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Personalizing motion sickness
models: estimation and statistical
modeling of individual-specific
parameters

Varun Kotian'*, Daan M. Pool? and Riender Happee!

'Faculty of Mechanical Engineering, Cognitive Robotics, Delft University of Technology, Delft,
Netherlands, 2Faculty of Aerospace Engineering, Control and Simulation, Delft University of
Technology, Delft, Netherlands

As users transition from drivers to passengers in automated vehicles, they
often take their eyes off the road to engage in non-driving activities. In
driving simulators, visual motion is presented with scaled or without physical
motion, leading to a mismatch between expected and perceived motion. Both
conditions elicit motion sickness, calling for enhanced vehicle and simulator
motion control strategies. Given the large differences in sickness susceptibility
between individuals, effective countermeasures must address this at a personal
level. This paper combines a group-averaged sensory conflict model with an
individualized Accumulation Model (AM) to capture individual differences in
motion sickness susceptibility across various conditions. The feasibility of this
framework is verified using three datasets involving sickening conditions: (1)
vehicle experiments with and without outside vision, (2) corresponding vehicle
and driving simulator experiments, and (3) vehicle experiments with various non-
driving-related tasks. All datasets involve passive motion, mirroring experience in
automated vehicles. The preferred model (AM2) can fit individual motion sickness
responses across conditions using only two individualized parameters (gain Ky
and time constant T1) instead of the original five, ensuring unique parameters for
each participant and generalisability across conditions. An average improvement
factor of 1.7 in fitting individual motion sickness responses is achieved with
the AM2 model compared to the group-averaged AMO model. This framework
demonstrates robustness by accurately modeling distinct motion and vision
conditions. A Gaussian mixture model of the parameter distribution across a
population is developed, which predicts motion sickness in an unseen dataset
with an average RMSE of 0.47. This model reduces the need for large-scale
population experiments, accelerating research and development.

KEYWORDS

motion sickness, simulator sickness, modeling, driving simulators, automated vehicles

1 Introduction

Automated vehicles and driving simulators are very different technologies. However,
they both share two common facts. The first is that they have become very popular in
recent years, a trend that is expected to continue in the future. Secondly, they both share a
common issue in motion sickness. Users of automated vehicles will move away from being
drivers to passengers, preferably engaged in other activities such as reading or using laptops
and smartphones. In driving simulators, realistic (unscaled) visual motion is presented
with scaled or even without any physical motion. This causes a mismatch between expected
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and perceived motion, eliciting motion sickness (Bos et al., 2020).
Even though these two examples are different and referred to as car
and simulator sickness, respectively, the inherent mechanism that
causes motion sickness in both, i.e., sensory-expectancy conflict, is
the same (Reason, 1978).

The mechanisms behind the development and evolution of
motion sickness have been studied extensively, relying heavily
on models that predict sensory conflicts based on mathematical
models of the vestibular and visual sensory systems (Bos and
Bles, 1998; Wada et al., 2020; Liu et al., 2022; Irmak et al., 2023;
Kotian et al.,, 2024). In this paper, these models are referred to
as “conflict generation” models. However, these models generally
predict group-averaged sickness development in terms of the
Motion Sickness Incidence (MSI), which does not directly reflect
some crucial dynamics of motion sickness development, such as
recovery and hypersensitivity (Oman, 1990; Irmak et al., 2023).
Furthermore, such group-averaged models cannot be reliably used
for predicting motion sickness at an individual level.

In this paper, we aim to combine an available group-average
“conflict generation” model—the Subjective Vertical Conflict
(SVC) model by Wada et al. (2020)— with an individualized
“conflict accumulation” model (AM) as also used by Irmak et al.
(2020) to improve the ability to capture the differences in individual
motion sickness susceptibility. This also requires the use of an
individual motion sickness metric, such as the MIsery Scale (Bos
et al, 2005), instead of a group-averaged metric like Motion
Sickness Incidence (MSI). The proposed modeling framework is
shown in Figure 1. The conflict accumulation part is a modified
form of the model by Oman (1990). The accumulation model is
nonlinear and has conflict in m/s> as input, and the output is
unitless in MISC (defined in Section 6 of Supplementary material).
This complicates the definition of units for the gains due to the
multiplication and the power term. For conflicts generated by
motion accelerations in one degree-of-freedom, the personalisation
of sickness accumulation parameters has already been shown to
improve modeling accuracy by a factor of 2 compared to using
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group-averaged parameters (Irmak et al., 2020). Our work extends
this approach to full 6 degrees-of-freedom motion perceived from
visual and vestibular inputs, which requires a “conflict generation”
model to account for realistic sensory conflict predictions, as in
Figure 1. Further details regarding this model structure will be
provided in Section 2.

The goal of the paper is to demonstrate the feasibility of
this combined motion sickness model approach—i.e., combining
a group-average “conflict generation” and a personalized “conflict
accumulation” model—for capturing individual differences in
motion sickness susceptibility. While evidence exists of individual
differences in “conflict generation” model parameters as well
(Irmak et al.,, 2021), quantifying these would require individual
perception experimental data, which was not readily available
(an exception is Irmak et al, 2021). Furthermore, we aim
to find a “minimum effective” implementation of such a
personalized motion sickness model by directly comparing
different parameterisations of the “accumulation model.” For this,
extending our own preliminary work in Kotian et al. (2023),
this paper makes use of four existing datasets, see Table 1, where
MISC was measured under sickening motion stimuli in (1) an
experimental vehicle with and without out-of-the-window vision
(Irmak et al., 2020), (2) vehicle experiments and matched driving
simulator experiments (Talsma et al., 2023), (3) vehicle experiments
with various non-driving related tasks (NDRTs) (Metzulat et al.,
2024), and (4) on road vehicle experiments and sickness recreation
experiments on a smaller track (Harmankaya et al., 2024). All
datasets involve passive motion, representative of being driven by
an automated vehicle, and test two or three different conditions
with the same participants. Inoue et al. (2024) also report on
a similar approach as used by Kotian et al. (2023), where
only the pre- and post-scaling of the “conflict accumulation”
model was varied between different participants. The resulting
individualized models were validated using a 1 degree-of-freedom
motion stimulus experiment with variation in head movement
(Inoue et al., 2024). Our current work performs extended validation

Conflict Generation

Visual -
Vestibular
System

Feedback

Internal
Model

FIGURE 1

Framework for combined “conflict generation” using the SVC model (Wada et al., 2020; Kotian et al., 2024) and "conflict accumulation” (Oman, 1990;
Irmak et al., 2022) model to predict individual motion sickness, i.e., MIsery SCale (Bos et al., 2005).
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with full 6 degrees-of-freedom motion and with variations in visual
and vestibular inputs in real driving scenarios, which requires a
“conflict generation” model to account for realistic sensory conflict
predictions. Furthermore, we perform an explicit optimization
of the required number of parameters for personalizing the
“conflict accumulation” model, including the model’s gains and
time constants instead of a simple pre- and post-scaling.

