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Abstract
This paper introduces the Quadrilateral filter, an
advanced extension of the Bilateral and Trilateral
filters, aimed at addressing limitations in high-
gradient regions of images. While the Bilateral
filter effectively preserves edges during smooth-
ing, it struggles with intensity variations, leading to
blunted image details. The trilateral filter improves
upon this by incorporating local plane geometry
approximations but assumes linear pixel intensity
distributions, limiting its effectiveness. The pro-
posed Quadrilateral filter utilizes curvature-based
geometry approximations to enhance noise reduc-
tion, contrast preservation, artifact reduction, and
image reconstruction by accounting for nonlinear
pixel value distributions. The development of this
filter represents the main contribution of the pa-
per while exploring whether the established Bilat-
eral and Trilateral filters’ performance can be fur-
ther improved through curvature-based local geom-
etry approximations. The findings demonstrate im-
provements in image quality and detail preserva-
tion, with broad implications for applications in im-
age de-noising, tone-mapping, multimedia process-
ing, and beyond.

1 Introduction
Image processing is a fundamental area in computer science,
with wide-ranging applications including medical imag-
ing, multimedia processing, and computational photography.
Among the various techniques used in image processing,
the bilateral filter, proposed by Tomasi and Manduchi [6],
is renowned for its ability to preserve edges while smooth-
ing images in a single pass. This filter has proven effective
across numerous applications such as image denoising [9],
tone mapping [3], low-light photography [4], deinterlacing
[7], and cartoon renditions of images [8].

Despite its versatility, the bilateral filter struggles in high-
gradient regions, where it fails to smooth images effectively
due to its inability to incorporate varying intensity levels of
neighbouring pixels. Another pitfall of the bilateral filter is its
tendency to blunt the peaks and valleys in the image, which
can reduce overall image contrast and detail. To address these
challenges, Choudhury and Tumblin [2] proposed the Trilat-
eral filter. This filter extends the bilateral filter by incorporat-
ing local plane geometry approximation. However, the Trilat-
eral filter assumes that pixel intensity distributions in images
are locally linear, which is often not the case. This assump-
tion limits its effectiveness in more complex scenarios.

This paper expands upon the Trilateral filter by introduc-
ing a novel Quadrilateral filter, which further refines the fil-
tering process through curvature-based geometry approxima-
tions. This approach aims to enhance the filter’s capabilities
in noise reduction, contrast preservation, artifact reduction,
and improved image reconstruction. By considering the non-
linear distribution of pixel values from neighbouring pixels,
the Quadrilateral filter addresses the limitations of its prede-

Figure 1: Filter window comparison.

cessors and provides a more robust solution for high-gradient
regions.

The key research question addressed in this study is: Can
the performance of the Bilateral and Trilateral filters be fur-
ther enhanced by utilizing curvature-based local geometry
approximations for the pixel intensity distribution?

By exploring this question, the study aims to develop ad-
vanced filtering techniques that improve image quality and
detail preservation, ultimately benefiting a wide range of ap-
plications from medical imaging to multimedia processing.

2 Filter Preliminaries
Filters produce an output for each point of the signal Iout by
combining together the original value of the point Iin and the
values of the neighbouring points in the signal. The way the
combination occurs and the selected neighbourhood depends
on the filter. This concept of filters extends to N-dimensions;
however, for simplicity of illustration, it will be explained for
a 1-D signal.

2.1 Bilateral Filter
For a start, it is important to understand how the Gaussian fil-
ter works. It sums the values in the neighbourhood by weigh-
ing them using a kernel G() as seen in Figure 1(a). This re-
sults in the output:

Iout(q) =
∑
p∈S

Iin(q)Gσ(||p− q||) (1)

where G(x):

Gσ(x) =
1√
2πσ2

e−
x2

2σ2 (2)

And S represents a set of points in the kernel window, consid-
ered as neighbours. Usually, the size of the kernel with radius
1.5 ∗ σ is used.

The Bilateral filter takes it a step further, by taking into
account the variation of intensities to preserve edges. Two
points are considered close to each other if both are nearby in
the spatial domain and are similar in intensities. The range
kernel is introduced to represent the similarity in intensity
seen in Figure 1(b).

BF (q) =
1

k(q)

∑
p∈S

Iin(q)Gσs(||p− q||)

Gσr (||Iin(q)− Iin(p)||)
(3)



where k is the normalization factor:

k(q) =
∑
p∈S

Gσs
(||p− q||)Gσr

(||Iin(q)− Iin(p)||) (4)

Variances of spatial and range kernels are represented by
σs and σr respectively. These parameters affect the blurring
behaviour of the Bilateral filter.

