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Abstract

This thesis presents an improved normal-guided pointcloud denoising pipeline that enhances the

quality and efficiency of 3D pointcloud reconstruction. Building on the Constraint-based Point

Set Denoising (CPSD) method by (Yadav et al., 2018), several modifications and extensions

are proposed to improve the denoising process. The key contributions include a revised point

classification approach, dedicated point update formulas for different point classes and a pipeline

optimization and evaluation. Experiments were performed on synthetic and real-world scanned

datasets, using Chamfer Distance (CD) and single-sided Chamfer Distance (sCD) as evaluation

metrics. Results demonstrate that the proposed method achieves lower error scores than existing

pipelines while requiring fewer iterations. Additionally, the modular nature of the pipeline

enables future integration of neural networks or curvature-aware point update functions, opening

pathways for further improvements in denoising pipelines.
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Chapter 1

Introduction

pointclouds are a fundamental data representation in various fields such as autonomous driving

(Li et al., 2020), robotics, virtual reality (Stets et al., 2017) and cultural heritage preservation

(Garagnani and Manferdini, 2013). pointclouds capture spatial information in the form of a set of

points with d-dimensional coordinates. In our case, we look at pointclouds in 3-dimensional space

that represent an underlying curved surface. This information can be captured by sensors like

LiDAR (Dong and Chen, 2017), structured light (Rocchini et al., 2001) or stereo cameras (Leberl

et al., 2010). These methods introduce noise in the form of environmental factors (Charron et al.,

2018), sensor limitations (Gokturk et al., 2004) or motion distortion (Yang et al., 2021; Chen

et al., 2021). Noise in the pointcloud reduces the fidelity of the underlying surface representation

and negatively impacts the performance of downstream processing tasks. In applications such as

autonomous driving, for instance, noisy pointclouds can result in inaccurate obstacle detection or

a misinterpretation of the surrounding environment (Luo and Hu, 2021b).

pointcloud denoising is a fundamental preprocessing step that refines the raw data so that

the distance between the points and the underlying surface is smaller. Effective denoising

methods should smooth flat or curved parts of the surface and retain sharp features such as edges

and corners. Recent research uses normal guided denoising methods and replaces components

of existing methods with neural networks to improve the results (Wei et al., 2021; Li et al.,

2022). Nevertheless, this work focuses on improving the classical pipeline itself. During early

experiments, it became evident that existing normal-guided methods can struggle even under

ideal conditions, revealing opportunities to enhance their robustness and performance. This thesis

explores those opportunities and proposes a refined pipeline that improves denoising quality.

A representative example of sharp feature preserving normal-guided denoising methods is

proposed by (Yadav et al., 2018). They propose a method where the noise in the point normals is

filtered out by binary eigenvalue optimization, the points are classified as flat, edge, or corner

points, and different point updating schemes are applied for the different point classes. This

method is among the earliest normal-guided pointcloud denoising approaches to effectively

address sharp feature preservation without relying on multiple normals per point. Its simple and
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interpretable design, along with a modular pipeline structure, made it an ideal foundation for

systematic experimentation of individual components and the exploration of alternative techniques

per component to improve overall performance.

This thesis will look at the normal guided denoising method from (Yadav et al., 2018) and

proposes an updated version that needs fewer iterations and improves the performance. The

contributions of this work to the existing pipeline are the following:

• Revised feature-based point classification. Improved feature extraction and classification

approach for a more accurate labeling points as flat, edge, or corner, enabling tailored

denoising strategies for each class.

• Revised point update strategy. Developed a position updating framework with adaptive

diffusion speeds and class-dependent update formulas, resulting in better preservation of

geometric features while reducing required iterations.

• Pipeline optimization and evaluation. Designed a more computationally efficient de-

noising pipeline and benchmarked it against existing methods, demonstrating improved

reconstruction accuracy and robustness across different noisy pointclouds.

By introducing this updated method, this thesis tries to push the boundaries of pointcloud

processing by improving on fundamental components of the pointcloud denoising pipeline.
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Chapter 2

Related Work

Numerous methods have been proposed to address the challenge of denoising pointclouds. In

this section, we review deterministic approaches and learning-based techniques, highlighting

their principles, advantages, and limitations. Understanding these existing approaches provides a

foundation for motivating the contributions of our proposed method.

Deterministic methods

There are multiple deterministic methods for pointcloud denoising. A simple method applies

the bilateral filter. The bilateral filter was originally developed for image processing (Tomasi

and Manduchi, 1998). To smooth a pixel, it compares the intensity values of neighboring pixels,

assigning weights based on both spatial proximity and similarity. A weighted average of these

neighbors is then computed to smooth the pixel. The bilateral filter for pointclouds operates in a

similar manner. Each point is smoothed by computing a weighted average of its neighbors, where

the weights are based on spatial proximity and similarity. Spatial proximity is measured using

Euclidean distance, while similarity is determined in different ways, often using normal vectors.

One of the first ways is by comparing the normal vectors with an inner product (Miropolsky

and Fischer, 2004). Another way, as discussed by (Digne and De Franchis, 2017), is defining

the similarity as the neighbor’s distance to the tangent plane at the current point. Another well-

known deterministic method is Moving Least Squares (MLS) (Levin, 1998), which was used

as inspiration for pointcloud denoising by (Alexa et al., 2001), where a local neighborhood is

selected for each point, and a local reference frame is computed. Within this frame, a polynomial

surface is fitted to approximate the underlying geometry. The original point is then projected onto

this surface. While MLS is effective at smoothing curved surfaces, it often blurs sharp features.

Another example is Locally Optimal Projection (LOP) (Lipman et al., 2007), which updates point

positions based on a balance of attraction and repulsion forces from neighboring points. Weights

based on spatial proximity are used to define the influence of each neighbor. LOP simplifies

the process by avoiding the need for normal estimation, plane fitting or polynomial fitting, but

like MLS, it struggles to preserve sharp geometric features due to its smoothing properties. To
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address this limitation, (Sun et al., 2015) proposed a method based on L0 minimization (Zhang

et al., 2013), which aims to better preserve sharp features. Their approach formulates pointcloud

denoising as an optimization problem that minimizes the L0 norm of point deviations from

local approximated tangent planes. This encourages piecewise smoothness while allowing for

discontinuities, making it well-suited for preserving edges and corners in the geometry. However,

due to the non-convex nature of the L0 norm, the optimization is computationally expensive.

Learning-based methods

In addition to deterministic approaches, numerous learning-based methods have been proposed

for pointcloud denoising. Even though this thesis will not focus on them, they deserve to be

mentioned, since their performance on the denoising task are outstanding. These methods often

aim to enhance or replace specific components of traditional pipelines to improve performance

or robustness. Both supervised and unsupervised learning techniques have been explored for

pointcloud denoising. Supervised models, such as PointNet (Qi et al., 2017), directly predict clean

point positions from noisy inputs or estimate more accurate point normals (Boulch and Marlet,

2016). Unsupervised methods, by contrast, look at patterns within the data itself. Autoencoders,

for example, learn latent representations that capture the underlying structure of pointclouds

without requiring labeled data (Hermosilla et al., 2019). A more recent class of unsupervised

models is diffusion models, which learn to reverse a gradual noising process to generate or recover

point sets from corrupted inputs. Notable examples include Diffusion Probabilistic Models for

3D pointcloud Generation (Luo and Hu, 2021a) and LION (Vahdat et al., 2022), both of which

show strong potential in learning robust and flexible denoising strategies. Overall, learning-based

approaches offer powerful alternatives, especially in scenarios where hand-made rules fall short.

Normal guided methods

The method proposed in this thesis follows the normal-guided denoising paradigm, which draws

inspiration from the concept of guided filtering introduced in image processing by (He et al.,

2012). In guided filtering, a separate guidance signal is used to preserve important structures

while removing noise assuming a linear transformation between the guidance image and the

denoised result. Unlike the bilateral filter, which directly uses the guidance signal (or intensity)

to produce a denoised output, the guided filter constructs a local linear model guided by the

signal and computes the output by minimizing a cost function based on this local linear model.

This provides more freedom in designing guidance signals and cost functions, enabling the

development of a well-structured pipeline tailored to specific goals, such as preserving edges

and corners in the denoising process. This concept is adapted to pointclouds by first using the

pointcloud itself as the guidance signal (Han et al., 2018a). Shortly thereafter, using surface

normals was proposed as a more informative guidance cue (Han et al., 2018b; Yadav et al., 2018),

where normals were iteratively refined and used to guide the point updating process. However, it
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was soon recognized that a single normal vector per point was insufficient for capturing complex

geometric configurations near sharp features like edges and corners. To address the problem of

smoothing at sharp features, multi-normal guided methods were introduced (Zheng et al., 2017;

Liu et al., 2020), allowing each feature point to be associated with multiple normals corresponding

to intersecting surface regions. While this approach improves feature preservation, it introduces

computational overhead. Since (Yadav et al., 2018) achieves feature preservation in a similar

fashion, our methodology will focus on their pipeline to improve upon.
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Chapter 3

Background

Since this thesis aims to explore and build upon existing normal-guided denoising methods, it is

essential to first develop a detailed understanding of these approaches. This section begins by

clarifying neighborhood construction notation. Following that, we provide an in-depth explanation

of the full denoising pipeline proposed by (Yadav et al., 2018) and finally, we examine the point

updating scheme introduced in (Wei et al., 2021), which serves as an additional updating scheme

for comparison.

