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Abstract

Test-cube is a tool that focuses on developer-friendly test amplification. Test ampli-
fication is a technique to improve a test suite by generating new tests based on manually
written ones. Currently, these generated tests contain much redundant casting. Our
study aimed to improve the readability of these generated test cases by reducing super-
fluous casting. To test this, we developed multiple cast deleters categorized into two
types: simple and fine-grained cast deleters. A simple cast deleter removes casts based
on limited knowledge but can make errors. A fine-grained cast deleter only removes
casts if it knows they are redundant based on much contextual information. We com-
pared these two types in terms of accuracy by gathering statistical data when running
them against real-world examples of amplified test cases. We also discussed the types
of casting cases for which they performed well or could be improved based on manual
code inspections. In this study, when amplifying all the tests of four public repositories,
we found 3,085 casts in 281 tests containing casts. Of these, 97.18% were redundant,
and our fine-grained deleter detected and deleted 98.87% of these. We found this fine-
grained deleter to be the worthwhile option compared to a simple cast deleter. This
was not because the simple cast deleter was slightly less accurate at 97.18% rather than
98.80% but because it showed extremely inconsistent accuracy. The second benefit of
the fine-grained deleter was that it caused no tests to fail, while the simple cast deleter
caused 18.15% of tests to fail. This paper provides excellent insights and techniques to
reduce vast amounts of redundant casting in test amplification. We hope it will make
test amplification more developer-friendly and increase its overall practicality.

1 Introduction
Studies show that approximately 25% — up to even 50%[1, 2] — of the software engineering
effort is spent on testing[1, 3, 4, 5]. Test amplification is a technique that helps reduce this
effort. This technique ‘mutates the setup phase of existing, manually written test cases and
generates new assertions to test previously untested scenarios.’[6]. A tool that implements
this technique is DSpot1.
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DSpot works well in terms of added coverage but lacks practicality due to various us-
ability issues[6]. Thus, research was conducted on developer-friendly test amplification[6],
and the development of the IntelliJ plugin called test-cube2 which extends DSpot.

Tests generated by test-cube currently have much superfluous casting. Figure 1 shows
an example of this. This study showed that of 3.085 casts in amplified test cases, only 87
were necessary. Other studies show that this problematic for numerous reasons, such as
code conciseness, execution speed, and code smells[6, 7, 8, 9, 10, 11].

// Original
assertEquals(1066324289, ((int) (((FilterStreamType) (type)).hashCode())));
// Without redundant casts
assertEquals(1066324289, type.hashCode());

Figure 1: Example of Casting in Code Generated by Test-Cube
No approaches to reduce the number of redundant casts for amplified test cases have been

developed. However, many studies have researched casts and casting analyzers to determine
the necessities of casts in different or more general scenarios[12, 13, 11, 8, 14, 7]. These
led to various state-of-the-art casting analyzers[12, 7, 14, 15] that can effectively determine
the context in which a cast is is not required. The only problem is that only a few of these
casting analyzers focus on improving readability. These few are either not built for test code
or do not allow false flagging of necessary casts as redundant.

This study aims to achieve better readability for amplified test cases. Our primary
hypothesis was that simpler cast deleters might be as beneficial as more advanced deleters if
they are allowed to delete some necessary casts. To investigate this concept, we have designed
two types of cast deleters and questioned how well each one can detect cast redundancy.

The first type of deleter is the simple cast deleter. It deletes casts based on an limited
amount of contextual information. This lack of information might cause it to sometimes
delete necessary casts. Thus, its ability to detect cast redundancy is measured based on
accuracy. Here, accuracy is defined as the sum of correctly deleted casts and correctly
retained casts, both divided by the total number of casts. Therefore, the first sub-question
is as follows:

SQ1: How much accuracy can a simple cast deleter provide?

The second type of deleter is the fine-grained cast deleter which is similar to a
traditional casting analyzer. The only difference is that that the sole objective of the deleter
is removing redundant casts. This type of deleter does not delete necessary casts and thus
requires much contextual information to determine a cast as redundant and delete it. Thus,
its ability to detect cast redundancy is not measured based on accuracy, but only regarding
the percentage of redundant casting it reduces. Therefore, the second sub-question is as
follows:

SQ2: How much redundant casting can be reduced with a fine-grained cast deleter?