This paper presents a direct comparison of fitting the proposed
combined motion sickness model for all individual participants
in the first three datasets listed in Table 1. For every participant,
parameters are always estimated across the different conditions
tested in each dataset to ensure a “minimum effective” and
generalisable result. Additionally, using the individual-specific
variations in the parameter values estimated from these datasets,
a probabilistic Gaussian mixture model is used to capture the
observed statistical variations. The capacity of this statistical
modeling approach for predicting individual variations in motion
sickness across a population is verified by predicting the final
Sickness Recreation dataset, see Table 1.

By achieving these goals, this paper will show that our proposed
modeling framework can be used for personalized motion sickness
modeling for automated vehicles. The obtained model predictions
can be used to optimize the comfort levels of individual automated
vehicle users by adapting its driving style, i.e., by limiting the
acceleration and rotations of the car they may be especially
sensitive to. Furthermore, the derived statistical model can directly
improve and accelerate the design and testing of new driving
simulator motion cueing algorithms that aim to optimize simulator
sickness, as in Hogerbrug et al. (2020), Baumann et al. (2021), and
Jain et al. (2023).

2 Methods

2.1 Experimental datasets

For the analysis in this paper, we make use of four different
published datasets, see Table 1. All datasets include measured
sickness responses to passive road vehicle motion, representative of
being driven by an automated vehicle. In these datasets, individual
motion sickness levels were reported using the MISC scale as a
function of time, and all showed major individual differences in
sickness susceptibility.

First, the real-world “Slalom Drive” dataset includes varying
vision conditions, i.e., with and without an outside view, where
mean MISC levels at the end of motion exposure were 5.3
(severe symptoms) with an outside view and 3.3 (some symptoms)
without an outside view (Experiment 1 in Irmak et al., 2020), see
Figure 2. The experiment was terminated when a MISC value of
6 was reached. This experiment compared the motion sickness
development with and without an outside view from the car. This
dataset is ideal for proving that our new model framework can
predict individual motion sickness for various vision conditions in
real vehicles.

The “Car and Simulator” dataset (24 participants) contains
motion sickness responses from real-world driving and its
(matched) simulation on a moving-base driving simulator (Talsma
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TABLE 1 Experimental datasets used in this study.

Datasets Details Reference No. of
participants

Slalom Slalom with internal and Irmak et al., 16
drive external vision 2020

Motion sickness

responses for

hypersensitivity
Car and Naturalistic drive in Talsma et al., 24
simulator vehicle and moving base 2023

simulator

Only external vision
NDRT Naturalistic driving data Metzulat et al., 20
Drive with varying NDRTs 2024

Internal vision
Sickness Naturalistic driving data Harmankaya 47
Recreation on road recreated on a etal., 2024

smaller track

Internal vision

m—|nternal Vision External Vision

0 5 10 15 20 25 30
Time (min)

FIGURE 2

Slalom Drive dataset (Irmak et al.,, 2020) median MISC levels vs. time
in the conditions of external (red) and internal vision (blue) with the
shaded region showing the 25th to 75th percentiles.

et al., 2023). For this experiment, the mean MISC levels at the end
of motion exposure were around 5.5 (severe symptoms) in the car
and 1.5 (slight discomfort or vague symptoms) in the simulator, see
Figure 3. The experiment was terminated when a MISC value of 6
was reached.

The “NDRT Drive” experiment was performed by 20
participants and focused on a real-world sickening drive around a
fixed track with three different non-driving related tasks (NDRTSs):
visual dynamic, visual static and auditory. The mean MISC levels
at the end of each condition were around 4.5 (medium symptoms)
for the auditory, 5 (severe symptoms) for the visual static, and 6.5
(some nausea) for the visual dynamic condition, see Figure 4. This
experiment was terminated when a MISC value of 7 was reached.
However, several participants still showed a rapid increase to a
MISC of 8 before or just after the experiment was actually stopped.

The “Sickness Recreation” experiment tested a method to
efficiently replicate the on-road motion sickness of 47 participants
on a smaller track. The mean MISC levels at the end of both drives

were around 2 (vague symptoms) (Section 3.2).
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FIGURE 3

Car and Simulator dataset (Talsma et al,, 2023) median MISC levels
vs. time in the car (blue) and simulator (red) with the shaded region
showing the 25th to 75th percentiles.

Auditory Visual Static Visual Dynamic

0 5 10 15 20
Time (min)

FIGURE 4

NDRT Drive dataset (Metzulat et al., 2024) median MISC levels vs.
time in the three different tasks—auditory (blue), visual static (red)
and visual dynamic (yellow) with the shaded region showing the
25th to 75th percentiles.

» o«

In this paper, the “Slalom Drive,” “Car and Simulator,;” and
“NDRT Drive” datasets are used to demonstrate the capability of
the individual modeling framework to generalize across different
visual/vestibular input cases, whether these originate from a car
or a simulator. Furthermore, the first three datasets are used to
study the number of parameters needed to accurately model motion
sickness development in different participants, while the “Sickness
Recreation” dataset is used for validation of the statistical model
over a new population.

2.2 Model framework: inputs and outputs

The structure of the model framework has been introduced
in Section 1. As shown in Figure 1, inertial vehicle or simulator
motion inputs—such as acceleration and angular velocity—as well
as vision inputs—such as visual verticality (orientation) and visual
rotation (rotational velocity)—are defined as the inputs of the
“conflict generation” model, consistent with the SVC model by
Wada et al. (2020) and Liu et al. (2022). For our analysis, we
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applied the full 6 degrees-of-freedom motion (3 translations and
3 rotations) as model inputs, using the recorded seat motion for
the drives in the car for the “Car and Simulator,” “NDRT Drive”
and “Sickness Recreation” dataset and recorded platform motion
for the simulator in the “Car and Simulator” dataset, and recorded
head motion for the “Slalom Drive” dataset. Example input data for
all datasets is shown in Section 1 of Supplementary material.

