
 
 

Delft University of Technology

Personalizing motion sickness models: estimation and statistical modeling of individual-
specific parameters

Kotian, V.; Pool, D.M.; Happee, R.

DOI
10.3389/fnsys.2025.1531795
Publication date
2025
Document Version
Final published version
Published in
Frontiers in Systems Neuroscience

Citation (APA)
Kotian, V., Pool, D. M., & Happee, R. (2025). Personalizing motion sickness models: estimation and
statistical modeling of individual-specific parameters. Frontiers in Systems Neuroscience, 19, Article
1531795. https://doi.org/10.3389/fnsys.2025.1531795

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3389/fnsys.2025.1531795
https://doi.org/10.3389/fnsys.2025.1531795


TYPE Original Research
PUBLISHED 16 June 2025
DOI 10.3389/fnsys.2025.1531795

OPEN ACCESS

EDITED BY

Mario Treviño,
University of Guadalajara, Mexico

REVIEWED BY

Rafał Lewkowicz,
Military Institute of Aviation Medicine, Poland
Baris Aykent,
ParisTech École Nationale Supérieure d’Arts et
Métiers, France

*CORRESPONDENCE

Varun Kotian
v.kotian@tudelft.nl

RECEIVED 20 November 2024
ACCEPTED 13 February 2025
PUBLISHED 16 June 2025

CITATION

Kotian V, Pool DM and Happee R (2025)
Personalizing motion sickness models:
estimation and statistical modeling of
individual-specific parameters.
Front. Syst. Neurosci. 19:1531795.
doi: 10.3389/fnsys.2025.1531795

COPYRIGHT

© 2025 Kotian, Pool and Happee. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Personalizing motion sickness
models: estimation and statistical
modeling of individual-specific
parameters

Varun Kotian1*, Daan M. Pool2 and Riender Happee1

1Faculty of Mechanical Engineering, Cognitive Robotics, Delft University of Technology, Delft,
Netherlands, 2Faculty of Aerospace Engineering, Control and Simulation, Delft University of
Technology, Delft, Netherlands

As users transition from drivers to passengers in automated vehicles, they
often take their eyes o� the road to engage in non-driving activities. In
driving simulators, visual motion is presented with scaled or without physical
motion, leading to a mismatch between expected and perceived motion. Both
conditions elicit motion sickness, calling for enhanced vehicle and simulator
motion control strategies. Given the large di�erences in sickness susceptibility
between individuals, e�ective countermeasures must address this at a personal
level. This paper combines a group-averaged sensory conflict model with an
individualized Accumulation Model (AM) to capture individual di�erences in
motion sickness susceptibility across various conditions. The feasibility of this
framework is verified using three datasets involving sickening conditions: (1)
vehicle experiments with and without outside vision, (2) corresponding vehicle
and driving simulator experiments, and (3) vehicle experiments with various non-
driving-related tasks. All datasets involve passive motion, mirroring experience in
automated vehicles. The preferredmodel (AM2) can fit individualmotion sickness
responses across conditions using only two individualized parameters (gain K1
and time constant T1) instead of the original five, ensuring unique parameters for
each participant and generalisability across conditions. An average improvement
factor of 1.7 in fitting individual motion sickness responses is achieved with
the AM2 model compared to the group-averaged AM0 model. This framework
demonstrates robustness by accurately modeling distinct motion and vision
conditions. A Gaussian mixture model of the parameter distribution across a
population is developed, which predicts motion sickness in an unseen dataset
with an average RMSE of 0.47. This model reduces the need for large-scale
population experiments, accelerating research and development.

KEYWORDS

motion sickness, simulator sickness, modeling, driving simulators, automated vehicles

1 Introduction

Automated vehicles and driving simulators are very different technologies. However,

they both share two common facts. The first is that they have become very popular in

recent years, a trend that is expected to continue in the future. Secondly, they both share a

common issue in motion sickness. Users of automated vehicles will move away from being

drivers to passengers, preferably engaged in other activities such as reading or using laptops

and smartphones. In driving simulators, realistic (unscaled) visual motion is presented

with scaled or even without any physical motion. This causes a mismatch between expected
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and perceived motion, eliciting motion sickness (Bos et al., 2020).

Even though these two examples are different and referred to as car

and simulator sickness, respectively, the inherent mechanism that

causes motion sickness in both, i.e., sensory-expectancy conflict, is

the same (Reason, 1978).

The mechanisms behind the development and evolution of

motion sickness have been studied extensively, relying heavily

on models that predict sensory conflicts based on mathematical

models of the vestibular and visual sensory systems (Bos and

Bles, 1998; Wada et al., 2020; Liu et al., 2022; Irmak et al., 2023;

Kotian et al., 2024). In this paper, these models are referred to

as “conflict generation” models. However, these models generally

predict group-averaged sickness development in terms of the

Motion Sickness Incidence (MSI), which does not directly reflect

some crucial dynamics of motion sickness development, such as

recovery and hypersensitivity (Oman, 1990; Irmak et al., 2023).

Furthermore, such group-averaged models cannot be reliably used

for predicting motion sickness at an individual level.

In this paper, we aim to combine an available group-average

“conflict generation” model—the Subjective Vertical Conflict

(SVC) model by Wada et al. (2020)— with an individualized

“conflict accumulation” model (AM) as also used by Irmak et al.

(2020) to improve the ability to capture the differences in individual

motion sickness susceptibility. This also requires the use of an

individual motion sickness metric, such as the MIsery Scale (Bos

et al., 2005), instead of a group-averaged metric like Motion

Sickness Incidence (MSI). The proposed modeling framework is

shown in Figure 1. The conflict accumulation part is a modified

form of the model by Oman (1990). The accumulation model is

nonlinear and has conflict in m/s2 as input, and the output is

unitless in MISC (defined in Section 6 of Supplementary material).

This complicates the definition of units for the gains due to the

multiplication and the power term. For conflicts generated by

motion accelerations in one degree-of-freedom, the personalisation

of sickness accumulation parameters has already been shown to

improve modeling accuracy by a factor of 2 compared to using
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FIGURE 1

Framework for combined “conflict generation” using the SVC model (Wada et al., 2020; Kotian et al., 2024) and “conflict accumulation” (Oman, 1990;
Irmak et al., 2022) model to predict individual motion sickness, i.e., MIsery SCale (Bos et al., 2005).

group-averaged parameters (Irmak et al., 2020). Our work extends

this approach to full 6 degrees-of-freedom motion perceived from

visual and vestibular inputs, which requires a “conflict generation”

model to account for realistic sensory conflict predictions, as in

Figure 1. Further details regarding this model structure will be

provided in Section 2.

