different bin than the part of the track after this
boundary. If the particle crosses the final time boundary, it is stopped after the first collision
outside the time domain. An extra time bin must be added in the input to collect the tallies
that are outside the time domain.

For a dynamic calculation this method is not allowed. After each time boundary the
system can be changed due to feedback or changing geometry and therefore the particles
must be stopped exactly at the time boundary. They can be restarted in the next time
interval, with the new cross sections, which is allowed, because the path length of a neutron
is given by an exponential distribution. This feature is added to the Dynamic Tripoli code.

5.1.3 Sampling of a source distribution for dynamic calculations

When in criticality mode the source of a batch is given by the fission neutrons produced
in the previous batch, i.e. the fission neutrons of the previous batch are the initial state
of the next batch. Only for the first batch a source distribution is given, but often this is
simply a spatially flat source and a number of batches is needed to get the true source
distribution. These initial batches are called inactive and the results of these batches are
discarded. For a fixed-source criticality calculation or a shielding calculation, the source
particles are sampled from a user-defined source distribution.

In the dynamic case it is also possible to have a user-defined source distribution, the same
way as for the shielding and fixed-sources criticality modes. However, since the purpose of
a dynamic calculation is to calculate the transient behaviour of a nuclear reactor, the initial
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conditions are commonly a steady-state situation. These initial conditions can be sampled
from a converged source of a criticality calculation, with keff ≈ 1.

Neutron source distribution

The energy-dependent neutron flux in steady state,φ0(r , E ), can be sampled by the Monte
Carlo method using a collision estimator. The collision densityψ0(r,Ω, E ) is related to the
neutron flux by the following relation:

φ0(r,Ω, E ) =
ψ0(r,Ω, E )
Σt (r , E )

(5.1)

Now the number of neutrons can be calculated using:

n 0(r,Ω, E ) =
φ0(r,Ω, E )

v (E )
=
ψ0(r,Ω, E )

v (E )Σt (r , E )
(5.2)

Here v (E ) is the neutron speed of a neutron with energy E .

This distribution differs from the fission source, especially in the energy domain, because
the energy of a fission neutron is a high energy, while the flux also contains moderated
neutrons.

Precursor source distribution

The precursor source distribution is determined by the neutron flux. The precursor balance
is given by (Bell and Glasstone, 1979):

∂ C i (r , t )
∂ t

=

∫

4π

∞
∫

0

βi (r , E )ν (r , E )Σ f (r , E )φ(r,Ω, E , t )dE dΩ−λi C i (r , t ) (5.3)

For a steady state, this precursor distribution becomes:

C i 0(r ) =

∫

4π

∞
∫

0

βi (r , E )
λi

ν (r , E )Σ f (r , E )φ0(r,Ω, E )dE dΩ (5.4)

and now using Eq. (5.1) this can be sampled using:

C i 0(r ) =

∫

4π

∞
∫

0

βi (r , E )ν (r , E )Σ f (r , E )
λiΣt (r , E )

ψ0(r,Ω, E )dE dΩ (5.5)
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For all families combined:

C0(r ) =
∑

i

∫

4π

∞
∫

0

βi (r , E )ν (r , E )Σ f (r , E )
λiΣt (r , E )

ψ0(r,Ω, E )dE dΩ

=

∫

4π

∞
∫

0

β (r , E )ν (r , E )Σ f (r , E )
λb (r , E )Σt (r , E )

ψ0(r,Ω, E )dE dΩ

(5.6)

with λb the inverse weighted average of the decay constant:

λb (r , E ) =
β (r , E )
∑

i
βi (r ,E )
λi

(5.7)

and β (r , E ) the total fraction of delayed neutrons for a fission caused by a neutron with
energy E . The fraction delayed, fd , is given by Eq. (2.67). The values for β and λ are in this
case space and energy dependent.

5.1.4 Dynamic particle weights

The neutron flux and the precursor density can fluctuate considerably over time. This
poses a challenge for a Monte Carlo simulation; the calculation time increases linearly
with the number of particles. To compensate for this effect, the thresholds of the weight
windows are adjusted on the fly.

Calculation of the neutron weight windows

The thresholds of the standard weight windows of Tripoli are given by:

wRR = 0.8wr

wsurv = wr (5.8)

wsplit = 2wr

Here wr is the required weight, which is normally set to unity.

During a dynamic calculation, the required weight is automatically adapted, by compar-
ing the current total statistical weight Wtot to total weight at the start of the batch W0:

wr =
Wtot

W0
(5.9)

The total weight is the combination of the weight of the precursors and the weight of
the neutrons. Which precursor weight to use for calculating the total weight is discussed
hereafter.
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Adjustment of the precursor weight

The possibility has been created in Tripoli to adjust the importance of a precursor relative
to the neutron importance. The weight monitored is either the expected delayed neutron
weight or the timed precursor weight. The setting also allows for an importance factor, I .
This can be any positive real number. The precursor weight considered for the population
control can be calculated using:

w imp =
wX

I
(5.10)

Here the subscript X can stand for expected or timed.

5.1.5 Precursor population control

A number of different methods are available for population control. To control the neutron
population, the adjustment of the weight windows suffices, since the neutron population
will be adjusted after one generation, which is a small number of neutrons compared to
the total number of neutrons simulated in a time interval.

The number of precursors have to be controlled more actively, since they are always
stored for the next time interval. In Dynamic Tripoli they can be controlled using either
Russian roulette or the combing technique at the end of a time interval.

Russian roulette

When Russian roulette is used for population control, a precursor is only stored for the next
time interval after undergoing Russian roulette. The survival weight is set to the required
weight. The weight used for this roulette is given by Eq. (5.10) and the roulette is played as
described in Sec. 2.3.2.

Combing

When combing is used for population control, this is only done on the precursor population.
This fixes the number of precursors starting an interval. When combing, w imp is used as
precursor weight, similar as with the Russian roulette. For the exact description of the
combing method see Sec. 2.3.3.

The neutrons are not combed. If the neutrons would be combed together with the
precursors, a large neutron chain could reduce the number of precursors drastically. It is
not desirable that a temporary increase in neutrons changes the accuracy of the precursor
sampling.
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Figure 5.2: The evolution of the neutron flux is plotted in the case where the source distri-
bution is sampled from a fission source distribution. It can be seen that the neutron flux
spectrum still evolves at the start of the calculation.

5.2 Demonstrating the Dynamic Monte Carlo Method on Realistic
Geometry

To demonstrate the validity of the new method, it has been applied on a few different
test cases. The first case is a simple static system, but in the final test a transient due to
control-rod movement is shown, with the time-dependent power calculated pin-by-pin in
a fuel assembly.

5.2.1 Source confirmation

Prompt neutron source

The first test is checking the source calculated using the theory described in Sec. 5.1.3.
To this end the fuel assembly described in Appendix A.2 is used and the steady-state
fission source has been calculated from a criticality calculation using 150 cycles. Next,
the neutron and precursor distributions are sampled as described by Eqs. (5.2) and (5.6).
This method has been compared with a simulation which started directly from the fission
source distribution.

In the case which started from a fission source distribution, the neutron flux is not
constant from the beginning as shown in Fig. 5.2. It the decrease of fast neutrons over
time and the increase of thermal neutrons until they reach an equilibrium, which can be
expected from fission neutrons. Since the lifetime of neutrons is fairly short, the energy-
dependent neutron flux reaches a steady state within 10 µm.

When the simulation is started from a neutron distribution which is sampled using
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Figure 5.3: The evolution of the neutron flux is plotted in the case where the source distri-
bution is sampled from a steady-state neutron flux. It can be seen that the neutron flux
spectrum remains constant.

Eq. (5.2), the flux is directly at its steady state as shown in Fig. 5.3. A small increase in the
neutron flux over time can be seen for all three energy groups, this is due to the fact that
the system is not exactly critical, but nearly critical; all three energy groups increase equally
fast.

Precursors source

A similar argument holds for precursors. It is important to sample the precursor distribution
from the steady-state distribution. Both the spatial precursor distribution, as indicated
in Eq. (5.6), and distribution between the different precursor families, Eq. (2.67), must be
sampled for steady state.

In Fig. 5.4 a calculation is started with precursors which all have a distribution according
to the fission fd , Eq. (2.17). The time scales are a lot longer here than for the neutrons and
it is clearly shown that it is not a steady-state situation. The second line in Fig. 5.4 shows a
calculation where the precursor source is correctly sampled and a nice steady system is
shown here.

5.2.2 Demonstration in a simple geometry

The next test for Dynamic Tripoli 4.7 is a comparison with the results of the Dynamic
Monte Carlo code of the previous chapter. Calculations using the same geometry have
been performed and when possible they have been compared to the results of the previous
chapter. Also some tests, which were not possible with the Dynamic Monte Carlo code are
performed. These tests are compared with other transient analysis tools.
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Figure 5.4: The neutron flux when the calculation is started with the steady-state precursor
family distribution and with the fission distribution (βi /β ). With steady-state distribution
the flux remains constant, but with the fission distribution there will be relatively more
short lived precursors present and these short lived precursors will decay more quickly
than average, which will not result in a steady state.

Steady state

The first test for the new Dynamic Tripoli code is on the same simple system as used
in Chap. 4 which is in a near-critical state, keff ≈ 1. The system is homogeneous and
mono energetic with keff = 1.00012±0.00005 as calculated with the unmodified version of
Tripoli 4.7. The details of this system can be found in Appendix A.1

Tripoli will calculate the time evolution of this system over 70 s. To be able to calculate
such a system, the scheme must be stable. If the system is not stable it will diverge towards
the end, with a continuously increasing variance.

The calculated time evolution of the neutron flux is plotted in Fig. 5.5 and as clearly
shown the neutron flux in this system is nearly constant from the start. Also the results are
stable over time. There is some variance, but this does not influence the stability of the
total simulation. The neutron flux slowly increases, as expected for a slightly supercritical
system.

98



5.2. Demonstrating the Dynamic Monte Carlo Method on Realistic Geometry

0 10 20 30 40 50 60 70
10

1

10
2

10
3

Time (s)

N
e

u
tr

o
n

 f
lu

x
 (

c
m

−
2
s

−
1
)

 

 

Dynamic Tripoli

e
ω

0
t

Figure 5.5: The time evolution of the total neutron flux in a stable system. The results are
compared to the inverse time constantω0 of the system.

Subcritical system

Next, the new method is tested on a subcritical system. First the system is made subcritical,
by reducing its size. The source is a steady-state neutron-precursor source at t = 0. This
way the calculation can be compared with a point-kinetics calculation. The parameters for
the point-kinetic calculation are calculated using an unmodified version of Tripoli 4.7.

In the first calculation the time mesh is an equidistant mesh with time intervals of
0.1 s. The results are shown in Fig. 5.6. The result compares nicely with the results of the
point-kinetics calculation. This is to be expected for such a homogeneous system.

To look a bit closer to the prompt jump, the same calculation has been done, but with
a time mesh with time intervals which grow exponentially in size. The results are shown
in Fig. 5.7. Again both calculations give the same answer and it can be seen that the
method yields the correct answer, both for small timescales and large timescales. This is a
demonstration that the particle tracking, described in Sec. 5.1.2 is working correctly. An
error in time boundary crossing would showup especially in the range with small time
intervals.
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Figure 5.6: The evolution of the neutron flux in a subcritical system, calculated with a
point-kinetics calculation and with Dynamic Tripoli, plotted on a linear time scale.
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Figure 5.7: The evolution of the neutron flux in a subcritical system, calculated with a
point-kinetics calculation and with Dynamic Tripoli, plotted on a logarithmic time scale
and calculated with increasing time-bin size.
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Figure 5.8: A critical system has a reactivity insertion at t=10 s. After a prompt jump the
power starts to increase further, until the reactivity returned to 0 at t=40 s, returning the
system to a new stable state. The results of all three methods agree well with one another.

5.2.3 Dynamic system calculation

The next test case for Dynamic Tripoli, is the calculation on a changing system. Again
the cube of Chap. 4 is used with the properties of Appendix A.1. Reactivity is inserted at
t = 10 s and the system is returned to its former state at t = 40 s. The results are plotted
in Fig. 5.8 and all calculation methods agree with each other within statistics. The results
were achieved in 288 CPU hours running at 2.3 GHz.

It can be seen from this plot that it is possible for Dynamic Tripoli to also incorporate a
dynamic environment. It can be clearly seen that there is first a positive reactivity step and
then a negative reactivity step. In this case it is the absorption cross section of the entire
system that changes, but it could also be a new temperature for the materials or the change
of a material, to simulate the movement of a control rod.