The human eye estimates motion through vision by measuring
the rotation of visual cues between the current and previous states,
a process known as optic flow. We assume the visually perceived
rotations to be equivalent to head (or vehicle, as in the case of the
Car and Simulator dataset) rotations when observing the external
environment. Consistent with Kotian et al. (2024), for internal
vision, we select a zero visual input, assuming no visual head
motion relative to the vehicle.

The output of the model is chosen to be the score on the
MIsery SCale (MISC) by Bos et al. (2005), which quantifies
the progression of sickness-related symptoms and has a positive
relation to discomfort (De Winkel et al., 2022; Reuten et al., 2020).
The MISC is an 11-point symptom-based scale that measures
in discrete symptoms running from 0 to 10, where 0 means
no symptoms and 10 stands for emesis (vomiting). In contrast
to the discrete MISC scale, the sickness model predicts on a
continuous scale. For model fitting, these continuous model
predictions are compared with experimentally reported discrete
MISC scores.

2.3 Model framework: model structures

As previously discussed, we combine two models in our
proposed model framework. The first component of the model
is the “conflict generation” model (see Figure I, left), which
models the integration of 6 degrees-of-freedom sensory inputs and
generates a 1 degrees-of-freedom (scalar) sensory conflict signal.
For our application, this model shall be reliable in forecasting
conflict signals, especially for 6 degrees-of-freedom (automated)
road vehicle motion. Additionally, the model must include explicit
visual inputs so that the effects of different vision conditions
can be predicted. To select an appropriate model, we refer to
our previous study (Kotian et al., 2024), where different “conflict
generation” models and implementations of vision inputs were
directly compared.

Based on Kotian et al. (2024), we select the Subjective Vertical
Conflict (SVC) model with only a visual rotational velocity input as
proposed in Wada et al. (2020) for predicting a subjective vertical
conflict (a 3-dimensional vector) that drives motion sickness, see
Figure 5. This model has been shown to accurately replicate the
frequency and amplitude dynamics of motion sickness as reported
in numerous previous studies (McCauley et al., 1976; Golding and
Markey, 1996; Griffin and Mills, 2002; Howarth and Griffin, 2003;
Irmak et al., 2021, 2022). Kotian et al. (2024) show that the visual
vertical input that has also been proposed by Liu et al. (2022) is not
effective for predicting sickness and hence is not used in the current
study. The parameters used for the “conflict generation” model in
this paper are directly taken from earlier publications on the SVC
model (Wada et al., 2020; Liu et al., 2022) and listed in Table 2.
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FIGURE 5
The selected “conflict generation” model, which is the SVC model as in Kotian et al. (2024) based on the model by Wada et al. (2020).

TABLE 2 SVC model parameters.

Parameter Parameter Value Explanation
class symbol
Anticipation K, 0 Fully passive motion with no
gains anticipation assumed
K(l) 0
Vestibular K, 1 As in Wada et al. (2020)
feedback gains
K 5
Koe 10
Visual Kvis 0 VYV gain set to zero
feedback gains
Kvis 10 VR gain as in Wada et al. (2020)
Perception T (s) 5 Asin Liu et al. (2022)
time
constants Toee (5) 7

The second part of the model is the “conflict accumulation”
model, which accumulates (integrates) the sensory conflict
predicted by the first part of the model framework to estimate the
build-up of motion sickness over time. The Euclidean norm of
the sensory conflict output by the “conflict generation” model is
used as the input to the “conflict accumulation” model. Usually,
the conflict is integrated using a Hill function combined with a
leaky integrator to output a group-level sickness metric such as
Motion Sickness Incidence (MSI), which quantifies the percentage
of the population that becomes motion sick (Wada et al., 2020; Liu
et al., 2022). However, this integration is insufficient to capture the
unique dynamics of motion sickness, including hypersensitivity,
which is the faster than normal increase of motion sickness
after already being subjected to motion sickness before. Thus,
we adopt the more advanced model by Oman (1990), which
is a five-parameter nonlinear model that integrates the conflict
(see the right part in Figure 1), with fast and slow pathways
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combined with leakage. The fast path has a low time constant
(T1) and models the direct response to a sickening stimulus.
The slow path has a high time constant (T3) and captures the
slower secondary effects of sickening stimuli, such as recovery
and hypersensitivity. This is also relevant in simulators where a
sudden increase in motion incongruence can make participants
hypersensitive. This has been observed by Cleij et al. (2018) and
Kolff et al. (2022), where it was shown that motion tends to be
momentarily bad but not continuously. Both pathways have a gain
(K; and K3) to control their contribution. Additionally, there is
a power law (p) at the model’s output to account for nonlinear
scaling effects.

2.4 Accumulation model: parameter
reduction

In addition to studying the accuracy of the Accumulation
Model (AM) with all 5 model parameters (T}, T2, K, Kj,
p) fitted individually, we consider reduced parameter variations
of the AM model to optimize for a “minimum -effective”
number of individually fitted parameters. Such model reduction
is important to enhance the generalisability, efficiency, and
interpretability of the proposed personalized accumulation model.
For example, in many cases, a reduced number of model
parameters improves model generalisability due to a reduced
risk of over-fitting. Furthermore, a reduced number of tunable
parameters simplifies adjusting the model to different individuals’
sickness characteristics and may facilitate a more computationally
efficient implementation.

As the main basis for model parameter reduction, in this paper,
median measured values and empirical relations between different
parameters reported in previous studies are used, e.g.:

e T; = 60s(Oman, 1990)
o T, =7T; (Irmak et al., 2020)
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TABLE 3 Reduced parameter versions of the “conflict accumulation”
model (AM).

Model  Number of Estimated/fixed parameters
free

parameters Kj Ty (s) Ty(s) p
AMS5 5 v v v v v
AM4a 4 v 5K, v v v
AM4b 4 v v v 7T, v
AM3 3 v 5K, v 7T, v
AM2 2 v 5K, v 7T, 0.4
AMla 1 2/18/9 | 5K 60 v 0.4
AMIb 1 21819 | v 60 7T, 0.4
AMO 0 201819 | 5K 60 7T, 0.4

Check marks indicate the free model parameters estimated for each individual.

e Kj: median value reported for each dataset:
o Kj = 2 for Slalom Drive dataset
o Kj = 18 for Car and Simulator dataset
o Kj =9 for NDRT Drive dataset

e K, = 5K; (Oman, 1990)

e p=0.4 (Irmaketal, 2022)

The K values were obtained from the median values estimated
with the AM5 model (see Table 3 for details of the AM5 model)
on each dataset. It should be noted that the assumed K; values
are different for each dataset as the motion inputs in each dataset
were different. In the “Slalom Drive,” head motion was recorded,
but in the “Car and Simulator” and “NDRT Drive,” only vehicle
motion was recorded. Hence, a difference in the magnitude of
especially the rotations between datasets exists, which explains
the difference in estimated K; gains. This is shown in Section 1
of Supplementary material where the “Car and Simulator” dataset
clearly has the smallest magnitudes of angular velocities. This could
also be partly due to the difference in average motion sickness
susceptibility of the participants in each experiment; the “NDRT
Drive” dataset (with K; = 9) could have less motion sickness
susceptible participants than the “Car and Simulator” dataset (with
K1 = 18) due to the lower observed median K; values.