Having categorized the cast deleters into two types, we investigate the benefits of both.
The main research question is formalized as follows:

RQ: Is a fine-grained cast deleter worthwhile compared to a simple cast deleter in terms of
accuracy when simplifying superfluous casts?

2https://github.com/TestShiftProject/test-cube
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To answer our research and sub-questions we implemented three casting deleters based
on preliminary research and ran them against amplified test cases generated from four public
repositories. We determined the performance of these casting deleters based on manual code
inspections and statistical observations.

This allowed us to make the following contributions:

• three implemented approaches to reduce the number of redundant casts

• insights into multiple types of necessary and redundant casts occurring in amplified
test cases

• a study evaluating the advantages and disadvantages of simple and fine-grained cast
deleters in terms of accuracy

2 Methodology
To answer the research question we compared multiple statistics generated from a large
sample set of ‘real-world’ examples. Subsequently, we performed a qualitative manual code
inspection on a smaller sample set of these ‘real-world’ examples. This code inspection aimed
to better understand the scenarios in which the algorithm is successful or unsuccessful and
why.

Section 2.1 and Section 2.2 discus the concept, workings of, and reasoning behind the
two types of casting deleters. In the following section we discuss the idea, the workings of,
and reasoning behind the two types of casting deleters.

2.1 Simple Cast Deleter
The standpoint that not all amplified test cases must pass provides the opportunity to
prototype and test some interesting concepts with varying levels of strictness. Normal cast
deleters do not have this ability and leave a cast untouched when the possibility of it being
a necessary cast is minimal. We tested the concept of forcing limited information deleters
to determine how incorrect they were and how beneficial this error margin could be.

2.1.1 All Cast Deleter

An extreme and interesting concept is deleting all casts. With this approach, we tested
the ‘loosest’ case possible. This provided insights into the maximum loss of necessary casts
versus the optimal readable case. Where all its eggs are gathered in the basket of readability
and asks, ‘what is the worst that can happen?’

This deleter is implemented using the IntelliJ Program Structure Interface (PSI)3 frame-
work for plugins. The interface enables a simple check whether an expression is a casting

3https://plugins.jetbrains.com/docs/intellij/psi.html

3



expression, and if it is, it deletes it. See Algorithm 1 for the pseudocode of this algorithm.
Algorithm 1: All Cast Deleter
(extends Psi.JavaRecursiveElementWalkingVisitor4)

Input: Amplified Test Cases = tests
Output: Test suite Without Any Casting

1 foreach expression in tests do
2 if expression instanceoff PsiTypeCastExpression then
3 expression.Remove()

4 return tests

2.1.2 Double Cast Deleter

Assert.assertTrue(((HttpConnection)(HttpConnection)o_cookie__3)).get().hasText());

Figure 2: Double casting in amplified test case

Another concept is deleting all but the most outer cast. This algorithm might appear illogical
because multiple casts on the same statement are rarely observed. However, as shown in the
example in Figure 2, test-cube does generate such cases. According to the Java language
grammar[16], double casting is never necessary because casting is essentially a widening or
narrowing conversion. That is, the inner cast for double casting is always redundant. Thus,
while this algorithm works only for a specific case, it works well for that case, as it will never
delete a necessary cast.

To implement this deleter, we also used the PSI framework. As shown in Algorithm 2,
we checked all surrounding expressions of a cast to determine whether they were also casts.
If so, we deleted them.
Algorithm 2: Double Cast Deleter
(extends Psi.JavaRecursiveElementWalkingVisitor4)

Input: Amplified Test Cases = tests
Output: Test suite Without Any Casting

1 foreach expression in tests do
2 if expression instanceoff PsiTypeCastExpression then
3 children = expression.getChildren()
4 foreach child in children do
5 if child instanceoff PsiTypeCastExpression then
6 child.Remove()
7 Repeat from line 3 with expression = child

8 return tests

2.2 Fine-Grained Cast Deleter
Fine-grained casts analysis tools can flag casts as redundant by obtaining more insight
into the surrounding contexts of the cast. We examined multiple state-of-the-art casting
analyzers. Based on the best one, we implemented a cast deleter.