5.2.4 Demonstration of the Continues Energy Model

To demonstrate the dynamic Monte Carlo scheme in an energy-dependent setting, while
keeping it simple enough to compare it with the point-kinetics model, the cuboid of the
previous sections is made of pure 235U. The density has been adjusted to make a critical
system and the reactivity insertion is generated by an increase in density. Although there
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Figure 5.9: The evolution of the neutron flux in a critical cuboid of 235U with a reactivity
insertion from 10 to 40 s, calculated with a point-kinetics calculation and with Dynamic
Tripoli, with continuous energy treatment.

will not be a lot of moderation, the energy dependence of the cross sections will play an
important role in this problem. The density has been set to 4.4925 atoms per 10−22 cm3

and increased to 4.500 atoms per 10−22 cm3.

The results of this calculation are shown in Fig. 5.9 and the results of a point-kinetics
calculation for the same problem are also given in this plot. It demonstrates the possibility
of solving a continuous energy transient problem with the dynamic Monte Carlo method.

5.2.5 Transient in a Fuel Assembly

After these successful tests with simplified geometry, the dynamic Monte Carlo method has
been applied to a complex system. With the dynamic method implemented in the source
code of Tripoli 4.7, the versatility of this general-purpose code can be applied to simulate
more complex systems. In general, one of the features of the Monte Carlo method is that it
can easily scale up to more complex systems.

Now the calculations will be performed on a fuel assembly with reflective boundary
conditions and it has uranium based fuel. The layout of the fuel assembly is given in
Fig. 5.10, which is modelled in full detail. The geometry is based on the transient benchmark
of Kozlowski and Downar (2003), but there is no feedback present. The system is made
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(a) Vertical cross section of fuel as-
sembly, x- and z-axis are not at the
same scale.

(b) Horizontal cross section of fuel assembly

Figure 5.10: Layout of a fuel assembly: the fuel is coloured red, the control rods are in green,
the borated water is in blue, the top and bottom reflectors are in black and the cladding is
in yellow.

close to critical, by adjusting the control rod height accordingly. The nuclear data used is
from the JEFF3.1.1 evaluation (A. Santamarina, D. Bernard, P. Blaise, et al. , 2009). The exact
geometry is given in App. A.2.

The transient considered here is initiated by the movement of the control rods. From
t = 3 s to t = 3.5 s the control rods are slowly, with a fixed velocity withdrawn 1 cm. This
creates a positive transient and after 7.5 s there is a scram, fully inserting all control rods.

The results of this calculation are given in Fig. 5.11, which shows an initially stable system.
Then, during the control-rod movement, the neutron flux starts to increase, due to the
increase in prompt-neutron chain lengths. The reactivity insertion due to the control rod
movement is quite large for a small displacement, which is due to the reflective boundary
conditions, creating an infinite lattice with fuel assemblies with control rod movement.

The results are compared to a quasi-static calculation; when the system changes, all
kinetic parameters are recalculated with a separate run of the unmodified version of Tripoli.

The variance during the transient is higher than during the steady state. This is caused
by the increased reactivity. The value of keff ,prompt is closer to unity generating significantly
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Figure 5.11: The evolution of the neutron flux in a fuel assembly with a reactivity insertion
from 3.0 to 3.5 s and a scram after 7.5 s, calculated with the Dynamic Monte Carlo method.
During the scram a deviation from quasi-static calculation can be seen.

more variance, even with the branchless method implemented.

After the scram, the power produced by the delayed neutron source can be seen. Al-
though the relative uncertainty between the different time intervals seems to be lower than
during the transient, it is in fact of the same order of magnitude. The variance between the
time bins is smaller, because the correlation between the time bins is larger in a subcritical
system. In the subcritical system the power is mainly dependent on the delayed neutron
source, which is similar for all time intervals. This creates a large correlation between the
intervals. On the other hand, during the transient the prompt neutrons are more important
for the total power. The lifetime of the prompt neutrons is smaller than the duration of a
time interval, making the time intervals statistically more independent.

5.2.6 Pin-by-Pin Sampling

Finally the same system is used, but now pin-by-pin power sampling and with a different
transient. This time three control rods in the top left corner of the fuel assembly are ejected
at t = 3 s. This creates an asymmetric flux profile which is very different from the flux profile
during normal operation. Then after 7.5 s the system is scrammed, with the remaining
control rods. The Monte Carlo simulation of this system used 8000 CPU hours.
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Figure 5.12: The evolution of the neutron flux in a fuel assembly with a transient causing a
distorted and asymmetric neutron flux profile, calculated with the Dynamic Monte Carlo
method and point kinetics. The deviation from point kinetics is larger than in the previous
case.

The total power production is plotted in Fig. 5.12, which shows a quasi-static method
which agrees well with Monte Carlo simulation until the final scram. Here the two methods
start to deviate, which can be attributed to the major distortion of the flux profile during
the transient. This distortion, combined with the insertion of the control rods, causing a
negative reactivity of many dollars, makes the quasi-static method not applicable.

The flux profile at the start of the calculation, during the transient, and at the end of
the calculation are shown in Fig. 5.13. At the start of the calculation, the flux profile is
symmetric, as expected. The flux near the edge is slightly higher than in the middle,
because these edges are at a relatively large distance from the control rods. Differences are
approximately 1-2 %.

Then the ejection of the three control rods tilts the flux profile, and a higher flux is seen
in the top left corner. The differences between centre and the top left corner is now around
5 %.

Finally the remaining control rods are fully inserted. The flux profile is now even more
asymmetric: differences are up to 20 %. Also, when the control rods are inserted the vari-
ance between the different fuel pins fluctuates more than in the steady-state situation. This
might be explained by the fact that the neutrons can travel less with the rods fully inser-
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Figure 5.13: The evolution of the neutron flux profile in a fuel assembly with the ejection of
three top left control rods. The first figure shows the initial conditions, the second figure
the spatial profile during the transient and the final figure shows the profile after the scram
with the remaining control rods, as calculated with the Dynamic Monte Carlo method.
Note: the relative fluxes in the three figure have a different scale.

ted. This will reduce the transfer of neutrons between the fuel pins giving less correlation
between them.

5.2.7 Variance reduction

To inspect the effect of the various variance reduction techniques the calculation on the
fuel assembly with the reflective boundary conditions has been performed with different
settings. All following tests have been performed on this problem.
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Figure 5.14: The Average Figure of Merit when several variance reduction techniques are
applied.

Branchless method and forced precursor decay

The first variance reduction techniques to be investigated are the branchless method and
the forced precursor decay. These methods have proven to be applicable in a simple
example, but here they are tested in a realistic setting, with continuous energy and in a
complex heterogeneous system, which makes it more difficult for a variance reduction
technique to improve the results than in the tests in previous chapters. All methods give
an unbiased result and the gain in FoM of the two methods separately and combined are
given in Fig. 5.14.

Here it can be seen that both the branchless transport and the forced precursor decay
are improving the efficiency of the calculation significantly. When the two methods are
combined, the efficiency increases even more. The efficiency gain is not as high as with
the DMC-code of the previous chapter, which can be attributed to the overhead costs of a
general purpose code such as Tripoli and to the heterogeneous system.

Setting the precursor importance

The ratio between the weight of the precursors and the weight of the prompt neutrons has
been varied to determine the best value for the statistical weight of the precursors.
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Figure 5.15: The average Figure of Merit For several different weights of the precursors.

The differences in efficiency for the different weights are not very large. The timed weight
of 0.01 seems to perform best. For this system, this timed weight is equivalent to a delayed
neutron with weight of approximately 1.

Weight windows

To demonstrate the importance of the moving weight windows, some calculations have
been performed with the same number of neutron histories, but with a varying batch size.
With smaller batch sizes the weight windows are determined less accurately; it can be seen
in Fig. 5.16 that properly set weight windows are required to get a good efficiency in the
calculation and a minimum number of particles per batch is needed to properly determine
these weight windows.

5.3 Summary on the development of Dynamic Tripoli

In this chapter the dynamic Monte Carlo method has been further developed for general
applicability. It is now possible to sample an energy-dependent source distribution from a
criticality calculation. The scheme has been adapted to fit in the general purpose Monte
Carlo code Tripoli. Also issues concerning population control and variance reduction have
been addressed.
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Figure 5.16: The relative error using different batch sizes. Each calculation has the same
amount of starting neutron chains. The variance can become higher, when the number of
particles per batch is too low. This is due to poor estimation of moving weight windows.

Next, the method has been demonstrated on various cases. First the method has been
tested on simple cases to verify the results. Next the method has been tested on more
complicated systems: a fuel assembly with a transient, where the results do differ from the
results of a quasi-static calculation.

Also the efficiency of the calculation has been tested with the different variance reduction
options. The improvement in Figure of Merit is less than in the previous chapter with the
DMC program in simplified conditions. This is commonly seen, when implementing
variance reduction in a general purpose Monte Carlo code (Christoforou and Hoogenboom,
2011; Christoforou, 2010). The actual simulation time is in such a code a smaller fraction of
the total calculation time than in a purpose-built Monte Carlo code.
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6. Coupling of Dynamic Monte Carlo with Thermal-Hydraulic Feedback

6.1 Introduction

One of the most important aspects for transient analysis is the thermal-hydraulic feed-
back. This feedback mechanism is essential for the safe operation of nuclear reactors.
For example, when the temperature in a light water reactor increases, the density of the
moderator decreases and neutrons will be less moderated, causing, in general, a reactivity
decrease. When the reactivity becomes negative, the power produced will be reduced,
which lowers the temperature of the reactor. There are many of these feedback mechan-
isms, some positive and some negative. When designing a nuclear reactor, it is crucial to
take these effects into account, since they determine the time dependent behaviour of a
reactor and therefore the maximum temperatures reached during a transient.

To incorporate these feedback mechanisms into the calculation, it is common to couple
a thermal-hydraulics code to a neutronics code. A thermal-hydraulics code calculates the
density profile of the coolant and the temperature profile in the reactor using heat-transfer
models and the new material properties are then used for the neutronics calculation. An
elaborate description of the methods currently applied can be found in D’Auria et al. (2004).

6.1.1 Deterministic coupled transient calculations

With the ever increasing computing power, many new developments coupling a determin-
istic neutronics solver to a thermal-hydraulics solver can be found. The neutronics solver
can be a nodal code (Vedovi et al., 2004), or more advanced, use the method of characterist-
ics (Hursin et al., 2011) and these codes can be either internally or externally coupled to the
thermal-hydraulics code. The advantage of external coupling is the limited adjustments
needed to the codes; they can stay autonomous. With internal coupling on the other hand,
the two codes are merged into one code, which is usually faster and more accurate, but this
requires more adjustments and the merged code must be validated separately. The external
coupling is becoming a standard calculation technique for the analysis of transients in
a light water reactor (Peltonen and Kozlowski, 2011), but is also done for less common
reactor types such as the high temperature reactor (Boer et al., 2010) or the molten salt
reactor (Kópházi et al., 2009).

A downside of coupling a deterministic neutronics solver with a thermal-hydraulics
solver, is the limited accuracy of the deterministic method. When a deterministic neut-
ronics calculation is done, there is always a number of approximations applied, such as
discretisation in time, space, energy and angle. Also, more fundamental approximations
might be needed, such as homogenisation or application of the diffusion theory and it is
difficult to estimate the error in such calculations. One way of addressing this problem is by
comparing the results with a stand-alone Monte Carlo calculation (Broeders et al., 2003).
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6.1.2 Coupled Monte Carlo thermal-hydraulics calculations

A recent development in the field of coupled calculations is the coupling between a Monte
Carlo neutronic calculation and thermal-hydraulic analysis. Presently this can be achieved
only for steady-state calculations, with a fixed power level. Therefore, only the thermal-
hydraulic effects that influence the power profile in a reactor are taken into account and
the feedback mechanisms that influence the total power are neglected; only the static effect
on the reactivity can be analysed, neglecting the dynamic nature of the feedback.

The first occurrence in the literature of the coupling of a Monte Carlo neutronics code
with a thermal-hydraulics code was in 2003, when MCNP4C was coupled with SIMMER-III
by Mori et al. (2003), but in this case there is no iterative process. The thermal-hydraulics
code SIMMER is run once to calculate the temperature profile for MCNP.

Next, in 2004 Bakanov et al. (2004) coupled TDMCC with STAR-CD, but there is little
description of the method. A demonstration has been given of a coupled calculation of
a fuel assembly, but there is no discussion on the accuracy of the calculation. Joo et al.
(2004) used MCCARD to verify the DeCART transport code, both coupled with a simplified
feedback script. Here the results of a coupled analysis of a mini core seem to match
relatively well between MCCARD and DeCART.

Next, coupling methods have become part of research tools, with the coupling of stand-
alone codes, such as MCNP and STAFAS. Waata et al. (2005a) implemented this method to
analyse the HPLWR (Waata et al., 2005b).