We use combinations of these assumptions to obtain reduced
implementations of the AM compared to its original definition, i.e.,
AMS5 (Oman, 1990). Table 3 summarizes the different cases of the
accumulation model, indicating which parameters are estimated
(marked with a v) and which parameters are set based on one of the
above assumptions. AMO is the model with only group-averaged
parameters. The a and b versions of AM1 and AM4 are models with
same numbers of parameters (1 for AM1 and 4 for AM4), but with
different subsets of parameters being assumed/estimated.

2.5 Accumulation model: parameter
estimation

To effectively capture individual differences in motion sickness
susceptibility with the “conflict accumulation” model, we choose

Frontiers in Systems Neuroscience

10.3389/fnsys.2025.1531795

to model the different conditions tested by the same individual
in each experiment together, i.e., using a single set of parameters
for each individual. This approach enhances generalisability and
enables the model to predict motion sickness across a wider range
of conditions. This assumes that people respond exactly the same
way to conflicts even in very different settings (e.g., internal vs.
external vision).

To fit the model parameters, a constrained optimisation
problem is defined and solved in MATLAB with the fmincon
solver using the sqp algorithm. Furthermore, multistart was
used to simultaneously find 16 local minima and then select
the overall optimum. This enhances the probability of finding
the global minimum of the optimisation problem. The Root-
Mean-Square Error (RMSE) between the measured and predicted
MISC responses, as a function of the parameter vector x =
(Ty, T2, K1, Ky, p)T, is defined as the cost function for model
fitting for each individual. When fitting multiple conditions
simultaneously, this means that the cost function is the sum of
RMSE values for all n. conditions within each dataset for each
individual. The optimisation problem is mathematically defined in
Equation 1, where RMS stands for “Root Mean Square.”

ne
% = arg min Z RMS [MISCyeas,i — MISCprea(x)] (1)

=

After these models are fitted and their corresponding errors
are calculated, we try to select the best model which balances
accuracy with loss of generalisability and overfitting. To show this
statistically, we used various model selection criteria, such as the
Akaike information criterion (AIC) by Akaike (1998) and Bayesian
information criterion (BIC) by Schwarz (1978), which take into
account the tradeoff between the goodness of fit and the simplicity
of the model. In other words, these criteria balance the risk of
overfitting and underfitting. A simpler model also means that the
simulations will be computationally fast. The model criteria we
used are the AIC and BIC, which are defined as,

AIC = 2k + nIn(RSS/n) (2)

BIC = kln(n) + nIn(RSS/n) 3)

where, k is the number of parameters, # is the sample size and RSS
is the Residual Sum of Square. The model with the lowest score is
selected as optimal. The number of parameters (k) and the sample
size, which is equal to the number of participants (1), are shown in
Table 4. The RSS of each model is calculated by summing the RSS
for the fits of each participant and each condition. In the model
fittings, RMSE was used as a cost function. RMSE is proportional
to RSS. RMSE is the square root of the average RSS per observation.
Thus, the cost function used in the model fitting, RMSE, directly
relates to RSS, and the model fitting algorithm would also optimize
the model criteria such as the AIC and BIC.

However, in applying the AIC and BIC to our problem, the
penalty on the number of parameters in both criteria—defined
as 2k or kln(n) in Equations 2, 3, respectively—was found to
be insufficient. This insufficiency resulted in the selection of the
model with the least error by the criteria. To solve this problem,
we followed Drop et al. (2018), where a similar situation was
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TABLE 4 Model selection criterion.

Model Participants  Parameters RMSE  mBIC
(n) (c=2)
AMO 44 0 2.06 101.92
AMla 44 1 1.72 93.49
AMIb 44 1 1.78 96.66
AM2 44 2 1.54 91.18
AM3 44 3 1.32 98.19
AM4a 44 4 1.32 92.8
AM4b 44 4 1.32 92.82
AMS5 44 5 1.3 99.5

Bold numbers show the smallest value in each metric. The total number of participants is
44 (20 from the “Car and Simulator dataset” and 24 from the “NDRT Drive” dataset) for all
accumulation models.

observed. Here, they increased the gain on the term of k to increase
the penalty. We did the same, and the modified BIC is defined
as follows,

mBIC = ¢ kln(n) 4+ nIn(RSS/n) (4)

where c is the model complexity (number of parameters) penalty
parameter, which is to be tuned to avoid false positives while
maintaining sensitivity to small yet important contributions. To do
this, we calculated mBIC values with ¢ varying from 1 to 5. We
then choose the value of ¢ to not select AMO, which is a group-
averaged model, or AM5, which is the model with the most number
of parameters estimated. With the chosen value of ¢, we find the
model with the least mBIC value. This model will be the best the
tradeoff between the goodness of fit and the simplicity of the model.

2.6 Probabilistic parameter distribution
model

To facilitate offline prediction of individual variations in
motion sickness development with the proposed model, a statistical
model that describes the distribution of the parameters across
participants is needed. To estimate such a predictive probabilistic
model from our considered datasets, first, the estimated parameter
sets for the best model (as per the conditions outlined in Section
2.5) are clustered into three groups using a k-means clustering
algorithm. While attempts were made to use more than three
clusters, the results consistently showed three prominent clusters,
with any additional clusters being very small and closely resembling
the original three. These three clusters effectively classify the
parameter sets into three distinct groups of motion sickness
susceptibility: high, medium and low. Using these clusters, a three-
component Gaussian Mixture Model (GMM)—i.e., a weighted sum
of three Gaussian distributions—is used to model the distribution
of the parameter set. This model is given by:

3
P& =Y mN(xlp; %)) (5)

=1
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Where:

- xis the parameter set

- p(x) is the probability density function of the GMM.

- mj is the weight of the j-th Gaussian component, satisfying
Z:';:l ]'[] =

- N(x| s ;) is the Gaussian density function, defined as:

1 1
Nxlp), %)) = I exp (‘E(X - ﬂj)TEjfl(X - ﬂj)) (6)
J

In this expression, p; is the mean vector of the j-th Gaussian
component, and Y is the k x k covariance matrix where k
is the number of parameters in the model. These are fit using
fitgmdist function in MATLAB with the clustering from the k-
means algorithm as the starting point.

