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Abstract

This article reviews a spectral forward gravity field modelling method that
was initially designed for topographic/isostatic mass reduction of gravity
data. The method transforms 3D spherical density models into gravitational
potential fields using a spherical harmonic representation. The binomial
series approximation in the approach, which is crucial for its computational
efficiency, is examined and an error analysis is performed. It is shown that,
this method cannot be used for density layers in crustal and upper mantle
regions, because it results in large errors in the modelled potential field. Here,
a correction is proposed to mitigate this erroneous behaviour. The improved
method is benchmarked with a tesseroid gravity field modelling method and
is shown to be accurate within ±4 mGal for a layer representing the Moho
density interface, which is below other errors in gravity field studies. After the
proposed adjustment the method can be used for the global gravity modelling
of the complete Earth’s density structure.

Keywords: forward gravitational field modelling, spherical harmonic
representation, global density models

1. Introduction

Interpreting gravitational data in terms of internal mass density distributions
requires gravitational reduction that can be computed by forward modelling
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techniques. The gravitational field of any 3-D object can be computed by in-
tegrating the gravitational effects of its mass density distribution. One tech-
nique for evaluating this integral is based on spherical harmonic expansion
of the Newtonian kernel. This technique was applied to forward modelling
of the topographic potential and its gradients (Lachapelle, 1976; Rapp, 1982;
Rummel et al., 1988; Pavlis and Rapp, 1990) and modified for computing
gravitational gradients generated by topography and atmosphere at satellite
altitudes (Novák and Grafarend , 2006). The advantage of this technique is
that it takes into account the curvature of the Earth.

There are two approaches to solve the spherical harmonic-based volume
integral (Pavlis and Rapp, 1990): the rigorous formulation and the binomial
series expansion method. The rigorous spectral method (RSM) introduced by
Lachapelle (1976) is computational expensive (Pavlis and Rapp, 1990). The
second approach, by Rummel et al. (1988), uses a binomial series expansion to
approximate the volume. We call it the Fast Spectral Method (FSM) in this
study, because it is computationally more efficient than the rigorous spectral
method. The number of computationally expensive global spherical harmonic
analyses (GSHA) (Sneeuw , 1994) is drastically reduced by introducing the
binomial series approximation. The FSM approach provides a means to use
higher resolution density models than the RSM.

The FSM forward modelling is used in several previous studies (Rummel
et al., 1988; Novák and Grafarend , 2006; Martinec, 1991; Root et al., 2015).
Despite its computational speed, the FSM has limitations that should be
known to users. The FSM forward modelling is used to compute the potential
field of a topographic/isostatic mass layer in most studies, but for density
layers in the lower crust and upper mantle the FSM gives erroneous results as
will be shown in Section 4. This erroneous signal results in incorrect mantle
density heterogeneities, when the FSM is used in a gravity inversion study.
The improvement which is introduced here extends the applicability of the
FSM to the general case of forward gravitational modelling of mass density
distributions for an entire planet.

Section 2 provides a review of the analytical representation of the FSM.
This is followed by a characterisation of the error introduced by the binomial
series approximation. In Section 4, a mitigation strategy is introduced. Fi-
nally, a benchmark of the FSM with tesseroid software is shown in Section
5.
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2. Review of the fast spectral forward modelling method

The analytical representation of the RSM and FSM starts similarly (Pavlis
and Rapp, 1990). In the following, we derive a formula for the gravitational
potential which is the conventional representation of a (conservative and
irrotational) gravitational field. From Newton’s law of universal gravitation
and the superposition principle, the gravitational potential V outside the
body Σ at location, P , can be computed (e.g.Rummel et al. (1988)):

V (P ) = G

∫∫∫
Σ

ρ(Q)

`(P,Q)
dΣ(Q) . (1)

where G is the universal gravitational constant, ρ is the mass density distri-
bution within the body Σ and `(P,Q) is the Euclidian distance between the
computation point P (r,Ω) and the infinitesimal volume element dΣ(Q) at
location Q(r′,Ω′). Eq. (1) can be rewritten by using (geocentric) spherical
coordinates:

dΣ = r2drdΩ. (2)

Here, r is the radial coordinate and dΩ = sin(θ)dθdλ is a surface element at a
unit sphere, where φ and λ stand for a pair of geocentric angular coordinates
and represents a geocentric direction. Eq. (1) then becomes

V (r,Ω) = G

∫
Ξ

rupper(Ω′)∫
r′=rlower(Ω′)

ρ(r′,Ω′) L−1(r,Ω, r′,Ω′) r′2 dr′ dΩ′ . (3)

The kernel function L−1(r,Ω, r′,Ω′) = 1
`(P,Q)

and the radial coordinate is

given by r′. The radial limits of this integral represent the upper and lower
boundaries of the mass density layer. The spherical harmonic representation
for the inverse distance kernel is (Heiskanen and Moritz , 1984, p. 33):

L−1(r,Ω, r′,Ω′) =
1

r

∞∑
n,m

(r′
r

)n 1

2n+ 1
Ynm(Ω) Y ∗nm(Ω′) . (4)

In this equation the abbreviated notation
∑∞

n,m =
∑∞

n=0

∑n
m=−n is used.

