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Abstract—The coupling of single-carrier network into multi-
carrier energy systems (MES) has recently become more impor-
tant. Conventional single-carrier steady-state load flow models
are not able to capture the full extent of the coupling. Different
models for multi-carrier networks have been proposed, either
based on the energy hub concept or using a case specific
approach. However, the effect of the coupling on solvability and
well-posedness of the integrated system of non-linear equations
has not been discussed. Using a general load flow model on a
small example MES, this paper discusses the problems arising
due the coupling of single-carrier networks, and provides guide-
lines to obtain a solvable steady-state load flow model for MES.

Index Terms—Integrated energy systems, Load flow analysis,
Multi-carrier energy networks, Natural gas, Power flow analysis

I. INTRODUCTION

In recent years, multi-carrier energy systems (MES) have
become more important, as they are considered to have better
performance compared with the classical energy systems [1].
In MES, different energy carriers, such as electricity, heat, and
natural gas, interact with each other to form one combined
energy system. An important tool for designing and operating
energy systems is steady-state load flow analysis of the energy
transmission or distribution networks. Conventional load flow
models developed for single-carrier (SC) networks are not able
to fully capture the effect of integrating different networks into
one multi-carrier network. Recently, different load flow models
have been proposed for MES, either based on the energy hub
concept, or using a more case specific approach.

The energy hub concept was first introduced in [2], and
models the relation between input and output energies of
different carriers. Unidirectional flow from input to output
is assumed, and within the energy hub, transmission of the
energy carriers is not taken into account. The extension of
the energy hub concept to allow for bidirectional flow, and a
detailed representation of energy flow within the energy hub,
is provided in [3], [4]. However, the connection of the energy
hub to the SC networks is not discussed. Explicit modeling
of both the energy hub and the SC network is studied in [5].

This research received funding from the Netherlands Organisation for
Scientific Research (NWO), Alliander N.V., and Amsterdam Institute for
Advanced Metropolitan Solutions (AMS).

However, they do not describe the representation of the energy
hub as a network element.

The second type of multi-carrier load flow models combines
the load flow equations of the SC networks into one integrated
system of equations. Such a model is given for a combined
gas and electricity network in [6], [7], for electricity and heat
in [8], [9], and for electricity, gas, and heat in [10]–[12].
However, since these models are case specific, they are difficult
to apply to a general MES.

To the best of the authors knowledge, the currently available
models for MES do not discuss the effect of the coupling on
the solvability and well-posedness of the resulting integrated
system of non-linear steady-state load flow equations. Usually,
the coupling models introduce more unknowns than equations,
such that additional equations or boundary conditions are
needed for the system to be solvable. We analyze the effect
of coupling on the integrated system of equations, using a
general graph-based load flow model on a small example MES.
The effect of the additional boundary conditions on the well-
posedness of the load flow problem is analyzed by solving
the system of non-linear equations using the Newton-Raphson
method.

II. NETWORK REPRESENTATION

A. Terms and Definitions

Energy systems are mathematically represented by a net-
work or graph. A graph G is a pair ((V ), (E)), where V
is a set of nodes vi and E is a set of links ek. A link is
a set of two nodes, such that ek = {vi, vj}, or an ordered
pair of nodes ek = (vi, vj). If all links in E are ordered, the
graph is directed, if none of the links are ordered, the graph is
undirected. Flow can enter the network through sources, and
leave the network through sinks or loads. Both are represented
by terminal nodes and terminal links. A terminal link is a link
that is only connected to one node, denoted by tl = {vi}, and
is also called a half link. It is a representation of flow entering
or leaving the network. By definition, a terminal link can only
be connected to a terminal node, and, conversely, a node with
a terminal link connected to it is called a terminal node. One
node can have more terminal links connected to it.

Balanced ac power grids are represented by an undirected
graph, while gas pipe networks and heat pipe networks are
represented by directed graphs. The physical pipeline system
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TABLE I
VARIABLES FOR A GAS, HEAT, AND ELECTRICAL NETWORK.

Network Node Link Terminal node
Gas pressure p flow q injected flow q

Heat head h flow m injected flow m

supply temperature T s outflow temperature T o

return temperature T r heat power ϕ
Electricity voltage V current I injected current I

injected complex power S

of a heat network consists of a supply line and a return line,
connected to each other through heat sources and loads. We
assume that the water flow in the return lines is opposite in
direction, but equal in size, to the water flow in the return
lines. The heat pipeline system is then represented as a directed
graph, where the links represent pipelines in the supply line,
outgoing terminal links represent heat loads, and incoming
terminal links represent heat sources.

