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Preface

The idea of measuring millimetric motion of the Earth’s surface from 800 kilometers
altitude, without instruments on the ground, sounds crazy. Or at least I thought. How-
ever, from the nineties strong progress had been made in the field of satellite radar
interferometry, which made it possible. I was eager to learn more about the technique.
Lectures in Delft and a traineeship at the University of Cape Town, South Africa, gave
me the first insights. However, the start of my PhD-research gave me the opportunity
to focus completely on the topic.

Since then I analyzed many radar interferometric data sets from various places around
the world. Each time I felt like an explorer, trying to discover new phenomena. What
starts with a collection of billions of phase values between -π and π, results in detailed
knowledge of—possibly previously unknown—surface motion. By improving the algo-
rithms, new surface motion features may become visible, even based on archived data.
A great challenge to work on and I hope the research presented in this thesis forms a
valuable contribution.

I am grateful to many people for their support during my research. Foremost, I would
like to thank Ramon Hanssen for his supervision and overall guidance. I learned a lot
from him, certainly not only about radar interferometry. His never ending enthusiasm
and creativity have always been inspiring. Moreover, he enabled my participation in
many interesting projects over the years. Furthermore, many thanks go to Peter Teunis-
sen, who kept stimulating me to finish this thesis. I enjoyed the useful discussions we had.

A large part of the research presented in this thesis was performed in parallel with the
research by my former colleagues Gini Ketelaar and Petar Marinkovic. Our close collab-
oration and team work resulted in a strong synergy, thereby significantly improving the
results we obtained over the years. Many thanks for your contributions, the useful dis-
cussions, and the fun we had during conferences. Furthermore, the inputs from Miguel
Caro Cuenca, Shizhuo Liu and Zbigniew Perski are highly appreciated. I also would like
to thank Astrid Humme and Sami Samiei-Esfahany for their work and creativity during
their MSc-projects and later on, which contributed to the content of this thesis. Also
special thanks go to Petar Marinkovic, Mahmut Arikan and Prabu Dheenathayalan for
their assistance in soft- and hardware related issues. Finally, I would like to thank the
many other members of our radar group, who joined our group for shorter or longer
terms over the years. I am sorry I cannot mention you all. It is great to work in such
an international environment, with people from many different countries and cultures.
I enjoyed the different food we tasted, the (political) discussions we had, but certainly
also the beers we shared.



ii

I am also grateful to my other colleagues within the MGP group for their support and
providing a nice work environment. Especially, I would like to thank Ria Scholtes, Danko
Roozemond, Lidwien de Jong, Rebeca Domingo, Relly van Wingaarden, Marjolein de
Niet-de Jager, and File Koot-Stomp, for their administrative and project support. Also
special thanks to Sandra Verhagen, who provided me with the latex-template for this
thesis.

The content of this thesis benefited greatly from the critical reviews and valuable com-
ments by my defense committee. This is highly appreciated. Furthermore, I would like
to thank my paranymphs Bas Alberts and Lennard Huisman for their support in the final
preparation of this manuscript.

This research was enabled by the financial support of the dr. ir. Cornelis Lely Stichting.
A financial contribution from the Fulbright Program gave me the opportunity to perform
a few months of my research at the University of Miami, USA. Falk Amelung and Tim
Dixon, many thanks for having me.

The satellite radar data used in this thesis has been provided by the European Space
Agency (ESA) and the German Space Agency (DLR). The SRTM data is made avail-
able by the National Aeronautics and Space Administration (NASA). The background
imagery in some of the figures in this thesis is obtained from Google Maps.

Finally, I would like to thank my friends for providing the necessary amount of distrac-
tion from the never ending urge to improve one’s research. And foremost, my father
and mother, Tom and Nanda, and my sister, Anneloes, for their unconditional love and
support.

Freek van Leijen
Delft, March 2014
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Summary

Persistent Scatterer Interferometry based on geodetic estimation theory

Satellite radar interferometry (InSAR) is a powerful technique to measure motion of the
Earth’s surface. However, the applicability of the conventional approach is limited due to
error sources: temporal decorrelation, geometric decorrelation, and atmospheric signal
delay. Radar interferometric time series approaches have been developed to overcome
these degrading factors. By using the information content of a full radar image stack,
the impact of the error sources can be reduced and time series of the deformation history
can be estimated.

The Persistent Scatterer Interferometry (PSI) technique, one of the time series ap-
proaches, is based on the coherent phase history of point scatterers. Since the location
of these point scatterers is not known beforehand, PSI comprises both an estimation and
a detection problem. The complicating factor in the estimation and detection process is
the wrapped condition of the phase observations, i.e., phase observations in the [−π,+π)
interval. As a consequence, the coherence of an image pixel in the time domain cannot
be assessed directly. Furthermore, assumptions regarding the spatial and/or temporal
smoothness of the deformation signal, expressed by a model, are required to estimate
the unknown phase ambiguities. Therefore, both the correctness of the model used, and
the actual phase persistence of the pre-selected pixels should be assessed. The multiple,
model dependent, possible solutions, in combination with the uncertainty in the actual
noise level of a certain image pixel, require a balanced procedure in the estimation and
detection process. Hereby, the number of false detections and false rejections of these
Persistent Scatterers (PS) should be minimized.

This thesis describes the design, implementation, and evaluation of a new Persistent
Scatterer Interferometry algorithm, the Delft implementation of PSI (DePSI). The al-
gorithm is based on a framework of geodetic estimation, testing, and quality control
techniques, known as the ’Delft school’. Using this framework, the algorithm is able
to detect point scatterers with consistent reflection properties over time, for which the
deformation time series can be estimated with sufficient reliability.

For the design and implementation of the algorithm, three main problems can be
identified: algorithm design, ambiguity resolution, and Persistent Scatterer detection.
The design of the algorithm is inspired by previously developed PSI approaches and
methodologies applied to conventional geodetic measurement techniques. The perfor-
mance of three ambiguity resolution techniques, integer least-squares (ILS), integer boot-
strapping (IB), and the ambiguity function (AF), is evaluated based on simulations. To
assess the best strategy to optimize the number of detected PS, seven different process-
ing strategies are applied to real data of Las Vegas, USA.
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The design of the algorithm is characterized by a hierarchic structure of PS networks
and an iterative approach to improve the stochastic model used for the estimations. The
hierarchic structure is based on first- and higher-order networks of PS, comparable to the
concept used for conventional geodetic techniques. The first-order network forms the
backbone of the analysis and aims to ensure the overall integrity of the full area analyzed,
whereas the higher-order networks provide a further densification of the measurement
points. In each iteration, a phase screen of an error source, such as atmospheric signal
delay or orbit error, is estimated and removed, followed by an update of the stochastic
model by least-squares variance component estimation.

The phase ambiguities are resolved in a two-step procedure. First, an estimation
in the temporal domain is performed for the differential phase observations of each arc
between two Persistent Scatterer Candidates (PSC), which are initially selected based on
the amplitude dispersion in the data stack. The simulations show that the integer least-
squares and ambiguity function estimator provide equivalent success rates for moderate
deformation rates per arc. However, the advantage of the ILS estimator is that more
than two model parameters can be estimated and that a proper error propagation can
be obtained. Because of the limited computational load of the IB estimator with respect
to the ILS estimator, the IB estimator is a good alternative.

The second step in the ambiguity resolution is a spatial integration of the estimated
arcs based on an novel testing scheme to remove wrongly estimated arcs and inconsis-
tent PSC. The testing is based on the integer ambiguities, instead of the real-valued
parameters. This approach enables the use of varying deformation models in the tem-
poral phase unwrapping, thereby ensuring a consistent network. Hence, models adapted
to the local deformation behavior can be evaluated instead of a general model applied
to the full area.

The assessment of the detected PS and estimated deformation time series of the
Las Vegas data set shows that the use of spatially local deformation models instead of
a general model improves the PSI results. Furthermore, it is shown that although the
amplitude dispersion is a good indicator of the most phase persistent scatterers, many
PS with a low amplitude dispersion exist. Therefore, when computational resources
allow, all pixels with a local amplitude maximum should be evaluated. Nevertheless, the
amplitude provides useful information which should be better exploited.

Despite the thorough testing of the ambiguities, the seven evaluated processing
strategies still show a certain degree of falsely detected PS. Therefore, additional quality
indicators are required to obtain a final selection of PS. Local quality indicators, such as
the Spatio-Temporal Consistency (STC) or local ensemble coherence estimator, give a
better performance because they are less sensitive to model imperfections and therefore
give a better estimate of the noise level in the deformation time series.



Samenvatting

Persistent Scatterer Interferometrie gebaseerd op geodetische schattingstheorie

Satellietradarinterferometrie (InSAR) is een effectieve techniek om beweging van het
aardoppervlak te meten. De toepasbaarheid van de conventionele aanpak is echter
beperkt vanwege foutenbronnen: temporele decorrelatie, geometrische decorrelatie, en
atmosferische signaalvertraging. Om deze verstorende factoren te ondervangen zijn ra-
darinterferometrische tijdreeksmethoden ontwikkeld. Door de informatie-inhoud van de
volledige set radarbeelden te gebruiken kan de invloed van de foutenbronnen worden
verminderd en kunnen tijdreeksen met de deformatiehistorie worden geschat.

De Persistent Scatterer Interferometrie (PSI) techniek, één van de tijdreeksmetho-
den, is gebaseerd op de coherente fasegeschiedenis van puntreflecties. Omdat de locatie
van deze puntreflecties op voorhand onbekend is, omvat PSI zowel een schattings- als
een detectieprobleem. De complicerende factor in het schattings- en detectieproces is
de teruggevouwen staat van de fasewaarnemingen, dat wil zeggen, fasewaarnemingen
in het [−π,+π) interval. Als gevolg daarvan kan de coherentie van een beeldpixel in
het tijdsdomein niet rechtstreeks worden bepaald. Bovendien zijn veronderstellingen
met betrekking tot de ruimtelijke en/of temporele gladheid van het deformatiesignaal
nodig, beschreven door een model, om de onbekende fasemeerduidigheden te schatten.
Daarom moeten zowel de juistheid van het model, als de daadwerkelijke fasestabiliteit
van de voorgeselecteerde pixels worden bepaald. De meerdere, modelafhankelijke, mo-
gelijke oplossingen vereisen, samen met de onzekerheid in het werkelijke ruisniveau van
een bepaald beeldpixel, een evenwichtige procedure in het schattings- en detectieproces.
Hierbij moet het aantal valse detecties en valse verwerpingen van deze Persistent Scat-
terers (PS) worden geminimaliseerd.

Dit proefschrift beschrijft het ontwerp, de implementatie en de evaluatie van een nieuw
Persistent Scatterer Interferometrie algoritme, de Delftse implementatie van PSI (DePSI).
Het algoritme is gebaseerd op een raamwerk van geodetische schattings-, toets-, en kwa-
liteitscontroletechnieken, bekend als de ’Delftse School’. Met behulp van dit raamwerk
is het algoritme in staat punten met stabiele reflecties in de tijd te detecteren, waarvoor
de deformatietijdreeks met voldoende betrouwbaarheid kan worden geschat.

Voor het ontwerp en de implementatie van het algoritme kunnen drie belangrijke
problemen worden gëıdentificeerd: algoritme ontwerp, meerduidigheidsbepaling, en Per-
sistent Scatterer detectie. Het ontwerp van het algoritme is gëınspireerd door eerder
ontwikkelde PSI aanpakken en methoden die zijn toegepast voor conventionele geodeti-
sche meettechnieken. De prestatie van drie meerduidigheidsbepalingstechnieken, geheel-
tallige kleinstekwadraten (ILS), geheeltallige conditionele afronding (IB), en de meerdui-
digheidsfunctie (AF), is geëvalueerd op basis van simulaties. Om de beste strategie voor
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het optimaliseren van het aantal gedetecteerde PS te bepalen zijn zeven verschillende
verwerkingsstrategieën toegepast op echte data van Las Vegas, VS.

Het ontwerp van het algoritme wordt gekenmerkt door een hiërarchische structuur van
PS netwerken en een iteratieve benadering voor het verbeteren van het stochastisch
model dat wordt gebruikt voor de schattingen. De hiërarchische structuur is gebaseerd
op eerste- en hogere-orde PS netwerken, vergelijkbaar met het concept dat gebruikt
wordt voor conventionele geodetische technieken. Het eerste-orde netwerk vormt de
ruggengraat van de analyse en zorgt voor de algehele integriteit van het volledige ge-
analyseerde gebied, terwijl de hogere-orde netwerken een verdere verdichting van de
meetpunten verzorgen. In iedere iteratie wordt een fasebeeld van een foutenbron, bij-
voorbeeld de atmosferische signaalvertraging of een baanfout, geschat en verwijderd,
gevolgd door een aanpassing van het stochastisch model door kleinstekwadraten varian-
tiecomponentenschatting.

De fasemeerduidigheden worden in twee stappen opgelost. Allereerst wordt een
schatting in het temporele domein uitgevoerd voor de differentiële fasewaarnemingen
van elke verbinding tussen twee Persistent Scatterer Kandidaten (PSC), die aanvanke-
lijk zijn geselecteerd op basis van de amplitudespreiding in de dataset. De simulaties
tonen dat de geheeltallige kleinstekwadraten- en de meerduidigheidsfunctieschatter een
gelijkwaardige slagingskans hebben voor bescheiden deformatiesnelheden per verbinding.
Echter, het voordeel van de ILS-schatter is dat meer dan twee modelparameters kunnen
worden geschat en dat een gedegen foutvoortplanting kan worden verkregen. Vanwege
de beperkte berekeningsbelasting van de IB-schatter ten opzichte van de ILS-schatter,
vormt de IB-schatter een goed alternatief.

De tweede stap in de meerduidigheidsbepaling is een ruimtelijke integratie van de
geschatte netwerkverbindingen gebaseerd op een nieuwe toetsprocedure om foutief ge-
schatte verbindingen en inconsistente PSC te verwijderen. De toetsing is gebaseerd op
de geheeltallige fasemeerduidigheden in plaats van de parameters met reële waarden.
Deze aanpak maakt het gebruik van verschillende deformatiemodellen in de temporale
meerduidigheidsbepaling mogelijk, waarbij een consistent netwerk wordt gewaarborgd.
Hierdoor kunnen modellen die zijn aangepast aan het lokale deformatiegedrag worden
geëvalueerd in plaats van een algemeen toegepast model voor het volledige gebied.

Uit de beoordeling van de gedetecteerde PS en de geschatte deformatietijdreeksen
van de Las Vegas dataset blijkt dat het gebruik van ruimtelijk lokale deformatiemodellen
in plaats van een algemeen model leidt tot een verbetering van de PSI resultaten. Verder
wordt aangetoond dat hoewel de amplitudespreiding een goede indicator is van de meest
stabiele reflectiepunten, er ook veel PS met een lage amplitudespreiding voorkomen.
Daarom zouden, als de verwerkingsmiddelen het toelaten, alle pixels met een lokaal
amplitude maximum moeten worden geëvalueerd. Niettemin geeft de amplitude nuttige
informatie die beter moet worden benut.

Ondanks de strenge toetsing van de fasemeerduidigheden tonen de resultaten van
de zeven geëvalueerd verwerkingsstrategieën nog steeds een zekere mate van foutief
gedetecteerde PS. Aanvullende kwaliteitsindicatoren zijn daarom nodig om tot een defi-
nitieve selectie van PS te komen. Lokale kwaliteitsindicatoren, zoals de Spatio-Temporal
Consistentie (STC) en de lokale ensemble coherentieschatter, presteren beter omdat ze
minder gevoelig zijn voor onvolkomenheden in het model en geven daardoor een betere
schatting van het ruisniveau in de deformatietijdreeksen.
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ŝ0 Predicted signal variables
S Slave image antenna position; Master atmospheric delay; Number

of slave images; Number of interferograms
T q Test statistic of dimension q
tr Range time
x Unknown variables
x̂ Estimated unknowns
x0 Expectation value under null hypothesis
xa Expectation value under alternative hypothesis
y Observations (stochastic)
y
0

Variables at unobserved location

ŷ Adjusted observations
ŷ
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Introduction 1
1.1 Background

From the late 1980’s, space-based Interferometric Synthetic Aperture Radar (InSAR)
has been used to measure deformations of the Earth’s surface (Gabriel et al., 1989). For
the first time it was possible to visualize the consequences of earthquakes (Massonnet
et al., 1993), volcanism (Massonnet et al., 1995), oil and gas extraction (van der Kooij,
1997), groundwater flow (Amelung et al., 1999), ice motion (Goldstein et al., 1993), and
geotechnical processes such as landslides (Fruneau et al., 1996), as a full 2D picture.
Radar interferometry is the only technique capable of measuring these phenomena with
the unique combination of high spatial resolution, medium temporal sampling, and wide-
scale coverage. Moreover, the available data archive, starting in 1992 with radar images
acquired by the ERS-1 satellite, enables the analysis of a large part of the Earth in
retrospective.

However, although excellent results have been shown using conventional InSAR,
these are often obtained under favorable conditions. In general, the repeat-pass principle
applied induces three main degrading factors. First, the variable state of the atmosphere
in time and space superimposes an error signal that interferes with the deformation sig-
nal. Second, the scattering characteristics of the Earth’s surface within a resolution cell
may change over time, resulting in temporal decorrelation. Third, the satellite repeat
orbits may be too far apart, resulting in incomparable scattering characteristics due to
the different imaging geometry, known as geometric decorrelation. As a consequence of
these three factors, the information content of an available pair of radar images cannot
be fully exploited based on conventional radar interferometry.

To overcome the degrading factors of the conventional approach, InSAR research pro-
gressed to time series analyses, i.e., the use of a stack of radar acquisitions of the same
area. Three main approaches can be distinguished, the Persistent Scatterer Interferome-
try (PSI) approach, the Small BAseline Subset (SBAS) approach, and hybrid methods.
The PSI technique (Ferretti et al., 2000, 2001) focuses on the subset of points which
show relatively constant scattering properties in time. It was recognized that certain
features, often man-made, show a stable phase behavior over long time intervals, hence
with minimal temporal decorrelation (Usai, 1997; Usai and Hanssen, 1997). Because of
the reflection dominance of these point scatterers within an image resolution cell, the
effect of geometric decorrelation is also strongly reduced. The PSI technique uses these
isolated point scatterers to derive displacement time series. Due to the use of the stack
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of radar acquisitions, the temporally uncorrelated atmospheric phase component in the
observations can be estimated and removed. Hereby, the contribution of this noise factor
in the Persistent Scatterer (PS) deformation time series is reduced.

An alternative approach in radar interferometric time series analysis is based on the
use of subsets of interferograms with small baselines, denoted as the Small BAseline
Subset (SBAS) technique (Berardino et al., 2002; Mora et al., 2003). Baseline here
indicates the distance between the two radar images involved, either in satellite position
or acquisition time. Hence, by using small baselines, both the geometric and temporal
decorrelation effect are reduced, albeit with a degree that is location (land cover) de-
pendent. Due to the small baselines and multi-looking of the image pixels that is often
applied, the SBAS approach is particularly suitable for distributed scattering mechanisms,
which occur in rural regions with (semi-)bare surfaces.

Based on the PSI and SBAS techniques, a third group of hybrid methods evolved
with the objective to retrieve measurements from both point scattering and distributed
scattering mechanisms. These methods have in common an increased use of spatial cor-
relation between neighboring pixels. Lanari et al. (2004) extended the SBAS approach
by an integrated analysis of the interferograms at both multi-looked and single-look
scale. The standard SBAS approach based on the multi-looked interferograms is applied
to retrieve the wide-scale deformation patterns. This is followed by an analysis in the
time domain at single-look resolution after adaption of the interferometric phases by
the wide-scale components. Alternatively, Hooper (2008) used multiple image pixels
within a certain radius to estimate spatially correlated parameters, such as deformation
and atmospheric signal delay, followed by an estimation of residual phase contributions
for individual pixels, e.g., due to the topographic height. Ferretti et al. (2011) ap-
plied a clustering of pixels with equivalent scattering characteristics to reduce the noise
level compared to the individual pixels. Moreover, a coherence matrix describing the cor-
relation between the radar images is used to optimize the estimation in the time domain.

All methods are based on assumptions regarding the spatial and/or temporal smoothness
of the deformation signal, expressed by a model. These assumptions are required due to
the wrapped phase observations, i.e., phase observations in the [−π,+π) interval. The
model used is either explicit, e.g., a linear deformation rate in time, or implicit, e.g.,
maximum deformation between neighboring pixels with a phase-equivalent less than π.
A variety of techniques is used to unwrap the phase and to estimate the deformation
signal. However, the quality control of the results is often only sparsely addressed. Both
the correctness of the model used, and the actual phase persistence of the pre-selected
pixels should be assessed. Besides, the quality description of the estimates may not be
optimal. For example, in many cases the ensemble coherence in the time domain is used
to describe the quality. However, due to the cyclic nature of the phases, the coherence
estimator is insensitive to phase unwrapping errors. Hence, a PSI implementation should
not only provide deformation estimates, but should also enable a profound quality control.

In the last century, Delft University of Technology developed a framework of geode-
tic estimation (Tienstra, 1956), testing (Baarda, 1968), and quality control (Teunissen,
1990) techniques, known as the ’Delft school’. The framework is characterized by the
explicit formulation of a mathematical model, consisting of a functional model describ-
ing the relation between stochastic observations and unknown deterministic parameters,
and a stochastic model, based on second-order statistics. Hence, instead of the full
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probability density function, only the variances and covariances of the observations are
considered. Application is possible for every geodetic measurement technique, for ex-
ample in leveling, tachymetry, and satellite navigation. Regarding radar interferometry,
the Delft school techniques are applied to conventional InSAR (Hanssen, 2001), and
Persistent Scatterer Interferometry (Kampes, 2006). However, at the start of the under-
lying study no practical PSI implementation existed at Delft University of Technology.
This formed the starting point of this work: establishing a software implementation
of Persistent Scatterer Interferometry using the conceptual methodology of the Delft
school.

1.2 Research objective

The objective of this research is

to design, implement, evaluate, and document a Persistent Scatterer Inter-
ferometry algorithm based on geodetic estimation and testing techniques.

The estimation and testing methodologies developed within the Delft school framework
will be used, including advanced methods such as least-squares prediction (Teunissen,
2007), least-squares variance component estimation (Teunissen, 1988; Teunissen and
Amiri-Simkooei, 2008), and integer least-squares estimation (Teunissen, 1993).

From a geodetic perspective, PSI is fundamentally different compared to conven-
tional surveying techniques. Whereas conventional techniques are based on pre-defined
benchmarks or receivers, Persistent Scatterer Interferometry is characterized by an a-
priori unknown location of the measurement points. These locations are dependent on
the specific orientation and other characteristics of objects on the surface in relation to
the direction of the transmitted radar signal. Hence, an opportunistic set of reflection
points is obtained, which do not necessarily sample the signal of interest in an optimal
way, as can be achieved with conventional benchmarks. Moreover, it is non-trivial to
actually detect these reflection points amidst all pixels in a radar image. As a conse-
quence, PSI comprises not only an estimation problem, but also a detection problem.
This results in a causality dilemma: to detect the coherent pixels, the phase components
should be estimated, however, to estimate the phase components, the coherent points
should be known.

Complicating factor in the estimation and detection process are the wrapped phase
observations. Estimation of the deformation time series therefore requires the estima-
tion of the integer-valued phase ambiguities. Since the radar images only provide a
single observation for each location at a certain epoch, and each observation induces
an unknown phase ambiguity, radar interferometric observations lack redundancy. As a
consequence, the estimation process is ill-posed and multiple solutions are possible. The
solution space is only constrained based on assumptions regarding the spatial and/or
temporal smoothness of the deformation signal and additional parameters, such as topo-
graphic height, expressed by the mathematical model. The multiple, model dependent,
solutions, in combination with the uncertainty in the actual noise level of a certain im-
age pixel, require a balanced procedure in the estimation and detection process. Since
the noise level of the different points follows a gradual scale, this leads to a trade-off
between quality and point density. That is, a high point density could be obtained at
the expense of a reduced quality, or a high quality level is preserved, thereby reducing
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the number of detected PS. Hence, sub-optimal conditions in this trade-off might either
result in too many false detections or false rejections of Persistent Scatterers. A false
detection is here defined as a selected point which is either not coherent, or has, despite
its coherence, an incorrectly estimated deformation time series. A false rejection is a
PS which remains undetected. To minimize the number of false detections and false
rejections, the Delft school methodology will be applied to test the estimates to obtain
an optimal set of detected PS.

The estimation and detection problem imposed by PSI leads to three main components
to be addressed in this study: algorithm design, ambiguity resolution, and Persistent
Scatterer detection.

1. Algorithm design
The overall question for the algorithm design is how to transform a stack of
radar images to reliable deformation time series of a set of detected PS. A typ-
ical image stack of 80 ERS-1/2 or Envisat acquisitions, with 25000×5000 pixels
(∼100×100 km) contains 10 billion pixels, with even so many unknown phase am-
biguities. This number further increases for very high-resolution satellite missions
(TerraSAR-X, Cosmo-Skymed) or wide-swath acquisitions (Sentinel-1). Hence,
even when only a part of the full image frame is analyzed, the algorithm should be
efficient. Furthermore, the consistency of the results over the complete analyzed
area should be preserved, i.e., the likelihood of ambiguity error propagation needs
to be minimized. Finally, the algorithm should be able to estimate error sources,
such as atmospheric signal delay and noise, either in functional or stochastic form,
to optimize the results.

2. Ambiguity resolution
Due to the wrapped nature of the phase observations, the estimation problem not
only contains real-valued, but also integer-valued parameters, i.e., phase ambigui-
ties. These ambiguities occur both in the temporal (1D) and spatial (2D) domain,
together forming a 3D ambiguity resolution problem. The method applied in the
algorithm to estimate the ambiguities should be flexible regarding the mathemat-
ical model used, both in time and in space. Furthermore, it should allow testing
of the estimates to detect and resolve errors.

3. Persistent Scatterer detection
The objective of the algorithm is to optimize the number of detected PS, preserving
the reliability of the deformation time series. Hence, not only the location of the
PS should be retrieved, but the estimated time series should reflect the actual
deformation history of the scatterer. Hence, both the number of false rejections
and the number of false detections should be minimized. The question is which
processing strategy and detection criterion is most suitable to meet this objective.

1.3 Outline and methodology

This thesis contains eight chapters and two appendices. Chapter 2 gives both a brief
introduction to radar interferometry and an overview of existing radar interferometric
time series analysis methods, including their characteristics. These methods, especially
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the original PSI methodology (Ferretti et al., 2001) and the PSI algorithm based on
geodetic data processing techniques by Kampes (2006), inspired the design of the algo-
rithm presented in this thesis. In the new design there is a particular focus on an iterative
update of the stochastic model, a direct testing of the estimated phase ambiguities, and
the ability to apply local deformation models to increase the number of detected PS.

The algorithm, which is denoted as Delft Persistent Scatterer Interferometry (DePSI),
is described in four parts in Chapters 3–6. Chapter 3 presents the structure of the al-
gorithm, together with the pre-processing steps required to obtain the interferometric
data stack. To reduce the amount of data, Persistent Scatterer Candidates (PSC) are
selected and side lobes are detected and removed. These selection and detection steps
are described in this chapter as well.

The phase ambiguities of the PSC are estimated in a two-step procedure. Chap-
ter 4 discusses the first step, the estimation of the ambiguities in the temporal domain
between two nearby PSC. Three estimators are implemented and evaluated based on
simulated data: integer least-squares, integer bootstrapping, and the ambiguity func-
tion. The second step, the ambiguity resolution in the spatial domain, is presented in
Chapter 5. A testing scheme is applied to detect and correct ambiguity errors and to
remove non-persistent candidates. Once the ambiguities are resolved, error sources such
as orbit errors and atmospheric signal delay can be estimated and removed from the
phase observations. The estimation of these Phase Screens is also discussed in this
chapter.

Chapter 6 describes the procedure to georeference the detected Persistent Scatterers,
together with an assessment of the georeference precision. Furthermore, an overview of
quality indicators and strategies for quality assessment of the results are given.

The design of DePSI enables the application of different processing strategies. The
objective of these strategies is to increase the number of detected PS and the reliability
of the results, i.e., the reduction of the number of false rejections and false detections.
Chapter 7 contains the description and evaluation of seven processing strategies: 1) the
standard approach using a linear deformation model, 2) the use of of extended defor-
mation models for the full area, 3) estimation of the Deformation Phase Screen (DPS),
4) the sequential testing of deformation models, 5) densification based on a PS density
prognosis, 6) area of interest processing, and 7) time frame processing. These strategies
are demonstrated and evaluated based on a data stack of ERS-1/2 images over Las
Vegas, USA. This area is chosen because it experiences strong ground motion due to
groundwater withdrawal, also associated with seasonal fluctuations, thereby forming a
suitable test site. During the evaluation also the criteria used for the actual detection
of the PS, i.e., testing of ambiguities and thresholds on quality indicators, are assessed.

The conclusions, contributions and recommendations that follow from this research
are formulated in Chapter 8. Appendix A gives a description of the various geodetic
data processing techniques applied, such as parameter estimation, testing, prediction,
variance component estimation, and integer least-squares. An overview of specific ter-
minology used within DePSI is given in Appendix B. Finally, Appendix C discusses the
implementation of the algorithm, which is realized in Matlab R©.





Radar interferometry 2
The fundamental technique used in this research is known as Interferometric Synthetic
Aperture Radar (InSAR). Section 2.1 contains a brief overview of the most relevant char-
acteristics of the technique. As with any technique, InSAR has a number of limitations.
To circumvent part of these limitations, recent research (Ferretti et al., 2001; Berardino
et al., 2002; Hooper et al., 2004; Kampes, 2006; Hooper, 2008; Ferretti et al., 2011)
regarding deformation studies has focused on the use of time series of radar data. In
Section 2.2 various radar interferometric time series analysis approaches are discussed
and compared.

2.1 Conventional interferometry

Interferometric Synthetic Aperture Radar (InSAR), also known as radar interferometry, is
based on the interferometric processing of radar images. Two radar images are interfered
to extract information about the Earth’s surface or atmosphere (Bamler and Hartl,
1998; Hanssen, 2001). The main applications are deformation analysis and topographic
mapping. A brief theoretical background of InSAR is described here, starting from the
imaging radar observations. For a more detailed discussion the reader is referred to
Hanssen (2001).

2.1.1 Imaging radar observations

Radar images are acquired by active radars on-board airborne or spaceborne platforms
and contain information about both the intensity of the reflection from, and the travel
time to, the Earth’s surface. The intensity I of the reflection is commonly represented
by the magnitude or amplitude A =

√
I, whereas the range travel time determines the

measured fractional phase of the received radar signal ψ. The total radar measurement
per pixel is denoted by the complex phasor P (Hanssen, 2001)

P = A exp(iψ). (2.1)

The real and imaginary part of the phasor, Re{P} = A cos(ψ) and Im{P} = A sin(ψ),
are stored in a regular grid, forming the two-dimensional radar image, see Figure 2.1.
The relation between the complex values Re{P} and Im{P} and the amplitude A and
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Figure 2.1: Left) Amplitude of an SLC image (Delft, The Netherlands, acquired by the TerraSAR-X
satellite). Strong reflections are visualized in white, whereas areas with limited reflection towards
the satellite (such as water bodies) are represented in black. Middle) Phase of an SLC image. Only
the fractional phase of the received signal is recorded, resulting in phase values between -π and +π.
The phase in an SLC image cannot be interpreted directly. Right) Phase of an interferogram. After
combination of two SLC images, interpretable phase information is obtained.

range dependent phase ψ is (see also Figure 2.2)

A =
√

(Re{P})2 + (Im{P})2, (2.2)

ψ = arctan(
Im{P}
Re{P} ).

The complex value of a resolution cell within the radar image is formed by the sum-
mation of all reflections from the corresponding area on the Earth’s surface. This is
illustrated in Figure 2.2. The strength of reflection is dependent on the physical (e.g.,
slope, morphology, roughness, inhomogeneities) and electrical (i.e., dielectric constant)
properties of the surface (Elachi, 1988). Moreover, the interaction of the signal with the
surface depends on the sensor characteristics, such as signal wavelength and incidence
angle.

Two extreme cases of reflection can be distinguished: point scattering and dis-
tributed scattering. In case of point scattering a strong reflecting object is dominating
the radar measurement, whereas the surrounding is only adding noise or clutter. Such
a reflecting object is known as a point scatterer. In case of distributed scattering a
large number of small scattering objects form the total measurement together. Both
scattering mechanisms can, over time, either be coherent or incoherent. The coher-
ence is a measure for the amount of correspondence between two complex observations.
When the scattering objects on the surface do not change significantly between two
radar acquisitions, the signal is considered coherent in time. The other extreme is com-
plete incoherence. Figure 2.2 visualizes these extreme cases. However, there may be
many levels between coherence and incoherence, and point scattering and distributed
scattering.

The objective of each radar interferometric analysis is the retrieval of information
from the pixels showing sufficiently coherent scattering behavior. In this research, the
starting point of the analysis is data in Single-Look Complex (SLC) format. The pre-
processing steps of raw radar data, e.g., focusing and range migration (see for example
Cumming and Wong (2005) for details), are not considered here.
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Figure 2.2: Point scattering versus distributed scattering in case of coherence or incoherence. Top)
Scattering objects within a resolution cell at two acquisitions (indicated by black and gray reflecting
objects). A large object corresponds to a strong reflection, whereas the small objects represent weak
reflections. Middle) Phasors for the two acquisitions (again in black and gray). Bottom) Examples
of scattering objects.

2.1.2 The Single-Look Complex phase

The observed SLC phase for a single pixel is denoted by

ψ = −2πa+ ψrange + ψatmo + ψscat + ψnoise, (2.3)

where a is the phase ambiguity, i.e., the number of full phase cycles, ψrange the range
dependent phase, ψatmo the atmospheric signal delay, ψscat is the scattering phase and
ψscat is the noise. All terms are defined with respect to the effective scattering center of
the resolution cell. This is the virtual location of the phasor resulting from the coherent
reflecting elements in the resolution cell. The scattering phase represents the clutter,
whereas the noise phase is describes the measurement noise, e.g., thermal noise. The
range phase is related to the two-way geometric distance between the radar antenna and
the scattering center.

The atmospheric signal delay is composed of an ionospheric and tropospheric term.
The ionosphere, ranging between 70 and 1000 km above the Earth’s surface, is a dis-
persive medium, resulting in a wavelength depending delay. For example, based on a
minimum and maximum Total Electron Content (TEC) of 5 and 100 TECU, respec-
tively, the one-way zenith delay ranges from 0.02 to 0.4 m for X-band and 1.2 to 25 m
for L-band (Hanssen, 2001; Eineder et al., 2011) (see Table 2.1 for an overview of the
different bands). The troposphere, which is non-dispersive and therefore independent
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of the radar wavelength, extends from the Earth’s surface to a height of less than 11
km over the poles and 16 km at the equator (Lutgens and Tarbuck, 1986). It induces
a hydrostatic and a wet delay. The hydrostatic zenith delay, which is dependent on the
pressure and temperature in the troposphere, is in the order of 2.3 m and rather constant
(Bevis et al., 1992). The wet zenith delay, caused by the water vapor distribution, is
limited to values below 0.35 m (Bevis et al., 1992). However, the wet delay is much more
variable compared to the hydrostatic delay. Using a mapping function (Herring, 1992;
Niell, 1996), the zenith delays can be transformed to the radar Line of Sight (LOS).

The small radar wavelength (3 to 20 cm) in comparison with the pixel spacing,
atmospheric delays and scattering objects distribution, cause that the SLC phase obser-
vations cannot be interpreted directly, see Figure 2.1, middle. However, information can
be extracted from the difference between two SLC’s, i.e., from an interferogram (see
Figure 2.1, right).

2.1.3 The interferometric phase

A complex interferogram is created by the complex conjugated multiplication of two
aligned or coregistered SLC images, obtaining

Pms = PmP s∗ = AmAs exp(i(ψm − ψs)), (2.4)

where (.)∗ denotes the complex conjugate and m, s are the master and slave image,
respectively. Here, a repeat-pass acquisition scheme is assumed. The interferometric
phase ϕms for a single pixel is

ϕms = ψm − ψs (2.5)

= −2πa+ ϕflat + ϕtopo + ϕdefo + ϕatmo + ϕorb + ϕscat + ϕnoise.

Here, the interferometric range difference is split in a flat Earth ϕflat, topographic ϕtopo

and a deformation ϕdefo part. Errors in the orbit parameters of the master and slave
acquisitions introduce an additional error term ϕorb. The orbit errors typically cause a
(small) trend in the interferogram (Hanssen, 2001). The other phase contributors are
discussed in more detail in the next sections.

Flat Earth phase

The flat Earth and topographic phase are both related to the difference in position of
the master and slave antenna, known as the baseline B. The flat Earth phase describes
the contribution due to a reference surface, e.g., an ellipsoid. The flat Earth phase at a
point P0 on the reference surface is (see Figure 2.3)

ϕflat =
−4π

λ
(d( ~M, ~P0)− d(~S, ~P0)), (2.6)

where λ is the radar wavelength, ~M, ~S denote the master and slave antenna position
and d(., .) is the distance operator. The factor 4π instead of 2π accounts for the two-
way travel path of the radar signal. The minus sign is based on a convention ensuring
consistency between the Doppler history and the phase delay (Rosen et al., 2000).
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Figure 2.3: Baseline configuration in case of repeat-pass radar interferometry. The orbit trajectories
are into the paper. The baseline B is defined as the distance between the master and slave antenna
position ( ~M and ~S). The parallel baseline B‖ determines the so-called flat Earth phase, which is the

phase contribution due to a reference surface (H0) through point ~P0. The topographic height H

of a point (~PH ) above the reference surface determines the topographic phase, which is a function
of the perpendicular baseline B⊥. The parallel and perpendicular baseline are both dependent on
the baseline orientation α and the incidence angle θinc. The latter is a little larger compared to the
look angle θ due to the curvature of the Earth.

Using the far-field or parallel-ray approximation (Zebker and Goldstein, 1986), where
the travel paths to the master and slave antenna’s are assumed to be parallel, the flat
Earth phase can be approximated by (Hanssen, 2001)

ϕflat =
4π

λ
B sin(θinc − α),

=
4π

λ
B‖, (2.7)

where θinc is the incidence angle, α the baseline orientation, and B‖ the parallel baseline.
The flat Earth phase appears as a strong trend in the interferogram, but can be removed
based on orbit and reference surface parameters.

Topographic phase

The topographic phase ϕtopo describes the influence of topography above the reference
surface. It is defined as (see Figure 2.3)

ϕtopo =
−4π

λ
((d( ~M, ~PH)− d(~S, ~PH))− (d( ~M, ~P0)− d(~S, ~P0))),

=
−4π

λ
(d(~S, ~P0)− d(~S, ~PH)), (2.8)

where ~PH is a point at heightH . The distances to the master antenna position ~M cancel
each other because they are by definition equal for a certain pixel, see also Figure 2.3.
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Again using the far-field approximation, the topographic phase can also be expressed as
function of the baseline (Zebker and Goldstein, 1986)

ϕtopo =
−4π

λ

B cos(θinc − α)

R sin(θinc)
H,

=
−4π

λ

B⊥

R sin(θinc)
H, (2.9)

where B⊥ is the perpendicular baseline and R is the range to the master antenna.
From Eq. (2.9) it can be derived that the sensitivity for height increases with in-

creasing baseline. To estimate topography from an interferogram the remaining phase
contributors in Eq. (2.5) should be minimal, e.g., by taking an interferometric pair with
a short time span to reduce the effect of possible deformation in the area. A good ex-
ample is the Digital Elevation Model (DEM) obtained by the Shuttle Radar Topography
Mission (SRTM) (Farr et al., 2007), where the two required radar images are acquired
simultaneously from different locations on the same platform. Because the signal paths
are nearly equal, the atmospheric signal delay cancels.

For deformation studies the effect of topography in the interferometric phase should
be eliminated. As Eq. (2.9) shows, the phase is insensitive to topography in case of
a perpendicular baseline of zero. Since B⊥ is never (completely) zero and varies for
pixels across the interferogram, the topographic phase is removed based on additional
information. This operation is known as zero-baseline steering (Ferretti et al., 2001).
The additional information can either be another interferogram with favorable conditions
for topography, i.e., large B⊥ and limited deformation and atmospheric signal, or an
existing DEM, e.g., acquired by the SRTM. The interferogram obtained is denoted as a
Differential interferogram (DInSAR).

Deformation phase

The deformation phase is the result of a displacement of the surface. Due to the
displacement the signal travel path length changes, resulting in the differential phase
term

ϕdefo =
−4π

λ
DLOS, (2.10)

where DLOS is the deformation in the radar Line of Sight (LOS).
Due to the skewed incidence angle of the signal, the LOS measurement is sensitive

to both horizontal and vertical deformation. The measurement is the projection of the
actual three-dimensional deformation vector, denoted by the components De, Dn and
Du in East, North and Up direction, respectively, in the LOS direction. For a satellite
with an orbit heading αh, defined with respect to the North (see Figure 2.4), the relation
is (Hanssen, 2001)

DLOS,R = Du cos(θinc)− sin(θinc)[Dn cos(αh − 3π/2) +De sin(αh − 3π/2)],

= Du cos(θinc)− sin(θinc)[−Dn sin(αh) +De cos(αh)], (2.11)

where θinc is the local incidence angle and (αh−3π/2) corresponds with the angle to the
azimuth look direction, which is perpendicular to the satellite orbit. This angle applies
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Figure 2.4: The acquisition geometry in the horizontal plane assuming zero-Doppler processing of
the radar images, i.e., the effective look direction is perpendicular to the orbit heading. The orbit
heading angle αh is specified with respect to the North n. For the decomposition of the horizontal
deformation the original East-North system is transformed into a local x, y-system by a rotation over
the adopted orientation γ of the horizontal component of the deformation vector, see Eq. (2.13).
This direction corresponds to the x-axis.

to a right-looking satellite, which is most common. In case of a left-looking satellite
(DLOS,L), the angle changes to (αh − π/2), resulting in

DLOS,L = Du cos(θinc)− sin(θinc)[Dn cos(αh − π/2) +De sin(αh − π/2)],

= Du cos(θinc)− sin(θinc)[Dn sin(αh)−De cos(αh)]. (2.12)

Hence, the difference between a right-looking and left-looking geometry is a change of
sign for the horizontal components. Moreover, the equations show that the measurement
of the deformation in the Up (vertical) direction is only dependent on the incidence angle,
and therefore not on the orbit heading.

Although the forward problem described by Eqs. (2.11) and (2.12) is straightfor-
ward, the inverse problem, i.e., the estimation of the three-dimensional deformation
components based on the measurement DLOS, is ill-posed. That is, it is not possible
to determine the three deformation components from a single measurement. Therefore,
often an assumption is made based on a-priori knowledge regarding the deformation
phenomenon under investigation.

Sometimes the specific horizontal direction of the deformation can be assessed a-
priori. For example in case of water defense structures, a deformation in the longitudinal
direction of a structure can normally be disregarded, thereby constraining the horizontal
deformation to the direction perpendicular to the object. To isolate the horizontal
deformation in this direction, it is useful to transform the decomposition from the North-
East domain to a local x, y-system using a rotation matrix, obtaining

[
De

Dn

]

=

[
sin γ − cosγ
cos γ sin γ

] [
Dx

Dy

]

, (2.13)

where γ is the orientation of the horizontal component of the deformation vector defined
with respect to the North direction, see Figure 2.4. The deformation in the expected
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direction is denoted byDx, whereasDy is the deformation perpendicular to this direction.
Since we assumed that Dy = 0, Eq. (2.13) becomes

[
De

Dn

]

=

[
sin γ
cos γ

]

Dx. (2.14)

Substitution of Eq. (2.14) into Eq. (2.11) gives

DLOS,R = Du cos(θinc) +Dx sin(θinc) sin(αh − γ). (2.15)

For the left-looking geometry, DLOS,L, a sign change applies for the horizontal compo-
nent. The equation shows that the LOS measurement is most sensitive to horizontal
deformation in case the horizontal deformation occurs perpendicular to the orbit heading
(hence, αh−γ = ±90◦). This situation, in the so-called zero-Doppler plane, is visualized
in Figure 2.5. The figure illustrates the sensitivity of the measurement to deformation
in various directions, using the Envisat satellite with a look angle of 23◦ as an example.
Here, the assumption is made that a deformation in the LOS of 5 or -5 mm is measured.
A standard deviation of the measurement of 3 mm is adopted, which is a reasonable
value for a point scatterer (Marinkovic et al., 2008). The figure shows that the same
measurement of -5 mm can be caused by a strictly vertical deformation of -5.4 mm, a
horizontal deformation of -12.8 mm, or any other deformation vector on the line per-
pendicular to -5 mm deformation in the LOS. The sensitivity of the measurements is
expressed by the standard deviation, also indicated by error bars. Hence, a measurement
precision of 3 mm corresponds to a precision of 7.7 mm in horizontal direction. In case
a positive deformation value is measured, the direction of the deformation changes with
180◦, with equal precision. When the actual deformation vector is perpendicular to the
LOS, the measurement is insensitive for the deformation, indicated with an infinitive
large standard deviation.