Meanwhile, the developments continued, focusing on an increased efficiency of the
neutronics calculation, with Tippayakul et al. (2008) who used a nodal code to improve
fission source convergence, Sanchez and Al-Hamry (2009) worked on the improvement
of the convergence of the coupled solution and the mapping between the two codes is
further optimised by Seker et al. (2007a). A different direction of research is to develop
partly internal coupling (Leppänen et al., 2012) or complete internal coupling investigated
Griesheimer et al. (2008). In these works (some) thermal-hydraulics models are integrated
in the Monte Carlo code.

The most recent developments focus on increasing the flexibility of the coupling scheme,
making it generally applicable (Hoogenboom et al., 2011; Ivanov et al., 2011) and extension
of the coupled calculations to whole-core applications (Kotlyar et al., 2011; Vazquez et al.,
2012). The hybrid deterministic/stochastic method which increases the efficiency of the
Monte Carlo calculation is further developed by Espel et al. (2013).

6.1.3 Coupled Dynamic Monte Carlo

In this chapter a novel method is created to perform transient calculations including
feedback, using only a Monte Carlo approach for the neutronics part of the calculation. The
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Monte Carlo code is coupled to a sub-channel code, which is a fast thermal-hydraulics code,
but not a high-fidelity code. Although it might seem more logical to couple a computational-
expensive high-fidelity neutronics code to a high-fidelity thermal-hydraulics code, the
efficiency of the sub-channel code is more useful during the development of a new method.
The theory can be extended easily to any kind of external code, including a high-fidelity
computational fluid dynamics (CFD) code (Seker et al., 2007b).

6.2 Theory

The coupling of a Monte Carlo neutronics code to a thermal-hydraulics code has a number
of key challenges. In this section, these challenges are described and possible solutions
are discussed. The first challenge is the coupling scheme itself. First, the initial conditions
must be calculated and a convergence criterion must be defined for the initial conditions.
Then, for the transient part, there are a few possible coupling schemes to choose from.
These schemes must be adapted to enable the use of Monte Carlo results. This is discussed
in Sec. 6.2.1.

The next challenge is a typical Monte Carlo one: variance estimation. When performing a
coupled calculation it should be acknowledged that part of the calculation is not stochastic.
The implications are discussed in Sec. 6.2.3. Finally, the use of temperature dependent
cross sections is discussed in Sec. 6.2.4.

6.2.1 Coupling scheme

In nuclear reactor modelling, it is common to use an operator-splitting technique to solve
a multi-physics problem. Although this approach does not take into account the non-
linearities which are present in a typical coupled reactor physics problem (Ragusa and
Mahadevan, 2009), it is a logical start for the novel coupling of a Monte Carlo method for the
neutron transport with a deterministic method for the thermal-hydraulics analysis. When
the possibility of coupling Monte Carlo with thermal-hydraulic feedback is demonstrated,
a more advanced coupling schemes can be investigated.

There are in general three ways of coupling the thermal-hydraulics calculation and the
neutronics calculation, implicit, semi-implicit and explicit. With the implicit scheme, the
coupled codes are iterated per time interval until the combined codes have converged.
Then the scheme will continue to the next time interval, as depicted in Fig. 6.1. This
is the most accurate scheme, but for the implementation major alterations have to be
made to the existing solvers to allow for the iteration steps. Also, there is a lot of data
exchange between the coupled codes and therefore this scheme is usually implemented
using internal coupling. A first attempt was made by Mahadevan et al. (2011) to use a
Jacobian-free Newton-Krylov method to perform implicitly coupled calculations with the
code system KARMA. On the other hand Watson and Ivanov (2012) incorporate implicit
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Time  interval
1 2 N

Neutronics Neutronics Neutronics 

Thermal Hydraulics Thermal HydraulicsThermal Hydraulics

...converged?

yes

no converged?

yes

no
converged?

yes

no

Figure 6.1: Scheme for an implicit coupling of the neutronics solver and the thermal-
hydraulics solver. In this case, each time interval has to converge before continuing to the
next interval.

coupling in the TRACE/PARCS code system by explicitly forming the full Jacobian matrix
and solving for a global residual.

For the semi-implicit method, some of the data of the previous time interval is used
for the calculation of the current time interval and some data of the current time interval.
For example, when the TRAC-PF1/NEM code calculates the fluxes and the power produc-
tion, it uses coolant temperatures and densities of the current time interval, but fuel rod
temperatures of the previous time interval (Ivanov and Avramova, 2007).

In most cases the explicit coupling scheme is used, since this is the easiest to implement
and validated codes can be used. Here the temperature and density profiles are calculated
with the thermal-hydraulics code and with these profiles the power distribution is calcu-
lated. This power distribution is then used in the thermal-hydraulics code. This scheme is
depicted is Fig. 6.2 and this is also the scheme used in this work, because of its calculation
speed and the possibility to couple externally.

Coupling coefficients

In a normal coupled calculation using two deterministic codes, the explicit coupling
scheme can be depicted as follows:

T n+1 = T n +∆t
dT

dt
(Pn ) (6.1)

Pn+1 = Pn +∆t
dP

dt
(T n+1) (6.2)

Here P is the power profile resulting from the neutronics calculation and T is the temperat-
ure and density profile resulting from the thermal-hydraulics calculation. The superscript
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Time  interval
1 2 N

Neutronics Neutronics Neutronics 

Thermal Hydraulics Thermal HydraulicsThermal Hydraulics

...

Figure 6.2: Scheme for an explicit coupling of the neutronics solver and the thermal-
hydraulics solver. In this case, first the thermal-hydraulic conditions are calculated and
then the power distribution.

n indicates that the values are to be taken at the start of time interval n .

When doing a Monte Carlo calculation, it is important to realise that the code will not
calculate the power in a single point in time. In fact, the output of a Monte Carlo calculation
is the total energy E released during the time interval:

E n =

∫ t+∆t

t

P(T n , t )dt (6.3)

From the total energy released during the time interval, an average power can be calculated
over the time interval. This average can then be extrapolated to a power level at the
boundary of the next time interval. When assuming a linear increase this becomes:

Pn+1 =
2E n

∆t
−Pn (6.4)

This power distribution can be used for the thermal-hydraulics calculation.

6.2.2 Practical implementation of the coupling scheme

A coupled Monte Carlo calculation consists of two parts: the calculation of the initial
conditions and the actual transient. To calculate the initial conditions, a coupled steady-
state calculation is used, which is based on the method developed by Hoogenboom et al.
(2011). This method has been extended to calculate the critical conditions, which is in the
case of a pressurised water reactor the critical boron concentration, but for other types of
reactors this could be adjusted to calculate for example the critical control rod position.
Also the fission source convergence has been improved.
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6.2. Theory

When using this method, the steady-state total-power level is set externally and then
the temperature and density profiles are calculated with the thermal-hydraulics code.
With these profiles, a Monte Carlo calculation is started, calculating a new power profile
and keff . After this calculation, three modification are made to the input of the Monte
Carlo calculation. First, the new temperature and density profiles are calculated using the
thermal-hydraulics code and the Monte Carlo input is updated with these new temperat-
ures and densities.

Secondly, the new boron concentration, Cboron, is calculated by a linear extrapolation of
the concentration from the two previous iterations. As explained before, for pressurised
water reactors a critical boron concentration is calculated, but the method can also be used
to calculate a different critical condition, e.g. a critical control rod height. For iteration
number n this is done using:

Cn ,boron =Cn−1,boron−
keff n−1−1

keff n−1−keff n−2

�

Cn−1,boron−Cn−2,boron
�

(6.5)

For the first two cycles an initial guess is needed.

Thirdly, the accuracy is increased if the following condition is met:
�

�keff −1
�

�< 2σkeff (6.6)

with σkeff the standard deviation of keff . In this case the number of active batches is
increased by a factor of two. This allows for the first iteration steps to use less calculation
time and only increase accuracy when needed. There are more advanced schemes under
development to optimise this iteration process (Dufek and Gudowski, 2006), improving not
only the way the accuracy is increased, but also the way the temperatures and densities are
sampled. This novel method might be extended to improve the estimation of the correct
boron concentration. However, for this demonstration, a simple scheme suffices.

Also, the fission sources of the last cycle are stored to use for the next iteration, which
reduces the number of inactive cycles needed to reach a converged source. Since the
difference in fission source profile between two iterations is not very large, the final fission
source of the previous iteration is a good initial guess for the present iteration.

In the second part of the calculation, the actual transient is simulated, using the temper-
ature and density profiles calculated in the first part as initial conditions. First, a dynamic
neutron and precursor source is sampled using a classical steady-state calculation as ex-
plained in section 5.1.3. Then, the first time interval is calculated using the dynamic Monte
Carlo method. The calculated power profile is then transferred to the thermal-hydraulics
code, which calculates the temperature and density profiles for the new time interval. These
are returned to the Monte Carlo code to continue with the next time interval. Both the
Monte Carlo calculation and the thermal-hydraulics calculation perform a single transient
calculation per batch, waiting at the end of a time interval to exchange information with
the other code.
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6.2.3 Variance estimation

The mean result in a Monte Carlo calculation is a stochastic variable, which has a normal
distribution according to the central limit theorem and usually the variance is estimated
between neutrons. However, in a coupled calculation neutrons are no longer uncorrelated,
making the central limit theorem no longer applicable.

This can be overcome by performing the thermal-hydraulics calculation for each batch
separately. In this case the variance can be estimated between the different, statistically
independent, batches. Also, the statistical uncertainty introduced by the coupling can be
estimated, but it does not take into account any bias in the thermal-hydraulics code. A
downside is that the feedback is calculated on smaller sample sizes and that might prove
unreliable.

Also, if the thermal-hydraulic feedback has a strong non-linear behaviour, such as a step-
like response function, this cannot be taken into account. Only the average response of all
possible outcomes is tallied. An example where such effects are prominent is the simulation
of instabilities in a supercritical water reactor (T’Joen and Rohde, 2012). Here this coupling
strategy could yield an non-physical result: an average of the power oscillations. In such
a case, it could be more useful to estimate to maximum power per batch or to study the
distribution of batch results.

For coupled burnup calculations, Dumonteil and Diop (2011) have demonstrated that
the result of a coupled calculation might be biased, when the estimator is not properly
corrected for the non-linearity of the coupled equations. For the Bateman equations it is
possible to find an analytical solution for the correction factor, but when coupling Monte
Carlo to a thermal-hydraulics code, this will prove difficult. This is not only a problem for
transient analysis, but also when doing steady-state calculations. Since the calculations in
this chapter do not include regimes with two-phase flow, it is assumed that the mean and
variance are unbiased.

6.2.4 Generation of temperature dependent cross sections

One of the major challenges for a coupled Monte Carlo calculation is the temperature
dependence of cross sections (Brown et al., 2008). Although it is theoretical possible to
generate cross sections at any temperature, it is not feasible to do this for a full-core coupled
calculation. In such a calculation there are many nuclides and each nuclide is present at a
large range of temperatures; each zone has a different temperature. Therefore, it is common
to evaluate the cross sections at 50 K intervals and use for each nuclide two cross-section
sets at these preselected temperatures, mixing two versions of the same nuclide to get the
correct temperature (Espel et al., 2013; Hoogenboom et al., 2011). This is called stochastic
mixing, but it is also known as stochastic interpolation, pseudo materials or temperature
interpolation.
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6.3. Practical implementation and demonstration

Currently there are more advanced methods being developed, such as on-the-fly-Doppler
broadening which is implemented in MCNP (Yesilyurt et al., 2012) and MONK (Armishaw
et al., 2011) and the explicit treatment of thermal motion in Serpent (Viitanen and Lep-
pänen, 2012) and Tripoli (Zoia et al., 2013). Also direct interpolation of the cross sections is
possible, yielding promising results (Sjenitzer, 2009). Although these methods are poten-
tially more accurate, they are still experimental and not widely available. Also, they take
more calculation time than the mixing method. Therefore, stochastic mixing is used in this
work.

Since the cross-section dependence on temperature is predominant with
p

T the first
mixing schemes used a

p
T interpolation (Van Der Marck et al., 2005). Later, Donnelly

(2011) showed that the linear interpolation scheme yields similar results, if not slightly
more accurate. Therefore the linear-interpolation scheme will be used in the current work.

6.3 Practical implementation and demonstration

The development of the coupling between the Monte Carlo neutronics calculation and
the thermal-hydraulics calculation has been done in three steps. First, a simplified model
is created to study the feasibility of coupling Monte Carlo with macroscopic feedback
mechanisms and to investigate the impact of the variance on the stability of the calculation.

Next, a more realistic case is simulated, coupling the power profile in a single fuel pin
with a realistic thermal-hydraulics model. This calculation is performed on a seconds to
minutes time scale, investigating the feasibility of doing a realistic coupled calculation
and studying the effect of variance on the thermal-hydraulics code. Finally, an analysis
on a mini-core benchmark has been performed to demonstrate the method in a realistic
geometry and to verify the results achieved.