The goal of the paper is to demonstrate the feasibility of

this combined motion sickness model approach—i.e., combining

a group-average “conflict generation” and a personalized “conflict

accumulation” model—for capturing individual differences in

motion sickness susceptibility. While evidence exists of individual

differences in “conflict generation” model parameters as well

(Irmak et al., 2021), quantifying these would require individual

perception experimental data, which was not readily available

(an exception is Irmak et al., 2021). Furthermore, we aim

to find a “minimum effective” implementation of such a

personalized motion sickness model by directly comparing

different parameterisations of the “accumulation model.” For this,

extending our own preliminary work in Kotian et al. (2023),

this paper makes use of four existing datasets, see Table 1, where

MISC was measured under sickening motion stimuli in (1) an

experimental vehicle with and without out-of-the-window vision

(Irmak et al., 2020), (2) vehicle experiments and matched driving

simulator experiments (Talsma et al., 2023), (3) vehicle experiments

with various non-driving related tasks (NDRTs) (Metzulat et al.,

2024), and (4) on road vehicle experiments and sickness recreation

experiments on a smaller track (Harmankaya et al., 2024). All

datasets involve passive motion, representative of being driven by

an automated vehicle, and test two or three different conditions

with the same participants. Inoue et al. (2024) also report on

a similar approach as used by Kotian et al. (2023), where

only the pre- and post-scaling of the “conflict accumulation”

model was varied between different participants. The resulting

individualized models were validated using a 1 degree-of-freedom

motion stimulus experiment with variation in head movement

(Inoue et al., 2024). Our current work performs extended validation
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with full 6 degrees-of-freedommotion and with variations in visual

and vestibular inputs in real driving scenarios, which requires a

“conflict generation” model to account for realistic sensory conflict

predictions. Furthermore, we perform an explicit optimization

of the required number of parameters for personalizing the

“conflict accumulation” model, including the model’s gains and

time constants instead of a simple pre- and post-scaling.

This paper presents a direct comparison of fitting the proposed

combined motion sickness model for all individual participants

in the first three datasets listed in Table 1. For every participant,

parameters are always estimated across the different conditions

tested in each dataset to ensure a “minimum effective” and

generalisable result. Additionally, using the individual-specific

variations in the parameter values estimated from these datasets,

a probabilistic Gaussian mixture model is used to capture the

observed statistical variations. The capacity of this statistical

modeling approach for predicting individual variations in motion

sickness across a population is verified by predicting the final

Sickness Recreation dataset, see Table 1.

By achieving these goals, this paper will show that our proposed

modeling framework can be used for personalized motion sickness

modeling for automated vehicles. The obtained model predictions

can be used to optimize the comfort levels of individual automated

vehicle users by adapting its driving style, i.e., by limiting the

acceleration and rotations of the car they may be especially

sensitive to. Furthermore, the derived statistical model can directly

improve and accelerate the design and testing of new driving

simulator motion cueing algorithms that aim to optimize simulator

sickness, as in Hogerbrug et al. (2020), Baumann et al. (2021), and

Jain et al. (2023).

2 Methods

2.1 Experimental datasets

For the analysis in this paper, we make use of four different

published datasets, see Table 1. All datasets include measured

sickness responses to passive road vehicle motion, representative of

being driven by an automated vehicle. In these datasets, individual

motion sickness levels were reported using the MISC scale as a

function of time, and all showed major individual differences in

sickness susceptibility.

First, the real-world “Slalom Drive” dataset includes varying

vision conditions, i.e., with and without an outside view, where

mean MISC levels at the end of motion exposure were 5.3

(severe symptoms) with an outside view and 3.3 (some symptoms)

without an outside view (Experiment 1 in Irmak et al., 2020), see

Figure 2. The experiment was terminated when a MISC value of

6 was reached. This experiment compared the motion sickness

development with and without an outside view from the car. This

dataset is ideal for proving that our new model framework can

predict individual motion sickness for various vision conditions in

real vehicles.

The “Car and Simulator” dataset (24 participants) contains

motion sickness responses from real-world driving and its

(matched) simulation on a moving-base driving simulator (Talsma

TABLE 1 Experimental datasets used in this study.

Datasets Details Reference No. of
participants

Slalom

drive

Slalom with internal and

external vision

Motion sickness

responses for

hypersensitivity

Irmak et al.,

2020

16

Car and

simulator

Naturalistic drive in

vehicle and moving base

simulator

Only external vision

Talsma et al.,

2023

24

NDRT

Drive

Naturalistic driving data

with varying NDRTs

Internal vision

Metzulat et al.,

2024

20

Sickness

Recreation

Naturalistic driving data

on road recreated on a

smaller track

Internal vision

Harmankaya

et al., 2024

47

FIGURE 2

Slalom Drive dataset (Irmak et al., 2020) median MISC levels vs. time
in the conditions of external (red) and internal vision (blue) with the
shaded region showing the 25th to 75th percentiles.

et al., 2023). For this experiment, the mean MISC levels at the end

of motion exposure were around 5.5 (severe symptoms) in the car

and 1.5 (slight discomfort or vague symptoms) in the simulator, see

Figure 3. The experiment was terminated when a MISC value of 6

was reached.

The “NDRT Drive” experiment was performed by 20

participants and focused on a real-world sickening drive around a

fixed track with three different non-driving related tasks (NDRTs):

visual dynamic, visual static and auditory. The mean MISC levels

at the end of each condition were around 4.5 (medium symptoms)

for the auditory, 5 (severe symptoms) for the visual static, and 6.5

(some nausea) for the visual dynamic condition, see Figure 4. This

experiment was terminated when a MISC value of 7 was reached.

However, several participants still showed a rapid increase to a

MISC of 8 before or just after the experiment was actually stopped.

The “Sickness Recreation” experiment tested a method to

efficiently replicate the on-road motion sickness of 47 participants

on a smaller track. The mean MISC levels at the end of both drives

were around 2 (vague symptoms) (Section 3.2).
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FIGURE 3

Car and Simulator dataset (Talsma et al., 2023) median MISC levels
vs. time in the car (blue) and simulator (red) with the shaded region
showing the 25th to 75th percentiles.

FIGURE 4

NDRT Drive dataset (Metzulat et al., 2024) median MISC levels vs.
time in the three di�erent tasks—auditory (blue), visual static (red)
and visual dynamic (yellow) with the shaded region showing the
25th to 75th percentiles.

In this paper, the “Slalom Drive,” “Car and Simulator,” and

“NDRT Drive” datasets are used to demonstrate the capability of

the individual modeling framework to generalize across different

visual/vestibular input cases, whether these originate from a car

or a simulator. Furthermore, the first three datasets are used to

study the number of parameters needed to accuratelymodelmotion

sickness development in different participants, while the “Sickness

Recreation” dataset is used for validation of the statistical model

over a new population.