Finally, using the fitted Gaussian mixture model, we sample
1,000 random parameter sets and use them to predict motion
sickness (in MISC) on the “Sickness Recreation” dataset (an
unknown dataset to our fitting study). This way, we validate the
ability of our model to predict motion sickness in a new scenario.

3 Results

This section presents the results of our analysis focused on
the proposed new model framework that combines an average
“conflict generation” model with an individualized “conflict
accumulation” model to capture differences in individual
motion sickness susceptibility. In Section 3.1, the model
fitting results for various datasets are presented to show the
performance of the model with varying numbers of parameters.
This outcome is used to demonstrate the effectiveness of
our model framework and determine the optimal number of
parameters required for the recreation of motion sickness at the
individual level. In Section 3.2, the probabilistic model for the
observed variation in accumulation model parameters across
individuals is extracted from the data and tested on a new
population.

3.1 Accumulation model performance and
parameter selection

First, results are presented for the Slalom Drive dataset by
Irmak et al. (2020) demonstrating the performance of the model
with varying vision conditions. This is followed by results for the
Car and Simulator dataset by Talsma et al. (2023) and NDRT Drive
by Metzulat et al. (2024), where the adaptability of the model to
real-world driving and driving simulators is shown. Fits of the
model framework, with different accumulation models (AM), to
the actual MISC responses with Motion Sickness Incidence (MSI)
predictions overlayed are shown first, followed by a comparison of
the models’ RMSE values. It is demonstrated that the use of our
model framework with individualization improves the accuracy of
the simulation of motion sickness compared to the use of MSI.
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Motion sickness responses (MISC) in Slalom Drive experiments by Irmak et al. (2020) in black, fitted AM2 model predictions (MISC) in green, fitted
AM5 model predictions (MISC) in dashed violet, fitted AMO model predictions (MISC) in dotted gray, and MSI predictions from Hill function in orange
for four participants (participant label shown on the left) for the conditions of internal (left column) and external (right column) vision.

In addition to this, a parameter study is conducted to find the
minimum effective implementation of the model.

3.1.1 Model performance

Figure 6 shows the comparison of the most relevant
accumulation models with experimental recorded motion sickness
responses (MISC) for a representative selection of participants
from Irmak et al. (2020)’s experiment for the conditions of internal
(left column) and external vision (right column). The obtained
model fits for the rest of the participants are shown in Section 2
of Supplementary material. The experimentally reported MISC
is shown in black, and MSI predictions (obtained directly using
the model from Wada et al., 2020) are shown in orange. The
predictions of our proposed combined model are shown for only
three out of the eight models in Table 3: AMO in dotted gray, AM2
in solid green, and AM5 in dashed violet. AM5 is the original
version of the accumulation model, with all five parameters
being estimated individually. AMO represents the model with
group-averaged parameters. AM2 provides the best compromise
fit with only two individual parameters. The AMO model and
MSI predictions both use the same parameter settings for all
participants. Any difference in their predictions is thus due to
differences in the vehicle motion used as input to these models. In
Figure 6, we show MSI for its full range of 0%-100% and MISC
across a range of 0-8. These y-axis limits are chosen solely to make
both sets of data values readable from the graph and enhance
their clarity.

It is evident that our approach of estimating parameters for
each individual (in particular for AM2 and AM5 models) offers
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improved accuracy in predicting MISC responses compared to
the use of group-averaged parameters (AMO). The average RMSE
reduces from 1.94 (AMO) to 1.13 (AM2) and 0.74 (AMS5). This
proves that using parameters estimated for each individual (AM2
and AM5) is 40% and 60% more accurate, respectively, than using
group-averaged parameters, as in the AM0 model. For example, for
P5 and P18 in Figure 6, it is clear that AMO greatly underestimates
the measured MISC values.

Another important observation is that all accumulation models
are able to capture the recovery from motion sickness. This
recovery occurs when the sickening stimuli are stopped, and the
participant is allowed to rest. This is more evident for P9 and
P14 (second and third row in Figure 6). Consistent with Irmak
et al. (2020), the MSI prediction (in orange) cannot capture this
reduction in motion sickness.

Furthermore, we tested the models by fitting them on
additional datasets such as the Car and Simulator dataset by Talsma
et al. (2023) and the NDRT Drive dataset by Metzulat et al.
(2024). The car and simulator dataset had 24 participants, each
experiencing motion with external vision in a real-world car and in
a simulator. The NDRT Drive experiment had 20 participants, each
experiencing three different Non-Driving Related Tasks (NDRT).
Figures 7, 8 again show the experimental recorded motion sickness
responses (MISC) in black, MSI predictions in orange, and fitted
model predictions in green, violet, and gray for four out of the
24 participants for both cases. It can be seen that even with two
parameters, the fits of the AM2 model are very close to the actual
MISC responses in both datasets. The MSI prediction values are
very low, especially in the Car and Simulator dataset. This is due
to the low levels of conflict generated in these experiments (0.12
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m/ s mean RMS conflict) compared to other datasets, such as the
Slalom Drive, which has 1.15 /s> mean RMS conflict. As opposed
to the MSI prediction, which is a population-level prediction, the
proposed “conflict accumulation” model is able to account for these
combinations of low levels of conflict and high susceptibility of the
participants. The fits for the rest of the participants are available in
Section 2 of Supplementary material.

3.1.2 Model parameter selection

In the previous section, it was observed that the model with two
estimated parameters (AM2) per individual captures the individual
responses almost as well as the model for which all five parameters
are estimated individually (AM5). To show this quantitatively, we
evaluated the need for each of the parameters by comparing all
eight models in Table 3. From Figure 94, it is clear that reducing
the number of parameters below two leads to a 36% increase
in RMSE (from 1.2 to 1.6 in internal vision case and from 1.0
to 1.4 in external vision case when comparing AM2 to AMla
model) in the Slalom drive dataset. Hence, any model with two
or more parameters is sufficiently accurate (with RMSE around 1