6.3.1 Second-order feedback model

Problem setup

For the first investigation of the coupling, the simplified system described in App. A.1 is
used. This implies mono-energetic neutrons, a homogeneous medium and a rectangular
geometry. The feedback is incorporated by making the total absorption cross section a func-
tion of the power to mimic Doppler broadening, as suggested by Legrady and Hoogenboom
(2008):

∆Σa =
(P0−P50ms)2

4P2
0

∆Σa ,var (6.7)

Here P0 is a reference power level, from which the power deviation is calculated and
∆Σa ,var is a scaling variable change in absorption cross section. P50ms is the average power
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Figure 6.3: The power production in a simple system with feedback on a short time scale.
After 0.2 s a reactivity insertion is introduced. The oscillating behaviour on a short time
scale is correctly predicted by the Monte Carlo method and the point-kinetics method.

produced in the last 50 ms. It is averaged over the last 50 ms, to incorporate the time
required for the the deposited energy to disperse via thermal conduction.

To initiate the transient the total absorption cross section is reduced from 0.5882 cm−1

to 0.5840 cm−1 at t = 0.2 s. ∆Σa ,var is set to 0.0042 cm−1, which is equal to the reactivity
insertion and the time interval size is set to 1 ms. The reactivity insertion is equal 1 $.

To validate these results the calculation has also been performed with a point-kinetics
calculation, with the following feedback incorporated, assuming a linear relation between
the reactivity and the total absorption cross section:

∆ρ =
(P0−P50ms)2

4P2
0

∆ρvar (6.8)

with∆ρvar =−1 $.

First, the transient is simulated and the results are compared with a point-kinetics
calculation. Then, the influence of a stochastic feedback on the final result is tested.

Results

The power evolution during the transient is plotted in Fig. 6.3. The reactivity insertion
can be clearly seen and after a short time the negative feedback effect can be observed.
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Figure 6.4: The power production in a simple system with feedback on a large time scale.
After 0.2 s a reactivity insertion is introduced. On a large time scale the Monte Carlo method
and the point-kinetics method converge to the same power level.

The results of the point-kinetics calculation agree nicely with the Monte Carlo calculation.
When looking at the long term behaviour in Fig. 6.4 it can be seen that the power level
converges to a new steady state level at Pstst = 3.0P0, as it should.

There is a small discrepancy in oscillation period between the Monte Carlo calculation
and the point-kinetics calculation, which uses a very small time interval, updating the
feedback coefficient frequently. This discrepancy is due to the coupling scheme used,
which is an explicit scheme and in such a scheme there is always an error due to the time
interval size. This is not a Monte Carlo specific problem, but an issue for all coupled
calculations.

For the final test, the importance of an accurate power tally is investigated. The variance
in the power creates a variance in the feedback, which influences the power. To investigate
the necessity of an accurate power tally, the feedback is calculated with a varying number of
neutron histories. The calculation is performed with 107 particles, which is divided into 104

batches times 103 particles, 103 batches times 104 particles, 102 batches times 105 particles
and a reference solution with a single batch using all 107 particles.

It can be seen from Fig. 6.5 that most batch sizes yield the correct result. However, in
the case with only 103 particles per batch, the results become biased. It should be noted
though, that in this case the average standard deviation in the power tally is 20 %, which is
very high. For the case with 104 particles per batch the uncertainty drops to 6 %, for 105
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Figure 6.5: The power production in a simple system with the feedback coefficients calcu-
lated per batch. The results are mostly independent of the batch size. However, when the
uncertainty in the power is larger than 20%, as in the case with 103 particles per batch, the
results become biased.

starting particles this standard deviation is 2 % and in the reference case with all 107 in
one batch the standard deviation is 0.2 %. The total variance for the total calculation is the
same for all simulations.

It demonstrates that even with relatively high variance, the results are still correct, but
caution must be taken. In this example, a statistical uncertainty smaller than 20% is needed
to ensure an unbiased power tally. Although this is only a simple test, with a second-order
feedback mechanism, the example does give an indication that such a coupled scheme is
valid and robust, when the feedback does not have any discontinuities.

6.3.2 Pin cell calculation

Problem setup

In the next step in developing a coupled code system, the dynamic version of Tripoli,
developed in Chap. 5 is used together with the thermal-hydraulics code SubChanFlow
(Imke and Sanchez, 2012). In this example, a coupled calculation is performed on a single
fuel pin, which is surrounded by water. The enrichment of the fuel varies axially with higher
enriched fuel at the top. The boundary conditions in the x-y plane are periodic and there is

122



6.3. Practical implementation and demonstration

0 20 40 60 80 100
0

2

4

6

8

10
x 10

4

Time (s)

P
o

w
e

r 
(W

)

 

 

Stand−alone calculation

Coupled calculation

Figure 6.6: A zero-transient calculation on an infinite array of fuel pins. The stand-alone
calculation slowly decreases in power, but the feedback mechanisms in the coupled calcu-
lation keep the power at steady state.

a vacuum boundary in the z-direction. The complete geometry description can be found
in App. A.3. The pin cell has been divided into 20 axial regions to capture the axial power
profile and the effective temperature of the fuel rod, as explained by Rowlands (1962), can
be approximated from the surface temperature of the rod, Ts and the centre temperature,
Tc :

Teff =
1

3
Ts +

2

3
Tc (6.9)

First, a steady-state situation is calculated using the method described in section 6.2.2,
yielding the correct initial temperature and density profiles, with a critical boron concen-
tration. Next two transients are simulated. The first transient is a so called zero-transient,
where a time-dependent calculation is performed on a critical system, without changing
the initial conditions. The second transient which is investigated is initiated by a pump
trip, which does create fluctuations in the power level.

Results

After calculating the initial conditions, the first time-dependent calculation is performed,
which is a steady-state system. This is also called a zero transient. The result is shown in
Fig. 6.6, where the coupled calculation is compared with a stand-alone calculation. It can
be seen that the initial conditions are not precisely steady state, since the power in the
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Figure 6.7: The evolution of the total power in the fuel pin with a pump trip from 10 s until
40 s. The power excursion due to the reduced pump flow can be observed clearly.

stand-alone calculation starts to decrease slowly over time. In the coupled case however,
the feedback mechanisms in the system keep the system at a steady state. The differences
at the start of the calculations are within the uncertainty observed in the calculation. This
simulation demonstrates the stability of a realistic coupled calculation.

Next a pump trip is initiated. In this example, the coolant flow will decrease at t = 10 s.
In Fig. 6.7 it can be seen that this initiates an increase in power production. The power
production peaks at t = 12.5 s and then decreases to a new steady state level. Then at
t = 40 s the pump is returned to its initial state, with the power level also returning to its
original level after a few oscillations.

The axial power profile is tallied in 20 zones and the profiles at different stages during
the transient are plotted in Fig. 6.8. Here it can be seen that the main contribution to the
total power increase is given by the highly enriched regions, as expected. The flux profile at
the start and end of the transient are nearly identical.

It can be seen from Fig. 6.9 that the transient is indeed driven by the pumping power. Due
to the reduced coolant flow, the coolant heats up first, thereby reducing the coolant density
leading to an increase of the fuel temperature. During the phases with constant coolant
flow, oscillations can be observed where neither the coolant nor the fuel temperature seems
to be leading. When the pump flow is returned to nominal, again the coolant properties
change first.

The size of the power jump can be justified when the feedback coefficients are investig-
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Figure 6.8: The axial power profile in the fuel pin at different times during the transient. At
1 s the system is still at steady state, at 12.5 s is the power peak, at 30 s is the new steady
state, at 45 s is just after the negative reactivity insertion and at 70 s is the final state, which
is similar to the initial state.
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Figure 6.9: The axial temperature profiles of the fuel and coolant are plotted. It can be
seen that the transient is initiated by the change in coolant temperature and therefore the
coolant density.
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Figure 6.10: Feedback coefficients for a pin cell calculated using steady-state calculations.

ated. In Fig. 6.10 the feedback coefficients of the material properties are given and it can be
seen that after the reduction of pump flow they cancel each other. First, the reduced density
and increased temperature of the coolant increase the reactivity and then the Doppler
effect in the fuel temperature compensate this increased reactivity.

When the feedback coefficients are calculated from Fig. 6.10 using linear regression,
reactivity contributions of the different material properties can be visualised, Fig. 6.11.
Although this is only an approximate calculation, using average temperatures, it can be
seen how the increase in fuel temperature compensates for the reduced coolant density.

Although the results are still somewhat noisy, these examples do demonstrate the feasib-
ility of performing a coupled calculation with Monte Carlo neutronics calculation and a
thermal-hydraulics calculation. It is possible to do a calculation on a seconds scale and the
effects of the feedback mechanisms can be clearly observed. However, it is still unknown if
the results are valid; to verify the novel method, a comparison is needed.

6.3.3 NURISP benchmark

Problem setup

For the final test, a benchmark problem defined in the NURISP rapport D3.1.2.2 (Kliem
et al., 2011) is analysed, which consists of a steady-state calculation and a transient in a
mini-core. As part of the transient calculation, a second steady-state calculation is needed
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Figure 6.11: The evolution of the reactivity, calculated using average temperatures and
denisty It can be observed how the effect of the density change and the fuel temperature
cancel each other.

to determine the critical boron concentration and from this critical state an unprotected
rod-ejection accident is simulated. The fact that the transient is unprotected indicates that
no external measures are being taken after the control-rod ejection. The benchmark is
based on the transient benchmark of Kozlowski and Downar (2003).

The exact geometry of the system can be found in App. A.4. The mini-core consists of
nine numbered fuel assemblies surrounded by a water reflector, as depicted in Fig. 6.12,
with each fuel assembly consisting of 17x17 rod positions. The eight outer assemblies are
MOX based and the central assembly has an UO2 based fuel. The control rods are located
in the central fuel assembly and there is vacuum at the boundaries. The transient starts at
a power of 1 W and from that moment the control rods are ejected within 0.1 s, creating a
strong reactivity insertion. Due to the low starting power there is little feedback expected
in the beginning, but at the end of the calculation the power is expected to be high enough
to induce feedback effects.

To model the geometry in detail, including all separate fuel pins, cladding, burnable-
poison coatings etc., the dynamic version of Tripoli is extended to incorporate ROOT
geometry. ROOT is a framework for data processing, which also has an extensive geometry
package (Brun and Rademakers, 1997) and Tripoli 4.7 can handle ROOT-geometry as input,
but some alterations had to be made, to incorporate geometry updates throughout the
calculation in the dynamic version. With the ROOT geometry it is relatively easy to create
complex geometries.
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First, a test calculation is performed to see if the geometry is implemented correctly. The
test calculation consists of a steady-state calculation at hot full power, with the control
rods completely withdrawn. The results can be compared with the results calculated using
DYN3D coupled with FLICA (Gomez-Torres et al., 2012; Jiménez et al., 2012).

Results

First, the hot full power calculation of the benchmark is performed, with a power level
is fixed at 100 MW; the resulting axial power profile in the central fuel assembly is plot-
ted in Fig. 6.13. It shows that the power distribution calculated with both methods agree
reasonably well. In Figs. 6.14 and 6.15 the temperature and density of the coolant is plot-
ted and also these quantities agree fairly well; similar differences can be found between
coupled steady-state calculations both using Monte Carlo, but with different codes (Hoo-
genboom et al., 2011). The keff calculated with DYN3D-FLICA is 1.00828, and with Tripoli4-
SubChanFlow this value is 1.01800.

The differences between the two methods might be attributed to the two different
thermal-hydraulics solvers used. SubChanFlow is a quasi 3D subchannel code, solving the
mass, momentum and energy equations based on the three-equation approach. On the
other hand, FLICA is a 3D two-phase flow code (Toumi et al., 2000), where the two-phase
mixture is modelled using a set of four balance equations (mass, momentum and energy of
mixture and mass of vapour). It is perceivable that the two methods yield a slightly different
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Figure 6.12: The layout of the fuel assemblies in the mini core. To distinguish between the
different fuel assemblies they have been assigned a number.
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Figure 6.13: The power profile in the central fuel assembly at hot full power. A small
discrepancy can be seen between the two different code systems.
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Figure 6.14: The temperature profile of the moderator in the central fuel assembly at hot
full power. A small discrepancy can be seen between the two different code systems.
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Figure 6.15: The density profile of the moderator in the central fuel assembly at hot full
power. A small discrepancy can be seen between the two different code systems.

result.

After verifying the coupled-code system with the steady-state calculation, the transient
analysis can be performed. The first step of the transient calculation is determining the
initial conditions. This is achieved by calculating the critical boron concentration using
iterative steady-state calculation at a power of 1 W, as explained in Sec. 6.2.2. Due to the low
power, the thermal-hydraulic calculations are straight forward, so once the critical boron
concentration is found the actual transient can be started.