2.2 Model framework: inputs and outputs

The structure of the model framework has been introduced

in Section 1. As shown in Figure 1, inertial vehicle or simulator

motion inputs—such as acceleration and angular velocity—as well

as vision inputs—such as visual verticality (orientation) and visual

rotation (rotational velocity)—are defined as the inputs of the

“conflict generation” model, consistent with the SVC model by

Wada et al. (2020) and Liu et al. (2022). For our analysis, we

applied the full 6 degrees-of-freedom motion (3 translations and

3 rotations) as model inputs, using the recorded seat motion for

the drives in the car for the “Car and Simulator,” “NDRT Drive”

and “Sickness Recreation” dataset and recorded platform motion

for the simulator in the “Car and Simulator” dataset, and recorded

head motion for the “Slalom Drive” dataset. Example input data for

all datasets is shown in Section 1 of Supplementary material.

The human eye estimates motion through vision by measuring

the rotation of visual cues between the current and previous states,

a process known as optic flow. We assume the visually perceived

rotations to be equivalent to head (or vehicle, as in the case of the

Car and Simulator dataset) rotations when observing the external

environment. Consistent with Kotian et al. (2024), for internal

vision, we select a zero visual input, assuming no visual head

motion relative to the vehicle.

The output of the model is chosen to be the score on the

MIsery SCale (MISC) by Bos et al. (2005), which quantifies

the progression of sickness-related symptoms and has a positive

relation to discomfort (De Winkel et al., 2022; Reuten et al., 2020).

The MISC is an 11-point symptom-based scale that measures

in discrete symptoms running from 0 to 10, where 0 means

no symptoms and 10 stands for emesis (vomiting). In contrast

to the discrete MISC scale, the sickness model predicts on a

continuous scale. For model fitting, these continuous model

predictions are compared with experimentally reported discrete

MISC scores.

2.3 Model framework: model structures

As previously discussed, we combine two models in our

proposed model framework. The first component of the model

is the “conflict generation” model (see Figure 1, left), which

models the integration of 6 degrees-of-freedom sensory inputs and

generates a 1 degrees-of-freedom (scalar) sensory conflict signal.

For our application, this model shall be reliable in forecasting

conflict signals, especially for 6 degrees-of-freedom (automated)

road vehicle motion. Additionally, the model must include explicit

visual inputs so that the effects of different vision conditions

can be predicted. To select an appropriate model, we refer to

our previous study (Kotian et al., 2024), where different “conflict

generation” models and implementations of vision inputs were

directly compared.

Based on Kotian et al. (2024), we select the Subjective Vertical

Conflict (SVC) model with only a visual rotational velocity input as

proposed in Wada et al. (2020) for predicting a subjective vertical

conflict (a 3-dimensional vector) that drives motion sickness, see

Figure 5. This model has been shown to accurately replicate the

frequency and amplitude dynamics of motion sickness as reported

in numerous previous studies (McCauley et al., 1976; Golding and

Markey, 1996; Griffin and Mills, 2002; Howarth and Griffin, 2003;

Irmak et al., 2021, 2022). Kotian et al. (2024) show that the visual

vertical input that has also been proposed by Liu et al. (2022) is not

effective for predicting sickness and hence is not used in the current

study. The parameters used for the “conflict generation” model in

this paper are directly taken from earlier publications on the SVC

model (Wada et al., 2020; Liu et al., 2022) and listed in Table 2.
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FIGURE 5

The selected “conflict generation” model, which is the SVC model as in Kotian et al. (2024) based on the model by Wada et al. (2020).

TABLE 2 SVC model parameters.

Parameter
class

Parameter
symbol

Value Explanation

Anticipation

gains

Ka 0 Fully passive motion with no

anticipation assumed

Kω 0

Vestibular

feedback gains

Kac 1 As in Wada et al. (2020)

Kvc 5

Kωc 10

Visual

feedback gains

Kgvis 0 VV gain set to zero

Kωvis 10 VR gain as in Wada et al. (2020)

Perception

time

constants

τ (s) 5 As in Liu et al. (2022)

τscc (s) 7

The second part of the model is the “conflict accumulation”

model, which accumulates (integrates) the sensory conflict

predicted by the first part of the model framework to estimate the

build-up of motion sickness over time. The Euclidean norm of

the sensory conflict output by the “conflict generation” model is

used as the input to the “conflict accumulation” model. Usually,

the conflict is integrated using a Hill function combined with a

leaky integrator to output a group-level sickness metric such as

Motion Sickness Incidence (MSI), which quantifies the percentage

of the population that becomes motion sick (Wada et al., 2020; Liu

et al., 2022). However, this integration is insufficient to capture the

unique dynamics of motion sickness, including hypersensitivity,

which is the faster than normal increase of motion sickness

after already being subjected to motion sickness before. Thus,

we adopt the more advanced model by Oman (1990), which

is a five-parameter nonlinear model that integrates the conflict

(see the right part in Figure 1), with fast and slow pathways

combined with leakage. The fast path has a low time constant

(T1) and models the direct response to a sickening stimulus.

The slow path has a high time constant (T2) and captures the

slower secondary effects of sickening stimuli, such as recovery

and hypersensitivity. This is also relevant in simulators where a

sudden increase in motion incongruence can make participants

hypersensitive. This has been observed by Cleij et al. (2018) and

Kolff et al. (2022), where it was shown that motion tends to be

momentarily bad but not continuously. Both pathways have a gain

(K1 and K2) to control their contribution. Additionally, there is

a power law (p) at the model’s output to account for nonlinear

scaling effects.

2.4 Accumulation model: parameter
reduction

In addition to studying the accuracy of the Accumulation

Model (AM) with all 5 model parameters (T1, T2, K1, K2,

p) fitted individually, we consider reduced parameter variations

of the AM model to optimize for a “minimum effective”

number of individually fitted parameters. Such model reduction

is important to enhance the generalisability, efficiency, and

interpretability of the proposed personalized accumulation model.

For example, in many cases, a reduced number of model

parameters improves model generalisability due to a reduced

risk of over-fitting. Furthermore, a reduced number of tunable

parameters simplifies adjusting the model to different individuals’

sickness characteristics and may facilitate a more computationally

efficient implementation.

As the main basis for model parameter reduction, in this paper,

median measured values and empirical relations between different

parameters reported in previous studies are used, e.g.:

• T1 = 60 s (Oman, 1990)

• T2 = 7T1 (Irmak et al., 2020)
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TABLE 3 Reduced parameter versions of the “conflict accumulation”

model (AM).

Model Number of
free

Estimated/fixed parameters

parameters K1 K2 T1 (s) T2 (s) p

AM5 5 X X X X X

AM4a 4 X 5K1 X X X

AM4b 4 X X X 7T1 X

AM3 3 X 5K1 X 7T1 X

AM2 2 X 5K1 X 7T1 0.4

AM1a 1 2/18/9 5K1 60 X 0.4

AM1b 1 2/18/9 X 60 7T1 0.4

AM0 0 2/18/9 5K1 60 7T1 0.4

Check marks indicate the free model parameters estimated for each individual.