A similar sensitivity analysis is performed in case the horizontal deformation is not
restricted to the zero-Doppler plane, see Figure 2.6. Again the Envisat satellite is used
as illustration, applying an orbit heading of 193◦. Also here, a LOS measurement with
a precision of 3 mm is assumed, showing the 7.7 mm accuracy in the zero-Doppler
direction. Figure 2.6 also shows the sensitivity in other directions. In North-South
direction, the precision becomes extremely low (34.1 mm), indicating that deformations
in that direction cannot be measured. That is, a small deformation in the order of
millimeters in North-South direction would require a measurement accuracy level that
is not feasible. Hence, the signal-to-noise (SNR) is in this case too low. In the along-
track direction, the measurements are completely insensitive for deformation, indicated
by an infinitively large standard deviation. Since all radar satellites have a near-polar
orbit, resulting in orbit headings close to the North-South direction for the largest part
of the orbit, radar interferometric measurements are in principle only able to measure
horizontal deformation in approximately East-West direction. Exceptions are the polar
regions, where the rotation of the orbit heading creates a sensitivity to North-South
deformation.

Sometimes the ground motion is extremely large (dm-m level) in relation to the
radar wavelength, for instance due to a strong earthquake or glacial flow. In those cases
it may be possible to use the offset vectors obtained during the alignment process or
coregistration of the two radar images to obtain information regarding horizontal defor-
mation, also in North-South direction (Gray et al., 1998; Elliott et al., 2007). However,
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Figure 2.5: Illustration of the sensitivity of a deformation measurement in the radar Line of Sight
(LOS) for vertical and horizontal deformation in the zero-Doppler plane (i.e., the plane perpendicular
to the orbit heading). The Envisat satellite with an average look angle of 23◦ is used as an
example. Since the measurement is the projection of the actual deformation vector to the LOS
direction, the measurement can reflect a vertical, horizontal or any other deformation on the line
perpendicular to the LOS direction. The sensitivity is expressed by the standard deviations σ.
Hence, a measurement precision of 3 mm corresponds to a sensitivity of 7.7 mm for horizontal
deformation. The measurement is insensitive for deformations perpendicular to the LOS, indicated
with the dashed line.

the precision of the result obtained will be much lower compared to radar interferometric
measurements.

The near-polar orbit of the radar satellites causes that a certain location on Earth
is imaged twice, while the satellite is heading from South to North (ascending orbit)
and while heading from North to South (descending orbit). In case of a right looking
satellite, the ascending orbit results in a radar image acquired from the West, while the
descending orbit observes the Earth from the East. While from a single radar dataset no
distinction can be made between horizontal or vertical deformation, as discussed above,
the availability of an ascending and descending orbit gives an additional observation for
the decomposition of the deformation vector.

Since with two observations it is still not possible to retrieve a three-dimensional
deformation vector, an assumption regarding the direction of the horizontal deformation
is still required. Using Eq. (2.15), the LOS deformation measurements Da and Dd

obtained from the ascending and descending orbit, respectively, can be decomposed in
a vertical Du and horizontal Dx deformation using the system of equations

[
Da

Dd

]

=

[
cos(θinc,a) sin(θinc,a) sin(αh,a − γ)
cos(θinc,d) sin(θinc,d) sin(αh,d − γ)

] [
Du

Dx

]

. (2.16)

Here, the assumed direction of the horizontal deformation is specified by γ. The spe-
cific incidence angles θinc and orbit headings αh of both the ascending and descending
dataset are indicated by a, d, respectively. This system also enables the combination
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Figure 2.6: Illustration of the sensitivity of a deformation measurement in the radar Line of Sight
(LOS) to horizontal deformations. The Envisat satellite, adopting an orbit heading of 193◦ is used
as an example. A measurement precision of 3 mm in the LOS is assumed. The standard deviations
of the horizontal deformations, as shown in the figure, indicate the sensitivity of the measurement for
horizontal motions. Due to the North-South orientation of the orbit heading of radar satellites, radar
interferometric measurements are predominantly sensitive for horizontal deformation in East-West
direction. Deformations in North-South direction cannot be measured because the signal-to-noise
ratio (SNR) becomes too low, indicated by a large or even infinite standard deviation σ.

of datasets acquired by different radar satellites, possibly having different observation
characteristics, e.g., radar wavelength. Since two observations are available to deter-
mine two unknown deformation values, the system has a unique solution. The accuracy
of the measurements propagates therefore directly to the final result. In principle it is
possible to add additional ascending and descending datasets to the system. This will
improve the precision. However, because of the insensitivity of the deformation vector
in North-South direction, the full three-dimensional vector can still not be resolved and
an assumption regarding the direction of the horizontal deformation remains required.

Atmospheric phase

The atmospheric phase ϕatmo is caused by the difference between the atmospheric states
during the two acquisitions. Because a large part of the total atmospheric delay is rather
constant, i.e., the ionospheric and hydrostatic troposphere delay (see Section 2.1.2),
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Figure 2.7: Atmospheric signal delay over the western part of the Netherlands in four ERS-1/2
tandem mission interferograms. Due to the 1 day temporal baseline between the radar acquisitions,
the interferograms do not contain any deformation signal. Due to the flatness of the terrain,
topographic phase contributions are negligible. However, orbital inaccuracies still cause a phase
contribution.

the differential delay is relatively small, yet strongly variable. Two contributors to this
differential delay can be distinguished (Hanssen, 2001):

1. Turbulent mixing. Turbulent processes in the atmosphere cause spatial (3D) het-
erogeneity of the delay, effectively due to the water vapor distribution (wet delay).

2. Vertical stratification. Different vertical delay profiles during the two acquisitions
cause, in case of mountainous terrain, a differential signal delay which is correlated
with topography.

The differential atmospheric delay is in the order of mm-cm’s. Its spatial correlation
makes it difficult to distinguish the atmospheric signal from deformation, topography
or orbital errors in case of a single interferogram. A number of examples of (primarily)
atmospheric signal delay over the western part of the Netherlands is shown in Figure 2.7.
By using data obtained by the so-called ERS-1/2 tandem mission, with a temporal
baseline between the ERS-1 and 2 acquisitions of 1 day, any deformation signal can be
excluded. Topographic phase contributions are limited in this flat area. However, orbital
inaccuracies may still be visible.

Scattering phase and noise

The interferometric scattering phase ϕscat is effectively an additional noise term. It
describes the difference between the scatter characteristics of the observed area within
a resolution cell during the two acquisitions. Change in these scatter characteristics
results, together with thermal and processing noise, in decorrelation. The amount of
decorrelation is expressed by the magnitude of the coherence |γ| ∈ [0, 1].

Several sources of decorrelation can be distinguished (Zebker and Villasenor, 1992;
Hanssen, 2001)

• Temporal decorrelation (γtemp), caused by physical changes of the Earth’s surface
within the resolution cell. A typical source of temporal decorrelation is vegetation.
Since signals with longer wavelengths are less sensitive to vegetation, the decor-
relating effect is smaller for L or P band compared to X or C band (see Table 2.1
for an overview of radar bands). Another example of temporal decorrelation is the
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Table 2.1: Overview of radar bands used for remote sensing (Lillesand and Kiefer, 1994).

Band Frequency range Wavelength range
[GHz] [cm]

Ka 26.5 – 40 0.75 – 1.1
K 18 – 26.5 1.1 – 1.67
Ku 12.5 – 18 1.67 – 2.4
X 8 – 12.5 2.4 – 3.75
C 4 – 8 3.75 – 7.5
S 2 – 4 7.5 – 15
L 1 – 2 15 – 30
P 0.3 – 1 30 – 100

signal obtained from water bodies, where the change of the water surface instantly
causes complete decorrelation, see also Figure 2.8.

• Geometric decorrelation (γgeom), caused by different incidence angles of the radar
signal during the two acquisitions (Gatelli et al., 1994). The different incidence
angles cause a shift between the data frequency spectra of the images involved,
resulting in noise due to the non-overlapping parts of the range spectrum. The
geometric decorrelation, in case of a rectangular spectral window, is defined as

γgeom = max(
B⊥crit − |B⊥|

B⊥crit

, 0). (2.17)

where B⊥crit is the critical baseline. This critical baseline is the baseline causing a
spectral shift equal to the range bandwidth Br. It is a function of the wavelength,
incidence angle, range bandwidth and topographic slope ζ, i.e.,

B⊥crit = |λ(Br/c)R tan(θinc − ζ)|, (2.18)

where c is the speed of light and R is the range to the master antenna. For
example, the ERS-1/2 and Envisat critical baseline is approximately 1.1 km for
flat terrain. See Table 3.1b (p.35) for an overview of critical baselines for other
satellites. The geometric decorrelation effect is illustrated in Figure 2.8 by four
ERS-1/2 interferograms with increasing perpendicular baseline.

• Doppler centroid decorrelation (γDc), caused by different Doppler centroid fre-
quencies during the two acquisitions. The Doppler centroid frequency fDc is the
center frequency of the azimuth spectrum of an acquisition. The Doppler cen-
troid frequency is dependent on the so-called squint angle of the antenna. The
squint angle is the difference between the zero Doppler direction, i.e., perpendic-
ular to the flight direction, and the pointing direction of the antenna, see also
Figure 4.2A (p.60).

Doppler decorrelation is the azimuthal equivalent of geometric decorrelation. The
Doppler coherence factor γDc decreases linearly with increasing Doppler centroid
baseline BDc—which is defined as the difference between the Doppler centroid
frequencies fDc of the two SLC images involved— as

γDc = max(1− |∆BDc|/Baz, 0), (2.19)
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|B⊥|=73 m,
|BT|=35 days,
|BDc|=37 Hz
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Figure 2.8: Illustration of geometric decorrelation over the western part of The Netherlands using
four ERS-1/2 interferograms with increasing perpendicular baseline. Note that the absolute temporal
BT and Doppler BDc baselines are equivalent, and the same instrument and processing settings are
used. Hence, the majority of decorrelation is due to the increasing perpendicular baseline. The
water area on the right sides of the images is completely decorrelated due to fast temporal change
of the water surface.

where Baz is the azimuth bandwidth. Normally the Doppler centroid variation
is maintained within a limited range by proper orientation of the radar antenna,
thereby minimizing the effect of Doppler decorrelation. Exceptions are the Doppler
values for ERS-2 images acquired after 15 January 2001. Due to failure of the
on-board gyroscopes, the antenna could no longer be steered. As a result, only a
limited number of images acquired after this date are suitable for interferometric
applications.

• Thermal or system decorrelation (γther), caused by instrumental thermal noise
during the acquisitions. This decorrelation factor is dependent on the system
characteristics of the instrument involved.

• Processing decorrelation (γproc), caused by the processing of the radar images to
obtain interferograms, e.g., due to coregistration and interpolation errors. Hanssen
(2001) derived that, assuming a coregistration precision better than 1/8th of a pixel
(in both directions), the processing results in a correlation factor of 0.96.

Zebker and Villasenor (1992) showed that the listed coherence terms are multiplicative,
resulting in the total coherence

γtot = γtemp · γgeom · γDc · γther · γproc. (2.20)

High coherence indicates a small contribution of scattering phase ϕscat to the observed
phase ϕms, see Eq. (2.5). High coherent pixels therefore have a higher chance of
accurate, i.e., precise and reliable, estimation of the remaining phase contributions, e.g.,
topography, deformation and atmosphere. The coherence can be optimized by proper
selection of the interferometric combinations (e.g, small baselines) and/or by applying
additional data processing operations. One of these operations is oversampling of the
data.

Oversampling

The interferometric phase is obtained by complex conjugated multiplication of the master
and slave images, see Eq. (2.4). Because multiplication in the time domain is equal to a
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convolution in the frequency domain, the spectrum of the interferogram is twice as wide
as that of the radar images. Since the sampling frequency of the interferogram remains
equal to that of the SLC images, spectral contributions above the Nyquist frequency are
obtained, which induces an aliasing effect (Hanssen, 2001).

To avoid aliasing, the master and slave SLC images should be oversampled by a
factor 2 in both range and azimuth direction. This is achieved efficiently, after a Fourier
transform, by zero padding of the master and slave spectrum by the same number of
samples as already contained in the original spectrum. By applying an inverse Fourier
transformation, harmonically interpolated master and slave images are obtained which
now contain twice as many samples. Due to the oversampling, the noise level of the
interferogram is reduced, because the aliasing effect is prevented.

Additional processing steps

Once the interferogram is created, in original image resolution or oversampled form, the
interferogram can be interpreted. To improve the interpretation, a number of additional
processing steps can be applied (beforehand). Examples of these processing steps are

• Spectral filtering. The noise level in the interferogram can be reduced by filtering
the non-overlapping parts of the spectra of the master and slave images before
interferogram formation. The spectral filtering is applied separately in azimuth
and range direction. Hereby, the geometric and Doppler centroid decorrelation is
reduced.

• Spatial filtering. Remaining noise, for example caused by temporal decorrelation,
can be reduced by a spatial (smoothing) filter on the complex interferometric
observations.

• Phase unwrapping. The interferogram obtained still contains phase values wrapped
to the [−π,+π) interval. Hence, the interferogram shows color cycles known as
fringes, see for example Figure 2.7. To obtain absolute phase values, which can
be translated to topographic height information or deformation values, the phase
needs to be unwrapped. An overview of methods for phase unwrapping can be
found in Ghiglia and Pritt (1998).

The objective of a radar interferometric analysis may be to study the deformation, to-
pography, or atmospheric conditions in a certain area. In case of deformation studies,
the deformation phase ϕdefo should be isolated from the other phase contributors in
Eq. (2.5). In practice, especially the atmospheric signal, together with temporal and ge-
ometric decorrelation, are the limiting factors regarding interpretation in case of a single
interferogram. To circumvent these disturbing factors, often multiple interferograms of
the same area are used for deformation studies: radar interferometric time series analysis.

2.2 Time series interferometry

To overcome the major limitations of radar interferometry, that is, temporal and ge-
ometric decorrelation, and atmospheric signal delay, at the turn of the century radar
interferometric time series analysis methods were introduced (Ferretti et al., 2000; Usai,
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2001; Berardino et al., 2002). Within these methods, instead of single interferograms,
multiple interferograms are analyzed in a consistent framework. Hereby the lack of re-
dundancy in a single interferogram is circumvented, enabling a separation of the various
phase contributions, e.g., deformation, topography and atmospheric signal delay. The
introduction of radar time series analysis has dramatically increased the applicability of
radar interferometry to various deformation phenomena under varying reflection condi-
tions of the surface.

The main objective of a radar interferometric time series analysis method is the
detection of those pixels for which the deformation time series can be estimated with
sufficient reliability. The reliability of the time series is directly related to the correct
estimation of the phase ambiguities or phase unwrapping. The ability to estimate these
ambiguities correctly depends both on the characteristics of the measurements and of
the signal of interest. In particular

1. the noise level of the observations. This level is determined by the amount of
decorrelation, see Section 2.1.3. Hence, for pixels which show strong geometric
and/or temporal decorrelation, the ability to estimate the actual deformation time
series is reduced.

2. the spatio-temporal variability of the atmospheric signal delay. In all methods
the ambiguities are resolved based on spatial (and temporal) phase differences.
When strong spatial gradients in the atmospheric signal occur, correct ambiguity
resolution becomes more difficult.

3. the spatio-temporal smoothness of the actual deformation signal. To resolve the
ambiguities certain assumptions regarding the spatial and/or temporal smoothness
of the deformation signal have to be made. Sudden changes, either in space or
in time, make the ambiguity resolution more difficult or, in case a wavelength
dependent threshold is exceeded, even impossible. Here, also the spatial distance
between coherent pixels and the acquisition repeat cycle determine the ability to
estimate the correct solution.

Radar interferometric time series analysis methods are designed to account for these
limitations. In the last decade various methods have been proposed. The methods can
be distinguished based on:

• the baseline configuration of the images used,

• the image resolution used,

• the ambiguity resolution method applied,

• the a-priori pixel selection method applied,

• the a-posteriori pixel selection method applied, and

• the atmospheric signal estimation/prediction method applied.

An overview of various methods and their characteristics is given in Table 2.2. In Sec-
tions 2.2.1-2.2.6 these characteristics are further discussed. The specific characteristics
of Tomographic SAR time series analysis (Reigber and Moreira, 2000; Lombardini, 2005;
Fornaro et al., 2009; Zhu and Bamler, 2010), which enables the detection of multiple
scatterers within the same image range bin, are not considered here.
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Figure 2.9: Examples of baseline configurations. Different strategies can be applied to minimize
the noise level in the interferometric data stack. The final choice can for example be dependent
on the dominant type of scattering (point scattering or distributed scattering) and the expected
deformation behavior.

2.2.1 Baseline configuration

The baseline configuration determines the set of interferometric image pairs that is used
in the time series analysis. The baseline is defined as the distance between the two SLC
images involved, either in terms of antenna position (perpendicular baseline), acquisition
time (temporal baseline), or Doppler centroid (Doppler baseline). The objective is to
find a configuration that minimizes the noise level in the data set, hence to minimize the
amount of decorrelation (see Section 2.1.3). Examples of frequently applied baseline con-
figurations are the single master stack (Ferretti et al., 2001), the short temporal and/or
perpendicular baseline configuration (Berardino et al., 2002; Schmidt and Bürgmann,
2003), a redundant network (Perissin et al., 2008), a minimal number of connections
graph, a traveling salesman solution (van Leijen and Hanssen, 2004), and the minimal
spanning tree (Perissin et al., 2008). Figure 2.9 gives an example of a number of these
baseline configurations in the form of a baseline plot in case only the perpendicular and
temporal baseline are considered.

The single master configuration, where all SLC’s are interferometrically connected
to a unique master SLC, is often used for a Persistent Scatterer Interferometry (PSI)
analysis (Ferretti et al., 2001; Kampes, 2006). Since the main focus of PSI is on point
scatterers, which are assumed to be only minimally affected by geometric and temporal
decorrelation, relatively large baselines can be applied. For these point scatterers even
baselines extending the critical baseline (see Section 2.1.3 and Table 3.1b (p.35)) can
be used. As a result, normally all available SLC images are used in a PSI analysis, with
the advantage that the number of interferograms is minimized.

Radar interferometric time series analysis methods focusing on distributed scattering
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pixels are often based on baseline configurations with small baselines. The reasoning is
that distributed scattering is much more sensitive to geometric and temporal decorre-
lation compared to point scatterers. For instance, the SBAS method (Berardino et al.,
2002; Mora et al., 2003) uses such a configuration of small baseline interferograms. By
setting a maximum baseline length, the decorrelation effect is constrained. Hereby, a
configuration of redundant interferograms is obtained, that is, more interferograms are
created than strictly required to connect the SLC images. Disadvantage of a baseline
threshold is that disconnected sets of interferogram clusters may be obtained, see also
Figure 2.9. This would result in separate deformation time series for each cluster with
unknown offsets with respect to each other. Within the original SBAS approach (Be-
rardino et al., 2002; Mora et al., 2003) the clusters are connected by applying a Singular
Value Decomposition (SVD), resulting in a least-squares solution with a minimum norm
constraint. That is, the Moore-Penrose pseudo-inverse (Moore, 1920; Penrose, 1955)
incorporated within the SVD solution minimizes the norm of the solution vector, ob-
taining deformations which are in general as close to zero as possible. Note that in
case all interferograms form a single cluster, the SVD solution is equal to a standard
least-squares approach. Two alternative approaches have been presented. Usai (2003)
simulates a connecting interferogram based on the assumption of linear deformation
behavior between successive acquisitions. The approach by Costantini (2003) is based
on the minimization of the curvature of the resulting deformation time series. Here,
additional constraints are added to the system of equations to minimize the variation
in deformation velocity between consecutive intervals between acquisitions. To reduce
the amount of interferograms, a constraint on the minimal number of connections for
each SLC image can be applied, resulting in the minimal connection configuration, see
Figure 2.9, bottom-left.

Hybrid baseline configurations are possible as well. The short temporal baseline
approach results in a cascade of interferograms between successive images. This con-
figuration is suitable in case the expected deformation is large and/or irregular in time.
Connecting each individual spatial unwrapped interferogram results in the desired de-
formation time series. Disadvantage of this approach is that unwrapping errors cannot
be detected, resulting in the risk of propagation errors. Minimizing the baselines, but
still using all available SLC’s can be accomplished by the Traveling salesman approach
(van Leijen and Hanssen, 2004) or the minimum spanning tree (Perissin et al., 2008).

2.2.2 Image resolution

The image resolution used in the radar interferometric time series analysis is mainly
dependent on the type of scattering that is expected or aimed to detect, i.e., primarily
point scattering or distributed scattering. In both cases the aim of using a certain reso-
lution is to reduce the amount of noise in the observations. In case of point scattering,
often oversampled images are used (with a minimum oversampling factor of two), to
prevent additional noise due to aliasing in the interferometric phase, see Section 2.1.3.
Sometimes the oversampling step is omitted, hence, resulting in the use of the original
image resolution.

In case of distributed scattering often a multilook of a certain number of pixels is
applied to reduce the noise level, see Hanssen (2001). Multiple pixels are averaged to
obtain a new resolution cell. Often the multilook factors in range and azimuth direction
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are chosen such that approximately square pixels are obtained. The reduced noise level in
the image pixels typically improves the result of phase unwrapping in the spatial domain.
The unwrapped multilooked interferograms can also be used to steer the unwrapping of
the original, full resolution, interferograms, see Lanari et al. (2004), in case full resolution
results are desired.

2.2.3 Phase unwrapping

The critical step in any radar interferometric time series analysis approach is the unwrap-
ping of the phase, also known as ambiguity resolution. Unwrapping errors, i.e., phase
jumps of 2π, severely affect the quality of the results. The challenge is to unwrap the
3D data stack (two dimensions in space and one in time) with the highest possible relia-
bility. Various methods for phase unwrapping have been proposed in the past. In case of
Persistent Scatterer Interferometry, often a 1D+2D approach is applied (Ferretti et al.,
2001; Hooper et al., 2004; Kampes, 2006; Hooper, 2010). Hence, the phase observations
for a certain pixel in the data stack are first unwrapped in time, followed by a spatial
unwrapping. In case of SBAS, a 2D+1D approach is used. Here, the interferograms
are first unwrapped spatially, followed by an integration in time. In both cases the first
step is the most crucial one, which depends strongly on the smoothness of the signal
(see also Section 2.2). For PSI a certain smoothness of the deformation signal in time is
required. However, since the phase of every scatterer is unwrapped independently, also
autonomously moving points can be detected. For SBAS approaches, a smoothness of
the deformation signal in space is assumed. Here the advantage is that fluctuations in
the deformation behavior in time may better be assessed.

An integrated 3D phase unwrapping approach, thereby taking advantage of both the
temporal and spatial correlations in the data, is desirable. Hooper and Zebker (2007)
introduce such a method. The challenge in the approach is the weighting between the
spatial and temporal domain. These weights are required to determine whether ambiguity
inconsistencies should be resolved via a path in the temporal or spatial domain. The
same applies for the 2D+2D method introduced by Pepe and Lanari (2006). Here, not
only the temporal baselines are used, but also the perpendicular baselines. A Minimum
Cost Flow (MCF) approach in the perpendicular-temporal baseline domain is used to
unwrap the phase for each pixel, followed by a MCF spatial unwrapping.

2.2.4 A-priori pixel selection

Each radar interferometric time series analysis approach starts with an a-priori selection
of suitable pixels. The main objectives are: 1) the improvement of the results, by
disqualifying low quality pixels which may influence the results in a negative manner,
and 2) the reduction of computational efforts. The selection can either be based on
amplitude or phase information. In case of PSI techniques, often the amplitude stability
in a data stack is used as a proxy for phase stability, see also Section 3.3.1. Ferretti et al.
(2000, 2001) introduced the normalized amplitude dispersion, which can be derived for
each pixel in the data stack individually. An alternative is the consistency of the Signal-
to-Clutter (SCR) Freeman (1992); Adam et al. (2004), where the SCR is estimated
for each point scatterer and its stability in time is used as proxy. The disadvantage of
this method is that also surrounding pixels (representing the clutter) are needed for the
assessment.
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For radar interferometric time series analysis methods which focus on distributed
scattering mechanisms and do not require the use of full or oversampled resolution radar
data, the consistency of the spatial coherence is often used. The spatial coherence de-
termines the spatial consistency of the complex observations in a number of neighboring
pixels. Since the original data are multilooked to reduce the noise, the same pixels can
be used to estimate the coherence. Alternatively, a moving window can be used. The
consistency of the coherence in the data stack determines the final selection of pixels to
be used in the analysis.

2.2.5 A-posteriori pixel selection

For some radar interferometric time series analysis methods a second, a-posteriori pixel
selection is applied, see Table 2.2. Here, the objective is to detect the reliably estimated
pixels in the total set of pixels analyzed. This selection step is mainly applied in the
methods which start with a 1D phase unwrapping in the time domain, hence, where
an independent solution for each pixel is obtained. Ideally, the a-posteriori selection is
performed before the spatial integration step, to circumvent the influence of erroneous
pixels in the final result. Various quality indicators can be used for the selection, such as
the local ensemble coherence or variance factor, see Section 6.2. These quality indicators
can also be applied in combination with a testing scheme based on the parameters of
interest (Kampes, 2006) or the phase ambiguities (van Leijen et al., 2006a).

For methods that start with a 2D spatial unwrapping, this second, a-posteriori, pixel
selection is usually omitted, since each initially selected pixel will influence the final result.
Hence, the a-priori pixel selection should be conservative in order not to incorporate (too
many) incoherent pixels. However, when applying an iterative approach in the spatial
phase unwrapping, an a-posteriori pixel selection could be used to remove unreliable
pixels, thereby converging to a final solution.

2.2.6 Atmospheric signal decomposition

The radar interferometric time series analysis methods can also be distinguished based
on the approach applied to isolate the atmospheric delay signal from the deformation
signal. Main assumption for each decomposition approach is that the atmospheric delay
due to turbulent mixing is uncorrelated in time. As a result, the expectation value of
the differential atmospheric delay is zero.

In case of stacking (Zebker et al., 1997; Wright et al., 2001, 2004) the influence
of the atmospheric signal delay is reduced by (weighted) averaging of various interfer-
ograms, thereby obtaining an estimate of the average linear deformation rate. Ferretti
et al. (2000) introduce an alternative approach to isolate the atmospheric signal in an
interferometric single master data stack. Here, a sequence of high-pass and low-pass
filters in time and space is applied, see also Section 5.3. First, for each pixel the av-
erage residual phase after correction for estimated model parameters, such as height
and (linear) deformation, is taken to obtain an estimate for the atmospheric signal in
the master image. Subsequently, the time series of residuals are high-pass filtered to
separate the atmospheric signal of the slave acquisitions (plus noise) from unmodeled
deformation. Last step is a low-pass filter in the spatial domain, which separates the
noise from the atmospheric signal. The final result is an estimate of the atmospheric sig-
nal delay for each acquisition. Various radar interferometric time series analysis methods
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have adopted this approach (possibly in an adapted form), e.g., Berardino et al. (2002);
Mora et al. (2003).

Kampes (2006) does not estimate the atmospheric signal delay explicitly, but de-
scribes it by a stochastic model. In this case the stochastic model should ensure that the
parameters of interest are minimally affected by the atmospheric signal delay. The final
deformation time series will however also contain the atmospheric signal contribution,
thereby showing a higher noise level. Nevertheless, an optional filter of the estimated
deformation time series is suggested to remove the atmospheric signal a-posteriori. Also
Hooper et al. (2004); Hooper (2008) maintain the atmospheric delays in the time series.
They apply a combination of the high-pass/low-pass filtering and stochastic modeling,
to benefit from the advantages of both methodologies, see Section 5.3.

The assumption of an uncorrelated atmospheric signal delay in time may not hold
in cases of strong topography. Here, apart from signal delay due to turbulent mixing
of water vapor, also homogeneous differences in pressure, temperature and humidity
between two acquisitions will result in a differential signal. This phenomenon is known as
vertical stratification (Hanssen, 2001), see Section 2.1.3. Seasonal effects in the weather
condition can result in a temporal correlation between these atmospheric signals. Ferretti
et al. (2005) estimate the vertical stratification effect by inserting an additional parameter
in the functional model. Another approach is to model the effect based on data from
a numerical weather model (NWM). Liu (2012) shows that the vertical stratification
effect can very well be modeled by the weather models. The same study shows that this
conclusion does not apply for the turbulent mixing part of the atmospheric delay.

2.2.7 Summary

Various radar interferometric time series analysis methods exist, each with its own char-
acteristics, as summarized in Table 2.2. Similar to conventional radar interferometry, the
crucial step remains the correct unwrapping of the phase. Once the phase is unwrapped,
the challenge is to separate the various phase contributors, such as due to topogra-
phy, deformation, and atmosphere. Here, assumptions regarding the spatio-temporal
smoothness of the different signal components is required.

The most suitable approach for a certain study depends on a number of properties,
such as the number of available radar images (in case of a low number of images, a
small baseline approach is preferable above PSI), the surface cover (methods based on
multilooked images are more suitable for arid regions compared to areas with abundant
vegetational grow), and the expected deformation signal (smoothness of the signal in
time or space). For regions with a moderate maritime climate, such as north-western
Europe, characterized by a vegetated surface cover, an approach based on persistent
scattering objects is most suitable. The design and implementation of the Delft PSI
(DePSI) approach is described in Chapters 3-6.





PSI algorithm design and initialization 3
The Delft Persistent Scatterer Interferometry (DePSI) algorithm performs an analysis
of a single master stack of interferograms to detect Persistent Scatterers (PS) and
estimate their deformation time series. The algorithm is described in Chapters 3–6. This
chapter discusses the general structure of the algorithm and the first (pre-)processing
steps. Section 3.1 presents the algorithm design. The algorithm is composed of separate
processing steps. Each step is discussed shortly, including a reference to the particular
section with a detailed description.

The creation of the input data for DePSI, the interferometric data stack, is described
in Section 3.2. Section 3.3 discusses the selection of Persistent Scatterer Candidates
(PSC), which aims to reduce the amount of data to be analyzed and to pre-assess
the quality of the reflection points. Section 3.4 covers the so-called side lobes. The
effect of these spurious reflection points in the data, which are caused by the reflection
signature of strong point scatterers, is discussed. Furthermore, the section describes the
procedure applied in DePSI to remove these side lobes from the data. Once the side
lobes are removed, a first-order network is constructed based on the selected PSC, see
Section 3.5. The first-order network aims to ensure the integrity of the analysis across
the analyzed area. Finally, Section 3.6 provides a summary of the steps described in this
chapter.

3.1 PSI algorithm design

The Delft Persistent Scatterer Interferometry (DePSI) algorithm transforms a radar in-
terferometric data stack into a set of detected Persistent Scatterers, including their
estimated deformation time series, geolocation and quality description. The algorithm
uses a framework of geodetic estimation and testing methodologies, known as the ’Delft
school’ (see Appendix A), to embed PSI into the range of geodetic measurement tech-
niques.

The DePSI approach is based on a hierarchical structure of PS, as conventionally
applied in geodetic networks, see also Appendix B. The first-order PS (PS1) are assumed
to be of the highest precision and thoroughly tested. These PS form a sparse initial
network, which is used to model and estimate error sources, such as the atmospheric
signal delay and orbit errors, and acts as the reference network for densification with
higher-order PS (e.g., second order, PS2). The detection of PS (first and higher-order)
is based on the testing of Persistent Scatterer Candidates (PSC), which are selected
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a-priori based on the radar reflection intensity in the same radar data stack.
The estimation and testing procedures within DePSI are based on a mathematical

model, containing both a functional and a stochastic model. The functional model de-
scribes the relation between the observations and the unknown parameters, whereas the
stochastic model contains the statistic properties of the observations. The stochastic
model contains both noise terms and (co-)variances due to error signals, such as atmo-
spheric signal delay and orbit errors. Within DePSI an iterative scheme is applied to
re-estimate the stochastic model by Variance Component Estimation (VCE) after esti-
mation and correction of each error signal. Hence, the stochastic model is continuously
updated to describe the observations as close as possible.

DePSI has a modular setup, which enables a project-based processing flow and the ability
to re-run a processing step, if desired. The flowchart of DePSI is shown in Figure 3.1.
Nine modules can be distinguished within DePSI, indicated in Figure 3.1 by a number.
Some modules are re-occurring, indicated by a subsequent letter. The nine modules of
DePSI are:

1. Initialization
DePSI is initialized by reading the metadata specifying the interferometric data set,
see Section 3.2, and the process parameters defining the DePSI processing flow,
such as the deformation models to apply and point selection thresholds. These
processing parameters are tuned for a specific project based on a-priori information,
for example the expected deformation signal.

2. Persistent Scatterer Candidates (PSC) selection
The Persistent Scatterer Candidates (PSC) are selected based on amplitude in-
formation in the interferometric stack, see Section 3.3. First-order as well as
higher-order PS are selected. Due to the selection of the PSC, the amount of
data to be analyzed is strongly reduced. During the selection process the pixels
corresponding to side lobes of point scatterers are detected and removed from the
data, see Section 3.4.

3. Network construction
A reference network based on the first-order PS is constructed. The reference
network is used for Atmospheric and Orbital Phase Screen estimation and further
densification of the PS. The set of detected PS is obtained after analysis of the first-
order PSC. Here, four steps can be distinguished: 1) Estimation of the precision of
the data, based on Variance Component Estimation (VCE) (see Section 4.4); 2)
Formation of a spatial network between the PSC (see Section 3.5); 3) Temporal
ambiguity resolution for each arc in the network (see Chapter 4); and 4) Spatial
ambiguity resolution (see Section 5.1). These four steps are repeated after each
phase screen estimation.

4. Trend estimation (optional)
Per interferogram a two-dimensional trend is optionally estimated to account for
orbit errors. Orbit inaccuracies cause a low-frequency error signal in the interfero-
grams, known as the Orbital Phase Screen (OPS), which influences the estimates
for the deformation signal. After estimation of this error signal, based on the ref-
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Figure 3.1: DePSI flowchart. Nine modules can be distinguished, indicated by a number. Re-
occurring modules have an additional letter. The standard processing flow is shown in black,
optional steps are indicated in gray.



32 Chapter 3. PSI algorithm design and initialization

erence network of PS, the original PSC interferometric phases are corrected, see
Section 5.2.

5. Atmosphere estimation
The error signal due to atmospheric delay is estimated for each interferogram,
known as the Atmospheric Phase Screen (APS). For an individual interferogram
this atmospheric signal cannot unambiguously be distinguished from a deformation
signal. However, using the full stack of interferograms, the assumption that the
atmospheric signal delay is uncorrelated in time is used to separate the atmospheric
signal from the deformation, see Section 5.3. After estimation of the APS, the
PSC interferometric phases are corrected.

6. Interferogram selection (optional)
A selection from the total set of available interferograms is made for a deformation
analysis of a limited time span, see Section 7.8. This approach is applicable when
a certain deformation phenomenon only covers a limited time span in a relatively
small area. An example is an area where during the acquisition time span a civil
work is constructed, e.g., a railway track. Hence, whereas after the construction
numerous PS may be present, before and during the construction the same image
pixels will not provide a consistent reflection. In principle a standard PSI analysis
based on a smaller data stack can be performed, however, for the estimation of
error signals such as the atmospheric delay it is beneficial to use as many radar
acquisitions as possible. Therefore, with this option a selection from the total
stack can be made for the deformation analysis of this construction, whereas the
total stack is used for the estimation of the spatially correlated error signals based
on the surroundings.

7. Densification
Once the reference network is established after correction for the Atmospheric
(and Orbital) Phase Screen, the network is densified with higher-order PS (see
Section 5.4). The higher-order PSC are connected to close-by first-order PS and
the ambiguities are resolved in time (see Chapter 4). When more connections per
PSC are used, the estimated ambiguities are tested to increase the reliability of the
solution. Based on the unwrapped phase observations, the parameters of interest
are estimated, such as the residual height and the deformation parameters, and
the final deformation time series if obtained.

8. Deformation modeling (optional)
The estimated deformation time series of the PS are used to estimate a deformation
model per interferogram, the Deformation Phase Screen (DPS), see Section 7.4.
The model can either be parametric, e.g., a subsidence bowl, or obtained by
interpolation, e.g., by least-squares prediction or Kriging (Krige, 1951). After
correction of the original PSC interferometric phases, the network construction
and densification modules are repeated. Due to the removal of the deformation
signal, which can also contain so far unmodeled deformation elements due to
separate prediction per interferogram, potentially more PS can now be detected.

9. Output generation
Once the ambiguities are resolved and the parameters of interest are estimated,
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the output is generated in a desired format. Here the PS are georeferenced to
obtain coordinates in WGS84 (Section 6.1) and additional precision indicators are
calculated (Section 6.2).

The main processing steps are described in detail in Chapters 3–6. The optional steps
to improve the detection of PS, i.e., the selection of interferograms and deformation
modeling, are presented in Chapter 7.

3.2 Interferometric data stack creation

The PSI analysis is based on a set of radar images of the area under consideration.
Whereas the phase is the prime source of information, the intensity of the images is
used during the analysis as well. DePSI can be applied to data acquired by any sensor,
irrespective of the radar wavelength and polarization. However, a particular analysis is
restricted to a homogeneous dataset, i.e., obtained by a single sensor with a specific
polarization. An overview of past, current and future radar satellite missions including
their characteristics is given in Tables 3.1a and 3.1b.

The interferometric processing of the radar data is performed using the Delft Object-
oriented Radar Interferometric Software (DORIS) (Kampes and Usai, 1999; Kampes
et al., 2003).

3.2.1 Master image selection

Typically all available images of a dataset are used in an analysis using the DePSI
algorithm. This has two major advantages. Primarily, the derived deformation time
series is as long and contains as much detail as possible. Second, error sources such as
the atmospheric signal delay can be optimally estimated.

The interferograms are constructed in a single master configuration. Hence, all slave
images are inferred with a unique master. The master image is selected based on three
criteria:

1. Maximization of the expected stack coherence. Although the effect of decorrelation
is minimal for point scatterers—even in case the perpendicular, temporal and
Doppler baselines become larger than the critical baseline (see Section 2.1)—,
the quality and number of detected PS can be optimized by minimizing the noise
due to decorrelation. The optimal master can be selected visually by selecting an
acquisition in the center of a baseline plot, see Figure 3.2 for an example, or can
be based on the modeled stack coherence. The modeled stack coherence γm for
master m is obtained by (Kampes and Adam, 2003)

γm =
1

S

S∑

s=1

g(Bms⊥ , B⊥max) · g(BmsT , BTmax
) · g(BmsDc , BDcmax

), (3.1)

where

g(B,Bmax) = max(1− |B|/Bmax, 0). (3.2)

Here s is the slave image, S the total number of slave images, B⊥ is the perpen-
dicular baseline, BT is the temporal baseline, BDc is the Doppler centroid baseline,



34 Chapter 3. PSI algorithm design and initialization

Table 3.1a: Past, current and future radar satellite missions, and their characteristics, part I
(stripmap mode, single polarization).

Mission Period λ f0 Band θ Pol. Swath ∆T
(Number of satellites) [cm] [GHz] [deg] [km] [days]

ERS-1 (1) 1991-2000 5.6 5.300 C 23 VV 100 35∗

ERS-2 (1) 1995-2011 5.6 5.300 C 23 VV 100 35
ENVISAT (1) 2002-2010 5.6 5.331 C 23 HH,VV 105 35
ENVISAT Ext∗∗ (1) 2010-2012 5.6 5.331 C 36 HH,VV 60 30
ALOS (1) 2006-2011 23.6 1.270 L 8-60 HH,VV 40-70 46
Radarsat-2∗∗∗ (1) 2007- 5.5 5.405 C 20-49 HH,VV 100 24
TerraSAR-X (2) 2007- 3.1 9.650 X 20-45 HH,VV 30 11
Cosmo-Skymed (4) 2007- 3.1 9.600 X 20-60 HH,VV 40 4
Sentinel-1 (2) 2014- 5.5 5.405 C 29-46 HH,VV 250 6

λ, wavelength; f0, carrier frequency; θ, look angle; ∆T , repeat interval.
∗ For the periods 1993-1994, 1995-2000. Within the other periods alternative orbit configurations
were applied.
∗∗ Envisat Extended mission, swath IS6.
∗∗∗ Standard mode.

and Bmax are the maximum baselines that scale the effect of the different decor-
relation factors. Suitable values for the different maximum baselines differ per
sensor, i.e., dependent on the range and azimuth bandwidth, and the wavelength.
The perpendicular Bmax can for example be chosen equal to the critical baseline
B⊥crit . See Table 3.1b for the specific values per sensor. The BTmax

is normally set
to at least half the time span of radar acquisitions, resulting in an optimal master
somewhere halfway the acquisition time span. The modeled stack coherences are
evaluated for all images and ordered to obtain a ranking of most suitable master
images.

2. Minimum atmospheric signal delay. Each interferogram in the single master stack
contains the atmospheric signal delay of the master image. Since the Atmospheric
Phase Screen (APS) (see Section 5.3) is predicted based on a sparse distribution of
PS, the prediction error will be larger for a highly turbulent atmosphere. Since the
master atmosphere is contained in each APS, a master acquisition with moderate
weather conditions enhances the performance of APS prediction per interferogram.
External meteorological data can be used to assess the weather conditions per
acquisition, to select the optimal master. Hereby, acquisitions during heavy rain
or thunderstorms can be excluded.

3. Minimum expected clutter. For optimal estimation of the deformation parameters
the scattering phase ϕscat (see Eq. (2.5)) should be as low as possible. This
scattering phase is dependent on the amount of temporal decorrelation in the
resolution cell. The scattering characteristics of a resolution cell can for example
change due to vegetational grow or snow cover, particularly affecting the clutter.
To minimize the interferometric scattering phase, the clutter of the master image
should be as low as possible, hence have a high Signal-to-clutter ratio (SCR).
Therefore an image where minimal vegetational grow is expected, e.g., in the
winter, although without snow cover, is desirable.

Once the master image is selected, the interferometric stack can be processed.
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Table 3.1b: Past, current and future radar satellite missions, and their characteristics, part II
(stripmap mode, single polarization).

Mission Hsat ∆az ∆sr ∆gr Br RSR Baz PRF B⊥crit

(Number of satellites) [km] [m] [m] [m] [MHz] [MHz] [Hz] [Hz] [km]

ERS-1 785 4.0 7.9 20.0 15.55 18.96 1378 1680 1.1
ERS-2 785 4.0 7.9 20.0 15.55 18.96 1378 1680 1.1
ENVISAT 785 4.0 7.8 20.1 16.0 19.2 1316 1652 1.1
ENVISAT Ext∗∗ 785 3.8 7.8 12.0 16.0 19.2 1347 1742 2.2
ALOS 691 3.1 4.7 7.5 28 32 1707 2155 14.5
Radarsat-2∗∗∗ 798 4.9 11.8 21.1 11.6 12.7 900 1353 1.1
TerraSAR-X 514 1.9 1.3 2.1 150 165 2765 4113 8.3
Cosmo-Skymed 620 2.3 0.8 2.2 156 195 2559 3046 8.6
Sentinel-1 693 17.4 2.3 3.7 48 61.5 313 1252 7.1

Hsat, satellite altitude; ∆az, azimuth spacing; ∆sr, slant range spacing; ∆gr, average ground range
spacing; Br, range bandwidth; RSR, range sampling rate; Baz, range azimuth; PRF, pulse repetition
frequency; B⊥crit

, critical perpendicular baseline (flat terrain, see Hanssen (2001)).
∗∗ Envisat Extended mission, swath IS6.
∗∗∗ Standard mode.