Eq. (4) can be substituted in Eq. (3):
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V (r,Ω) = G
∞∑
n,m

(1

r

)n+1 1

2n+ 1
Ynm(Ω)

∫
Ξ

ρ(Ω′) Y ∗nm(Ω′) dΩ′
rupper(Ω′)∫
rlower(Ω′)

r′n+2dr′ .

(5)
where it is assumed that the density distribution within the layer does not
depend on the radial position. Appendix A discusses an approach for a
radially varying density distribution in the mass layer. For both cases, the
radial integral in Eq. (5) must be evaluated. The radial limits of this integral
can be defined as follows:

rupper(Ω
′) = R + U(Ω′) , (6a)

rlower(Ω
′) = R + L(Ω′) . (6b)

U(Ω′) and L(Ω′) are upper and lower deviations from the circumscribing
sphere (R) of the volumetric mass layer that is forward modelled (see Figure
1). This means that R ≥ R + U ≥ R + L, or in other words 0 ≥ U ≥ L.
Integrating the radial integral of Eq. (5) then yields

rupper(Ω′)∫
rlower(Ω′)

r′n+2 dr′ =
1

n+ 3

{
[R + U(Ω′)]n+3︸ ︷︷ ︸

1st part

− [R + L(Ω′)]n+3︸ ︷︷ ︸
2nd part

}
. (7)

From this point the RSM and the FSM differ. In the RSM a global spherical
harmonic analysis (GSHA) is performed on Eq. (7) to determine the spheri-
cal harmonic coefficients of the potential field (Lachapelle, 1976). However,
this is computationally expensive, because for every degree (n) an individual
GSHA must be performed. Especially, when the spherical harmonic degree
is large the time to compute the potential field is unpractical. The FSM was
developed to tackle this problem.

In the FSM, the first and second part in Eq. (7) can be evaluated by a
binomial series expansion (Abramowitz and Stegun, 1972). Writing n+3 = ν
and replacing U and L by their normalised values Ũ = U

R
and L̃ = L

R
, we get

(R + U)ν − (R + L)ν = Rν

ν∑
k=0

(
ν

k

) [
Ũk − L̃k

]
. (8)

The series summation contains a finite number of terms, as ν is a positive
integer (Abramowitz and Stegun, 1972). To reduce the computational load,
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in practical applications (Rummel et al., 1988) this series is truncated at a
value α, where α < ν, resulting in

(R + U)ν − (R + L)ν = Rν

α∑
k=0

(
ν

k

)[
Ũk − L̃k

]
+ εα . (9)

Here, εα is the error made by the truncation of the binomial series. An error
analysis of this assumption follows in Section 3.1, but for now we will choose
α = 3 (Rummel et al., 1988). By neglecting the higher-order terms, the
radial integral from Eq. (7) becomes

rupper(Ω′)∫
rlower(Ω′)

r′n+2 dr′ ≈ Rn+3
[ U(Ω′) − L(Ω′)

R
+ (n+ 2)

U2(Ω′) − L2(Ω′)

2R2

+ (n+ 2)(n+ 1)
U3(Ω′) − L3(Ω′)

6R3

]
. (10)

Following Novák and Grafarend (2006), we will use a short-hand notation,
F (Ω′), to denote everything between the square brackets of Eq. (10):

rupper(Ω′)∫
rlower(Ω′)

r′n+2 dr′ ≈ Rn+3F (Ω′) . (11)

Substituting Eq. (11) in Eq. (5) gives:

V (r,Ω) = GR2

∞∑
n,m

(R
r

)n+1 1

2n+ 1
Ynm(Ω)

∫
Ξ

ρ(Ω′) F (Ω′) Y ∗nm(Ω′) dΩ′ .