2.2 Trilateral Filter
Proposed by Choudhury and Tumblin, the Trilateral filter [2]
extends upon the Bilateral filter. It modifies the range kernel
by ”tilting” the range kernel in order to account for gradients
present in the image. Instead of directly comparing intensities
of the neighbouring points, it approximates a plane through
the neighbourhood and compares the neighbouring point in-
tensities to the plane as seen in Figure 1(c). This allows for
smoothing areas where neighbouring points are not similar to
each other (such as high-gradient areas). The use of a Bi-
lateral filter is suggested in order to approximate the tilting
angle of the plane:

Gθ(q) =
1

k(q)

∑
p∈S

∇I(q)Gσs(||p− q||)

Gσr (||∇I(p)−∇I(q)||)
(5)

where ∇Iin(x) is the gradient of the point computed as:

∇I(x, y) ≈ (I(x+1, y)−I(x, y), I(x, y+1)−I(x, y)) (6)

The forward difference is used as opposed to central to mini-
mize the smoothing effect.

The plane is then computed as:

P (q, p) = Iin(q) +Gθ(q) ∗ (p− q) (7)

Deviation from the plane is defined as:

Iδ(p, q) = Iin(q)− P (p, q) (8)

The final value is then computed as:

Iout(q) = Iin(q) +
1

kδ

∑
p∈S

Iδ(p, q)Gσs
(||p− q||)

Gσr
(Iδ(p, q))

(9)

with normalization factor kδ:

kδ(q) =
∑
p∈S

Gσs
(||p− q||)Gσr

(Iδ(p, q)) (10)

3 Quadrilateral Filter
The Quadrilateral filter presented in this paper aims to en-
hance the accuracy of image reconstruction by considering
the non-linear distribution of pixel values from neighbouring
pixels. The main contributions of this approach are:

• Quadratic Surface Mapping: Using a quadratic surface
approximation for the local geometry.

• Uncertainty Estimation: A measure of how well the
plane is mapped onto the neighbourhood pixels, used to
blend filtering results adaptively.

Figure 2: A quadratic plane reconstruction of the local geometry of
a noisy 2-D signal at a point.

3.1 Quadratic Surface Mapping
The quadratic surface allows us to represent the desired cur-
vature of the pixel value distribution as shown in Figures 1(d)
and 2. A second-order Taylor series expansion is employed to
construct the quadratic surface approximation for each pixel.
To find plane approximation at point (x, y), from original
(x0, y0)

Pquad(x, y) = f(x0, y0)︸ ︷︷ ︸
Order 0 part

+ fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)︸ ︷︷ ︸
Order 1 part

+


1

2
fxx(x0, y0)(x− x0)

2

+ fxy(x0, y0)(x− x0)(y − y0)

+
1

2
fyy(x0, y0)(y − y0)

2


Order 2 part

(11)
For this, it is necessary to compute partial derivatives of the
input image. Just as in the case of the trilateral filter, which
can be thought of as a first-order Taylor series approximation,
a bilateral filter is used to average gradients of an image, re-
jecting gradients that are very different from the current pixel.
The partial derivatives for x and xx are shown below, and the
rest are calculated similarly.

fx(q) =
1

k(q)

∑
p∈S

∇xI(q)Gσs
(px − qx)

Gσr
(||∇xI(p)−∇xI(q)||)

(12)

fxx(q) =
1

k(q)

∑
p∈S

∇xfx(q)Gσs(px − qx)

Gσr (||∇xfx(p)−∇xfx(q)||)
(13)

Following the methodology proposed in the trilateral filter
[2], forward differences are used to calculate the gradient at a
point. The gradient ∇I is computed as:



∇xI(x, y) ≈ I(x+ 1, y)− I(x, y)

∇yI(x, y) ≈ I(x, y + 1)− I(x, y)
(14)

The quadratic plane is used to find the deviation of the
neighbouring pixels from the approximated geometry:

Iδ(p, q) = Iin(q)− Pquad(p, q) (15)

Iout(p) = Iin(q) +
1

kδ

∑
p∈S

Iδ(p, q)Gσs(||p− q||)

Gσr (Iδ(p, q))

(16)

kδ(p) =
∑
p∈S

Gσs(||p− q||)Gσr (Iδ(p, q)) (17)

This approach was chosen as an extension of the concepts
introduced in the Trilateral filter paper due to its robustness
and efficiency in approximating linear geometry. This eas-
ily extends to Taylor’s second-order series approximation to
capture the curvature in the local geometry. This extension
comes at a computational cost described in Section 4.5.