3.2.2 Image crop selection

Often the area of interest for a deformation analysis is limited to a certain crop of the
full radar image. This crop can be selected at two stages in the processing chain: 1)
during the processing of the interferometric stack, or 2) during the PSI analysis. In the
first case the images are cropped based on the geographic center coordinates of the
crop. Because the crop per image is based on the orbit and timing parameters which
may contain errors, the crop should be taken larger than the finally desired extent. In
case of the second option the complete images are taken to calculate the interferograms
and a certain crop is selected within DePSI. Advantage of this option is that multiple
crops of the same dataset can be analyzed ensuring equal interferometric processing
characteristics, e.g., coregistration and resampling, see Section 3.2.4. This is especially
important when DePSI results of different crops are merged afterwards.

3.2.3 Image oversampling and filtering

Once the original SLC data is read and, if desired, a crop is selected, the complex radar
data is oversampled with a factor two in both range and azimuth direction. Oversam-
pling is needed to avoid aliasing in the interferometric phase, see Section 2.1.3. Point
scatterers cause a sinc-shaped signal in the radar image, which requires the full spectrum
in the frequency domain to be described. When part of the oversampled spectrum would
be low-pass filtered, the sinc is broadened and the phase of the point scatterer would
change, introducing noise. As a result of oversampling and not downsampling, the radar
images become four times bigger than the original crops (and the pixel spacing twice as
small).

For the same reason of preservation of the phase for point scatterers no spectral
filtering is applied. This holds for both the range and azimuth direction. Moreover, the
remaining common band for the full data stack would be very limited, strongly reducing
the resolution. As a result of not filtering, the effect of geometric and Doppler decorre-
lation (see Section 2.1.3) remains in the interferogram, affecting pixels with distributed
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Figure 3.2: Baseline plot for the ERS-1/2 data stack of the Gardanne region, France. The plot
shows the configuration of the acquisitions regarding the perpendicular baseline (B⊥), the temporal
baseline (BT ), and the Doppler centroid baseline (BDc), with respect to the master acquisition.
The Doppler centroid baselines are indicated with a grayscale.

scattering. Hence, the chance of detection of PS with distributed scattering is reduced.
An alternative would be to keep the spectrum of the master image fixed and only filter
the slave spectra. A large part of the decorrelation effect is hereby removed. However,
the phase of point scatterers will still be affected.

3.2.4 Image coregistration

To be able to calculate the interferograms, the oversampled slave images should be
aligned to the master image. That is, the pixels of both the master and slave images
should cover the same area of the Earth’s surface. This procedure is known as coregis-
tration. The original images are all shifted, rotated, stretched, and distorted with respect
to each other due to changes in the orbit, antenna orientation and acquisition timing in
combination with the topography.

Inaccuracies in the coregistration introduce an additional decorrelation effect, hence,
noise in the phase observations, see Section 2.1.3. Especially point scatterers are sensitive
to coregistration inaccuracies. Therefore, high accuracy in the coregistration is required.
A precision of 1/8th of an oversampled resolution cell in range and azimuth direction is
desirable to maintain a coherence due to the coregistration of 0.99 (Just and Bamler,
1994; Hanssen, 2001). Two algorithms can be used, correlation based coregistration
and the newly implemented Digital Elevation Model (DEM) based coregistration (Adam
et al., 2003; Sansosti et al., 2006; Arikan et al., 2008).
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Correlation-based coregistration

Traditionally, coregistration is performed by a large number of matching windows (e.g.,
> 5000) between the master and slave image. The matching is based on correlation of
the amplitude. The windows should be homogeneously distributed over the scene. Once
an estimate of the offset between master and slave is obtained for each window, a warp
function is estimated that describes the offset for each pixel. Normally a 2D polynomial
of a certain degree, e.g., between two and five, for both the range and azimuth direction
is used. During the estimation process of the polynomial, a testing scheme is applied
to remove outliers. The testing procedure is continued until the desired accuracy of the
warp function is obtained.

The initial distribution of correlation windows can either be systematic or directed.
The systematic approach automatically ensures a homogeneous distribution of windows.
However, a large part of these windows will cover areas with a homogeneous radar
reflection signature, e.g., agricultural fields or water bodies, which makes it difficult to
determine the corresponding window position in the slave image. The effect is increased
by the large baselines in the single master stack. As a result, the final set of matched
windows after testing may be limited and badly distributed. Therefore often a directed
distribution approach is used (Ketelaar, 2009). Here, the windows are positioned around
strong (point) scatterers in the master image, ensuring good correlation conditions. A
selection grid ensures a homogeneous distribution over the scene.

Although good results can be obtained with the correlation-based method for rela-
tively flat terrain with a certain degree of urbanization, success is not guaranteed under
less favorable conditions. Two reasons can be distinguished. First, a sufficient amount,
and distribution of, reliable correlation windows cannot be ensured. Second, the es-
timated warp function may not be able to describe the offsets with enough accuracy
in case of strong topography. Therefore, a more generic method is desirable, which is
obtained with the DEM-based coregistration approach.

DEM-based coregistration

In case of the DEM-based coregistration approach the coregistration offsets are deter-
mined per pixel based on external topographic data and orbit information of the satellite
(Adam et al., 2003). The advantage compared to the window correlation approach is
that topographic details can be accounted for and that a limited number of reliable corre-
lation windows between the master and slave images is sufficient to account for remaining
timing errors. The approach is especially useful for sensors with a wide bandwidth, i.e.,
high spatial resolution, such as TerraSAR-X and Cosmo-Skymed (see Table 3.1b). Due
to the high resolution, topography can easily cause shifts in radar coordinates, resulting
in failure of achieving the required sub-pixel coregistration accuracy with the traditional
correlation approach.

A DEM obtained by the Shuttle Radar Topography Mission (SRTM) (Farr et al.,
2007) can for example be used, having near-global coverage and a spatial resolution
of 3 arcseconds (≈ 90 meter). However, a higher resolution will improve the perfor-
mance. Precise orbits, for example provided by the Delft University of Technology for
the ERS-1/2 and Envisat satellites (Scharroo and Visser, 1998), are used for optimal
orbit parameters. The method is implemented in DORIS (Arikan et al., 2008).
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The algorithm consists of four steps:

1. Estimation of the master timing error in range and azimuth direction. The mas-
ter amplitude is correlated with a simulated amplitude image based on the DEM
(Eineder, 2003), see Figure 3.3. The DEM is assumed to be georeferenced cor-
rectly. The offsets between the correlation windows are translated to timing errors.

2. Estimation of the relative timing error between master and slave image. The slave
timing error with respect to the corrected master image is estimated based on orbit
information and correlation window offsets. Because timing errors cause a con-
stant shift in both azimuth and range direction, only a limited number of suitable
correlation windows are required, of which the distribution is of no importance.
Alternatively, the slave image can also be corrected directly based on the simulated
amplitude image, however the master-slave correlation is more precise due to the
higher resolution of the radar images involved compared to the DEM. As a result,
an error in the master timing will propagate to the slave timing. However, the
relative DEM positioning is consistent.

3. Radarcoding of the DEM in both the master and the slave image geometry, ob-
taining the offsets per DEM point. For each element of the DEM the (real valued)
radar coordinates in both the master and slave image are calculated using the pre-
cise orbits. The Doppler, range and ellipsoid equations are used (see Section 6.1),
hence, no approximations are applied. The difference between the master and
slave coordinates represent the coregistration offsets.

4. Interpolation of the estimated offsets, known in real valued master coordinates, to
the grid of integer-valued master coordinates. A linear interpolation based on a
Delaunay triangulation is used to obtain an offset value per pixel.

The estimated offsets can now directly be used to resample the slave image to the master
image geometry, instead of obtaining these offsets from the warp function as in case of
the correlation based method.

The implemented algorithm is evaluated by Nitti et al. (2008). The evaluation shows
that the improvement is indeed significant for sensors with high spatial resolution. For
ERS and Envisat images, there is no significant improvement. This is also observed by
Arikan et al. (2008). The lack of improvement can be partly explained by the limited
bandwidth of ERS and Envisat. Additionally, Nitti et al. (2008) state the relatively
coarse resolution of the SRTM data used induces an extra noise term in the DEM
based coregistration. Nevertheless, due to the robustness the DEM based coregistration
approach is recommended for images of all sensors.

3.2.5 Interferogram formation

Once all images are resampled to the geometry of the master image, the interferograms
are calculated by complex multiplication between master and slave. Subsequently the
flat Earth reference phase is computed and subtracted based on precise orbit informa-
tion. The Doppler, range and ellipsoid equations are used to avoid approximations (see
Section 6.1). The equations are also applied for the calculation of the topographic phase,
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Figure 3.3: Left) Amplitude image of a mountainous area in Turkey. Right) Simulated amplitude
image based on SRTM DEM of the same area. The timing errors of the image are corrected by
correlation with the simulated image. Images taken from the DORIS user manual (Kampes, 1999).

which is modeled based on a DEM. Correction for the topography is not a strict require-
ment, because during the DePSI analysis the (residual) topographic height is estimated
as well. However, when the topographic phase is subtracted, the solution space for the
height estimate is reduced, decreasing the computation time and increasing the success-
rate of correct ambiguity resolution and parameter estimation in DePSI, see Chapter 4.
Therefore, use of a DEM is recommended, especially in mountainous terrain.

Both during the computation of the flat Earth phase and the topographic phase the
so-called height-to-phase conversion factor is computed, see Eq. (2.9). This factor is
slowly changing, yet unique for every pixel in an interferogram. Therefore an array of the
same size as the interferogram is formed and saved. During the flat Earth computation,
the conversion factor is based on the WGS84 ellipsoid, whereas during the topographic
phase computation the DEM is considered. Since the latter is more accurate (see also
Section 4.2.1), these values are preferably used in DePSI, however, are only available
when the topographic phase is calculated with DORIS.

The processing of the interferometric stack by DORIS (Kampes and Usai, 1999;
Kampes et al., 2003) results in three sets of files which are used by DePSI: interfer-
ograms, height-to-phase conversion factors and resampled radar images (including the
master image). The latter are used for their amplitude information.

With the interferometric data stack the DePSI analysis can be started. The first step is
the selection of the Persistent Scatterer Candidates.
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Figure 3.4: Phasor of a point scatterer. Amplitude information is used to detect points with
stable phase behavior, i.e. small σψ . Detection is for example based on the normalized amplitude
dispersion DA, which is defined as the ratio between the standard deviation of the amplitude σA
and the mean amplitude µA of a single pixel in a radar image stack. Alternatively, the Signal-to-
clutter ratio (SCR) can be used, which describes the relative strength of the signal s with respect
to the surrounding clutter c. For the relation between the clutter (in the complex domain) and the
standard deviation of the amplitude applies c =

√
2 σA.

3.3 Persistent Scatterer Candidate selection

The radar interferometric data stack typically contains billions of image pixels. The
objective of the PSI analysis is to detect the pixels with coherent phase behavior and
to estimate their deformation behavior. To enable an efficient analysis, a pre-selection
of the most promising scatter locations is made, the Persistent Scatterer Candidates
(PSC). Besides data reduction, the pre-selection is also used to establish a hierarchy in
the pixels, obtaining first-order and higher-order PSC (see Appendix B). The first-order
pixels are used to form a network across the analyzed area (see Section 3.5), whereas
the higher-order PSC are used for the densification of the PS distribution.

This section describes the PSC selection criteria that can be used, the calibration of
the radar amplitude in the data stack, and the PSC selection algorithm applied.

3.3.1 PSC selection criteria

The finally detected PS are obtained after testing of Persistent Scatterer Candidates on
phase stability or coherence. Because the original interferometric phase is wrapped and
is composed of a large number of phase contributors (Eq. (2.5)), the PSC cannot be
selected based on phase. Therefore, amplitude information is used as a proxy for phase
stability.

There is a statistical relation between calibrated amplitude stability (see Section 3.3.2)
and phase stability (Ferretti et al., 2001). This relation is visualized in Figure 3.4, where
the phasor of a point scatterer surrounded by clutter is shown. It indicates that when a
strong point scatterer, which by definition has a large amplitude, dominates the resolu-
tion cell, the influence of clutter on the phase is only limited. This phenomenon is used
to select pixels with a high likelihood of having a stable phase based on amplitude.

Possible selection methods are the normalized amplitude dispersion, amplitude thresh-
olding, Signal-to-Clutter ratio (SCR), and supervised selection.
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Figure 3.5: Numerical simulation of the relation between amplitude dispersion DA and phase
standard deviation σψ (Ferretti et al., 2001), modified after Hooper (2006). A complex variable
zi = s + ni is simulated 5000 times. The signal is fixed to s = 1, while the standard deviation,
σn, of both the real and imaginary components of the noise, ni, is incremented from 0.05 to
0.8. Left) Mean values of DA and σψ are plotted, together with error bars for DA, assuming 34
radar acquisitions (i = 1, . . . , 34). Small values of the normalized amplitude dispersion are a good
proxy for phase stability. Right) Scatter plot of DA versus σψ assuming 34 respectively 100 radar
acquisitions. With a higher number of available radar acquisitions, DA becomes more reliable as a
proxy for phase stability.

Normalized amplitude dispersion

The normalized amplitude dispersion DA is based on the analysis of the amplitude time
series per pixel. The relation between the phase standard deviation σψ and DA is
(Ferretti et al., 2001)

σψ ≈ tan(σψ) =
σA
µA

.
= DA [rad], (3.3)

where µA and σA are the mean and standard deviation of amplitude in the time series,
see Figure 3.4. Hence, a pixel with a relatively constant amplitude in time is expected to
have a low phase dispersion. The validity of this relation is evaluated by Ferretti et al.
(2001) by means of a numerical simulation, see Figure 3.5. The left figure shows the
correspondence between σψ and DA for different noise levels. It shows that DA is only
a good proxy for phase stability in case of low σψ values. However, the figure does not
show the phase variability for a given amplitude dispersion. A better indication of this
relation is shown by the scatter plot in Figure 3.5 (right). A DA of 0.3 indicates a range
for σψ of about 0.25 to 0.54 rad when 34 radar acquisitions are used (Hooper, 2006).
The range decreases when more acquisitions are available. Hence, the DA becomes a
more reliable proxy for phase stability with an increasing number of available acquisitions.
The figure further shows that assuming a maximum σψ for coherent point scatterers of
e.g. 0.6 (Colesanti et al., 2003b), the corresponding DA is maximally 0.4.

Amplitude thresholding

An alternative PSC selection criteria is based on amplitude thresholding (Kampes and
Adam, 2004). A pixel is selected as PSC if its normalized radar cross section σ0 (RCS),
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i.e., the calibrated intensity, is above a threshold N2 in at least N1 SLC images

K∑

k=0

nk ≥ N1, with nk =

{

1, if σ0
k > N2,

0, otherwise,
(3.4)

where K is the number of radar acquisitions. Kampes and Adam (2004) propose a N1

of 0.65K and, based on ERS characteristics, a N2 of −2 dB. This method has two
drawbacks, both related to the value of N2. First, an absolute radiometric calibration
of the images is required to relate the measured intensity to the radar cross section,
see Section 3.3.2. This in contrast to other methods, where a relative calibration is
sufficient. Second, the radar cross section is dependent on the sensor characteristics,
requiring a different threshold N2 for each sensor.

Signal-to-Clutter ratio

The phase stability can also be assessed using the Signal-to-Clutter ratio (SCR) (Adam
et al., 2004). A pixel is selected when the average SCR in time is above a certain
threshold. The SCR is defined as

SCR =
s2

c2
, (3.5)

where s is the amplitude, in this context referred to as the signal, and c represents
the clutter. A spatial estimation window is used to estimate the SCR per pixel. The
assumption is that surrounding pixels contain clutter that is equal to the clutter within
the resolution cell. The amplitude of the central pixel represents the signal. Similar
as for the amplitude dispersion, a relation can be derived between the phase standard
deviation σψ and the SCR, see Figure 3.4,

σψ ≈ tan(σψ) =
σA
µA

=
c/
√
2

s
=

1√
2 · SCR

[rad]. (3.6)

Adopting a threshold on the noise level in the phase observations of 30◦ or 0.5 rad, a
threshold for the average SCR over all images of 2 dB is obtained (Adam et al., 2004).

Disadvantage of the method is that the clutter is likely to be overestimated in urban
areas, because neighboring pixels may also contain point scatterers (Adam et al., 2004).
As a result, the method could lead to rejection of suitable PSC.

Supervised selection

Instead of data reduction by the selection of PSC based on amplitude information,
the PSC can also be determined based on external information or assumptions. By
supervised selection an area of interest within the total crop is selected, in which all
pixels are labeled as PSC. For example, an area of special interest such as a civil work is
selected (Arikan and Hanssen, 2008). Alternatively, a buffer around all roads is used to
exclude agricultural fields, which have a small likelihood to contain PS, from the data
(Humme, 2007). This procedure is also followed for the monitoring of water defense
structures (Hanssen and van Leijen, 2008a,b; van Leijen et al., 2008).
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Default selection method

The default method for the selection of Persistent Scatterer Candidates within DePSI
is the normalized amplitude dispersion. This choice is based on minimizing the false
rejection rate and the computational speed.

The normalized amplitude dispersion is based on a single pixel within a data stack,
hence, without incorporation of surrounding pixels which can influence the result, as is
the case for the Signal-to-Clutter ratio. Hence, the method also enables the detection
of point scatters with a low intensity or pixels with distributed scattering characteristics.
Hereby, the method has the potential to detect more coherent pixels.

The pixel based retrieval of the normalized amplitude dispersion is based on simple
average and standard deviation operators, and does not require the absolute calibration
of the radar images, as is the case for the amplitude thresholding approach. Therefore,
the amplitude dispersion approach is computationally very efficient.

Apart from the normalized amplitude dispersion for the selection of first and higher-
order PS, a supervised selection can be used for a detailed analysis of a certain area of
interest.

3.3.2 Amplitude calibration

The PSC selection methods based on amplitude require a radiometric calibration of
the SLC images. Differences in sensor (e.g., ERS-1 and ERS-2), radiometric sensor
stability and processing algorithm of the raw data induce the need for a radiometric
correction of the data (Laur et al., 2002). An absolute calibration is obtained by a
constant correction per acquisition (calibration constant, replica pulse power), a range
dependent correction (incidence angle, range spreading loss, antenna pattern gain) and
a correction factor that varies over the entire image (power loss). The advantage of
such an absolute calibration is that the result relates to the physical properties of the
reflections. However, implementation of absolute calibration algorithms for the various
sensors is complex and for the objective of most PSC selection methods not necessary,
as discussed in Section 3.3.1.

Therefore, a relative radiometric calibration procedure is implemented in DePSI
(Ketelaar, 2009). One SLC is randomly selected as reference and a relative calibration
factor is calculated for the remaining SLC’s. This can be compared with a histogram
equalization procedure. However, in this case not the complete images are used but
only a set of pre-selected stable scatterers (based on amplitude dispersion). The effect
of disturbing reflection differences, for example due to moisture differences of agricul-
tural fields and variations in water surface roughness, is thereby eliminated. Hence, the
calibration is based on the actual stable scatterers that are of interest. The relative
calibration factors are obtained after a least-squares adjustment and testing scheme (see
Section 5.1) and Variance Component Estimation (see Section 4.4). To avoid the acci-
dental selection of calibration pixels in water surfaces, a water mask can be applied to
exclude these surfaces from the calibration procedure.

3.3.3 PSC selection algorithm

Once the radar images are calibrated, the PS candidates are selected. A distinction is
made between the first order and higher-order PSC (see Section 3.1).
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A B

Figure 3.6: A) Initial selection of PSC using a grid to ensure a homogeneous distribution. B) Final
selection by shifted grid (dashed lines) in both range and azimuth direction, indicated by arrow, to
avoid nearby PSC. The PSC with the lowest amplitude dispersion in the shifted grid cell is selected
(black dots).

First-order PSC selection

The first-order Persistent Scatterers form the reference network and are used to estimate
the Atmospheric and Orbital Phase Screens. The first-order PS candidates should there-
fore be homogeneously distributed over the image. This is accomplished by defining a
grid which directs the distribution of PSC (Kampes and Adam, 2003), see Figure 3.6A.
The resolution of the grid is typically 200-500 m. Per grid cell the best candidate is
selected based on amplitude dispersion (see Section 3.3.1). Then, a threshold can be
applied to discard pixels with too low amplitude stability, e.g., to remove points in agricul-
tural fields or water pixels, in case no water mask is applied1. The normalized amplitude
dispersion threshold is dependent on the number of available images, but normally lies
in the range 0.2-0.3 rad. However, the choice can be made not to use a threshold and
to select a PSC for each grid cell (Samiei-Esfahany, 2008). The network will become
denser, but the number of points with instable phase will (relatively) increase. This may
cause a division of the network into several separate network patches during the spatial
ambiguity resolution (see Section 5.1.2). Although an iterative scheme is applied to con-
struct a single first-order network, separate networks could remain when the maximum
number of iterations is reached.

To avoid nearby PSC to be too close by, the grid is shifted with half the grid size in
both range and azimuth direction (Kampes and Adam, 2003), see Figure 3.6B. Per new
grid cell the PSC with the lowest amplitude dispersion is selected. Hereby, the final set
of PSC is obtained.

Higher-order PSC selection

In one of the last steps of DePSI, the first-order network is densified by evaluation of
higher-order Persistent Scatterer Candidates (PSC) (see Section 5.4). The higher-order
PSC can either be selected during the PSC selection step, or during the densification
step itself. Advantage of the first option is that the interferometric data stack only has
to be read in DePSI once. This is beneficial, because typically only a small percentage
of the total amount of pixels experience stable amplitude (and potentially stable phase)

1There is always a ’best’ pixel, therefore also when the the grid cell is fully covered by water.



3.4. Side lobe detection 45

behavior. Hence, a significant data reduction can be obtained. Advantage of the second
option is that the selection of PSC can be tuned during the actual densification process
according to the results, see Section 7.6.

In case the higher-order PSC are selected in the PSC selection step, again the nor-
malized amplitude dispersion is used as criterion. However, the threshold is increased
to select more PSC compared to the set of first-order points. A typical value for the
threshold is around 0.4-0.45. Since the normalized amplitude dispersion is biased (Fer-
retti et al., 2001), these thresholds correspond to a phase noise level of 0.5-0.7 rad
(30◦-40◦), see Figure 3.5. Here, no grid or other additional criterion is applied, hence,
simply all points below the threshold are selected. As a result, the second-order PSC
(PSC2) selected here also contain the first-order PSC (PSC1), see Appendix B. This
situation is maintained because PSC1 could be rejected during the spatial network un-
wrapping, whereas the same points could be accepted as PS2 after Atmospheric (and
Orbital) Phase Screen correction, see Sections 5.2 and 5.3.

The PSC selection criteria, such as the normalized amplitude dispersion, are in principle
applied to all image pixels in the data stack. However, point scatterers cause spurious
reflection points in the data, so-called side lobes. Since these side lobe pixels do not
contain a representative signal for their associated image location, they are detected and
removed during the PSC selection process. The side lobe detection is described in the
next section.

3.4 Side lobe detection

The spatial signature of a point scatterer in a radar image is a sinc function (Cumming
and Wong, 2005). This sinc pattern causes side lobes in the radar image, both in
azimuth and range direction, see Figure 3.7 (top image). The significance of the side
lobes is dependent on the strength of the point scatterer. The effect of the spatial
signature on the phase is that every second side lobe has the same phase as the main
lobe, whereas the phase of the intermediate side lobes is shifted with π. Hence, the
phase observations of the side lobes are not independent and therefore do not add new
information. However, due to their direct relation to the main lobe, the side lobes have
a reasonable likelihood to be selected as PSC and accepted as PS. The same applies
to the pixels directly surrounding the single pixel containing the actual point scatterer.
Especially after oversampling of the data, the main lobe will cover multiple pixels. The
surrounding pixels are denoted here as sub-main lobe pixels.

Both the side lobe and sub-main lobe pixels are unwanted in the final set of detected
PS. Ideally they are excluded in an early stage, i.e. during the PSC selection. Before
describing the algorithm applied to detect the side lobes (including the sub-main lobes),
first the effect of undetected side lobes on the deformation analysis is discussed.

3.4.1 Effect of side lobes

Because the side lobes contain the same phase information as the main lobe, the esti-
mates of parameters of interest (e.g, deformation and height) should be the same for all
lobes. However, the different location of the side lobes in the radar image introduce an
error signal in range direction due to the applied reference phases (flat Earth and DEM).
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Figure 3.7: Top) Example of a strong point scatterer with side lobes in Enkhuizen, The Netherlands
(white ellipse). The data is acquired from a descending orbit and a right-looking antenna, indicated
by the long and the short arrow, respectively. Left) Estimated residual height [m]. The side lobes
cause a height ramp due to the erroneous flat Earth reference phase applied. Right) Estimated
linear deformation rate [mm/y]. The deformation is not affected by the erroneous reference phase
of the side lobes.
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That is, the reference phases are calculated based on the radar coordinates of the side
lobes, whereas the actual measured phases are related to the main lobe (location). The
DEM reference phase, which is a function of the perpendicular baseline, does not cause
a problem, because the residual height is estimated during the DePSI analysis, correcting
the introduced error. The effect of the erroneous flat Earth reference phase, which is a
function of the parallel baseline, is however less trivial.

The flat Earth reference phase ϕfE under the far-field approximation is defined as
(Hanssen, 2001)

ϕfE =
4π

λ
B sin(θmi − α). (3.7)

The variation of the reference phase as function of the look angle is

∂ϕfE =
4π

λ
B cos(θmi − α)∂θ. (3.8)

The effect of a deviation in the reference phase ∂ϕfE on the estimated height ∂Hi (see
Eq. (2.9)) can be derived using the equality

4π

λ
B cos(θmi − α)∂θ =

−4π

λ

B cos(θmi − α)

Rmi sin(θmi )
∂Hi. (3.9)

Elimination gives
∂Hi = −Rmi sin(θmi )∂θ. (3.10)

Equations (3.9) and (3.10) show that an error in the flat Earth reference phase causes
an error in the estimated height which is independent of the baseline parameters and
radar wavelength. Moreover, due to the direct relation between the reference phase and
the height, the error in ϕfE is totally absorbed by the estimated height. Therefore, the
erroneous reference phase for side lobes does not influence the deformation parameters.
This can also be observed in the example in Figure 3.7 (bottom right image). All side
lobe pixels show the same deformation rate, whereas a clear trend in the estimated height
is visible, see Figure 3.7 (bottom left image).

The effect of side lobes on the height estimate can easier be shown by writing
Eq. (3.10) as function of slant range R. Neglecting the curvature of the Earth, the look
angle is related to the slant range by

θmi = arccos(
Hsat

Rmi
). (3.11)

The variation of the look angle in relation to the slant range is

∂θ

∂R
=

Hsat

(Rmi )2
√
1− (Hsat/Rmi )2

. (3.12)

Using

cos(θmi ) =
Hsat

Rmi
, (3.13)

this results in

∂θ =
cos(θmi )

Rmi sin(θmi )
∂R. (3.14)
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Figure 3.8: The geolocation of side lobes. The flat Earth reference phase applied at the side lobe
locations causes the side lobes to be mapped close to the location of the main lobe. The large
arrow indicates the Line of Sight (LOS). In this example the main lobe of scatterer Pi is located
at the reference surface. Because the phase of the side lobe is similar to the observed phase at the
main lobe, a similar height would be estimated for the side lobe. However, due to the reference
phase applied for a side lobe at slant range distance ∂R of the main lobe an additional height ∂H
is estimated, see Eq. (3.15). This results in the 3D positions P ′

i−1
and P ′

i+1
for side lobes at both

sides of the main lobe, respectively. These positions can be mapped to the Pi−1 and Pi+1 positions
at the reference surface, at ground range distance ∂Rgr of the position that would be obtained
without the erroneous flat Earth reference phase applied, see Eq. (3.19). Hence, side lobes that are
not removed from the set of selected pixels beforehand, are mapped close to, but not completely
at, the main lobe location. The deviation is only dependent on the incidence angle θm.

Combining Eqs. (3.10) and (3.14), the height error due to the flat Earth reference phase
as function of the slant range becomes

∂Hi = − cos(θmi )∂R. (3.15)

Hence, the height error in side lobes due to a wrong flat Earth reference phase is directly
related to the look angle and independent of other specific sensor characteristics. The
factor − cos(θmi ) relating the height error to the slant range distance between the main
lobe and the side lobe for a range of look angles is visualized in Figure 3.9A. To give
an example, the slant range spacing ∂R of Envisat of 7.8 m results in a height error of
-7.2 m per pixel. Note that this phenomenon is equal to the effect occurring for the
range sub-pixel position, see Section 4.2.4. In both cases an erroneous reference phase
causes an additional contribution in the estimated height. Only the scale, i.e. sub-pixel
versus multiple pixels in case in side lobes, is different.

The error in estimated height also influences the geolocation of the side lobe pixels.
The relation between height error and ground range distance is (see also Figure 3.8)

∂Rgr =
∂Hi

tan θmi
. (3.16)
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Figure 3.9: A) Factor between the height error and slant range distance between the main lobe and
a side lobe, due to a wrong flat Earth reference phase for the side lobe pixel, see Eq. (3.15). This
factor is only dependent on the look angle of the sensor. B) Corresponding compensation factor in
geolocation of a sidelobe, see Eq. (3.19). A factor of −1 would result in an exact mapping of the
side lobe at the main lobe location. A factor of −0.5 results in a geolocation of the side lobe at
half the ground range distance in the image geometry.

Combination of Eqs. (3.15) and (3.16) results in

∂Rgr =
− cos θmi
tan θmi

∂R, (3.17)

=
− cos2 θmi
sin θmi

∂R.

Using the relation between the slant range and ground range distance

∂R = sin θmi ∂Rgr, (3.18)

the effect on the georeferencing can be written as

∂Rgr,out = − cos2 θmi ∂Rgr,in. (3.19)

Hence, the error in flat Earth reference phase causes, via a conversion to the corre-
sponding height, a geolocation error with a factor − cos2 θmi . This relation is visualized
in Figure 3.9B. Hence, especially for small look angles, the side lobes are mapped to a
geolocation close to the main lobe location (due to the minus sign in the factor). For the
Envisat example given above, assuming a look angle of 23◦, a side lobe at a slant range
distance of 7.8 m is mapped at 1.2 m from the main lobe, see Figure 3.8. As a result,
side lobes that are not removed are georeferenced in a line with equidistant positions
near the main lobe. However, it is recommended to detect and remove the side lobes in
the early stages of the analysis.

3.4.2 Side lobe detection procedure

Within DePSI side lobes are detected following a procedure which is derived from the
approach described by Perissin (2006). It makes use of both the amplitude and the
phase information of the full stack of interferograms. Three steps can be distinguished
to detect side lobes:
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1. (Optional.) Exclusion of pixels with high amplitude dispersion (or similar selection
criterion, see Section 3.3.1). Pixels which are not selected as PS candidates do
not have to be considered further. When all pixels are considered as PSC, this
step is omitted.

2. Determination of local amplitude maxima from the remaining pixels. These local
maxima are possibly representing main lobes. The excluded pixels are labeled as
side lobes (or actually sub-main lobes).

3. Phase correlation check between nearby local maxima. The correlation is defined
as (Perissin, 2006)

ρij =
1

S
|
S∑

s=1

exp(j(ϕ0s
j − ϕ0s

i ))|. (3.20)

Here, use is made of the characteristic that the phase difference between a side
lobe and the main lobe is either 0 or pi, leading in a noise-free situation to a
correlation of 1. When applying to real data, a certain threshold is applied. In
case the correlation between the nearby maxima is higher than the threshold, the
pixel with the lowest amplitude is considered to be a side lobe. This procedure
is repeated iteratively, in range and azimuth direction, until no more side lobes
are detected. The correlation threshold is dependent on the number of images
(Perissin, 2006), however, a threshold of 0.8 appears to be an appropriate default
value.

The detection procedure works particularly well for side lobes nearby the main lobe. Side
lobes further away may remain undetected. However, due the increasing reference phase
error, the estimated heights for these side lobes will show extreme values, which can be
used to remove them from the final results (Perissin, 2006). However, this additional
threshold is not implemented in DePSI.

3.5 Network formation

After selection of the PSC, with the detected side lobes removed, the first-order reference
network is constructed. The network is meant to ensure the integrity of the analysis
across the full area analyzed. It forms the based for the Atmospheric and Orbital Phase
Screen estimation and acts as reference for the further densification with higher-order
PS.

Two network formation algorithms are implemented, a Delaunay triangulation and
a more redundant network (Kampes, 2006), see Figures 3.10C and D. As shown in
Figure 3.10C, the number of connecting arcs between the first-order PS Candidates
(PSC1) after a Delaunay triangulation is limited, especially for the PSC1 on the outer
sides of the crop. Furthermore, arcs which are too long, for example longer than the
maximum correlation length of the atmosphere, are removed. As a result, the redundancy
in the network, which is used for testing and resolving the ambiguities in the spatial
unwrapping step (Section 5.1), is limited.

To improve the redundancy, Kampes (2006) developed the second algorithm. Here,
a minimal number of connecting arcs per PSC1 is specified. The network is obtained
by equally dividing the area around each PSC1 in a certain number of partitions, and
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A B C D

Figure 3.10: A) Initial selection of PSC using a grid to ensure a homogeneous distribution, see
Section 3.3. B) Final selection by shifted grid in both range and azimuth direction (thick lines)
to avoid nearby PSC. The PSC with the lowest amplitude dispersion is selected (black dots). C)
First-order network obtained by Delaunay triangulation. D) First-order network ensuring a minimal
number of connections per PSC.

selecting the closest PSC1 in each direction in a circular order, see Figure 3.11. If no
PSC1 is found in the particular direction or when the arc length between the PSC1 is too
long, the partition is skipped. This procedure is repeated, possibly resulting in multiple
rounds, until the minimal number of connections is reached. As a result, also PSC1 at
the outer sides of the crop are well connected.

The effect of the choice of the network is evaluated by van Leijen et al. (2006b).
Here, a number of corner reflectors which are deployed by Delft University of Technol-
ogy are used for a quality assessment (Marinkovic et al., 2008). The displacements of
the corner reflectors are measured by leveling to validate the results. The results show
that the use of a more redundant network indeed increases the reliability of the results
compared to those obtained by a Delaunay triangulation. Errors in the ambiguity res-
olution can better be detected. Furthermore, the experiment shows that weak spots in
the network construction, e.g., due to large agricultural fields or water bodies, increase
the chance on undetected unwrapping errors. Therefore, the use of a network with high
redundancy is beneficial to increase the robustness.

Once the network is constructed, the differential phase observations per arc ϕij are
calculated. These are input for the temporal ambiguity resolution step, see Chapter 4.

3.6 Summary

The Delft Persistent Scatterer Interferometry (DePSI) algorithm analyzes a radar inter-
ferometric data stack to detect Persistent Scatterers (PS) and estimate their deformation
time series. In principle all available radar images acquired from the same repeat orbit
of a certain satellite are used within the analysis. A single master baseline configura-
tion is applied to form the interferograms, where the master image is selected based on
minimum overall decorrelation in the data stack.

DePSI has a modular structure, enabling a tailored processing flow according to the
characteristics of the analyzed area and the expected deformation phenomena. After
initialization of the algorithm, the first step is the selection of Persistent Scatterer Can-
didates (PSC). This selection reduces the computational load of the analysis, since only
a subset of the total number of pixels is considered further. The selection is based on
the consistency in time of the reflection amplitude of a certain pixel, which is a proxy for
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Figure 3.11: Construction of a redundant first-order PSC network. The area around each PSC
is divided in a certain number of partitions. Subsequently, a connection is created to the closest
neighboring PSC in each partition within the range of the maximum arc length (dashed circle). This
procedure is repeated clockwise until the specified number of connections are established. In this
example eight connections are created based on eight partitions.

the persistence of the phase. To select the PSC, both the normalized amplitude disper-
sion and the amplitude thresholding method are implemented in DePSI. It is concluded
that the normalized amplitude dispersion is preferable, since no absolute radiometric
calibration of the radar images is required.

The assessment of the amplitude consistency, either based on amplitude dispersion or
an alternative method, also enables a classification of the PSC. In DePSI, a classification
in first-order and higher-order PSC is made. The first-order PSC, which possess the most
consistent amplitude signals, are used to form the first-order network. This network
aims to preserve the integrity of the total area analyzed. This approach is similar to
the procedure applied for conventional geodetic techniques, where also a hierarchy of
benchmarks is used. The first-order network can be based on a Delaunay triangulation
or a dedicated algorithm to form a more redundant network. The higher redundancy of
the latter approach increases the ability to detect phase ambiguity errors and thereby
the robustness of the network.

Due to the reflection signature of a strong point scatterer, the interferometric data
stack does not only contain pixels associated with actual reflection points, but also pixels
with signals due to side lobes. Since the amplitude of these artificial points is relatively
high and stable due to the relation with the point scatterer, these pixels are often selected
as PSC. Because the phase of these PSC is dominated by a copy of the phase of the
main lobe, the side lobes have a high likelihood of being detected as a PS after phase
analysis. Therefore, a side lobe detection algorithm is applied prior to the PSC selection
to remove these pixels from the dataset.



PSI temporal ambiguity resolution 4
In DePSI the phase ambiguities in the interferometric data stack are resolved in a two-
step procedure. This chapter describes the first step, the resolution of the differential
phase ambiguities per arc in the time domain. The second step, ambiguity resolution
in space, is presented in Chapter 5. The temporal ambiguities are estimated using
a mathematical model, see Section 4.1. The mathematical model consists of both a
functional model and a stochastic model. The contents of these models in case of
temporal ambiguity resolution in DePSI are presented in Section 4.2 and Section 4.3,
respectively. The case-dependent stochastic properties of the phase observations are
estimated from the data by Variance Component Estimation (VCE), which is described
in Section 4.4. Within DePSI three techniques to estimate the phase ambiguities are
implemented: integer least-squares (ILS), integer bootstrapping (IB) (both discussed
in Section 4.5), and the ambiguity function (AF, see Section 4.6). The techniques
are described, and compared regarding the success rate of correct ambiguity resolution.
Section 4.8 contains the conclusions of this chapter.

4.1 Mathematical model

The temporal ambiguity resolution problem is formulated by a mathematical model. The
general form of the mathematical model is denoted in Gauss-Markov form by

E{y} = Ax ; D{y} = Qy (4.1)

where the underline denotes the stochasticity of the measurements and

E{.} expectation operator,
y vector of observations,
A design matrix,
x vector of unknowns,
D{.} dispersion operator,
Qy covariance matrix.

The first part of Eq. (4.1) represents the functional model, which describes the relation
between the observations and the parameters of interest. The second part denotes the
stochastic model, containing the statistical properties of the observations. The content
of both the functional and the stochastic model as applied in DePSI are described
separately in the next sections.
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4.2 Functional model

The functional model for the double-difference1 phase observations per arc between
points i and j, and master 0 and slave s, is

ϕ0s
ij

= ϕ0s
j

− ϕ0s
i
,

= −2πa0sij + ϕ0s
ij,H + ϕ0s

ij,D + ϕ0s
ij,S + ϕ0s

ij,P + ϕ0s
ij,n
, (4.2)

where a is the integer valued phase ambiguity, ϕH the phase due to the (residual) height,
ϕD the deformation phase, ϕS the phase due to the atmospheric delay, ϕP the sub-pixel
position phase and ϕ

n
noise. The functional form of each of the phase contributors is

described separately.

4.2.1 Residual height

The residual height is defined as the height difference between the reference surface and
the effective scattering center of the pixel. The reference surface is either the flat Earth,
i.e, a reference ellipsoid, or a DEM, e.g, obtained by the Shuttle Radar Topography
Mission (SRTM) (Farr et al., 2007). The functional relation between the residual height
H and the corresponding phase ϕH for a single point i is (see also Section 2.1.3)

ϕ0s
i,H =

−4π

λ

B0s
i cos(θ0i − α0s

i )

R0
i sin(θ

0
i )

Hi,

=
−4π

λ

B0s
⊥,i

R0
i sin(θ

0
i )
Hi, (4.3)

= β0s
i Hi.

Here B is the baseline between the master and slave antenna position, α the baseline
orientation, B⊥ the perpendicular baseline, θ the local incidence angle and R the slant
range. The height-to-phase conversion factor is denoted by β. The indices indicate the
dependency on the master, slave and point position. They show that the height-to-phase
conversion factor is different for each point, although the variations are very gradual,
especially when the flat Earth is taken as reference instead of a DEM.

To illustrate the dependency on the baseline orientation and the look angle (and
thereby the related incidence angle), values for β are calculated based on the Envisat
ASAR characteristics (see Table 3.1a) and a spherical Earth (R=6378137 m), see Fig-
ure 4.1. The height-to-phase factors for a baseline of 1000 m, three different look angles
and a complete cycle of baseline orientations is shown. A height of the satellite of 800 km
above the surface is assumed. The figure shows that the instrument is more sensitive
to height in case of a small look angle, hence, a large β. Furthermore, the sensitivity
is strongly dependent on the baseline orientation. Maximum sensitivity is reached when
α is equal to θ, as can also be derived from Eq. (4.3). The figure scales linearly for
different values of B.

As β is defined per point, the double-difference phase relation per arc is

ϕ0s
ij,H = β0s

j Hj − β0s
i Hi, (4.4)

1Double-differences are differences in time and space.
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Figure 4.1: Absolute height-to-phase factor β as function of baseline orientation α and look angle.
Envisat ASAR mission characteristics are used and a baseline B of 1000 m is assumed. The figure
scales linearly with baseline.

In principle both heights Hi and Hj can be estimated from the phase observations.
However, the strong correlation between the height-to-phase factors βi and βj cause an
ill-conditioned estimation problem. Therefore, one of the heights is set to zero (Hi=0)
and the height difference Hij is estimated, resulting in

ϕ0s
ij,H = β0s

j Hij . (4.5)

For each arc in the network the functional model used in the temporal ambiguity step
should be adapted. To reduce the computational effort, in DePSI the average height-
to-phase factor β over the area analyzed is used instead. Hence, the model only needs
to be constructed once. This results in

ϕ0s
ij,H = (β

0s
+∆β0s

j )Hij ,

= β
0s
Hij +∆β0s

j Hij , (4.6)

where ∆β denotes the error in the height-to-phase factor for a specific arc. Neglection
of the second term on the right hand side obviously results in an erroneous estimation.
However, due to the strong correlation between β and ∆β, the error is largely absorbed
by the estimate of the residual height Hij . Hence, the effect on the other parameters of
interest, such as deformation parameters, is minimal. Most importantly, the effect on the
ambiguity resolution is therefore limited as well. Hence, despite an error in the estimated
residual height, the ambiguities are assumed to be resolved correctly using the average β.

After the spatial ambiguity step (see Section 5.1), when all the estimated ambiguities
are tested for consistency in the spatial domain, the parameters of interest are estimated
again based on the unwrapped phase obtained. At that stage, the point-wise functional
models for residual height (Eq. (4.5)) are used instead of the average value. Hence, here
the unbiased residual height estimate is obtained.
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4.2.2 Deformation

The deformation phase is modeled as

ϕ0s
ij,D =

P∑

p=1

αp(BT)Dp, (4.7)

where Dp are the deformation parameters, P is the number of models, and αp describes
a deformation model as function of the vector BT with temporal baselines. The temporal
baseline is defined as the time difference between the master and a slave acquisition,
where a negative baseline is applied when the slave image is older than the master image,
and vice versa, hence BT = T s − T 0.