3.1 Neighborhood Construction

We will introduce notation to distinguish two different neighborhood construction methods to

create clarity when referring to neighborhoods. A K-nearest neighbors (KNN) neighborhood is

defined as the set of K points that are closest to a given point vi in terms of Euclidean distance. In

contrast, a range-based neighborhood of point vi includes all points whose Euclidean distance to

vi is less than or equal to a predefined radius r. We denote the KNN neighborhood of point i by

Ωk
i and the range-based neighborhood of point i by Ωr

i .

3.2 Normal Guided Denoising Pipeline

In general, normal guided pointcloud denoising methods generate normal vectors for each point

and use those as a guiding signal for denoising the pointcloud. Then, the methods do a predefined

number of denoising iterations. An iteration consists of first denoising the normal vectors and then

the points themselves. This thesis will modify the normal guided denoising pipeline from (Yadav

et al., 2018) and therefore it is important to understand the pipeline. The pipeline, illustrated in

Figure 3.1, consists of four steps: Normal Estimation, where initial normals are estimated per

point; Normal Smoothing, where the normals are denoised; Feature Detection, where each point

is classified; and Position Updating, where each point is updated with a formula chosen based on

the classification. The algorithm iterates over the last three steps. After a pre-defined number
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Figure 3.1: Flowchart of the pipeline of pointcloud denoising. (Yadav et al., 2018)

of iterations, the pointcloud is considered to be denoised. In the next sections, the steps will be

explained in more detail.

3.2.1 Normal Estimation

To estimate these normals, the method from (Hoppe et al., 1992) is used, in which a Point Voting

Tensor (PVT)

TP
i = ∑

j∈Ωk
i

(v j − v̄)(v j − v̄)T (3.1)

is created, where v̄ = 1
|Ωk

i |
∑

j∈Ωk
i

v j is the center of mass of the neighborhood. After eigendecom-

position of the voting tensor, the eigenvector with the smallest eigenvalue is chosen to be the

normal vector. To orient the normal vectors in the same direction, an algorithm is applied that

creates and traverses a minimal spanning tree. While traversing, it compares and flips the normal

vectors to point to similar directions by minimizing the angle between the normal vectors. Normal

estimation is only done once to create an initial normal field to smooth over iterations.

3.2.2 Normal Smoothing

In this step, the normal field as guidance signal is smoothed to better represent the normal

direction of the underlying surface. Normal smoothing is done as the first step of each iteration

to remove noise components from the point normals. Binary Eigenvalues Optimization (BEO)

creates a normal voting tensor (NVT)

TN
i = ∑

j∈Ωr
i

wi jn jnT
j , (3.2)

from which a smoothed normal vector can be calculated. The weights are defined as binary

values that determine whether or not to include neighboring votes, based on the angle between

the normal vectors. The weights are defined as

wi j =

1 if ∠(ni,n j)≤ ρ

0 if ∠(ni,n j)> ρ

, (3.3)



Background 9

where ∠(·, ·) denotes an angle between two vectors and ρ ∈ (0,π) is the angular threshold. Since

TN
i is a symmetric and positive semidefinite matrix, eigendecomposition can be applied to obtain

TN
i =

3

∑
l=1

λi,lxi,lxT
i,l, (3.4)

where λi,l is the eigenvalue with its corresponding eigenvector xi,l , such that λi,1 ≤ λi,2 ≤ λi,3.

BEO modifies the summation above such that the eigenvalues are binary. The modified eigenval-

ues are defined as

λ̃i,l =

1, if λi,l > τ

0, if λi,l ≤ τ

, (3.5)

where τ is similar to the noise intensity. With the binary eigenvalues, the binary normal voting

tensor is calculated as

T̃N
i =

3

∑
l=1

λ̃i,lxi,lxT
i,l. (3.6)

The new denoised normal is defined as

ñi = dni + T̃N
i ni, (3.7)

where d = 3 is the dampening factor and the final vector is normalized. The last step is equivalent

to an interpolation between the denoised and the original normal. The normal ñi is the new

filtered or denoised normal of the point i and is used in the next section.

3.2.3 Feature Detection

There are various point position updating schemes in normal-guided denoising, each with distinct

effects. Some promote smoothing, while others cause points to snap toward feature locations.

Applying these indiscriminately can be counterproductive, because smoothing at feature points

can blur important details, while forcing points to jump to features when they are not nearby

any features may introduce artifacts. Therefore, it is crucial to select the appropriate updating

strategy for each point. To do so, we need a classification that tells us what points need which

update formula. The classification must identify geometric features such as edges and corners.

For detecting features, a filtered PVT is created similar to 3.1 with

T̃P
i =

1
∑

j∈Ωr
i

w̃i j
∑

j∈Ωr
i

w̃i j (v j − v̄)(v j − v̄)T , (3.8)

where

w̃i j =

1 if ∠(ñi, ñ j)≤ ρ

0 if ∠(ñi, ñ j)> ρ

(3.9)

is the same binary weight as 3.3, but with the denoised normal ñi as input instead of the original

normal ni and v̄ = 1
∑

j∈Ωi
w̃i j

∑
j∈Ωr

i

w̃i jv j is the center of mass of the points included in the calculations
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by the binary weights. Because the voting tensor T̃P
i is a symmetric positive semidefinite matrix,

eigendecomposition can be applied to retrieve the eigenvectors yi,l with corresponding eigenvalues

µi,l where µi,1 ≤ µi,2 ≤ µi,3 such that

T̃P
i =

3

∑
l=1

µilyilyT
il . (3.10)

To classify the points, the number of eigenvalues above a certain threshold τ is counted. This will

result in the set of flat points

V f = {vi ∈V |µi,1,µi,2 ≥ τ∧µi,3 < τ}, (3.11)

the set of edge points

V e = {vi ∈V |µi,1 ≥ τ∧µi,2,µi,3 < τ} (3.12)

and the set of corner points

V c = {vi ∈V |µi,1,µi,2,µi,3 ≥ τ∨µi,1,µi,2,µi,3 < τ}. (3.13)

This division of points into classes is used for updating the position of the point, which is

explained in the next section.

3.2.4 Position Updating

After point classification, the position of the points are updated according to their classification.

(Yadav et al., 2018) proposes an update method for corner points, edge points, and flat points. For

each type of point, a restricted quadratic error metric is formulated and the goal is to minimize

the error by calculating the optimal position for the point. In the following sections, the used

metric will be explained and how the point should be updated to achieve a minimal error.

Optimal Position For Corner Points

For corner points vc
i ∈V c, the idea is to create tangent planes for all neighboring points based

on their smoothed normal ñ j. The error is defined as the distance to the tangent planes, which

results in the loss function

Ec(tc
i ) = ∑

j∈Ωr
i

||ñ j · (tc
i −v j) ||2. (3.14)

To find the new position tc
i for which Ec(tc

i ) is minimal, the linear system ∇Ec(tc
i ) = 0 is solved

and the optimal position with the minimal error can be calculated as

tc
i =

(
∑

j∈Ωr
i

ñ j ⊗ ñ j

)−1

∑
j∈Ωr

i

(ñ j ⊗ ñ jv j) . (3.15)
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Optimal Position For Edge Points

For edge points ve
i ∈V e, the edge direction yi,1 defines a plane through ve

i on which all neighboring

points and normals are projected. This results in the projected neighboring points vπ
j = v j −

((v j − ve
i ) · yi,1)yi,1 and the projected neighboring smoothed normals ñπ

j = ñ j − (ñ j ·yi,1)yi,1.

After projection, the loss function is defined as

Ee(te
i ) = ∑

j∈Ωr
i

(
||ñπ

j · (te
i − ṽπ

j )||2 +
1

|Ωr
i |
||yi,1 · (te

i −vπ
j )||2

)
, (3.16)

which minimizes the distance towards the plane created by the edge vector yi,1 and minimizes the

distance towards the planes of the projected normals. Solving the linear equation ∇Ee(te
i ) = 0

gives the optimal position that can be calculated with

te
i =

(
∑

j∈Ωr
i

ñπ
j ⊗ ñπ

j +yi,1 ⊗yi,1

)−1

∑
j∈Ωr

i

(
ñπ

j ⊗ ñπ
j v j +yi,1 ⊗yi,1ve

i
)
. (3.17)

Optimal Position For Flat Points

For flat points v f
i ∈V f , the optimal position is retrieved in an iterative manner. An energy function

similar to Equation 3.15 is minimized by gradient descent with the equation

t f
i = v f

i +
α

∑
j∈Ωr

i

Wi j
∑

j∈Ωr
i

Wi j(ñ j,v j −v f
i )ñi, (3.18)

where the weight Wi j = exp
(
−16|ñi−ñ j|2

δ2

)
· exp

(
−4|v j−v f

i |2
δ2

)
is a bilateral filter using relative

position distance and normal distance as input. δ is set to be the range of the neighborhood Ωr
i

and α is the point diffusion speed that limits the amount of smoothing.