Variables are associated with the links and nodes. For
basic steady-state load flow analysis, these variables, and the
network element they are associated with, are given in Tab.
I. Variables associated with terminal links are seen as nodal
variables. To distinguish between (terminal) link and nodal
variables, the nodal variables are called injected. If a node has
more than one terminal link connected to it, the injected flow
is the sum of all the flows of the terminal links.

B. Coupling of Single-Carrier Networks

We introduce the coupling node to combine SC networks
into one multi-carrier network. The coupling node does not
belong to any of the SC networks. If the coupling node is
used to couple networks with the same energy carrier, it is
called homogeneous. Similarly, it is called heterogeneous if
it couples networks of different energy carriers. Nodes and
links of a SC network are called homogeneous. A network is
called homogeneous if it consists of only homogeneous nodes
and links, and heterogeneous if at least one of the nodes in
the network is heterogeneous. A heterogeneous coupling node
can be connected to (terminal) links of any type. However, no
variables are associated with a coupling node, so that some
links cannot be connected to a coupling node. For instance,
a link representing an electrical transmission line cannot be
connected to a coupling node, since the coupling node does
not have a voltage associated with it. Therefore, a coupling
node is connected to any other node by a dummy link. They
do not represent any physical component, they merely show
a connection between nodes. If the dummy link connects a
coupling node and a SC node, the dummy link is considered to
be homogeneous and of the same carrier type as the SC node.
As such, it has the same variables associated with it as any link
of that carrier type. Fig. 1 shows the graph representation of
a heterogeneous coupling node connected to a gas network, a
power grid, and a heat network. The arrows show the direction
of the heat and gas (terminal) links, not the actual direction of
flow. Hence, the coupling node allows for bidirectional flow.

gas network
power grid
heat network

ihT s,endicig

T r,startT r,end

T s,start mc

T o,cϕc

P c Qc

ie

qc

Fig. 1. Coupling node ic, connected by dummy links to a gas node ig , an
electrical node ie and a heat node ih. The coupling variables are shown next
to the (terminal) links they are associated with.

III. LOAD FLOW EQUATIONS

Conservation of energy holds for all homogeneous nodes in
the SC networks. All SC links representing a physical element
have a link equation that relates the link variables to the nodal
variables. In this paper, we use the following models.

A. Electricity

The (non-dummy) links in the power grid represent short
transmission lines. The active and reactive power for a short
transmission line k from node i to node j are given by

Pij = gij |Vi|2 − |Vi||Vj | (gij cos δij + bij sin δij)

Qij = −bij |Vi|2 − |Vi||Vj | (gij sin δij − bij cos δij)
(1)

with P the active power, Q the reactive power, δ the voltage
angle, |V | the voltage amplitude, gij and bij the conductance
and susceptance of the line, and δij := δi−δj . At every power
node i, conservation of energy holds:

Pi =
∑
j, j �=i

Pij , Qi =
∑
j, j �=i

Qij (2)

with Pi and Qi the injected active and reactive power.

B. Gas

At every gas node i, conservation of flow holds:

qi =
∑
j, j �=i

qij (3)

with qi the injected gas flow, and qij the link gas flow. The
non-dummy links k, from node i to node j, represent gas pipes
with a steady-state pipe flow equation. Different models exists
(see e.g. [13]), we use:

qk = Cksign (pi − pj)
√
|pi − pj | (4)

Here, qk is the gas flow, pi is the nodal pressure, and Ck is
the pipe constant of pipe k.

C. Heat

At every heat node i, conservation of mass holds:

mi =
∑
j, j �=i

mij (5)

with mi the injected water flow, and mij the link water flow
in the supply line. The non-dummy links k, from node i to
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node j, represent pipes with a steady-state head loss equation
[8]:

fΔh
k = hi − hj −Kk|mk|mk = 0 (6)

with h the nodal head, m the mass flow, and Kk the pipe
constant. The head loss equation for every link in the supply
line, combined with conservation of mass in every node, give
the hydraulic model of the heat network. For the thermal model
we use an exponential temperature drop for both supply and
return pipelines:

T end
k − ψ (mk)T

start
k = 0, ψ (mk) := exp

(−λkL
h
k

Cp|mk|
)