The simplest model uses one parameter to describe a linear deformation rate

α1 =
−4π

λ
BT. (4.8)

The acquisition repeat cycle and the wavelength of the signal determine the theoret-
ical maximum deformation rate that can be measured. When the deformation phase
between two subsequent acquisitions is larger than π, the true deformation cannot be
retrieved unambiguously. This corresponds to a maximum deformation of λ/4 per re-
peat interval ∆T . Hence, the maximum range of deformation rates that can be retrieved
unambiguously is (Kampes, 2006)

∆Dmax =
λ/4

∆T/365.25
, (4.9)

where ∆T is expressed in days. Using the sensor characteristics shown in Table 3.1a, the
theoretical maximum measurable line-of-sight deformation rate for Envisat is 147 mm/y.
For TerraSAR-X and ALOS, a maximum rate of 257 mm/y and 468 mm/y applies,
respectively. Whether these deformation rates can actually be estimated from the data
is dependent on the phase ambiguity resolution technique used and the noise level of
the data, see Section 4.5. Moreover, the deformation history during the considered
time span is never completely linear. In general, small deviations from the linear model
still allow the correct unwrapping of the time series. However, when the deviations
are larger, a more advanced deformation model should be applied. For instance when
the deformation profile can be characterized by two subsequent deformation regimes,
separated by an event. Examples of such an event are the start of oil or gas subtraction,
or an earthquake. Assuming linear displacement before and after the event, a model
is constructed using breakpoint B0b

T . In case the breakpoint occurs after the master
acquisition, hence B0b

T ≥ 0, the model is

α1 =
−4π

λ
[B01

T . . . B0b
T B0b

T . . . B0b
T ]T , (4.10)

α2 =
−4π

λ
[0 . . . 0 (B0b+1

T −B0b
T ) . . . (B0S

T −B0b
T )]T .

If B0b
T < 0, the model changes to

α1 =
−4π

λ
[(B01

T −B0b
T ) . . . (B0b−1

T −B0b
T ) 0 . . . 0]T ,

α2 =
−4π

λ
[B0b

T . . . B0b
T B0b

T . . . B0S
T ]T . (4.11)
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These models are continuous at the breakpoint. When based on a-priori knowledge
a discontinuity is expected, an alternative model can be used based on two completely
separate linear models. The consequence is that an extra parameter needs to be included
to account for the offset of the second part of the model. The time of the breakpoint
can either be based on a-priori knowledge of the deformation history in the area or can
be estimated from the data. The latter demands a large computational effort, because
the phase needs to be unwrapped sequentially applying B0b

T = B02
T . . . B0S−1

T to find
the best fit, see also Section 7.5.

The breakpoint model can be extended to a multiple breakpoints model. This is for
instance valuable in case the start and end of a mining activity, or oil or gas extraction,
falls within the acquisition time span. Here, three subsequent linear displacement regimes
with two breakpoints B0b1

T and B0b2
T are assumed. In case both B0b1

T ≥ 0 and B0b2
T ≥ 0,

the resulting model is (Samiei-Esfahany, 2008)

α1 =
−4π

λ
[B01

T . . . B0b1
T B0b1

T . . . B0b1
T B0b1

T . . . B0b1
T ]T ,

α2 =
−4π

λ
[0 . . . 0 (B0b1+1

T −B0b1
T ) . . . (B0b2

T −B0b1
T )

(B0b2
T −B0b1

T ) . . . (B0b2
T −B0b1

T )]T , (4.12)

α3 =
−4π

λ
[0 . . . 0 0 . . . 0 (B0b2+1

T −B0b2
T ) . . . (B0S

T −B0b2
T )]T .

If B0b1
T < 0 and B0b2

T ≥ 0, the model changes to

α1 =
−4π

λ
[(B01

T −B0b1
T ) . . . (B0b1

T −B0b1
T ) 0 . . . 0 0 . . . 0]T ,

α2 =
−4π

λ
[B0b1

T . . . B0b1
T B0b1+1

T . . . B0b2
T B0b2

T . . . B0b2
T ]T , (4.13)

α3 =
−4π

λ
[0 . . . 0 0 . . . 0 (B0b2+1

T −B0b2
T ) . . . (B0S

T −B0b2
T )]T ,

and in case both B0b1
T < 0 and B0b2

T < 0, the model is

α1 =
−4π

λ
[(B01

T −B0b1
T ) . . . (B0b1

T −B0b1
T ) 0 . . . 0 0 . . . 0]T ,

α2 =
−4π

λ
[(B0b1

T −B0b2
T ) . . . (B0b1

T −B0b2
T )

(B0b1+1
T −B0b2

T ) . . . (B0b2
T −B0b2

T ) 0 . . . 0]T , (4.14)

α3 =
−4π

λ
[B0b2

T . . . B0b2
T B0b2

T . . . B0b2
T B0b2+1

T . . . B0S
T ]T .

An alternative is the use of a higher-order polynomial

αp =
−4π

λ
BpT, for p = 1, 2, . . . (4.15)

This model provides the ability to retrieve non-linear deformation profiles with increas-
ing complexity depending on the degree. A profile with an accelerating or decelerating
deformation rate can for instance be modeled by a second degree polynomial. Further-
more, a higher-order polynomial can be an alternative for the breakpoint model, with
the advantage that the time of the event does not need to be specified or estimated.
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Because many deformation phenomena contain a seasonal effect, e.g. ground water
fluctuations and thermal dilatation of buildings, addition of a periodic model may be
useful or even a requirement for correct estimation of the phase ambiguities. This
periodic model can be used in combination with any of the deformation models presented
previously. The functional relation between the phase observations and the periodic
model is (Kampes, 2006)

ϕ = −4π

λ
(A sin(2π(BT − t0)) +A sin(2πt0)), (4.16)

where A is the amplitude and t0 is the offset of the model. A periodic repeat interval
of one year is adopted and the temporal baselines BT should be specified in years. The
second term assures that the total deformation is zero at BT=0. Unfortunately, the
model in Eq. (4.16) is not linear. However, it can be re-written to the linear model

ϕ = −4π

λ
(sin(2πBT) ·A cos(2πt0) + (cos(2πBT)− 1) · −A sin(2πt0)). (4.17)

Hence, the model is parameterized by

α1 =
−4π

λ
sin(2πBT),

α2 =
−4π

λ
(cos(2πBT)− 1), (4.18)

resulting in the estimates

D1 = A cos(2πt0),

D2 = −A sin(2πt0). (4.19)

From these terms, the amplitude and offset can be reconstructed by

A =
√

D2
1 +D2

2 (4.20)

and
t0 = −sgn(D2) · arccos(D1/A)/2π. (4.21)

This formulation ensures that the amplitude is always positive and that the offset dif-
ferentiates between signals of opposite periodicity.

Note that all deformation models described meet the constraint that the deformation
is zero when BT=0. Obviously alternative deformation models can be designed, possibly
based on a-priori knowledge about the deformation history in the area.

4.2.3 Atmosphere and noise

The double-difference phase due to the atmospheric signal delay is

ϕ0s
ij,S = (ϕ0

j,S − ϕ0
i,S)− (ϕsj,S − ϕsi,S). (4.22)

Hence, the atmospheric delay is the superposition of four states of the atmosphere. The
contributions due to the atmosphere during the master acquisition re-occur however in
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each interferometric combination. This enables the estimation of the master atmospheric
delay S (in meters) per arc

ϕ0
ij,S =

−4π

λ
S0
ij . (4.23)

The atmospheric delays during the slave acquisitions cannot be estimated functionally
because there is no redundancy in the phase observations. The slave atmospheric delay
is therefore initially treated stochastically, see Section 4.3. After the spatial ambiguity
resolution step (see Section 5.1), the phase residuals together with the estimated master
atmospheric delay are used to obtain an estimate for the differential Atmospheric Phase
Screen (APS) per interferogram (Section 5.3).

Note that the functional relation of the noise term in Eq. (4.2) is equivalent to that
of the atmosphere

ϕ0s
ij,n = (ϕ0

j,n − ϕ0
i,n)− (ϕsj,n − ϕsi,n). (4.24)

Therefore, the master atmosphere and master noise cannot be separated in this single arc
estimation. The estimate for S0

ij will therefore also contain the master noise n0
ij . Spatial

information is used during the Atmospheric Phase Screen estimation (Section 5.3) to
reduce the effect of noise in the final APS estimates.

4.2.4 Sub-pixel position

Additional phase terms in the interferometric phase observation are caused by the so-
called sub-pixel position of the effective scattering center. As discussed in Section 3.2.5,
the interferograms are corrected for the flat Earth reference phase. However, this ref-
erence phase is calculated based on the leading edge of a pixel, i.e., the near-range,
early-azimuth corner, and not at the exact location of the scattering center. As a result,
part of the reference phase is not compensated and causes a phase term in both azimuth
and range direction (Colesanti et al., 2003c; Kampes, 2006).

Azimuth sub-pixel position

The component of the reference phase in azimuth direction is caused by the difference
in squint angle ϑ of the master and slave acquisition. The squint angle is the difference
between the zero Doppler direction, i.e., perpendicular to the flight direction, and the
look direction of the antenna, see Figure 4.2A.

The azimuth sub-pixel phase is (Kampes, 2006)

ϕ0s
i,ξ =

−4π

λ
(sinϑm − sinϑs) · ξi, (4.25)

where ξ [m] is the azimuth sub-pixel position. Using the simplified relation (Bamler and
Schättler, 1993)

fDc =
−2v

λ
sinϑ, (4.26)

where fDc is the Doppler centroid frequency and v is the velocity of the satellite, the
azimuth sub-pixel position can also be expressed as

ϕ0s
i,ξ =

2π

v
(fmDc − f sDc) · ξi. (4.27)
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Figure 4.2: A) Azimuth sub-pixel position. A difference in the squint angle ϑ, or equivalent a
difference in Doppler centroid, causes a change in signal path length and thereby a phase term due
to the sub-pixel position of the point scatterer. B) Range sub-pixel position. Additional phase term
due to difference in look angle θ between the master and slave acquisitions. Illustrations adapted
from Marinkovic et al. (2008).

Here the velocity of the platform is assumed equal during both acquisitions. This equa-
tion shows that there is an interferometric phase term due to the sub-pixel position in
azimuth direction in case of different Doppler centroid frequencies. In other words, al-
though the position of the scattering center will never coincide with the leading edge of
the pixel, it is only observable in case fDc differs between master and slave. In practice,
the fDc is kept rather stable during a satellite mission, which makes the estimation of
the azimuth sub-pixel position badly conditioned. Moreover, there may be a temporal
drift in the Doppler centroid, introducing a correlation with the deformation. Part of the
signal may therefore leak to the deformation parameters. This effect occurs for example
in case of a combined ERS-1/2 dataset, because there is an offset between the average
ERS-1/2 Doppler centroids and the majority of ERS-1 images are acquired before the
ERS-2 time span.

An exception in the fDc stability is visible in the ERS-2 dataset after January 2001.
Failure of the gyroscopes on-board the platform which controlled the direction of the
antenna results in a strong variation in the fDc values. This increases the estimability of
the azimuth sub-pixel position. However, the increased decorrelation effect due to the
high Doppler values in the single master stack (see Section 2.1.3) reduced the coherence
of especially not ideal point scatterers. Therefore, often the choice is made not to include
these images in the image stack, see Section 3.2.

The variability of fDc, or equivalently ϑ, within an image is assumed to be small,
enabling the use of a single value for all arcs. Therefore, the double-difference phase
contribution due to the sub-pixel position in azimuth direction becomes

ϕ0s
ij,ξ =

2π

v
(fmDc − f sDc) · ξij . (4.28)

Equivalent to the sub-pixel position in azimuth direction, a similar effect occurs in range
direction.
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Range sub-pixel position

The range sub-pixel position phase is (Kampes, 2006)

ϕ0s
i,η =

−4π

λ
(sin θm − sin θs) · ηi, (4.29)

where η [m] is the range sub-pixel position, see also Figure 4.2B.
It can be shown (Kampes, 2006) that the sub-pixel phase can also be written as

ϕ0s
i,η =

4π

λ

B⊥

R
cos θm · ηi. (4.30)

This relation indicates that the sub-pixel position in range direction is dependent on the
perpendicular baseline B⊥, just as the residual height (Eq. (4.3)). As a result, these
two terms cannot be separated based on the phase observations. In other words, the
estimated height will have an error ∆H due to the contribution of the range sub-pixel
phase ϕ0s

i,η. The size of this error can be derived based on the following equality

ϕ0s
i,η =

4π

λ

B⊥

R
cos θm · ηi =

−4π

λ

B⊥

R sin θm
∆Hi. (4.31)

Simplification gives

∆Hi = − cos θm sin θmηi. (4.32)

Hence, the range sub-pixel position of the effective scattering center causes, due to
the error in the flat Earth reference phase, an error of the estimated height which is a
direct function of the local incidence angle. In case of Envisat, assuming oversampling
with a factor 2, the ground range spacing is about 10 m. The mean range sub-pixel
spacing is therefore 5 m. With a mean local incidence angle of 23◦, this results in a
mean height error ∆Hi of -1.8 m. This height error also affects the geolocation (see
Section 6.1). Based on the same Envisat characteristics, a mean geolocation error of
-4.2 m is obtained.

The derivations above show that in range direction it is not possible to estimate the
sub-pixel position from the phase observations, and in azimuth direction only in case
of (strongly) variable Doppler centroid values. Therefore, estimation of the sub-pixel
position based on radar intensity information is more suitable. By matching a sinc-
shaped kernel to detected point scatterers in the radar data stack, the sub-pixel position
of the scatterer can be estimated. This sub-pixel position can then be used to correct the
phase observations, and thereby the estimated height and geolocation of the scatterer.
Obviously this approach works best for strong point scatterers and not for pixels with a
more distributed scattering behavior.

4.3 Stochastic model

The stochastic model describes the statistical properties of the phase observations. The
model for the double-difference phase observations per arc ϕ0s

ij
, described by the covari-

ance matrix Qϕ, is derived from the stochastic model of the original SLC observations
ψ by error propagation (Hanssen, 2004). The SLC observations for two points i and j,
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and the corresponding covariance matrix Qψ, are denoted as

ψ =

[

ψ
i

ψ
j

]

=
[

ψ0

i
· · · ψS

i
ψ0

j
· · · ψS

j

]T

,

D{ψ} = Qψ = Qnoise +Qatmo +Qdefo, (4.33)

where S is the number of slave acquisitions and 0 indicates the master. The covariance
matrix is a superposition of contributions due to noise and model imperfections, e.g.,
atmospheric signal delay and unmodeled deformation. The noise is mainly due to scat-
tering noise, resulting in a loss of coherence, and thermal noise in the measurements,
described by the block-diagonal matrix Qnoise. The atmospheric signal delay is spatially
correlated but uncorrelated in time, i.e., provided that the acquisitions are taken at least
a few hours apart (Hanssen, 2001). Therefore, Qatmo is a block matrix with only ele-
ments on the diagonals. Because orbit errors also result in a temporal uncorrelated but
spatial correlated signal, the influence of orbit inaccuracies can be added to the atmo-
spheric term. The unmodeled deformation is assumed to be correlated in both time and
space, and results therefore in a full matrix Qdefo. Apart from the atmospheric (and
orbit) and deformation contribution, other model imperfections, e.g. due to azimuth
sub-pixel position (Samiei-Esfahany et al., 2008), can easily be added.

The full and symmetric covariance matrix Qψ has the form
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. . . σ2

ψS
j















, (4.34)

where sym indicates a symmetric matrix and (Hanssen, 2004)

• σ2
ψs

i
is the total variance of a SLC phase observation, consisting of thermal noise,

scattering noise, atmospheric and orbital signal, and unmodeled deformation.

• σψs
i
,ψs

j
is the covariance between two points at the same acquisition. This covari-

ance is mainly dependent on the atmospheric and orbital signal, plus unmodeled
deformation, and is therefore a function of the distance between the two points.

• σψs1
i
,ψ

s2
i

is the covariance at one point between two acquisitions. Here the effect
of the coherence plays a dominant role; a large coherence implies a large similar-
ity, hence a large covariance. Furthermore, unmodeled deformation increases the
covariance.

• σψs1
i
,ψ

s2
j

is the covariance between two points and two acquisitions. This term is

solely due to spatio-temporal correlation in the unmodeled deformation.
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The covariance matrix of the interferometric phases for two points (single-differences2)
is obtained by error propagation (Kampes, 2006; van Leijen et al., 2006a)

Qϕi
= ΛQψΛ

T , where Λ = I2 ⊗
[
eS −IS

]
. (4.35)

Here, I is the identity matrix, e a vector of ones, S is the number of slave acquisitions,
and ⊗ is the Kronecker product. The interferogram matrix Λ is constructed for a single
master stack as used in DePSI, hence the indices 0, s for the master and slave image,
respectively. Finally, the covariance matrix of the double-difference phase observations
per arc is

Qϕij
= ΩQϕi

ΩT , Ω =
[
−1 1

]
⊗ IS , (4.36)

where Ω is the connection matrix. Here, the connection matrix for a single arc is used.
The variances and covariances of Qϕij

are

σ2
ϕ0s

ij
=
∑

p=i,j

∑

q=0,s

σ2
ψ

q
p
− 2(σψ0

i
,ψ0

j
+ σψs

i
,ψs

j
+ σψ0

i
,ψs

i
+ σψ0

j
,ψs

j
) + 4σψ0

i
,ψs

j
, (4.37)

and

σ
ϕ

0s1
ij

,ϕ
0s2
ij

=
∑

p=i,j

σ2
ψ0

p
− 2σψ0

i
,ψ0

j
+
∑

p=i,j

(σψs1
p ,ψ

s2
p

− σψ0
p,ψ

s1
p

− σψ0
p,ψ

s2
p
)

+2(σψ0

i
,ψ

s1
j

+ σψ0

i
,ψ

s2
j

− σψs1
i
,ψ

s2
j
). (4.38)

The elements of the covariance matrix can be obtained from a model, be estimated from
the data, or a combination thereof. In case of a model, the (co-)variance of the different
contributors, e.g., noise, atmosphere and deformation, is described by a parametric
covariance function. Ketelaar (2009) proposed the following covariance model to obtain
both the variances and the covariances of the double-difference phase observations

σ
ϕ

0s1
ij

,ϕ
0s2
ij

= δs1s2(σ2

n
0s1
i

+ σ2

n
0s1
j

) + σ2
defo exp(−(

lij
Ldefo

)2) exp(−(
ts1s2

Tdefo
)2) +

δs1s2σ2
atmos1 exp(−ln(2)(

lij
Latmo

)2),

with δs1s2 =

{

1, if s1 = s2,

0, otherwise.
(4.39)

Here,

σn, σdefo, σatmo standard deviation of noise, unmodeled deformation and
atmosphere,

l, t spatial and temporal difference,
Ldefo, Tdefo spatial and temporal correlation length of unmodeled de-

formation,
Latmo correlation length of atmosphere.

The structure of the different components of the covariance model and the total covari-
ance matrix obtained is visualized in Figure 4.3. For point scatterers, the variance of

2Single-differences are differences either in time or in space.
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Figure 4.3: Example of Qnoise, Qdefo, and Qatmo, together forming the covariance matrix Qarc for
a arc between two PS, based on the model in Eq. (4.39). In the example, the interferometric
noise per PS is based on Eq. (4.40), assuming a coherence of 0.9, which results in a standard
deviation of about 20◦. The deformation model is based on a standard deviation of 3 mm, which
is transformed into a corresponding phase, and a spatial and temporal correlation length of 1600 m
and 3 years, respectively. The standard deviation of the atmospheric signal delay is simulated based
on a Gaussian distribution with a standard deviation of 1 mm. Further, an atmospheric correlation
length of 2000 m is applied. The two PS forming the arcs are assumed to be separated by 800 m.

the noise in the interferometric phase σ2
n can be derived as a function of the coherence

γ close to 1 by (Bendat and Piersol, 1986; Just and Bamler, 1994)

σ2
n =

1− γ2

2γ2
[rad2], (4.40)

The covariance model for the atmosphere is derived by Kampes (2006), by approxi-
mating the results obtained by numerical simulations based on fractal surfaces which
represent atmospheric turbulence. Alternatively, a Matern class covariance function can
be used, which has a direct relation with the spectral behavior of the turbulent atmo-
sphere (Grebenitcharsky and Hanssen, 2005).

The variances σ2
n , σ

2
defo, σ

2
atmo are dependent on external factors which are different

for each point, acquisition, e.g., atmosphere, and area, i.e., deformation behavior. There-
fore, they should be based on a-priori knowledge or estimated from the data. In DePSI
the (co-)variances are estimated, using a simplified model, by least-squares Variance
Component Estimation (VCE).
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4.4 Least-squares Variance Component Estimation (VCE)

In DePSI least-squares Variance Component Estimation (VCE) is applied to adjust the
stochastic model to the precision of the data set used, the atmospheric conditions during
the acquisitions and the deformation behavior of the area under consideration. Because
only a limited number of (co-)variance components can be estimated, the stochastic
model per arc as described by Eqs. (4.36)-(4.38) is simplified. Hence, one covariance
matrix is assumed applicable for all arcs and the full covariance matrix is transformed into
a matrix with a simplified structure. The simplification is accomplished by neglecting
the correlation between the different slave acquisitions, e.g., due to coherence, and the
cross-correlation between the two different points in different acquisitions, e.g., due to
unmodeled deformation.

Two variants of the simplified covariance matrix can be applied, dependent whether
or not the master atmospheric signal delay plus master noise (see Section 4.2.3) is
incorporated in the functional model, see Eq. (4.2), or in the stochastic model, see
Eq. (4.33). When inserted in the stochastic model (Kampes, 2006), the model of
Eq. (4.36) simplifies to

Qϕij
=

K∑

k=1

σkQk,

= (σ2
ψ0

i
+ σ2

ψ0

j
− 2σψ0

i
,ψ0

j
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(σ2
ψs

i
+ σ2

ψs
j
− 2σψs

i
,ψs

j
− 2σψ0

i
,ψs

i
− 2σψ0

j
,ψs

j
) · Cs, (4.41)

≈ (σ2
ψ0 − σψ0

i
,ψ0

j
)

︸ ︷︷ ︸

σ1

·2ES
︸ ︷︷ ︸

Q1

+

S∑

s=1

(σ2
ψs − σψs

i
,ψs

j
− 2σψ0,ψs)

︸ ︷︷ ︸

σ2...K

· 2Cs
︸︷︷︸

Q2...K

.

Here, ES is a S × S matrix of ones and Cs is a S × S with only a one on the main
diagonal at position s, where S is the number of slave acquisitions. The first component
describes the influence of the master acquisition, whereas the remaining components
represent the slaves. Therefore, in total K (co-)variance components σk are estimated,
where K (=S+1) is the number of acquisitions.

In case the master atmospheric signal delay plus noise is incorporated in the func-
tional model, the master contribution can largely be removed from the stochastic model.
This results in

Qϕij
=

S∑

s=1

σsQs,

≈
S∑

s=1

(σ2
ψs − σψs

i
,ψs

j
− 2σψ0,ψs)

︸ ︷︷ ︸

σs

· 2Cs
︸︷︷︸

Qs

. (4.42)

Hence, a diagonal matrix is obtained, with a variance term for each slave acquisition.
This variance describes the noise level of the slave image, the atmospheric signal de-
lay during the slave acquisition, and the level of coherence with respect to the master
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acquisition. By default, the latter model is used in DePSI, since in general the mas-
ter atmosphere is estimated explicitly, either using the integer least-squares or integer
bootstrapping estimator, or the ambiguity function, see Sections 4.5 and 4.6.

The (co-)variance components in Eq. (4.41) or (4.42) are estimated based on the
double-difference phase observations of arcs between the first-order PS (PS1) by least-
squares variance component estimation (VCE), see Appendix A.4. Exception is the first
estimation, hence, before the estimation of the first phase screen (see Figure 3.1), where
the observations of the PS Candidates are used, because the PS1 are not identified yet
at this stage. To obtain an unbiased estimate of the variance components, independent
phase observations for the arcs are retrieved by performing a Delaunay triangulation
between the points and removing arcs until all remaining arcs are separated (Kampes,
2006). When a maximum arc length is specified, arcs with an exceeding arc length are
omitted. Because the estimations should be based on unwrapped phase observations, the
ambiguities are resolved first using one of the techniques described in Sections 4.5-4.6.
Here, a certain deformation model is assumed. Unwrapped arcs with a low quality indi-
cator, e.g, ensemble coherence or variance factor (see Section 6.2), which are assumed
to have a higher likelihood of unwrapping errors, are removed depending on the thresh-
old set. Per remaining arc the (co-)variance components are estimated using Variance
Component Estimation, see Eq. (A.32) in Appendix A. For the model in Eq. (4.41), the
estimation is initiated with covariance matrix Qy based on σ1 = 15◦ and σk = 20◦ for
k = 2 . . .K. These initial values are based on the assumption that the total interfero-
metric phase standard deviation is below 30◦ and that the slave images have a higher
noise level due to a slight mis-registration (Kampes, 2006). The initial values are lower
compared to the values applied in (Kampes, 2006), because the assumption is made that
the PSC in the first-order network have a low phase noise. When applying the model in
Eq. (4.42), an initial value of σ1 = 30◦ is used to represent the noise level of the total
interferometric phase. Application shows that multiple iterations do not result in consid-
erable changes of the estimated values and are therefore omitted. The final estimate for
a certain variance component is obtained by the mean value of the individual estimates
per arc. In case the estimation process is badly conditioned and a negative component
is obtained, the component is set to a minimum value of 10◦ (Kampes, 2006).

The VCE procedure is repeated after correction with a certain phase screen, e.g.,
describing the influence of orbit errors (OPS), atmosphere (APS) or deformation (DPS).
Hence, the stochastic model is updated regularly, to represent the statistical properties
of the data as close as possible.

Once the stochastic model is estimated, the ambiguities of the double-difference phase
observations can be resolved. Three techniques to resolve the ambiguities are imple-
mented in DePSI: integer least-squares (ILS), integer bootstrapping (IB), and the ambi-
guity function (AF). These techniques are described in the next sections. An alternative
approach based on Bayesian estimation (Caro Cuenca et al., 2011) is not considered
here.

4.5 Integer least-squares and integer bootstrapping

Two techniques to resolve the ambiguities in the double-difference phase observations are
integer least-squares (ILS) and integer bootstrapping (IB). Because the two techniques
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are closely related, they are discussed simultaneously. The general theory of integer
least-squares is described in Appendix A.5, also addressing integer bootstrapping. Here,
the specific application of ILS and bootstrapping for PSI is discussed.

4.5.1 Integer least-squares in DePSI

Apart from application to GNSS observations (Teunissen and Kleusberg, 1998), the
integer least-squares technique can also be used for ambiguity resolution within Persis-
tent Scatterer Interferometry (PSI). The concept of integer least-squares for PSI was
introduced by Hanssen et al. (2001) and fully implemented and applied to real data by
Kampes and Hanssen (2004); Kampes (2006).

Application of ILS for PSI is not straightforward because of a lack of redundancy in
the functional model. In case of GNSS, the satellite-receiver signals are tracked in time
and the unknown ambiguities remain unchanged as long as no cycle slips occur. Hence,
multiple observations as function of time are available to estimate an ambiguity. This
is unlike the situation for PSI, where only one observation per measurement point per
acquisition is available. Furthermore, the GNSS functional model for precise applications
can considerably be aided by the availability of code observations and multi-frequency
phase observations (Teunissen and Kleusberg, 1998). These additional observations are
missing in case of PSI.

Hence, in case of PSI for every phase observation an ambiguity needs to be estimated.
As a consequence, the number of unknown parameters to be estimated is always higher
than the number of phase observations, resulting in a lack of redundancy. To circumvent
this problem, additional constraints are added to the model in the form of pseudo-
observations. The original mathematical model Eq. (A.35) is therefore changed in the
regularized model

E{
[
ϕ
b0

]

} =

[
A1 B1

A2 B2

] [
a
b

]

; D{
[
ϕ
b0

]

} =

[
Qϕ 0
0 Qb0

]

, (4.43)

where

ϕ double-difference phase observations,
b0 pseudo-observations,
A1, A2, B1, B2 design matrices,
a unknown ambiguities (integer-valued),
b unknown parameters of interest (real-valued),
Qϕ, Qb0 covariance matrices of observations and pseudo-observations.

For each parameter of interest in b a pseudo-observation is added in b0. Without a-priori
knowledge, the pseudo-observations are set to zero. Alternatively, an approximate value
can be derived by an alternative computation technique, e.g. the ambiguity function,
see Section 4.6. Or, several sets of pseudo-observations can be evaluated to find the
smallest ambiguity search space χ2, see Appendix A.5. The covariance matrix Qb0
contains a-priori chosen variances for the unknown parameters. These variances provide
soft bounds to the range of possible values for the parameters of interest.



68 Chapter 4. PSI temporal ambiguity resolution

Evaluation of the regularized model in Eq. (4.43) for the case of PSI results in

E{













ϕ01

...
ϕ0S

b0,1
...

b0,P













} =













−2π ρ011 . . . ρ01P
. . .

...
. . .

...
−2π ρ0S1 . . . ρ0SP

1
. . .

1

























a01

...
a0S

b1
...
bP













; (4.44)

D{
[
ϕ
b0

]

} =

[
Qϕ 0
0 Qb0

]

, (4.45)

where P is the number of parameters of interest involved. A standard approach comprises
the estimation of the residual height, atmosphere plus noise of the master acquisition,
and a linear deformation rate, hence three parameters. However, additional deformation
parameters can easily be added. The functional relations between the parameters of
interest and the phase observations, as described in Section 4.2, are represented by ρ.

The system of equations in Eq. (4.44) is resolved using integer least-squares in a three-
step procedure, as described in Appendix A.5: float solution estimation, ambiguity res-
olution and fixed solution estimation.

4.5.2 Float solution

The float solution is obtained by conventional least-squares estimation, thereby neglect-
ing the integer characteristic of the ambiguities a (Teunissen, 1993). The solution ĉ and
the accompanying covariance matrix Qĉ are denoted as

ĉ =

[
â

b̂

]

; Qĉ =

[
Qâ Qâb̂
Qb̂â Qb̂

]

. (4.46)

Since in the case of PSI the number of unknown parameters is equal to the number of
observations, the functional model has no redundancy. As a result, the system is exactly
determined, irrespective of the stochastic model used. Hence, both the covariance matrix
of the phase observations Qϕ and the variances set for the pseudo-observations Qb0 do
not influence the float solution.

The exact determined system causes that the float solution of the real-valued pa-
rameters bk is equal to the pseudo-observations. The float solution of the ambiguities â
is efficiently calculated by

â =
ϕ

−2π
+

P∑

p=1

ρpb0,p
2π

. (4.47)

In case the pseudo-observations b0 are set to zero, the second term on the right-hand
side vanishes.
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4.5.3 Ambiguity resolution

The integer ambiguities ǎ are obtained based on the minimization criterion (Teunissen,
1993)

ǎ = min
a∈Z

(â− a)TQ−1
â (â− a). (4.48)

To avoid a search through the complete solution space of integers Z to find the optimal
solution, a constraint χ2 on the solution space can be set. A convenient approach to
determine this constraint is to use the integer bootstrap solution, see Appendix A.5. As
a result, a hyper-ellipsoidal solution space is obtained, centered around the float solution
â and shaped by the covariance matrix Qâ.

Influence of pseudo-observations

The minimization criterion (Eq. (4.48)) shows in combination with Eq. (4.47) that the
pseudo-observations, determining the float solution â, directly influence the ambiguity
resolution. The larger the difference between the pseudo-observations and the true so-
lution, the larger the bias in the minimization criterion. This is illustrated in Figure 4.4
for the case with two ambiguities (a01 and a02). The float solution vector â1, in combi-
nation with the solution search space (dashed ellipse), is too far from the true solution
a. That is, the true solution lies outside the solution search space. This can for example
be the case when the pseudo-observations are by default set to zero, whereas in reality a
strong deformation rate or a large height difference occurs. Since the solution space was
chosen large enough to contain integer values, an erroneous solution will be selected.
With adapted pseudo-observations an alternative float solution â2 is obtained. Here, the
true solution is contained within the solution space. These adapted pseudo-observations
could be based on an earlier iteration with the integer least-squares (ILS), integer boot-
strap (IB), or ambiguity function (AF) estimator. However, a convergence to the true
solution is not guaranteed and the computational load will increase, depending on the
technique used (see Figure 4.10).

To investigate the influence of the size of the bias on the success rate of correct
ambiguity resolution, a simulation is performed. The results are shown in Figure 4.5.
Phase observations per arc are simulated with an increasing linear deformation rate and
constant pseudo-observations of zero, resulting in an increasing bias. The simulation is
based on the Envisat ASAR characteristics and the availability of 30 and 50 single master
interferograms, respectively. Both integer least-squares and integer bootstrapping are
applied to resolve the ambiguities. For comparison, also the results for the ambiguity
function (see Section 4.6) are shown. For the ambiguity function fixed bounds of the
solution space of 160 mm/y are applied. This is a large range of deformation values,
especially since the estimations are applied to arcs between PSC of maximally a few
kilometers long. However, the full capabilities of the estimators are assessed here. The
simulations are repeated for noise levels per point ranging from 20 to 50 degrees. To
assess the impact of the stochastic model of the phase observations, the success rates
are calculated both by applying the variance factors estimated by variance component
estimation (solid lines, see Section 4.4) and by applying a constant variance of 402

degrees (dashed lines).
The results show that the bias due to the pseudo-observations cause a drop of the

success rate, depending on the noise level of the data. Moreover, the estimation of the
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â1
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a01
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Figure 4.4: Example of the influence of a bias in the float solution â on the ability to retrieve the
correct solution of the ambiguity vector a, applied to a case with two ambiguities (a01 and a02). The
bias is caused by a deviation between the pseudo-observations used and the true solution. In case
of float solution â1 and the accompanying search space (dashed ellipse), the correct solution cannot
be retrieved. When pseudo-observations are used which are closer to the true solution, resulting in
â2 (together with solid ellipse), the correct solution can be found. Note that the optimal solution is
selected based on the metric of the variance matrix, i.e., not the shortest distance in the Euclidean
space.

variance components shows an improvement of the success rate in general, and a strong
decrease in the sensitivity to the bias. Also the number of interferograms affects the level
of success. Using integer least-squares, linear deformation rates up to 100 mm/y can be
resolved in case of a noise level of 20 degrees and the availability of 30 interferograms.
When the noise level increases to 40 degrees, the success rate already starts to drop at
20 mm/y. When 50 interferograms are available, the success rate remains above 0.9 in
case of a noise level of 20 degrees, until the theoretical maximum retrievable rate due to
aliasing of 147 mm/y is reached (vertical dashed line in Figure 4.5, see Section 4.2.2).
With higher noise levels, the success rate drops fast. Hence, in practical applications
with varying noise levels, the phase ambiguities resulting from large deformation rates
cannot be resolved correctly without adaption of the pseudo-observations to more real-
istic values, that is, a value closer to the true value compared to the default zero value.
In contrast, the ambiguity function shows a constant performance over the full range of
deformation rates. Hence, for larger deformation rates the ambiguity function is more
robust.

The success rates of integer bootstrapping show a decrease with respect to integer
least-squares over the full range of deformation values. Hence, the integer least-squares
technique is superior to integer bootstrapping, as is also theoretically shown in Ap-
pendix A.5.1.

The success rates of the ambiguity function clearly show the effect of aliasing beyond
147 mm/y. Since the estimator is symmetric around zero, values above ±147 mm/y
(up to 160 mm/y in this example) can also be mapped to the other side of the defor-
mation rate spectrum. As a result, in this case the success rate is halved in the region



4.5. Integer least-squares and integer bootstrapping 71

30 Interferograms

Integer least-squares

50 Interferograms

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear deformation rate [mm/y]

S
u

c
c
e

s
s
 r

a
te

 

 

20 deg

30 deg

40 deg

50 deg

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear deformation rate [mm/y]

S
u

c
c
e

s
s
 r

a
te

 

 

20 deg

30 deg

40 deg

50 deg

Integer bootstrapping

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear deformation rate [mm/y]

S
u

c
c
e

s
s
 r

a
te

 

 

20 deg

30 deg

40 deg

50 deg

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear deformation rate [mm/y]

S
u

c
c
e

s
s
 r

a
te

 

 

20 deg

30 deg

40 deg

50 deg

Ambiguity function

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear deformation rate [mm/y]

S
u

c
c
e

s
s
 r

a
te

 

 

20 deg

30 deg

40 deg

50 deg

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear deformation rate [mm/y]

S
u

c
c
e

s
s
 r

a
te

 

 

20 deg

30 deg

40 deg

50 deg

Figure 4.5: Success rate of correct ambiguity resolution as function of the true linear deformation
rate between two points spanning an arc based on simulated phase observations. Left) stack of
30 interferograms, Right) stack of 50 interferograms. The success rates by integer least-squares
(Top), integer bootstrapping (Middle), and the ambiguity function (Bottom, see Section 4.6) are
shown. For integer least-squares and the bootstrap estimator, the default pseudo-observation value
of zero for the deformation rate causes a bias in the minimization problem and thereby influences
the success rate. (Continued on next page . . . )
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Figure 4.5: (Continuation of previous page . . . ) The analysis is based on simulated phase observa-
tions with typical Envisat acquisition characteristics. Besides the increasing deformation rate, also a
residual height (σ=20 m) and master atmospheric delay and noise (σ=5 mm) is simulated at each
point, and differenced to obtain a value for the arc. Gaussian distributed noise with levels at each
point of 20◦, 30◦, 40◦ and 50◦ are applied. To avoid misinterpretation of the results due to simu-
lation of phase observations which by definition cannot be unwrapped correctly based on the model
adopted, maximum simulated values per arc of 60 m for residual height, 14 mm (quarter of wave-
length) for master atmospheric delay, and 180◦ for the noise vector are enforced. The covariance
matrix Qy is constructed based on estimated variance components (solid lines, see Section 4.4) or

a fixed standard deviation of
√
2·40◦ for all observations in the arc (dashed lines), and a covariance

matrix for the pseudo-observations Qb0 using σD=10 mm/y, σS=10 mm and σH=30 m. In case
of the ambiguity function, fixed bounds of the solution search space of ±160 mm/y (deformation
rate) and ±120 m (residual height) are adopted. The weights used in the weighted ambiguity func-
tion (solid lines) are defined as 1/σ, where σ is the standard deviation of the phase observations
as determined by the variance component estimation. The maximum resolvable deformation rate
of 147 mm/y due to aliasing is indicated by the dashed vertical line. The simulation is repeated
1000 times. For all estimators hold that these simulation results are based on a linear deformation
behavior. Strong unmodeled deformation effects will further reduce the success rates.

147±13 mm/y. Hence, the maximum allowable deformation rate for the ambiguity func-
tion should be set to the Nyquist rate, see Section 4.6. Furthermore, the success rates
of the ambiguity function show that there is a significant performance increase between
the use of 30 and 50 interferograms, and that the effect of the estimated variance com-
ponents reduces.

A comparison of the success rate of the different estimators for the most frequently
occurring deformation rates per arc between 0 and 20 mm/year is visualized in Figure 4.6.
For small data stacks, here assessed by 30 interferograms, the ILS estimator outperforms
the weighted AF estimator. However, for larger datasets the weighted AF estimator
appears to be slightly more robust. The effect of the number of available interferograms
on the success rate of correct ambiguity resolution is further assessed in Section 4.7.

Influence of covariance matrix

The minimization criterion for ambiguity resolution (Eq. (4.48)) shows that, apart from
the float solution â and thereby the pseudo-observations, the second factor influencing
the solution of the ambiguities is the metric spanned by the covariance matrix of the
ambiguities Qâ. This matrix can be obtained by the solution of a partitioned model
(Teunissen, 2000a; Kampes, 2006)

Qâ = (A
T
Q−1
y A)−1, (4.49)

where A = P⊥
BA; P

⊥
B = I − B(BTQ−1

y B)−1BTQ−1
y . However, due to the uniquely

determined system of equations as applies here, the covariance matrix is also obtained
efficiently, without matrix inversions, by

Qâ =
1

4π2
(Qϕ +B1Qb0B

T
1 ). (4.50)

This relation clearly illustrates the influence of both the precision of the phase obser-
vations and the variance of the pseudo-observations. Regardless the form of Qϕ, i.e.,
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Figure 4.6: Success rate of correct ambiguity resolution as function of the true linear deformation
rate between two points spanning an arc based on simulated phase observations, obtained by the
integer least-squares (ILS), integer bootstrap (IB), and weighted ambiguity function (AFw) estima-
tor. The figure shows the same results as visualized in Figure 4.5, focusing on the most frequently
occurring deformation rates per arc between 0 and 20 mm/year. Left) stack of 30 interferograms,
Right) stack of 50 interferograms. For a relatively low number of interferograms of 30, the ILS
technique clearly outperforms the other estimators. When the number of interferograms increases,
the ambiguity function performs slightly better, see also Figure 4.10.

a diagonal matrix or a full matrix, (additional) correlation between the ambiguities is
introduced by the variances of the pseudo-observations. To assess the effect of these
variances on the success rate of correct ambiguity resolution, a simulation is performed.
The results are shown in Figure 4.7. Both the ILS and the IB estimator are applied to
a series of simulated phase observations per arc. A range of standard deviations for the
(pseudo-) observations is applied. The results show that the highest success rates are
obtained when the standard deviations of the pseudo-observations have equivalent values
as the actual parameters of interest, hence around 10 mm/y for the deformation rate
and 30 m for the residual height. Hence, a balanced tuning of the standard deviations
is required for optimal results.

LAMBDA method

Based on â and Qâ the ambiguities are resolved using either the integer least-squares
or integer bootstrap estimator, see Appendix A.5. In both cases the Least-squares
AMBiguity Decorrelation Adjustment (LAMBDA) method is applied (Teunissen, 1993).
The LAMBDA method performs a decorrelation of the ambiguities, which results in
a more efficient shape of the ambiguity search space. Application of the LAMBDA
method leads to the paradoxical situation that the correlation between the ambiguities
that was introduced by the variances of the pseudo-observations (see Eq. (4.50)) is
reduced again by the decorrelation operation of the LAMBDA method. However, it is
shown that the decorrelation does not influence the ILS solution (Teunissen (1994), see
also Eq. (A.55)), only the speed of computation. In case of integer bootstrapping, the
decorrelation matrix Z does have an influence on the solution. Whereas the original
float solution â only contains values between -0.5 and 0.5 (assuming zero values for
the pseudo-observations, see Eq. (4.47)), the decorrelated solution ẑ = ZT â better
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Figure 4.7: Success rate of correct ambiguity resolution for a range of variances for the (pseudo-)
observations based on simulated phase observations. Both the integer least-squares (left column)
and the integer bootstrap estimator (right column) are evaluated. The simulation is based on
simulated phase observations per arc between two points assuming 30 interferograms and typical
Envisat acquisition characteristics. Gaussian distributed noise with levels at each point of 30◦ (top
row), 40◦ (middle row), and 50◦ (bottom row) are applied. The phase observations are based
on simulated deformation rates (σ=5 mm/y), residual height (σ=20 m), and master atmospheric
delay and noise (σ=5 mm) at each point, and differenced to obtain a value for the arc. To avoid
misinterpretation of the results due to simulation of phase observations which by definition cannot be
unwrapped correctly based on the model adopted, maximum simulated values per arc of 20 mm/y for
deformation rate, 60 m for residual height, 14 mm (quarter of wavelength) for master atmospheric
delay, and 180◦ for the noise vector are enforced. The covariance matrix Qy is constructed applying

a diagonal matrix Qϕ with σn ranging from
√
2·20◦ to

√
2·50◦, and a covariance matrix for the

pseudo-observations Qb0 using σD=1, 10, or 100 mm/y, σS = 10 mm and σH=3, 30, or 300 m,
respectively. The simulation is repeated 1000 times. The simulations show that the highest success
rates are obtained when the standard deviations of the pseudo-observations have equivalent values
as the actual parameters of interest, hence around 10 mm/y for the deformation rate and 30 m for
the residual height. The noise level σn has only a marginal effect.
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reflects the functional relation between the ambiguities. This improves the performance
of the conditional rounding as applied in the integer bootstrap estimator significantly.
Actually, the success rate of integer bootstrapping for PSI without decorrelation is so
poor, that application of LAMBDA is a strict requirement. Once the best estimate for
the decorrelated ambiguities ž is obtained, either by ILS or IB, the solution of the original
ambiguities is retrieved by ǎ = Z−T ž.

To improve the success rate of correct integer estimation in case of integer bootstrap-
ping, within DePSI an adapted estimation scheme is applied. Besides the default solu-
tion, N alternative solutions are determined by sequentially selecting the second-closest
integer solution for the particular ambiguity n = 1 . . .N (Kampes, 2006). Hence, N +1
solutions are obtained. The solution with the smallest criterion χ2 is finally selected as
the best estimate.