The ‘best analyzer’ is defined as the one covering the most casting types/patterns oc-
curring in test-cube. This is IntelliJ’s code cleanup casting analyzer. Section 2.2.1 provides
more information on why this is the case.

4https://github.com/JetBrains/intellij-community/blob/master/java/java-psi-
api/src/com/intellij/psi/JavaRecursiveElementWalkingVisitor.java
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The fine-grained cast deleter works by calling IntelliJ’s analyzer for every cast in the test
suite. If the analyzer flags it as redundant, the cast is deleted. This is observed in more
detail in the pseudocode shown in Algorithm 3.
Algorithm 3: IntelliJ's Cast Deleter
(extends Psi.JavaRecursiveElementWalkingVisitor4)

Input: Amplified Test Cases = tests
Output: Test suite Without Any Casting

1 foreach expression in tests do
2 if expression instanceoff PsiTypeCastExpression then
3 is_redundant = IntelliJRedundantCastUtil.isCastRedundant(expression)5
4 if is_redundant then
5 expression.Remove()

6 return tests

2.2.1 Rivaling Fine-Grained Cast Deleters

We examined various analysis tools for implementing a fine-grained cast deleter. These tools
are not specifically designed for finding redundant casts, and they all work differently. This
makes it extremely difficult to compare them with a single measurement. Thus, we grouped
the analysis tools into two subcategories: static analyzers and non-static Java verifiers. This
enabled a simple overview comparing the static analyzers and discussion of the strengths
and weaknesses of the Java verifiers that are more difficult to compare.

Static analyzers. We examined four static analyzers: JDeodorant [7, 14], PMD [17, 18], JS-
parrow [19], and IntelliJ’s code cleanup5 We evaluated which was the best based on how many
and which casting cases it supported. According to these criteria, IntelliJ’s code cleanup
was the best. IntelliJ’s code cleanup supported all casting cases that the other analyzers
supported and more. This is shown in Table 1.

It is noteworthy that JDeodorant does not specifically consider the casting cases repre-
sented in Table 1. It can only consider these cases based on all the contextual information
it gathers. This is because JDeodorant focuses on code smells and refactoring them. One of
the code smells is type checking; to refactor the smell, JDeodorant gathers type hierarchy
information for casts[14, 7].

Casting Cases JDeodorant PMD Jsparrow IntelliJ
Cast to same type as itself + + + +
Cast when accessing collection elements - + - +
Widening & Narrowing Cast + - - +
Cast in Lambda expressions - - - +
Cast in Conditional expression - - - +
Boxing & Unboxing Cast - - - +
Qualifier Consideration of casted types - - - +

Table 1: Supported Casting of Static Analyzers

5https://github.footnote:JavaRecVisitorcom/JetBrains/intellij-community/blob/12245b5e58f629879d1f481e8a0d743de152310e/java/java-
analysis-impl/src/com/intellij/psi/util/RedundantCastUtil.java
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Java verifiers. A Java verifier ‘ensures that code passed to the Java interpreter is in a fit
state to be executed and can run without fear of breaking the Java interpreter.’[16] Code
with poor casting can break the interpreter. The general concept behind considering a Java
verifier as a foundation for the cast deleter is that the verifier can determine whether deleting
the cast would break the interpreter and thereby the test. Note that this means it can only
check whether the cast is required for a compiling test and not whether it is required for a
passing test.

ESC/Java. The strength of ESC/Java is that it can determine whether the removal
of a cast violates design decisions[12]. Thus, it can determine whether the cast is required for
passing or failing a test. The weakness of ESC/Java is that it requires manually added
annotation for the tool to work properly. According to Flanagan et al. [12], this required
manual labour is perceived as a heavy burden. Thus, we have not chosen ESC/Java as
a foundation for the fine-grained cast deleter.

JBMC.The strength of JBMC is that it can verify the absence of uncaught exceptions[15],
with a high overall verification rate of approximately 89% for correctly or incorrectly iden-
tifying errors[13]. The weakness of JBMC is that it does not support lambda functions.