(7)

where T end
k and T start

k are the temperatures at the end and the
start of the pipe, λk is the heat transfer coefficient of the
pipe, Lh

k the length of the pipe, and Cp is the specific heat
of water. The start and end of a pipeline are defined for the
actual direction of flow. Assuming only heat sinks or only heat
sources can be connected to a single heat node, the heat power
equation holds for every terminal link l connected to node i:

ϕi,l =

{
Cpmi,l

(
T s
i − T o

i,l

)
, if node i is a sink

Cpmi,l

(
T o
i,l − T r

i

)
, if node i is a source

(8)

T s and T r are the supply and return temperatures, and T o

the outflow temperature directly after the component (see e.g.
[8]). At every node i, the supply and return temperatures are
determined by the mixing rule, which is the weighted average
of the inflow temperatures:

fT s

i =
∑

(ms
out)T

s
i −

∑
(ms

inT
s
in) = 0

fT r

i =
∑

(mr
out)T

r
i −

∑
(mr

inT
r
in) = 0

(9)

∑
ms

out denotes the sum of all outgoing flows of node i in the
supply line. Similarly,

∑
ms

in denotes the sum of all ingoing
flows of node i in the supply line,

∑
mr

out the sum of all
outgoing flows of node i in the return line, and

∑
mr

in the
sum of all ingoing flows of node i in the return line. It holds
that

∑
mr

in =
∑

ms
out and

∑
mr

out =
∑

ms
in.

D. Coupling

There are two main ways of modeling a MES as an
integrated energy network. The first models all coupling
components explicitly as a network involving heterogeneous
coupling nodes, such that the SC networks are connected with
each other through a coupling network. The second is based
on the energy hub (EH) concept [2]. The SC networks are
connected through the energy hubs, which are represented as
single heterogeneous coupling nodes.

In this paper, we consider a combined heat and power plant
(CHP) and a gas boiler (GB) as coupling components. For both
we use a linear model, although the concept of the coupling
node allows for more complex (non-linear) models:

ϕGB = ηGBGHVqGB

ϕCHP + PCHP = ηCHPGHVqCHP
(10)

Here, GHV is the gross-heating value of the gas, qGB and
qCHP are the gas flows consumed by the gas boiler and CHP,

GB

CHP

qc

1− ν

ϕc

Pc

ν

gas network
electricty network
heat network

Fig. 2. Schematic representation of an energy hub, consisting of a gas boiler
(GB) and a CHP.

ηGB and ηCHP are their efficiencies, and ϕGB, ϕCHP, and PCHP
the produced powers. Based on the schematic representation
shown in Fig. 2, these two components can be modeled as a
single EH, for which the coupling equations are

PEH = μ(1− ν)ηCHPGHVqEH

ϕEH = νηGB + (1− μ)(1− ν)ηCHPGHVqEH
(11)

with qEH the gas consumed by the energy hub, PEH and ϕEH
the produced powers, ν the factor of gas dispatched to the gas
boiler, and μ the factor of gas converted to active power by
the CHP. The heat produced by the gas boiler and the CHP are
modeled as (terminal) half links. Since both are heat sources,
the heat power equation (8) becomes

ϕGB = CpmGB (T o
GB − T r

i )

ϕCHP = CpmCHP (T
o
CHP − T r

i )
(12)

for a gas boiler and CHP connected to heat node i, and

ϕEH = CpmEH (T o
EH − T r

i ) (13)

for an energy hub connected to heat node i.
In total, the gas-boiler and the CHP introduce 4 equations

((10) and (12)) and 10 unknowns (qGB, qCHP, PCHP, QCHP,
mGB, mCHP, ϕGB, ϕCHP, T o

GB, and T o
CHP). The EH introduces

3 equations ((11) and (13)) and 6 unknowns (qEH, PEH, QEH,
mEH, ϕEH, and T o

EH). The energy hub concept assumes the
ratios ν and μ to be specified. Then, if one of the coupling
powers qEH, PEH, or ϕEH is known, the other two can be
determined from the coupling equations (11). This is not
the case for the coupling network. For instance, if PCHP is
known, non of the other coupling energies can be determined
solely from the coupling equations (10). Depending on the
application, either the energy hub concept or a coupling
network is preferable.