Position Update Restriction

Before updating a point, a restriction is set where a point can move at most a distance of ε. For

every point vi ∈V it holds, that the updated position

ṽi =

ti if di ≤ ε

vi if di > ε

, (3.19)

will be the temporary optimal position if the relative distance di = ti −vi is small enough. With

this last step, one of the iterations of the pipeline is done.

3.3 Constrained Two-Direction Quadric Error Metrics

To critically assess the point position updating schemes discussed in the previous section, a

comparative evaluation is necessary to validate their effectiveness. In this context, we also
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examine the update scheme proposed by (Wei et al., 2021), which applies a uniform strategy to

all points, regardless of their geometric context. The method is based on minimizing three energy

functions. The first energy function is the same as Equation 3.15. They improved the energy

function by discouraging lateral movement and shape distortion with the second and third energy

functions. The second energy function to discourage lateral movement is

E l(ṽi) = (ṽi −vi) · (ṽi −vi)− (projni
(ṽi −vi)) · (projni

(ṽi −vi)), (3.20)

where ṽi is the new location of the point, vi the old location, and projn(v) = (v ·n)n projects the

vector v onto n assuming n has unit length. The third energy function penalizes shape distortion

by comparing the distance of the neighboring points to the tangent plane of the new location. It is

defined as

Ed(ṽi) = ∑
j∈Ωk

i

||ñi · (ṽi −v j) ||2. (3.21)

When adding all energy functions together you get final energy function

Et(ṽi) = Ec(ṽi)+E l(ṽi)+Ed(ṽi) (3.22)

that needs to be minimized. Since all linear equations can be solved, the exact solution to

minimizing Et with ∇Et(ṽi) = 0 is

ṽi =

I+ ∑
j∈Ωk

i

(ñ j ⊗ ñ j)+
(

1+∥Ω
k
i ∥
)

ñi ⊗ ñi

−1(I+ ñi ⊗ ñi)vi + ∑
j∈Ωk

i

(ñ j ⊗ ñ jv j)+ ñi ⊗ ñi ∑
j∈Ωk

i

v j

 ,

(3.23)

where I denotes the 3-by-3 identity matrix.
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Chapter 4

Method

In this section, a proposal is done on how to examine and refine the pipeline proposed by (Yadav

et al., 2018). Now that the theoretical foundations have been established, we explore how each

step of the pipeline can be modified and improved. Through a series of experiments, the effect of

different design choices is assessed and we demonstrate how an adjusted version of the pipeline

can outperform the original.

The first two steps, normal estimation and normal smoothing, remain unchanged. The absolute

accuracy of estimated normal vectors is less critical, because estimated normals serve primarily

as a guidance signal rather than an exact representation of the ground truth. What matters more

is that the normals are structured in a way that effectively supports the subsequent steps in the

pipeline. Therefore, our method focuses on analyzing the impact of feature detection and position

updating strategies, as these are more directly linked to improvements in denoising performance.

The part where we are going to focus on is marked with a red square in Figure 4.1.

4.1 Feature Detection

To thoroughly evaluate the feature detection process, we divide the testing into two parts. First,

we conduct visual inspections to gain intuitive insight into how different parameters influence the

results. Second, we perform quantitative evaluations by measuring the percentage of correctly

classified points. Together, these tests help fine-tune the feature detection parameters for optimal

point classification. To support the visual inspections, we propose a feature space visualization

that helps interpret the role of each parameter. In Figure 4.1, the feature detection pipeline

is illustrated. We walk through each step, discussing the available choices and outlining the

experiments that will be conducted. This will be done in reverse for convenience, starting with

the Feature Extraction and Classification step. These investigations aim to refine the pipeline to

achieve more effective and reliable feature detection. In Table 4.1 an overview is given of the

parameters that will be examined.
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Figure 4.1: Proposed normal-guided pointcloud denoising pipeline. The lower part of the figure

zooms in on the feature detection and position updating steps, detailing the process to get

from a noisy pointcloud with smoothed normals to classified points and, ultimately, a denoised

pointcloud. These are the components of the pipeline that are the primary focus of the proposed

method.

Pipeline Step Original Parameter New Parameters

Neighborhood Selection Ωr Ωk

Voting Tensor Creation TP
i T̃N

i

Weighting Scheme wi j ŵi j

Feature Extraction and Classification τ ω and fi

Table 4.1: Table of parameters that will be examined and the new proposed parameters that will

be compared against the originals.
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4.1.1 Feature Extraction and Classification

We begin with the feature extraction and classification step of the pipeline. Starting here is

beneficial, because it allows us to visualize the feature space, which in turn provides intuition

for how parameter adjustments influence feature detection. As described in Section 3.2.3,

the original pipeline classifies points by directly thresholding the eigenvalues obtained from

eigendecomposition with τ. However, a limitation of this approach is that eigenvalues are

sensitive to the scale and size of the neighborhood, making it less reliable when working with

neighborhoods of varying sizes. To address this issue, (Demantké et al., 2011) propose computing

geometric features from the eigenvalues. This method offers a more robust and interpretable

basis for point classification. Therefore, we integrate this method into the pipeline from Yadav

et al. (2018) and it works as follows. After performing eigendecomposition on a symmetric

semi-definite voting tensor (constructed from either relative positions or normal vectors), a set

of eigenvectors with corresponding eigenvalues µi1, µi2 and µi3 is obtained. These eigenvalues

describe the geometric distribution of points within the local neighborhood. As proposed by

(Demantké et al., 2011), the geometric features linearity, planarity, and scattering (from now on

referred to as sphericity) can be derived from these eigenvalues with

fi =


Planarity

Linearity

Sphericity

=


µi1−µi2

µi1
µi2−µi3

µi1
µi3
µi1

 . (4.1)

As a side note, the term sphericity should not be mistaken for how closely the points fit a spherical

surface. Rather, it refers to how well the points are distributed throughout the volume of a sphere,

as opposed to being confined to a plane or a line. In other words, the points are spread across

all three dimensions, rather than just two or one. As seen in the equation, the three features are

combined in a feature vector fi, such that it can be visualized. Because these features sum to one,

they can be represented as coordinates within a 3D triangle defined by the corners (1, 0, 0), (0, 1,

0), and (0, 0, 1). In this representation, each axis corresponds to one of the features, allowing for

intuitive visualization. An example of an empty plot is shown in 4.2.

These visualizations will be used in later experiments to analyze the influence of various

parameters. The final step is to classify the points based on their feature vector. The classification

is performed by scaling fi with the weight vector ω and finding the largest feature value, such that

classi = argmax(ωfi) . (4.2)

This will set boundaries, where certain areas in the feature space are labeled as certain classes.

4.1.2 Weighting Scheme

The original weighting scheme (Equation 3.9) uses a binary filter, assigning a weight of either 0

or 1 to each neighbor. A neighbor is included only if the angle between its normal and the normal
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Figure 4.2: Example of an empty feature space scatter plot, where each axis represents a calculated

feature. The left corner represents Planarity, the right corner represents linearity and the top

corner represents Sphericity.

of the query point is smaller than a threshold ρ. This approach effectively removes neighbors

from opposing sides of sharp features, which is beneficial for points on smooth or curved surfaces,

as it helps maintain surface consistency by excluding unrelated subsurface regions.

However, this strategy becomes problematic for feature points, where normal vectors often

differ significantly from those of neighboring points. As a result, these neighbors are likely to be

filtered out, even though they are essential for estimating the location of the feature.

To address this, we propose an alternative weighting scheme that filters neighbors based on

local curvature or distance to the neighboring tangent plane rather than normal vector similarity.

To the best of our knowledge, this specific angular thresholding scheme, which filters neighbors

based on distance to tangent plane defined by the neighboring point normal, has not been explored

in existing normal-guided denoising methods. The scheme is formulated as

ŵi j =

1 if |θi j − π

2 | ≤ ρ

0 if |θi j − π

2 |> ρ

for ρ ∈ [0,
π

2
], (4.3)

where θi j = arccos
(

di j·ñ j
||di j||

)
and di j = v j − vi. The weight is one when the angle between the

relative position and the neighboring normal is close to perpendicular and zero otherwise. To

illustrate the behavior of the new weight ŵi j, Figure 4.3 presents several diagrams demonstrating

how the angle θi j is computed from the relative position vector di j and the neighboring normal

vector ñ j across surfaces with varying curvature. The diagrams show that as the curvature of

the surface increases, the angle θi j deviates more significantly from π

2 . What it means to be

close to perpendicular is defined by the threshold ρ. By excluding neighbors with high curvature,

this scheme allows feature points to keep more relevant neighbors, increasing the likelihood of
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di j

ñ j

θi j

ρ

di j

ñ j

θi j

ρ

di j

ñ j

θi j

ρ

Figure 4.3: Diagrams of different situations describing how the angle θi j affects the weight ŵi j.