We consider IntelliJ’s code cleanup the best analysis tool. It is the best of all
the evaluated static analyzers. Due to its high support for a wide variety of casting cases,
it is more suitable than the evaluated Java verifiers. The best Java verifier, JBMC, works
for a much smaller percentage of casting types than IntelliJ’s code cleanup. JBMC does not
support casts required for passing a test and casts in lambda expressions.

3 Experimental Setup
This section describes how the experiment is set up and how it can be reproduced. First,
we discuss how we obtain the starting data. We then provide a more in-depth overview
by writing the complete experiment in pseudocode. Finally, we provide a small section
describing the reproducibility of the experiment and how it can be reproduced.

3.1 Data Generation

Figure 3: The Data Generation Process

To ensure the data originated from varied real-world examples, we amplified all tests from
four different public repositories: jsoup6, XWiki-commons-filter-api7, JavaPoet8, stream-
lib9. For each public repository, we generated three measurements to benchmark the cast
analyzers. The data generation process is divided into three stages, as illustrated in Figure 3.

The first stage amplifies all tests in a public repository using test-cube2. All amplified
tests that do not contain casts are then filtered out. They are not relevant for our research

6https://github.com/jhy/jsoup/commit/ae9a18c9e1382b5d8bad14d09279eda725490c25
7https://github.com/xwiki/xwiki-commons/commit/73e1ad74f1ef8a88695b062de6aa25f43604d2b7
8https://github.com/square/javapoet/commit/88517888277e3e92cbbdd054228f7f0ff68a841c
9https://github.com/addthis/stream-lib/commit/5a3bc87c5314f7771ea3968e9015a3d25536343e
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and measuring them would only lead to a false sense of security in terms of the number of
passing tests.

The second stage analyzes and removes casts in the amplified test cases using the two
types of cast analyzers: two simple cast deleters (Section 2.1) and a fine-grained cast deleter
(Section 2.2). This results in a different test suite for every casting analyzer, where the only
difference is the casts inside the tests. Everything else in the test suite and environment is
be kept constant.

The third and final stage obtains the data. It gathers three different measures of the test
suites from stage two: the number of casts, the number of passing tests, and the statement
coverage. Additionally, these measures are also obtained for the original test suite (directly
obtained from stage 1).

The concept behind these three measurements is that the difference in casts shows the
potential improvement, and the test and its coverage work as a reality check on this im-
provement. The coverage is the extra check that, even if a test passes, it has taken the
intended execution path. This can be the case if the cast to a child object is removed and
it now executes a similar, but not the same, parent method.
Algorithm 4: Data Generation
1 public_repos = {jsoup6, XWiki-commons-filter-api7, JavaPoet8, stream-lib9}
2 foreach repo in public_repos do
3 begin — Stage 1: Amplify Tests ——
4 amplified_tests = []
5 foreach test in repo do
6 amplified_tests.addAll( test-cube2.Amplify(test))

7 amplified_tests = RemoveAllTestsWithoutCasting(amplified_tests) // Tests without cast are
not relevant for our study. They would only be a threat to our internal validity, see
Section 5.2

//
8 begin — Stage 2: Run Casting Analyzer —— (see Section 2)
9 test_suites[0] = amplified_tests

// (see Algorithm 1: All Cast Deleter)
10 test_suites[1] = Algo1AllCastDeleter(amplified_tests)

// (see Algorithm 2: Double Cast Deleter)
11 test_suites[2] = Algo2DoubleCastDeleter(amplified_tests)

// (see Algorithm 3: IntelliJ’s Fine-Grained Cast Deleter)
12 test_suites[3] = Algo3IntelliJsCastDeleter(amplified_tests)

//
13 begin — Stage 3: Report Measurements ——
14 foreach test_suite in test_suites do
15 cast_count = IntelliJsPsiStructure3.CountCast(test_suite)
16 (passing_tests, statement_coverage) = TestRunner10.RunTests(test_suite)
17 SaveToCSV(cast_count, passing_tests, statement_coverage)

3.2 Reproducibility
This research is fully reproducible. The full replication package with instructions on how
to run it is available on Zenodo11. This paper contains everything required to replicate
the same results, from the cast deleters to the amplified and original test methods. For
anyone who wants to test it completely, the exact repository snapshots are provided in the
footnotes6,7,8,9.