3.2 Uncertainty Estimation
The quadratic approximation may not always accurately rep-
resent the input signal. In such instances, the data may not
be appropriately filtered, making it preferable to adopt a sim-
pler geometric approximation, such as the Bilateral filter. To
identify these specific areas, the concept of uncertainty is in-
troduced. This concept was first explored in the Fast Bilateral
Filtering paper [3], where it serves to identify anomalous pix-
els in images. In the context of the Quadrilateral filter, high
uncertainty values would indicate pixels where the plane ap-
proximation does not closely match the actual intensities of
the adjacent pixels. As detailed in [3], the normalization fac-
tor k from Equation 17 is employed as an uncertainty estima-
tor.

The normalization factor must be mapped to a meaningful
[0,1] range for interpolation with the bilateral filter. Uncer-
tainty should be higher for outliers where the points are far-
ther away from the reconstruction plane. To find areas with
lower than average normalization values k, a sigmoid func-
tion is used:

U(x) =
1

1 + ea∗(k−µk)/σk + b
(18)

Here, the µk is the average normalization factor, and σk

is the standard deviation of k values. There are 2 constant
present in the formula, the higher the value of a the more of an
outlier the point needs to be for high uncertainty value. The
higher the second constant, b, the smaller uncertainty values
are in general, so less interpolation is involved.

High uncertainty values indicate regions where the
quadratic approximation performs poorly, such as at sharp
edges. In these cases, interpolation between the output of the
Quadrilateral filter Q and the Bilateral filter B is calculated as
follows:

Ifinal(q) = (1− u) ·Q(q) + u ·B(q), (19)

4 Results
This section evaluates the Bilateral, Trilateral, and Quadrilat-
eral filters on different inputs. It highlights improvements and
artifacts.

4.1 Signal input
Figure 3 demonstrates the distortion of the curved signal in-
puts by both Bilateral and Trilateral filters. The Quadrilateral
filter, by design, preserves the quadratic functions ideally due
to the use of Taylor’s second-order approximation. It also
performs nearly perfectly on the cubic function input, sug-
gesting that the second-order approximation is sufficient and
that higher-order terms of the Taylor series are not necessary.

Filtered Quadratic Function Filtered Cubic Function

inp

bilat

trilat

quad

inp

bilat

trilat

quad

Figure 3: Quadratic and cubic functions as input signals. Quadrilat-
eral preserves both shapes while the Trilateral and Bilateral distort
them.

The Bilateral filter performs poorly at removing noise from
the signal, as seen in Figures 4 and 5. This is particularly ev-
ident in high-gradient regions Figure 4(2), where the neigh-
bouring values are too different in intensity and therefore dis-
carded by the range kernel.

1(c) 1(a)  1(b)

2(c) 2(a)  2(b)

3(c) 3(a)  3(b)

(a) - Bilateral (b) - Trilateral (c) - Quadrilateral

Figure 4: Zoomed in details from Appendix A. (1) - the Bilateral
filter maintains a sharper edge. (2) - linear gradient area smoothed by
Quadrilateral and Trilateral filters. (3) - Quadrilateral filter produces
a smoother curve.

Both the Trilateral and Quadrilateral filters perform bet-
ter at smoothing the signal. However, the Quadrilateral filter



shows an improvement, especially in regions where the gradi-
ent changes more rapidly, as shown in Figures 4(3) and 5(1).

Figure 5: Filter comparison on 2-D signal, with a zoom-in on the
curved region.

Figure 6: Difference between filtered noised signal and the original
signal

Figure 6 highlights the patterns of the filters by com-
paring the filtered results with the reference signal prior to
the applied Gaussian noise. The Bilateral filter successfully
smoothes areas with constant intensity but fails to remove
noise from high-gradient areas.

The Trilateral and Quadrilateral filters exhibit similar be-
haviour in this example, both effectively smoothing high-
gradient areas, with the Quadrilateral filter achieving a result
closer to the original signal. However, both Trilateral and
Quadrilateral filters produce an undesired halo effect on the

perimeter of the graph and at the sharp cut-off at the top, Fig-
ure 6. The same artifact is observed in 4(1) where both filters
are smoothing in sharp edge areas.

4.2 Images
In this section, a visual comparison is made of various images
to demonstrate the properties of the filters. The following val-
ues of σs = 8 and σr = 30 are used to highlight the difference
between the filters since they perform more similarly under
smaller parameters.

Figure 7: Applying filters on an image of a sculpture.