The blue vectors di j denote the relative position vectors from point vi to point v j. The dashed

black line denotes the underlying surface. The red vectors ñ j denote the smoothed point normal

at point v j. The dashed orange lines represent the threshold ρ, which depicts the boundaries in

which the normal vector ñ j must fall in order for the weight ŵi j to be one and thus include the

point into the neighborhood for further calculations. In the diagrams ρ is set to be π

3 . The green

arcs show the angle θi j between the relative position vector and normal vector. The left diagram

shows an example of a flat surface where θi j =
π

2 . The right diagrams show examples of surfaces

with high curvature where the angles are θi j =
3
4 π for the top diagram and θi j =

π

4 for the bottom

diagram. The diagrams show that surfaces with higher curvature have angles θi j further away

from perpendicular.

accurately detecting the feature locations. At the same time, flat and curved surface points still

benefit from the filtering of irrelevant neighbors or neighbors far along the surface.

4.1.3 Voting Tensor Creation

In this step of the pipeline, a voting tensor is created. The key question to address is whether

to use relative position vectors, as in the original method calculated by Equation 3.8, or normal

vectors to form the tensor. The normal voting tensor can be calculated with

T̃N
i = ∑

j∈Ωr
i

wi jñ jñT
j , (4.4)

with a weight wi j per neighbor. Note that equation 3.2 is exactly the same, but here we use

smoothed normals instead of estimated normals. By applying the same neighborhood selection

and weighting scheme to both approaches, we generate voting tensors and extract their corre-

sponding feature spaces. A visual analysis of these spaces should provide sufficient insight into

which method is more effective for classifying the points.
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Figure 4.4: An illustration of the limitation of range-based neighborhood selection. Blue dots

represent points in the pointcloud, and the red circle indicates the fixed search radius used to

define a neighborhood. The left diagram depicts a high-density region where many neighbors fall

within the radius, while the right diagram shows a low-density region where significantly fewer

neighbors are captured.

4.1.4 Neighborhood Selection

In the original method, a range-based neighborhood Ωr is used, where all points within a global

radius parameter r are included in the neighborhood. However, in regions of the pointcloud with

low density, this can result in neighborhoods with very few or in extreme cases no neighbors.

An illustration depicting this effect can be seen in Figure 4.4. This choice originates from an

implementation tailored for mesh denoising, where KNN neighborhoods were not considered

viable. Given that KNN neighborhoods have been used in various pointcloud processing tasks, we

opt to return to using them in our approach. Therefore, for the neighborhood selection step, we

will use a KNN neighborhood and examine how the choice of neighborhood size k, the number

of neighbors considered per point, impacts the resulting feature space. This experiment explores

the effects of using larger versus smaller neighborhoods, which can be used during the selection

of an appropriate value for k.

4.1.5 Parameter Tweaking

With the previous experiments completed, we now move on to the final step: fine-tuning the

parameters k and ρ. To evaluate the effect of different settings, we will manually classify the

pointclouds to create ground truth labels and compare them against the classifications produced

by the pipeline under various parameter configurations for k and ρ. The evaluation will be

conducted on pointclouds with varying densities to assess how point density influences the results.

Specifically, we will use pointclouds sampled from a cube and a tetrahedron, allowing us to study

the impact of feature sharpness on classification accuracy. In the end, we will compare the optimal

parameter settings for each model and density level to identify the most robust configuration

overall.
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4.2 Position Updating

Following the classification step, we shift our focus to the position update process. First, we

identify that diffusion speeds are missing from some of the update formulas and reintroduce them.

Finally, we define the concept of an update strategy and describe the strategy used in our final

pipeline implementation.

4.2.1 Missing Diffusion Speeds

After examining the position update formulas (Equation 3.15, Equation 3.17, Equation 3.18 and

Equation 3.23) for the points, we noticed that only the formula for flat points includes a diffusion

speed α. Since this was inconsistent, we decided to introduce a diffusion speed to all formulas.

This change results in that the temporary position becomes the proposed new position, with the

diffusion speed determining how much each point shifts towards it. Each diffusion speed is

matched to its corresponding update formula; αc is used when updating points with Equation

3.15, αe is used when updating points with Equation 3.17, α f is used when updating points with

Equation 3.18 and αq is used when updating points with Equation 3.23. The new diffusion speeds

can be incorporated in Equation 3.19 and the denoised positions are now defined by

ṽi = vi +α∗

di if di ≤ ε

0 if di > ε

, (4.5)

where the chosen diffusion speed α ∈ {αc,αe,α f ,αq} corresponds to the selected update formula.

4.2.2 Position Update Strategy

For each classified point, there are two update formulas considered as viable options: the formulas

from Yadav et al. (2018) (Equation 3.15, Equation 3.17 or Equation 3.18) or those from Wei et al.

(2021) (Equation 3.23). The choice of formula for each point class defines the update strategy. To

determine the most effective strategy, we conduct a series of experiments where only the points

from a single class are updated, and we analyze how different strategies and parameter settings

affect reconstruction accuracy. Each experiment involved multiple denoising iterations until a

minimal error is reached. The minimal error and the number of iterations required to reach it are

reported in the tables. These results are then analyzed to identify the optimal strategy. In our final

pipeline implementation, we use Equation 3.18 for flat points and Equation 3.23 for edge and

corner points, performing two iterations in total.
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Chapter 5

Experiments and Results

We begin this section by describing the process used to obtain the pointclouds used for evaluation.

Next, we aim to design an improved denoising pipeline through a series of experiments. We begin

this series of experiments by refining the feature detection process through various modifications.

Next, we explore improvements in the point position updating step. Finally, we integrate all

improvements into a revised pipeline and demonstrate that it outperforms both the original method

and a method that uses the CTD-QEM updating scheme.

5.1 Data Acquisition

The pointclouds used in the following sections are generated by sampling from known mesh

models. These samples are taken directly from the mesh surfaces using gaussian sampling to

simulate the typical scenario, where only unstructured pointclouds are available, as is common in

real-world 3D scans. To simulate measurement noise, Gaussian noise is added to the sampled

points along the direction of their surface normals. The standard deviation of this Gaussian

distribution is determined by multiplying a set noise level with the average distance between

points in a KNN neighborhood, where k is set to 6. The average distance represents the local

density of the pointcloud. Unless stated otherwise, this sampling and noise addition setup is used

consistently across all experiments with a noise level of 0.3.

5.2 Feature Detection

In this section, we present all experiments conducted for the feature detection stage. We begin

by comparing the use of relative position vectors versus normal vectors for constructing voting

tensors and evaluating their effectiveness in separating their feature space. Next, we investigate

how varying the neighborhood size affects the resulting feature space. We then compare different

weighting schemes, providing reasoning for why one outperforms the other. After that, we briefly

examine the feature space threshold and demonstrate that the selected threshold yields reliable
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results. Finally, we perform a comprehensive classification experiment to identify the optimal

combination of angle threshold and neighborhood size for accurately classifying points in the

pointcloud.

5.2.1 Relative Position vs Normal Vector

First, we will visualize the feature spaces of the PVT (Equation 3.1) and NVT (Equation 3.2). To

determine which would be a better choice for the feature detection step, we visualize different

models for each voting tensor with their feature space in Figure 5.1. While reviewing the figures,

we aim to identify a method that ensures each type of point occupies a distinct region in the

feature space. This distinction can be observed if each point type is assigned a unique coloring

that is separable from that of another type. The figure illustrates that the PVT is more susceptible

to noise in the bottom region of the feature space than the NVT, as flat points are assigned either

a red or green color in a random fashion. Additionally, the distinction between corner and edge

points appears less clear in the PVT. Both can be attributed to the number of dimensions spanned

by the vectors used in each method for different types of points. On flat surfaces, relative position

vectors span two dimensions, while normal vectors span only one. As a result, the PVT typically

yields two large eigenvalues for flat regions, whereas the NVT yields only one. This causes flat

points to spread along the bottom edge of the feature space triangle in the PVT, whereas in the

NVT they cluster tightly near the Planarity corner. This effect is particularly evident in the figures

of the sphere, as it consists solely of flat (or slightly curved) points. Consequently, flat points

in the NVT feature space appear consistently red, while in the PVT they show more variation,

appearing either red or green in a noisy fashion. For edge and corner points, relative position

vectors span all three dimensions, producing three large eigenvalues in the PVT, thus making it

harder to distinguish between edges and corners. In contrast, the NVT captures a more structured

variation: normals at edges span two dimensions, and at corners they span all three dimensions.

This dimensional difference enables clearer separation between edges and corners in the NVT

feature space. Therefore, from these findings we conclude that it is better to use the NVT in our

implementation to detect features.