(12)
Novák and Grafarend (2006) continue by performing GSHA of the density
distribution function ρ(Ω′) and the function F (Ω′) separately. The spherical
harmonic coefficients retrieved from the two separate GSHA procedures are
combined in the spherical harmonics domain using complex Glebsch-Gordan
series. However, the same result can be obtained by multiplying the mass
density distribution ρ(Ω′) with the function F (Ω′) in the spatial domain and
by subsequent GSHA of the combined function, i.e.,

ρ(Ω′) F (Ω′)
GSHA

=
∞∑
n,m

Cnm Ynm(Ω′) . (13)
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Coefficients Cnm are derived from the density and geometry of the modelled
layer. This approach requires one less GSHA which is favourable, because
a GSHA is computationally expensive. Substituting Eq. (13) into Eq. (12)
and reordering the integral and summation yields:

V (r,Ω) = GR2

∞∑
n,m

(R
r

)n+1 1

2n+ 1
Ynm(Ω)×

∞∑
n′,m′

Cn′m′

∫
Ξ

Yn′m′(Ω′) Y ∗nm(Ω′)dΩ′ .

(14)
Using the orthogonality of fully-normalized spherical harmonic functions
(Heiskanen and Moritz , 1984, p. 29) results in

V (r,Ω) = GR2

∞∑
n,m

(R
r

)n+1 4π

2n+ 1
Cnm Ynm(Ω) . (15)

To compare the gravitational potential of the layer with global gravitational
models referenced to a particular gravitational constant GM , the potential
should be scaled accordingly using the following relation:

(GM)model =
4

3
π ρE G R3 . (16)

in which, ρE is the average mass density of the reference Earth computed
with GM and R from the global gravitational model. Substituting Eq. (16)
into (15), yields:

V (r,Ω) =
GM

R

∞∑
n,m

(R
r

)n+1

Vnm Ynm(Ω) (17)

with

Vnm =
3

2n+ 1

1

ρE
Cnm . (18)

The coefficients, Vnm, are referred to as the Stokes coefficients. The con-
structed gravitational potential is derived for a particular mass density layer
in an Earth model. A more complex model can be built by adding the po-
tential of several layers.

3. Error characterisation of the fast spectral method

In the derivations of the FSM, higher-order terms of the binomial series
expansion were neglected to arrive to Eq. (10). Previous studies suggested
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that an expansion up to the third-order binomial term is enough to accurately
model the gravitational potential of a topographic layer (Rummel et al., 1988;
Vańıček et al., 1995). However, with the increasing accuracy of gravitational,
digital elevation (DEM), and crustal models, the question arises if this finding
is still valid. This section describes the effect of the binomial order truncation
in Eq. (9) on the accuracy of the forward modelled gravitational potential.
Moreover, we examine if this assumption is still valid for deeper layers.

It will be shown that the truncation of the binomial series introduces
errors for layers that deviate substantially from the radius of the reference
sphere, R, which cannot be reduced by truncating at a higher order. This is
the case for crustal and upper mantle mass layers. To extend the capabilities
of the FSM to deeper layers, an improved forward model is presented. First
the error due to the truncation of the binomial series is discussed.

3.1. Characterisation of the truncation error

From Eq. (9) the error εα follows as:

εα = Rν

ν∑
k=α+1

(
ν

k

) [
Ũk − L̃k

]
= Rν

ν∑
k=α+1

ε(k), (19)

where ε(k) is a shorthand notation for the kth term in the summation. Our
goal here is to find the smallest order at which the series can be truncated
without introducing a substantial error in the results. To do so, we will derive
a criterion that allows us to quantify the relative contribution of the leading
order term εk(= εα+1) in Eq. (26), compared to the entire error εα. In doing
so, we quantify the reduction in the error that results from increasing α by
1.

To show how ε(k) changes with increasing k, and thereby how εα changes
with increasing α, we construct a variable C(k)

C(k) =

∣∣∣∣ε(k+1)

ε(k)

∣∣∣∣ =

∣∣∣∣∣∣ν − kk + 1

[
Ũk+1 − L̃k+1

]
[
Ũk − L̃k

]
∣∣∣∣∣∣ . (20)

For k = α, this variable is the relative change in the magnitude of the first
term in Eq. (19), ε(α+1), when α is increased by one, so when Eq. (9) is
truncated one order higher. Thus, it is a measure of the change in the first
error term when adding an extra term to the binomial series. Since ν−k

k+1
is
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continuously decreasing with k, and it can be numerically checked that this

is also the case for
∣∣∣ Ũk+1−L̃k+1

Ũk−L̃k

∣∣∣ for any practical values of Ũ and L̃, it follows

that

C(k+1) < C(k). (21)

However, in theory there could be cases where C(k) ≥ 1 and C(k) ≈ C(k+1).
The error made when truncating Eq. (9) will not decrease substantially when
adding a single additional term (i.e. when increasing α by 1). In fact, when
C(k) > 1, ε(k) increases with k and increasing α by 1 will not even remove
the largest error term.