Figure 8: Highlights from Figure 7

All three filters preserve the details in the highly detailed



area in Figure 7, such as the hair and the leaves. However,
in this case, both Trilateral and Quadrilateral filters produce
a smoother result. The main difference can be seen in the
highlighted areas in Figure 8, where the Bilateral filter does
not smooth these areas and leaves them noisy. The detail layer
also shows regions where the Bilateral filter did not remove
the noise as opposed to the other two filters, Figure 11(1).

Quadrialteral and Trilateral difference
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Figure 9: Difference between the Quadrilateral and the Trilateral
filters. (1) - the Quadrilateral keeps originally bright areas in the
input image brighter than the Trilateral. (2) - The Quadrilateral filter
keeps originally dark areas darker than the Trilateral filter.

However, as seen in Figure 10, the Quadrilateral filter pro-
duces stronger halos on sharper edges than the Bilateral fil-
ter. This is caused by the attempt of the Quadrilateral filter to
approximate sharp edges with a smoother geometry. While
these artifacts are not very visible in the filtered images, they
are still undesirable.
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Figure 10: Difference between the Quadrilateral and the Bilateral
filters, highlighting halos.

The main difference between the Trilateral and the Quadri-
lateral filters, as demonstrated in Figure 9, is the contrast in
the produced image. The Quadrilateral filter has darker, dark
areas Figure 9(2) and brighter, bright areas 9(1). This is also
visible in the detail layer, Figure 11, where the Trilateral fil-
ter darkens originally bright areas more than the Quadrilateral
filter. This effect is further confirmed by Figure 12, showing
the increase in the image’s contrast as the range sigma in-
creases.
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Figure 11: Highlights of a detail layer of the filters produced by sub-
tracting filtered image from the noisy image. (1) - areas smoothed
better by Quadrilateral and Trilateral filters. (2) - originally bright ar-
eas that are darkened by the Trilateral filter more than by the Quadri-
lateral. Appendix B shows the full detail layer.
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Figure 12: Image contrast of Trilateral and Quadrilateral filters.



4.3 Interpolation
Uncertainty, discussed in Section 3.2, helps to identify re-
gions where the quadratic surface approximation is not accu-
rate to the neighbouring pixel intensity distribution. Figure 13
shows a noisy step function and an artifact produced by the
Quadrilateral filter next to the edge caused by the quadratic
surface approximation. Interpolation with the Bilateral filter
resolves this issue.
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Figure 13: Contrast comparison of Trilateral and Quadrilateral fil-
ters.
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Figure 14: Difference between interpolated and Quadrilateral results
and corresponding highlights from Appendix D.

Using the uncertainty map shown in Appendix C and in-
terpolating with the Bilateral filter, the method successfully
reduces the halo effect on an image, producing sharper edges,
as seen in Figure 14.

4.4 HDR tone-mapping
This section discusses the tone reduction method proposed
by Durand and Dorsey [3], which relies on a two-scale de-
composition of an image into base and detail layers. In this
approach, contrast reduction is applied only to the base layer,
preserving the details.

The base layer is obtained by applying a de-noising filter to
the intensity map of the input HDR image. After the contrast
in the base layer is reduced, the detail layer, representing the
removed ”noise,” is added back to the image.

2

(a) Bilateral (b) Trilateral (c) Quadrilateral (d) Quadrilateral
+ Interpolation

(1)

(2)

1
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Figure 15: Highlights of a tone-mapped image. The overall bright-
ness of the quadrilateral filter is higher than that of the other filters.
(1) - preservation of small details. (2) - halos. The full image is in
the Appendix E.

(a) Bilateral (b) Trilateral (c) Quadrilateral (d) Quadrilateral
+ Interpolation

Figure 16: Highlight of a dark area of a tone-mapped image. The
full image is in the Appendix E.

The Quadrilateral filter results in an overall bright and clear
image, as seen in Figures 15 and 16. This can be explained
by the closer alignment of the range kernel to the neighbour-
ing pixel intensities distribution, resulting in dark areas less
affected after filtering as seen in the detail layer, Figure 17.



However, as seen in Figure 15(c)(1), some details are lost due
to the incorrect surface approximation. The Quadrilateral fil-
ter also produces halos, as seen in Figure 15(c)(2). Both is-
sues are fixed by utilizing interpolation with the Bilateral fil-
ter. The interpolated result is the middle ground between the
Bilateral filer’s detail sharpness and the Quadrilateral filter’s
brightness in dark regions.
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Bilateral Trilateral

Quadrilateral

Quadrilateral +

Interpolation

Figure 17: Detail layer extracted from a tone-mapped image, Ap-
pendix E.