IV. NODE TYPES

Typically, the load flow equations of the SC networks
have more variables than equations. In that case, boundary
conditions are imposed to reduce the number of variables
by prescribing values for some (nodal) variables. Nodes are
then classified according to which variables are specified. The
standard node types for SC network are shown in Tab. II.
When the SC networks are combined using coupling nodes, the
coupling equations introduce more variables than equations to
the total system. Thus, additional variables are then prescribed.
One commonly used option is to prescribe one or more of
the coupling energies (e.g. [2], [5], [10], [12]). However, this
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TABLE II
STANDARD NODE TYPES FOR SINGLE-CARRIER NETWORKS.

Network Node type Specified Unknown
Gas reference p q

load q p

Electricity slack |V |, δ P, Q

generator (PV) P, |V | Q, δ

load (PQ) P, Q |V |, δ
Heat source reference slack T s, h T r, T o, ϕ, m

source T o, ϕ T r, T s, h, m

load T o, ϕ T r, T s, h, m

junction m = 0 T r, T s, h

effectively decouples the integrated network. If one or more of
the coupling energies are known, the coupling equations can
be used to directly determine (some of) the other energies.
These energies, and the already prescribes ones, can then be
used as boundary conditions for the SC networks. Therefore,
we will assume all coupling energies unknown, and impose
additional boundary conditions elsewhere in the SC networks.

The coupling energies can be seen as unknown injected
flows or energies from the perspective of the SC networks.
Imposing additional boundary conditions in the SC networks
may lead to new node types [7], [14]. Consider for instance
a power grid connected to a gas network through some
generator. If the power node that is coupled was originally a
load node, it can be seen as a generator with unknown active
power from a technical perspective. Since the coupling power
flows into the SC network through a dummy link, the node
could be modeled as a generator node with known injected
active and reactive power, called a PQV -node, which adds
one additional boundary condition. The coupling equations
(10) or (11) can be seen as boundary conditions for SC
networks, for instance for the gas network. The additionally
required boundary conditions then need to be imposed such
that the other SC networks, for instance heat and power, are
able to determine the remaining coupling energies. Imposing
the boundary conditions in such a way leads to a solvable
combined non-linear system of equations. For optimization
purposes, the coupling parameters can be kept unknown,
without imposing additional boundary conditions.

A. System of Equations

The load flow models of the SC networks can be combined
with the coupling equations to form one integrated non-linear
system of equations for the multi-carrier energy network. Since
the coupling components are connected to the SC networks by
dummy links, the coupling active and reactive powers, Pc and
Qc, are included in the nodal conservation of energy (2), the
coupling gas flow qc is included in conservation of flow (3),
and the coupling water flow mc in conservation of mass (5)
and in the mixing rules (9).

Different formulations of the SC systems of equations exist.
For power, we use the standard complex power formulation in
polar coordinates (e.g. [15]). For every node with specified

injected active or reactive power, conservation of energy is
used to form the non-linear system of equations:

Fe =

⎛
⎜⎝

∑
j, j �=i

Pij −Pinj

∑
j, j �=i

Qij −Qinj

⎞
⎟⎠ = 0, xe =

(
δ
|V|

)
(14)

Pinj and Qinj are the vectors of known injected active and
reactive power, and δ and |V| are the vectors of unknown
nodal voltage angle and voltage amplitude.

For the gas network, we adopt the nodal formulation based
on [13]. Collecting all equations for which the injected gas
flow is known, the non-linear system of equations is given by

Fg = Ag′q− qinj′ = 0, xg = p (15)

with p the vector of unknown nodal pressures, qinj′ the reduced
vector of known injected flows, q the vector of gas link flows,
Ag′ the reduced incidence matrix, which entries are given by

Aik =

⎧⎪⎨
⎪⎩
1, if ek = (vj , vi)

−1, if ek = (vi, vj)

0, otherwise
(16)

For the heat network, the hydraulic and thermal model can
be combined into one hydraulic-thermal model by substituting
the heat equations (8) in the head loss equation (6) and in nodal
conservation of mass (5). The conservation of mass and the
supply mixing rule are not taken into the system of equations
for nodes that have a terminal link with unknown injected
heat power. Furthermore, the outflow temperature T o of every
component is assumed known, such that T o is not a part of
xh. The non-linear system of equations for heat is then given
by