Therefore, a stringent requirement is needed on C(k) to study the region
where all remaining error terms are relatively small compared to the current
leading order term, and increasing α by 1 will cause a substantial reduction
of the total error. Such a requirement can be derived from Eq. (21) and from
the fact that:

lmax∑
k=2

1

2k
<

1

2
, (22)

for any finite lmax. The following criterion has to be met:

C(k) ≤ 1

2
. (23)

This ensures that adding a single term to the binomial expansion will decrease
the total error by at least a factor of 2 and that all remaining error terms
will not be dominant compared to the current leading order error term:

ε(k) >
ν∑

l=k+1

ε(l). (24)

Although this criterion (Eq. (23)) provides no guarantee that the total error
is acceptable, it does follow that if Eq. (23) is not met, the error properties
of higher order terms will be relatively influential and as a result α will likely
need to be increased considerably to attain an acceptable error level. The
criterion (23) will be called the convergence criterion.

Now that we have established a convergence criterion, we can compute
the appropriate truncation limit for a potential field with a certain spherical
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harmonic resolution. For a given geometry (defined by Ũ and L̃) and trunca-
tion level α, using the convergence criterion in Eq. (23) yields the following
condition for ν

ν <

∣∣∣∣∣ 1

2

Ũα − L̃α

Ũα+1 − L̃α+1
(α + 1) + α

∣∣∣∣∣ , (25)

where we have set k = α in Eq. (23). We reiterate that ν = n+3 and therefore
ν indicates the maximum degree of the spherical harmonic expansion. From
this relation it is clear that for thicker layers, for which |Ũ − L̃| is larger, ν
has to be smaller than the limit in order for (23) to hold, as the influence
of higher order terms in Eq. (9) increases. Similarly, for deeper layers, in
which the magnitude of both Ũ and L̃ are increased by the same amount,
the influence of the higher order terms is also stronger.

When we use a simplified geometry of an arbitrary mass layer in which we
set the upper limit U equal to the circumscribing sphere, so that Ũ becomes
0, we obtain the following:

ν <

∣∣∣∣α + 1

2L̃
+ α

∣∣∣∣ ≈ α + 1

2L̃
, (26)

where the approximation follows from the fact that typically L̃ � 1. The
above equation will still approximately hold true in cases where |L| � |U |,
in which the upper limit of the entire boundary is close to, but not exactly
on, the circumscribing sphere (relative to the thickness of the layer). The
convergence criterion of equations (25) and (26) shows the following relation
ε(k) >

∑ν
l=k+1 ε

(l).

To illustrate the behaviour of C(k) with varying geometry and truncation
level, we show its behaviour as a function of k and U in Figure 2, for a
number of spherical harmonic degrees and layer thicknesses. Note that larger
absolute values of U mean that the layer starts at a distance further away
from the circumscribing sphere with radius R. It can be seen from Figure
2 that the value of C(k) is lower for a given value of k when (i) the layer
is thinner, (ii) the layer starts closer to the reference sphere, and (iii) the
spherical harmonic degree is smaller. Furthermore, Figure 2 shows that as
k increases, the rate at which C(k) decreases levels off. In certain cases, this
property can be advantageous for the practical application of Eq. (19), as it
means that the majority of the error can be located in the low values of k.
However, this no longer holds when C(k) > 1, for which ε(k) is increasing with
k. In Figure 2, the α = 3 truncation level that is typically used (Rummel
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et al., 1988) is shown by a dashed vertical line. The intersection of this line
with the C(k) = 0.5 contour represents the point above which the binomial
series expansion fails to comply with Eq. (23). From this level on, it cannot
be assumed that the remaining error due to the truncation of the binomial
series is small.

Figure 3 plots the spherical harmonic degree ν with respect to the value of
the upper boundary U of the layer for the binomial order truncation, α = 3.
The value for U is an approximate representation for the deviation from the
reference radius R. The characteristic degree that fulfils the convergence cri-
terion quickly drops to low values when the depth of the layer increases. For
layers with a depth of 100 km, spherical harmonic coefficients from around
degree 80 and above contain large errors due to the truncation. At a depth
of 200 km coefficients from degree and order 50 are affected, at 300 km coef-
ficients from degree and order 30 are affected and at 400 km coefficients from
degree and order 25 are affected.

For this study we use the spherical approximation, but for high-accuracy
applications the ellipsoidal approximation is used. Claessens and Hirt (2013)
use the same approach concerning the binomial series approximation, which
is characteristic of the FSM, and truncate it after a few order of the binomial
series. This is correct for topographic reduction, but we would expect simi-
lar errors occur in the ellipsoidal approximation when deeper density layers
are forward modelled. The magnitude of these effects needs to be further
investigated, but is outside the scope of this study.