10 https://github.com/STAMP-project/test-runner/commit/c84fc308f771b567b24867915066ee116cbeeca5
11Zendo doi: ‘10.5281/zenodo.5035751’
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4 Results
The results are divided into two subsections: the statistical data and the manual code
inspections. The statistical data section provides a broad view of how well all casting deleters
work by presenting the raw and relative measurements. The manual code inspection section
describes why they would work well in certain scenarios. It provides insights into these
scenarios and discusses how well the casting deleters work with them and how relevant the
scenarios are.

4.1 Statistical Data
The data is obtained from four repositories, where the data varies considerably per reposi-
tory. An example of this is the ratio of casts versus tests. The XWiki repository has more
than 35 casts per test on average, while the other repositories have fewer than two casts per
test on average. This is shown in Table 2 in the ‘No Algorithm’ rows. Thus, the data is
always represented per repository and as a whole, which is the sum over all repositories.

Within some repositories, the requirement for casting is much higher. This is shown in
Figure 4, as all casts of repositories (b) XWiki and (c) JavaPoet are redundant. However,
the requirement for casting in (a) jsoup and (d) stream-lib is much higher, as more than
20% of all casts are necessary.

IntelliJ’s Cast Deleter and the Double Cast Deleter do not delete necessary casts. This is
shown in Figure 5; both deleters retained 100% tests passed and 100% statement coverage.
However, the All Cast Deleter removes all 2.82% of necessary casts, causing 81.91% of tests
to pass and losing 6.33% of statement coverage.

IntelliJ’s Cast Deleter has the highest overall accuracy with 98.90%, as shown in Figure 5.
The All Cast Deleter was placed second with an accuracy of 97.18%. IntelliJ’s Cast Deleter
has the higher accuracy because it only reduces 98.87% of the redundant casts opposed
rather than 100% reduction of the All Cast Deleter; IntelliJ’s Cast Deleter does not delete
necessary casts. The Double Cast Deleter was placed third, with an accuracy of 3.08%.

Repository Casts analyzers Casts Tests
passed

Instruction
Coverage

No Algorithm 3085 281 21761
Alg. 1: All cast deleter 0 230 20316
Alg. 2: Double Cast Deleter 3077 281 21761All

Alg. 3: IntelliJ’s Cast Deleter 121 281 21761
No Algorithm 355 191 17992
Alg. 1: All cast deleter 0 143 16976
Alg. 2: Double Cast Deleter 347 191 17992jsoup

Alg. 3: IntelliJ’s Cast Deleter 118 191 17992
No Algorithm 2701 70 233
Alg. 1: All cast deleter 0 70 233
Alg. 2: Double Cast Deleter 2701 70 233XWiki

Alg. 3: IntelliJ’s Cast Deleter 0 70 233
No Algorithm 15/14 13/7 2047/1489
Alg. 1: All cast deleter 0/0 13/4 2047/1060
Alg. 2: Double Cast Deleter 15/14 13/7 2047/1498

JavaPoet /
stream-lib

Alg. 3: IntelliJ’s Cast Deleter 0/3 13/8 2047/1489

Table 2: Raw Data
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(a) jsoup (b) XWiki

(c) JavaPoet (d) stream-lib

Figure 4: Benchmarks Results on Each Repository

Figure 5: Total Benchmark of All Algorithms

4.2 Manual Code Inspection
This section describes and categorizes all interesting casting cases. We have defined a cast
as interesting if it falls into one of the following categories:

• Necessary casts

• Deleted double casts by the Double Cast Deleter

• Redundant casts not deleted by IntelliJ’s Cast Deleter

9



4.2.1 Necessary Casts Needed for Compilation

All the necessary casts were also required for the test to compile. No casts caused the test
to fail without causing one of the following three types of run time errors:

1. Incompatible types, due to possible lossy conversion between primitive data types.
2. Incompatible types, where conversions between a parent and its subtype can not be

done automatically.
3. Cannot find symbol, where there is a call to a method of a child object.