The success rate of correct integer estimation can be improved by adding hard
constraints on the range of values for the real-valued parameters involved, see Bianchi
(2003). Hence, maximum allowed deformation parameters and height values can be
specified. However, these thresholds prevent the potential detection of points with
extreme values. Therefore, within DePSI the choice is made to work without constraints.
Possible errors in the estimated ambiguities are detected and resolved in the spatial
ambiguity resolution step, see Section 5.1.

4.5.4 Fixed solution

After resolving the phase ambiguities ǎ, the fixed solution is obtained by

b̌ = (BT1 Q
−1
ϕ B1)

−1BT1 Q
−1
ϕ ϕ̌, (4.51)

where the unwrapped phase is
ϕ̌ = ϕ−A1ǎ. (4.52)

Note that this relation is different compared to the standard approach indicated in
Eq. (A.44). The reason is that by using Eq. (4.51) the pseudo-observations and variances
no longer affect the solution, as is desirable. Hence, the pseudo-values are only used to
enable the resolution of the ambiguities.

4.5.5 Precision indicator: a-posteriori variance factor

An indicator of the precision of the ILS or bootstrap solution is the a-posteriori variance
factor

σ2
b =

ěTQ−1
ϕ ě

q
, (4.53)

where q is the redundancy and ě is the vector of residuals

ě = ϕ̌−B1b̌. (4.54)

An estimated variance factor of 1.0 indicates that the vc-matrix Qϕ gives a good de-
scription of the dispersion of the phase observations, whereas a factor of 2.0 shows that
the stochastic model applied was a factor two too optimistic. Hence, this scaling factor
indicates the noise level (plus potential unmodeled deformation) of each arc, which can
be used as a selection criterion or weighting factor, see Section 6.2.
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4.6 Ambiguity function

As an alternative to the stochastic ambiguity resolution techniques, i.e., integer least-
squares and bootstrapping, also deterministic approaches can be used. Within radar
interferometric time series analysis techniques often the ambiguity function (AF) is used,
also known as the periodogram (Ferretti et al., 2000, 2001). Due to the irregular
sampling of the data along the baseline domains (e.g., perpendicular baseline for height,
see Section 4.2), the solution of the function cannot be obtained directly. A discrete
search in the solution space is required to find the optimal solution.

This ambiguity function technique is, apart from the integer least-squares and inte-
ger bootstrap estimator, this ambiguity function technique is implemented in DePSI to
resolve the phase ambiguities. The AF estimator searches the solution space to find the
parameters b that maximize the temporal coherence |γ|

argmax
b

|γ| =
∣
∣
∣
1

S

S∑

s=1

exp(j(ϕ0s
obs

− ϕ0s
model(b)))

∣
∣
∣,

=
∣
∣
∣
1

S

S∑

s=1

exp(j(e0s(b)))
∣
∣
∣, (4.55)

where ϕ0s
obs

is the observed phase and ϕ0s
model(b) is the modeled phase based on the pa-

rameters b. The difference is equal to the residual e0s(b). Apart from the unweighted
ambiguity function, also a weighted ambiguity function can be applied. Here, each resid-
ual is weighted with a certain factor to account for the (relative) precision of the phase
observations. The weights can for example be based on the results from Variance Com-
ponent Estimation, see Section 4.4. The weighted ambiguity function (AFw) estimator
is denoted by

argmax
b

|γ| =
∣
∣
∣

1
∑
W 0s

S∑

s=1

W 0s exp(j(e0s(b)))
∣
∣
∣, (4.56)

where W 0s are the weights per interferogram. In Figure 4.8 a graphical representation
of both the unweighted and the weighted ambiguity function is given. It shows how the
final solution is obtained by maximizing the coherence.

The phasor with maximal coherence is retrieved by a discrete search to find the
optimal modeled phase ϕ0s

model(b). The functional models that relate the parameters b,
e.g., height and linear deformation, to the modeled phase are described in Section 4.2.
In principle any number of parameters can be used. However, with each extra parameter
an additional dimension of the solution space is created, increasing the computational
load considerably. Therefore, in practice the number of parameters is limited to two
(height and linear deformation), although also the estimation of an additional periodic
signal is proposed (Colesanti et al., 2003d).

The practical implementation of the ambiguity function technique is based on the
solution bounds bmax and the solution step size ∆b. The solution bounds limit the
possible solutions (see Figure 4.5C and D), whereas the step size specifies the resolution
of the discrete search. This is illustrated for the case of one parameter in Figure 4.9. The
values of the solution bounds are a trade-off between the chance to miss the solution due
to too tight bounds, and the chance of selection of a wrong solution with coincidental
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Figure 4.8: Graphical representation of the ambiguity function estimator for a time series in the
complex domain. In case of the unweighted ambiguity function (in black) each residual of the time
series is represented by a phasor of length 1. The angle of each phasor with respect to the real axis
is equal to the residual phase plus the master acquisition contribution (atmosphere and noise). The
parameters that maximize the coherence of the unweighted ambiguity function γu ∈ [0, 1], indicated
by the thick black arrow, are selected as the final solution. When the weighted ambiguity function is
applied (in gray), the individual residuals are weighted based on a precision estimate per acquisition,
resulting in an alternative solution with coherence γw. The phase of the solution phasor ϕS is the
estimate of the phase due to the noise and atmospheric signal delay during the master acquisition.

small residues in case the solution space is large. Moreover, the bounds directly influence
the computation time. This also applies for the step size. Here, a trade-off is made
between the chance to miss the correct coherence maximum, and the computation time.
Part of this is circumvented by an iterative approach, where the initial coarse settings for
the bounds and step size are refined after a first indication of the solution is obtained.

In DePSI the initial settings for the solution bounds are specified manually per anal-
ysis taking the characteristics (i.e., expected residual height differences and deformation
phenomena) of the area into account. The initial step size ∆b0 is based on the char-
acteristics of the radar data stack, that is, the range of temporal and perpendicular
baselines. That is, the step size should be set such that the sampling of the modeled
phase ϕmodel is high enough to detect the solution with maximum coherence. This is
achieved by sampling the full phase cycle of 2π with at least two times the maximum
absolute value of the functional model ρp (which is a function of a particular baseline,
i.e., perpendicular or temporal baseline), see the functional model in Eq. (4.44). Hereby,
the opportunity is ensured that for at least one evaluated model by the ambiguity func-
tion all phasors of the residuals within the time series are enclosed within the same half
of the complex domain, see the example in Figure 4.8. Within DePSI a sampling factor
of five is applied to ensure the identification of the global coherence maximum in case
of increasing noise level, hence

∆bp,0 = max
s=1...S

2π

5|ρ0sp | for p = 1 . . . P, (4.57)

where P is the number of parameters and S is the number of slave images. Hence,
this relation applies to all parameters bp independently, for example, the residual height
and deformation parameters. Therefore, for each parameter an individual step size is
obtained. Using these initial step sizes, at least once all residual phasors are contained



78 Chapter 4. PSI temporal ambiguity resolution

 

 

wrapped phase

unwrapped phase

solution bounds

solution steps

7π

5π

3π

π

-π

-3π

-5π

-7π

Baseline

P
h
a
se

Figure 4.9: Illustration of the discrete search in the solution space by the ambiguity function
technique for a one-dimensional case. The solution bounds and solution steps are set a-priori.

within the same half space of the complex solution domain, as shown in Figure 4.9.
Hereby, a rough indication of the maximum coherence vector is obtained. Subsequently,
the solution bounds are reduced to values around the initial solution and the initial step
sizes ∆bp,0 are iteratively decreased with a factor 10. The iteration is repeated until the
desired amount of significant numbers for the parameters of interest b are obtained.

Although the phase ambiguities a are not estimated implicitly by the ambiguity
function, they can be derived from the unwrapped phase which is obtained based on
the estimated parameters. Hence, regardless the ambiguity resolution method applied
(i.e., integer least-squares, integer bootstrap estimator, or the ambiguity function) a
solution for the ambiguities ǎij per arc is obtained. These ambiguities are used in the
spatial ambiguity resolution step to detect unwrapping errors and to unwrap the data
with respect to a single reference PS, see Section 5.1. The performance of the different
ambiguity resolution techniques described is assessed in the next section.

4.7 Comparison of ambiguity resolution techniques

Three techniques to estimate the ambiguities in the phase time series per arc are de-
scribed in the previous sections: integer least-squares (ILS), integer bootstrapping (IB),
and the ambiguity function (AF). The performance of these techniques is assessed based
on simulations using the Envisat mission characteristics.

The impact of the noise level of the phase observations in relation to the deformation
rate is visualized in Figure 4.5. Here, Envisat data sets of 30 and 50 single master
interferograms are simulated. The figure shows that the success rate of correct ambiguity
resolution using the ambiguity function is only dependent on the noise level of the
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data. This in contrast to the performance of the integer least-squares (ILS) and integer
bootstrap (IB) estimator, where there is a drop in the success rate due to an increasing
bias with respect to the pseudo-observations used. These results are based on a fixed
value of zero for the pseudo-observations used in the ILS and IB techniques. When
the pseudo-observations would be adapted to the particular range of deformation values
based on an earlier iteration with the ILS, IB or AF estimator, the current zero-based
success rates would shift towards these values. However, a convergence to the true
solution is not guaranteed. Alternatively, a set of pre-defined pseudo-observations could
be evaluated. Whether these pre-defined values or an iterative scheme would be applied,
the computational load will increase.

When the pseudo-observations are not adapted, there is a high likelihood that the
ambiguities of scatterers with large deformation rates will not be estimated correctly
by the ILS or IB estimator. However, the estimates are arc based. Hence, when the
deformation phenomenon has a smooth spatial character, e.g., a large subsidence bowl,
multiple arcs are involved to capture the total range of deformation. Hence, the defor-
mation per arc may be sufficiently small to be estimated correctly. The success rates for
the most frequently occurring deformation rates between 0 and 20 mm/year are shown
in more detail in Figure 4.6. The figure shows that for small deformation rates the ILS
estimator outperforms the AF estimator in case of small data stacks, but that the success
rates fall in the same range when the size of the stack increases. Since the results by the
ILS estimator are accompanied by a solid quality description based on the stochastics of
the phase observations (see Appendix A.5), which enables a propagation of the errors,
the ILS estimator is preferred.

The success rates in Figure 4.5 further show that the estimation of the variance com-
ponents (solid lines) strongly improves the performance of the ILS and IB estimator.
Hence, a proper description of the quality of the phase observations by the stochas-
tic model is of importance for the ambiguity resolution. Here, only a single variance
per interferogram is used. Refinement of the stochastic model by the incorporation of
covariances between the interferograms may further improve the results. However, a
significant part of this covariance is already introduced in the covariance matrix Qâ of
the float solution by the variances of the pseudo-observations in combination with the
baseline configuration in the functional model, see Eq. (4.50). Hence, only deviations
of the true covariances with respect to this model could potentially contribute to an
improvement of the success rates. This is especially relevant for pixels characterized by
distributed scattering. For example seasonal effects related to vegetation growth and
snow cover can affect the covariance between interferograms. For point scatterers, this
effect is more limited. Another strategy to improve the result is to use local variance
matrices instead of a single matrix for the whole area (Caro Cuenca et al., 2011), thereby
accounting for the local noise characteristics.

Also the performance of the ambiguity function can be improved by assigning weights
to the phase observations. Here, the weights are defined as 1/σ, where σ is the standard
deviation of the phase observations as determined by the variance component estima-
tion. However, whereas a significant improvement in the success rate is obtained in case
of a stack of 30 interferograms, with 50 interferograms the improvement is insignificant.
It appears that the success rate using 50 interferograms is overall higher compared to
the use of 30 interferograms. The weights used here do not contribute to a further
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improvement. However, alternative weights may further improve the performance. More
research is required to determine the optimal weighting scheme for the ambiguity func-
tion.

The relation between the noise level in the phase observations, the number of interfero-
grams in the single master image stack, and the required computation time is visualized
in Figure 4.10. In the simulation a fixed deformation rate per arc of 4 mm/y is applied,
together with a simulated residual height (σ=20 m) and master atmospheric delay and
noise (σ=5 mm) at both points of the arc. The simulation of phase values is based on a
fixed length of the satellite mission. As a result, the average sampling rate of acquisitions
in time is higher in case of a large number acquisition. Alternatively, a fixed sampling
rate could have been adopted, resulting in a changing acquisition time span. However,
the approach applied here gives a better representation of the true situation of variable
dataset sizes available for a certain mission.

The success rates show that for small noise levels (up to 30 degrees) all estimators
perform equally well, regardless the number of available interferograms. With a noise
level of 40 degrees (equivalent to ∼3 mm) the success rates start to drop, especially for
the lowest analyzed number of 30 interferograms. When applying the ambiguity function,
there appears to be a large difference between the use of 30 and 50 interferograms in
case of a noise level of 50 degrees. Hence, besides the noise level, for the ambiguity
function the number of interferograms has a significant impact on the success rate.
When comparing the weighted and unweighted ambiguity function, the effect of the
variance based weights applied here appears to be limited.

The success rates of the ILS estimator decrease with an increasing number of inter-
ferograms, especially for high noise levels. This is partly caused by a specified maximum
number of ambiguity solutions that are evaluated in the solution space during the search
for the optimal solution. This maximum number is set to S3, where S is the number of
interferograms (Kampes, 2006). Hence, the number is dependent on the size of the data
stack. Especially when the noise level in the phase observations is high, the bootstrap
solution, which is used to set the boundary, may cause a large solution space. Without
a maximum number of evaluations, the computational load would become too large for
practical application. When the maximum number of evaluations is reached, the ILS
search is aborted and the bootstrap solution is adopted. Since the success rate of the
IB solution is always equal or smaller than that of the ILS solution (Teunissen, 1999a),
the ILS success rate drops due to the aborted search. Figure 4.10 shows that indeed the
success rates of the ILS and IB estimator converge to the same level with an increasing
number of interferograms.

The bootstrap estimator shows an increasing success rate with an increasing number
of interferograms. This is caused by a denser sampling of the interferograms over the time
span adopted for the simulations. Hence, when 30 interferometric phases are simulated,
the average time span between successive acquisitions may be multiple months, whereas
in case of 110 interferograms this time span is shorter (up to the 35 day repeat cycle of
the Envisat mission). With a denser sampling, the signal can be better reconstructed by
the successive rounding applied by the bootstrap estimator, resulting in a higher success
rate.

Overall, the success rates show that a certain ambiguity resolution technique is
preferable based on the number of available interferograms. Since in PSI analysis scat-
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Figure 4.10: Success rate of correct ambiguity resolution based on simulated phase observations
(left column) and normalized computation time (right column) related to the number of available
interferograms. The integer least-squares (ILS) estimator, the integer bootstrap (IB) estimator,
the unweighted ambiguity function (AFu), and the weighted ambiguity function (AFw) are applied.
A fixed deformation rate of 4 mm/y per arc is simulated. Moreover, a residual height (σ=20 m)
and master atmospheric delay and noise (σ=5 mm) is simulated at each point, and differenced to
obtain a value for the arc. The remaining simulation settings are the same as applied in Figure 4.5.
Gaussian distributed noise with levels at each point of 20◦, 30◦, 40◦ and 50◦ is used. The simulation
is repeated 10000 times. The computation times are normalized with respect to the time required
by the ILS estimator for a data stack of 30 interferograms with a point noise of 20◦, resulting in a
computation time factor for each case. The computation times are plotted on a logarithmic scale.
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terers with various noise levels will occur, the worst-case scenario of 50 degree noise
shown here is the best benchmark. Based on the success rates it follows that for small
data stacks the ILS estimator is superior, whereas for stacks larger than 50 single master
interferograms the ambiguity function performs better. However, in this assessment the
computation time required to estimate the solution is not incorporated.

The computation times required for the various ambiguity estimators are also indicated
in Figure 4.10. The computation times are normalized with respect to the time required
by the ILS estimator in case of a data stack of 30 interferograms and a noise level
of 20 degrees, resulting in a computation time factor for each case. Although these
computation time factors are strongly dependent on the efficiency of the implementation
and should therefore not be interpreted in a strict sense, the relative differences between
the various techniques show the dependency of the results according to the characteristics
of the data set, such as noise level and the number of available interferograms.

The figure shows the increase of the computation time with increasing number of
interferograms. For low noise levels the estimators require equivalent computation times.
When the noise increases, the computation times remain more or less the same for the
bootstrap estimator and the ambiguity function. However, with a growing noise level
the computation time of the ILS estimator becomes increasingly large. This increase in
computation time is caused by enlarged ambiguity search spaces, which are based on
the IB solution. The increasing noise level deteriorates the bootstrap solutions obtained
and thereby increases the size of the search spaces. For example, a dataset with 110
interferograms and a noise level of 50 degrees takes about 200 times longer to com-
pute the ILS solution compared to the IB or ambiguity function solution. Application
of the ILS estimator is therefore infeasible from a practical point of view for large data
stacks and/or large image crops. Therefore, often the bootstrap estimator is used in-
stead. However, since the success rate of the ILS estimator is higher, a speed-up of the
current ILS implementation is desirable. Various algorithmic improvements are feasible.
For example, alternative approaches are based on a more flexible construction of the
ambiguity search space χ2. Giorgi et al. (2008); Teunissen et al. (2010) presented the
Search and Shrink approach and Park and Teunissen (2003); Buist (2007) introduced
the Expansion approach. Furthermore, Jazaeri et al. (2012) demonstrated the trans-
formation of the integer least-squares problem into the equivalent closest lattice point
problem. Application of lattice point search techniques appears to result in a reduction
of the computation time compared to the LAMBDA approach. It is recommended to
evaluate the approaches mentioned for application in PSI.

The computation times to estimate the ambiguities are based on a model with the
residual height and a linear deformation rate. In case of the ILS and IB estimator, the
model can easily be extended with more advanced deformation models, e.g., a seasonal
signal, without a significant increase of the computation time, see Section 7.9. This
does however not apply for the ambiguity function. For each additional parameter in
the model an extra dimension in the solution space needs to be evaluated. For example,
common solution bounds and solution steps applied for the residual height and defor-
mation rate (see Figure 4.9) results in a solution space of 102 solutions each, giving 104

solutions to evaluate. With two additional parameters for a seasonal signal, the solution
space increases to 108 unique solutions. Such a solution space is infeasible from a prac-
tical point of view. Therefore, when multiple deformation parameters are incorporated
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in the model, the bootstrap estimator is adopted instead. Although the IB estimator has
a lower success rate compared to the ILS estimator, the significant shorter computation
time is decisive. In Chapter 7 the application of the bootstrap estimator for various
deformation models is demonstrated.

After the estimation of the phase ambiguities per arc in time by either the integer least-
squares estimator, the bootstrap estimator, or the ambiguity function, the ambiguities
can be integrated in space to connect all PSC with respect to a common reference point.
A process based on a geodetic testing scheme is applied to detect ambiguity errors and
incoherent PSC. The process is described in Chapter 5.

4.8 Summary

The key step for PSI is the estimation of the integer-valued phase ambiguities. Within
DePSI a two-step approach is applied, where the ambiguities are resolved in time first,
followed by a controlled integration in space using a testing scheme (see Chapter 5).

The temporal ambiguity resolution is based on a parameterization within the frame-
work of a mathematical model. The mathematical model consists of a functional model,
describing the relation between the observations and the unknown parameters, and a
stochastic model, describing the statistical properties of the observations.

The functional model contains the topographic height error, the master atmosphere,
and a deformation model, which minimally contains a linear deformation rate. The model
can be extended with a periodic term, a higher-order polynomial and/or breakpoints in
case of a sudden event during the acquisition time span. The deformation model can
be selected based on a-priori knowledge of the expected deformation phenomenon or
derived from the data using a testing scheme, see Chapter 7.

The stochastic model is estimated from the data by variance component estimation
(VCE). The model is updated after each estimation and removal of a phase screen,
describing an error source such as the atmospheric signal delay or orbit errors. This
iterative approach ensures that the stochastic model describes the stochastics of the
observations as close as possible.

To estimate the phase ambiguities, three estimators are implemented in DePSI:
integer least-squares (ILS), integer bootstrapping (IB) and the ambiguity function (AF).
For a low number of available single master interferograms the ILS estimator outperforms
the alternative techniques, whereas for a high number of interferograms an equivalent
success rate is obtained by the ambiguity function. However, the ambiguity function
is better able to correctly estimate the phase ambiguities in case of large deformation
rates. Another advantage of the ambiguity function, together with the IB estimator, is
the computation speed. Yet, the computation time increases significantly when more
model parameters would be inserted. The ILS and IB estimators have the advantage that
model parameters can easily be added, without additional processing time. Moreover,
by using ILS the stochastic properties of the observations can be fully incorporated in
the processing flow, enabling a proper error propagation. Further improvement of the
efficiency of the ILS algorithms used will further strengthen the benefits of this estimator.
Until then, often the IB estimator is used to exploit both the computation speed and
the ability to add additional parameters to the model.

Drawback of the current approach within DePSI is the dependency on a single
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master stack. As a result, the coherence of the interferometric phases used is not
optimal. Interferometric combinations with shorter baselines, both in the temporal and
perpendicular baseline domain, will reduce the noise and thereby increase the information
content of the data. The hypothesis is that this will also improve the correct estimation
of the phase ambiguities. Moreover, flexibility in baseline configuration will improve the
possibilities to account for (seasonal) surface scattering effects, such as vegetation grow
and snow cover.



PSI spatial ambiguity resolution and phase screen estimation 5
This chapter describes the processing steps acting in the spatial domain, in particular the
spatial ambiguity resolution and the estimation of error sources at an area-wide scale,
known as phase screens. Based on the estimated differential phase ambiguities per arc in
the first-order network (see Chapter 4), the ambiguities are integrated in space, thereby
applying a testing scheme to detect errors in the ambiguities and incoherent PSC, see
Section 5.1. Based on the resolved first-order network, the phase screens due to orbit
errors (Section 5.2) and atmospheric signal delay (Section 5.3) are estimated. After each
phase screen correction the stochastic model is updated using Variance Component Es-
timation, as described in Section 4.4, and the network construction is repeated, resulting
in an iterative scheme. Section 5.4 presents the final densification of PS by temporal
ambiguity resolution between higher-order PSC and first order network PS, and a test
of the estimated ambiguities to detect inconsistencies. The chapter is summarized in
Section 5.5.

5.1 Spatial ambiguity resolution

Once the phase ambiguities ǎij are resolved in time per arc of the first-order network
(see Chapter 4), a two-dimensional spatial ambiguity resolution step is required to obtain
unwrapped phases with respect to a single reference PS. If all ambiguities would be
resolved correctly in time, this can be accomplished by a simple spatial integration along
an arbitrary path. However, possible errors in the temporal ambiguity resolution prevent
such a straightforward approach. Therefore, the ambiguity errors or phase unwrapping
errors should be accounted for first.

To remove possible errors in the estimated ambiguities, often a two-step approach is
taken (Ferretti et al., 2000). First, a certain threshold is applied to exclude arcs from the
data set with a low quality indication, e.g., temporal coherence, see Eq. (4.55). Regard-
less whether a low coherence indicates a high noise level or strong model imperfections,
e.g., unmodeled deformation (see also Section 6.2.1), in both cases the ambiguity reso-
lution is assumed to be unreliable and the arc is therefore excluded. As a consequence,
coherent points with strong unmodeled deformation behavior will be excluded from the
first-order network. This may lead to an unnecessary weakening of the network. The
second step in the general approach is the actual ambiguity resolution, where often a
sparse Minimum Cost Flow (MCF) algorithm is used (Costantini and Rosen, 1999; Fer-
retti et al., 2000). Here, the solution for a consistent network is selected that minimizes
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the number of ambiguities that needs to be adapted, hence an L1-norm. Because a
solution can always be found, there is no guarantee that the solution obtained is indeed
correct.

To account for the drawbacks of the procedure described above, in DePSI a different
approach is used, denoted as the testing of the ambiguities approach.

5.1.1 Testing of the ambiguities

The testing of the ambiguities approach is based on geodetic testing theory, see Sec-
tion A, and shows strong resemblance with the method used in Kampes (2006). The
basic concept is that errors in the network, which can either be wrongly unwrapped arcs
or incoherent points, are detected and removed from the network. However, whereas in
Kampes (2006) the testing is based on the estimated parameters of interest, in DePSI
the testing is applied to the ambiguities directly (van Leijen et al., 2006a). Testing of the
ambiguities has two major advantages. First, different functional and stochastic models
can be applied for the temporal ambiguity resolution of different arcs. Although the
parameters of interest estimated by these different models will result in closing errors in
the network, the estimated ambiguities (and equivalently, the unwrapped phases) need
to be consistent, enabling testing. This approach also enables the concept of sequen-
tial testing of deformation models, see Sections 7.5 and 7.6. The second advantage of
testing of the ambiguities is the ability of ambiguity adaptation. Once the arcs with
the largest unwrapping errors and the incoherent points are removed from the network,
ambiguity errors in the remaining arcs are adapted to fit the network. The advantage is
that when only one or a few ambiguities in a certain arc are wrong, e.g., due to strong
atmospheric effects during some acquisitions or significant unmodeled deformation, the
arc is not removed from the network, but adapted. This way the strength of the network
is largely preserved. The condition for correct adaptation of the ambiguities is that the
majority of connecting arcs to a PS are resolved correctly. Because a least-squares ap-
proach is used, hence providing an L2-norm, it is more likely that the biggest ambiguity
errors are resolved first in the iterative adaptation scheme, compared to the sequence of
adjustment using the L1-norm in case of a MCF approach.

Testing of the ambiguities is possible provided that the constructed double-difference
phase observations per arc in the network ϕij are not re-wrapped to the [−π,+π〉
interval. This can be seen as follows. Assume a small network of three points forming a
triangle, see Figure 5.1A. Each point has a true (unwrapped) interferometric phase φi,
composed of an unknown ambiguity ai and an observed wrapped phase ϕi. Constructing
the double-differences results in

φ12 = (2πa2 + ϕ2)− (2πa1 + ϕ1) = 2π(a2 − a1) + (ϕ2 − ϕ1) = 2πa12 + ϕ12,

φ23 = (2πa3 + ϕ3)− (2πa2 + ϕ2) = 2π(a3 − a2) + (ϕ3 − ϕ2) = 2πa23 + ϕ23,

φ31 = (2πa1 + ϕ1)− (2πa3 + ϕ3) = 2π(a1 − a3) + (ϕ1 − ϕ3) = 2πa31 + ϕ31,

(5.1)

where φij are the true unwrapped double-difference phases. Note that ϕij ∈ [−2π,+2π〉.
By definition, the unwrapped phases φij form a closed loop. As the ϕij are not re-
wrapped, their sum is also zero. Consequently, the ambiguities a form a closed loop as
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A

2πa1 + ϕ1

2πa2 + ϕ2

2πa3 + ϕ3 B

−2π
−π
0
π

2π

t

φ
ϕ, not re-wrapped
ϕ, re-wrapped

Figure 5.1: A) Triangle of interferometric phases, composed by an unknown ambiguity a and an
observed wrapped phase ϕ. B) The effect of not re-wrapping double-difference phase observations
for a single arc. Both the gray and black dots can be used to estimate the final unwrapped time series
indicated by the open dots. However, the advantage of using the not re-wrapped phase observations
(gray dots) is that the estimated ambiguities can be used for the detection of ambiguity errors, since
they should form closed loops within the network.

well, which can be used in the testing. Wrapping of the double-difference phases ϕij
will result in phase residues, and the closure of the ambiguities no longer holds. Hence,
re-wrapping of phases results in a loss of information for this application. This is in con-
tradiction to branch-cut unwrapping methods, where the phase residues are the prime
source of information. The consequence of not re-wrapping the double-difference phases
is illustrated in Figure 5.1B for a single time series. Since the temporal ambiguity reso-
lution techniques (see Chapter 4) estimate the number of integer ambiguities required
to minimize the residues between the observations and the model, both the re-wrapped
and not re-wrapped differential phase observations per arc can be used to estimate the
final unwrapped time series. However, the advantage of using the not re-wrapped phase
observations is that the estimated ambiguities can be used for the detection of ambiguity
errors, since they should form closed loops within the network.

The complete algorithm of spatial ambiguity resolution consists of a number of steps,
which are described in detail in the next section.

5.1.2 Spatial ambiguity resolution algorithm

The spatial ambiguity resolution algorithm as implemented in DePSI consists of six steps:

1. Removal of arcs with a low quality indication (optional). In case the ambiguity
function is used for the temporal ambiguity resolution, the temporal coherence es-
timator is used as indicator (Eq. (4.55)), whereas in case of integer least-squares or
bootstrapping, the variance factor is used, see Eq. (4.53). The specified threshold
determines the influence of this step. By applying a very low (temporal coher-
ence) or high (variance factor) threshold, all arcs are accepted and the detection
of errors is completely based on the testing scheme. The advantage is that PSC
with a non-linear deformation behavior, resulting in a low quality indication, are
potentially maintained in the network.

2. Removal of arcs and PSC that cannot be tested. In case a quality threshold
on the arcs is applied, some PSC may only be connected by one or two arcs. Since
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the correctness of single-arc connected PSC and the corresponding arc cannot be
tested, these PSC and arcs are removed. Although errors can be detected when a
PSC is connected by two arcs, the erroneous arc cannot be identified. A minimum
number of three connecting arcs per PSC is therefore required to identify errors.
Hence, untestable arcs are removed.

3. Selection of the reference PSC. After spatial ambiguity resolution, all PSC
are referred to a single reference PSC. The choice of the reference PSC is in
principle arbitrary. That is, without loss of information a simple transformation
can be applied to change the reference PSC. However, since the noise of the
reference PSC propagates to the time series of each PSC, interpretation of the
time series becomes easier when a reference PSC is chosen with limited (scattering)
noise, i.e., the most coherent PSC. In case the ambiguity function is applied to
resolve the temporal ambiguities, one of the PSC constructing the arc with highest
temporal coherence is chosen as reference. When ILS or bootstrapping is applied,
a PSC from the arc with lowest variance factor identifies the reference. The choice
of the reference PSC based on coherence does not indicate anything about the
physical characteristics of the reference PSC, e.g., height or deformation. To ease
interpretation of the final results, it is beneficial to adopt a reference point for
which can be assumed that it experiences no deformation. Although such a non-
deforming reference PS can be adopted at the end of the full processing chain, it
can also be specified at this stage. However, in that case the coordinates of the
PS need to be known, e.g., based on earlier results.

4. Testing of the ambiguities. An iterative testing scheme is applied to test the
ambiguities in a spatial network. The testing scheme is an adapted form of the
Detection, Identification and Adaption (DIA) procedure (Teunissen, 2000b), see
Section A.2. Within the testing procedure the integer nature of the ambiguities is
neglected, hence, the ambiguities are assumed to be real values. The mathematical
model used per interferogram is















ǎ0s12
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ǎ0s2
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, D{ǎ} = Qy, (5.2)

where the ambiguity estimates per arc ǎ0sij are the observations, the design matrix
describes the network relation between the arcs and the PSC, and the ambiguities
per PSC ǎ0si are the unknowns. The reference point is set by removing the corre-
sponding ambiguity from the vector of unknowns and corresponding column from
the design matrix. The dispersion of the ambiguities is set by Qy, which should in
this case be interpreted as the inverse of a weight matrix. Since the ambiguities
per arc were resolved individually, they are assumed uncorrelated, causing Qy to
be diagonal. Both a weighted as well as an unweighted estimator can be applied.
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In case of an unweighted approach, Qy is set equal to the identity matrix. When
weighting is applied, the diagonal elements are dependent on the temporal ambi-
guity resolution approach used. In case the of ILS or bootstrapping, the matrix is
set based on the a-posteriori variance factors σ2

b

Qy = diag(σ2
b,ij). (5.3)

When the ambiguity function is used, the weight matrix is defined by the ensemble
coherence estimator |γij | as

Qy = diag(1− |γij |). (5.4)

To give even more weight to high precision arcs compared to those with lower pre-
cision, also the element-wise squared version ofQy can be applied as weight matrix.

Three alternative hypothesis Ha are tested in the iterative DIA procedure, the
Overall Model Test (OMT), the test per observation (w-test) and the point test,
respectively. The OMT is used to detect a model error. The test statistic T 0s

q=m−n

per interferogram is, see Appendix A

T 0s
q=m−n = êT0Q

−1
y ê0, (A.18)

where q is the degree of freedom, m is the number of observations, n is the number
of unknowns, and ê0 are the residues of the model under the null hypothesis H0.
Instead of testing the ambiguities per interferogram, the whole data stack is tested
simultaneously. This is done by summation of the test statistics T 0s of the different
interferograms, leading to

reject H0 if
S∑

s=1

T 0s
q=m−n > kαq=m−n

(5.5)

Because the ambiguities of the arcs form a closing network when all errors are
identified and adapted, hence, the residuals become zero, the OMT should only
be accepted when the test statistic is zero. Hence, the critical value kαq=m−n

is
set to zero (or actually a very small number to allow numerical errors), in order to
continue testing until all the errors are identified.

For the identification of errors in the ambiguities both a one-dimensional test per
observation (T q=1) and a point test per PSC (T q=p) is performed. The alternative
hypothesis of the observation test for a certain arc is specified by

Cq=1 =
[
0 · · · 0 1 0 · · · 0

]T
. (A.19)

Because the ambiguities are assumed to be uncorrelated, the test statistic can be
calculated by

T q=1 =
ê20
σ2
ê

. (A.20)
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In case of the point test, the alternative hypothesis is specified by

Cq=p =







0 · · · 0 1 0 · · · 0
0 · · · 1 0 0 · · · 0
0 · · · 0 0 1 · · · 0
· · · · · · · · · · · · · · · · · · · · ·







T

, (5.6)

where the ones correspond to ambiguities of arcs that are connected to the point
that is tested. Therefore, the dimension of the test may differ per point. Since
one of the connecting arcs is required as reference, see e.g., Verhoef (1997), the
dimension p is equal to the number of connecting arcs minus one. Using Cq=p,
the test statistic is calculated by

T q = êT0Q
−1
y Cq(C

T
q Q

−1
y Qê0Q

−1
y Cq)

−1CqQ
−1
y ê0. (A.12)

Using the B-method of testing (see Section A.2), the critical values for the ob-
servation and point tests are determined. By comparing the test quotients, the
most significant model error is identified. Again the sum of the test statistics of
all interferograms is taken, providing a test for the full data stack. The alternative
hypothesis Ha is selected which has the largest test quotient, hence

accept Ha for which max
g,h

(
∑S

s=1 T
0s
qg=1

kαq=1

,

∑S
s=1 T

0s
qh=p

kαq=p

)

. (5.7)

where g = 1 . . .G, h = 1 . . .H indicate the G observation tests and H point tests,
respectively. Since the test statistics are only used to identify the most significant
error, the absolute values of the kα are of no importance, only the relative ratio,
which is accounted for by the B-method of testing. Once the most significant
error is identified, the model is adapted by removing an arc or all connecting arcs
of a point from the observation vector, and removing the corresponding rows and
columns from the design matrix.

In principle this procedure can be repeated until the OMT is accepted and all errors
are removed from the network. However, since the testing procedure is applied
to the full data stack, also arcs with only one or a few ambiguity errors would be
removed. This results in a weakening of the network. To prevent this, the testing
procedure is stopped at a certain stage, where the assumption is made that the
largest unwrapping errors and all incoherent points are removed from the network.
This stop-criterion is

stop if max
g

(
∑S

s=1 T
0s
qg=1

kαq=1

)

< 1. (5.8)

This is the only moment where the actual values of Qy and kα, or better, the
ratio thereof, are of importance. Tests on real data show that in case of a Qy with
variances of one in combination with kα1

= 0.1 give satisfying results.

In case the testing scheme results in separate networks, a new reference PSC is
automatically selected for the sub-network. However, multiple reference points are
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undesirable. Therefore, the whole procedure of creating a first-order network is
in this case repeated, see module 3 in Figure 3.1. When incoherent points have
been removed in the first iteration, the new network will have a different geome-
try, potentially leading to a single network in the second iteration. This procedure
is repeated maximum 5 times. When still not a single network is obtained, the
remainder of the analysis will be based on the separate networks and the corre-
sponding reference points.

After the testing procedure is aborted, the remaining ambiguity errors are adapted
instead by a procedure denoted as adaptation of the ambiguities.

5. Adaptation of the ambiguities. Once the largest unwrapping errors and all inco-
herent points are assumed to be removed from the network by the testing scheme,
the remaining ambiguity errors are adapted. Instead of applying corrections to
the full data stack, here the adaptation is performed per interferogram. Again
an iterative scheme is applied, where the Overall Model Test (OMT) is used to
check whether a closing network is obtained. The mathematical model used in the
last iteration of the testing scheme Eq. (5.2) is used for this adaptation scheme.
Hence, also the same weight matrix is applied. When a misclosure is detected by
the OMT, the ambiguity with the largest residue is corrected by subtracting the
rounded value of the residue. When the residues become small and the rounded
value of the largest residue is zero, the ambiguity is corrected by adding or sub-
tracting one. This procedure is repeated until all misclosures are adapted. To
prevent a continuous loop, the maximum number of fixes is set to the number of
arcs involved. Therefore, complete adaptation of all misclosures is likely, but not
guaranteed.

This step is similar to the approach taken in Kampes (2006). There, a sparse
Minimum Cost Flow (MCF) algorithm (Costantini and Rosen, 1999; Eineder and
Holzner, 1999) is used to correct remaining misclosures after the testing scheme.
Although the minimization criterion is different compared to the approach taken
here, the results are expected to be similar. The advantage of the adaptation
approach is that the same mathematical framework can be used as applied in the
testing scheme. Moreover, the L2-norm resulting from the least-squares method
applied indicates that the sequence of adaptation is better ordered. This should
increase the chance of convergence to the correct solution.

After correction of all the misclosures the remaining solution after solving the
mathematical model (Eq. (5.2)) represents the ambiguities with respect to the
reference PS. Based on these ambiguities the phase can be unwrapped and the
parameters of interest can be estimated.

6. Calculation of the unwrapped phase and the parameters of interest. Based
on the ambiguities with respect to the reference PS ǎ0s0i , the unwrapped phase φ0s

0i
is calculated by

φ0s

0i
= 2π · ǎ0s0i + ϕ0s

0i
, (5.9)

for slave s = 1 . . . S. When calculating the double-difference phase ϕ0s
0i

from the
original interferometric phases of the two PS, the phase should not be re-wrapped,
to be consistent with the resolved ambiguities.
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Once the phases of the first-order network are unwrapped, the parameters of in-
terest with respect to the reference PS (see Step 3) are estimated. The same
functional relations as described in Section 4.2 about the functional models for
temporal ambiguity resolution can be used. The choice of the parameters to esti-
mate is completely independent of the parameters used in the temporal ambiguity
resolution step. Since the atmospheric signal is estimated from the residuals ob-
tained here, the parameters, e.g., describing the deformation, should model the
remaining phase contributions as good as possible. Therefore, a more sophisticated
deformation model can be used here, for example to estimate a periodic signal.
The functional model should minimally contain the atmospheric signal delay of
the master acquisition S0

0i, the relative height H0i, and the linear deformation
rate D0i, hence

E{φms
0i

} = β0s
0iH0i + α0s

1 D0i +
−4π

λ
S0
0i, (5.10)

where α0s
1 specifies the linear deformation model (Eq. (4.8)) and β0s

0i is the height-
to-phase conversion factor (Eq. (4.3)). Here, β0s

0i is taken as the mean of the two
height-to-phase factors involved, i.e., β0s

0i = (β0s
0 +β0s

i )/2. Additional terms, e.g.,
to estimate extra deformation parameters and sub-pixel position, can easily be
added to the model. Unlike for the temporal ambiguity resolution, were different
functional models can be applied, here the same model is used for the whole data
set.

The stochastic model used to estimate the parameters of interest is the one ob-
tained previously by Variance Component Estimation, see Section 4.4. However,
since the noise level per PS will differ, after least-squares estimation the residuals
are used to scale the covariance matrix with the a-posteriori variance factor σ̂2

(see also Eq. (4.53)) to obtain a unique covariance matrix per PS. The variance
factor is estimated by

σ̂2 =
êTQ−1

y ê

m− n
. (5.11)

A value of 1.0 indicates that the covariance matrix describes the dispersion of the
observations well, whereas a value larger than 1.0 shows that the stochastic model
is chosen too optimistic, and vice versa. By scaling the covariance matrix with σ̂2

a matrix consistent with the variance level of the PS is obtained. Although the
estimates of the parameters of interest, that is Ĥ, D̂, Ŝ and possible additional
parameters, do not change, the covariance matrix of the estimated parameters Qx̂
does change and becomes unique for each PS. Note that the quality description
obtained is based on the assumption that the phase was unwrapped correctly,
hence the ambiguity resolution had a success rate of one. The variance factor σ̂2

also acts as a quality or coherence indicator, see also Section 6.2.

After completion of the spatial ambiguity resolution step the interferometric phases are
unwrapped with respect to the reference PS and the parameters of interest are estimated.
The residuals which remain after the parameter estimation are used to estimate the
orbital trend (optional) and the atmospheric signal delay per interferogram in the form
of phase screens.
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5.2 Orbital Phase Screen estimation

Inaccuracies in the orbit parameters cause a trend in the interferometric phases (Small
et al., 1993; Hanssen, 2001; Kohlhase et al., 2003; Bähr and Hanssen, 2012). This phase
contribution may result in two effects (or a combination thereof). First, the orbital signal
induces an additional noise term in the double-difference phase observations of the arcs
in the network since the orbit errors are different for each acquisition. Although this
additional noise term may be relatively small at the short distances of the arcs, it may
hamper the reliable resolution of the phase ambiguities and thereby possibly the detection
of the PS involved, see Section 4.2. Second, a correlation of the orbital inaccuracies
with time or baseline causes a bias in the estimated parameters of interest, such as
deformation and height. Both effects can be reduced by estimating and removing a
two-dimensional phase trend per interferogram, denoted as the Orbital Phase Screen
(OPS).

Because the orbital phase trend and the atmospheric signal both show a strong
correlation in space, the phase contributors could be estimated and predicted simultane-
ously using a trend-signal-noise model , which will be presented in Section 5.3. However,
the possible correlation of the orbit inaccuracies with time or baseline, and the resulting
bias in the parameters of interest, induce an error in the phase residuals which are used
as input for the trend-signal-noise model. Hence, the bias is not corrected using this
approach. This problem of correlation in time occurs in case of data sets acquired by the
Envisat satellite, where a spatial trend in the estimated linear deformation rates remains
in the final result (Ketelaar, 2009). Marinkovic and Larsen (2014) discovered that this
trend is caused by a drift of the local oscillator of the ASAR instrument on-board the
Envisat. Their empirical derived correction model can now be used to correct the trend
in the Envisat data deterministically.

To circumvent this problem of possible correlation of the orbit error with other parame-
ters, the spatial trend due to the orbital inaccuracies, possibly together with a trend in
the atmospheric signal, is estimated independently per interferogram based on the un-
wrapped phase of the first-order network, see module 4 in Figure 3.1. The mathematical
model used has the form
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where φ0s
0i

is the unwrapped phase in the interferogram with slave s at PS1 i, with line
and pixel coordinates li and pi, respectively. The two-dimensional OPS is described
by the slopes in azimuth and range direction Taz and Tr, and an offset Toff. Here, all
unwrapped phases are given equal variance σ2

φ and are assumed uncorrelated, indicated
by the identity matrix I. An estimation and testing scheme is applied to remove outliers
(see Appendix A), until a good fit is reached. Once the OPS is estimated for all interfer-
ograms, the original interferometric phases are corrected and the first-order network is
constructed again. Due to the reduction of the noise induced by the orbital inaccuracies,



94 Chapter 5. PSI spatial ambiguity resolution and phase screen estimation

more PS1 may now be detected, resulting in a stronger network.

Trends in the data with a physical origin other than orbit errors or atmospheric signal
delay, e.g., deformation, may also be (partly) remove by the OPS. Hence, this optional
processing step should be applied with care. For example, when a certain subsidence
bowl is present in the area, the total area analyzed should be large enough to estimate
the OPS properly. When this is the case, the testing scheme ensures that the subsidence
bowl does not influence the trend estimated.