3.2. Numerical error characterisation for topographic masses

If the convergence criterion is fulfilled the remaining error of the FSM for an
arbitrary mass layer can be determined numerically, because the extra signal
from an added binomial term is larger than the remaining error. Thus, it is
an estimate of the maximum error at a certain binomial order truncation.

We use a topographic mass layer to numerically estimate the error. The
topographic mass reduction is derived from the global digital elevation model
GTOPO30 reduced to a 0.1 x 0.1 arc-deg equiangular grid. Over the con-
tinental areas, the upper boundary is defined by topography and the lower
boundary is the zero-elevation surface to which GTOPO30 is referenced.
Over the oceanic areas the upper boundary is defined by the zero-elevation
surface and the lower boundary by the bathymetry. The mass density of the
topographic layer is set to the constant value of ρtopo = 2670 kg/m3 in the
continental areas and for the oceanic areas the mass density of ρocean = −1750
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kg/m3 is used. The goal of this test is not to represent the Earth’s topog-
raphy as accurately as possible, but to determine the effect of the number
of binomial terms used for spectral forward modelling of the gravitational
potential of such a layer. The gravitational field will be calculated on the
geocentric sphere with the radius of R = 6378.136 km. This model fulfils the
convergence criterion when a truncation limit of α = 3 is used.

The first gravitational solution is constructed by using only the Stokes
coefficients of the first binomial term. The second gravitational solution is
constructed by including the Stokes coefficients of the first and second terms
in the binomial series. This is repeated up to the truncation value α = 10.
The cut-off value of the spherical harmonic representation, lmax, is varied as
90, 180, 360, 720, 1200 and 1800, which corresponds to the approximated
grid resolutions of 2, 1, 0.5, 0.25 and 0.1 arc-deg, respectively. The results
are presented in Figure 4, which shows the maximum difference in the radial
component of the gravitational acceleration vector. It can be seen that only
the first two binomial series terms are needed to represent the gravitational
field up to 180 degree and order accurately enough (±1 mGal), as concluded
by Martinec et al. (1989), Rummel et al. (1988), and Balmino (1994). More
terms are needed when the resolution of the topographic model is increased.
For example, a 0.1x0.1 arc-deg resolution model needs spherical harmonic
coefficients up to degree and order 1800 to be represented correctly. This will
result in 6 more binomial terms when an accuracy of ±1 mGal is required,
similar results were obtained by Hirt and Kuhn (2012).

4. Reducing the truncation error for deeper layers

To get insight into the numerical behaviour of the FSM for deeper mass
layers that do not fulfil the convergence criterion, another modelling exercise
is performed. The mass model consists of the same mass layer as in previous
section, but now the zero-elevation reference is at 0, 50, 100, 200, 300 and 400
km depth. The computed gravitational fields should look similar, except for

the damping effect of high degrees resulting from
(
R
r

)n+1

in Eq. (17). Figure

5a illustrates the degree variance of the spherical harmonic coefficients. At 0
km depth the degree variance follows approximately the Kaula rule as found
by e.g. Rummel et al. (1988) and Balmino et al. (1973). The model at 50
km depth performs as expected with higher degree coefficients being damped
more, as illustrated by an increasing difference between the blue and red line
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for higher degrees. However, a different behaviour is seen for the layer at
100 km depth. From degree and order 100 onward, the degree variance stays
flat. For deeper layers, the degree variance increases with degree, because the
model does not fulfil the convergence criteria. This behaviour is also seen in
the degree variances of the models at 200, 300 and 400 km depth, but with
a different location of the ’bending’ point. In the spatial domain these errors
are seen to generate random-looking patterns with a slight correlation to the
geometry of the modelled layer, as we will see in the benchmark (Section 5).

When fitting a forward gravity model to gravity field observations, these
errors can lead to mismodelled densities. The errors arise because the density
model does not fulfil the convergence criterion of Figure 3. In the following,
we present a solution that reduces this error significantly and makes it pos-
sible to use the FSM forward modelling for global 3-D mass density models
at any depth.