For the transient calculation, the control rods are partially inserted in the central fuel
assembly. At the start of the calculation the control rods are ejected during 0.1 s, creating a
large reactivity insertion. The power production in the mini core is then simulated for 0.2
seconds. The results can be found in Fig. 6.16.

It can be seen that the total power level increases more than 10 decades and the highest
power level is reached before the control rods are fully ejected. It can also be seen that
during the power increase the two calculations have very similar results. It is only when the
thermal-hydraulic effects become dominant that the two different methods start to deviate.
The deviation may have the same origin as in the steady-state calculation, but the effects of
the applied time grid can also be influence the width of the peak (Zerkak et al., 2011).

In Fig. 6.17 the evolution of the power profile in the central fuel assembly can be seen.
The location where the maximum power is produced, starts at the bottom, due to the
control rods which are inserted from the top. Then, as the control rods are withdrawn,
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Figure 6.16: The total power during the transient reaches a peak before the control rods are
fully ejected. The feedback mechanisms then have a larger reactivity effect than the further
withdrawal of the control rods. The two calculation techniques agree well during the power
increase, but show a small difference towards the end.
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Figure 6.17: The power profile evolution in the central fuel assembly. It can be noted that
the power peak moves upwards.
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Figure 6.18: The normalised power profile after 0.001 s. Each bar depicts a fuel assembly
and the 3D power profile can be seen. In the beginning of the transient the power peak is
located near the bottom due to the control rods. It can also be seen that most of the power
is produced in the central fuel assembly.

the maximum starts to move upwards. A 3D-visualisation of the power profile per fuel
assembly at the start of the transient is depicted in Fig. 6.18. Here it is shown that most
power is produced in the central fuel assembly, even with control rods inserted.

In Fig. 6.19 and Fig. 6.20 the fuel temperature and moderator density evolutions can be
seen, respectively. It demonstrates that the fuel temperature responds more direct to the
transient than the coolant density. Also, the response per fuel assembly is plotted, showing
the impact of the control rod movement in the central fuel assembly on the outer fuel
assemblies.
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6.3. Practical implementation and demonstration
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Figure 6.19: The time evolution of the average temperature in the fuel pins. It can be noted
that the pins heat up quickly, but the cooling is more gradual. The central fuel assembly
(5) reaches the highest temperature and the fuel assemblies at the corners (1) remain the
coolest. The assembly numbers can be found in Fig. 6.12.
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Figure 6.20: The time evolution of the average moderator density. When comparing this
with Fig. 6.19, it can be noted that the change in moderator density is much slower than
the heating of the fuel pins. The assembly numbers can be found in Fig. 6.12.
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6. Coupling of Dynamic Monte Carlo with Thermal-Hydraulic Feedback

6.4 Summary of the coupled calculation

In this chapter a new method for coupled transient analysis is developed, which uses a
stochastic neutron solver. The stochastic nature of the neutronics calculation requires
special attention in the coupling script. One point of interest is the fact that a stochastic
method rarely provides a solution in a point in time, but usually only a solution in an
interval. Also the statistical uncertainty of the stochastic method must be taken into
account.

Some numerical examples are given to demonstrate the possibility of a fully dynamic
simulation using Monte Carlo for the neutronic part of the calculation. First, some simpli-
fied problems are simulated to demonstrate the robustness of a coupled calculation with
respect to the stochastic nature of the Monte Carlo solution. It shows that some care must
be taken, especially when the variance in a single batch becomes very large, but in most
cases the couplings scheme is stable.

The following examples are more realistic: coupling SubChanFlow with Dynamic Tripoli
explicitly. The first example is a pin cell on an infinite lattice and the transient is initiated
with changing pump flow. With this simulation it is demonstrated that it is feasible to do a
dynamic calculation on the seconds scale.

The final calculation is the benchmark calculation developed for the NURISP project.
Here a stronger transient is calculated on a much shorter time scale. The results can be
compared with the results obtained with a code system which couples a diffusion code
with a thermal-hydraulics code. The results of the two methods compare nicely, although
the final powers do deviate. The difference is 40 %, which is reasonable for a power increase
with a factor of 1010. A comparison with the coupled COBAYA-SubChanFlow code system
Calleja et al. (2012) would be interesting to further investigate the effect of the thermal-
hydraulics code to this final discrepancy.

All though there are still issues to be further investigated, it is demonstrated that it is
possible to perform a coupled Monte Carlo/thermal-hydraulics calculation, which allows
the exact calculation of the neutronics during a transient in a nuclear reactor. This is very
valuable for validation calculations and for the development of new and possibly exotic
reactor types with complex geometries.
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7. Conclusion and recommendations

In this thesis a novel Monte Carlo method for long-time kinetic and dynamic calculations
has been developed and demonstrated. One of the major challenges in this method was
simulating particles which operate at different time scales, ranging in many orders of
magnitude. Precursors operate in the seconds to minutes scale, whereas prompt neutrons
and prompt neutron chains exist in the range of microseconds.

Another major challenge was the simulation of these prompt-neutron chains, since their
lengths have a large naturally occurring variance. Also, the feedback mechanisms had to be
incorporated into the method to be able to calculate realistic transients in power reactors.

In the last part of this thesis, a successful demonstration has been presented, performing
a fully dynamic stochastic analysis of a transient in a realistic and complex geometry,
modelled in full detail and simulated with continuous energy.

7.1 New Monte Carlo techniques

Precursor sampling

The technique of forced precursor decay has made it possible to sample precursors in such
a way that they will induce enough prompt-neutron chains for reliable statistics in all time
intervals. All precursors are forced to start a chain in each time interval, which roughly
ensures equally accurate statistics per time interval. Most accurate results are achieved
when combining all precursor families into a single particle, although caution must be
taken when simulating such a combined particle, because the decay probability is now
time dependent.

Simulation of a prompt-neutron chain

The naturally occurring variance in prompt-neutron chains can be reduced by applying
the newly developed branchless method. With this method an interaction will always yield
a single neutron, which can be either a scattering neutron or a fission neutron. This way,
from each collision one particle will continue, ensuring a prompt-neutron chain, which
does not branch into multiple chains and therefore reduces the variance in the tallies.

Dynamic simulation scheme

The new dynamic simulation scheme needs a few alterations, from the traditional simula-
tion schemes, since it does not organise a simulation by particle, but by time interval. If
a particle in a time interval crosses the time boundary, it will be stopped and stored until
the scheme finishes all particles and continues with the next time interval. Between these
intervals the system properties can be updated.
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7.2. Demonstration of the dynamic scheme for Monte Carlo

The initial condition of a dynamic calculation can be sampled from a criticality calcula-
tion. If a converged source is achieved, initial neutron and precursor distributions can be
sampled.

Thermal-hydraulics coupling

To incorporate feedback effects, the dynamic scheme can be coupled to a thermal-hydraulics
code. This enables the possibility to perform a fully dynamic analysis of a nuclear system.
When coupling a stochastic method with a deterministic method some caution is needed.
A stochastic method does not yield standard coupling coefficients, but an integral estimate
in an interval. Also the variance estimation and mean result must be inspected closely,
since the neutron histories have become correlated.

7.2 Demonstration of the dynamic scheme for Monte Carlo

The possibilities of these new techniques and schemes have been demonstrated success-
fully in a number of examples, each focussing on a different technique.

Validating new Monte Carlo techniques

With a purpose-built Monte Carlo program the feasibility has been demonstrated of per-
forming a kinetic analysis applying only a stochastic method. The Dynamic Monte Carlo
code yields the same results as a point-kinetics calculation, which is considered to be
accurate in this case.

Also the two new Monte Carlo techniques, the new precursor sampling technique and the
branchless method, have proven to be effective. The efficiency gained with each technique
has been measured and the FoM increased significantly. The new techniques not only
increased the FoM in the test cases, which were specifically designed to demonstrate the
variance reducing techniques, but they also increased the FoM by a factor of ten in the
general transient problem.

Realistic demonstration problem

The implementation of the dynamic method in the general purpose Monte Carlo code
Tripoli has shown its the general applicability. Demonstration calculations have shown
that the quasi-static calculations no longer fully agree with the results of the dynamic
Monte Carlo calculation, in the complex geometry of a fuel assembly, with the ejection of a
number of control rods. This is to be expected with such a complicated transient.
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7. Conclusion and recommendations

In such a complex geometry variance reduction techniques usually are less effective than
in simple test cases, but it can still seen that the newly developed techniques increase the
efficiency of the total calculation by a factor of two. The results of the Dynamic Tripoli code
demonstrate not only the general applicability of the new methods, but also the practical
feasibility of a transient analysis in realistic complex geometry.

Fully dynamic problem

The possibility of coupling Monte Carlo with thermal-hydraulics has been demonstrated
in three steps. First a rudimentary feedback mechanism implemented in the basic Monte
Carlo code demonstrated the feasibility to perform a Monte Carlo calculation with feedback.
Then a realistic, but small system was simulated, demonstrating the possibility of coupling
a real thermal-hydraulics solver to the Monte Carlo solver, analysing a transient of more
than a minute.

The analysis of a NURISP benchmark problem demonstrated that the results of dynamic
Monte Carlo method agree fairly well with the results of an advanced coupled diffusion
calculation with pin power reconstruction. It shows that it is possible to perform realistic
transient analysis using Monte Carlo, even when the system is super-prompt-critical. More
research is needed to investigate the source of the discrepancies and to further validate the
dynamic Monte Carlo code.

General conclusions

The method presented in this thesis is a novel and unique method. Never before was it
possible to calculate a transient problem with the exact and detailed modelling of the
geometry and with continuous energy. This accuracy makes the method very suitable as a
validation tool for other computational methods.

The calculations performed so far, all agree nicely with existing deterministic methods,
which might imply that the Monte Carlo method is a more expensive way to calculate
problems which can already be solved. However, these problems have been selected to be
solvable by deterministic methods, creating a convincing example of the validity of the new
Monte Carlo code.

The main advantage of the Monte Carlo method is that no system-specific approxima-
tions are used and therefore it is generally applicable. It can solve not only these transient
problems, but also transient problems in new reactor types and unique research reactors.
Due to the high computational cost, the main application will be to act as a validation tool
for the computationally less expensive deterministic methods.
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7.3. Future work

7.3 Future work

Validation

The calculations shown in this thesis demonstrate the feasibility of performing a coupled
Monte Carlo neutronics/thermal-hydraulics calculation, even in a realistic geometry. How-
ever, it has not been possible yet to validate these calculations completely, even though
the results compare well with the DYN3D-FLICA results. A future challenge lies in the
validation of the dynamic Monte Carlo method and its implementation in the Tripoli code.
The method should be benchmarked against real-life, well-documented experiments.

Furthermore, it is necessary to further investigate the effects of the variance on the coup-
ling mechanism. It would be ideal if a theoretical description can be found to determine
the validity of the estimation of the mean and the variance.

Also, the method of tallying the produced power must be further investigated. In this
thesis the variance is calculated between batches of neutrons and the thermal-hydraulic
conditions are calculated per batch. To validate the results, it is advised to investigate the
results of a tally, which should have a normal distribution. If this is not the case, the central
limit theorem is not valid.

If the results do not have a normal distribution, which could be the case for a reactor
with flashing channels, it might prove meaningful to tally also a different quantity next to
the power profile. For example, the maximum power peak reached during the transient
disregarding the exact location of the peak could be tallied or the time it takes to reach
a power peak. The regular power tally is of course still needed for the coupling with the
thermal-hydraulics code.

Further development

Some parts of the method can be improved. Since this work is the first attempt to couple
a stochastic neutronics code for transient analysis to a thermal-hydraulics code, simple
schemes and techniques have been used for the coupling. After this demonstration, the
next step is to further improve the simulation scheme and Monte Carlo techniques.

The neutronics part of the calculation can be improved with better use of weight windows.
In this work the weight windows have only been adjusted per time interval. The efficiency
of the calculation can be improved when proper weight windows are applied, preferably
in an automated fashion. This way the weight windows can be optimised not only in the
temporal variation, but also in the other dimensions of phase space.

Another neutronics improvement can be found in the generation of temperature-dependent
cross sections. Multiple novel techniques are already successfully applied for accurate
temperature modelling in steady-state Monte Carlo thermal-hydraulics coupling and one
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of these novel ways can also make the dynamic simulation more accurate.

A kinetic-specific improvement can be found in the statistics of the prompt-neutron
chain-length, which still is a large contributor to the total variance. An approach could be
to use material cross sections, instead of first selecting a nuclide from the material and
then using the nuclide cross sections. This will average the interaction response, which
would decrease the variance in chain lengths.