Fh =

⎛
⎜⎜⎝
Ah′m−minj′

FΔh

FTs

FTr

⎞
⎟⎟⎠ = 0, xh =

⎛
⎜⎜⎝

m
h
Ts

Tr

⎞
⎟⎟⎠ (17)

with m the vector of link mass flows, h the vector of unknown
nodal heads, Ts and Tr the vectors of unknown supply and
return temperatures, FΔh the vector of head loss equations,
FTs

the vector of supply line mixing rules, FTr

the vector
of return line mixing rules, Ah′ the reduced incidence matrix,
which entries are given by (16), and minj

i =
∑
l

mi,l where

mi,l can be found from the heat power equation (8).
For the coupling part, if T o of a (coupling) component is

known, it is added as an equation T o − T o,known. Combining
this with all the coupling equations, such as (10) or (11), and
all heat power equations for the coupling components, such as
(12) or (13) gives

Fc =

⎛
⎝ fc

Fϕ

To −To,known

⎞
⎠ = 0, xc =

⎛
⎜⎜⎜⎜⎜⎜⎝

q
P
Q
m
ϕ
To

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)
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0c
0e 0h 0g

2e 2h

1e 1h 1g

1c

2g

(a) Coupling network

0c

1g1h1e

0e 0h 0g

2e 2g2h

(b) Energy hub

gas network
electricty network
heat network

Fig. 3. Network topologies for the example MES, (a) connected by a gas-
boiler 0c and a CHP 1c, (a) connected by an energy hub 0c.

Here, fc is the vector of coupling equations, Fϕ is the vector
of heat power equations, To and To,known are the vectors of
unknown and known outflow temperatures, and q, P, Q, m,
and ϕ are the vectors of the coupling gas flow, active power,
reactive power, water flow, and heat power.

Combining the SC systems of equations (14), (15), and (17)
with the coupling part (18) leads to an integrated system of
equations:

F =

⎛
⎜⎜⎝
Fg

Fe

Fh

Fc

⎞
⎟⎟⎠ = 0, x =

⎛
⎜⎜⎝
xg

xe

xh

xc

⎞
⎟⎟⎠ (19)

B. Newton-Raphson

We use Newton-Raphson iteration (NR) to solve the non-
linear system of equations (19). The iteration scheme for
multiple dimensions is given by

xk+1 = xk − J
(
xk

)
F
(
xk

)
(20)

with k the iteration number and J
(
xk

)
the Jacobian matrix.

Due to the choice for a (heterogeneous) coupling node con-
nected to the SC networks by (homogeneous) dummy links,
the Jacobian matrix of the integrated system of equation (19)
has the following form:

J =

⎛
⎜⎜⎝
Jgg Jge Jgh Jgc
Jeg Jee Jeh Jec
Jhg Jhe Jhh Jhc
Jcg Jce Jch Jcc

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
Jgg 0 0 Jgc
0 Jee 0 Jec
0 0 Jhh Jhc
0 0 Jch Jcc

⎞
⎟⎟⎠ (21)

where the submatrices are defined as

Jαβ =
∂Fα

∂xβ
, α, β ∈ {g, e, h, c} (22)

Since the required additional boundary conditions are not
imposed in the coupling part, the submatrices will in general
not be square. Jcc will have more columns than rows, whereas
Jgg , Jee, and Jhh will have more rows than columns.

TABLE III
NODE TYPE SETS FOR THE EXAMPLE MES

set 1 set2 set 1 EH set 2 EH
Node Type Specified Type Specified Type Specified Type Specified
0g ref. p ref. p ref. p ref. p

1g load q load q load q load q

2g load q ref. load p, q load q ref. load p, q

0e slack |V |, δ slack |V |, δ slack |V |, δ slack |V |, δ
1e PQVδ P, Q, |V |, δ PQV P, Q, |V | PQV P, Q, |V | PQV P, Q, |V |
2e load P, Q load P, Q load P, Q load P, Q

0h ref. temp. T s, h ref. temp. T s, h ref. h junction m = 0

1h load T o, ϕ load T o, ϕ load T o, ϕ load ref. slack T r, h

2h load T o, ϕ load T o, ϕ load T o, ϕ load T o, ϕ

0c temp T o temp T o temp T o temp T o

1c temp T o temp T o - - - -

V. EXAMPLE NETWORKS

To illustrate the effect of coupling on the total system, we
consider the small MES as shown in Fig. 3. To show the effect
of different coupling equations, we couple the SC networks by
using a gas-boiler and a CHP (Fig. 3a), or by an energy hub
(Fig. 3b). Using the energy hub as shown in Fig. 2 means that
these two networks model the same MES. The SC networks
consists of three nodes, all connected to each other. The gas
network and power grid have an external source, connected at
node 0g and 0e respectively. The heat network has no external
source; all heat is provided by the gas network. The networks
are coupled at node 2g of the gas network, 1e of the power
grid, and 0h of the heat network.