Because the error appears for deeper layers we introduce a new reference
sphere R∗, such that the upper bound is reduced to approximately 0. Then,
Eq. (6a) should be modified to

rupper = R∗ + U∗(Ω′) (27a)

rlower = R∗ + L∗(Ω′) . (27b)

The new spherical radius is defined as R∗ = R − Ǔ , with Ǔ being the max-
imum value of U(Ω′). The new upper bound is defined with respect to the
new spherical radius, U∗ = U − Ǔ and the new lower bound is defined as,
L∗ = L− Ǔ . From here, the method proceeds as before until Eq. (13). This
relation now produces spherical harmonic coefficients with respect to the new
reference sphere

ρ(Ω′)F ∗(Ω′)
GSHA

=
∞∑
n,m

C∗nm Ynm(Ω′) . (28)

Here F ∗ is defined based on the new U∗, L∗, and R∗ values and C∗nm are
the coefficients referenced to the sphere with radius R∗. To transform these
coefficients to the original reference sphere, R, the following relation is used:

Cnm =
(R∗
R

)n
C∗nm . (29)

These Cnm coefficients are now compatible with those in Eq. (13), or in other
words, they are referenced to the original reference sphere with radius R.
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To show the effect of the approach, we show the degree variance of the
coefficients Cnm computed using the correction in Figure 5b. The expected
damping of higher degree spherical harmonic coefficients is visible in con-
trast to Figure 5a. The method now seems to produce correct gravitational
potential fields for density layers at any depth, because it fulfils the conver-
gence criterion, as can be confirmed in Figure 3. To test this a benchmark
is performed in the next section.

5. Benchmark

To benchmark the improved FSM forward modelling software, a comparison
is performed to the tesseroid software used by Kaban et al. (2010). This soft-
ware uses an algorithm which computes the combined gravitational effect of
elementary volumes that make up a spherical Earth (Artemjev and Kaban,
1994). The algorithm is based on the equations of Strakhov et al. (1989),
improved by Kaban and Mooney (2001) and Kaban et al. (2002). The bench-
mark will compare the vertical component of the gravitational accelerations,
as computed from a density model on an equiangular 1x1 arc-deg grid, which
corresponds to a maximum degree and order of 179 in spherical harmonics
coefficients. The model takes the global Moho depth from CRUST1.0 global
crustal model (Laske et al., 2013) with the density contrast of 450 kg/m3.
The geometry is referenced to a sphere with a radius of 6371 km. Also, the
gravitational field results are calculated on this reference sphere. To obtain
an accuracy of <1 mGal, 8 binomial terms are included in the calculations
for the spectral method, as deduced from inspection of Figure 4.

The benchmark is challenging, because of a difference in both forward
modelling techniques. The tesseroid method uses a block representation,
whereas the FSM approximates the geometry of the mass layer with spheri-
cal harmonic functions. To reduce this difference, we increased the resolution
in the density models for the FSM solution. Figure 6 shows the difference
between the geometries that are used by both methods for three spatial res-
olutions in the FSM, 1x1 arc-deg, 0.5x0.5 arc-deg, and 0.1x0.1 arc-deg. The
higher resolution approximates the tesseroidal geometry much better. The
high-resolution spectral geometry shows the well known Gibbs effects. How-
ever, the calculated gravity values are averaged over a 1x1 arc-deg potential
field grid, therefore most of the Gibbs effect will be removed.

The results of the benchmark are shown in Figure 7. The 1x1 arc-deg
potential field solution is compared to the tesseroid solution in Figure 7a
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and d, without and with a correction, respectively. Figure 7d shows a slight
improvement compared to the uncorrected result, which was expected after
inspecting the convergence criterion, because models up to order and degree
180 in the spherical harmonics can have geometries up to 100 km deep,
according to Figure 3. This particular Moho model stays well within the
correct domain of the convergence criterion. Nevertheless, the maximum
difference between the tesseroid and corrected spectral gravitational solutions
is ± 60 mGal, which is around 10% of the signal. This difference can be
attributed to the different approximation methods for the geometry (Figure
6) and is best visible in regions with large gradients in geometry.

This difference should be reduced after increasing the resolution of the
spectral method. Figure 7b and e show the results using the 0.5x0.5 arc-deg
grid without and with a correction, respectively. Here, the residuals of the
comparison become smaller, which can be attributed to a better approxima-
tion of the shape of the Moho boundary. The proposed correction still does
not have a great effect, because at many locations the convergence criterion
is passed. Except at the Himalaya and the Andes Mountain Range some
differences can be seen between the corrected and not-corrected solution.

The gravitational potential of an even higher resolution model compared
to the tesseroid solution is shown in Figure 7c and f, without and with a
correction, respectively. The effect of failing the convergence criterion is clear,
differences of ±106 mGal are visible (Figure 7c). Thus, despite the increased
spatial resolution, the fast spectral method performs much worse than the
lower spatial resolution model. That is because, to represent the 0.1x0.1
arc-deg resolution, the spherical harmonics coefficients must be estimated up
to 1800 degree. From the convergence criterion we learn that in that case
the mass layer cannot deviate more than 10 km from the reference sphere
(Figure 3). Yet, in the benchmark the Moho interface is on average 30 km
deep, which causes this particular model to fail the convergence criterion and
produce large errors.