5.2.2 Neighborhood Size

In the following experiment, we try to analyze what effect the neighborhood size has on the

feature space. We will use a variation of different values for k, compute the point-based voting

tensor from equation 3.2, and analyze the feature space. The results can be found in Figure 5.2.

At the figures with low number of neighbors, the coloring is more influenced by noise and

blue dots can be seen on the flat surface. In the figures with high numbers of neighbors on the

right, we can see that the points close to features are more influenced by the features than needed.

In the next section, we will show how the neighborhood can be filtered, such that the features can

be detected more accurately.
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Figure 5.1: Different pointclouds with noise colored according to their planarity, linearity and

sphericity in the feature space. The top figures are calculated with the NVT and the bottom

figures are calculated with the PVT.

5.2.3 Filtering Points with Weighting Schemes

Currently the neighborhoods take into account all neighbors equally. However, in some cases

there are points that fall in the neighborhood, because they are close in euclidean space, but

should not be part of the neighborhood, because they are far away along the surface. To exclude

these points in the computation, we add a filter. (Yadav et al., 2018) proposes a filter based on

the difference in normals, but we propose a filter based on the angle between the neighboring

normal vector and the relative position vector with the neighbor. The difference in filter weights

is shown in Figure 5.3. The figure shows the average weights activation per neighborhood and a

difference in weight activation on feature points. Our filter will not activate on features, which

means it will include almost all neighbors for further calculations. The weight based on normal

difference activates the most on feature points, which means the most neighbors are filtered out on

feature points, which increases the chance of filtering out neighbors with important and relevant

information. To show the effect of our filter, Figure 5.4 shows the feature space for different

values for threshold ρ and neighborhood size k. The effect of the filter becomes evident as fewer

points near features are classified as feature points when the threshold approaches π

2 . This causes

a more precise labeling of the points. Setting ρ too close to π

2 is also risky, since normals are

noisy and points can be misjudged.
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Figure 5.2: Pointclouds of three models with noise. Per visualization, the pointclouds are colored

by their features. Horizontally, the knn neighborhood is increased where the number of neighbors

is defined above the plot.
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Figure 5.3: Visualization of the average filterweights per neighborhood. Yellow means high

average and purple means a low average.

5.2.4 Feature Space Scaling

The final step in the pipeline involves classifying each point based on its position in the feature

space. Using the features planarity, linearity, and sphericity, each point is assigned a class

corresponding to the highest feature value. However, before doing this, a scaling is applied

to better reflect the significance of each feature. In our implementation, we use the weighting

vector ω = [0.2,1,1], reducing the influence of planarity, as it tends to dominate the feature space.

Figure 5.5 illustrates the classification results on several models: a cube, torus, fandisk, and the

Stanford bunny, alongside their respective feature spaces. Visually, the classifications appear to

be accurate. Notably, the torus contains only non-feature points, and these are correctly identified.

In the following section, we will determine the optimal values for the neighborhood size k and

angle threshold ρ based on this fixed feature scaling.

5.2.5 Point classifications

After understanding the effect of the parameters, we want to find which parameters will result

in the most accurate classification of our points. In these tests, we apply gaussian noise with

noise level 0.2 to different models. Then we do one iteration of normal estimantion, normal

smoothing and classification and compare the classification to the manual classification of the

model. If the classification is correct, we mark the point with a purple color and otherwise with a

yellow color. The percentage of correctly classified points is stated above the figure together with

the parameters used for the experiment. The results of all experiments on different models with

different parameter settings can be found in the Appendix A.
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Figure 5.4: Visualization of the feature space with different number of neighbors and angles for

filtering. From top to bottom the number of neighbors is increased and from left to right the angle

rho is increased.



26 Experiments and Results

Figure 5.5: Classification of points in pointclouds of different models. Models contain 215 points

with a noise level of 0.3. Classification colors are the following: Corner points are yellow, edge

points are green and flat points are purple.

The models used in the experiments are different density versions of the Cube and Tetrahedron.

The Cube contains right-angled features, while the Tetrahedron has sharper features. This

difference allows us to investigate the effect of the feature angle on the classification performance.

Additionally, varying the pointcloud density enables us to study how density influences the

classification results.

From the experiments, we learn that the smaller the neighborhood and the closer the angle

threshold ρ is to π

2 , the more misclassifications are made on the feature points. In reverse, when ρ

is further away from π

2 , more flat points close to the features are misclassified as features. It can

be seen that there is an optimal ratio between these parameters to get the optimal classification.

Furthermore, the cube and tetrahedron differ in the sharpness of their features, as the angles at

edges and corners are sharper for the tetrahedron than for the cube. In the experiments, it can be

seen that the optimal ratio between the angle threshold and the neighborhood size is different for

the cube and the tetrahedron. As the angle of the feature gets sharper, the angle of the threshold

should also get sharper. This means that there is no setting, such that points for all shapes are

correctly classified using this method.

The angle of a feature can be anything between 0 and π. Since a cube only has features of π

2 ,

which is the mean of all possible angles, we choose a setting for k and ρ that works the best for

the cube. Therefore, in our pipeline, k = 16 and ρ = 5
12 π. The resulting classification experiments

for these settings on the different models are summarized in Figure 5.6



Experiments and Results 27

Figure 5.6: Summary of the classification experiments for the chosen parameter settings, where

ρ = 5
12 π and k = 16. Yellow points are misclassified while purple points are correctly classified.

The cube has been sampled with 4 different densities and the tetrahedron with 3 different densities.
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5.3 Position updating

For the position updating step, we aim to determine which update formula performs best for each

point class. To evaluate the effectiveness of the denoising, we first introduce two error metrics

that help us assess the denoising process. We then describe the experimental setup designed to

identify the optimal strategy and parameter settings for the pipeline.

5.3.1 Error Metrics

To compare the denoised pointcloud with the ground truth pointcloud, the Chamfer Distance

(CD) is used as an error metric. The formula is defined in 5.1 for pointsets S1 and S2, where Lr is

the range of the minimal sphere in which the pointset fits.

CD(S1,S2) =
1

Lr|S1| ∑
x∈S1

miny∈S2 ||x−y||22 +
1

Lr|S2| ∑
y∈S2

minx∈S1 ||x−y||22 (5.1)

The single-sided Chamfer Distance (sCD) is defined in 5.2. The sCD can validate if the

denoised pointcloud is close to the ground truth. However, it cannot see if point clustering occurs

on the surface. This is why we still use CD to see if all ground truth points are covered by all

denoised points.

sCD(S1,S2) =
1

Lr|S1| ∑
x∈S1

miny∈S2 ||x−y||22 (5.2)

5.3.2 Parameter Exploration for Position Updating

In the position updating step, we want to compare what update formulas result in a better denoising

result. The parameters that have to be experimented with are the strategy, the diffusion speed α

and the number of iterations the algorithm needs to minimize the error. A strategy determines

which updating formula is used based on the classification of a point. In the experimental

setup, we use the feature detection setup from the previous section to classify the points. In the

experiments, we compare vflat
i and vfeature

i for flat points, vfeature
i and ve

i for edge points, and vc
i and

vfeature
i for corner points. Given a value for α and the error metrics sCD or CD, we denoise the

points with the chosen classification until a local minimum in the error is reached. The number of

iterations needed and the final local minimal error is noted. The results for different models are

provided in Table 5.1, 5.2, 5.3 and 5.4.

A simple correlation observed in the tables is that the number of iterations required to reach a

local minimum in the error metric increases as the diffusion speed decreases. This is expected, as

a smaller diffusion speed results in smaller steps towards the optimal solution, thereby requiring

more iterations to converge. While fewer iterations are desirable for algorithm efficiency, higher

diffusion speeds can cause the algorithm to overshoot the optimal solution. Therefore, a higher

diffusion speed does not always yield the lowest possible error.
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diffusion speeds α Error Metric ×10−5

Fandisk

Flat Points Edge Points Corner Points

vflat
i vfeature

i ve
i vfeature

i vc
i vfeature

i

Error Iterations Error Iterations Error Iterations Error Iterations Error Iterations Error Iterations

1
sCD 0.9415 1 0.8398 13 1.309 3 1.308 2 1.476 1 1.472 2
CD 2.068 1 2.122 1 2.429 0 2.427 1 2.429 0 2.429 0