The loop created between nodes 2g and 0h in the first
network (Fig. 3a) causes some difficulties. If only the total
amount of gas consumed and total amount of heat provided by
the coupling components is known, it leaves infinitely many
options to distribute those energy flows over the gas boiler
and the CHP. For the first network, the node types must be
chosen such that either both gas flows, or both heat flows,
can be determined uniquely. Since none of the coupling flows
are specified, this is impossible in the gas network. In the
heat network, it is possible if both outflow temperatures are
specified such that T o,known

GB �= T o,known
CHP , and if the supply

temperature in node 0h is specified. If a heat power equation
without outflow temperature is used (e.g. [5]), this would not
be possible.

This problem does not arise for the network with the energy
hub (Fig. 3b), because the energy hub concept specifies both
ratios ν and μ, and because there is no loop in the network.
However, if for this network one of the coupling energies qEH,
PEH, or ϕEH is determined by one of the SC networks the
other two energies are known through the coupling equations
(11). This effectively fixes those two energies as boundary
conditions in the other two SC networks, limiting the allowable
node types in those two SC networks.

Due to the differences in network topology between Fig. 3a
and Fig. 3b, and in coupling equations (10) and (11), different
node types are needed for the total system (19) to be solvable.
Tab. III gives 2 sets for both networks for which the system is
well posed. The first set has no additional boundary conditions
in gas, while the second set has.

In the first example, with the coupling network, node types
are chosen such that the heat network can determine the heat
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Fig. 4. Convergence plot of NR for both node sets of both example networks.
The curves for node set 1 of both examples are indistinguishable at this scale,
as are the curves for node set 2.

power flows. For the first node set, the nodes are chosen such
that the power grid determines the active power required from
the CHP. The coupling equations then determine the coupling
gas flows. For the second node set, the nodes are chosen such
that, given the heat flow produced by the gas boiler (node 0c),
the gas network can determined the gas flow supplied to the
CHP. The coupling equations then determine the active power
produced by the CHP.

For the example with the EH, the first node set is chosen
such that the heat network determines the coupling heat power.
The coupling equations then determine the coupling gas flow
and active power. The second node set is chosen such that the
gas network determines the coupling gas flow. The coupling
equations then determine the coupling heat power and active
power. Taking nodes 1h and 2h as load nodes, and assuming
there is no external heat source, this leaves the heat network
without a slack for the heat power, which could lead to an
ill-posed problem. If ϕEH � ϕ1h + ϕ2h , the water mass flow
in the pipes will become very small, that is mij ≈ 0. Since all
outflow temperatures and heat powers are specified, it follows
from the heat power equations (8) and (13) that T r

0h � T o
EH,

T s
1h � T o

1h and T s
2h � T o

2h . In this example, this leads to a
numerically singular Jacobian matrix. To avoid this, a slack
for the heat power must be introduced. One option is to make
node 0h a slack node. However, this would model a situation
with an external heat source connected to node 0h. Another
option to take one of the load nodes 1h or 2h as slack nodes.
Although this is not realistic, we choose the second option to
show the effect of node types on convergence behavior. We
use NR to solve the combined non-linear system of equations
(19) for both node sets for both networks. Fig. 4 shows the
convergence behavior of NR for all four examples. For all
examples NR converges, that is ||F (

xk
) ||2 ≤ 10−6 for some

iteration k. Both coupling methods show similar behavior;
node set 1 converges faster than node set 2. This difference is
due to the additional boundary condition in gas for the second
node set. These examples show that the choice of node types
can influence the convergence behavior of NR.

VI. CONCLUSION

The heterogeneous coupling node can be used as represen-
tation of a physical coupling between different energy carriers.
It allows bidirectional flow, it can represent different physical
coupling components, and it can be combined with different
coupling models. Therefore, it extends and generalizes the
currently available steady-state load flow models of MES.

Using the coupling node, we modeled a small example
MES in two different ways, with a coupling network or with
an energy hub. The chosen coupling model determines the
topology of the multi-carrier network and the used coupling
equations. This influences the possibilities for imposing the
additionally required boundary conditions in the SC networks,
and subsequently influences the integrated system of load flow
equations. Choosing the wrong node types could lead to bad
convergence behavior, or even to an ill-posed or unsolvable
load flow problem.
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