After improving the forward modelling by lowering the reference sphere
as explained in the previous section, the differences of the corrected solution
with the benchmark stay between ±2 mGal almost everywhere. We expect
some higher variations for large gradients in the geometries such as in the Hi-
malayas and the Andes (4 mGal). Furthermore, a large difference of 15 mGal
is found at the North pole, which can be attributed to the high resolution
of the tesseroid method there, because of the equiangular grid. The spectral
method is unable to perfectly represent similar geometrical shapes, therefore
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the gravitational effect at these locations is different. Moreover, Figure 7f
shows a large correlation with the Moho geometry, which is also present in
the 0.5x0.5 arc-deg solutions. This can be attributed to the Gibbs effect
that is observed in Figure 6. These effects are not entirely symmetrical and
will therefore not be averaged out completely. The resulting errors are be-
low other gravity modelling errors. For example, Mooney and Kaban (2010)
showed that errors due to uncertainty in sediment thickness will result in up
to 12 mGal, uncertainty in Moho depth contributes to gravity anomalies of
30 mGal, and uncertainty in the thickness of the crystalline crust may reach
up to 50 mGal.

Concluding, the benchmark shows that, despite the convergence error,
the FSM can be improved to produce potential field solutions which differ
from the tesseroid method less than the typical uncertainty in global gravity
field modelling.

6. Conclusions

We have reviewed the fast forward gravitational modelling method using
spherical harmonic representation (Rummel et al., 1988). The FSM is capable
of producing global gravitational potential fields from 3D-density structures
after applying the correction proposed in this study. Because the results
are computed in the form of spherical harmonic coefficients, they can be
easily compared to geopotential models to which spectral filtering is applied.
The method is computationally efficient compared to the rigorous spectral
method in global topographic reductions.

Our analysis showed that the method is prone to large errors when mod-
elling mass layers are situated at greater depths in the Earth, such as crustal
and mantle layers. The error occurs due to truncation of the binomial se-
ries. A mitigation strategy for this depth-dependent error was devised by
lowering the reference sphere during the global spherical harmonic analysis.
This is followed by the transformation of the spherical harmonic coefficients
back to the original sphere before their synthesis to a potential field. This
strategy makes the spectral method capable of modelling the gravitational
potential of mass density layers at any depth with the sufficient accuracy,
as was demonstrated by benchmarking against a commonly used forward
gravitational modelling software using tesseroids. The main difference be-
tween both methods is in the way how the geometry of the mass layers is
approximated, where it can be argued that even though they imperfectly
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Figure 1: Sketch of of an arbitrary mass body. The distance (S) from the reference sphere
R is defined positive upwards, resulting in 0 ≥ U ≥ L.

represent tesseroids, spherical harmonics are not necessarily less suitable to
represent density variations than tesseroids. Despite these differences, simi-
lar gravitational field solutions were constructed with a difference of only ±4
mGal, which is well below other model errors. Thus the method can be used
for constraining global density models of the crust and upper mantle with
gravity data.
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Appendix A. Introducing radial dependent mass density distribu-
tion

If the radial density distribution within a layer can be approximated by a
polynomial model, then the following equations show how to use this par-
ticular distribution distribution with the FSM. The model was introduced
for modelling atmospheric potential fields in Novák (2000). To simplify the
derivation, a quadratic mass density distribution is taken:

16



0
5

10
15

20
0

10
0

20
0

30
0

40
0

U [km]

La
ye

r t
hi

ck
ne

ss
 =

1k
m

, S
H

 d
eg

re
e 

=5
0

0.
1

0.1

0.2
5

0.25

0.5

1
2
510

0
5

10
15

20
0

10
0

20
0

30
0

40
0

La
ye

r t
hi

ck
ne

ss
 =

10
km

, S
H

 d
eg

re
e 

=5
0

0.
1

0.1

0.2
5

0.25

0.5

1
2
510

0
5

10
15

20
0

10
0

20
0

30
0

40
0

La
ye

r t
hi

ck
ne

ss
 =

50
km

, S
H

 d
eg

re
e 

=5
0

0.
1

0.1

0.2
5

0.25

0.5

1
2
510

0
5

10
15

20
0

10
0

20
0

30
0

40
0

U [km]

La
ye

r t
hi

ck
ne

ss
 =

1k
m

, S
H

 d
eg

re
e 

=1
00

0.
1

0.
1

0.
25

0.
25

0.5

0.5

1

2

510

0
5

10
15

20
0

10
0

20
0

30
0

40
0La

ye
r t

hi
ck

ne
ss

 =
10

km
, S

H
 d

eg
re

e 
=1

00

0.
1

0.
1

0.
25

0.
25

0.5

0.5

1

2

510

0
5

10
15

20
0

10
0

20
0

30
0

40
0La

ye
r t

hi
ck

ne
ss

 =
50

km
, S

H
 d

eg
re

e 
=1

00

0.
1

0.
25

0.
25

0.5

0.5

1

2

5
10

0
5

10
15

20
α

 [-
]