The geometry, temperatures and densities can be made time dependent to further
improve the coupling. In the current implementation the system properties are piecewise
constant, with a step at the time boundaries, but this is not compulsory for the method.
The time dependence during a time interval can be implemented for externally induced
changes to the system, such as the movement of a control rod, but also for results coming
from the coupling, such as the temperature profile. This last feature is especially useful
when using a (semi-) implicit coupling scheme.

Furthermore, the thermal-hydraulics part of the calculation can be improved. In this
work a sub-channel code has been used for the thermal-hydraulics, but there are higher-
fidelity computational-fluid-dynamics codes available. During the development of the
coupling scheme, the efficiency of the sub-channel code is useful, but it is more logical
to couple a high-fidelity method like Monte Carlo, with a high-fidelity thermal-hydraulics
code.

Finally, the coupling scheme can be further improved. For example, an implicit scheme
can be used for the coupling. This can be achieved by storing a copy of the particles at the
start of a time interval and use these copies to start iterating per time interval. Also the data
transfer becomes large when extending the method to full core calculations, with separate
temperatures for all axial and radial zones of the fuel pins. Therefore integrating neutronics
and thermal-hydraulics further can be an interesting option, enabling internal coupling
and automated geometry mapping between the two codes.

New possibilities

The simulation of precursor particles also opens new possibilities. For example, precursor
transport can be easily added to the method. In molten salt reactors the transport of
precursors has a big influence on the behaviour of the reactor and therefore it would be a
good asset to be able to simulate this in a Monte Carlo calculation.

Also the simulation of different precursor nuclides instead of complete precursor families
should be developed. In this case more information is needed about the yield of specific
precursors, but the method can easily handle an increase in precursor types. This would
remove another approximation from the method, but it will only improve the accuracy if the
nuclear data of the separate precursor nuclides is accurate, which might prove challenging.
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Application of dynamic Monte Carlo

All in all, it has been shown that it is feasible to perform dynamic Monte Carlo analyses on
nuclear systems. The main task is now to make this method generally available, so it can be
tested on many different applications for further refinement.
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A
GEOMETRY DESCRIPTIONS

A.1 Homogeneous system

The homogeneous system consists of a box of artificial fissile material. The box is 24 by 10 by
12 cm and is placed in vacuum, see Fig. A.1. The material properties are given in Table A.1,
which also shows that the neutrons in the system have a single speed, which is set to this
value in order to achieve a reasonable generation time. There are six precursor families;
the yields and properties of the precursors families are given in Table A.2, which are taken
from Dam et al. (2005). The scattering is isotropical and the scattering cross section is
chosen such that the system is near critical: the reactivity is 0.01 $. The reactivity insertion
is realised by changing the absorption cross section from Σa 1 to Σa 2, while keeping the
total cross section constant.

  x

y

z

Figure A.1: The homogeneous system is a small cuboid, with mono-energetic neutrons and
isotropic scattering. The cuboid is placed in vacuum.
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A. Geometry descriptions

Table A.1: Material properties
of the test problem. The box is
homogeneous and the problem
is mono energetic

Table A.2: The precursors are di-
vided into six families. Here the
fractions and decay constants
per precursor family i are given.
Also the total delayed fraction
and inversely weighted average
decay constant are shown.

Material properties
Σt = 1.0000 cm−1

Σ f = 0.2500 cm−1

Σa 1 = 0.5882 cm−1

Σa 2 = 0.5870 cm−1

ν = 2.500
β = 0.006850
v = 2.2000×104 cm−1

Family λ (s−1) β

1 0.0127 0.000260
2 0.0317 0.001459
3 0.1156 0.001288
4 0.3110 0.002788
5 1.4000 0.000877
6 3.8700 0.000178

av/tot 0.0784 0.006850

A.2 Fuel assembly

The fuel assembly consists out of 17 by 17 fuel pins, from which 24 pins are replaced by
control rods and the central pin is replaced by a water filled guide tube for measurement
equipment. The exact layout of the fuel assembly is given in Fig. A.2 and the boundary
conditions in the x-y plane are reflective.

The fuel consists out of uranium-dioxide and the control rods are boron based. The
coolant is borated water and also the cladding and gap regions are modelled, as depicted
in Fig. A.3. The material densities are given in Tab. A.3 The nuclear data used is JEFF3.1.1A.
Santamarina, D. Bernard, P. Blaise, et al. (2009).

The top and bottom each have a reflector and at the edge of the reflector vacuum is
assumed. The width of the system is 21.42 cm and the height of the fuel pins is 366 cm. the
top reflector is 40 cm thick and the bottom reflector 46 cm.

The model is based on the transient benchmark of Kozlowski and Downar (2003), but
some simplifications are used and there is no feedback present. The system is made close
to critical, by adjusting the control rod height accordingly.
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A.2. Fuel assembly

(a) Vertical cross section of fuel as-
sembly, x- and z-axis are not at the
same scale.

(b) Horizontal cross section of fuel assembly

Figure A.2: Layout of a fuel assembly; the fuel is colored red, the control rods are in green,
the borated water is in blue, the top and bottom reflectors are in black and the cladding is
in yellow.

Figure A.3: The layout of the fuel rod (left) and control rod (right) in the fuel assembly. The
centre region of the control rod can be either filled with the control rod or with coolant.
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A. Geometry descriptions

fuel gap cladding control rod
235U 0.001237 16O 0.000063 90Zr 0.032543 C 0.033261
238U 0.003673 91Zr 0.007097 10B 0.115219
16O 0.075926 92Zr 0.010848 11B 0.026072

94Zr 0.010993
96Zr 0.001771

coolant top bottom
H in H2O 0.081857 H in H2O 0.010424 H in H2O 0.120848

16O 0.041308 16O 0.005212 16O 0.060424
10B 0.000048 10B 0.000003 10B 0.000039
11B 0.000182 11B 0.000014 11B 0.000162

54FE 0.002452 54FE 0.004879
56FE 0.038495 56FE 0.076589
57FE 0.000889 57FE 0.001769
58FE 0.000118 58FE 0.000235

Table A.3: Material properties for the various materials in the fuel assembly. The nuclide
densities are given in mol/cm3

A.3 Pin cell

The pin-cell geometry consists of a single pin with reflective boundaries in the x-y plane
and vacuum at the top and bottom. The layout and dimension are given in Fig. A.4, where
also the mapping from one code to the other is depicted. In the thermal-hydraulics model
the gap between the fuel and the cladding is modelled, but for the Monte Carlo solution
this gap is neglected. The fuel is made of UO2, but the enrichment is varied in the axial
direction. This enrichment is plotted in Fig. A.5. In this case the system is made critical
by adjusting the boron concentration in the coolant, which will yield a relative high boron
concentration, since there is no leakage in the x-y plane and no other neutron absorbers.
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A.3. Pin cell

Tripoli input SubChanFlow
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Figure A.4: The system for the numerical example is a small homogeneous cuboid, with
mono-energetic neutrons and isotropic scattering. The cuboid is placed in vacuum.
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Figure A.5: The system for the numerical example is a small homogeneous cuboid, with
mono-energetic neutrons and isotropic scattering. The cuboid is placed in vacuum.

A.4 Mini core

The mini-core is taken from the benchmark described in Kliem et al. (2011), which is based
upon the OECD benchmark for MOX/UO2 core transients (Kozlowski and Downar, 2003).
In the system there are two types of fuel assemblies: one with MOX fuel and one with UO2

fuel. The mini core consists of nine fuel assemblies, from which eight contain MOX and the
central fuel assembly contains UO2. The whole set up is surrounded by water reflectors, as
depicted in Fig. A.6. The assembly has 17×17 rod positions, which contains different kind
of rods, as depicted in Figs. A.7 and A.8. The width of a fuel assembly is 21.42 cm, the height
is 366 cm and the pitch between the rods is 1.26 cm. The control rods are only present in
the UO2 fuel assembly.

The geometry of the different types of rods can be found in Fig. A.9 together with Tab. A.5
and the dimensions can be found in Tab. A.6 and this layout is modelled in full detail. The
nuclide densities in the materials can be found in Tab. A.7 and cross section are taken
from the JEFF3.1.1 evaluations (A. Santamarina, D. Bernard, P. Blaise, et al. , 2009). Other
boundary conditions can be found in Tab. A.4. The exact nuclide densities in the coolant
will change, depending on the results of the thermal-hydraulics calculation.

156



A.4. Mini core

1
MOX
4.3%

2
MOX
4.3%

3
MOX
4.3%

6
MOX
4.3%

9
MOX
4.3%

8
MOX
4.3%

7
MOX
4.3%

4
MOX
4.3%

5
UO2
4.5%

REFL

REFL

REFL

REFL

REFLREFL

REFLREFL

REFL

REFL

REFL

REFL

REFL

REFLREFL

REFL

Vacuum

Vacuum

Va
cu
um

Va
cu
um

Figure A.6: The layout of the fuel assemblies in the mini core.

Table A.4: System properties for hot full power (HFP) and hot zero power (HZP)

Boundary conditions HFP
Core Power 100MW
Mass flow rate (core) 739.08 kg/s
Mass flow rate (FA) 82.12 kg/s
Core Outlet pressure 15.40 Mpa
Coolant inlet temperature 560 K
Boron concentration 200 ppm (nuclide density)
Insertion depth control rods 0.0 cm

Boundary conditions HZP
Core Power 1 W
Mass flow rate (core) 739.08 kg/s
Mass flow rate (FA) 82.12 kg/s
Core Outlet pressure 15.40 Mpa
Coolant inlet temperature 560 K
keff (t = 0 s) 1.0000
Insertion depth control rods 232.433 cm
Scenario CR ejection, linear speed

fully out at 0.1 s
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Figure A.7: The rod configuration of the MOX containing fuel assembly.
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Figure A.8: The rod configuration of the UO2 containing fuel assembly.
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Fuel IFBA

Guide Tube Control rod WABA

Figure A.9: The layout of the rods in the mini core.

Table A.5: Rod materials

Fuel IFBA GT CR WABA
r0-r1 Fuel Fuel Water Cr Water
r1-r2 Gap Ifba Clad Clad Clad
r2-r3 Clad Gap Water Waba
r3-r4 Clad Clad Clad
r4-r5 Water
r5-r6 Clad

Table A.6: Rod dimensions in cm

Fuel IFBA GT CR WABA
r1 0.3951 0.3951 0.5624 0.4331 0.2858
r2 0.4010 0.3991 0.6032 0.4839 0.3531
r3 0.4583 0.4010 0.5624 0.4039
r4 0.4583 0.6032 0.4839
r5 0.5624
r6 0.6032
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Table A.7: Materials used in the mini core

UO2 MOX 2.5 % MOX 3.0 % MOX 5.0 %
235U 6.27×10−4 234U 2.77×10−7 234U 2.76×10−7 234U 2.70×10−7

238U 1.31×10−2 235U 2.76×10−5 235U 2.75×10−5 235U 2.69×10−5

16O 2.75×10−2 236U 1.37×10−7 236U 1.37×10−7 236U 1.34×10−7

238U 1.36×10−2 238U 1.35×10−2 238U 1.33×10−2

239Pu 3.26×10−4 239Pu 3.91×10−4 239Pu 6.52×10−4

240Pu 2.04×10−5 240Pu 2.45×10−5 240Pu 4.09×10−5

241Pu 1.38×10−6 241Pu 1.66×10−6 241Pu 2.76×10−6

242Pu 3.44×10−7 242Pu 4.12×10−7 242Pu 6.87×10−7

16O 2.80×10−2 16O 2.80×10−2 16O 2.80×10−2

Waba Control rod Ifba
C 2.34×10−3 C 1.21×10−2 90Zr 2.80×10−3

10B 2.01×10−3 10B 1.04×10−2 91Zr 6.10×10−4

11B 7.36×10−3 11B 3.80×10−2 92Zr 9.32×10−4

27Al 2.28×10−2 94Zr 9.44×10−4

16O 3.42×10−2 96Zr 1.52×10−4

10B 2.33×10−3

11B 8.53×10−3

Coolant (560 K,
Gap Cladding 200 ppm boron)

16O 2.27×10−5 90Zr 1.31×10−2 54Fe 2.96×10−6 1H in H2O 3.03×10−2

91Zr 2.85×10−3 56Fe 4.65×10−5 16O 1.51×10−2

92Zr 4.36×10−3 57Fe 1.07×10−6 10B 1.95×10−6

94Zr 4.41×10−3 58Fe 1.43×10−7 11B 7.14×10−6

96Zr 7.11×10−4 50Cr 1.97×10−6

112Sn 2.89×10−6 52Cr 3.80×10−5

114Sn 1.97×10−6 53Cr 4.31×10−6

115Sn 1.01×10−6 54Cr 1.07×10−6

116Sn 4.33×10−5 14N 8.39×10−5

117Sn 2.29×10−5 15N 3.10×10−7

118Sn 7.22×10−5 122Sn 1.38×10−5

119Sn 2.56×10−5 124Sn 1.73×10−5

120Sn 9.71×10−5
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B
FROM STATIC TO DYNAMIC TRIPOLI:

A REFERENCE GUIDE

This appendix is a technical description of the modifications made to the Tripoli 4.7 code,
which to enable the calculation of dynamic behaviour of nuclear reactors.