4.2.2 Necessary Casts in Declaration Statement

The most common necessary casting case is the requirement for a narrowing cast in a
declaration statement. Figure 6 shows an example of this cast. This type of casting was
required 78 times over 45 tests. It comprised 89.66% of all necessary casts . On deleting
this type of cast, as does the ‘All Cast Deleter’, 16% of all tests did not compile.

Comment comment = ((comment) (body.childNode(1)));

Figure 6: Common Necessary Narrowing Cast

4.2.3 Necessary Casts in Unnecessary Statement

Many of the casts necessary for the test to compile are located in ‘Unnecessary statements’.
The term ‘Unnecessary statements’ refers to statements in an amplified test case that do not
affect the test assertions. Figure 7 shows an example of this. This problem of Unnecessary
statements in amplified test cases is already a known issue documented in the Developer-
Friendly Test Amplification paper by C. Brandt[6]. However, it is interesting that these
redundant lines impact casting considerably. After examining all the 87 necessary casts,
we found that 76 of these casts occurred in Unnecessary statements. Thus, 87.36% of all
Necessary casts occurred in Unnecessary statements.

@Test
public void testCommentEndCoverage_mg431_assSep1376() {

String html = "<html><head></head><body><p>Hello</p></body></html>";
Document doc = Jsoup.parse(html);
//The statements in the red lines do not impact the doc.documentType() of doc.

Therefore these statements are considered to be Unnecessary statements.
- Comment comment = ((Comment) (doc.body().childNode(1)));
- Element p = doc.body().child(1);
- TextNode text = ((TextNode) (p.childNode(0)));

DocumentType o_testCommentEndCoverage_mg431__13 = doc.documentType();
Assertions.assertNull(o_testCommentEndCoverage_mg431__13);

}
Figure 7: Example of Unnecessary Statements

4.2.4 Necessary Casts Generated by test-cube

Few necessary casts are newly generated by test-cube. Of the 11 necessary casts in ‘Unnec-
essary statements’ (Section 4.2.3), only two casts are not in their original test case. Many
casts in the amplified test case also exist in the original test from which they are amplified.
These two casts are both narrowing casts required to call a function that is specific for the
child.
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4.2.5 Deleted Double Casts

Every double cast that occurred was similar to the example shown in Figure 2. For all cases
where two casts were back-to-back, both these casts were identical. Moreover, the issue
occurred with one specific object only: the ‘HttpConnection’ object from the jsoup.helper
package.

4.2.6 Redundant Casts Widening to Java’s Collection Interface

Many redundant casts missed by IntelliJ’s Cast Deleter are the same type of cast. A widening
cast from a ‘Ellements’ object to its supertype, the Java’s ‘Collection’ interface, before
invoking the method ‘isEmpty()’. Figure 8 shows one such case of the 34 times this type
of cast occurred. This casting case comprised 97% of the redundant casts missed by
IntelliJ’s Cast Deleter.

While a widening cast is generally regarded as a safe cast, it can run through a dif-
ferent execution path if a child class overrides a method. With the cast from ‘Elements’
to ‘Collection’, this is the case. Multiple classes exist in the inheritance hierarchy of the
Elements class to its supertype the Collection interface. Two of these classes implement the
‘isEmpty()’ method.

This cast is still considered redundant because both implementations, are determinis-
tically equivalent and part of Java’s source code. Deterministic equivalence indicates that
they always produce the same results and have no side-effects. Both implementations being
part of Java’s source code is important because this allows us to assume that the test uses
the method to verify something rather than verifying the behaviour of the methods specific
implementation.

Assertions.assertFalse(((Collection)(docC.getAllElements())).isEmpty());

Figure 8: Not Reduced Redundant Collection Cast

4.2.7 Singular Redundant Cast

The last singular redundant cast missed by IntelliJ’s Cast Deleter is a widening cast from
the abstract parent class to its child object initialized by a parser. This test is shown
in Figure 9. It is noteworthy that the redundancy of this cast is debatable because the
cast might help accurately establish for which child the ‘toString()’ method is being called.
However, we consider it redundant, as it is not required to call the appropriate method. The
reason for this is explained in the Java documentation with the following quotation: ‘The
Java virtual machine (JVM) calls the appropriate method for the object that is referred to
in each variable. It does not call the method that is defined by the variable’s type. This
behaviour is referred to as virtual method invocation’[16].