0

10
0

20
0

30
0

40
0

U [km]

La
ye

r t
hi

ck
ne

ss
 =

1k
m

, S
H

 d
eg

re
e 

=2
00

0.
1

0.
1

0.
25

0.
25

0.
5

0.
5

1

1

2

5
10

0
5

10
15

20
α

 [-
]

0

10
0

20
0

30
0

40
0La

ye
r t

hi
ck

ne
ss

 =
10

km
, S

H
 d

eg
re

e 
=2

00

0.
1

0.
1

0.
25

0.
25

0.
5

0.
5

1

1

2

5
10

0
5

10
15

20
α

 [-
]

0

10
0

20
0

30
0

40
0La

ye
r t

hi
ck

ne
ss

 =
50

km
, S

H
 d

eg
re

e 
=2

00

0.
1

0.
25

0.
25

0.
5

0.
5

1

1

2

5
10

F
ig

ur
e

2:
C

on
to

ur
pl

ot
of

th
e

va
lu

es
of
C

(k
)

as
a

fu
nc

ti
on

of
U

an
d
α

,f
or

a
nu

m
be

r
of

va
lu

es
of

th
e

sp
he

ri
ca

lh
ar

m
on

ic
de

gr
ee

n
=
ν
−

3
an

d
la

ye
r

th
ic

kn
es

s
|L
−
U
|.

D
as

he
d

re
d

lin
es

in
di

ca
te

th
e

cu
rr

en
tl

y
ty

pi
ca

l
α

=
3

tr
un

ca
ti

on
le

ve
l.

17



−500 −400 −300 −200 −100 00

50

100

150

200

250

criterion < 0.5

criterion > 0.5

Depth [km]

D
eg

re
e 

[−
]

Figure 3: The boundary for an error criterion of 1
2 , as a function of the depth of the mass

layer and the truncation limit. The depth represents the value of U and a truncation limit
of α = 3 is chosen.
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ρ(r′,Ω′) = ρ0(Ω′) [ 1 + a (R− r′) + b (R− r′)2 ] (A.1)

where ρ0(Ω′) is the mass density of the layer at r′ = R, i.e. at the reference
sphere and α and β are defined as:

a =
dρ

dr′
1

ρ0

, (A.2a)

b =
d2ρ

dr′2
1

ρ0

. (A.2b)

When the mass density is dependent on r′, the derivation of the FSM
deviates starting from the radial integral in Eq. (5), because the mass density
is now inside the integral:

rupper(Ω′)∫
rlower(Ω′)

ρ(r′,Ω′) r′n+2dr′ . (A.3)

Substituting Eq. (A.1) in the multiplication inside the integral as follows

ρ(r′,Ω′) r′n+2 = ρ0(Ω′) [ r′n+2 +(a R+b R2) r′n+2−(a+2b R) r′n+3 +b r′n+4] .
(A.4)

Then, (A.3) becomes

ρ0(Ω′)
{1 + aR + bR2

n+ 3

[
(R + U(Ω′))n+3 − (R + L(Ω′))n+3

]
− a+ 2bR

n+ 4

[
(R + U(Ω′))n+4 − (R + L(Ω′))n+4

]
+

b

n+ 5

[
(R + U(Ω′))n+5 − (R + L(Ω′))n+5

]}
(A.5)

The relation can be simplified by the same procedure as previously using
the binomial series expansion. After truncating the binomial series the radial
integral eventually results in

ρ0(Ω′) Rn+3
{(U − L)

R
+

(n+ 2)− aR
2R2

(U2 − L2)

+
(n+ 2)(n+ 1)− 2(n+ 2)aR + 2bR2

6R3
(U3 − L3)

}
. (A.6)
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Equation A.6 is similar to Eq. (10) but with extra terms resulting from the
polynomial density gradient coefficients. After this, the derivation proceeds
as for the FSM for layers with constant density. The second-order polyno-
mial coefficients, a and b, are visible in the second and third terms of the
binomial series expansion. When examining this further, higher-order poly-
nomial coefficients would modify the fourth and higher terms of the binomial
expansion. When only three terms are used in the series expansion, a cubic
polynomial for the radial mass density distribution cannot be used.
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Higher-degree reference field in the generalized Stokes-Helmert scheme for
geoid computation. Journal of Geodesy, 70(1), 176–182.

24