4.5 Computational performance

Table 1 shows the run-times of the Bilateral, Trilateral and
Quadrilateral filters. Varying image size and kernel diameters
are used. Computation of each derivative is essentially the
pass of a bilateral filter, therefore, theoretically the Quadri-
lateral filter take around 6 times longer than the standard Bi-
lateral filter. In practice, the Quadrilateral filter is around 3-4
times slower than the Bilateral filter.

These time samples measure the performance of non-
optimized code and can be improved with techniques such
as Fourier transform or sub-sampling mentioned in [3] and
hardware-based acceleration methods [5], [1].

Image Size Kernel size Bilateral Trilateral Quadrilateral
Time(s) Time(s) Time(s)

243 × 269 11 3.2 5.6 10.8
243 × 269 25 3.0 7.2 12.9
640 × 427 11 13.5 24.3 45.4
640 × 427 25 13.6 31.7 60.0
1024 × 768 11 41.53 70.21 131.26
1024 × 768 25 41.9 91.1 174.4

Table 1: Running time of each filter on different images with differ-
ent kernel diameters.

5 Responsible Research
The study incorporates 1-D and 2-D signal examples featur-
ing surfaces with constant intensities, as well as linear and
non-linear gradients. This diverse set of signal characteristics
ensures that the input is not tailored to the curvature-based
filter, allowing for an unbiased evaluation of the filters’ per-
formance. These examples serve as simplified yet effective
representations to illustrate the filters’ capabilities.

The images chosen for testing show a wide range of prop-
erties, including high-detail areas, medium-detail areas, and
areas with no detail. This selection provides a comprehensive
evaluation of the filter’s performance across different types
of content. Additionally, these images are commonly used in
other filter-related research papers, allowing comparisons and
validations of results.

To ensure the reproducibility of results, the implementation
methods for both the Quadrilateral and Trilateral filters are
thoroughly documented. The OpenCV implementation of the
Bilateral filter is used for comparison. Documented code is
provided, encompassing all relevant filters and visualization
scripts, Appendix F. The parameters used in the experiments
are also detailed, allowing for the replication of results and
verification of findings. This approach not only validates the
results but also contributes to the broader research community
by providing a solid foundation for further studies.

6 Conclusions and Future Work
The Quadrilateral filter introduces an innovative edge-
preserving smoothing technique that considers the curvature
of pixel intensity distributions. This filter effectively pro-
cesses N-dimensional input data, offering excellent noise re-
duction while preserving details. The Quadrilateral filter can
smooth an image in high-gradient areas while preserving the
original distribution of pixel intensities. The concept of un-
certainty and interpolation with the Bilateral filter offers an
even greater sharp-edge preservation. Its potential applica-
tions extend beyond image de-noising and tone mapping.

Future research could explore several ways to enhance the
Quadrilateral filter. For instance, implementing a multi-stage
interpolation process involving the Trilateral and Bilateral fil-
ters could achieve improved results. Additionally, employ-
ing a small-kernel Gaussian filter for interpolating individual
anomalous pixels, as discussed in [3], could further refine the
smoothing capabilities of the Quadrilateral filter.

Investigating the parameters involved in uncertainty calcu-
lation is another important area for future work. Developing
methods for automatic parameter deduction from the input
context, rather than relying on user-defined parameters, could
greatly enhance the filter’s usability and effectiveness. More-
over, addressing the current computational efficiency chal-
lenges will be essential for achieving faster implementations,
making the Quadrilateral filter more practical for real-time
applications.

In summary, the Quadrilateral filter represents a significant
advancement in edge-preserving smoothing techniques, with
a potential for future improvements and applications.



A Appendix: Test 1D signal

Figure 18: Filter comparison on 1-D signal containing constant in-
tensity, linear gradient and a non-linear gradient.

B Appendix: Detail layer
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Figure 19: Detail layers of the Bilateral, Trilateral and Quadrilateral
filters.

C Appendix: Uncertainty Map

Figure 20: Uncertainty map of a sculpture image.

D Appendix: Interpolated and
non-Interpolated Quadrilateral results

0

Figure 21: Original Quadrilateral and the one using Interpolation
with the Bilateral filter.



E Appendix: Memorial church tone-mapped

Bilateral Trilateral

Quadrilateral Quadrilateral +
Interpolation

Figure 22: Tone-mapped image of the memorial church. Parameters
used: Spatial sigma - 8, Range sigma - 0.5.

F Appendix: Code repository
GitHub repository - https://github.com/dmytroMaksymchuk/QuadlateralFilter
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