• K1: median value reported for each dataset:

◦ K1 = 2 for Slalom Drive dataset

◦ K1 = 18 for Car and Simulator dataset

◦ K1 = 9 for NDRT Drive dataset

• K2 = 5K1 (Oman, 1990)

• p = 0.4 (Irmak et al., 2022)

The K1 values were obtained from the median values estimated

with the AM5 model (see Table 3 for details of the AM5 model)

on each dataset. It should be noted that the assumed K1 values

are different for each dataset as the motion inputs in each dataset

were different. In the “Slalom Drive,” head motion was recorded,

but in the “Car and Simulator” and “NDRT Drive,” only vehicle

motion was recorded. Hence, a difference in the magnitude of

especially the rotations between datasets exists, which explains

the difference in estimated K1 gains. This is shown in Section 1

of Supplementary material where the “Car and Simulator” dataset

clearly has the smallest magnitudes of angular velocities. This could

also be partly due to the difference in average motion sickness

susceptibility of the participants in each experiment; the “NDRT

Drive” dataset (with K1 = 9) could have less motion sickness

susceptible participants than the “Car and Simulator” dataset (with

K1 = 18) due to the lower observed median K1 values.

We use combinations of these assumptions to obtain reduced

implementations of the AM compared to its original definition, i.e.,

AM5 (Oman, 1990). Table 3 summarizes the different cases of the

accumulation model, indicating which parameters are estimated

(markedwith aX) andwhich parameters are set based on one of the

above assumptions. AM0 is the model with only group-averaged

parameters. The a and b versions of AM1 and AM4 are models with

same numbers of parameters (1 for AM1 and 4 for AM4), but with

different subsets of parameters being assumed/estimated.

2.5 Accumulation model: parameter
estimation

To effectively capture individual differences in motion sickness

susceptibility with the “conflict accumulation” model, we choose

to model the different conditions tested by the same individual

in each experiment together, i.e., using a single set of parameters

for each individual. This approach enhances generalisability and

enables the model to predict motion sickness across a wider range

of conditions. This assumes that people respond exactly the same

way to conflicts even in very different settings (e.g., internal vs.

external vision).

To fit the model parameters, a constrained optimisation

problem is defined and solved in MATLAB with the fmincon

solver using the sqp algorithm. Furthermore, multistart was

used to simultaneously find 16 local minima and then select

the overall optimum. This enhances the probability of finding

the global minimum of the optimisation problem. The Root-

Mean-Square Error (RMSE) between the measured and predicted

MISC responses, as a function of the parameter vector x =

(T1,T2,K1,K2, p)
T , is defined as the cost function for model

fitting for each individual. When fitting multiple conditions

simultaneously, this means that the cost function is the sum of

RMSE values for all nc conditions within each dataset for each

individual. The optimisation problem is mathematically defined in

Equation 1, where RMS stands for “Root Mean Square.”

x̂ = arg min
x

nc
∑

i=1

RMS
[

MISCmeas,i −MISCpred(x)
]

(1)

After these models are fitted and their corresponding errors

are calculated, we try to select the best model which balances

accuracy with loss of generalisability and overfitting. To show this

statistically, we used various model selection criteria, such as the

Akaike information criterion (AIC) by Akaike (1998) and Bayesian

information criterion (BIC) by Schwarz (1978), which take into

account the tradeoff between the goodness of fit and the simplicity

of the model. In other words, these criteria balance the risk of

overfitting and underfitting. A simpler model also means that the

simulations will be computationally fast. The model criteria we

used are the AIC and BIC, which are defined as,

AIC = 2k+ n ln(RSS/n) (2)

BIC = k ln(n)+ n ln(RSS/n) (3)

where, k is the number of parameters, n is the sample size and RSS

is the Residual Sum of Square. The model with the lowest score is

selected as optimal. The number of parameters (k) and the sample

size, which is equal to the number of participants (n), are shown in

Table 4. The RSS of each model is calculated by summing the RSS

for the fits of each participant and each condition. In the model

fittings, RMSE was used as a cost function. RMSE is proportional

to RSS. RMSE is the square root of the average RSS per observation.

Thus, the cost function used in the model fitting, RMSE, directly

relates to RSS, and the model fitting algorithm would also optimize

the model criteria such as the AIC and BIC.

However, in applying the AIC and BIC to our problem, the

penalty on the number of parameters in both criteria—defined

as 2k or k ln(n) in Equations 2, 3, respectively—was found to

be insufficient. This insufficiency resulted in the selection of the

model with the least error by the criteria. To solve this problem,

we followed Drop et al. (2018), where a similar situation was

Frontiers in SystemsNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnsys.2025.1531795
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Kotian et al. 10.3389/fnsys.2025.1531795

TABLE 4 Model selection criterion.

Model Participants
(n)

Parameters
(k)

RMSE mBIC
(c = 2)

AM0 44 0 2.06 101.92

AM1a 44 1 1.72 93.49

AM1b 44 1 1.78 96.66

AM2 44 2 1.54 91.18

AM3 44 3 1.32 98.19

AM4a 44 4 1.32 92.8

AM4b 44 4 1.32 92.82

AM5 44 5 1.3 99.5

Bold numbers show the smallest value in each metric. The total number of participants is

44 (20 from the “Car and Simulator dataset” and 24 from the “NDRT Drive” dataset) for all

accumulation models.

observed. Here, they increased the gain on the term of k to increase

the penalty. We did the same, and the modified BIC is defined

as follows,

mBIC = c k ln(n)+ n ln(RSS/n) (4)

where c is the model complexity (number of parameters) penalty

parameter, which is to be tuned to avoid false positives while

maintaining sensitivity to small yet important contributions. To do

this, we calculated mBIC values with c varying from 1 to 5. We

then choose the value of c to not select AM0, which is a group-

averaged model, or AM5, which is the model with the most number

of parameters estimated. With the chosen value of c, we find the

model with the least mBIC value. This model will be the best the

tradeoff between the goodness of fit and the simplicity of the model.

2.6 Probabilistic parameter distribution
model

To facilitate offline prediction of individual variations in

motion sickness development with the proposedmodel, a statistical

model that describes the distribution of the parameters across

participants is needed. To estimate such a predictive probabilistic

model from our considered datasets, first, the estimated parameter

sets for the best model (as per the conditions outlined in Section

2.5) are clustered into three groups using a k-means clustering

algorithm. While attempts were made to use more than three

clusters, the results consistently showed three prominent clusters,

with any additional clusters being very small and closely resembling

the original three. These three clusters effectively classify the

parameter sets into three distinct groups of motion sickness

susceptibility: high, medium and low. Using these clusters, a three-

component GaussianMixtureModel (GMM)—i.e., a weighted sum

of three Gaussian distributions—is used to model the distribution

of the parameter set. This model is given by:

p(x) =

3
∑

j=1

πjN (x|µj,6j) (5)

Where:

- x is the parameter set

- p(x) is the probability density function of the GMM.

- πj is the weight of the j-th Gaussian component, satisfying
∑3

j=1 πj = 1.