The first section is a users guide, which explains how to apply the new functionalities.
The remainder of the appendix is more a developers guide, which describes the exact im-
plementation of some specific dynamic functionalities such as the new precursor class, the
dynamic simulation mode and the variance reduction techniques for dynamic calculations.
Also the implementation of the feedback is discussed and finally there are some general
improvement which are not specific for dynamic calculations.

B.1 User Guide

There are a couple of new keywords and switches in Dynamic Tripoli, which are all optional.
The keywords can be added to the input file and a switch is added when executing the code.
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DYNAMIC There is a new simulation mode, next to CRITICALITY,
FIXED_SOURCES_CRITICALITY and SHIELDING
there is now the DYNAMIC mode. This mode is similar
to the fixed sources criticality mode, but instead of
it calculates time intervals consecutively, A detailed
description can be found in section B.3. One batch
will contain all time intervals and a time mesh is
compulsory. Also, the branchless transport method
will be automatically selected.

PRECURSOR There is a new particle type called precursor. Since it
produces only neutrons, it has the same limits as neut-
rons. Its only function is to produce delayed neutrons.

PRECURSOR_DECAY This can be either biased, which is default, or unbiased,
which will set natural precursor decay. With biased de-
cay a precursor is forced to produce a delayed neutron
in all time intervals.

PRECURSOR_IMPORTANCE The precursor importance needs two inputs, first is
either TIMED or EXPECTED. TIMED calculates the im-
portance from the timed weight of a precursor. This is
the statistical weight which represents the statistical
weight of the precursor at the current time. EXPEC-
TED calculated the importance relative to the expected
weight of the delayed neutron which will be produced
by the precursor in the next time interval.
The next input is a real. This is the importance
of the precursor. The weight of the precursor is
w timed = wav

importance

SOURCE There are two new sources. The PRECURSOR-type
source will generate a source of only precursors and
the NEUTRON_PRECURSOR-type source will calculate
a steady-state distribution of neutrons and precursors.

DCS <N> This Dynamic Criticality Source keyword instructs
Tripoli to perform <N> criticality cycles before
sampling a source. From the last cycle of the criticality
calculation the dynamic source will be sampled. The
DCS cycles have the forward transport mode, instead
of the branchless mode.

TRANSPORT_MODE
BRANCHLESS

This is a new transport mode, which is automatically
selected in the dynamic mode. If this is not desired, the
keyword TRANSPORT_MODE FORWARD can be used
for normal transport. In a fixed sources calculation
this mode can also be used.
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NO_COMBING This will switch off the combing technique for popula-
tion control in a dynamic calculation. Russian roulette
will be played on the precursors instead.

FEEDBACK If this keyword is present in the input file the code will
look for the feedback script and run it to get a new
input for every time interval. This option will also look
for a tally named feedback and output this tally in a
power file, with extension <datafilename>.power.

-F This switch is applied when calling Tripoli, it is not in
the input file. It is used in this manner:
-F <scriptname>
It is used to indicate the script which couples Tripoli
to a code which calculates feedback effects. The script
will be called in the following way:
<scriptname> <powerfilename> <filename of new
inputfile> <directory in which feedback script is run>

SIMULATION_TIME The simulation time will be tallied. The simulation
time per time interval will be given in the output file
with uncertainty.

PRINT_HISTORIES
<N1><N2><N3>

This is an event logger with maximal N1 lines, N2 lines
per particle and the N3 initial lines skipped

B.2 Precursor class

The precursor class simulates a precursor and it inherits from the particle class, but it also
has a few precursor specific attributes: it contains decay constants, delayed groups and a
creation time.

If the precursor biasing is set to unbiased, the follow() routine of a precursor will generate
a delayed neutron a time t where t is distributed according to the decay constants. If the
biasing is set to biased, a delayed neutron will be created in every time interval, with a
modified weight to ensure an unbiased game.

The precursors can be generated with two constructors, each generating another family
distribution: the steady-state and the fission distribution. The steady-state distribution is

given by λbβi

λiβ
and the fission distribution is given by βi

β
. The third constructor is a simple

copy constructor.
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B.3 Time stepping

When the Dynamic mode is selected, the simulation will progress per time interval, which
requires a time mesh. All particles in a time interval are processed including its progeny,
before continuing to the next interval. If a neutron transverses the time boundary it will be
stopped there and stored for the next time interval.

A precursor in the unbiased case will create a neutron which will be stored until its time
interval is reached. In the biased case the precursor will generate a new delayed neutron at
an uniformly distributed time in the interval and then the precursor particle is saved for
the next interval.

After the time interval the required weight is adjusted to keep approximately the same
number of neutrons throughout the entire calculation. Also a new geometry file can be
read. This gives the opportunity to alter the layout of the system (moving control rods,
swelling, expanding, changing temperatures, boron insertion etc.)

B.4 Source

For the source distribution there are a few new options. There is the possibility to have a
source of precursors and there is the possibility to have a combined source of precursors
and neutrons. When the precursor source is selected all source particles will be precursors,
with a steady-state family distribution. If the neutron_precursor option is selected the
fraction of prompt neutrons will be given by:

1

1+ β

λb vνΣ f

where all properties are dependent on energy and location (E , x)

It is also possible to use the DCS option and in this case the code will first perform <N>
criticality cycles. This calculation is performed only with neutrons and it will calculate a
eigenfunction for the neutron flux. From this steady-state neutron flux a initial distribution
will be sampled, with either neutrons, precursors or both, according to the steady-state
distribution for both neutrons and precursors, which are sampled using, respectively:

n 0(r,Ω, E ) =
φ0(r,Ω, E )

v (E )
=
ψ0(r,Ω, E )

v (E )Σt (r , E )

C0(r ) =

∫

4π

∞
∫

0

β (r , E )ν (r , E )Σ f (r , E )
λb (r , E )Σt (r , E )

ψ0(r,Ω, E )dE dΩ
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B.5 Variance reduction

For dynamic calculations a new variance reduction technique has been developed, which
is called the branchless method (BLS). It will keep prompt-neutron chains from branching
unnecessarily. At every interaction a single particle will emerge with statistical weight
Σs+νΣ f

Σt
and this can be either a fission neutron, with probability

νΣ f

Σs+νΣ f
or a scattering

neutron, with probability Σs

Σs+νΣ f
.

B.6 Feedback

To perform a calculation with feedback, two steps must be taken. First an extra output file
is generated by adding the keyword FEEDBACK to the input file. This will signal Tripoli
to create a power output file, which is named the same as the input file with the suffix
“.power”. In this file the power profile is written for every time interval. The score for the
power profile has to be defined by the user and is marked with the name FEEDBACK.

Secondly the option -F<feedback_script>must be given to Tripoli. This script will be
used to calculate the feedback, it has a few tasks:

• Read the power output file

• Create input for feedback code

• Run feedback code

• Read output of feedback code

• Create input for Tripoli

These scripts have to be tailor made, allowing the user to choose his/her favourite thermal-
hydraulics code.

B.7 General improvements

Time limit When crossing a time boundary a neutron is now stopped
at this boundary. This will ensure that there are no scores
outside the time domain. Also the fatal error for particles
scoring outside a time mesh has been replaced with a warn-
ing.

Warning for deleting particles A warning message has been added when a particle is re-
moved, because it is out of bounds.
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Logging function A logging function has been added which prints all interac-
tion of neutrons and precursors.

Extended mesh with time
mesh

Added the possibility of a time mesh to the extended mesh.

B.8 Memory improvements

Removed memory leak by:

geutil.c free ge_surf_tab_info.ge_surf
free ge_volu_tab_info.ge_volu
free ge_combi_tab_info.ge_combi_type

t4dispatch.cc update_read_data t4material_list.free_all()
t4pctdoublediffentry.cc re_init_repartition_function
t4main.cc delete t4_njoy_dictio
njpctnucleus delete xsfile

delete njoy_interface.dictio.entry
t4geomTripoli.cc added constructor re_initialise
t4matlist.cc added free_all, which deletes: compositions,materials, nuclei,

volunumlist, fissile_volume_list, cell_list, needed_nuclei_id
t4baseunit.cc delete[] unitstring
t4pctnmultndiff.cc delete total_discrete_diff_section
t4compolist delete materials
t4nucleus delete nucleus_name

delete atom
t4interdensity.cc re_init_repartition_function
t4njoy added destructor
njoyio.cc delete buffer_for_xdr
t4read.cc composition_list=0

delete ponderation_list
delete colllocus_list

t4xsabsorption.cc delete total_discrete_diff_section
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Summary

In this thesis a new method for the analysis of power transients in a nuclear reactor is
developed, which is more accurate than the present state-of-the-art methods. Transient
analysis is important tool when designing nuclear reactors, since they predict the behaviour
of a reactor during changing conditions, such as a control-rod movement, induced by an
operator, or an accident scenario.

The current methods for transient analysis apply deterministic solvers to calculate the
neutronic response, but not only do these deterministic solvers always need to discretise
the problem, they also often apply more fundamental approximations such as homogeniz-
ation or diffusion. Therefore a stochastic method is needed, which only has a statistical
uncertainty.

A challenge for applying the Monte Carlo method on transient analysis, is the different
types of particles which must be simulated in a single simulation. It is common for a neut-
ronics calculation to simulate the prompt neutrons, however the simulation of precursors
is new. The main challenge when simulating precursors lies in their long lifetime, which
is seconds, whereas the prompt neutrons have a lifetime of microseconds. This has been
solved by dividing the transient problem into time intervals and forcing the precursors to
produce a delayed neutron is all time intervals. This will ensure prompt-neutron chains in
all intervals.

The prompt neutrons will form prompt-neutron chains, which poses another challenge
for the Monte Carlo method. The chain length of these prompt neutrons varies a lot and
the can also split into many branches, which averages out in a real power reactor, but is
difficult to simulate on a computer. To improve the chain-length statistics, a new variance
reduction technique is developed, which dictates that a single neutron will emerge from
each interaction. This emerging neutron can be the result of a scattering event or a fission
event.

Finally, a dynamic simulation scheme, which can run in parallel, has been devised, simu-
lating all time intervals consecutively. Also, a method for sampling the initial conditions
is created and this scheme is implemented in a purpose-built Monte Carlo code and in
a general-purpose Monte Carlo code. The two codes have been tested in several cases
and they behave as expected, agreeing with deterministic method where expected, but
deviating when the deterministic methods are no longer valid.

In order to simulate realistic transients in a power reactor, feedback has to be taken
into account. To achieve this, the dynamic Monte Carlo method has been coupled to a
thermal-hydraulics code, using an explicit scheme. The results of this coupled simulation
are compared to a state-of-the-art coupled diffusion calculation in a NURISP-benchmark
calculation and the results agree well, except for a small deviation towards the end. The
exact source of this deviation should be further investigated, but the difference is small,
when realising that there is already a deviation in the steady-state results.
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Summary

The results demonstrate the feasibility of performing a fully dynamic transient analysis,
using only Monte Carlo for the neutronics part of the calculation. Transients can now be
calculated, with detailed modelling of any complex geometry and with continuous energy,
which is especially useful for newly developed reactor types and one-of-a-kind research
reactors.
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Samenvatting

Dit proefschrift beschrijft een nieuwe rekenmethode voor het analyseren van vermogens-
transities in een nucleaire reactor, die nauwkeuriger is dan de beste huidige methodes. Het
analyseren van transities in een nucleaire reactor is belangrijk tijdens het ontwerp, omdat
deze het gedrag van een reactor beschrijven wanneer de toestand van de reactor veranderd,
bijvoorbeeld wanneer een reactoroperator een regelstaaf laat bewegen of in het geval van
een ongeval.

De huidige rekentechnieken voor transitieanalyse maken gebruik van deterministische
methodes om de neutronica te beschrijven, maar het nadeel van deze technieken is niet
alleen het gebruik van discretisatie, maar er worden vaak nog fundamentelere benaderin-
gen gemaakt, zoals homogenisatie en diffusie theorie. Daarom is het nuttig als er een
stochastische methode beschikbaar is, die slechts een statistische onzekerheid heeft.