10.3389/fnsys.2025.1531795

MISC) to capture individual motion sickness development. We also
compared the individual models with a group-averaged version of
the accumulation model (AMO), where the parameters are the same
for all participants in the dataset. It is observed that AMO has, on
average, 1.7 times higher RMSE as compared to the AM2 model
(for example, from 1.22 to 2.25 in the internal and from 1.04 to
1.63 in the external vision case of the slalom drive dataset). Overall,
Figure 9A again shows the improvement obtained with individual
model fits compared to using group-averaged parameters.
Furthermore, to demonstrate that the optimal number of
accumulation model parameters for our model framework is 2,
the previous test was repeated with the Car and Simulator dataset
as shown in Figure 9B, where a similar trend is seen with AM2
model offering a good balance between performance and efficiency.
When comparing the individual models with a group-averaged
version of the accumulation model, it is observed that the group-
averaged model, AMO, has 1.64 times more RMSE as compared to
the AM2 model (from 1.03 to 1.96 in the internal and from 1.06
to 1.47 in the external vision case). This increase is equivalent to
that found for the Slalom Drive dataset (1.7 times increase). This
trend was also seen in the NDRT Drive dataset, where the AM2
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FIGURE 9
Root mean squared error (RMSE) between the predicted MISC from the models and the actual MISC for the Slalom Drive, Car and Simulator and
NDRT Drive datasets. Also shown are the mean (circled), median (horizontal solid line), and interquartile range (in a colored rectangle). (A) Slalom
drive dataset. (B) Car and simulator dataset. (C) NDRT Drive dataset.
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model offers the best balance between performance and efficiency

(see Figure 9C).

Itis clear from the results in Figure 9 that this model framework
is able to capture multiple conditions with two individually
estimated parameters. Overall, the accuracy is better (by around
60% in RMSE) than using a group-averaged model. This is
applicable for various vision conditions, as well as different motions
from real cars to simulators.

The variation of the mBIC with c¢ is plotted in Figure 10. As
discussed in Section 2, the selection of the AM0 and AM5 model
must be avoided. AMO model has zero estimated parameters and
acts only as an average model. Choosing AMO0 would oversimplify
and lose generalisability. Similarly, the AM5 model has five
estimated parameters, which may cause overfitting even if it fits
the data well. When ¢ values are 1 and 3, The risk of choosing
AMS5 and AMO is high when ¢ values are 1 and 3, as these models
become more favorable than 50% of other models based on the
mBIC metric. With ¢ values above 3, the model AMO becomes
very favorable, which is also undesirable. In our fittings, starting
with 100 random initial points yields more than 15 solutions when
fitting models with more than two parameters (ie., the AM3,
AM4a, AM4b, and AM5 models). In contrast, when using two or
fewer parameters (such as the AM2, AM1a, and AM1b models), we
achieve two unique parameter solutions, one of which is selected 95
out of the 100 fittings. Out of these three models (AM2, AM1a, and
AM1D), the AM2 model demonstrates the highest accuracy with
an RMSE of 1.54 MISC. Therefore, to balance accuracy and model
complexity, we select (¢ = 2) and opt for AM2 as the optimal model.

Table 4 shows all models with the number of parameters and
metrics of their fits—RMSE and mBIC (with ¢ = 2). While it
is evident from the table that AMS5 achieves the lowest RMSE,
the mBIC criterion, which incorporates a penalty for the number
of parameters, selects AM2 as the optimal model. This highlights
the effectiveness of mBIC in balancing model accuracy with
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parameter simplicity, ensuring a more robust and generalisable
model selection. However, it is important to note that the preferred
(c) parameter may vary with different datasets and applications.
Some may prioritize simplicity and opt for a higher value of ¢ and
choose a single-parameter model instead.

3.2 Accumulation model parameter
distribution

The parameter sets of 44 participants of the Car and
Simulator and NDRT Drive datasets are shown in Figure 11
for the AM2 model. Vehicle motion is used as input in both
of these datasets. The Slalom drive dataset is omitted here for
consistency in parameters due to the slalom drive using head
motion instead of vehicle motion, as is the case for the other
two. In the figure, it can be seen that there are three distinct
sets of parameters, which are found by using the k-means
clustering algorithm:

e High susceptibility are those with high K; and low Tj, shown
as red dots.

e Low susceptibility have the opposite, low K; and high T,
shown as blue dots.

e Medium susceptibility have low K; and low Tj, shown as
medium dots.

The mean value of the parameters is 15.2 for K; and 52.3
seconds for T'; see black dot in Figure 11. The mean value is located
in an area that does not correspond to any individual’s parameter
values. Therefore, using these mean values to represent a group,
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FIGURE 12

Three component Gaussian mixture model's probability distribution of the parameter sets [estimated gain (K1) and time constant (T1)] for the AM2
model. (A) Probability density function (PDF). (B) Cumulative density function (CDF).
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FIGURE 13

Sampled parameter sets (red cross) from the probability density
function of the parameter distribution [estimated gain (K1) and time
constant ()] for the AM2 model (black dots).

which is commonly done, is not correct and does not accurately
represent any individual in the population. With this knowledge,
representative parameters can be sampled to test motion profiles on
different motion sickness susceptibilities. Additionally, percentiles
can be defined to see which percentile of subjects do or do not get
motion sick.

To obtain the probabilistic model, we have fitted a three-
component Gaussian mixture model with two dimensions (for the
two-parameter AM2 model) on the estimated parameter values
obtained for all 44 individuals, see Figure 12. The Figure 12A
shows the probability density function of the Gaussian mixture

Frontiers in Systems Neuroscience

model. This clearly illustrates the three clusters of motion sickness
susceptibility identified by the model. Additionally, it highlights the
variation in density, indicating that there are more parameter sets
associated with medium and low susceptibility compared to those
linked to high susceptibility. The Figure 12B, on the other hand,
shows the cumulative density function of the Gaussian mixture
model. Each colored line represents different percentiles indicating
different susceptibility to motion sickness. Any parameter selected
along a particular line will yield the same probability of getting
motion sickness as any other point on that line. This feature
is beneficial for evaluating a motion profile at a designated
percentile of the population. Additionally, this representation
allows researchers and developers to assess the risk of motion
sickness in different scenarios by simply selecting a percentile
that matches their target audience. By understanding how motion
sickness probabilities vary across different parameters, one can
better design experiences or products that minimize discomfort for
users. Overall, this approach aids in creating tailored solutions to
enhance user comfort and experience in motion-related activities.
The corresponding parameters for the Gaussian mixture model can
be found in Section 3 of Supplementary material.

With this probabilistic model, we can sample parameters
randomly or based on the probability of getting sick (from 0
to 1). Here, Figure 13 shows an example of randomly sampled
1,000 parameter sets overlayed on the actual parameters estimated
from the other datasets. The sampled parameters have the same
distribution as the actual real estimated parameter sets.