- N (x|µj,6j) is the Gaussian density function, defined as:

N (x|µj,6j) =
1

2π |6j|1/2
exp

(

−
1

2
(x− µj)

⊤6−1
j (x− µj)

)

(6)

In this expression, µj is the mean vector of the j-th Gaussian

component, and 6j is the k × k covariance matrix where k

is the number of parameters in the model. These are fit using

fitgmdist function in MATLAB with the clustering from the k-

means algorithm as the starting point.

Finally, using the fitted Gaussian mixture model, we sample

1,000 random parameter sets and use them to predict motion

sickness (in MISC) on the “Sickness Recreation” dataset (an

unknown dataset to our fitting study). This way, we validate the

ability of our model to predict motion sickness in a new scenario.

3 Results

This section presents the results of our analysis focused on

the proposed new model framework that combines an average

“conflict generation” model with an individualized “conflict

accumulation” model to capture differences in individual

motion sickness susceptibility. In Section 3.1, the model

fitting results for various datasets are presented to show the

performance of the model with varying numbers of parameters.

This outcome is used to demonstrate the effectiveness of

our model framework and determine the optimal number of

parameters required for the recreation of motion sickness at the

individual level. In Section 3.2, the probabilistic model for the

observed variation in accumulation model parameters across

individuals is extracted from the data and tested on a new

population.

3.1 Accumulation model performance and
parameter selection

First, results are presented for the Slalom Drive dataset by

Irmak et al. (2020) demonstrating the performance of the model

with varying vision conditions. This is followed by results for the

Car and Simulator dataset by Talsma et al. (2023) and NDRT Drive

by Metzulat et al. (2024), where the adaptability of the model to

real-world driving and driving simulators is shown. Fits of the

model framework, with different accumulation models (AM), to

the actual MISC responses with Motion Sickness Incidence (MSI)

predictions overlayed are shown first, followed by a comparison of

the models’ RMSE values. It is demonstrated that the use of our

model framework with individualization improves the accuracy of

the simulation of motion sickness compared to the use of MSI.
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FIGURE 6

Motion sickness responses (MISC) in Slalom Drive experiments by Irmak et al. (2020) in black, fitted AM2 model predictions (MISC) in green, fitted
AM5 model predictions (MISC) in dashed violet, fitted AM0 model predictions (MISC) in dotted gray, and MSI predictions from Hill function in orange
for four participants (participant label shown on the left) for the conditions of internal (left column) and external (right column) vision.

In addition to this, a parameter study is conducted to find the

minimum effective implementation of the model.

3.1.1 Model performance
Figure 6 shows the comparison of the most relevant

accumulation models with experimental recorded motion sickness

responses (MISC) for a representative selection of participants

from Irmak et al. (2020)’s experiment for the conditions of internal

(left column) and external vision (right column). The obtained

model fits for the rest of the participants are shown in Section 2

of Supplementary material. The experimentally reported MISC

is shown in black, and MSI predictions (obtained directly using

the model from Wada et al., 2020) are shown in orange. The

predictions of our proposed combined model are shown for only

three out of the eight models in Table 3: AM0 in dotted gray, AM2

in solid green, and AM5 in dashed violet. AM5 is the original

version of the accumulation model, with all five parameters

being estimated individually. AM0 represents the model with

group-averaged parameters. AM2 provides the best compromise

fit with only two individual parameters. The AM0 model and

MSI predictions both use the same parameter settings for all

participants. Any difference in their predictions is thus due to

differences in the vehicle motion used as input to these models. In

Figure 6, we show MSI for its full range of 0%–100% and MISC

across a range of 0–8. These y-axis limits are chosen solely to make

both sets of data values readable from the graph and enhance

their clarity.

It is evident that our approach of estimating parameters for

each individual (in particular for AM2 and AM5 models) offers

improved accuracy in predicting MISC responses compared to

the use of group-averaged parameters (AM0). The average RMSE

reduces from 1.94 (AM0) to 1.13 (AM2) and 0.74 (AM5). This

proves that using parameters estimated for each individual (AM2

and AM5) is 40% and 60% more accurate, respectively, than using

group-averaged parameters, as in the AM0model. For example, for

P5 and P18 in Figure 6, it is clear that AM0 greatly underestimates

the measured MISC values.

Another important observation is that all accumulation models

are able to capture the recovery from motion sickness. This

recovery occurs when the sickening stimuli are stopped, and the

participant is allowed to rest. This is more evident for P9 and

P14 (second and third row in Figure 6). Consistent with Irmak

et al. (2020), the MSI prediction (in orange) cannot capture this

reduction in motion sickness.

Furthermore, we tested the models by fitting them on

additional datasets such as the Car and Simulator dataset by Talsma

et al. (2023) and the NDRT Drive dataset by Metzulat et al.

(2024). The car and simulator dataset had 24 participants, each

experiencing motion with external vision in a real-world car and in

a simulator. The NDRT Drive experiment had 20 participants, each

experiencing three different Non-Driving Related Tasks (NDRT).

Figures 7, 8 again show the experimental recorded motion sickness

responses (MISC) in black, MSI predictions in orange, and fitted

model predictions in green, violet, and gray for four out of the

24 participants for both cases. It can be seen that even with two

parameters, the fits of the AM2 model are very close to the actual

MISC responses in both datasets. The MSI prediction values are

very low, especially in the Car and Simulator dataset. This is due

to the low levels of conflict generated in these experiments (0.12
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FIGURE 7

Motion sickness responses (MISC) in Car and Simulator experiments by Talsma et al. (2023) in black, fitted AM2 model predictions (MISC) in green,
fitted AM5 model predictions (MISC) in dashed violet, fitted AM0 model predictions (MISC) in dotted gray, and MSI predictions from Hill function in
orange for four participants (participant label shown on the left) for the case in the car (left column) and the simulator (right column).

FIGURE 8

Motion sickness responses (MISC) in NDRT Drive experiments by Metzulat et al. (2024) in black, fitted AM2 model predictions (MISC) in green, fitted
AM5 model predictions (MISC) in dashed violet, fitted AM0 model predictions (MISC) in dotted gray, and MSI predictions from Hill function in orange
for four participants (participant label shown on the left) for the case in the auditory (left column), visual static (middle column) and the visual
dynamic (right column) task.
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m/s2 mean RMS conflict) compared to other datasets, such as the

Slalom Drive, which has 1.15m/s2 mean RMS conflict. As opposed

to the MSI prediction, which is a population-level prediction, the

proposed “conflict accumulation” model is able to account for these

combinations of low levels of conflict and high susceptibility of the

participants. The fits for the rest of the participants are available in

Section 2 of Supplementary material.