Een van de uitdagingen voor het toepassen van de Monte Carlo methode op transitie-
berekeningen is dat de verschillende tijdschalen waarin de verschillende deeltjes opereren
in één berekening moeten worden gesimuleerd. Het is gebruikelijk om prompte neutronen
in een neutronica berekening te simuleren, maar de simulatie van moederkernen is nieuw.
De grootste uitdaging voor het simuleren van moederkernen is hun lange levensduur, die in
de secondes loopt, terwijl prompte neutronen een levensduur hebben van microsecondes.
Deze tijdschalen zijn verenigd door het transitieprobleem op te delen in tijdsintervallen
en iedere moederkern wordt geforceerd om in ieder tijdsinterval een nakomend neutron
te genereren. Hierdoor worden er in ieder tijdsinterval ongeveer evenveel prompte neu-
tronenkettingen geïnitieerd, wat op zijn beurt weer leidt tot gelijkmatige statistiek voor alle
intervallen.

De prompte neutronen zullen kettingen vormen, hetwelk ook een uitdaging vormt voor
de Monte Carlo methode. De kettinglengte van de prompte neutronen varieert sterk,
met vele mogelijke vertakkingen. Dit alles middelt in een echte vermogensreactor uit,
maar is moeilijk te simuleren op een computer. Om de statistiek in de kettinglengte te
verbeteren is er een nieuwe variantiereductietechniek ontwikkeld, die voorschrijft dat er
één enkel neutron uit een interactie voortkomt. Dit is danwel het botsingsneutron danwel
een splijtingsneutron.

Tot slot is er een dynamisch simulatie schema ontwikkeld, wat ook parallel kan rekenen
en wat alle tijdsintervallen achtereenvolgens simuleert. Dit schema is, samen met een
methode om de initiële deeltjes te selecteren, geïmplementeerd in een speciaal gecreëerd
dynamisch Monte Carlo programma en in een algemeen Monte Carlo programma. De
beide programma’s zijn aan vele testen onderworpen en ze gedroegen zich zoals verwacht:
soms hetzelfde resultaat als de deterministische methodes, maar een ander resultaat op
het moment dat de deterministische benadering niet meer van toepassing is.

Bij een realistische transitie in een vermogensreactor is terugkoppeling van groot belang.
Om dit te kunnen simuleren is de dynamische Monte Carlo methode gekoppeld aan een
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thermo-hydraulicacode, met behulp van een expliciet koppelingsschema. De resultaten
van deze gekoppelde simulatie zijn vergeleken met de resultaten van een state-of-the-
art gekoppelde diffusieberekening gedaan op een NURISP-benchmark en de resultaten
komen grotendeels overeen. Slechts naar het einde van de berekening toe is er een kleine
deviatie tussen de resultaten. De precieze oorzaak van deze deviatie moet verder worden
onderzocht, maar als men realiseert dat er al grote verschillen zijn in de stationaire bere-
kening, is dit slechts een kleine deviatie.

De resultaten demonstreren dat het mogelijk is om een volledig dynamische transitie-
berekening uit te voeren, waarbij alleen de Monte Carlo methode wordt gebruikt voor het
neutronica gedeelte van de berekening. De gevolgen van transities kunnen nu accuraat
worden berekend, met een gedetailleerde beschrijving van elke complexe geometrie en
met gebruik van continue energie voor de neutronen. Deze eigenschappen zijn speciaal
nuttig voor nieuw te ontwikkelen reactortypes en unieke onderzoeksreactoren.

172



Acknowledgements
Here I would like to thank everyone who has contributed in the creation of this thesis.
First of all I would like to thank my promotor Tim van de Hagen and copromotor Eduard
Hoogenboom and section head Jan Leen Kloosterman. With the three of them they have
guided me through my four years of PhD. Especially the close collaboration with Eduard
has been invaluable. I have really appreciated our weekly meetings and enjoyed our trips
for the NURISP project meetings and the conferences. They helped me a great deal and
contributed to the timely finish of this thesis.

Also I would like to thank the people at the Tripoli development team at CEA. You have
always been a great help to me, when I was implementing the new method in the Tripoli
code (François-Xavier) and when I was trying to run the code (Emeric). Thanks for the
hospitality at Saclay (Cheikh, Jean-Christophe, Fausto) and thanks for the fast assistance
when I was not in France.

Another thanks goes to the people at KIT for the help with my coupling efforts. Not only
did they share their tips and tricks for coupling two codes with me (Aleksandar, Manuel),
and kindly shared the SubChanFlow code (Uwe), they also helped a great deal with the
validation of the results of the coupled calculation (Javier, Victor).

Also I like to acknowledge the SARA computing centre for allowing me to run some
calculations on the LISA cluster. Also I like to thank all groups of the HPC11 cluster for
allowing me to use their processors via the guest queue. Thanks a lot, without those I would
still be calculating.

Big thanks also goes to all the colleagues from PNR. The nice atmosphere in the group
was for me an important argument to start this PhD and it did not disappoint me. Thanks
for all to nice coffee breaks, drinks in “het koepeltje”, drinks late at night, excursions
and random talks. Special thanks go to Stavros for warning me, Karoly for exchanging
complaints, Frank for the football and political talks, Stuart for “learning” me English, Luca
for my introduction to the European network of Italians in nuclear, Zoltan for the little
nerdy scripts, Gert Jan for being another ancient-one, Christophe for the always surprising
stories, Norbert for the rowing stories, Jurriaan for the rare smoke, Wim ha collega, Jozsef
for all my questions regarding real reactors, Danny for the help with computing, Martin
for thermal-hydraulic questions, Dick for the help with the ict, Peter for the cycling talks,
August for the cluster talks, Dimitrios for the drinks, Ming for the different view and Ine for
making sure everything went smooth and making the group such a good place to work.

Also I was happy to welcome four bachelor students into the PNR Monte Carlo team.
Mark, Aldo, Fedde and Tim, it was a pleasure to guide you through the worlds of Nuclear,
Monte Carlo simulations and computational physics.

Finally I am like to thank my supportive family, you’ve been always interested and
supportive, which is the best encouragement one can ask for. Most of all I would like to
thank Anne, for all her mental support, encouragements and love.

173



Acknowledgements

174



List of Publications

B. L. Sjenitzer. Temperature dependent Monte Carlo simulation: Thermalization. Technical
report, Delft University of Technology / Commissariat à l’Énergie atomique, 2009.

B. L. Sjenitzer and J. E. Hoogenboom. A Monte Carlo method for calculation on the dynamic
behaviour of nuclear reactors. In Proceedings of International Conference SNA +MC,
Tokyo, 2010.

B. L. Sjenitzer and J. E. Hoogenboom. Implementation of the dynamic Monte Carlo method
for transient analysis in the general purpose code Tripoli. In Proceedings of M&C confer-
ence, Rio de Janeiro, 2011a.

B. L. Sjenitzer and J. E. Hoogenboom. Variance reduction for fixed-source Monte Carlo
calculations in multiplying systems by improving chain-length statistics. Annals of
Nuclear Energy, 38:2195–2203, 2011b.

B. L. Sjenitzer and J. E. Hoogenboom. Possibilities and efficiency of long-time kinetic and
dynamic Monte Carlo calculations. Technical Report D1.1.4, NURISP, 2011c.

B. L. Sjenitzer and J. E. Hoogenboom. General purpose dynamic Monte Carlo with con-
tinuous energy for transient analysis. In Proceedings of International Conference on the
Physics of Reactors 2012, PHYSOR 2012: Advances in Reactor Physics, volume 1, pages
812–825, 2012.

B. L. Sjenitzer and J. E. Hoogenboom. Dynamic Monte Carlo method for nuclear reactor
kinetics calculations. Nuclear Science and Engineering, Accepted for publication.

J. E. Hoogenboom and B. L. Sjenitzer. Extentions of the MCNP5 and TRIPOLI4 Monte Carlo
code for transient analysis. In Submitted to International Conference SNA+MC, Paris,
2013.

B. L. Sjenitzer, J. E. Hoogenboom, Victor Sanchez-Espinoza, and Javier Jiménez Escalante.
Coupled transient analyses using Monte Carlo. Nuclear Engineering and Design, To be
submitted.

175



List of Publications

176



Curriculum Vitae

Personal Details

Name: Bart Sjenitzer
Date of birth: 19-04-1981
E-mail: Bart@Sjenitzer.nl
Nationality: Dutch

Employment and Education

2009–2013 PhD researcher at Delft University of Technology
Tasks include:
– The development and implementation of the new Monte Carlo method
– Implementation of the new method in a commercial computer program
– Coupling different computer codes
– Teaching classes for Master and Bachelor students
– Supervising thesis projects of students
– Writing papers for scientific journals and EU-reports
– Presenting at international conferences
– Collaborating in a multi-disciplinary, international team
– High performance computing on the national supercomputer SARA
– Combining Stochastic and deterministic methods

2001–2009 Master and Bachelor Degree in Applied Physics, Delft University of
Technology
Specialty: Computer modelling of neutron transport
Master’s thesis: “Variance Reduction using the Correcton method in
Monte Carlo Simulation”
Bachelor’s thesis: Neutron moderation in a rotating disc

2004–2008 International athlete (rowing) with official status of Dutch Olympic
Committee
Tasks included:
– 14 Workouts per week
– Developing and planning yearly training schedules
– Team work under stressful conditions
– Performing under pressure
– International races at the highest level

2000–2001 Electrical Engineering, Delft University of Technology

1999–2000 Work and travel in Australia

1993–1999 St. Ignatius Gymnasium, high school, graduated in 2 extra subjects

177



Curriculum Vitae

Awards and Achievements

2010 Best Student Paper Award
Award for best student paper and presentation at the International con-
ference
“Supercomputing on Nuclear Application and Monte Carlo” in Tokyo

2004–2007 Rowing:
Competitor at the World Championships (2006, 2007)
Competitor at the World Cup Final (2006, 2007)
Three time Dutch National Champion (2005, 2006, 2007)
Silver medal at FISU World Championships (2004)
Finalist at Henley Royal Regatta (2004)

Extracurricular activities

2012 IYNC Track Chair: Reactor Physics Track
The International Youth Nuclear Congress is organized once every two
years, It is a large gathering of young nuclear professionals and the re-
sponsibilities of a track chair is to create an international review team
and evaluate the submissions for the reactor physics track.

2009–2012 Core group Dutch Young Generation
The Dutch Young Generation (DYG) is the young generation of the Neth-
erlands Nuclear Society (NNS). The DYG organizes technical visits, lec-
tures etc. to increase the exchange of knowledge and experience among
the members. The DYG is part of the European Nuclear Society Young
Generation Network (ENS-YGN).

2010 Chair Dutch Young Generation
The chair of the DYG, has to organize the meetings of the DYG and
manage the contacts with the NNS, European network and the public.

Additional Radiological Health Physics level 3
training Media training

Scientific writing
A summer school on high fidelity modeling of nuclear reactors
A Summer school on the EPR

178


	Main Title
	Title Page
	Copyright
	Dedication
	Table of Contents
	Introduction
	Introduction
	State-of-the-art transient-analysis methods
	Stochastic methods for reactor analysis
	Aim and structure of this thesis
	Bibliography


	New Monte Carlo Techniques
	Simulation of Precursors
	Physics of nuclear fission
	Sampling precursors
	Precursor population control
	Precursor source distribution
	Summary of the simulation of precursors
	Bibliography

	Variance in Prompt Fission Chain Lengths
	Physics of fission chains
	A simple model for chain length statistics
	Moments equations
	Variance reduction methods
	Comparison of different variance reduction methods
	Summary of improving chain length statistics
	Bibliography


	Implementation of the Dynamic Monte Carlo Method
	The Dynamic Monte Carlo Method: Proof of Principle
	Simulation scheme
	Tallies
	Numerical Example
	Summary of the proof of principle for the Dynamic Monte Carlo method
	Bibliography

	The Dynamic Monte Carlo method: Simulation of Realistic Geometry
	Implementation of the dynamic method into Tripoli 4.7
	Demonstrating the Dynamic Monte Carlo Method on Realistic Geometry
	Summary on the development of Dynamic Tripoli
	Bibliography

	Coupling of Dynamic Monte Carlo with Thermal-Hydraulic Feedback
	Introduction
	Theory
	Practical implementation and demonstration
	Summary of the coupled calculation
	Bibliography


	Conclusions and Recommendations
	Conclusion and recommendations
	New Monte Carlo techniques
	Demonstration of the dynamic scheme for Monte Carlo
	Future work


	Appendices
	Geometry descriptions
	Homogeneous system
	Fuel assembly
	Pin cell
	Mini core
	Bibliography

	From Static to Dynamic Tripoli: A reference guide 
	User Guide
	Precursor class
	Time stepping
	Source
	Variance reduction
	Feedback
	General improvements
	Memory improvements

	Summary
	Samenvatting
	Acknowledgements
	List of Publications
	Curriculum Vitae