To show a use case of this probabilistic model, we simulated
these 1,000 sampled parameter sets on the completely independent
Sickness Recreation dataset with 47 participants, see Table 1.
This dataset is collected with the same participants being driven
manually in a semi-urban environment and in automated mode
on a test track with the same vehicle. The median MISC with
the 25th and 75th percentile is shown below in Figure 14. This is
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overlayed with the median and 25th/75th percentiles from the 1,000
sampled parameter sets obtained from the probabilistic model.
It is observed that the two MISC traces are highly similar, with
an average RMSE of 0.47 (RMSE of 0.65 for “On Road” and
0.29 for “On Track”). However, the model prediction somewhat
underestimates the sickness variance. This can be seen especially at
the start, where the experiment data shows some people jumping
to MISC of 1 very quickly, which is not seen in the model
predictions.

Overall, these results indicate that we can use the probabilistic
model to predict the variation in expected motion sickness levels
for a new population in untested experiments and scenarios,
including those using various motion planning or motion
cueing algorithms.

4 Discussion

4.1 Combined model framework for
individual motion sickness predictions

This paper introduces and validates a novel combination
of models to create a framework to predict an individual’s
motion sickness level in vehicles and simulators. This model
framework combines a group-average “conflict generation” model
with an individual “conflict accumulation” model to capture
individual susceptibility differences. Furthermore, by using a
“conflict generation” model that includes visual inputs, various
vision conditions (such as external, internal, and only vision) can
be simulated. This is crucial in simulators where motion sickness
occurs due to a strong influence of visual cues. We hypothesized
that using a “conflict accumulation” model with individualized
parameters will result in greater accuracy compared to a model that
uses group-averaged parameters. Hence, in this paper, we assessed
the feasibility and accuracy of this new model approach for motion
sickness predictions.
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It is clear from the obtained results (see Figures6-9,
Table 4) that “conflict accumulation” models with individualized
parameters enable improved modeling of the motion sickness
responses of individuals as compared to using the group-averaged
models, as considered for AMO. In addition to this, the “conflict
accumulation” models we use (AMO-5) also capture the recovery
phase of the experiment (see Figures 6-8) and, theoretically, the
hypersensitivity in a following second motion exposure as shown in
Irmak et al. (2020, 2022). This recovery phase takes a few minutes
and is not captured by often-used MSI predictions that typically
implement a leaky integrator with a time constant of 12 min for
conflict accumulation (Kamiji et al., 2007; Liu et al., 2022). These
results are in line with the work by Irmak et al. (2020) where
individualized fits with the same accumulation model (AM4a)
reduced the prediction error by a factor of 2 in a slalom drive
with a frequency of 0.2 Hz and lateral accelerations with a peak
amplitude of 0.4 g with eyes closed. The limitation of this previous
work was that no “conflict generation” model was considered;
instead, the one-dimensional lateral acceleration conflict was
simply used directly as the input to the accumulation model.
Our work extends this by using a 6 degrees-of-freedom “conflict
generation” model to generate the conflict in realistic driving
conditions with varying vision conditions, thereby expanding the
coverage to full 6 degrees-of-freedom vehicle motion. Including
an explicit “conflict generation model” allows the model to be
used in various conditions as well, be it variation in vision or
motion.

This way, a single set of parameters, estimated using data
from all required conditions, can characterize an individual across
various motion and vision conditions. Estimating the parameters
on all available conditions is important as it facilitates a more
robust modeling of how different factors contribute to motion
sickness. It prevents overfitting, as the model is not solely fitted
to specific scenarios but is rather modeled by the collection of
individual responses across various contexts. This generalisability
is crucial in real-world applications, where individuals may
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encounter unfamiliar situations that were not part of the initial
training dataset.

This approach is not limited to the SVC model, which we used
as the “conflict generation” model. Any other “conflict generation”
model can be used, such as any of the versions of SVC by Kamiji
et al. (2007), Liu et al. (2022), and Wada et al. (2020) or the
Multi-Sensory Observer Model by Newman (2009) and Clark et al.
(2019).

4.2 Accumulation model parameter
reduction

We investigated reducing the number of estimated individual
model parameters. The “minimum effective” model (AM2) well-
captured sickness in individuals. While models such as AMS,
AM4a, and AM4b provide better accuracy than the AM2 model,
they require more estimated parameters (5, 4, and 4, respectively).
This higher number of individually estimated parameters may
cause overfitting and hinder generalisability, leading to non-unique
parameters that reduce model’s reliability. By using the relations
and values mentioned in previous studies (Oman, 1990; Irmak
et al., 2020, 2022), the number of estimated individual parameters
could be limited to 2, ensuring uniqueness and avoiding overfitting
on the sparse (in conditions) dataset. Overfitting may degrade a
real-world performance where conditions differ from training data.
A concise and relevant parameter set enhances the robustness and
generalisability of predictions, ensuring application in untested
situations. This balance between simplicity and effectiveness
positions our model as a powerful tool for predicting motion
sickness across diverse situations, improving interventions and user
experiences. Additionally, a significant reduction in computation
time is achieved for the parameter estimation—by a factor of 4 from
48 to 11 s for 40 min of simulation—highlighting the efficiency
of the AM2 model. An even larger benefit would be observed
in stochastic modeling, where a 5-parameter model would take
exponentially more time. However, there is no difference when
using these models for online prediction of sickness levels.

4.3 Probability distribution of individual
parameters

We created a distribution of the parameter sets, which can
be used to sample any number of parameter sets (Figure 13) and
simulate the motion profile to predict the distribution of motion
sickness levels. This has been demonstrated in Figure 14 where the
simulated sickness predictions closely match the experimentally
observed median sickness levels. The difference in the spread
of sickness is likely due to the selection of participants with
extremely high or low sickness susceptibility, which is sometimes
not correctly reported in the self-reported Motion Sickness
Susceptibility Questionnaire. Additionally, at the start of the
experiments, some of the participants quickly reported a MISC of
1. Our models do not capture this, but instead, due to the inherent
nature of the models, there is a continuous increase in MISC over
time. If this is instead discretised as is reported by the participants,
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the sickness predictions match even better, and the spread of
MISC is completely inside the experimentally reported MISC (see
Section 4 of Supplementary material). This proves that we can use
this probability distribution to predict expected motion sickness
levels for untested experiments and scenarios, including those using
various motion planning or motion cueing algorithms. Also, this
can also be used as a proxy for Motion Sickness Dose Value
(MSDV), which is an ISO standard (International Organization
For Standardization, 1997) and uses weighted root mean squared
acceleration as a measure of motion sickness severity. This has been
known to not accurately capture the dynamic nature of motion
sickness, especially the quick recovery from sickness, which is not
captured by MSDV due to its monotonous nature and lack of
any leakage term (International Organization For Standardization,
1997).