Evaluator parse = QueryParser.parse(" spangdiv ");
Assertions.assertEquals("spangdiv", ((Evaluator.Tag) (parse)).toString());

Figure 9: Not Reduced Redundant Widening Cast

5 Discussion
This section discusses the strengths and weaknesses of every cast deleter, evaluates them
against each other, and provides answers to the research questions. It then discusses the
reproducibility and validity of this research.
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5.1 Discussion of Results
As previously mentioned, all algorithms have strengths and weaknesses. This subsection
discusses these and then answers the sub and main questions.

5.1.1 Algorithms

Double Cast Deleter. The general accuracy of the Double Cast Deleter is fairly low.
Initially, it might therefore appear the lesser deleter; however, it does not delete necessary
casts. This is important, because it means that it works perfectly for the specific case it is
designed for. Thus, although this is not particularly beneficial as a stand-alone algorithm,
it can work well in combination with other deleters.

All Cast Deleter. However, the All Cast Deleter has a high general accuracy of 97%
but has different flaws. The major drawback of this algorithm is that it makes 20% of the
tests fail and thereby unusable.

Mitigating the drawbacks of the All Cast Deleter can be achieved in three ways, with
the restriction of keeping the Deleter ‘simple’:

• Cross-check with the original method to leave in all casts not generated by test-cube;
see Section 4.2.4.

• Revert all statements to where a compile-time error is raised; Section 4.2.1.
• Add an exception to the deletion of casts when the cast is required for narrowing casting
in a declaration statement. This will solve 88.24% of failing tests; Section 4.2.2.

IntelliJ’s Cast Deleter. This cast deleter performed extremely well and removed almost
every redundant cast. It had the highest accuracy of all three deleters and even held this
position for each individual repository. This fine-grained form allows it to handle a wide
variety of casting cases, while the simple cast deleters mainly perform well for a single and
simple case.

This deleter can be further improved by adding a simple check for the specialized case
of a widening cast to the Java ‘Collection’ interface. This would increase the accuracy to
approximately 100% for our tested set. It is noteworthy that this type of redundant casting
can still occur within different inheritance hierarchies. We call this generalized type of cast
a ‘Generalized Redundant Collection Cast’ (GRCC).

Deleting all GRCCs is significantly more difficult than only deleting the previously men-
tioned specific redundant Collection-type casts. With the specific Collection-type cast, we
know that both implementations of the ‘isEmpty()’ method are equivalent Section 4.2.6.
However, we do not know this for any other method. Thus, deleting all GRCCs requires de-
termining whether two functions are functionally equivalent. This is generally considered an
unsolvable problem[20, 21]. Therefore, improving this deleter to reach an accuracy of 100%
might be impossible. However, this is a universal problem that holds for other deleters.

This deleter has two non-universal drawbacks. It is a fine-grained deleter, so it probably
takes longer to run than the simple deleters. Secondly, it is based on the IntelliJ PSI
structure; thus, it only works in the IntelliJ Integrated Development Environment (IDE).
This is not a major drawback, as one purpose of this research was to improve the IntelliJ
plugin test-cube.
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5.1.2 Research Question

SQ1: How much accuracy can a simple cast deleter provide? The accuracy of the most
accurate simple cast deleter, the All Cast Deleter, is 97%. However, the accuracy of this
deleter is relatively context-dependent and can vary considerably. The accuracy is, for ex-
ample, only 76% for the tests of the jsoup repository, as the need for casting is much higher.

SQ2: How much redundant casting can be reduced with a fine-grained cast deleter? The
fine-grained cast deleter has eliminated 98.87% of the total number of redundant casts. It
could potentially reach 99.9% by adding a simple check for the edge case of widening casts
to the Collection object. However, this is hypothetical, as we have not studied the frequency
of similar casts, such as the exceptional cast described in Section 4.2.7 or the possibility of
GRCCs described in Section 5.1.1.

RQ: Is a fine-grained cast deleter worthwhile compared to a simple cast deleter in terms
of accuracy when simplifying superfluous casts? The fine-grained cast analyzer is the better
option. Although the difference in the general accuracy between the more accurate simple
cast deleter and IntelliJ’s fine-grained Cast Deleter is below 2%, the benefit of causing no
test to fail is huge.