3.1.2 Model parameter selection
In the previous section, it was observed that the model with two

estimated parameters (AM2) per individual captures the individual

responses almost as well as the model for which all five parameters

are estimated individually (AM5). To show this quantitatively, we

evaluated the need for each of the parameters by comparing all

eight models in Table 3. From Figure 9A, it is clear that reducing

the number of parameters below two leads to a 36% increase

in RMSE (from 1.2 to 1.6 in internal vision case and from 1.0

to 1.4 in external vision case when comparing AM2 to AM1a

model) in the Slalom drive dataset. Hence, any model with two

or more parameters is sufficiently accurate (with RMSE around 1

MISC) to capture individual motion sickness development.We also

compared the individual models with a group-averaged version of

the accumulation model (AM0), where the parameters are the same

for all participants in the dataset. It is observed that AM0 has, on

average, 1.7 times higher RMSE as compared to the AM2 model

(for example, from 1.22 to 2.25 in the internal and from 1.04 to

1.63 in the external vision case of the slalom drive dataset). Overall,

Figure 9A again shows the improvement obtained with individual

model fits compared to using group-averaged parameters.

Furthermore, to demonstrate that the optimal number of

accumulation model parameters for our model framework is 2,

the previous test was repeated with the Car and Simulator dataset

as shown in Figure 9B, where a similar trend is seen with AM2

model offering a good balance between performance and efficiency.

When comparing the individual models with a group-averaged

version of the accumulation model, it is observed that the group-

averaged model, AM0, has 1.64 times more RMSE as compared to

the AM2 model (from 1.03 to 1.96 in the internal and from 1.06

to 1.47 in the external vision case). This increase is equivalent to

that found for the Slalom Drive dataset (1.7 times increase). This

trend was also seen in the NDRT Drive dataset, where the AM2

FIGURE 9

Root mean squared error (RMSE) between the predicted MISC from the models and the actual MISC for the Slalom Drive, Car and Simulator and
NDRT Drive datasets. Also shown are the mean (circled), median (horizontal solid line), and interquartile range (in a colored rectangle). (A) Slalom
drive dataset. (B) Car and simulator dataset. (C) NDRT Drive dataset.
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FIGURE 10

Model selection criterion comparison: mBIC scores with varying
value of c for various models.

model offers the best balance between performance and efficiency

(see Figure 9C).

It is clear from the results in Figure 9 that this model framework

is able to capture multiple conditions with two individually

estimated parameters. Overall, the accuracy is better (by around

60% in RMSE) than using a group-averaged model. This is

applicable for various vision conditions, as well as different motions

from real cars to simulators.

The variation of the mBIC with c is plotted in Figure 10. As

discussed in Section 2, the selection of the AM0 and AM5 model

must be avoided. AM0 model has zero estimated parameters and

acts only as an average model. Choosing AM0 would oversimplify

and lose generalisability. Similarly, the AM5 model has five

estimated parameters, which may cause overfitting even if it fits

the data well. When c values are 1 and 3, The risk of choosing

AM5 and AM0 is high when c values are 1 and 3, as these models

become more favorable than 50% of other models based on the

mBIC metric. With c values above 3, the model AM0 becomes

very favorable, which is also undesirable. In our fittings, starting

with 100 random initial points yields more than 15 solutions when

fitting models with more than two parameters (i.e., the AM3,

AM4a, AM4b, and AM5 models). In contrast, when using two or

fewer parameters (such as the AM2, AM1a, and AM1b models), we

achieve two unique parameter solutions, one of which is selected 95

out of the 100 fittings. Out of these three models (AM2, AM1a, and

AM1b), the AM2 model demonstrates the highest accuracy with

an RMSE of 1.54 MISC. Therefore, to balance accuracy and model

complexity, we select (c = 2) and opt for AM2 as the optimal model.

Table 4 shows all models with the number of parameters and

metrics of their fits—RMSE and mBIC (with c = 2). While it

is evident from the table that AM5 achieves the lowest RMSE,

the mBIC criterion, which incorporates a penalty for the number

of parameters, selects AM2 as the optimal model. This highlights

the effectiveness of mBIC in balancing model accuracy with

FIGURE 11

Parameter distribution [estimated gain (K1) and time constant (T1)]
for the AM2 model. Parameter sets are classified into three groups
based on the motion sickness susceptibility—high in red, medium in
yellow and low in blue. Black dotted lines show the mean values for
K1 and T1.

parameter simplicity, ensuring a more robust and generalisable

model selection. However, it is important to note that the preferred

(c) parameter may vary with different datasets and applications.

Some may prioritize simplicity and opt for a higher value of c and

choose a single-parameter model instead.

3.2 Accumulation model parameter
distribution

The parameter sets of 44 participants of the Car and

Simulator and NDRT Drive datasets are shown in Figure 11

for the AM2 model. Vehicle motion is used as input in both

of these datasets. The Slalom drive dataset is omitted here for

consistency in parameters due to the slalom drive using head

motion instead of vehicle motion, as is the case for the other

two. In the figure, it can be seen that there are three distinct

sets of parameters, which are found by using the k-means

clustering algorithm:

• High susceptibility are those with high K1 and low T1, shown

as red dots.

• Low susceptibility have the opposite, low K1 and high T1,

shown as blue dots.

• Medium susceptibility have low K1 and low T1, shown as

medium dots.

The mean value of the parameters is 15.2 for K1 and 52.3

seconds for T1; see black dot in Figure 11. Themean value is located

in an area that does not correspond to any individual’s parameter

values. Therefore, using these mean values to represent a group,
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FIGURE 12

Three component Gaussian mixture model’s probability distribution of the parameter sets [estimated gain (K1) and time constant (T1)] for the AM2
model. (A) Probability density function (PDF). (B) Cumulative density function (CDF).

FIGURE 13

Sampled parameter sets (red cross) from the probability density
function of the parameter distribution [estimated gain (K1) and time
constant (T1)] for the AM2 model (black dots).

which is commonly done, is not correct and does not accurately

represent any individual in the population. With this knowledge,

representative parameters can be sampled to test motion profiles on

different motion sickness susceptibilities. Additionally, percentiles

can be defined to see which percentile of subjects do or do not get

motion sick.

To obtain the probabilistic model, we have fitted a three-

component Gaussian mixture model with two dimensions (for the

two-parameter AM2 model) on the estimated parameter values

obtained for all 44 individuals, see Figure 12. The Figure 12A

shows the probability density function of the Gaussian mixture

model. This clearly illustrates the three clusters of motion sickness

susceptibility identified by the model. Additionally, it highlights the

variation in density, indicating that there are more parameter sets

associated with medium and low susceptibility compared to those

linked to high susceptibility. The Figure 12B, on the other hand,

shows the cumulative density function of the Gaussian mixture

model. Each colored line represents different percentiles indicating

different susceptibility to motion sickness. Any parameter selected

along a particular line will yield the same probability of getting

motion sickness as any other point on that line. This feature

is beneficial for evaluating a motion profile at a designated

percentile of the population. Additionally, this representation

allows researchers and developers to assess the risk of motion

sickness in different scenarios by simply selecting a percentile

that matches their target audience. By understanding how motion

sickness probabilities vary across different parameters, one can

better design experiences or products that minimize discomfort for

users. Overall, this approach aids in creating tailored solutions to

enhance user comfort and experience in motion-related activities.