0.9
sCD 0.9397 2 0.8407 14 1.306 5 1.308 3 1.478 0 1.473 2

CD 2.067 2 2.123 1 2.429 0 2.416 1 2.429 0 2.429 0

0.8
sCD 0.9388 2 0.8398 17 1.305 5 1.309 3 1.475 3 1.473 2

CD 2.066 2 2.131 1 2.429 0 2.407 1 2.429 0 2.429 0

0.7
sCD 0.9433 2 0.8397 24 1.303 6 1.309 3 1.475 2 1.473 3

CD 2.069 2 2.147 1 2.429 0 2.400 1 2.429 0 2.429 0

0.6
sCD 0.9448 3 0.8427 24 1.302 7 1.310 4 1.474 2 1.473 3

CD 2.070 3 2.152 2 2.429 0 2.395 1 2.429 0 2.429 0

0.5
sCD 0.9468 4 0.8434 25 1.302 7 1.311 5 1.474 2 1.473 4

CD 2.071 4 2.154 2 2.426 1 2.393 1 2.429 0 2.429 0

0.4
sCD 0.9516 7 0.8610 14 1.303 6 1.312 7 1.474 2 1.473 5

CD 2.075 7 2.166 4 2.414 1 2.394 1 2.429 0 2.429 0

0.3
sCD 0.9516 7 8.610 14 1.304 12 1.313 9 1.474 3 1.473 7

CD 2.075 7 2.166 4 2.408 1 2.398 1 2.429 0 2.429 1

0.2
sCD 0.9549 10 0.8435 70 1.305 13 1.313 13 1.474 4 1.473 11

CD 2.077 10 2.172 6 2.407 1 2.397 2 2.429 0 2.429 1

0.1
sCD 0.9572 22 0.8642 46 1.306 27 1.315 27 1.474 8 1.474 9

CD 2.079 22 2.177 11 2.406 3 2.399 5 2.429 0 2.429 2

Table 5.1: Table of results for experimentation on the Fandisk. For a selected point class, update

formula, diffusion speed α, and error metric, points belonging to the class are denoised over

multiple iterations until the error metric reaches a minimum. The minimum error value and the

corresponding number of iterations are recorded in the table. For the Fandisk, using vflat
i for flat

points and vfeature
i for edge and corner points with diffusion speeds α = [0.8,0.2,1] for 2 iterations

is optimal. Results of experiments using these settings are marked in bolt.
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diffusion speeds α Error Metric ×10−5

Cube

Flat Points Edge Points Corner Points

vflat
i vfeature

i ve
i vfeature

i vc
i vfeature

i

Error Iterations Error Iterations Error Iterations Error Iterations Error Iterations Error Iterations

1
sCD 1.628 2 1.446 10 2.647 5 2.648 4 2.812 1 2.844 1

CD 3.806 2 3.932 1 4.652 0 4.652 0 4.591 1 4.652 0

0.9
sCD 1.630 2 1.439 11 2.641 4 2.647 4 2.817 1 2.848 0

CD 3.807 2 3.936 1 4.652 0 4.643 1 4.602 1 4.652 0

0.8
sCD 1.634 2 1.443 12 2.639 6 2.648 5 2.821 2 2.848 0

CD 3.812 2 3.957 1 4.652 0 4.633 1 4.609 2 4.652 0

0.7
sCD 1.636 3 1.444 14 2.640 8 2.650 6 2.821 2 2.848 0

CD 3.813 3 3.995 1 4.652 0 4.625 1 4.606 4 4.652 0

0.6
sCD 1.640 4 1.446 16 2.641 8 2.650 7 2.823 5 2.848 0

CD 3.816 4 3.997 2 4.652 0 4.619 1 4.609 5 4.652 0

0.5
sCD 1.643 5 1.447 19 2.639 9 2.651 8 2.822 6 2.848 0

CD 3.818 5 4.002 2 4.651 1 4.617 1 4.609 8 4.652 0

0.4
sCD 1.645 6 1.449 23 2.641 9 2.653 10 2.820 7 2.848 0

CD 3.819 6 4.018 3 4.633 1 4.618 1 4.605 14 4.652 0

0.3
sCD 1.648 8 1.451 32 2.642 13 2.653 14 2.821 9 2.848 0

CD 3.822 8 4.029 4 4.623 1 4.621 1 4.606 25 4.652 0

0.2
sCD 1.652 13 1.451 48 2.643 21 2.655 21 2.821 15 2.848 0

CD 3.825 13 4.039 6 4.624 1 4.621 2 4.605 43 4.652 0

0.1
sCD 1.655 26 1.452 96 2.644 42 2.656 41 2.845 1 2.848 0

CD 3.827 26 4.050 12 4.625 3 4.623 4 4.648 1 4.652 0

Table 5.2: Table of results for experimentation on the Cube. For a selected point class, update

formula, diffusion speed α, and error metric, points belonging to the class are denoised over

multiple iterations until the error metric reaches a minimum. The minimum error value and the

corresponding number of iterations are recorded in the table. For the Cube, using vflat
i for flat

points and vfeature
i for edge points and vc

i for corner points with diffusion speeds α = [1,0.2,0.8]

for 2 iterations is optimal. Results of experiments using these settings are marked in bolt.
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diffusion speeds α Error Metric ×10−5

Stanford Bunny

Flat Points Edge Points Corner Points

vflat
i vfeature

i ve
i vfeature

i vc
i vfeature

i

Error Iterations Error Iterations Error Iterations Error Iterations Error Iterations Error Iterations

1
sCD 1.308 45 0.8078 8 1.411 1 1.372 2 1.468 1 1.461 3

CD 2.334 38 2.157 1 2.428 0 2.428 0 2.428 0 2.422 1

0.9
sCD 1.307 49 0.8073 9 1.405 2 1.373 2 1.468 2 1.461 3

CD 2.334 38 2.150 1 2.428 0 2.428 0 2.428 0 2.422 1

0.8
sCD 1.308 54 0.8055 10 1.400 2 1.374 3 1.467 2 1.461 4

CD 2.334 50 2.152 1 2.428 0 2.428 0 2.428 0 2.422 1

0.7
sCD 1.309 62 0.9072 11 1.397 2 1.374 3 1.467 2 1.461 5

CD 2.334 56 2.162 1 2.428 0 2.428 0 2.428 0 2.422 1

0.6
sCD 1.309 74 0.8080 14 1.395 2 1.375 4 1.467 2 1.461 3

CD 2.335 65 2.181 1 2.428 0 2.428 1 2.428 0 2.422 1

0.5
sCD 1.311 91 0.8079 16 1.394 2 1.376 5 1.466 2 1.461 8

CD 2.337 69 2.184 2 2.428 0 2.424 1 2.428 0 2.422 1

0.4
sCD 1.311 121 0.8149 11 1.395 3 1.377 6 1.466 2 1.462 5

CD 2.336 102 2.187 2 2.428 0 2.421 1 2.428 0 2.422 1

0.3
sCD 1.313 159 0.8120 25 1.394 4 1.378 7 1.466 2 1.463 8

CD 2.337 124 2.194 3 2.428 0 2.421 1 2.428 0 2.422 2

0.2
sCD 1.314 239 0.8156 28 1.395 5 1.380 9 1.466 4 1.462 12

CD 2.338 181 2.201 5 2.423 1 2.422 1 2.423 1 2.422 3

0.1
sCD 1.316 475 0.8172 57 1.396 12 1.381 19 1.466 6 1.463 33

CD 2.340 358 2.207 9 2.423 1 2.422 3 2.423 1 2.422 6

Table 5.3: Table of results for experimentation on the Stanford Bunny. For a selected point class,

update formula, diffusion speed α, and error metric, points belonging to the class are denoised

over multiple iterations until the error metric reaches a minimum. The minimum error value

and the corresponding number of iterations are recorded in the table. For the Stanford Bunny,

using vfeature
i for all points with diffusion speeds α = [0.9,0.4,1] for a single iteration is optimal.

Results of experiments using these settings are marked in bolt.
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diffusion speeds α Error Metric ×10−5

Sphere Torus

Flat Points

vflat
i vfeature

i vflat
i vfeature

i

Error Iterations Error Iterations Error Iterations Error Iterations

1
sCD 2.167 2 1.907 9 1.121 2 0.9893 8

CD 5.534 2 5.902 1 2.897 2 3.078 1

0.9
sCD 2.170 3 1.957 3 1.123 2 0.9900 9

CD 5.539 3 5.917 1 2.898 2 3.069 1

0.8
sCD 2.173 3 1.908 11 1.128 3 0.9933 8

CD 5.542 3 5.931 1 2.903 2 3.075 1

0.7
sCD 2.178 4 1.881 11 1.129 3 0.9879 12

CD 5.549 3 5.989 1 2.904 3 3.096 1

0.6
sCD 2.181 5 1.909 14 1.133 4 0.9970 7

CD 5.550 4 6.075 1 2.909 3 3.132 1

0.5
sCD 2.185 6 1.908 18 1.136 5 0.9881 16

CD 5.555 5 6.117 2 2.910 4 3.129 2

0.4
sCD 2.188 7 1.905 22 1.138 6 0.9984 11

CD 5.558 7 6.149 2 2.913 6 3.141 2

0.3
sCD 2.190 10 1.913 29 1.141 8 0.9998 14

CD 5.560 9 6.152 4 2.915 8 3.151 3

0.2
sCD 2.194 15 1.965 16 1.144 13 0.9999 22

CD 5.564 14 6.098 5 2.918 12 3.162 5

0.1
sCD 2.198 32 1.906 90 1.146 26 1.001 43

CD 5.567 29 6.193 9 2.920 24 3.172 10

Table 5.4: Table of results for experimentation on the models without features: The sphere and

the torus. Denoising only flat points, since the models contain no edge or corner points. For

the flat points, an update formula, a diffusion speed α, and an error metric; points belonging to

the class are denoised over multiple iterations until the error metric reaches a minimum. The

minimum error value and the corresponding number of iterations are recorded in the table. For

both the sphere and the torus, using vflat
i for all points with diffusion speeds α0 = 1 for 2 iterations

is optimal. Results of experiments using these settings are marked in bolt.
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Another observation from the tables is that one of the error metrics often increases while the

other decreases. For example, in Table 5.1, when examining flat points with a diffusion speed of

α = 1, we see that the sCD is higher for v f lat
i points, whereas the CD is higher for v f eature

i points.