An alternative approach is to estimate the relative orbit errors before the PSI analysis
based on a network of interferograms (Bähr and Hanssen, 2012; Bähr, 2013). Here,
interferograms forming a redundant network within the temporal-perpendicular baseline
domain are used to estimate the relative orbit errors of the individual acquisitions. Both
wrapped and spatially unwrapped interferograms can be used. The advantage of this
approach is that a redundancy in the estimation problem is obtained. However, the
approach requires a large computational effort.

5.3 Atmospheric Phase Screen estimation

For deformation analysis, as performed with DePSI, the atmospheric signal delay during
each acquisition induces an additional noise term. Therefore, the atmospheric signal
per interferogram, known as the Atmospheric Phase Screen (APS), is estimated and
removed from the phase observations. Two steps can be identified to estimate the
APS (Ferretti et al., 2000). First, the atmospheric signal delay is separated from the
other phase contributions for each PS in the first order network. Second, the isolated
atmospheric delays are used to predict a full image APS. Both steps are described in
more detail in Sections 5.3.1 and 5.3.2.

5.3.1 Atmospheric phase separation

After ambiguity resolution the unwrapped phase observations per PS in the first-order
network are obtained, see Section 5.1.2. Due to a lack of redundancy1 in the functional
model (Eq. (5.10)), the APS per acquisition cannot be estimated directly from these
phase observations. Only the atmospheric delay (plus noise) of the master acquisition
is estimated functionally, whereas the influence of the slave acquisitions is modeled
stochastically. As a consequence, the phase contribution of the slave APS is contained
in the residuals e. Besides the slave APS ϕS, the residuals also hold the unmodeled
part of the deformation ϕuD. The remaining phase is regarded as noise of the slave
acquisition ϕn. This is denoted by

e0s0i = ϕs0i,S + ϕ0s
0i,uD + ϕs0i,n, (5.13)

where the lower zero indicates the reference PS. To separate the slave atmospheric delay
from the unmodeled deformation and the noise, the spatio-temporal characteristics of
the different parameters are used. The atmospheric delay is correlated in space but
uncorrelated in time, i.e., provided that the acquisitions are taken at least a few hours
apart (Hanssen, 2001). On the contrary, the unmodeled deformation is assumed to be

1The redundancy is the number of observations compared to the number of unknown parameters.
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correlated in time (apart from the possible correlation in space). Finally, the noise is
regarded to be uncorrelated both in time and in space. These different correlations are
used to separate the different phase contributions in a two-step procedure. First, the
temporal correlation of the unmodeled deformation is used to isolate this phase term
from the atmospheric delay phase and noise. A deterministic low-pass filter is applied
to the residuals of each PS by a convolution in time with a triangular, rectangular or
Gaussian window. The window is used to assign weights to the observations in the time
series. The weights, which have original values ranging from zero to one, are normalized
to obtain a sum of weights of one, resulting in an unbiased estimate.

The length of the window is specified by the user in years. This length is a trade-off
between the smoothing strength of the filter and the temporal sampling density of the
radar acquisitions. When the length is too short, the number of samples within the win-
dow may be too low for a profound separation of the deformation. Especially when the
temporal sampling of the acquisitions is irregular, a relatively long window length may
be required. However, with increasing window length the smoothing effect of the filter
becomes stronger, possibly removing any detail in the unmodeled deformation signal.
Due to this trade-off, the optimal window length is dependent on the repeat cycle of the
satellite. For example, for a dataset acquired by the Envisat satellite with a repeat orbit
of 35 days a window length of 1 year is appropriate, whereas for TerraSAR-X (11-day
orbit) 0.3 year would be sufficient. The effective filter length is reduced at the far ends
of the radar time series. To avoid this, instead of a fixed length a minimum number
of samples could be taken to determine the filter. However, in case of an irregular
sampling of the acquisitions this would lead to a inhomogeneous filter along the time
span. To circumvent this problem and to adapt the filter to the signal involved, a new
approach based on least-squares prediction in the time domain has been designed and
evaluated (Liu, 2012). Here, the stochastic properties of the different signals involved
are estimated from the data by variograms. However, this approach is not implemented
in DePSI yet.

Once the unmodeled deformation is calculated per PS and extracted from the residuals,
the remaining residual phase only contains the atmospheric phase of the slave acquisi-
tions and noise. Since the atmosphere is spatially correlated and the noise is assumed
uncorrelated, a spatial low-pass filter is applied to separate the atmosphere from the
noise. The low-pass filtering is performed by Best Linear Unbiased Prediction (BLUP)
(or Kriging), taking the spatial correlation of the atmospheric signals into account. Since
the same algorithm can be used for the spatial prediction of the full scene APS, both
steps are combined and described in the next section.

5.3.2 Atmospheric phase prediction

The full scene APS per interferogram is obtained by Best Linear Unbiased Prediction
(BLUP) (see Appendix A.3) based on the residual phase observations at the first-order
PS. Since an interferometric APS is the superposition of the common master and a slave
acquisition, two strategies are possible. Either the master and slave APS are predicted
individually and combined afterwards to obtain the interferometric APS, or the interfer-
ometric combinations are formed first, followed by the prediction step. Advantage of the
first option is the consistency that is obtained by using the same APS for the master
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acquisition in all interferometric APS. However, this consistency has the drawback of
systematic effects in the final results in case of prediction errors. Therefore, in DePSI
the second option is applied, i.e., prediction of the interferometric APS directly. The
bias due to errors in the master atmospheric signal are thereby assumed to be reduced.

The interferometric residuals at the first-order PS, which act as input for the APS
prediction, are composed by

e0s0i = ϕ0
0i,S − ϕs0i,S + ϕ0

0i,n − ϕs0i,n, (5.14)

= ϕ0s
0i,S + ϕ0s

0i,n

The residuals in Eq. (5.14) for i = 1 . . . I are used as observations in the mathematical
model for the prediction. The so-called trend-signal-noise model has the form (see
Eq. (A.23))
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where az, r are the radar image coordinates in azimuth and range direction, respectively,
converted to coordinates in meters by the approximate ground spacing of the pixels. The
parameters Soff, Saz and Sr model a trend in the APS. This predictor is therefore equal
to Universal Kriging. The covariance matrices Qs and Qn describe the covariance of
the atmospheric signal s and noise n, respectively. When the orbital trend is estimated
separately beforehand, see Section 5.2, the effect of the trend model in Eq. (5.15)
cancels.

The mathematical model for the prediction of the atmospheric signal (plus trend)
ϕ
S+

at the yet unobserved points (i.e., higher-order candidate points) p = 1 . . . P is
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(5.16)
The least-squares predictor of the atmospheric signal is (see Eq. (A.27))

ŷ
0
= A0x̂+Qs0sQ

−1
y (y −Ax̂), (5.17)

with the estimator for the trend

x̂ = (ATQ−1
y A)−1ATQ−1

y y. (5.18)
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The covariance matrix Qs0s describes the stochastic relation of the atmospheric signal
between the observed and yet unobserved PS.

To construct the required covariance matrices Qs, Qn and Qs0s, a covariance func-
tion is needed for both the atmospheric signal and the noise. Assuming second-order
stationary, a covariance function C can be derived from a variogram. In DePSI this
covariance function is determined indirectly by estimating a variogram from the data.
Assuming second-order stationary, the relation between the estimated variogram V (d)
and the required covariance function C(d), which are functions of the distance d [m], is
(Journel and Huijbregts, 1978)

V (d) = C(0)− C(d). (5.19)

Although in a strict sense the trend in the mathematical model Eq. (5.15) suggests that
the atmospheric signal (plus possible orbital error) may not be second-order stationary,
for short distances this effect can be neglected, allowing the use of the relation above.
Moreover, when the orbital trend was removed beforehand (see Section 5.2), the likeli-
hood of second-order stationarity increases.

The variogram is estimated by fitting an a-priori model, e.g., an exponential or Gaussian
model, to an empirical variogram. The fit is based on a least-squares curve fitting
approach, after initialization with approximate values. Alternative to a exponential or
Gaussian model, a more advanced model could be applied, e.g., based on the Matern
class of models (Grebenitcharsky and Hanssen, 2005). By addition of a nugget to
the model, that is, an additional term at d = 0, both the atmospheric and the noise
contribution can be parameterized simultaneously. Due to the nugget the prediction
at a PS will not coincide with the observation, thereby separating the noise from the
atmospheric signal. The precision of the prediction error is described by the covariance
matrix (see also Section A.3)

Qǫ̂0 = Qy0 −Qs0sQ
−1
y Qss0 + (A0 −Qs0sQ

−1
y A)Qx̂(A0 −Qs0sQ

−1
y A)T . (A.30)

The practical implementation of BLUP to estimate the APS is based on a division of
the full crop in grid cells. For each grid cell the closest PS of the first-order network
is selected and used as observation. By default the closest 100 PS within a maximum
distance of 10 km are used.

Once the Atmospheric Phase Screens per interferogram are estimated, the interferometric
phases of the first-order and higher-order PSC are corrected and the first-order network
algorithm is repeated, see Figure 3.1. Because the noise level of PSC which were rejected
before the atmospheric correction will also be reduced, the number of detected PS in the
new first-order network may increase. Thereby a stronger network is obtained. Because
the Variance Component Estimation step is also repeated, the stochastic model used for
the estimations is updated as well. Based on the new first-order network, higher-order
PS are detected within the densification step.

5.4 PS densification

After ambiguity resolution and parameter estimation of the first-order PS (PS1), the
second-order PS (PS2) are detected. This detection is based on densification of the
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Figure 5.2: A) Detection of second-order PS (small dots) by densification of the first-order network
(big dots). A grid is used for computational benefits and to enable distribution of the computations
among multiple processors. The second-order PS can either be connected to the closest or a specified
number of closest PS1. The latter enables a test on the estimated ambiguities. B) Situation in case
the second-order PS is connected to the three closest PS1.

first-order network. Equivalent to the algorithm applied to construct the network, in
the densification also a temporal ambiguity resolution and a spatial ambiguity resolution
step can be distinguished.

The temporal ambiguity resolution is based on double-difference phase observations be-
tween second-order Persistent Scatterer Candidates (PSC2) and close-by PS1, see also
Appendix B. To enable testing in the spatial ambiguity step, each PSC2 is connected
to a specified number of closest PS1. The default value is three connections. When
no testing is desired, only one connection is applied. The full set of PSC2 is subdi-
vided by a grid, see Figure 5.2A. Per grid cell the closest PS1 are determined, which
reduces the computational load. Moreover, the grid enables a potential distribution of
the computations in the densification step among multiple processors.

The same techniques for temporal ambiguity resolution can be used as previously
applied for the first-order network, i.e., integer least-squares, bootstrapping or the am-
biguity function, see Chapter 4. Again the ambiguity resolution is based on a functional
model, which can be chosen independently of the one used for the first-order network.
Because the arcs in the densification step are in general shorter compared to those in
the first-order network, the likelihood of a complicated deformation behavior is smaller.
Therefore, a more simplistic model, i.e., with less parameters, may be chosen for the
densification.

After the ambiguities are resolved in time, in case three connections are applied, a
test is performed to decide whether a PSC2 is indeed a coherent point. Provided that
the double-difference phase observations are not re-wrapped (see Section 5.1.1), the
ambiguities of the three resolved arcs should form a closed network. Using Figure 5.2B,
the following equality is derived for PSC2 i

ǎ1i = ǎ12 + ǎ2i = ǎ13 + ǎ3i (5.20)

where ǎ12, ǎ13 are estimated and tested within the first-order network. Based on the as-
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sumption that the ambiguities of coherent points can be unwrapped correctly, the PSC2
is accepted when the equality holds for all ambiguities in the time series. Alternatively,
a less strict criterion can be applied by requiring that minimally two out of three solu-
tions are equal. The criteria above apply to the full time series. However, application
to real data shows that sometimes only one or a few ambiguities per time series show
deviating values (Samiei-Esfahany, 2008). Therefore an alternative approach has been
implemented, based on the most occurring solution for a certain ambiguity, hence the
mode solution.

For the mode solution more than three connections can be used, increasing the
reliability of the final solution. When N is the number of occurrences of a certain
ambiguity mode value and Nconn is the total number of connections, an ambiguity
within the time series of a certain PS is accepted when

accept â0sij if N >

⌊
Nconn

2

⌋

, (5.21)

where ⌊.⌋ indicates the floor of the value. Hence, when three connecting arcs are used,
at least two solutions should be the same for each ambiguity in the time series. When
for example four arcs are used, this increases to a minimum of three similar estimates.

Once the ambiguities are resolved (and tested), the unwrapped phase of the detected
PS2 φ0s

0i
is calculated with respect to the reference PS by

φ0s

0i
= 2π(ǎ0s01 + ǎ0s1i ) + ϕ0s

i
− ϕ0s

0
, (5.22)

for slave s = 1 . . . S, where ϕ0s
i
, ϕ0s

0
are the interferometric phases. Again, the differ-

ence between these phases should not be re-wrapped to be consistent with the resolved
ambiguities.

Based on the unwrapped phases the parameters of interest are estimated using the same
functional model as used for the first-order PS, e.g., Eq. (5.10). Note that this model,
as in case for the first order PS, can be different compared to the model used for the
temporal ambiguity resolution. The stochastic model involved in the estimations is the
one previously used for the PS1, which is obtained by Variance Component Estimation,
see Section 4.4. The variance factor σ̂2 is estimated for each PS2 as well to adapt
the stochastic model to the specific coherence level of the PS. The variance factor is
estimated by (see Eq.(5.11), which is repeated here for convenience)

σ̂2 =
êTQ−1

y ê

m− n
. (5.11)

Hereby, the parameters of interest are obtained for each detected PS, together with a
covariance matrix describing their precision. This is the main output of DePSI. Next
step is the georeferencing of the PS, to enable analysis of the results and integration
with other data sources, see Chapter 6.

5.5 Summary

The spatial ambiguity resolution is based on a spatial integration using a testing scheme
to remove incoherent Persistent Scatterer Candidates (PSC) and to remove or adapt
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ambiguity errors in the arcs between PSC. The testing is based on the ambiguities
directly. This innovative approach is possible when the differential phase observations
between two PSC are not re-wrapped to the [−π,+π) interval. In this case, a closing
network of ambiguities should be obtained.

A two-step testing procedure is applied. First, the incoherent PSC and arcs with
a large number of ambiguity errors are detected and removed based on the full set of
ambiguities per arc. The B-method of testing (Baarda, 1968) is used to determine
the largest error in each iteration, regardless whether it originates from an ambiguity
error or an inconsistent point. Once the remaining errors in the network result in a test
statistic below a threshold, thereby assuming that maximally only a few ambiguity errors
per arc remain, the second step of the algorithm is applied. In this step, ambiguity
inconsistencies in the network are adapted until a closing network is obtained. Here, the
testing of the network is applied to each interferogram separately.

This procedure is an alternative approach compared to the method applied in Kam-
pes (2006), where the removal of arcs and inconsistent PSC is based on the testing of
the parameters of interest, combined with an additional Minimum Cost Flow (MCF)
algorithm to resolve the remaining ambiguity errors. The advantage of the ambiguity
removal and adaptation approach applied here is that the same mathematical framework
is used for both steps. Moreover, the concept of testing of the ambiguities enables the
use of a varying deformation model for each arc. Whereas the estimated parameters
of interest using different models will result in closing errors in the network, thereby
obscuring the detection of inconsistencies, the ambiguities, and thereby the unwrapped
phase, should preserve a consistent network. Hence, the model used can be adapted to
local deformation phenomena, see Chapter 7.

The spatial ambiguity resolution is repeated in an iterative scheme. After each it-
eration, a phase screen of a certain signal is estimated and removed from the phase
observations. Hence, based on the most recent tested first-order network, the Orbital
Phase Screen (OPS), Atmospheric Phase Screen (APS), and Deformation Phase Screen
(DPS, see Section 7.4) is estimated. Regarding the OPS, a linear trend for each inter-
ferogram is assumed, which is estimated based on a least-squares estimation procedure
including outlier detection. The APS is retrieved in a two-step procedure. First, for
each arc the remaining unmodeled deformation signal is separated from the atmospheric
phase signal and noise based on a low-pass filter in the time domain. Second, least-
squares prediction is applied to predict the APS for each interferogram, thereby applying
a low-pass filter in the spatial domain to remove the noise. Once a phase screen is
removed from the phase observations and their stochastic model is updated based on
variance-covariance estimation, see Section 4.4, the first-order network is resolved again.
Previously removed PSC are evaluated again, since the correction by the phase screen
may have improved the estimation of the ambiguities of the connecting arcs. Hereby, the
assumption is made that a higher density of PS in the first-order network will improve
the overall quality of the final PS result.

Once the phase observations are corrected for all phase screens, the first-order net-
work is densified to detect more PS. Again integer least-squares, integer bootstrapping
or the ambiguity function can be applied to estimate the phase ambiguities and the pa-
rameters of interest. The higher-order PSC are connected to at least three neighboring
PS of the network. The independent solutions of the ambiguities per PSC are evaluated
for consistency. Three strategies are implemented. The first strategy enforces that all
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three solutions are equal. Hence, already with a single deviating ambiguity in one of the
three connecting time series, the PS is rejected. A less strict approach requires two out
of the three solutions to be equal. An alternative strategy is based on the mode of the
estimated ambiguities. Here, for each ambiguity in the time series the mode solution
is adopted, provided that a minimum number of occurrences of a certain solution is
ensured for each ambiguity in the time series. This approach is less strict, and enables
the use of more than three connecting arcs.

After the densification step, a set of selected PS is obtained. Despite the testing
strategies, some PSC may erroneously be identified as PS, the so-called false detections.
Therefore an additional selection step is often applied, based on a quality indicator and
an accompanying threshold. These quality indicators are presented in Chapter 6. In
Chapter 6 also the procedure for the geolocalization of the PS is discussed, together
with a quality assessment.





PS georeferencing and quality description 6
This chapter covers the quality aspects of DePSI. Both the quality of the estimated PS
results and the accuracy of georeferencing of the PS are discussed. Section 6.1 describes
the procedure of georeferencing and the factors influencing the accuracy, including an
assessment of their contribution in the total error budget. Section 6.2 gives an overview
of quality indicators that can be used to describe the quality of the PS results, including
the newly developed spatio-temporal consistency (STC). Section 6.3 discusses the reli-
ability assessment of the PSI results based on internal and external reliability checks. A
summary is given in Section 6.4.

6.1 Georeferencing

6.1.1 Georeferencing procedure

Once the PS are detected and the parameters of interest are estimated, the PS can
be georeferenced. Georeferencing is only possible at this stage, because the estimated
height of the PS is required. This height not only influences the vertical component of
the 3D position, but, due to the slanted look angle of the radar signal, also the horizontal
position. Together with the image coordinates in azimuth and range direction, and the
orbit parameters of the master image, the corresponding longitude, latitude and height
of the PS in an earth-fixed reference system, represented by an ellipsoid, are calculated.

For georeferencing the absolute heightsHi of the PS Pi with respect to the reference
ellipsoid are required, where i indicates a specific PS. As visualized in Figure 6.1, the
absolute height can be written as

Hi = Ni + hi +∆hi, (6.1)

where Ni is the geoid undulation, hi is the Digital Elevation Model (DEM) height
(assuming that the DEM is defined with respect to the geoid), and ∆hi is the DEM
error or residual height. A similar expression holds for the height H0 of the reference PS
P0,

H0 = N0 + h0 +∆h0. (6.2)

These heights are retrieved by a combination of external data and the height difference
H0i between the PS and the reference PS, which is estimated in the DePSI analysis.
The height difference is defined as

H0i = Hi −H0. (6.3)
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Figure 6.1: Reference surfaces involved in the georeferencing process. Finally the height above the
ellipsoid Hi is required for each PS Pi. An error in the DEM height at the reference point P0,
∆h0, causes a bias in all derived heights Hi, affecting the geolocalization with an offset. The DEM
height h is either specified with respect to the geoid, in which case the geoid undulation N should
be incorporated, or directly to the ellipsoid.

To obtain the absolute height of the PS, three cases can be distinguished, depending
whether or not a DEM is used to remove the topographic phase prior to the DePSI
analysis: 1) no DEM is used, 2) a DEM with respect to the geoid is used, and 3) a DEM
with respect to the WGS84 ellipsoid is applied.

1. No prior DEM used. DePSI can be applied without a-priori removal of the
topographic phase. Especially in flat terrain, where the height differences over
a typical arc length are small, this pre-processing step may not be necessary.
However, already in terrain with moderate height differences of 50 m, correction of
the topographic phase is beneficial since the success rate of correct phase ambiguity
resolution and thereby the detection of PS is improved.

When no a-priori DEM correction is applied, the estimated height difference Ĥ0i

represents the difference between the two absolute heights involved, hence

Ĥ0i = (Ni + hi +∆ĥi)− (N0 + h0 +∆ĥ0). (6.4)

Based on this estimate, combination of Eqs. (6.1),(6.2), and (6.4) shows that the
absolute height of Pi is obtained by

Ĥi = Ĥ0i +N0 + h0 +∆ĥ0. (6.5)

Hence, the geoid undulation and DEM height with respect to the geoid of the
reference PS, obtained from external data, should be added to all estimated differ-
ential heights to obtain height values with respect to the ellipsoid. The last term
in Eq. (6.5), the DEM error at the reference point, remains however unknown,
causing a bias in the georeferencing result, see Section 6.1.2.

2. DEM with respect to geoid used. For many areas the prior correction of the
topographic phase based on a DEM is beneficial. DEM’s are often defined with
respect to a geoid to provide a physical meaning of the heights. An example is
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the DEM acquired by the Shuttle Radar Topography Mission (SRTM) (Farr et al.,
2007), which is defined in relation to the EGM96 geoid.

When a DEM with respect to the geoid is subtracted, Eq. (6.4) is modified to

Ĥ
′

0i = (Ni +∆ĥi)− (N0 +∆ĥ0). (6.6)

Hence, only the geoid undulation and DEM error terms remain. Here, the absolute
heights Hi is retrieved, combining Eqs. (6.1) and (6.6), by

Ĥi = Ĥ
′

0i + hi +N0 +∆ĥ0. (6.7)

As the equation shows, in this situation the previously removed DEM height of
the individual PS hi and the geoid undulation of the reference PS are required.
Since the undulation can reach values over 100 m (Rapp, 1997), neglect of this
term may lead to a bias in the georeferencing of hundreds of meters. Again, the
DEM error at the reference point remains unknown.

3. DEM with respect to ellipsoid used. In case the topographic phase is removed
based on a DEM with respect to the ellipsoid, i.e., N0=Ni=0, the estimated
height comprises

Ĥ
′′

0i = ∆ĥi −∆ĥ0. (6.8)

Hence, the estimated height difference reflects the differential DEM error. Based
on this estimate, the absolute height Hi is retrieved, combining Eqs. (6.1) and
(6.8), by

Ĥi = Ĥ
′′

0i + hi +∆ĥ0. (6.9)

Also here, the previously removed DEM height, including the undulation, should
be added to retrieve the absolute height.

The retrieval of the absolute heights, as described by Eqs. (6.5), (6.7), and (6.9), have in
common that the DEM error at the reference point remains unknown. Since this factor
is equal for all PS, it causes a constant offset for the full PS dataset, see Section 6.1.2.
Only when the height of the reference PS is known based on an additional measurement,
this term can be corrected. Note that this reference point can be different compared
to the reference PS applied during the PSI analysis, since the heights can be translated
based on the relative height estimates.

Based on the absolute height Hi (Eq. (6.5), (6.7) or (6.9)) above the ellipsoid, together
with the line li and pixel pi image coordinates, the equivalent geographic coordinates
with respect to the ellipsoid of each PS Pi can be calculated using the so-called Doppler-
Range-Ellipsoid equations (Schwäbisch, 1995). These equations specify that

1. Doppler: Pi lies perpendicular to the orbit, hence

E1 : ~̇xs · d~xi = 0. (6.10)

2. Range: the geometric distance from Pi to the satellite is equal to the speed of
light c times the range time tr, hence

E2 : d~xi · d~xi − (ctsr)
2 = 0. (6.11)
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3. Ellipsoid: Pi has a height Hi above the reference ellipsoid with semi-major and
semi-minor axis a and b, respectively, hence

E3 :
x2i

(a+Hi)2
+

y2i
(a+Hi)2

+
z2i

(b +Hi)2
− 1 = 0, (6.12)

with

d~xi = ~xi − ~xs. (6.13)

Here, ~xi = (xi, yi, zi) is the position vector of Pi, and ~xs, ~̇xs denote the position vector
and velocity vector of the satellite during the master acquisition, respectively. The line
li, in combination with the first azimuth time taz,0 and the pulse repetition frequency

(PRF), and the orbit parameters are used to calculate ~xs and ~̇xs. The first range time
tr,0 together with the range sampling rate (RSR) are used to calculate the range time
tr for pixel pi. The solution for ~xi cannot be obtained directly from Eqs. (6.10)–(6.12),
but is estimated by iteration after linearization of these equations.

The linearized mathematical model has the form (Kampes, 1999)

E{∆y} = ∂xA(x
j)∆x, (6.14)

where
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2dxj 2dyj 2dzj

2xj

(a+Hi)2
2yj

(a+Hi)2
2zj

(b+Hi)2




 , (6.15)

and

∆yj = y −A(xj). (6.16)

The estimator of the incremental unknown ∆x is

∆x̂j+1 = ((∂xA(x
j))T ∂xA(x

j))−1(∂xA(x
j))T∆yj . (6.17)

Thereby, the estimator of the coordinates for Pi is obtained by

x̂j+1 = x̂j +∆x̂j+1, (6.18)

where j indicates the iteration step. In DePSI the iteration continues until the increment
∆x̂j+1 becomes smaller than 1 mm. The estimations are initiated with approximated
values xj=0. Here, the center coordinates of the master SLC image are taken. Note that
the same algorithm is used in DORIS (Kampes and Usai, 1999; Kampes et al., 2003) to
compute the flat Earth reference phase and topographic phase, see Section 3.2.5.

The estimation is repeated for each PS individually. Once the coordinates are ob-
tained, they can be used to visualize the results or integrate them with other data. For
the interpretation of the results, especially in case of very localized deformation effects,
the accuracy of the georeferencing is of importance (Chang and Hanssen, 2012, 2014).
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6.1.2 Georeferencing accuracy

The accuracy of the georeferencing is dependent on the accuracy of the orbit and im-
age parameters, such as the first range time tr,0 and first azimuth time taz,0, and the

estimated heights Ĥi of the PS. Since the number of observations and the number of
unknowns in the mathematical model in Eq. (6.14) is equal, a unique solution is ob-
tained. As a consequence, an error in the input parameters or the height of the PS
propagates directly to the georeferencing. Here, two effects can be distinguished: errors
that apply to individual PS and errors applying to all PS.

Errors applying to individual PS

The effects that influence the geolocation of individual PS are an error in the height
estimate and the uncertainty in the sub-pixel position. Both effects are discussed in
detail below.

1. An error in the relative height estimate H0i. Since these estimates are per-
formed per PS with respect to the reference PS, and assuming that no errors
are propagated within the first-order network, no systematic effects are expected.
Hence, the precision of the height estimates σH [m] propagates directly to the
precision of the georeferencing expressed in ground range σRgr

σRgr,i =
σH

tan θinc,i
, (6.19)

where θinc,i is the local incidence angle, see Figure 3.8. Figure 6.2 shows the
influence of a height error of 1 m for a range of incidence angles. Assuming a
typical precision of the height estimates of 0.5–1 m for a data stack of C-band data
(Ferretti et al., 2000; Colesanti et al., 2003b), the geolocation precision for Envisat
(incidence angle of ∼23◦), in relation to the height inaccuracy, is in the order of
2 m in the ground range direction. An inter-comparison of the heights obtained by
four different processing chains (Crosetto et al., 2008) revealed a height standard
deviation ranging between 0.9 - 2.0 m. This results in a geolocation precision
in range direction of 2.1 - 4.7 m. These relatively high values may partly be
explained by neglection of the range sub-pixel position, which also influences the
height estimate, see next item.

2. Uncertainty in the sub-pixel position. The effective scattering center of the
PS lies somewhere within an image pixel, as discussed in Section 4.2.4. Due to
the correlation with the height of the PS, and the typically low range of Doppler
centroid variation in the image stack, the sub-pixel position cannot be estimated
from the phase. Instead, an estimate of the scattering center can be based on the
amplitude response.

When this sub-pixel position is not considered, or the scattering center cannot be
determined accurately, the georeferencing is affected. Two effects can be distin-
guished: the direct and the indirect effect.

• Direct effect. Without taking the sub-pixel position into account, the lead-
ing edges of the pixel li, pi are used in the georeferencing process, see Fig-
ure 6.3. Application of li and pi instead of the actual pixel coordinates lξi
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Figure 6.2: Georeferencing error in ground range [m] due to a height error ∆H of one meter. The
ground range error is dependent on the incidence angle. The effect scales linearly, hence the ground
range error shown here can be multiplied with any height error to obtain the corresponding actual
ground range error.

and pηi directly results in a geolocation error. The effect in range direction
is visualized in Figure 6.4. The actual location of Pi, with a projection to
P ′
i on the ellipsoid, is georeferenced to P ′

i,dir. Since often, based on an aerial
photograph, a manual shift in the geocoding is applied to account for the
effects influencing all PS (Bateson et al., 2010), it can be assumed that, after
the shift, on average the PS are positioned according to the center of the
pixels. Based on the assumption that the sub-pixel positions of the PS are
uniformly distributed, the remaining mean absolute error is 25% of the pixel
spacing, both in azimuth and in range direction. For example, assuming a
factor two oversampled dataset of Envisat stripmap data, resulting in a pixel
spacing of about 10 m in range and 2 m in azimuth, a corresponding mean
direct georeferencing error of 2.5 m and 0.5 m is obtained, respectively.

• Indirect effect. In range direction, the sub-pixel position of the effective
point scatterer also causes an indirect effect due to an inaccuracy in the flat
Earth reference phase correction applied, see Section 4.2.4. The reference
phase is calculated based on the leading edge coordinates li and pi, whereas
the phase observation is related to the actual position of the point scatterer.
The phase error due to a positive sub-pixel position ηi results in a negative
height error ∆H (see Eq. (4.32) in Section 4.2.4)

∆Hi = − cos θinc,i sin θinc,iηi, (6.20)

where θinc is the local incidence angle. A height error results into a georefer-
encing error, measured in ground range ∆Rgr, of

∆Rgr,i =
∆Hi

tan θinc,i
. (6.21)
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Figure 6.3: Influence of the sub-pixel position on the georeferencing of a PS. Without taking the
sub-pixel position (lξi , pηi) into account, the pixel coordinates of the leading edge li and pi are
used. The difference is directly translated into a georeferencing error.

Combination of Eqs. (6.20) and (6.21) gives the georeferencing error as func-
tion of the uncompensated sub-pixel position in range direction as

∆Rgr,i = − cos2 θinc,iηi. (6.22)

Hence, when the sub-pixel position of the point scatterer is not accounted
for, apart from the direct error ηi, an additional indirect effect with a factor
− cos2 θinc,i applies. The shifted position is indicated in Figure 6.4 with Pi,ind.
The total shift of both the direct and indirect effect due the same sub-pixel
position is represented by Pi,dir+ind.

The situation shown in Figure 6.4 is based on the assumption that the location
of the reference PS P0 corresponds to the leading edge of the pixel in which
it resides. However, unlike the direct error, the indirect effect is dependent on
specific sub-pixel location of the reference PS. This is due to the estimated
height, which is determined relative to the reference point. As a result, the
size of the error is dependent on the specific reference point used. Therefore,
the relative sub-pixel position ∆ηi should be considered

∆ηi = ηi − η0, (6.23)

where η0 is the sub-pixel position of the reference PS, which applies to all
PS. For the individual PS, again a mean absolute error of 25% of the range
pixel spacing can be adopted. For the same factor two oversampled Envisat
stripmap dataset, resulting in a range pixel spacing of 10 m, and an incidence
angle of 23◦, this leads to a mean indirect georeferencing error in range
direction of 2.1 m. Since the direct and indirect effect operate in the same
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Figure 6.4: Influence of the sub-pixel position in range direction. Both a direct and an indirect
effect occur. The true position of the PS Pi (mapped to P ′

i ) is geolocated to Pi,dir due to neglect
of the sub-pixel position ηi. Apart from this direct effect, an indirect effect occurs due to a wrong
flat Earth reference phase applied. This erroneous phase causes a height error ∆H, translating in
the position Pi,ind. The sum of the two effects leads to the final position Pi,dir+ind.

direction, see Figure 6.4, the total effect of an uncompensated sub-pixel
position results in a mean error of 4.6 m for Envisat data.

The examples for Envisat data show that neglect of especially the sub-pixel position in
range direction results in a geolocation error of 4.6 m. In addition to the influence of an
error in the estimated height of 0.5–1 m, corresponding to a location shift of 1–2 m, this
is a considerable effect. Depending on the Signal-to-Clutter ratio (SNR) of the point
scatterer it may be possible to estimate the sub-pixel location of the scatterer based on
the amplitude information.

Errors applying to all PS

Apart from factors that affect individual PS, there are also factors influencing the ge-
olocation of all PS. These factors are 1) an error in the absolute height of the reference
PS, 2) an error in the satellite orbit parameters, 3) an image timing error, 4) an uncer-
tainty in the sub-pixel position of the reference PS, 5) atmospheric signal delay, and 6)
geophysical influences. These effects are discussed below.

1. Height error of reference PS. The estimated heights Ĥi of all PS are dependent
on the DEM error at the reference PS ∆H0, see Eqs. (6.5), (6.7), and (6.9). This
error depends on the precision of the reference DEM used and whether the DEM
describes the layer with the PS reflection point, i.e., a surface model (DSM, in-
cluding objects) or a terrain model (DTM, excluding objects). The georeferencing
error measured in ground range ∆Rgr due to the DEM error ∆H0 is equal to

∆Rgr =
∆H0

tan θinc
, (6.24)

where θinc is the local incidence angle. The effect of a 1 m reference height error
for a range of incidence angles is visualized in Figure 6.2. When for example the
radar-based SRTM DEM is used with a standard deviation of the absolute heights
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of 6.2 m (Farr et al., 2007), this leads to a geolocalization error for an Envisat
dataset, with an incidence angle of 23◦, of 14.6 m. This error can be avoided
when a co-located GNSS measurement is available for the reference PS.

2. Orbit errors. Errors in the satellite orbit parameters can either be in range direc-
tion (radial orbit error) or in azimuth direction (along-track orbit error) (Scharroo
and Visser, 1998; Bähr, 2013). Using precise orbits the accuracy of the orbits
can be assumed to be better than for example 10 cm for ERS-1/2 and Envisat
(Scharroo and Visser, 1998; Otten and Dow, 2005) and 4.2 cm for TerraSAR-X
(Yoon et al., 2009; Eineder et al., 2011). Bähr (2013) gives a general overview of
the orbit accuracies for different radar satellites. The orbit errors directly influence
the georeferencing accuracy, however, the effect is relatively small.

3. Image timing errors. Both in the along-track direction (slow-time) as in the
across-track direction (fast-time) an error can be made in the time annotation.
In along-track direction this corresponds to an error in the time of radar pulse
transmission, which cannot be distinguished from along-track orbit errors. In
across-track direction, the signal travel time to the first range pixel could be
biased due to delays in the SAR instrument (Eineder et al., 2011).

4. Sub-pixel position of reference PS. It was shown that the relative sub-pixel
position ∆ηi (Eq. (6.23)) causes an error for individual PS, see Figure 6.4. How-
ever, since these relative positions are all relative to the sub-pixel position of the
reference PS η0, a general shift applies to all PS. In effect, all estimated heights
H0i have a bias due to the erroneous reference phase applied to the reference
PS, resulting in a location shift. Equation (6.22) can be used to transform the
sub-pixel position of the reference point to the associated offset. For an Envisat
dataset with an oversampled range spacing of 10 m and incidence angle of 23◦, a
sub-pixel position of 5 m leads to a shift for all PS of 4.2 m.

5. Atmospheric signal delay. The geolocation procedure based on the Doppler-
Range-Ellipsoid equations presented in Section 6.1.1 is based on the speed of light
c in vacuum. However, the atmosphere reduces the effective speed of the radar
signal, causing delays, see Section 2.1.2. These effects should be compensated.
The radar frequency dependent ionospheric zenith delay ranges from 0.02 to 0.4 m
for X-band and 1.2 to 25 m for L-band data, depending on the Total Electron
Content (TEC) of the ionosphere (Hanssen, 2001; Eineder et al., 2011). The
specific TEC value varies between day and night, and between periods of solar
minimum and maximum (Odijk, 2002). Published TEC maps can be used to
obtain an estimate of the electron content at a certain time and location (Eineder
et al., 2011). Using a mapping function (Herring, 1992; Niell, 1996), the zenith
delays can be transformed to the radar Line of Sight (LOS).

The delay due to the troposphere consists of a hydrostatic part, which is dependent
on the pressure and temperature, and a wet part, which is mainly caused by water
vapor. The zenith hydrostatic delay in the order of 2.3 m and is relatively constant.
The zenith wet delay is limited to values below 0.35 m (Bevis et al., 1992), but
strongly variable. Using a mapping function (Herring, 1992; Niell, 1996), the
zenith delays can be transformed to the radar Line of Sight (LOS).
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6. Geophysical effects. Various geophysical effects change the shape of the Earth,
thereby affecting the positioning of PS. Examples are Earth tides, polar motion,
tidal ocean loading, atmospheric loading, and hydrological loading (Eineder et al.,
2011). This paper also provides estimates of the size of the deformation due to
the various processes. The Earth tides due to gravitational forces of the Sun and
the Moon can cause deformation of up to 40 cm in vertical direction and several
centimeters in horizontal direction. The polar motion cause changes up to 25 mm
in vertical and 7 mm in horizontal direction. The ocean loading has the strongest
effect in coastal regions and in areas with a large tidal range, and can affect
the height of the surface with several centimeters. Atmospheric loading can cause
height differences of up to 2 cm. The hydrological loading effect is typically several
millimeters, with a maximum of 2 cm. Apart from the hydrological contribution,
the geophysical effects can largely be compensated based on available models.

The total of the effects described can result in shifts of tens of meters. The contributing
error sources affect both the vertical and horizontal position components. A large part
of the error can however be circumvented by estimation of the sub-pixel position of the
scatterer, and the application of the flat Earth reference phase (Eq. 2.6) according to this
position. Moreover, models or nearby GNSS measurements can be used to compensate
a large part of the atmospheric and geophysical effects. Eineder et al. (2011) reach a
positioning accuracy of several centimeters for a number of corner reflectors based on
TerraSAR-X data. Although the application of these modeled corrections is preferable,
an alternative approach is to apply a manual shift based on an overlay of the PS on an
ortho-rectified aerial photograph or satellite image (Bateson et al., 2010).

6.2 Quality indicators

Based on the testing schemes in DePSI (see Sections 5.1 and 5.4) a selection of the
Persistent Scatterer Candidates (PSC) is detected as Persistent Scatterers. However,
a number of falsely detected PS will remain, i.e., a point which is either not coherent,
or has, despite its coherence, an incorrectly estimated deformation time series. These
false detections are caused by the situation that, by coincidence, for a number of these
PSC the connecting arcs within the network result in the same erroneous solution. As a
consequence, they are not detected by the ambiguity testing algorithms. These falsely
detected PS are denoted as type-II errors, see also Section A.2.

To remove the falsely detected PS from the final dataset, additional quality indicators
can be used to perform a further selection. Besides a criterion for selection, these quality
indicators can also be used to describe the quality of the PS finally obtained. Various
quality indicators exist, each with their own characteristics. The ensemble coherence
estimator, the variance factor, the covariance matrix of the parameters of interest, the
standard deviation of the displacements, the Ambiguity Dispersion of Precision (ADOP),
and the spatio-temporal consistency are described here. They are all based on the
deformation time series. Here it is assumed that amplitude information was already
used to make a pre-selection resulting in the set of PSC, see Section 3.3.1. However,
these amplitude-based selection criteria could also be applied at this final selection stage
to obtain a further refinement.

The PSI results based on a set of ERS-1/2 data of Las Vegas, USA, are used to
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give an example of the various quality indicators, see Figures 6.7a and 6.7b. The results
are obtained using the integer bootstrap estimator and a linear deformation model. The
same dataset will also be used in Chapter 7 to evaluate different processing strategies
to increase the number of detected PS. The case study area is further described in
Chapter 7. Here, the results are only used to illustrate the different quality indicators.

6.2.1 Ensemble coherence estimator

The ensemble coherence estimator is a metric to describe the deviation between the
deformation time series and the deformation model estimated. The same measure is
used by the ambiguity function to select the optimal model solution, see Section 4.6.
Both an unweighted and a weighted coherence estimator can be applied. Here, the
unweighted ensemble coherence estimator is considered, which is defined as

γ̂ =
∣
∣
∣
1

S

S∑

s=1

exp(j(ϕ0s
0i

− ϕ0s
0i,model))

∣
∣
∣,

=
∣
∣
∣
1

S

S∑

s=1

exp(j(e0s0i ))
∣
∣
∣, (6.25)

where S is the number of slave images, ϕ0s
0i

the double-difference phase observations
between PS i and the reference PS, ϕmodel the model phase, and e are the least-squares
phase residuals. The coherence estimator γ̂ ranges between 0 and 1. A zero coherence
indicates complete noise, whereas a value of 1 corresponds to a perfect match between
the deformation model used and the deformation time series. The coherence value repre-
sents the scattering noise, unmodeled atmospheric signal delay, and the unmodeled part
of the deformation. Often a linear deformation model is used, but in principle any model
can be applied. By using a more advanced deformation model, the effect of unmodeled
deformation on the coherence should be reduced, giving a better representation of the
scattering noise. However, a dependency of the parametric deformation model always
remains.

The standard ensemble coherence estimator is defined for a PS relative to the refer-
ence PS. Since the reference PS is selected based on assumed minimal scattering noise,
the coherence value represents primarily the scattering noise level of the PS involved,
atmospheric signal delay and the unmodeled deformation. Since the relative error in
atmospheric signal delay increases with increasing distance from the reference point, the
spatial distribution of coherence values suggest a decrease in quality in relation with the
distance to the reference point, see Figure 6.5. This is a correct conclusion when strictly
observing the deformation time series with respect to the reference point. However, in a
local sense the measurement quality of PS is homogeneous over the full area analyzed.

To assess the local quality of the PSI estimates, an alternative quality indicator is
the local coherence estimator. Here, the coherence is determined with respect to a
local PS, for instance the closest point of the primary network. Disadvantage of the
local coherence estimator is that the scattering noise of the network PS is likely higher
compared to the reference PS, since the reference PS is chosen based on the lowest noise
level of the connecting arcs in the network, see Section 5.1.2. Because the estimated
coherence value obtained is based on a mixture of the scattering characteristics of the
two PS involved, the noise level of the network PS will bias the coherence value of the
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Figure 6.5: The effect of trends and atmospheric signal delay on the ensemble coherence with
respect to the reference PS (top-left corner of area). A first-order network covering The Hague
and Rotterdam in the Netherlands is shown based on Envisat data acquired between 2003 and
2010. Top row) linear deformation rates. Bottom row) ensemble coherence. The original data
(left column) shows a trend in the deformation rates due to a drift in the local oscillator of the
instrument (Marinkovic and Larsen, 2014), see Section 5.2. The ensemble coherence decreases with
increasing distance to the reference PS due to the influence of the trends and atmospheric signal
delay. When the trend per interferogram is removed (middle column, see Section 5.2) the coherence
values are only slightly altered due to the correlation between the deformation rates and the time
dependent drift of the oscillator. Hence, the phase residuals, and thereby the ensemble coherence,
are only slightly changed. However, when the atmospheric signal delay is estimated and removed
(right column), the distance dependency of the ensemble coherence is strongly reduced.

PS considered. This drawback can partially be circumvented by selecting the highest
coherence value for a certain PS, when multiple connecting arcs are used. Examples of
the global and local coherence estimates are given in Figure 6.7a.

A drawback of the coherence estimator (Eq. (6.25)) as a quality measure is that it
is insensitive to phase unwrapping errors. Due to the cyclic nature of the phase residuals
e0s0i involved to compute the coherence, erroneous phase ambiguities are not reflected in
the coherence value, see Figure 6.6 for an example.