The corresponding parameters for the Gaussian mixture model can

be found in Section 3 of Supplementary material.

With this probabilistic model, we can sample parameters

randomly or based on the probability of getting sick (from 0

to 1). Here, Figure 13 shows an example of randomly sampled

1,000 parameter sets overlayed on the actual parameters estimated

from the other datasets. The sampled parameters have the same

distribution as the actual real estimated parameter sets.

To show a use case of this probabilistic model, we simulated

these 1,000 sampled parameter sets on the completely independent

Sickness Recreation dataset with 47 participants, see Table 1.

This dataset is collected with the same participants being driven

manually in a semi-urban environment and in automated mode

on a test track with the same vehicle. The median MISC with

the 25th and 75th percentile is shown below in Figure 14. This is
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FIGURE 14

Experimentally reported MISC and predictions of MISC on the “Sickness recreation” dataset (Harmankaya et al., 2024) from sampled parameter sets
from the probabilistic parameter distribution model [estimated gain (K1) and time constant (T1)] for the AM2 model with the shaded region showing
the 25th to 75th percentiles. (A) On road. (B) On track.

overlayed with themedian and 25th/75th percentiles from the 1,000

sampled parameter sets obtained from the probabilistic model.

It is observed that the two MISC traces are highly similar, with

an average RMSE of 0.47 (RMSE of 0.65 for “On Road” and

0.29 for “On Track”). However, the model prediction somewhat

underestimates the sickness variance. This can be seen especially at

the start, where the experiment data shows some people jumping

to MISC of 1 very quickly, which is not seen in the model

predictions.

Overall, these results indicate that we can use the probabilistic

model to predict the variation in expected motion sickness levels

for a new population in untested experiments and scenarios,

including those using various motion planning or motion

cueing algorithms.

4 Discussion

4.1 Combined model framework for
individual motion sickness predictions

This paper introduces and validates a novel combination

of models to create a framework to predict an individual’s

motion sickness level in vehicles and simulators. This model

framework combines a group-average “conflict generation” model

with an individual “conflict accumulation” model to capture

individual susceptibility differences. Furthermore, by using a

“conflict generation” model that includes visual inputs, various

vision conditions (such as external, internal, and only vision) can

be simulated. This is crucial in simulators where motion sickness

occurs due to a strong influence of visual cues. We hypothesized

that using a “conflict accumulation” model with individualized

parameters will result in greater accuracy compared to a model that

uses group-averaged parameters. Hence, in this paper, we assessed

the feasibility and accuracy of this new model approach for motion

sickness predictions.

It is clear from the obtained results (see Figures 6–9,

Table 4) that “conflict accumulation” models with individualized

parameters enable improved modeling of the motion sickness

responses of individuals as compared to using the group-averaged

models, as considered for AM0. In addition to this, the “conflict

accumulation” models we use (AM0-5) also capture the recovery

phase of the experiment (see Figures 6–8) and, theoretically, the

hypersensitivity in a following secondmotion exposure as shown in

Irmak et al. (2020, 2022). This recovery phase takes a few minutes

and is not captured by often-used MSI predictions that typically

implement a leaky integrator with a time constant of 12 min for

conflict accumulation (Kamiji et al., 2007; Liu et al., 2022). These

results are in line with the work by Irmak et al. (2020) where

individualized fits with the same accumulation model (AM4a)

reduced the prediction error by a factor of 2 in a slalom drive

with a frequency of 0.2 Hz and lateral accelerations with a peak

amplitude of 0.4 g with eyes closed. The limitation of this previous

work was that no “conflict generation” model was considered;

instead, the one-dimensional lateral acceleration conflict was

simply used directly as the input to the accumulation model.

Our work extends this by using a 6 degrees-of-freedom “conflict

generation” model to generate the conflict in realistic driving

conditions with varying vision conditions, thereby expanding the

coverage to full 6 degrees-of-freedom vehicle motion. Including

an explicit “conflict generation model” allows the model to be

used in various conditions as well, be it variation in vision or

motion.

This way, a single set of parameters, estimated using data

from all required conditions, can characterize an individual across

various motion and vision conditions. Estimating the parameters

on all available conditions is important as it facilitates a more

robust modeling of how different factors contribute to motion

sickness. It prevents overfitting, as the model is not solely fitted

to specific scenarios but is rather modeled by the collection of

individual responses across various contexts. This generalisability

is crucial in real-world applications, where individuals may
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encounter unfamiliar situations that were not part of the initial

training dataset.

This approach is not limited to the SVC model, which we used

as the “conflict generation” model. Any other “conflict generation”

model can be used, such as any of the versions of SVC by Kamiji

et al. (2007), Liu et al. (2022), and Wada et al. (2020) or the

Multi-Sensory Observer Model by Newman (2009) and Clark et al.

(2019).

4.2 Accumulation model parameter
reduction

We investigated reducing the number of estimated individual

model parameters. The “minimum effective” model (AM2) well-

captured sickness in individuals. While models such as AM5,

AM4a, and AM4b provide better accuracy than the AM2 model,

they require more estimated parameters (5, 4, and 4, respectively).

This higher number of individually estimated parameters may

cause overfitting and hinder generalisability, leading to non-unique

parameters that reduce model’s reliability. By using the relations

and values mentioned in previous studies (Oman, 1990; Irmak

et al., 2020, 2022), the number of estimated individual parameters

could be limited to 2, ensuring uniqueness and avoiding overfitting

on the sparse (in conditions) dataset. Overfitting may degrade a

real-world performance where conditions differ from training data.

A concise and relevant parameter set enhances the robustness and

generalisability of predictions, ensuring application in untested

situations. This balance between simplicity and effectiveness

positions our model as a powerful tool for predicting motion

sickness across diverse situations, improving interventions and user

experiences. Additionally, a significant reduction in computation

time is achieved for the parameter estimation—by a factor of 4 from

48 to 11 s for 40 min of simulation—highlighting the efficiency

of the AM2 model. An even larger benefit would be observed

in stochastic modeling, where a 5-parameter model would take

exponentially more time. However, there is no difference when

using these models for online prediction of sickness levels.

4.3 Probability distribution of individual
parameters

We created a distribution of the parameter sets, which can

be used to sample any number of parameter sets (Figure 13) and

simulate the motion profile to predict the distribution of motion

sickness levels. This has been demonstrated in Figure 14 where the

simulated sickness predictions closely match the experimentally

observed median sickness levels. The difference in the spread

of sickness is likely due to the selection of participants with

extremely high or low sickness susceptibility, which is sometimes

not correctly reported in the self-reported Motion Sickness

Susceptibility Questionnaire. Additionally, at the start of the

experiments, some of the participants quickly reported a MISC of

1. Our models do not capture this, but instead, due to the inherent

nature of the models, there is a continuous increase in MISC over

time. If this is instead discretised as is reported by the participants,

the sickness predictions match even better, and the spread of

MISC is completely inside the experimentally reported MISC (see

Section 4 of Supplementary material). This proves that we can use

this probability distribution to predict expected motion sickness

levels for untested experiments and scenarios, including those using

various motion planning or motion cueing algorithms. Also, this

can also be used as a proxy for Motion Sickness Dose Value

(MSDV), which is an ISO standard (International Organization

For Standardization, 1997) and uses weighted root mean squared

acceleration as a measure of motion sickness severity. This has been

known to not accurately capture the dynamic nature of motion

sickness, especially the quick recovery from sickness, which is not

captured by MSDV due to its monotonous nature and lack of

any leakage term (International Organization For Standardization,

1997).