This effect occurs because the v f eature
i points are generally closer to the ground truth points than

the v f lat
i points. However, it is important to note that the CD metric also measures how well the

ground truth points are covered by the denoised points or how well the denoised points cover

the surface of the model. Because v f eature
i points are allowed to move freely in three dimensions,

rather than being constrained to movement along the normal direction, the denoised result can

leave holes in the pointcloud, resulting in a higher CD. This effect is commonly observed when

trying to denoise flat points using the v f eature
i update formula.

The tables show that five models were used in the experiments. The rationale for selecting

these models is as follows. The Cube and Fandisk contain sharp features with angles around π

2 .

These right-angle features can be accurately detected by PCA-based algorithms, making these

models suitable for testing the baseline performance on feature points. The Sphere and Torus

contain no sharp features, making them ideal for evaluating denoising performance on flat or

slightly curved surfaces. Finally, the Stanford Bunny includes curved surfaces adjacent to curved

edges, a characteristic not present in the other models, making it a valuable addition to the dataset

for testing under more complex geometric conditions.

For the final pipeline, we need to select the update strategy, diffusion speed, and number

of iterations in advance. To determine the optimal configuration, we choose settings where the

number of iterations required to reach a minimal error is the same across all point classes. We

focus on minimizing the CD error, as the sCD metric does not sufficiently penalize uncovered

ground truth points. Among the configurations with equal iteration counts per class, the one with

the lowest combined minimal error is selected. The optimal settings for each model are presented

in the tables.

Given the results, in our pipeline, the strategy is to use vflat
i for flat points and vfeature

i for other

points with a diffusion speed of α = [1,0.2,1] for 2 iterations.

5.4 Method Comparison

In this section, we will compare our final setup with the method CPSD (Constraint-based Point

Set Denoising) from (Yadav et al., 2018) and CTD-QEM (Constrained Two-Direction Quadric

Error Metrics) from (Wei et al., 2021). CPSD uses range based neighborhoods Ωr
i , where

r =
1

|V ||Ωk
i |

|V |

∑
i=0

∑
j∈Ωk

i

v j −vi (5.3)

is the average distance between points in the pointcloud and k = 6. Since the CTD-QEM

algorithm itself is a position updating algorithm, it does not do normal smoothing. Therefore,

in this comparison, it used our normal smoothing algorithm to smooth the point normals. For
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Figure 5.7: Test set consisting of models from Shen et al. (2022), which were 3D printed and

subsequently scanned to capture real-world noise characteristics. The zoom-in highlights printing

artifacts, such as the vertical lines visible on the Suit Man model.

this comparison, CPSD does 150 iterations, because Yadav et al. (2018) proposes this number

of iterations for CAD models like the cube and the fandisk, CTD-QEM does 15 iterations as

suggested by Wei et al. (2021) and our method does 2 iterations as discussed in the previous

section. We compare on different models by adding gaussian noise with noise level 0.2. We test

with the two error metrics sCD and CD and show the results in Table 5.5 with visualizations

and zoom-ins in Appendix B. Furthermore, we evaluate our method on a test dataset from Shen

et al. (2022), consisting of models that were 3D printed and subsequently scanned to capture

real-world noise introduced by the printing and scanning processes (see Figure 5.7). The results

are presented in Table 5.6, with visualizations provided in Appendix C.

Table 5.5 shows that all denoising methods achieve lower sCD values, indicating that the

denoised pointclouds are closer to the ground truth points on average. At first glance, the CTD-

QEM method appears to perform best in terms of sCD. However, it does not outperform the

other methods on the CD metric. This discrepancy can be attributed to the clustering behavior of
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Model Error Metric ×10−5 Noisy CPSD CTD-QEM Ours

Cube
sCD 2.880 1.589 1.260 1.493

CD 4.735 4.570 5.607 3.810

Torus
sCD 2.204 1.920 1.061 1.162

CD 3.586 4.820 4.891 2.931

Fandisk
sCD 1.462 0.978 0.683 0.833

CD 2.455 2.583 3.202 2.070

Stanford Bunny
sCD 1.499 1.075 0.709 1.347

CD 2.437 2.545 3.405 2.365

Pyramid
sCD 1.717 1.430 0.853 0.929

CD 2.870 3.801 3.967 2.354

Sphere
sCD 4.308 3.334 2.087 2.245

CD 6.940 8.205 8.949 5.621

Cylinder
sCD 3.241 2.241 1.571 1.711

CD 5.389 6.132 7.183 4.397

Cone
sCD 1.544 1.191 0.737 0.815

CD 2.560 3.105 3.313 2.072

Tetrahedron
sCD 1.646 1.146 0.823 0.892

CD 2.706 3.043 3.562 2.221

Armadillo
sCD 1.297 1.797 0.681 0.854

CD 2.186 3.663 3.323 1.975

Cow
sCD 1.052 1.024 0.519 0.637

CD 1.718 2.201 2.531 1.505

Teapot
sCD 1.445 1.274 0.738 0.852

CD 2.429 3.097 3.424 2.081

Table 5.5: Two error metrics of noisy or denoised pointclouds compared to ground truth point-

clouds for 12 different models. Visualizations with zoom-ins can be found in Appendix B.
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Model Error Metric ×10−5 Noisy CPSD CTD-QEM Ours

Ankylosaurus
sCD 0.379 0.350 0.191 0.221

CD 0.440 0.521 0.471 0.347

Armor Cat
sCD 0.751 0.715 0.454 0.482

CD 1.182 1.416 1.406 1.090

Cat Fangs
sCD 0.727 0.673 0.451 0.495

CD 0.802 0.949 0.895 0.706

Deer
sCD 1.150 1.211 0.958 1.015

CD 1.092 1.337 1.308 1.133

Direwolf
sCD 1.121 1.067 0.838 0.912

CD 2.347 2.430 2.890 2.429

Emissary Wolf
sCD 0.394 0.388 0.274 0.279

CD 1.252 1.493 1.587 1.313

Girl
sCD 0.890 0.797 0.481 0.527

CD 1.312 1.487 1.484 1.127

Goblin
sCD 0.634 0.659 0.462 0.432
CD 11.572 12.142 13.435 12.525

Goku
sCD 0.509 0.477 0.394 0.425

CD 0.621 0.714 0.776 0.661

Messi
sCD 1.008 0.858 0.587 0.650

CD 1.433 1.599 1.589 1.298

Minion Ghost
sCD 1.178 0.971 0.653 0.748

CD 1.373 1.482 1.410 1.157

Nut
sCD 10.685 12.818 7.455 10.685

CD 11.500 17.874 17.617 12.304

Putin
sCD 1.196 0.951 0.667 0.748

CD 1.376 1.444 1.453 1.131

Snoopy Flying Face
sCD 1.439 1.367 0.750 0.876

CD 1.824 2.232 2.047 1.521

Snoopy
sCD 1.781 1.443 1.295 1.305

CD 2.038 2.103 2.501 1.929

Spaghetti Detective
sCD 0.683 0.641 0.435 0.456

CD 2.055 2.058 2.380 2.005

Stitch Guitar
sCD 0.758 0.841 0.487 0.546

CD 2.009 2.253 2.394 1.988

Stitch Stand
sCD 0.593 0.545 0.423 0.454

CD 0.904 0.949 1.074 0.884

Suit Man
sCD 2.075 2.101 1.558 1.668

CD 2.334 2.893 3.053 2.286

Tp
sCD 1.167 1.102 0.925 0.950

CD 3.994 4.068 4.970 4.366

Table 5.6: Two error metrics of noisy or denoised pointclouds compared to ground truth point-

clouds for different models.



Experiments and Results 37

CTD-QEM: it relocates multiple points to the same optimal positions, resulting in sparse regions

or holes in the pointcloud, which can also be seen in the visualizations in Appendix B. As a result,

when calculating CD, where each ground truth point must find the closest point in the denoised

pointcloud, many points remain unconvered, increasing the overall error. This highlights the need

for a balance between minimizing point-wise distances and preserving spatial coverage. Our

method, while scoring slightly worse on the sCD metric, significantly outperforms on the CD

metric, indicating better surface coverage and fewer holes in the reconstruction.