6.2.2 Variance factor

The variance factor is a scaling factor of the covariance matrix used to describe the
stochastic properties of the phase observations. The covariance matrix Qϕ is deter-
mined by variance component estimation (VCE), see Section 4.4, and is applied during
ambiguity resolution and estimation of the parameters of interest of the PS. For each
individual PS the phase residuals e determine the variance factor σ2

σ2 =
eTQ−1

ϕ e

q
, (6.26)
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Figure 6.6: Example of quality measures. Left) Deformation time series without phase unwrapping
errors. Right) Deformation time series with unwrapping errors. The unwrapping errors do not
influence the coherence value. The standard deviation (std) and the spatio-temporal consistency
(STC) do reflect the influence of the unwrapping errors.

where q is the redundancy of the model, i.e, difference between the number of phase
observations and the number of estimated parameters. A variance factor of 1.0 indicates
that the dispersion of the phase observations is well described by the covariance matrix,
whereas a factor of 2.0 shows that the covariance matrix was a factor two too opti-
mistic, and vise versa. Hence, this scaling factor indicates the relative noise level (plus
unmodeled deformation and atmospheric signal delay) of the PS. The variance factor is
determined with respect to the reference PS. An example of estimated variance factors
is given in Figure 6.7b. Equivalent to the ensemble coherence estimator, also a local
variance factor can be derived, reducing the distance dependent effect due to unmodeled
atmospheric signal delay.

6.2.3 Covariance matrix

As an alternative to the variance factor, also the elements of the covariance matrix of
the parameters of interest Qb̌ can be used. These parameters are the residual height,
deformation parameters, and possibly the azimuth sub-pixel position, see Section 4.2.
The covariance matrix is obtained by error propagation by

Qb̌ = (BTQϕB)T , (6.27)

where the covariance matrix of the phase observations Qϕ is determined by variance
component estimation. The covariance matrix Qb̌ contains both the variance of the
parameters of interest and the covariances between them.

6.2.4 Standard deviation displacements

The standard deviation of the displacements is defined as the standard deviation of the
residuals between the deformation model and the deformation time series

σ =

√
√
√
√ 1

S − 1

S∑

s=1

(e0s − e)2, (6.28)
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Figure 6.7a: Example of the quality indication of PSI results based on the ensemble coherence
estimator and the local ensemble coherence estimator. An ERS-1/2 dataset is used to estimate the
deformation time series in Las Vegas, USA. The estimation is based on a linear deformation model
and the integer bootstrap estimator to resolve the phase ambiguities. The comparison of the global
and local coherence values indicates that the deformation in the center of the subsidence bowls is
not well described by a linear deformation model, resulting in relatively low coherence values with
respect to the reference PS (black circle). Hence, the global coherence value describes both the
noise and the unmodeled deformation. A strict threshold on these coherence values could result in
the undesirable rejection of the PS in the middle of the subsidence bowl. Using the local coherence
estimator, the coherence values give a better representation of the noise level. Here, the coherence
estimates are based on short arcs between the first-order network and the PS considered, which give
a better fit to the linear deformation model used.
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Figure 6.7b: Example of the quality indication of PSI results based on the variance factor, the
standard deviation of the displacements, the Dilution of Precision for PSI, and the Spatio-temporal
consistency. An ERS-1/2 dataset is used to estimate the deformation time series in Las Vegas, USA.
The Spatio-temporal consistency is a local quality indicator and does not show a strong correlation
with the deformation signal (see Figure 6.7a). Therefore, it gives a good indication of the noise
level of the PS. The other estimators indicate a relation with the deformation signal, similar to the
ensemble coherence estimator. However, also these indicators can be evaluated locally.

where e is the mean of the residuals. Since e will be close to zero due to the least-squares
fit of the model parameters, the standard deviation obtained will be equivalent to the
RMSE value. The advantage of the use of this the standard deviation (or RMSE) is that
a quantity in millimeters is obtained rather than a certain factor, such as the ensemble
coherence estimator or variance factor, which makes interpretation easier. An example
of estimated standard deviation of the displacements is given in Figure 6.7b. Since the
absolute deviations from the model are used, phase unwrapping errors are also reflected
in the value obtained, see Figure 6.6.

To assess the lower bound of the precision of the displacements, a corner reflector
experiment has been performed (Marinkovic et al., 2008; Ketelaar, 2009). Here, PSI
measurements based on ERS-2 and Envisat acquisitions are compared with spirit lev-
eling measurements. The analysis resulted in an estimated standard deviation for the
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displacements of 1.5 mm for leveling, 2.6 mm for PSI based on ERS-2 data, and 1.6 mm
for PSI based on Envisat data, respectively.

6.2.5 Dilution of Precision for PSI

An alternative scalar representation of the quality is the Dilution of Precision for PSI
(DOPPSI). This measure was introduced in Ketelaar (2009) and follows the concept
of Dilution of Precision as commonly used for GNSS estimates (e.g., Ambiguity DOP
and Position DOP) (Teunissen and Odijk, 1997), see also Eq. (A.61). The Dilution of
Precision for PSI [mm] is defined as

DOPPSI =
√

detQϕ
1

S , (6.29)

where S is the number of slave images and Qϕ is the covariance matrix of a specific
PS obtained by variance component estimation, see Eq. (5.11). This covariance matrix
is obtained by multiplication of the original matrix, used for all PS, and the a-posteriori
variance factor σ2 estimated for the PS involved, see Eq. (6.26). In case the phase
observations are assumed uncorrelated, resulting in a diagonal Qϕ, the DOPPSI is equal
to the mean of the standard deviations. Correlation between the phase observations
results in a decreased value. An example of the estimated Dilution of Precision is given
in Figure 6.7b.

6.2.6 Spatio-temporal consistency

Whereas all quality indicators previously described were dependent on the temporal
deformation model used, this does not apply for the spatio-temporal consistency (STC).
The STC is based on the deformation time series of the PS and therefore not related the
models applied (except for the models used for the temporal ambiguity estimation). The
quality measure was introduced by Hanssen et al. (2008). The STC ρ is defined as the
minimum RMSE [mm] of the double-differences between PS i and various surrounding
PS j, denoted by

ρi = min
∀j

λ

4π

√
√
√
√ 1

S − 1

S−1∑

s=1

((ϕ0s
j − ϕ0s

i )− (ϕ0s+1
j − ϕ0s+1

i ))2, (6.30)

where S is the number of slave acquisitions. By taking the minimum RMSE value,
the influence of the spatial deformation pattern is assumed to be minimized, thereby
best representing the measurement noise. The surrounding PS j are selected within a
specified radius around PS i, which can be case dependent. Apart from the maximum
radius, also a minimum radius is applied to reduce the chance of selecting an undetected
sub-main lobe (see Section 3.4), see Figure 6.8. Typical values for the minimum and
maximum radius are 50 and 250 m, respectively. When no surrounding PS for a particular
point are available, the STC value remains undetermined. An example of the estimated
spatio-temporal consistency is given in Figure 6.7b.

6.2.7 Summary quality indicators

Various quality indicators are presented and examples the values obtained are given in
Figures 6.7a and 6.7b. The quality indicators differ in their quantity, spatial context,
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Figure 6.8: Computation of the spatio-temporal consistency (STC). For each PS i the RMSE of
the double-difference time series with respect to the surrounding PS j is computed. The minimal
STC is assumed to represent the noise level best. A minimum and maximum radius is used to select
the surrounding PS (filled dots). Typical values are 50 and 250 m, respectively.

Table 6.1: Characteristics of quality indicators.

Quality indicator Quantity Spatial context Temporal Sensitive to
model unwrapping
dependent errors

Ensemble coherence estimator (γ) factor 0-1 Global or local Yes No
Variance factor (σ2) scaling factor Global or local Yes Yes
Covariance matrix (Qx̂) parameter Global or local Yes Yes

dependent
Standard deviation displacements
(σ)

mm Global or local Yes Yes

Dilution of Precision for PSI
(DOPPSI)

mm Global or local Yes Yes

Spatio-temporal consistency (ρ) mm Local No Yes

model dependence, and sensitivity for phase unwrapping errors. The characteristics of
the quality indicators are summarized in Table 6.1. The ensemble coherence estimator
is an often used measure, however, it is insensitive for unwrapping errors, hence, does
not allow the detection of phase ambiguity errors, and is dependent on the deformation
model used. The Spatio-temporal consistency ρ circumvents these drawbacks. However,
ρ cannot be determined for isolated PS. In general, the local quality indicators are
less sensitive to the influence of unmodeled deformation and therefore give a better
representation of the noise level. A number of the quality indicators presented in this
section are applied in Chapter 7, where various advanced processing strategies to increase
the number of detected PS are presented and evaluated. Hereby, the performance of
the quality indicators is also further assessed.
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6.3 Internal and external reliability assessment

Interferometric radar measurements are different compared to other geodetic observa-
tions in the sense that the measurements are only acquired once at a certain time or
epoch. As a result, conventional quality assessment techniques, which use multiple obser-
vations to estimate the precision and reliability, cannot be applied. The quality measures
described in Section 6.2 give an indication of the precision, however, as discussed, there
is a strong dependency on the model assumptions.

The same dependency determines the reliability of the results. The estimated time
series, which are based on the estimated integer phase ambiguities, are dependent on
the deformation model used. Within DePSI various tests are performed to assess the
reliability of the ambiguity resolution and to detect incoherent points. In Chapter 7
different processing strategies are presented and applied to improve the reliability of
the estimated time series and to increase the number of detected PS based on local
deformation models. Apart from these model dependent tests, additional consistency
checks can be considered. These consistency checks are either internal, based on the
same dataset, or external, using additional data.

Internal reliability consistency checks

To assess the internal consistency of PSI results, two checks are possible

1. Consistency based on different first-order networks. Within DePSI multi-
ple independent sets of first-order Persistent Scatterer Candidates (PSC1) can be
selected based on the amplitude dispersion. As a result, independent first-order
networks are obtained. Based on these networks, the various processing steps,
such as the estimation of the phase screens (e.g., atmospheric), lead to indepen-
dent results as well. An example of two independent first-order networks is shown
in Figure 6.9 for an area covering The Hague and Rotterdam in the Netherlands
based on Envisat data acquired between 2003 and 2010. The network show sim-
ilar deformation rates. Comparison of the final PS results obtained indicate the
robustness of the processing and the reliability of the outcomes.

2. Consistency based on a different master image. The selected master image
fulfills a special role in the data stack. It influences for instance the estimation of
the Atmospheric Phase Screens. Hence, the choice of the master image will affect
the final estimates. By re-running DePSI with a data stack based on a different
master image, the impact of this choice and the reliability of the results can be
assessed.

External reliability consistency checks

Whereas the internal consistency checks are based on the same set of radar images, in
case of an external check an independent set of data is used. The external consistency
checks can be based on

1. Overlapping swaths. Depending on the latitude, the radar image swaths (either
ascending or descending orbit) have a certain overlap. For instance in case of
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Figure 6.9: The use of two independent first-order networks to assess the consistency of the esti-
mated PSI results. An Envisat dataset acquired between 2003 and 2010 covering The Hague and
Rotterdam in the Netherlands is used. Top row) linear deformation rates of the first network, based
on the PSC with lowest amplitude dispersion. Bottom row) linear deformation rates of the second
network, based on the PSC with second lowest amplitude dispersion. The estimated rates based
on the original data (left column), after trend removal (middle column) and after estimation of the
atmospheric signal. The networks show similar deformation rates.

ERS-1/2 or Envisat (swath IS2), often an overlap of 50% is obtained. Due to
the overlap two independent datasets are obtained. By analyzing both datasets,
the consistency of the PS estimates can be tested. However, for two reasons
a straightforward comparison is not possible (Ketelaar et al., 2007b,a; Ketelaar,
2009). First, the data is acquired on different dates. Hence, the deformation time
series cannot be compared directly. Only interpolated time series or derived defor-
mation parameters can be compared. Second, the look angle is slightly different.
In case of Envisat the difference is about 4 degrees. As a result, a number of
PS may be detected in the first dataset, but not in the second. Moreover, when
horizontal deformation occurs in the overlapping area, the measured deformation
values will be affected.

2. Ascending and descending images. Instead of overlapping data acquired from
the same orbit, also datasets acquired from the ascending and descending orbit
can be used. Because the objects on the surface are observed from completely
different angles, the sets of detected PS will differ. Besides, horizontal deformation
may affect the measurements, depending on the direction, see Figure 2.6.

The external consistency checks can be performed based on data acquired by the same
satellite, or data obtained from other sensors. For example data measured with a different
signal wavelength can be used. Since the wavelength affects the scattering mechanism
on the surface, different distributions of PS should be anticipated, both in location of
the PS and in density. However, the general deformation pattern should be similar.
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6.4 Summary

The quality of the PSI results concerns both the quality of the estimated deformation
time series, together with the estimated parameters of interest, and the accuracy of the
georeferencing of the detected PS.

The accuracy of the georeferencing is dependent both on factors applying to all
PS and effects that influence PS individually. The geolocation of all PS is affected by
an error in the height of the reference PS, the sub-pixel position of the reference PS,
and timing errors, both in along-track and across-track direction. The latter may partly
be caused by uncompensated atmospheric signal delay. The effect of orbit errors (in
position, rather than in time annotation) is regarded to be negligible with the availability
of precise orbits. The sum of the effects, which can reach tens of meters, results in a
constant shift in both longitude and latitude direction. When the error sources cannot
be corrected based on additional information, normally an overlay of the PS on an ortho-
rectified and georeferenced aerial photograph or satellite image is used to estimate the
shifts visually. The final accuracy is dependent on the precision and resolution of the
reference image used.

Whereas the constant shifts in the geolocalization can to a large extent be corrected,
individual inaccuracies per PS remain. These inaccuracies are caused by the error in the
estimated topographic height of the PS and uncertainty in the PS sub-pixel position.
The height accuracy directly influences the georeferencing with a factor dependent on
the local incidence angle. The uncertainty in the sub-pixel position applies to both the
range and azimuth direction. In range direction, apart from a direct effect, an indirect
effect occurs because of an error in the estimated height of the PS due to a wrong flat
Earth reference phase applied. When this sub-pixel position is not accounted for, the
combined effect causes a mean error of 4.6 m in range direction for a stack of oversam-
pled Envisat images. In azimuth direction, a mean error of 0.5 m can in this case be
assumed. Because of the large impact on the geolocation, the estimation of the sub-pixel
position based on the amplitude responds is strongly recommended.

The quality of the estimated deformation time series and parameters of interest can be
expressed by various measures. These measures differ in their quantity, spatial context,
model dependence, and sensitivity to phase unwrapping errors. An often applied measure
is the ensemble coherence. However, this parameter is insensitive to unwrapping errors.
Alternative quality indicators are the variance factor and the full covariance matrix of
the estimated parameters. From a visualization and interpretation perspective, a single-
valued indicator in mm is desirable. Here, the standard deviation of the displacements,
the Dilution of Precision, and the Spatio-temporal consistency (STC) are presented.
The advantage of the STC is that the indicator is independent of the model used,
thereby giving the best representation of the actual measurement noise. A number of
quality indicators is applied and further assessed in Chapter 7, where different processing
strategies to increase the number of detected PS are evaluated.

Whereas the quality indicators give an impression of the PS precision, a full quality
assessment based on conventional geodetic quality control techniques cannot be ob-
tained due to a lack of redundancy in radar interferometric observations. That is, per
location only a single observation per epoch is available. To assess the reliability of the
PSI results, various consistency checks can be applied. These checks are either based on
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the internal consistency within the data stack, or an external consistency analysis. The
internal consistency can be assessed by comparison of the PSI results using multiple first
order networks based on different sets of Persistent Scatterer Candidates, or by adopting
a different master image within the data stack. Alternatively, an additional data stack
can be analyzed to enable a comparison of the results. Here, either overlapping swaths
from the same orbit direction are used, or the results obtained from ascending and de-
scending data stacks are compared.

A number of quality indicators presented in this chapter are applied in the next chapter,
where various advanced processing strategies to increase the number of detected PS are
presented and evaluated.
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The standard Persistent Scatterer Interferometry (PSI) approach is based on the as-
sumption of linear deformation behavior between nearby PS. Although this assumption
often holds, it may not be valid everywhere. As a result, ambiguities may not be resolved
correctly and/or PS are not detected. Within DePSI a number of advanced processing
strategies is implemented to account for situations with non-linear deformation phenom-
ena. The objective of these strategies is to increase the number of detected PS and the
reliability of the estimated deformation time series. The various strategies implemented
are described and evaluated in this chapter (see Table 7.1) using a test site around Las
Vegas, USA (Section 7.1). As a benchmark, the results obtained by the standard pro-
cessing approach are shown in Section 7.2. The effect of using extended deformation
models is evaluated in Section 7.3. Here, both the combination of a linear with a peri-
odic model, and a linear, quadratic, cubic plus periodic model is applied. An alternative
approach is based on the prediction of Deformation Phase Screens (DPS) (Section 7.4),
i.e., the iterative prediction of area-wide deformation values based on earlier detected
PS. Furthermore, instead of using a single temporal deformation model, multiple de-
formation models can sequentially be applied and tested (Section 7.5), possibly based
on a PS density prognosis based on radar reflection intensity analysis, see Section 7.6.
Whereas these processing options can be applied within any analysis, for some studies it
is beneficial to apply dedicated settings based on the spatial or temporal characteristics
of the deformation signal. In the spatial domain an Area of Interest can be selected, for
which all (non-side lobe) pixels are evaluated instead of the conventional selection of
points based on amplitude information, see Section 7.7. In other cases the time frame
of radar acquisitions used for the final estimations can be limited to account for certain
events, such as the completion of large construction works (Section 7.8). The common
objective of these processing options is to increase the number of reliable detected PS.
The results of the various strategies are compared and discussed in Section 7.9.

7.1 The Las Vegas test case

To evaluate the various advanced processing strategies a test site around Las Vegas is
chosen, see Figure 7.1. The area is known to experience strong ground motion due to
groundwater withdrawal, also associated with seasonal fluctuations. Due to the non-
linear deformation effects occurring, it forms a suitable test site (Kampes, 2006). The
site has often been studied using radar interferometry in the past, see for instance
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Figure 7.1: The Las Vegas test site (white box). The ∼40x40 km region contains both urban and
rural areas.

Amelung et al. (1999); Hoffmann et al. (2001); Bell et al. (2002, 2008b). In this study
the focus lies on evaluation of processing strategies.

An ERS-1/2 data set is used to evaluate the processing strategies, because the
ground motion in Las Vegas is reducing, but was still relatively strong during the ERS
acquisition period. The data set contains 49 radar images acquired between April 1992
and September 2000. The images acquired after that date are omitted due to high
Doppler centroid frequencies in the data after failure of the on-board gyroscopes of ERS-
2. The image of June 13, 1997 is taken as master. The ∼40x40 km region contains
both urban and rural areas, and significant topography. The SRTM DEM (Farr et al.,
2007) is used to remove the majority of the topographic phase contribution from the
interferograms.

The standard and various advanced processing results are all obtained using the inte-
ger bootstrap estimator to resolve the phase ambiguities, see Section 4.5. The advantage
of this estimator compared to the ambiguity function is that multiple deformation mod-
els can be applied, without a significant increase of the computation time. Compared to
the integer least-squares estimator, the computation time is also strongly reduced, see
Figure 4.10. The bootstrap estimator is constrained using standard deviations for the
pseudo-observations inserted in the model. The standard deviations applied are 30 m
for the residual height, 5 mm for the atmospheric signal delay and noise of the master
image, 2 cm/y for the linear deformation rate, 1 cm/y2 and 1 cm/y3 for the quadratic
and cubic model, respectively, and 5 mm for the amplitudes of the periodic terms (see
Eq. (4.19)).

Each analysis is based on the construction of a network of first order PS, followed by
a densification by estimating the ambiguities and parameters of interest of all remaining
PSC. To enable testing of the ambiguity solutions, each PSC is connected to three first-
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Figure 7.2: Locations of the selected second-order PS candidates (PSC2, white dots) in the original
radar image. A normalized amplitude dispersion threshold of 0.45 is applied. The PSC density in
the rural areas is relatively high compared to the urban region. This is due to the arid circumstances
in these areas, resulting in consistent reflection intensities. The background gives an indication of
the area based on the mean intensity of the image stack, with the city of Las Vegas in the middle.

order network PS. The consistency of the solutions determines whether or not the PS is
accepted. In the Las Vegas test case the mode approach is used, see Section 5.4. Here,
for each ambiguity in the PSC time series the most occurring value is determined and
only when these most occurring values were estimated at least for two out of the three
connections throughout the time series, the PS is accepted.

To enable comparison of the results by the various analyses, the same set of PS
Candidates (PSC) is used in each approach. The exception is the set of PSC used in case
of the Area of Interest processing (Section 7.7) and time frame processing (Section 7.8),
where the Area of Interest approach results in a local increase of the number of PSC.
The PSC selection is based on the normalized amplitude dispersion, see Section 3.3.1.
A threshold of 0.25 for the first-order network points (PSC1) and of 0.45 for the PSC2
is applied. To reduce the number of PSC1 and ensure a homogeneous distribution, a
selection grid is applied to the initial set of PSC1, see Section 3.3.3. Each grid cell only
contains one PSC1. In total about 918 PSC1 and NPSCref=480625 PSC2 are selected.
The locations of the PSC2 are shown in Figure 7.2.

Apart from the standard approach, six alternative processing strategies are evaluated:
the use of extended deformation models, Deformation Phase Screen (DPS) estimation,
sequential testing of deformation models, prognosis-based densification, Area of Inter-
est processing and time frame processing, see Sections 7.2-7.8. An overview of the
approaches, including the sections where they are described, is given in Table 7.1.
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Table 7.1: Overview of the processing approaches presented in this chapter.

# Approach Deformation model Specification Section

1a Standard, boot-
strapping

Linear Used as benchmark 7.2

1b Standard, ILS Linear 7.2
1c Standard, ambi-

guity function
Linear 7.2

2a Extended Periodic Single extended model 7.3
2b Extended Periodic+cubic Single extended model 7.3
3 Deformation

Phase Screen
Linear Phase Screen estimation by Kriging 7.4

4 Sequential Linear, quadratic,
cubic, (+periodic)

Sequential testing of deformation
models

7.5

5 Prognosis Linear, quadratic,
cubic, (+periodic)

Sequential testing of deformation
models dependent on PS density

7.6

6 Area of Interest Linear Evaluation of all local amplitude max-
ima in certain Area of Interest

7.7

7 Time frame Linear Limited time frame for final estimation 7.8

7.2 Application of standard processing

Application of the standard DePSI processing scheme based on linear deformation be-
tween nearby points results in the detection of 422496 PS, hence 88% of the number of
pre-selected PSC. The linear deformation rates, as well as the quality indicators Spatio-
temporal consistency (STC), ensemble coherence and local ensemble coherence estimator
(see Section 6.2) are shown in Figure 7.3. The reference point is indicated with a black
circle (South-East corner). The rectangular box in Figure 7.3A indicates the area which
is visualized with more detail in Figure 7.4.

The linear deformation rates clearly show areas with strong subsidence due to ground-
water withdrawal. Rates of more than 20 mm/y are measured. Figure 7.4A also shows
the occurrence of isolated PS with anomalous deformation behavior. These PS either
show autonomous movement, i.e., actual deformation which is not spatially correlated, or
are a falsely detected PS. Despite the ambiguity testing scheme in the processing based
on multiple connecting arcs for each PSC, some ambiguity errors remain undetected
due to coincidental agreement between the various wrong solutions for the connecting
arcs. To distinguish the PS with autonomous movement from the false detections, an
additional selection procedure based on one or more quality indicators is required. Here,
the ensemble coherence estimator, the local ensemble coherence estimator, and STC are
considered, see Figures 7.3 and 7.4, B–D.

In many studies the ensemble coherence estimator (Eq. (6.25)) with respect to
the reference point is used for the further selection of PS. However, as is discussed in
Section 6.2, the coherence estimator describes both the noise level of the measurements
and the unmodeled part of the deformation. This is also visible in Figure 7.3C, where the
PS in the subsidence bowls show relatively low coherence values. This may indicate a
high noise level in this region, but more likely it shows that the linear deformation model
is not the most suitable model for these areas. A strictly applied coherence threshold
would result in the undesirable effect of removing these PS from the final data set.

As an alternative, local quality indicators can be used. Both the local ensemble
coherence and STC are presented in Figures 7.3 and 7.4, B and D. The figures illus-
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D) Standard, local coherence
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Figure 7.3: Approach 1a. DePSI results of the Las Vegas test site using the standard processing
approach based on an ERS-1/2 dataset acquired between April 1992 and September 2000. The
linear deformation rates of all detected PS are shown, together with the quality indicators STC,
ensemble coherence and local ensemble coherence. The reference point is indicated with a black
circle (South-East corner). A detailed view of the PS in the rectangular box is given in Figure 7.4.

trate that these quality indicators are far less sensitive to spatially correlated unmodeled
deformation, since the PS in the subsidence bowls show similar values as the surround-
ings. Hence, by applying a threshold on these indicators a final selection of PS would
be obtained which better represents the actual noise characteristics of the PS.

However, regardless whether a local or global quality indicator is used, certain PS
may already have been rejected at an earlier stage due to incorrect ambiguity resolution
based on the linear deformation assumption. Therefore, advanced processing approaches
are applied in the next sections to adjust the deformation model. As a consequence, the
ensemble coherence estimator will be less affected by unmodeled deformation. Thereby,
the detection of PS based on this global quality indicator is improved. To follow the
conventional methodology of PS selection and to enable a comparison between the
various advanced processing results, the ensemble coherence estimator is used in the
remainder of this study for PS selection. The PS selection based on a coherence threshold
of 0.7, 0.6, and 0.5, is visualized in Figure 7.5. The number of PS increases from 154941
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Figure 7.4: Approach 1a. DePSI results of a small region in the Las Vegas test site (see rectangular
box in Figure 7.3) using the standard processing approach. The linear deformation rates of all
detected PS are shown, together with the quality indicators STC, ensemble coherence and local
ensemble coherence.

to 281034 and 363058, respectively. The result based on the 0.5 threshold is used for
further comparison in the remainder of this chapter, indicated by Nref.

To assess the impact of the choice of the bootstrap estimator on the results, Fig-
ure 7.6 shows the detected PS by bootstrapping, integer least-squares (ILS), and the
ambiguity function. The number of detected PS, applying a coherence threshold of
0.5, increases from the Nref=363058 PS by bootstrapping to 1.03Nref PS by ILS and
1.07Nref PS by the ambiguity function. These numbers are in correspondence with the
success rates shown in Figure 4.5 based on simulated data, that is, the ambiguity func-
tion outperforms the ILS and bootstrap estimators. However, despite the superiority of
the ambiguity function especially for strong deformation rates, the PS density of the
ambiguity function results in the middle of the subsidence bowl is relatively limited. The
hypothesis is that the ILS and bootstrapping estimators are better able to accommodate
any non-linear deformation behavior due to leakage of the model imperfections into the
covariance matrix used in the estimation. Nevertheless, the ambiguity function gives
an overall 7% increase with respect to the bootstrap solution. However, the ambiguity
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Figure 7.5: Approach 1a. Linear deformation rates after applying the standard processing approach
based on a linear deformation model. The PS are selected based on an ensemble coherence threshold
of 0.7, 0.6, and 0.5. The right column shows the detailed results within the rectangular box in the
figures on the left.
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Figure 7.6: Approach 1a–c. Linear deformation rates after applying the standard processing ap-
proach based on a linear deformation model using bootstrapping (top), integer least-squares (ILS,
middle), and the ambiguity function (bottom). The PS are selected based on a ensemble coherence
threshold of 0.5. The right column shows the detailed results within the rectangular box in the
figures on the left. The different estimators result in a varying selection of PS. Most PS are de-
tected by the ambiguity function, although the number of PS in the center of the subsidence bowl
is smaller compared to the ILS and IB results.
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function cannot be applied here to evaluate the various processing strategies, since no
additional deformation parameters can be estimated without a unacceptable increase of
the computational load. Similar, the ILS estimator requires more than 10 times the com-
putation time needed for the bootstrap solution. Since only a 3% increase in the number
of detected PS is achieved by the ILS estimator, the significant shorter computation time
required by bootstrapping is determining the choice of the bootstrap estimator for the
remainder of this chapter.

7.3 Application of extended deformation models

The most straightforward application of an advanced processing scheme is the use of a
general extended deformation models with respect to the linear model. This approach
was already proposed by Colesanti et al. (2003a); Kampes (2006). Hence, apart from
a linear deformation rate, additional deformation models are added to the estimation
scheme. Examples are a periodic model, a higher-order polynomial (e.g., quadratic or
cubic), or a breakpoint model, see Section 4.2.

For the Las Vegas test case both a periodic model and a periodic+cubic model are
applied. For all models holds that the linear deformation model is included by default.
In case of the cubic model, hence a third-order polynomial, also the quadratic term is
incorporated. The results are shown in Figures 7.7 and 7.9. In total 0.98Nref PS are
detected using the periodic model and applying a threshold on the ensemble coherence
of 0.5. Hence, the number of detected PS in case of a periodic model is slightly smaller
compared to application of the standard approach. This counter-intuitive reduction is
caused by the additional deformation parameters, which increases the degree of freedom
in the estimation process. As a result, more inconsistent ambiguity solutions are ob-
tained in the connecting arcs to a certain PSC, resulting in a rejection of the PS in the
testing scheme. This effect is even stronger using the periodic+cubic model. Here only
0.76Nref PS are detected. Moreover, the number of isolated PS with apparent anomalous
deformation behavior is significantly increased. Most likely, the majority of these points
are false detections, which erroneously passed the ambiguity testing scheme. From these
results the conclusion can be drawn that application of extended deformation models
to the full area does not result in the detection of more PS, as was the objective, but
instead decreases the number of detected PS.

More important than the number of detected PS is the reliability of the deformation
time series estimate, hence, whether the final solution is actually representing the physical
truth. A strict answer can only be provided by validation of the results using ground truth
data. Unfortunately, this data is unavailable. Therefore, a qualitative approach is taken
by inspecting the deformation time series. In Figures 7.8 and 7.10 the deformation time
series of two representative PS are shown, which are detected in all processing results in
this chapter. The location of these PS is indicated in Figure 7.7, bottom-left. Both the
result of the standard processing and the advanced approach are visualized. The figures
show that application of alternative deformation models cause the deformation time
series to change, primarily due to a change in phase ambiguity solution. Regarding the
time series of PS A using the periodic model (Figure 7.8), the solution by the standard
approach appears to be more likely and shows similar values as obtained by Bell et al.
(2008a), i.e., −20-−30 mm/y between 1992-1996 and −10-−20 mm/y between 1996-
2000. In case of the periodic+cubic model (Figure 7.10), an even higher deformation rate
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Figure 7.7: Approach 2a. Top row) Linear deformation rates after applying an additional periodic
deformation model on top of the linear model. The PS are selected based on an ensemble coherence
threshold of 0.5. The right column shows the detailed results within the rectangular box in the figure
on the top-left. Bottom row) Difference between the linear deformation rates of the common PS
obtained by the standard approach and the periodic model processing. Only the PS which are
detected in all advanced processing schemes are shown. The largest differences occur in the region
with the strongest subsidence rates (blue dots). However, in most cases the periodic signals (if
present) do not affect the linear deformation rates significantly. The time series of PS A and B are
shown in Figure 7.8.
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Figure 7.8: Approach 2a. Deformation time series of two representative PS, see Figure 7.7, bottom-
right, for the locations A and B. Both the result of the standard processing and using an additional
periodic deformation model are shown. The solid lines represent the linear part of the model. For
point B the time series are almost identical. Regarding point A, the solution obtained by the
periodic model appears visually to be less likely corresponding to the true surface behavior. Since
the estimated amplitude of the periodic signal in this area is limited to less than 3 mm, the periodic
signal is not distinctive in the time series.

of about −40 mm/y is obtained. Both solutions seem possible. A quality indicator such
as the ensemble coherence estimator, STC or variance factor (see Section 6.2) should
be compared to indicate the most likely solution. However, it should be noted that
the ensemble coherence estimator is insensitive to ambiguity errors, see Section 6.2.1.
Regarding PS B, the standard approach and the periodic model result in the same
solution, however, the deformation rate in the 1992-1996 period of −17 mm/y is lower
compared to the results in Bell et al. (2008a). Using the periodic+cubic model, a rate
of −26 mm/y is obtained, which corresponds to the study mentioned.

The results show that using different models different deformation time series are
obtained. A quality indicator is required to determine the best fitting model. This con-
cept is used in the sequential testing (see Section 7.5) and prognosis-based densification
approach (see Section 7.6). First an alternative approach based on the estimation of a
Deformation Phase Screen is introduced.

7.4 Deformation Phase Screen (DPS) estimation

7.4.1 Algorithm of DPS estimation

An alternative approach to attempt to increase the number of detected PS is the estima-
tion of a Deformation Phase Screen (DPS) per interferogram (Humme, 2007; van Leijen
and Hanssen, 2007a). After a DePSI analysis with a certain temporal deformation model,
e.g., linear, the DPS is estimated from the deformation time series of the detected PS,
see module 8 in Figure 3.1. Hence, a spatial approach is applied, instead of an adaption
of the model in the time domain, as applied in the previous section. The DPS approach
is therefore only suitable for deformation phenomena with a certain spatial smoothness.

The DPS can either be parametric or based on least-squares prediction, see Sec-
tion A.3. An example of a parametric representation is a superposition of K elementary
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Figure 7.9: Approach 2b. Top row) Linear deformation rates after applying a periodic+cubic
deformation model on top of the linear model. The PS are selected based on an ensemble coherence
threshold of 0.5. The right column shows the detailed results within the rectangular box in the figure
on the top-left. Bottom row) Difference between the linear deformation rates of the common PS
obtained by the standard approach and the periodic+cubic model processing. Only the PS which
are detected in all advanced processing schemes are shown. Application of the cubic model results
in differences in the values of the linear deformation rates compared to the standard approach.
Moreover, the number of isolated PS with apparent anomalous deformation behavior increases
significantly. This is caused by the additional degrees of freedom due to the extra deformation
parameters, which results in erroneous resolution of the phase ambiguities. The time series of PS
A and B are shown in Figure 7.10.
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Figure 7.10: Approach 2b. Deformation time series of two representative PS, see Figure 7.9,
bottom-right, for the locations A and B. Both the result of the standard processing and using an
additional periodic+cubic deformation model are shown. The solid lines represent the linear part of
the model. For both points the deformation time series alters by applying the extended deformation
model. The most likely true solution cannot be assessed based on the time series plot alone. Since
the amplitude of the periodic signal in this area is limited to less than 3 mm, the periodic signal is
not distinctive in the time series.

ellipsoidal subsidence bowls (Kenselaar and Quadvlieg, 2001) to describe the deformation
phase D0s

DPS for each interferogram, resulting in

D0s
DPS =

K∑

k=1

d0sk exp(−1

2
(u0sk + v0sk )), (7.1)

with

u0sk =

(

(x − x0sc,k) sin(ω
0s
k ) + (y − y0sc,k) cos(ω

0s
k )

a0sk

)2

,

v0sk =

(

(x − x0sc,k) cos(ω
0s
k )− (y − y0sc,k) sin(ω

0s
k )

b0sk

)2

,

where

d deformation at center of the subsidence bowl,
x,y coordinates,
xc,yc coordinates of center bowl,
ω orientation of the ellipsoid,
a,b length of ellipsoidal axis.

To estimate the parameters of the subsidence bowls in a least-squares sense, Eq. (7.1)
is linearized. An iterative estimation and testing scheme is applied to converge to the
solution, initialized by approximate values of the parameters d, xc, yc, ω, a and b. In
practice these approximate values need to be known accurately to ensure convergence
to the solution.

An alternative for parametric modeling is an interpolated deformation field based on
least-squares prediction. This approach is similar to the method applied for the predic-
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tion of the Atmospheric Phase Screen (APS), see Section 5.3.2. The prediction is based
on a spatial covariance function which is estimated from the data per interferogram.
Hence, no a-priori information about the deformation field is required in this case. As
a consequence, this method is more flexible compared to the parametric modeling and
therefore widely applicable. By using a Gaussian covariance function to construct the
covariance functions, a predicted phase screen is obtained which is continuous and dif-
ferentiable. As a consequence, even values outside the observed range of deformation
values can be predicted.

Once modeled or predicted, the DPS is subtracted from the original interferometric
phase and the DePSI processing is repeated (again using a certain temporal deformation
model, e.g., linear). Because the DPS are predicted per epoch using the displacement
time series, possible non-linear deformation is modeled as well. As a result, points which
were previously rejected as a PS due to too large deviations from the model may now
be accepted. Hereby the density of PS could improve. Obviously, this procedure can be
repeated iteratively. After the last iteration, the DPS are added to the final estimates
to obtain the total deformation time series.

To capture as much detail as possible, the choice is made to base the DPS on the
full set of detected PS, see the flowchart in Figure 3.1. Alternatively, the DPS can be
predicted at an earlier stage, only using the first-order PS, as is done for the prediction
of the Atmospheric Phase Screen (APS). However, the spatial density of the PS1 may
be too low for a profound prediction or modeling.

7.4.2 Application of DPS estimation

The DPS approach is applied to the Las Vegas test case using least-squares prediction.
The prediction is based on the PS detected by an initial DePSI analysis applying a linear
deformation model, hence, the standard approach (see Section 7.2). The predicted
Deformation Phase Screens are shown in Figure 7.11. Because the prediction is based
on the deformation time series, any non-linearity in the deformation behavior is reflected
in the DPS. After removing the DPS from the original interferometric phases, a final
first-order network is constructed based on the phase residuals and the PSC are evaluated
again, see Figure 3.1.

Application of the DPS approach results in the detection of 1.11Nref PS with a
coherence higher than 0.5, see Figure 7.12. Moreover, the number of erroneous detected
PS remains limited, especially compared to the results using the cubic deformation model
(Figure 7.9). Figure 7.12 (bottom row) shows that the DPS approach primarily affects
the center of the subsidence bowl with the strongest deformation rate. Apparently, this
region also shows a considerable non-linearity in the deformation, which is captured by
the least-squares prediction. This is confirmed by the deformation time series of PS
B in Figure 7.13. A solution with a decaying deformation rate is found, equivalent to
the results obtained by Bell et al. (2008a). However, because both the standard and
the DPS deformation time series show a reasonable result, the most likely true solution
cannot be assessed based on the time series plot only. A quality indicator should be used
to determine the most likely solution.
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Figure 7.11: Approach 3. Deformation Phase Screens (DPS) for the Las Vegas test case obtained
by least-squares prediction. The prediction is based on the PS detected by an initial DePSI analysis
applying a linear deformation model (standard approach, equal to results in Section 7.2). Because
the prediction is based on the deformation time series, any non-linearity in the deformation behavior
is reflected in the DPS.
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Figure 7.12: Approach 3. Top row) Linear deformation rates after applying the Deformation Phase
Screen (DPS) approach. The PS are selected based on an ensemble coherence threshold of 0.5,
resulting in 1.11Nref detected PS. The right column shows the detailed results within the rectangular
box in the figure on the top-left. Bottom row) Difference between the linear deformation rates of
the common PS obtained by the standard approach and the DPS processing. Only the PS which
are detected in all advanced processing schemes are shown. The largest differences occur in the
region with the strongest subsidence rates.

7.5 Sequential deformation model testing

7.5.1 Algorithm of sequential deformation model testing

Another strategy aiming at increasing the number of detected PS is by sequential test-
ing of different temporal deformation models to adapt to the local deformation history
(van Leijen and Hanssen, 2007a,b). Conventional PSI algorithms apply global deforma-
tion models (Colesanti et al., 2003a; Kampes, 2006) to unwrap the data and estimate
the parameters of interest. Hence, a single model is used for the whole area. However,
deformation phenomena often have a local character. For example, in case the processed
area contains a subsidence bowl with a complex displacement history. Applying global
deformation models will either result in an under-parameterization of the subsidence in
the bowl or an over-parameterization of the surrounding area. That is, when the global
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Figure 7.13: Approach 3. Deformation time series of two representative PS, see Figure 7.12,
bottom-right, for the locations A and B. Both the result of the standard processing and applying
the DPS approach are shown. The solid lines represent the linear deformation rates. For point A
the time series are almost identical. Regarding point B, an alternative solution is found. The most
likely true solution cannot be assessed based on the time series plot only.

deformation models are based on the surrounding (stable) area, e.g., a linear model,
possible non-linear displacement profiles in the subsidence bowl may not allow correct
ambiguity resolution. Moreover, even when the phase is unwrapped correctly, the large
residues will result in a low quality assessment (e.g., based on coherence, see Section 6.2).
The false rejection of PS results in gaps in the PS distribution. On the other hand, when
the global deformation models are based on the displacements in the subsidence bowl,
the surrounding areas are unwrapped with unnecessary complex models, increasing the
chance on unwrapping errors (denoted as type-II errors, see Section A.2 and the results
in Section 7.3). Therefore, deformation models adaptive to the local circumstances are
desirable.

The sequential testing algorithm can be applied to the temporal ambiguity resolution
of both the first-order as higher-order PSC. The algorithm is initialized with the selection
of a set of temporal deformation models. Then, each phase double-difference between
two PSC is unwrapped in time applying the sequential scheme of alternative hypothesis
testing until a deformation model fits to the data sufficiently. A linear model is a
suitable null hypothesis (see Section A.2) because of the maximum redundancy in the
estimation process. The testing criterion for accepting a hypothesis is the a-posteriori
variance factor σ̂2 denoted by Eq. (4.53), which is repeated here for convenience

σ̂2 =
êTQ−1

y ê

m− n
. (4.53)

Here, e is the vector of residuals between the unwrapped phase and the deformation
model, m is the number of observations and n the number of unknown parameters. The
covariance matrix Qy describes the stochastic properties of the interferometric phase
observations. A σ̂2 of 1.0 indicates that the covariance matrix used in the estimation
process correctly describes the dispersion of the observations. Recall that this matrix
was obtained by Variance Component estimation (VCE), see Section 4.4. A value of 2.0
means that the stochastic model used is a factor two too optimistic (assuming that the
functional model is correct). Hence, the a-posteriori variance factor scales the a-priori
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stochastic model for a specific double-difference.
Applying the sequential scheme of hypothesis testing, a certain deformation model

is accepted when σ̂2 is smaller than 1.0. Otherwise, the next model is tested until the
complete set of models is evaluated. For computational efficiency, the sequential testing
scheme is performed in batch, that is, a certain model is applied for a set of double-
differences, after which the next model is applied to a subset of these arcs which did
not pass the test. For each arc the lowest σ̂2 and the corresponding model are stored.
When all models are evaluated and even the best model for an arc is not fulfilling the
threshold, the arc is still considered and the solution with the lowest variance factor is
taken. Optionally, an additional variance factor threshold can be applied to remove very
low quality solutions. A spatial testing procedure will finally test the correctness of the
temporal unwrapping, see Sections 5.1 and 5.4.

7.5.2 Application of sequential deformation model testing

Application of the sequential testing approach results in the PS as shown in Figure 7.14.
The deformation models evaluated are the linear, quadratic, and cubic model, with
or without an additional periodic signal. In total 0.96Nref PS are detected using the
coherence threshold of 0.5, meaning a decrease of more than 10000 PS with respect to
the standard approach. When observing the total number of detected PS, i.e., without
the additional coherence threshold, only slightly more PS appear to be detected. Hence,
only a few PS with a low coherence level are detected, especially compared to the number
for the standard approach (422496 PS detected in total, 363058 with a coherence above
0.5). Apparently, a considerable number of low quality PS are discarded by the sequential
testing scheme. The cause lies in the selection of different deformation models for
the connecting arcs to a certain PSC. The different models result in differences in the
estimated ambiguities, causing the rejection of the PSC in the spatial testing scheme.
Especially the low quality PS are sensitive to this effect.

Figure 7.14 (bottom row) shows that the linear component of the deformation time
series shows differences compared to the standard approach. The pattern is similar to
the result obtained by direct application of the periodic+cubic model, see Figure 7.9,
since this model is used in the final estimation of parameters based on the unwrapped
time series. However, the number of detections is strongly increased (0.96Nref versus
0.76Nref PS). Hence, the sequential testing scheme is better able to detect PS compared
to a general application of an extended deformation model. Moreover, the number of
false detections is slightly reduced.