4.4 Practical applications

The probabilistic approach enables the model to predict
variations in motion sickness outcomes across a population,
facilitating advanced vehicle motion planning, such as in Li and
Hu (2021), and motion cueing algorithms in driving simulators,
such as in Jain et al. (2023), and flight simulators, such as in
Lewkowicz (2019). Using a model-based control method, this
model framework can be included in the plant model to forecast
motion sickness levels. This way, motion sickness levels can be
controlled by considering each individual’s susceptibility. Vehicle
motion in automated vehicles and platform motion and tilt
coordination in simulators can be optimized to optimize their effect
in eliciting motion sickness. Using these models, the motion profiles
can be tuned to reduce the dropout of participants in simulator
experiments due to motion sickness.

Moreover, this model framework can also be used during the
process of experiment design. Algorithms can be benchmarked
on different thresholds of motion sickness susceptibility. Offline
analyses can be run on a large synthetic sample of a population
before real-world testing on humans. This will greatly speed up the
testing process.

Thus, our next steps involve applying this model both in pre-
experiment and real-time during the experiment.

4.5 Challenges and limitations

We now tuned individual parameters of the accumulation
model while keeping the (many) parameters of the sensory conflict
model constant. This assumes that the conflict generated is the
same for all individuals, and the difference in motion sickness
development is purely due to the difference in the accumulation
of the conflict. This implies that people respond exactly the same
way to conflicts, even in very different settings (e.g., internal vs.
external vision). This assumption is made because the initial stage
of conflict generation primarily involves basic sensory mechanisms
all humans share. However, the degree to which different
individuals accumulate and tolerate this conflict can vary widely.
This variation can be influenced by genetic and psychological
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factors. Previous experiences and conditioning can also influence
susceptibility. Additionally, individuals who frequently experience
motion sickness may anticipate symptoms more anxiously,
exacerbating the response. However, this assumption contradicts
the observations by Irmak et al. (2021), where they found a
correlation of 0.74 between an individual’s sickness susceptibility
and their subjective vertical time constant, which is a parameter
in the conflict generation model. This correlation suggests that the
subjective vertical time constant plays a significant role in how
conflicts are generated and perceived, challenging the notion that
conflict generation is uniform across individuals. Consequently, it
is highlighted that there is a need for a model that incorporates
individual differences in both conflict generation and accumulation
in order to more accurately reflect the complex interplay of factors
influencing responses to motion sickness.

A main limitation of the model during individual fitting is
that it does not fit participants who get highly motion sick with
internal vision and do not get sick with external vision well (for
example, P14 in Figure 6 and P2 in Figure 8). This sharp shift
in motion sickness dynamics cannot be captured by our model
framework. This may be due to the inherent difference in conflict
generation, which we assume to be the same in all individuals, or
to our assumption that gains in the SVC model are independent of
the visual condition. Also, in the “NDRT Drive” dataset, there are
conditions—“Visual Static” and “Visual Dynamic”—with internal
vision that feature varying levels of visual stimuli. We have chosen
to model these identically due to the unavailability of control over
the effect of vision on conflict generation, as the vision is either
represented as 1 or 0. One solution is to model each condition
with a separate set of parameters. Doing this, the RMSE was
reduced, on average by 35%, from 1.54 to 1 MISC, compared
to fitting all conditions together. However, this comes with a
significant reduction in predictive accuracy on other conditions by
increasing RMSE by 69% from 1.54 to 2.6 MISC. This means we
lose any generalisability in modeling other conditions and overfit
the model to that specific condition. A better solution would be
to estimate at least one additional parameter, one of which could
be the vision gain in the “conflict generation” model or other
perception parameters. People not only differ in motion sickness
susceptibility but also in their perception of vision. Each human
will have a different contribution of visual and vestibular signals for
their state estimation. By adjusting the vision gain in the “conflict
generation” model, the contribution of vision to the estimates can
be tuned.

Another limitation is that the model is sensitive to the location
of the Inertial Measurement Unit (IMU), ie., the input of the
model needs to be based on either vehicle motion or head motion
for it to predict motion sickness reliably. For the modeling of
the distribution of parameters, the inputs are vehicle motion. This
is due to the larger number of datasets available with vehicle
motion measured as compared to datasets with head motion
measured. For example, if we take head motion as input, the
estimated gain (Kj) is much smaller than for the datasets which
use vehicle motion (see Section 5 of Supplementary material). Also,
the Hill function accumulation model predicted a reasonable MSI
magnitude in the Slalom Drive but highly underestimated sickness
in the Car and Simulator dataset. Ideally, we would like to always
use recorded head motion, which is more representative of the
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motion experienced by the vestibular system. If this is not available,
we could use biomechanical human/seat models or linear transfer
functions to convert six degrees-of-freedom vehicle motion to
6 degrees-of-freedom head motion (Desai et al., 2023; Happee
et al., 2023). This way, even when head motion is not recorded,
a head motion based stochastic sickness generation model can
be used.

5 Conclusion

This study presents a novel framework for predicting motion
sickness (in MISC) accumulation in time by integrating a group-
average “conflict generation” model with an individualized
“conflict accumulation” model. By utilizing acceleration
and angular rotational data, the model adjusts parameters
specific to each individual’s motion sickness response, as
measured by the Misery Scale (MISC). By simultaneously fitting
for various conditions across different datasets, the model
successfully estimates a single set of parameters applicable
to each participant, offering a highly personalized approach
to understanding motion sickness dynamics. A reduction of
estimated parameters not only simplifies the model but also
optimizes the risk of overfitting, ensuring robust application
in real-world scenarios. This framework achieves an average
RMSE of 1.54 with just two estimated parameters—a gain (K;)
and a time constant (T7). The integration of the two models
demonstrates significant improvements in predicting motion
sickness, achieving better fits by 34% compared to traditional
group-averaged models (1.54 RMSE for AM2 vs. 2.06 RMSE
for AMO).

Moreover, the modeling of the probabilistic distribution of
estimated accumulation parameters enables effective sampling of
parameter sets, facilitating predictions for untested scenarios and
improving the adaptability of motion sickness assessments. Such
flexibility reduces reliance on extensive human testing experiments
and accelerates testing processes.

Overall, this research paves the way for more refined and
personalized applications in both driving simulators and real-world
automated vehicle contexts, promising improved user experiences
and outcomes.
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