The fine-grained cast deleter might not be worthwhile for two reasons. Firstly, a sig-
nificant difference might exist between the runtimes of the deleters. Empirically speaking,
we have noticed no difference. However, no real evidence supports this claim. Secondly, we
might be unable to rely on IntelliJ. In this case, a huge amount of added investment costs
would be required, outweighing the benefits over the simple cast deleter.

5.2 Threats To Validity
Some factors might threaten the validity of this research. We have taken measures to mit-
igate these. The following sections explain these threats, explain how they are mitigated,
and debate whether a risk remains.

Consistency. A threat to the validity of the obtained data is its consistency. One measure-
ment used for the data is the number of passed tests. While test outcomes should always
be fully deterministic, a flaky test can occur.

In our project, we ran many different categories of tests, with network tests being one of
them. This can be an issue as, according to a 2014 study by Qingzhou Luo[22], network tests
are a common category for flaky tests. We want to cover all types of tests. Therefore, we
cannot simply disregard tests with a higher probability of being flaky. However, this might
impact the consistency of the data. To mitigate this risk, we repeated all tests 10 times and
observed no change in the number of passed tests. This does not indicate that there are
no flaky tests. Previous studies have concluded that the probability of an unreliable test
failing 10 consecutive times is approximately 35% (=0.910)[23], and that of it passing five
consecutive times is 77%[24].

Internal Validity. We found some threats to the causal relationship between the treat-
ment and outcome. The measurements obtained might not accurately represent the effects
of the cast deleters. Therefore, two measurements were taken.

A statement coverage was added as a measurement to ensure that a passed test tested
the methods as intended. Due to the removal of a cast, it could call its parent method. In
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this scenario, a necessary cast is removed. The only problem here is that the test might still
pass, and we would not know that a necessary cast was removed. This added measurement
reduces the risk of wrongly stating that a cast was correctly reduced. However, it does
not fully solve the issue. When the child method has the same number of statements, the
removal of a necessary cast goes under the radar.

To ensure the measurement of ‘tests passed’ has a representative meaning when below
100%, we reduced the sample set to only consider tests that use casts. If this was not the
case and we merely ran all amplified tests, the test passed would not be representative.
Consider a scenario where a cast deleter caused every test method with a cast to fail. The
‘tests passed’ would then only show how many test contain a cast and not how well the cast
deleter worked.

External Validity. Projects can vary considerably in terms of their casting requirements[8].
Thus, we have based our results on four different public repositories. While this remedy
makes the study more generalizable to all different real-world cases, the results might still
differ in some scenarios.

Conclusion Validity. A threat exists to the ability to draw correct conclusions concerning
relationships between treatments and outcomes. We cannot be certain how many casts were
missed or wrongly deleted by only examining the statistical data. Estimation is possible
by considering the number of passed tests; however, the true backing of the data originates
from the manual code inspections.

6 Conclusion
We found 97% of casts were redundant of the 3,085 examined casts in the 281 amplified test
cases. The fine-grained cast deleter, based on the IntelliJ casting analyzer, is the best option
for two reasons. First, it has an accuracy of 98.89% compared to the highest accuracy of 97%
a simple cast deleter has reached. Although the difference is less than 2%, the consistency
of the accuracies is essential. When disregarding repositories containing only redundant
casts, the difference in accuracy would be approximately 15%. Second, the fine-grained cast
deleter has not caused any test to fail, while the simple cast deleter caused 18.15% of tests to
fail. However, in the scenario where the deleter cannot be IntelliJ-specific, the development
costs may outweigh the mentioned benefits.

Future research can be conducted to improve the accuracies of both types of casting
deleters. Furthermore, the readability can be improved by removing redundant brackets.
The amplified test case is generated with brackets surrounding the cast and the object or
statement it is casting. The current tools remove only the brackets of the cast and not those
of the object or statement.

By researching and developing cast deleters with astounding accuracies up to almost
99%, we can say to have tackled one of the issue of amplification testing. This makes
amplification testing a more pleasant and streamlined process.

We have tackled superfluous casting with an accuracy of 99%, making amplification
testing more developer friendly.
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