Table 5.6 shows that our method does not outperform the other methods in every test case. Our

method fails to achieve lower CD errors for the models Deer, Direwolf, Emissary Wolf, Goblin,

Goku, Nut, Suit Man, and Tp. Upon closer inspection, this is likely caused by discrepancies

between the ground truth models and their corresponding noisy versions. Many ground truth

models include internal surfaces that do not exist in the printed and scanned noisy versions. As

these surfaces disappear in the scanning process, the CD error increases significantly due to

uncovered ground truth points. Additionally, deformations introduced during the printing process

contribute to unreliable error measurements. For example, the feet of the Deer model are merged

to increase stability during printing, resulting in a structural deviation from the ground truth that

causes mismatches with the scanned pointcloud. Similar artifacts and discrepancies are illustrated

in Figure 5.8. The Nut model (top left) has a missing piece at the edge of the hat and its edges

are slightly curved upwards, leading to higher errors in those regions. The Goku model (top

right) includes a hidden surface on the bottom of the foot that does not appear in the scan. The

Goblin model (bottom left) contains an internal surface separating the torso and hip, which is

lost during scanning. The Suit Man model (bottom middle) shows minor deformations in the

feet, while the Emissary Wolf model (bottom right) contains a ring-shaped surface representing a

necklace that is not captured in the noisy scan. These types of hidden or altered surfaces introduce

large Chamfer Distance errors that cannot be mitigated by any denoising strategy, as the missing

geometry fundamentally prevents accurate reconstruction. Despite these challenges, the sCD

error shows that the absolute distance from the noisy points to the ground truth decreases after

denoising. This indicates that the denoising process is effective, even if the CD metric does not

fully reflect this improvement due to structural differences in the models.
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Figure 5.8: Six models from the test set exhibiting artifacts. The color shows the Chamfer

Distance, where yellow points indicate regions where no corresponding noisy points are found

nearby in Euclidean space. The models shown from top left to bottom right are Nut, Deer, Goku,

Goblin, Suit Man, and Emissary Wolf. The artifacts include surface deformations and surfaces

within the volume of the model.
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Chapter 6

Conclusion

In this thesis, the CPSD (Constraint-based Point Set Denoising) method proposed by Yadav et al.

(2018) was explored, analysed and improved upon. The proposed improvements were compared

to both the original CPSD method and the CTD-QEM (Constrained Two-Direction Quadric Error

Metrics) method from Wei et al. (2021). In the feature detection stage, various voting tensors,

neighborhood sizes, neighborhood filters and feature space thresholds were evaluated to optimize

the classification of points into flat, edge and corner categories. For the optimized classification,

experiments were conducted to minimize the reconstruction error and determine the optimal

hyperparameters for the pipeline.

The experimental results demonstrate that the proposed method achieves better performance

on both the CD and sCD error metrics compared to the original CPSD implementation, while also

reducing computational time due to the fewer number of iterations required for convergence. This

highlights the potential of the improved pipeline for efficient and accurate pointcloud denoising

tasks.

However, some limitations remain. The current update formulas assume that underlying

surfaces are locally planar, neglecting curvature, which can reduce reconstruction quality in areas

with complex geometry. Additionally, the evaluation used real-world noisy scans with synthetic

ground truth models that contained structural discrepancies. This, combined with the CD metric,

leads to unfair or inaccurate evaluations, as internal surfaces present in synthetic models often do

not exist in the scanned data. Developing a test set without such internal surfaces or structural

deformations introduced for printing stability could result in more reliable evaluations.

For future work, it is recommended to explore alternative update formulas that account for

surface curvature to further improve reconstruction accuracy. Introducing a curvature-based

guidance signal alongside normal vectors could increase update accuracy, particularly on curved

surfaces such as those in the Sphere, Torus, and Stanford Bunny models. This would likely

yield more precise optimal point positions and reduce inflation effects, where models expand

over multiple iterations. Furthermore, exploring alternative error metrics that not only measure

point-wise closeness but also penalize point clustering while ignoring irrelevant internal surfaces
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in the ground truth models could provide more meaningful evaluations of denoising performance.

Finally, since the pipeline is modular, any component can be replaced with a neural network to fur-

ther enhance reconstruction accuracy. For instance, existing neural networks that predict normal

vectors or classify points could be integrated into this pipeline to improve overall performance.

In conclusion, this thesis presents a substantial improvement to the CPSD denoising pipeline,

both in terms of reconstruction accuracy and computational efficiency. The results demonstrate

that careful design of classification and updating strategies can lead to significant gains, providing

a solid foundation for further research in pointcloud denoising and processing.
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Appendix A

Point Classification Experiments

This appendix contains the results of point classification experiments. Many settings are tried,

where points are marked purple if they are correctly classified and yellow otherwise. The

visualizations contain the ground truth models, because it is easier to derive conclusions from

them. This is because it’s easier to identify the location of the features and whether feature points

or surrounding flat points are misclassified.
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Figure A.1: A cube with 386 points is classified with different setting for the threshold angle ρ

and different neighborhood sizes k. Purple points are correctly classified and yellow points are

wrongly classified. The percentage is the percentage of correctly classified points.
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Figure A.2: A cube with 1538 points is classified with different setting for the threshold angle ρ

and different neighborhood sizes k. Purple points are correctly classified and yellow points are

wrongly classified. The percentage is the percentage of correctly classified points.
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Figure A.3: A cube with 6146 points is classified with different setting for the threshold angle ρ

and different neighborhood sizes k. Purple points are correctly classified and yellow points are

wrongly classified. The percentage is the percentage of correctly classified points.
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Figure A.4: A cube with 24578 points is classified with different setting for the threshold angle ρ

and different neighborhood sizes k. Purple points are correctly classified and yellow points are

wrongly classified. The percentage is the percentage of correctly classified points.
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Figure A.5: A tetrahedron with 514 points is classified with different setting for the threshold

angle ρ and different neighborhood sizes k. Purple points are correctly classified and yellow

points are wrongly classified. The percentage is the percentage of correctly classified points.
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Figure A.6: A tetrahedron with 2050 points is classified with different setting for the threshold

angle ρ and different neighborhood sizes k. Purple points are correctly classified and yellow

points are wrongly classified. The percentage is the percentage of correctly classified points.
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Figure A.7: A tetrahedron with 8194 points is classified with different setting for the threshold

angle ρ and different neighborhood sizes k. Purple points are correctly classified and yellow

points are wrongly classified. The percentage is the percentage of correctly classified points.
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Appendix B

Visual Comparison of Denoising Methods

on Synthetic Models

In the figures below, different denoising methods are compared on different models with noise

level 0.2. 214 points have been sampled on the models. The methods CPSD, CTD-QEM and

our method are compared with the noisy input and eachother. The models Cube, Torus, Fandisk,

Stanford Bunny, Pyramid, Sphere, Cylinder, Cone, Tetrahedron, Armadillo, Cow and Teapot

have been chosen, because they contain a combination of flat and curved surfaces and sharp and

complex features.



53

Figure B.1: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Cube, Torus, Fandisk and Stanford Bunny are shown.
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Figure B.2: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Pyramid, Sphere, Cylinder and Cone are shown.
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Figure B.3: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Tetrahedron, Armadillo, Cow and Teapot are shown.
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Appendix C

Visual Comparison of Denoising Methods

on Printed and Scanned Models

This appendix presents visual comparisons of the denoising results on models from the Printed

Dataset Shen et al. (2022), using the original CPSD pipeline, an implementation of CTD-QEM,

and our updated pipeline. In these visualizations, purple points indicate low error values, while

yellow points indicate high error values.
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Figure C.1: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Ankylosaurus, Armor Cat Fangs and Deer are shown.
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Figure C.2: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Direwolf, Emissary Wolf, Girl and Goblin are shown.
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Figure C.3: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Goku, Messi, Minion Ghost and Nut are shown.
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Figure C.4: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Putin, Snoopy Flying Face, Snoopy and Spaghetti Detective are shown.



61

Figure C.5: From left to right the noisy model and denoised results are shown. Vertically, results

for the models Stitch Guitar, Stitch Stand, Suit Man and Tp are shown.


	Acknowledgements
	Abstract
	Introduction
	Related Work
	Background
	Neighborhood Construction
	Normal Guided Denoising Pipeline
	Normal Estimation
	Normal Smoothing
	Feature Detection
	Position Updating

	Constrained Two-Direction Quadric Error Metrics

	Method
	Feature Detection
	Feature Extraction and Classification
	Weighting Scheme
	Voting Tensor Creation
	Neighborhood Selection
	Parameter Tweaking

	Position Updating
	Missing Diffusion Speeds
	Position Update Strategy


	Experiments and Results
	Data Acquisition
	Feature Detection
	Relative Position vs Normal Vector
	Neighborhood Size
	Filtering Points with Weighting Schemes
	Feature Space Scaling
	Point classifications

	Position updating
	Error Metrics
	Parameter Exploration for Position Updating

	Method Comparison

	Conclusion
	Bibliography
	Point Classification Experiments
	Visual Comparison of Denoising Methods on Synthetic Models
	Visual Comparison of Denoising Methods on Printed and Scanned Models