4.4 Practical applications

The probabilistic approach enables the model to predict

variations in motion sickness outcomes across a population,

facilitating advanced vehicle motion planning, such as in Li and

Hu (2021), and motion cueing algorithms in driving simulators,

such as in Jain et al. (2023), and flight simulators, such as in

Lewkowicz (2019). Using a model-based control method, this

model framework can be included in the plant model to forecast

motion sickness levels. This way, motion sickness levels can be

controlled by considering each individual’s susceptibility. Vehicle

motion in automated vehicles and platform motion and tilt

coordination in simulators can be optimized to optimize their effect

in elicitingmotion sickness. Using thesemodels, themotion profiles

can be tuned to reduce the dropout of participants in simulator

experiments due to motion sickness.

Moreover, this model framework can also be used during the

process of experiment design. Algorithms can be benchmarked

on different thresholds of motion sickness susceptibility. Offline

analyses can be run on a large synthetic sample of a population

before real-world testing on humans. This will greatly speed up the

testing process.

Thus, our next steps involve applying this model both in pre-

experiment and real-time during the experiment.

4.5 Challenges and limitations

We now tuned individual parameters of the accumulation

model while keeping the (many) parameters of the sensory conflict

model constant. This assumes that the conflict generated is the

same for all individuals, and the difference in motion sickness

development is purely due to the difference in the accumulation

of the conflict. This implies that people respond exactly the same

way to conflicts, even in very different settings (e.g., internal vs.

external vision). This assumption is made because the initial stage

of conflict generation primarily involves basic sensory mechanisms

all humans share. However, the degree to which different

individuals accumulate and tolerate this conflict can vary widely.

This variation can be influenced by genetic and psychological
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factors. Previous experiences and conditioning can also influence

susceptibility. Additionally, individuals who frequently experience

motion sickness may anticipate symptoms more anxiously,

exacerbating the response. However, this assumption contradicts

the observations by Irmak et al. (2021), where they found a

correlation of 0.74 between an individual’s sickness susceptibility

and their subjective vertical time constant, which is a parameter

in the conflict generation model. This correlation suggests that the

subjective vertical time constant plays a significant role in how

conflicts are generated and perceived, challenging the notion that

conflict generation is uniform across individuals. Consequently, it

is highlighted that there is a need for a model that incorporates

individual differences in both conflict generation and accumulation

in order to more accurately reflect the complex interplay of factors

influencing responses to motion sickness.

A main limitation of the model during individual fitting is

that it does not fit participants who get highly motion sick with

internal vision and do not get sick with external vision well (for

example, P14 in Figure 6 and P2 in Figure 8). This sharp shift

in motion sickness dynamics cannot be captured by our model

framework. This may be due to the inherent difference in conflict

generation, which we assume to be the same in all individuals, or

to our assumption that gains in the SVC model are independent of

the visual condition. Also, in the “NDRT Drive” dataset, there are

conditions—“Visual Static” and “Visual Dynamic”—with internal

vision that feature varying levels of visual stimuli. We have chosen

to model these identically due to the unavailability of control over

the effect of vision on conflict generation, as the vision is either

represented as 1 or 0. One solution is to model each condition

with a separate set of parameters. Doing this, the RMSE was

reduced, on average by 35%, from 1.54 to 1 MISC, compared

to fitting all conditions together. However, this comes with a

significant reduction in predictive accuracy on other conditions by

increasing RMSE by 69% from 1.54 to 2.6 MISC. This means we

lose any generalisability in modeling other conditions and overfit

the model to that specific condition. A better solution would be

to estimate at least one additional parameter, one of which could

be the vision gain in the “conflict generation” model or other

perception parameters. People not only differ in motion sickness

susceptibility but also in their perception of vision. Each human

will have a different contribution of visual and vestibular signals for

their state estimation. By adjusting the vision gain in the “conflict

generation” model, the contribution of vision to the estimates can

be tuned.

Another limitation is that the model is sensitive to the location

of the Inertial Measurement Unit (IMU), i.e., the input of the

model needs to be based on either vehicle motion or head motion

for it to predict motion sickness reliably. For the modeling of

the distribution of parameters, the inputs are vehicle motion. This

is due to the larger number of datasets available with vehicle

motion measured as compared to datasets with head motion

measured. For example, if we take head motion as input, the

estimated gain (K1) is much smaller than for the datasets which

use vehicle motion (see Section 5 of Supplementary material). Also,

the Hill function accumulation model predicted a reasonable MSI

magnitude in the Slalom Drive but highly underestimated sickness

in the Car and Simulator dataset. Ideally, we would like to always

use recorded head motion, which is more representative of the

motion experienced by the vestibular system. If this is not available,

we could use biomechanical human/seat models or linear transfer

functions to convert six degrees-of-freedom vehicle motion to

6 degrees-of-freedom head motion (Desai et al., 2023; Happee

et al., 2023). This way, even when head motion is not recorded,

a head motion based stochastic sickness generation model can

be used.

5 Conclusion

This study presents a novel framework for predicting motion

sickness (in MISC) accumulation in time by integrating a group-

average “conflict generation” model with an individualized

“conflict accumulation” model. By utilizing acceleration

and angular rotational data, the model adjusts parameters

specific to each individual’s motion sickness response, as

measured by the Misery Scale (MISC). By simultaneously fitting

for various conditions across different datasets, the model

successfully estimates a single set of parameters applicable

to each participant, offering a highly personalized approach

to understanding motion sickness dynamics. A reduction of

estimated parameters not only simplifies the model but also

optimizes the risk of overfitting, ensuring robust application

in real-world scenarios. This framework achieves an average

RMSE of 1.54 with just two estimated parameters—a gain (K1)

and a time constant (T1). The integration of the two models

demonstrates significant improvements in predicting motion

sickness, achieving better fits by 34% compared to traditional

group-averaged models (1.54 RMSE for AM2 vs. 2.06 RMSE

for AM0).

Moreover, the modeling of the probabilistic distribution of

estimated accumulation parameters enables effective sampling of

parameter sets, facilitating predictions for untested scenarios and

improving the adaptability of motion sickness assessments. Such

flexibility reduces reliance on extensive human testing experiments

and accelerates testing processes.

Overall, this research paves the way for more refined and

personalized applications in both driving simulators and real-world

automated vehicle contexts, promising improved user experiences

and outcomes.
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