When analyzing the deformation time series of PS A and B, it appears that in both
cases an alternative solution is obtained compared to the standard approach, see Fig-
ure 7.15. Whereas in the previous approaches no quantitative assessment of the most
likely true solution could be given, here the variance factor used during the processing
has indicated that this solution best fits to the data. Hence, a gradual decrease of the
deformation rate appears to reflect the true physical behavior in the region. This also
corresponds to the results obtained by Bell et al. (2008b), where different subsequent
periods were analyzed to detect the change in deformation rate. They observed maxi-
mum subsidence rates up to −30 mm/y in the 1992-1996 period and maximum rates
up to −20 mm/y between 1996 and 2000. However, here an even higher deformation
rate between 1992-1996 of −40 mm/y is obtained which appears to fit the data better.
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Figure 7.14: Approach 4. Top row) Linear deformation rates after applying the sequential testing
approach. The PS are selected based on an ensemble coherence threshold of 0.5, resulting in
0.96Nref detected PS. The right column shows the detailed results within the rectangular box in the
figure on the top-left. Bottom row) Difference between the linear deformation rates of the common
PS obtained by the standard approach and the sequential testing processing. Only the PS which are
detected in all advanced processing schemes are shown. Significant changes in the linear component
of the deformation time series occur. The pattern is comparable to the result obtained by direct
application of the periodic+cubic model, although differences are also visible, see Figure 7.9.
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Figure 7.15: Approach 4. Deformation time series of two representative PS, see Figure 7.14,
bottom-right, for the locations A and B. Both the result of the standard processing and applying
the sequential testing approach are shown. The solid lines represent the linear part of the model.
For both PS an alternative solution compared to the standard approach is found. Since the solutions
are obtained based on the variance factor indicating the goodness-of-fit to the data, these solutions
are assumed to represent the true behavior best.

Hence, extended deformation models are needed to capture the true deformation behav-
ior, which could not be retrieved by the linear model used in the previous study. Note
that a similar deformation behavior was also obtained for PS B using the Deformation
Phase Screen approach, but not for PS A. In conclusion, although application of the
sequential testing scheme results in a lower number of detected PS compared to the
standard approach, the reliability of the results increases.

7.6 Prognosis-based densification

7.6.1 Algorithm of prognosis-based densification

Instead of performing the hypothesis testing algorithm for each connecting arc, the
prognosis-based densification method only applies an extended deformation model when
necessary from a PS density perspective (van Leijen and Hanssen, 2007b). The method
is based on a prognosis of the number of PS within a certain area, for example a pre-
defined grid cell of a certain size, see also Figure 7.16. The prognosis is based on the
normalized amplitude dispersion, which is an indicator of phase stability (Ferretti et al.,
2001), see Section 3.3.1. The relation is shown in Figure 3.5. The figure shows that a
low normalized amplitude dispersion indicates low scattering noise.

Based on the number of PSC within a certain grid cell, a prognosis is made of
the number of PS. When the number of detected PS applying the null hypothesis (e.g.,
linear model) is significantly lower than the number of predicted PS (for instance less than
half), an extended deformation model is applied and tested. This procedure is applied
iteratively until the number of detected PS is satisfying. In each iteration, the different
connecting arcs to a PSC are used to test the solution. This is different compared
to the sequential testing approach, where a sufficiently fitting deformation model is
selected first for each arc, followed by a test on the phase ambiguities. Hence, unlike
for the sequential testing approach, in the prognosis-based densification the test of the
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Figure 7.16: Approach 5. Example of a grid used in the prognosis-based densification approach.
The number of detected PS within each grid cell in comparison with a prognosis-based on the
normalized amplitude dispersion is an additional constraint in the testing scheme.

ambiguities is based on equal deformation models. In case a certain model already results
in sufficient detected PS, further application of the iteration scheme is not necessary
for that particular grid cell. Hence, the computational burden is only increased when
required from a PS density point of view. The rationale behind this approach is that for
many geophysical phenomena, showing a certain spatial smoothness, a minimal amount
of detected PS is sufficient to capture the associated deformation signal. A demanding
analysis using all PS Candidates is in this case unnecessary.

7.6.2 Application of prognosis-based densification

The prognosis-based densification approach is applied to the Las Vegas test site using a
grid with a spacing of 300 m. The same set of PSC is used as by the other approaches.
As in the sequential testing approach, the linear, quadratic, and cubic model, with or
without an additional periodic signal, are evaluated. The iterative scheme of model
testing is applied until the user defined cut-off percentage of detected PS compared to
the total amount of PSC in the grid cell is reached, or until all pre-defined deformation
models are evaluated. To reduce the computational load considerably, a percentage of
for example 50% could be chosen. Here, a percentage of 80% is applied, to demonstrate
the full potential of the iterative use of the various deformation models.

Application of the prognosis approach results in the detection of 1.16Nref PS with
a coherence above 0.5, see Figure 7.17. Hence, more than 80% of the number of PSC
(480625) is detected. Compared to the standard approach, almost 60000 additional PS
are found. Part of this increase is due to an increase in the number of false detections.
However, this number is relatively small and smaller compared to the results obtained by
the extended deformation models or sequential testing approach. Figure 7.17 also shows
the difference with the results obtained by the standard approach, which are equivalent
to the results by the sequential approach. This is primarily because the same algorithm
is used by both approaches to obtain the first-order network based on the same set of
extended deformation models.
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Figure 7.17: Approach 5. Top row) Linear deformation rates after applying the prognosis-based
densification approach based on an iteration scheme until at least 80% of the PSC are detected as
PS. The PS are selected based on an ensemble coherence threshold of 0.5, resulting in 1.16Nref

detected PS. The right column shows the detailed results within the rectangular box in the figures on
the left. Bottom row) Difference between the linear deformation rates of the common PS obtained
by the standard approach and the prognosis based processing. Only the PS which are detected in
all advanced processing schemes are shown. Significant changes in the linear component of the
deformation time series occur. The pattern is comparable to the result obtained by the sequential
testing approach, primarily because the same first-order network is used.
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Figure 7.18: Approach 5. Deformation time series of two representative PS, see Figure 7.7, bottom-
right, for the locations A and B. Both the result of the standard processing and applying the
prognosis-based densification approach are shown. The solid lines represent the linear part of the
model. For both PS an alternative solution compared to the standard approach is found. Since the
solutions are obtained based on the variance factor indicating the goodness-of-fit to the data, these
solutions are assumed to represent the true behavior best. Moreover, the results are equal to the
time series obtained by the sequential testing approach.

Figure 7.18 show the deformation time series of points A and B. They are equal to
the time series obtained by the sequential testing approach. Hence, the same decreasing
deformation rate is observed. For PS B, they correspond to the same rates as found by
the Deformation Phase Screen approach and in the earlier study by Bell et al. (2008b).
However, regarding PS A, a higher deformation rate of −40 mm/y in the 1992-1996
period is estimated. Since these time series are obtained based on the variance factor
indicating the goodness-of-fit to the data, they are believed to represent the true defor-
mation behavior best. Hence, the prognosis-based densification approach is not only able
to detect more PS, the reliability of the deformation time series in general also increased,
despite an increase in the number of false detections. Additional quality indicators are
required to remove these false detections from the dataset.

7.7 Area of Interest processing

7.7.1 Algorithm of Area of Interest processing

The approaches previously presented are all based on a set of pre-selected Persistent
Scatterer Candidates (PSC) using amplitude information. Although amplitude informa-
tion is a good proxy for phase stability (see Section 3.3), some PS may however not
be pre-selected and are therefore not detected. The alternative, evaluation of all pixels
within the data stack, will result in a large computational burden. As a compromise, an
Area of Interest (AoI) can be selected, in which, after a standard approach to determine
the first-order network, each pixel is evaluated in the densification step, see Section 5.4.
By applying the side lobe detection algorithm (see Section 3.4) the pixels corresponding
to side lobes (and sub-main lobes) are excluded from the selection. Because the side lobe
detection algorithm also contains the selection of local amplitude maxima, the number
of selected PSC is still considerably smaller compared to the full number of pixels, see
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Figure 7.19: Approach 6. Selected PSC in case of an indicated Area of Interest. Left) Total test
site, which clearly shows the rectangular Area of Interest with a much higher density of PSC. Right)
Detailed view of the selected PSC for the region indicated by the black box in the figure on the left.

Figure 7.19. The AoI can either be rectangular, or of an arbitrary shape specified in a
separate mask file. For example, a mask could be created which follows a certain rail
track or a water defense structure, for which a detailed analysis is required.

7.7.2 Application of Area of Interest processing

The Area of Interest chosen for the Las Vegas test site is indicated with a white box
in Figure 7.20A. The selected PSC are shown in Figure 7.19. The selection without a
normalized amplitude dispersion threshold in the Area of Interest results in a significant
increase in the density of PSC. In total 1.4NPSCref PSC are selected in the whole test
site using a normalized amplitude dispersion threshold of 0.45, as applied in the other
approaches.

A linear deformation model is applied, both to construct the first order network as
well as for the densification. As a result, the first order network is equal to the network
obtained by the standard approach. Moreover, the common PS detected both in the
AoI processing and the standard analysis show, as expected, the same estimates, see
Figure 7.20 (bottom row). The same applies for the deformation time series, hence,
the deformation time series of points A and B are equal to the series obtained by the
standard approach. Therefore, the decreasing deformation rate as estimated by the
sequential testing and prognosis approach is not observed.

The total number of detected PS is 1.17Nref, which is an increase of more than
60000 compared to the standard approach. More relevant in this case, the number of
PS detected in the rectangular black box (which is part of the total AoI specified, see
Figure 7.20A) increases to 2.98Nref, visible by comparing Figures 7.6 and 7.20, A and
B.

As indicated in Section 7.2, to enable the comparison of the results by the various
approaches, a standard threshold of 0.5 of the ensemble coherence estimator is applied
to select the final set of PS. However, as discussed in Section 6.2, this global quality
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Figure 7.20: Approach 6. Top row) Linear deformation rates after applying the Area of Interest
(AoI, white box) approach. The PS are selected based on an ensemble coherence threshold of
0.5, resulting in 426379 detected PS. The right column shows the detailed results within the black
rectangular box in the figure on the top-left. Bottom row) Difference between the linear deformation
rates of the common PS obtained by the standard approach and the AoI processing. Since in both
cases only a linear deformation model is applied, the results of the common PS are the same.

indicator, which is defined with respect to the reference point, is not only showing the
noise level of the measurements, but is also sensitive to model imperfections. Therefore,
the use of local quality indicators may be beneficial to increase the number of detected
PS, since they operate at shorter distances, making them less sensitive for the model
used. Examples are shown in Figure 7.21. Figure 7.21A contains all the detected PS
without any quality threshold. The result shows a large number of false detections.
Hence, the testing scheme to detect inconsistencies in the phase ambiguities of multiple
connecting arcs to a PSC is not sufficient for a reliable detection of PS. Apparently, often
a consistent, but wrong, solution for multiple arcs is obtained. The top-right figure shows
the set of PS after applying the standard global ensemble coherence threshold of 0.5
(same figure as shown in Figure 7.20). A large part of the false detections is removed.
However, by comparing the top-left and top-right figure, it is observed that especially in
the center of the subsidence bowl a large part of the PS showing a consistent signal is
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Figure 7.21: Approach 6. Comparison of detected PS in case of the Area of Interest approach
after applying different global and local quality indicator thresholds. Top-left) Detected PS without
application of a quality threshold. Top-right) Detected PS with a global ensemble coherence above
0.5. Bottom-left) Detected PS with a local ensemble coherence above 0.6. Bottom-right) Detected
PS with a local determined spatio-temporal consistency (STC) below 6 mm. The local quality
indicators (bottom row) are better able to preserve the PS in the center of the subsidence bowl.

removed. The threshold can be reduced, however, this would result in a strong increase
in the number of false detections. Using a local ensemble coherence threshold of 0.6
(bottom-left) or a spatio-temporal consistency (STC) threshold of 6 mm (bottom-right),
the signal in the center of the bowl is much better preserved. Moreover, the number
of false detections is in both cases further reduced. Therefore, in general local quality
indicators should be used for the detection of PS. Nevertheless, although the results
in Figure 7.21 show a consistent distribution of PS, even in the subsidence bowl, the
deformation time series do not show the decreasing deformation rate, which is expected
to be closer to the true deformation behavior in the area. Hence, application of a linear
deformation model only does not provide reliable results.
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7.8 Time frame processing

7.8.1 Algorithm of time frame processing

Similar to a spatial selection of an Area of Interest, other specific analysis require a
selection of radar acquisitions in the time domain, denoted as time frame processing.
Normally all available radar acquisitions from a certain sensor and orbit are used for an
analysis with DePSI. This, because with an increasing number of acquisitions, the various
phase contributions such as deformation, height, and atmospheric signal delay, can better
be separated. However, when an area is analyzed where construction works occurred
during the acquisition time span, e.g., the construction of a new rail track or residential
area, the full time span will not be coherent in that area. In such a situation, the time
frame processing option can be applied (see, e.g., Arikan and Hanssen (2008)). Here, all
available acquisitions are used to estimate the Atmospheric Phase Screen (APS), whereas
the densification is based on a subset of interferograms covering the time span after the
construction works, see module 6 in Figure 3.1. Hence, the surrounding areas are used
to estimate the atmospheric signal, after which the atmosphere of the (relatively small)
area with construction works is interpolated by least-squares prediction, see Section 5.3.
Note that the master acquisition should be chosen within the selected time frame. If this
is not the case, the random master phase contributions will bias the temporal ambiguity
resolution, reducing the success rate of correct ambiguity resolution.

7.8.2 Application of time frame processing

The time frame processing is applied to the Las Vegas test site using a subset of 25
radar images acquired since January 1997 for the densification. Also here the Area of
Interest as specified in Section 7.7 is applied. The deformation model is restricted to a
linear deformation rate only. The results of the analysis are shown in Figure 7.22. In
total 1.51Nref PS are detected with a minimal coherence of 0.5. However, the figures
on the top show, based on the large number of extreme values, a large number of false
detections. Due to the relatively small number of acquisitions used, often an erroneous
fit of the phase observations to a linear model is found. Because of the small size of
the data stack, the ensemble coherence estimator is also less distinctive. Therefore,
an increase of the ensemble coherence threshold to 0.7 is required to obtain a better
selection of 0.96Nref reliable PS. The result is shown in Figure 7.23B. As reference,
the top-left figure shows the selected PS without quality threshold. The bottom row
visualizes the results with a local ensemble coherence of 0.7 and a Spatio-Temporal
Consistency (STC) of 4 mm, respectively. Note that these thresholds are also adjusted
in comparison with the values used for the Area of Interest processing, to ensure a proper
selection of reliable PS for this short time period.

The comparison of the time frame results with those of the standard approach,
see bottom row in Figure 7.22, shows that the deformation rate in the center of the
subsidence bowl is decreased for the short time frame at the end of the full acquisition
period. This is in agreement with the earlier observation of a decrease in the deformation
rate in the time series obtained by the sequential testing and prognosis approach. This
is also visualized for points A and B in Figure 7.24.
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Figure 7.22: Approach 7. Top row) Linear deformation rates after applying the time frame pro-
cessing approach. A subset of 25 images acquired between 1997 and 2000 are used for the final
estimation of the deformation time series. The PS are selected based on an ensemble coherence
threshold of 0.5, resulting in 1.51Nref detected PS. The right column shows the detailed results
within the rectangular box in the figures on the left. Bottom row) Difference between the linear
deformation rates of the common PS obtained by the standard approach and the time frame pro-
cessing. The difference shows a decrease in the deformation rate of the center of the subsidence
bowl for the short time span, which is in correspondence with the decrease of deformation rate
observed earlier using the sequential testing and prognosis-based approaches.

The objective of a time span processing is the measurement of the deformation of
objects which are not coherent for the full time span. Although here a general example
is used covering part of Las Vegas without any specific attention for construction works,
some areas of detected PS are visible, which are not detected when observing the full
time frame. Examples of two of these regions are indicated in Figure 7.23D, with a
white circle. The hypothesis is that these are newly build areas, showing only coherence
after 1996. For practical application of this processing approach, a-priori information
regarding construction works is required. For a generic approach, automatic detection of
change in coherence level is required. Such PS are often denoted as semi or temporary
Persistent Scatterers (Basilico et al., 2004). This approach is however not implemented
here.
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Figure 7.23: Approach 7. Comparison of detected PS in case of the time frame processing approach
after applying different global and local quality indicator thresholds. Top-left) Detected PS without
application of a quality threshold. Top-right) Detected PS with a global ensemble coherence above
0.7. Bottom-left) Detected PS with a local ensemble coherence above 0.7. Bottom-right) Detected
PS with a local determined spatio-temporal consistency (STC) below 4 mm. Adjustment of the
threshold values compared to the Area of Interest processing results is required due to the limited
number of acquisitions used. The white circles indicate two areas with PS, which are not detected
when analyzing the full acquisition time span (see Figure 7.21). Most likely these are newly build
areas, showing only coherence after 1996.
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Figure 7.24: Approach 7. Deformation time series of two representative PS, see Figure 7.22,
bottom-right, for the locations A and B. Both the result of the standard processing and applying
the time frame approach are shown. The solid lines represent the linear deformation rates. For both
PS a reduced deformation rate is observed for the short time span.

7.9 Summary and conclusions

The results of the seven different processing approaches presented in this chapter are
summarized in Table 7.2 for the full region and Table 7.3 for the small rectangular area
indicated in Figure 7.22. The tables contain the number of Persistent Scatterer Candi-
dates (PSC) evaluated, the number of PS detected after the testing scheme based on
the mode solution (see Section 5.4), and the number of PS detected after an additional
ensemble coherence threshold. Moreover, the relative computation time with respect to
the standard approach using a linear deformation model is given.

The relative computation times required by the extended deformation models (de-
noted as methods 2a and 2b in Tables 7.2 7.3) only show a slight increase with respect
to the standard approach. This is a characteristic of the integer bootstrap estimator
used to resolve the phase ambiguities. A similar small relative increase will apply for the
integer least-squares (ILS) estimator, although the overall computation time for ILS is
much larger compared to the bootstrap estimator, see also Table 7.2. However, the use
of the ambiguity function would result in an enormous increase in the computation time
due to a strongly growing solution space, see Section 4.7.

The estimation of a Deformation Phase Screen (DPS) causes a doubling of the time.
This is directly related to the repetition of the densification step, after prediction of the
DPS. The sequential testing scheme is much less efficient. Because a maximum of six
different models is evaluated for each arc, the estimation time increases considerably. The
same range of six models is considered in the PS density prognosis approach. However,
unlike in the sequential approach, here in each iteration the ambiguity test is applied,
based on the same model for all connecting arcs to a certain PSC. Use of the same
model increases the consistency of the solutions considerably, with a strong reduction of
the number of models to be evaluated as result. The computation time is therefore only
1.5 times longer compared to the standard approach. The increase of the computation
time for the Area of Interest approach is directly related to the larger number of PSC to
be evaluated. The Time frame approach requires on the other hand much less time due
to a reduction of the number of acquisition used, and thereby the number of ambiguities
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Table 7.2: Overview of number of detected PS using different approaches in the full Las Vegas
test area. All values are given as a factor with respect to the results by the standard approach
using the bootstrap estimator (absolute numbers given in brackets). Apart from the number of
evaluated PSC and the number of detected PS, also the amount of PS after application of ensemble
coherence thresholds is shown. In each analysis the same set of PSC is evaluated (only increased
for the Area of Interest and Time frame processing), which is selected based on the normalized
amplitude dispersion. Only for cases 1b and 1c integer least-squares and the ambiguity function
are used instead as reference. Also the computation time factor with respect to the benchmark is
given, which took 16.1 hours on the computing platform used.

# Approach Computation #PSC #PS Coherence threshold
time factor 0.5 0.6 0.7

1a Standard,
bootstrap

1.00 1.00 1.00 1.00 1.00 1.00

(16.1 h) (480625) (422946) (363058) (281034) (154941)
1b Standard, ILS 10.52 1.00 1.04 1.03 1.01 0.99
1c Standard,

ambiguity
function

0.82 1.00 1.08 1.07 1.04 1.02

2a Periodic 1.02 1.00 0.94 0.98 1.01 1.05
2b Periodic+cubic 1.05 1.00 0.65 0.76 0.94 1.29
3 Deformation

Phase Screen
2.10 1.00 1.00 1.11 1.28 1.71

4 Sequential 5.68 1.00 0.83 0.96 1.21 1.61
5 Prognosis 1.50 1.00 1.04 1.16 1.29 1.56
6 Area of Inter-

est
1.34 1.40 1.25 1.17 1.13 1.09

7 Time frame 0.43 1.40 1.36 1.51 1.68 2.25

to estimate.
The number of detected PS varies, not considering the Area of Interest and Time

span results, from 0.76Nref to 1.16Nref for the full area, and between 0.93Nref and
1.27Nref for the small rectangular region when applying an ensemble coherence thresh-
old of 0.5, see Tables 7.2 and 7.3. The smallest amount of PS is obtained using a
Periodic+Cubic model for the full region, whereas the prognosis-based densification re-
sults in the largest set of detected PS. The tables also show the decrease in the number
of PS with increasing coherence threshold. Since the use of extended deformation mod-
els reduces the influence of model imperfections on the coherence estimator, a relatively
large amount of PS remain for the advanced approaches with increasing threshold.

The tables do however not show the reliability of the results. Visual analysis of the
various figures in this chapter indicates that, assessed by the number of PS with ex-
treme deformation rates, the number of false detections varies considerably between the
approaches. The number of false detections is very limited when applying the standard
approach or the DPS estimation, hence, when only a linear deformation model is applied
in the ambiguity resolution. Most false detections are obtained by the Periodic+Cubic
model and the sequential testing approach. The Periodic model and the prognosis-based
densification approach give intermediate results. However, in this assessment also the
total number of detected PS should be observed. For example, the standard approach
outperforms the prognosis-based method regarding false detections, but the total num-
ber of PS is strongly increased with the advanced method. Moreover, the reliability
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Table 7.3: Overview of number of detected PS using different approaches in the small area in
Las Vegas indicated in Figure 7.22. All values are given as a factor with respect to the results by
the standard approach using the bootstrap estimator (absolute numbers given in brackets). Apart
from the number of evaluated PSC and the number of detected PS, also the amount of PS after
application of ensemble coherence thresholds is shown. In each analysis the same set of PSC is
evaluated (only increased for the Area of Interest and Time frame processing), which is selected
based on the normalized amplitude dispersion. Only for cases 1b and 1c integer least-squares and
the ambiguity function are used instead as reference. Also the computation time factor with respect
to the benchmark is given, which took 16.1 hours on the computing platform used.

# Approach Computation #PSC #PS Coherence threshold
time factor 0.5 0.6 0.7

1a Standard, bootstrap 1.00 1.00 1.00 1.00 1.00 1.00
(16.1 h) (20929) (17467) (14274) (11492) (7544)

1b Standard, ILS 10.52 1.00 1.05 1.06 1.03 1.01
1c Standard, ambiguity

function
0.82 1.00 1.11 1.07 1.03 1.01

2a Periodic 1.02 1.00 0.93 1.01 1.05 1.10
2b Periodic+cubic 1.05 1.00 0.76 0.93 1.13 1.37
3 Deformation Phase

Screen
2.10 1.00 1.00 1.11 1.17 1.28

4 Sequential 5.68 1.00 0.89 1.09 1.34 1.61
5 Prognosis 1.50 1.00 1.09 1.27 1.38 1.50
6 Area of Interest 1.34 7.10 4.97 3.71 2.98 2.17
7 Time frame 0.43 7.10 6.51 7.27 6.92 6.91

of the deformation time series, that is, whether they describe the actual deformation
behavior, should be considered. The figures throughout this chapter with deformation
time series of points A and B indicate that a decaying deformation rate is observed when
using the sequential testing, prognosis, or DPS approach. This effect is also observed by
Bell et al. (2008b), where different subsequent periods are analyzed to detect the change
in deformation rate. Application of the standard approach was not able to retrieve this
deformation behavior.

In conclusion, the prognosis-based densification approach gives the best performance
based on the number of detected PS, the reliability of the results, the relative low amount
of false detections, and the computation time. Both the sequential testing approach and
the prognosis-based method are able to retrieve the reducing deformation rate in the
center of the subsidence bowl. However, regarding the number of false detections,
the number of detected PS, and the computation time, the prognosis-based method
outperforms the sequential testing scheme. This is mainly caused by the ambiguity test
in each iteration with a certain deformation model, instead of after the iteration scheme,
as is applied in the sequential approach. Hence, the use of the same deformation model
for all connecting arcs to a certain PSC is recommended.

Apart from the prognosis and sequential approach, also the Deformation Phase
Screen approach was able to retrieve part of the non-linear deformation signal in the
subsidence bowl. Since in this approach only a linear deformation model was applied,
also the ambiguity function could have been used for the temporal unwrapping. Hence,
estimation of the DPS is a good alternative for algorithms which are restricted to the
ambiguity function.

The use of extended deformation models for the full region not only results in less
detected PS compared to the standard approach, also the number of false detections



7.9. Summary and conclusions 157

increases considerably. Hence, the higher degree of freedom in the ambiguity estimation
appears to result in a larger amount of inconsistent solutions for the connecting arcs of a
certain PSC. Since the prognosis-based method using local deformation models resulted
in an increase in the number of detected PS, it is shown that use of local deformation
models is indeed beneficial.

Despite the tests on the estimated ambiguities, the results of all approaches show a
certain degree of false detections. Hence, the ambiguity tests appear not to be sufficient
to distinguish the true PS. In some cases, a consistent but wrong solution is obtained for
the various arcs connecting a PSC. A further selection based on a threshold of a quality
indicator, e.g., the coherence estimator or the Spatio-Temporal Consistency (STC), is
therefore required to obtain the final selection of reliable PS. The results show that local
quality indicators, such as the local coherence estimator and the STC, are less sensitive
to model imperfections and therefore result in a better detection of PS.

In spite of the tests on the ambiguities and the use of additional quality indicators,
still consistent solutions may be found with a sub-optimal deformation model, resulting
in a wrong deformation time series. In this example of the Las Vegas test site the use of
a linear deformation model resulted in detected PS in the center of the main subsidence
bowl, which did not reflect the decreasing subsidence rate. Hence, interpretation of these
results would have resulted in a wrong assessment of the past, and possibly prediction
of future, deformation behavior of the area. Without the use of non-linear deformation
models, this behavior would have remained undetected. In this specific dataset of ERS-
1/2 radar images especially the 1993-1994 data gap is causing the range of alternative
solutions found. Hence, in general the availability of a continuous dataset is desirable
from a reliability perspective.

These conclusions are based on the results obtained by the integer bootstrap estima-
tor. This estimator is chosen because the use of the ambiguity function is not possible
due to the application of deformation models with multiple parameters, and the integer
least-squares (ILS) estimator requires considerable more computation time. Although
the performance of the bootstrap estimator is inferior to the integer least-squares estima-
tor and the ambiguity function, it does enable the comparison of the various approaches,
as is the objective of this chapter. Hence, it is assumed that equal conclusions would
have been drawn based on results by the ILS estimator.





Conclusions and recommendations 8
8.1 Conclusions

A new Persistent Scatterer Interferometry (PSI) algorithm is developed based on geode-
tic estimation and testing techniques. The algorithm is labeled as DePSI, the Delft
implementation of PSI. DePSI is able to detect point scatterers with consistent reflec-
tion properties over time, for which the deformation time series can be estimated with
sufficient reliability. Hence, the algorithm resolves a combined estimation and detection
problem.

Various geodetic data analysis techniques are applied to estimate the deformation
time series of the Persistent Scatterers (PS) from a set of radar images. The stochastic
properties of the phase observations are estimated by least-squares variance component
estimation (VCE). The phase ambiguities in the temporal domain are estimated by inte-
ger least-squares, integer bootstrapping, or the ambiguity function. A newly developed
testing scheme based on the phase ambiguities is applied to detect and remove ambiguity
errors and incoherent Persistent Scatterer Candidates (PSC). The Atmospheric Phase
Screens are predicted by least-squares prediction. Due to the consistent framework of
techniques, it is possible to propagate the errors, thereby obtaining a quality description
of the results.

DePSI has been applied for various applications, such as subsidence due to gas ex-
traction (Ketelaar, 2009), surface deformation due to mining (Perski et al., 2009; Caro
Cuenca, 2012) and groundwater pumping (van Leijen and Hanssen, 2008; Osmanoglu
et al., 2011; Cigna et al., 2012), the monitoring of water defense structures (Hanssen
and van Leijen, 2008a,b; van Leijen et al., 2008), stability assessment of constructions
(Perski et al., 2007; Chang and Hanssen, 2012), and atmospheric studies (Liu, 2012).
Moreover, the algorithm is validated and certified by the European Space Agency (ESA)
and the German Aerospace Center (DLR).

For the development of DePSI three main components were identified in the introduc-
tion: algorithm design, ambiguity resolution, and Persistent Scatterer detection. The
conclusions in relation to these components are discussed below.

Algorithm design

The DePSI algorithm is characterized by a hierarchic structure of PS networks and
an iterative approach to improve the stochastic model used for the estimations. The
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hierarchic structure is based on first and higher-order networks of PS, comparable to
the concept used for conventional geodetic measurement techniques. The first-order
network forms the backbone of the analysis and aims to ensure the overall integrity of
the full area analyzed, whereas the higher-order networks provide a further densification
of the measurement points. The normalized amplitude dispersion is used as a proxy for
coherence to pre-select the first and higher-order PSC. Hereby, the amount of data is
strongly reduced and the hierarchy in the PSC is obtained.

An iterative scheme based on the first-order network is used to estimate and isolate
the phase contribution due to error sources, i.e., satellite orbit inaccuracies and atmo-
spheric delay. In each iteration the stochastic model of the corrected phase observations
is updated by applying least-squares variance component estimation. The full coverage
Phase Screens of the atmospheric signals are obtained by least-squares prediction.

Once the final first-order network is obtained, the deformation time series of the
higher-order PSC are estimated and tested. After the final detected PS are georeferenced,
the estimated deformation time series, together with their quality description, can be
further analyzed and integrated with other geodetic measurements. The requirements for
the georeferencing accuracy depend on the application, in combination with the spatial
smoothness and extent of the deformation signal. When a high accuracy is desired,
the sub-pixel position of point scatterers should be estimated, since it improves the
geolocation accuracy with a factor three for typical satellite missions.

Ambiguity resolution

Each phase observation in the data stack has an unknown phase ambiguity. To estimate
these ambiguities in the spatio-temporal domain, a two-step procedure is applied in
DePSI. First, an estimation in the temporal domain is performed for each differential arc
between two Persistent Scatterer Candidates. Three estimators are implemented and
evaluated: integer least-squares (ILS), integer bootstrapping (IB), and the ambiguity
function (AF). The ILS and AF estimator provide equivalent success rates for moderate
deformation rates per arc. An advantage of the ambiguity function, together with the
IB estimator, is the computation speed. However, a drawback of the ambiguity function
estimator is that no additional deformation parameters can be inserted in the model
without an unacceptable increase of the computational load. Hence, the estimation of
for instance seasonal ground motion is not feasible. Using the ILS or IB estimator it
is possible to add parameters without a significant increase of the computation time.
However, the computational load of ILS increases significantly with an increasing number
of images in the data stack. Therefore, the integer bootstrap estimator is a good
alternative, although at the expense of performance.

The second step in the ambiguity resolution is a spatial integration of the estimated
arcs based on a novel testing scheme to remove wrongly estimated arcs and inconsistent
PSC. Hence, the phase stability determines the final selection of PS, instead of a pre-
selection of points, as is often applied. Errors are therefore removed instead of distributed
over the network. The testing is based on the integer ambiguities, instead of the real-
valued parameters. This approach enables the use of varying deformation models in
the temporal phase unwrapping, thereby ensuring a consistent network. Hence, models
adapted to the local deformation behavior can be evaluated instead of a general model
for the full area.



8.1. Conclusions 161

Persistent Scatterer detection

The objective of the algorithm is to detect the PS among the large amount of image
pixels. To enable the detection based on the consistency of the phase observations, the
deformation time series should be estimated. Experimental results show that the use of
spatially local deformation models instead of a general model improves the PSI results.
This conclusion is based on an increase in the number of detected PS, an increase in
the reliability of the estimated deformation time series, and a decrease of the number of
false detections. The assessment is based on the evaluation of seven different processing
strategies for a test site in Las Vegas, which shows various deformation regimes. When
only a linear deformation model is used, erroneous deformation time series are obtained
in case of non-linear deformation behavior due to ambiguity errors. Hence, extended
models with respect to the linear model should already be applied in the ambiguity
resolution stage to obtain a reliable estimate of the time series. However, when applying
an extended model to the full area, the number of detected PS reduces, whereas the
number of false detections increase. This is caused by the higher degree of freedom in
the mathematical model, leading to inconsistent solutions for the connecting arcs in the
network. Therefore, extended deformation models should only be applied when required.
When using these local models, an iterative scheme is used to select a sufficiently fitting
model. Evaluation shows that the testing of the ambiguities should be performed in
each iteration step, hence, when all connecting arcs to a certain PSC are resolved with
the same model, instead of afterwards, when different models might be selected for the
various arcs. This not only increases the number of detected PS, but also reduces the
computation time considerably.

Furthermore, often a pre-selection of PSC based on amplitude information is made.
The amplitude information is useful for the selection of the most consistent scatterers to
construct the first order network. However, the results of the Las Vegas test site show
that many PS appear to have a low amplitude consistency, which may be removed from
the data beforehand when applying an amplitude based threshold. Therefore, all pixels
showing a point scattering signature, e.g., based on a local maximum in the amplitude
image, should be selected as PSC. In case the evaluation of this dense set of PSC is
infeasible from a computational perspective, an iterative scheme based on PS density
could be applied. When the number of selected PS in a certain area remains small
compared to the number of PSC, this indicates that the deformation in this region could
not be estimated with the deformation models used. Hence, regions with a lack of PS
should be interpreted with extra care by the user of the PSI results.

Despite the thorough testing of the ambiguities, all processing strategies show a
certain degree of falsely detected PS. A false detection is defined as a selected point
which is either not coherent, or has, despite its coherence, an incorrectly estimated
deformation time series. In this case the ambiguity tests appear not to be sufficient
to distinguish the true PS. Apparently, in some cases, consistent but wrong solutions
are obtained for the various connecting arcs to a PSC. Therefore, additional quality
indicators on top of the testing scheme are required to obtain a final selection of PS.
Ideally, a full variance-covariance matrix describing the stochastic relation between all
PS and all estimated parameters is used. However, this is infeasible because of the
large number of PS, resulting in an enormous full covariance matrix. Therefore, often
quality indicators are used to describe the PS by a single parameter. Within DePSI
various quality indicators are implemented, such as the ensemble coherence estimator,
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the variance factor, and the newly developed Spatio-Temporal Consistency (STC). These
quality indicators can either be evaluated global, i.e., with respect to the reference PS,
or local. Application shows that local indicators perform better because they are less
sensitive to model imperfections and therefore give a better assessment of the noise level
in the deformation time series.

8.2 Contributions

The contributions of this research are:

• The design, implementation, validation, and description of the Delft Persistent
Scatterer Interferometry (DePSI) software based on geodetic data analysis tech-
niques.

• A theoretical comparison of existing radar interferometric time series analysis ap-
proaches (see Section 2.2).

• An analysis and performance comparison, both in success rate and computation
time, of the ambiguity function, integer least-squares, and integer bootstrapping
estimator for temporal ambiguity resolution (see Sections 4.5–4.7).

• The design and implementation of the concept of testing the phase ambiguities in
the spatial domain to detect erroneous solutions and inconsistent PSC, both in the
first-order network and in the densification (see Sections 5.1, 5.4). This approach
enables the use of local deformation models.

• The design, implementation and evaluation of seven different processing approaches
for PSI: the standard approach, extended deformation models, estimation of the
Deformation Phase Screen (DPS), sequential testing of ambiguities, prognosis
based densification, Area Of Interest (AOI) processing, and time frame processing
(see Chapter 7).

• An analysis of the effect of side lobes and sub-main lobes on the estimated pa-
rameters and their geolocalization (see Section 3.4).

• An overview of local and global quality indicators, and a comparison of their
performance (see Section 6.2, Chapter 7).

• A description of the geolocalization process and the associated errors (see Sec-
tion 6.1).

• The co-design and implementation of the Spatio-Temporal Consistency (STC) as
a new local quality measure (see Section 6.2).

• The design and co-implementation of the DEM-based coregistration algorithm in
the DORIS software (Kampes and Usai, 1999; Kampes et al., 2003) (see Sec-
tion 3.2.4).
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8.3 Recommendations

The conclusions result in a number of recommendations for further research.

• It is desirable to enable the use of an arbitrary baseline configuration instead of a
single master stack in DePSI (De Zan and Rocca, 2005; Ferretti et al., 2011). With
a single master stack, the coherence of the interferometric phases obtained is not
optimal since long baselines will exist. Interferometric combinations with shorter
baselines, both in the temporal and perpendicular baseline domain, will reduce the
noise and thereby increase the information content of the data. Furthermore, a
redundant network can be created. Both the reduced noise and the redundancy
will improve the correct estimation of the phase ambiguities. Moreover, flexibility
in the baseline configuration will improve the possibilities to account for (seasonal)
surface scattering effects, such as vegetation grow and snow cover. Furthermore,
the number of detected pixels with a distributed scattering characteristic will in-
crease, since the effect of temporal and geometric decorrelation is reduced.

• It is recommended to improve the use of amplitude information. At this stage the
amplitude information is used to pre-select the Persistent Scatterer Candidates,
both for the first-order network and the densification. It was already concluded
that exclusion of PSC with low amplitude consistency results in the unnecessary
mis-detection of PS. Nevertheless, the amplitude information can add useful in-
formation to the analysis process. Three applications can be considered. First,
the amplitude consistency can be used to order the evaluation of the PSC in an
iterative densification process, as is applied in the prognosis based densification ap-
proach. Alternatively, instead of only a distinction between first and second-order
PSC, a further refinement in the classification can be made, thereby reducing the
density of the subsequent networks and consequently the distance between nearby
PSC. The shorter distance might be beneficial for the resolution of the ambiguities,
thereby potentially increasing the number of detected PS. Second, the amplitude
consistency forms an additional indication of phase stability, and can therefore be
used in the final selection of PS. For instance a Bayesian classification can be
used (Hooper, 2008). Third, the amplitude information can be used to identify
blank spots in the PS distribution. As was concluded, the lack of PS in a certain
region may be even more important information from a deformation perspective,
compared to those regions where a relatively smooth deformation pattern can be
resolved. A proper inclusion of this information in the final PS results is therefore
recommended.

• It is desirable to extend DePSI for near real-time monitoring purposes. The cur-
rent setup of DePSI is designed for an analysis of a fixed set of radar images.
However, operational satellite missions will continuously deliver new acquisitions.
With each new image the DePSI analysis can be repeated to obtain an update of
the deformation time series. However, this is not optimal from a computational
perspective, and may result in slightly different results compared to the previous
time series due to the new information that is added by the new radar image.
Although the most optimal solution is obtained, inconsistent solutions are unde-
sirable from a practical perspective. Therefore, the capability to efficiently add a
new radar acquisition to the image stack is required for monitoring purposes.
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• It is recommended to increase the use of neighboring PSC in the analysis. Cur-
rently, DePSI resolves the phase ambiguities based on arcs between nearby PSC.
Since each phase observation comes along with an unknown phase ambiguity, there
is a lack of redundancy in the estimation problem. By using the phase information
of multiple neighboring PSC the correlation of some phase contributors, such as
deformation, can be used to improve the ambiguity resolution, at least in a first
approximation (Hooper, 2008). Alternatively, neighboring pixels could be used in
a multi-looking operation to reduce the noise level (Ferretti et al., 2011), thereby
improving the ambiguity resolution.

• It would be an improvement to filter the atmospheric signal delay based on least-
squares prediction (Liu, 2012) instead of based on a deterministic filter, such as a
Gaussian kernel. By applying least-squares prediction, the stochastic properties of
the phase observations are incorporated in the filter process. In principle for each
PSC a unique covariance function can be applied. Hereby, a better estimate is
obtained and the errors of the resulting time series can be propagated in a more
consistent manner.

• It is desirable to speed-up the integer least-squares (ILS) estimator. The ILS esti-
mator provides high success rates of correct ambiguity resolution, in combination
with high flexibility in the number of model parameters to be used. However, the
computation time is the limiting factor for application in large areas. Therefore,
speed-up of the algorithm is desirable. Multiple approaches are proposed for GNSS
applications, i.e., the Search and Shrink approach (Giorgi et al., 2008; Teunissen
et al., 2010), the Expansion approach (Park and Teunissen, 2003; Buist, 2007),
and the translation to a closest lattice point problem (Jazaeri et al., 2012). These
approaches should be implemented and evaluated for PSI. Furthermore, apart from
the class of integer estimators, containing ILS, two additional classes can be dis-
tinguished: the class of integer aperture (IA) estimators (Teunissen, 2003a) and
the class of integer Equivariant (IE) estimators (Teunissen, 2003b). These classes
of estimators are less strict compared to the integer estimator class, however,
possess advantageous properties regarding validation and minimization criterion.
Therefore, application and evaluation of these estimators for PSI is recommended.
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Geodetic data analysis A
Geodetic measurements, such as interferometric radar observations, are stochastic quan-
tities. Errors, which can be both random (noise) and systematic (bias), affect the mea-
surements and prevent a straightforward transformation of the measurements into the
parameters of interest. During the last century, Delft University of Technology developed
a systematic and rigorous methodology to solve this problem in an optimal way. The
methodology basically consists of two steps: estimation and testing, see Sections A.1
and A.2. Within the same framework, related techniques are developed: prediction
(Section A.3), least-squares variance component estimation (Section A.4), and integer
least-squares (Section A.5)1.

A.1 Estimation

A geodetic problem is normally specified by a mathematical model. The general form of
the mathematical model is denoted by the Gauss-Markov model

E{y} = Ax ; D{y} = Qy, (A.1)

where the first part is the functional model and the second part the stochastic model.
The design matrix A describes the functional relation between the measurements y and
the unknowns x. The underline denotes the stochasticity of the measurements. The
stochastic properties of the measurements are specified by the variance matrix Qy, which
is constructed based on a priori knowledge or is derived from the data.

To estimate an optimal solution, the following minimization problem is solved

min
x

‖y −Ax‖2Qy
, (A.2)

where ‖·‖2Q = (·)TQ−1(·). Hence, the solution that is obtained minimizes the difference
between the observations and the model in a least-squares sense. Linear least-squares
estimators that have optimal properties in the sense that they are unbiased and have
minimum variance are called Best Linear Unbiased Estimators (BLUE). For normally
distributed data, the BLUE estimator is equal to the Maximum Likelihood (ML) estima-
tor (Teunissen, 2000a).

1Part of this appendix was published in the report:
Hanssen, R. F., van Leijen, F., Ketelaar, G., Marinkovic, P. S., and Gehlot, S. (2005). PSIC4: PSI-
processing over a validation test site. applicability report. Technical report, Delft University of Tech-
nology, Delft. European Space Agency Study report ESA Contract Nr. 18707/04/I-LG.
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The estimator for the unknowns x̂, the adjusted observations ŷ and the residues ê
are calculated by

x̂ = (ATQ−1
y A)−1ATQ−1

y y, (A.3)

ŷ = Ax̂, (A.4)

ê = y − ŷ, (A.5)

where {.}T denotes the transpose. Optimal estimators are obtained on the condition
that the number of unknowns n is smaller than the number of observations m and that
the design matrix is of full rank. If the last two conditions are not fulfilled, the system
of equations is rank defect and no unique solution can be determined. More information
about geodetic data adjustment can be found in (Teunissen, 2000a; Koch, 1988).

The quality of the stochastic variables is characterized by the precision and the
reliability. The precision describes the variability of the observables and the estimators
of the unknown parameters. The precision is quantified by their variance matrix. If
the observations have a normal distribution and provided a linear relation between the
observations and the unknowns (Eq. (A.1)), the estimates are normally distributed as
well. The variance matrices are obtained by applying the error propagation laws, which
results in

Qx̂ = (ATQ−1
y A)−1, (A.6)

Qŷ = AQx̂A
T , (A.7)

Qê = Qy −Qŷ. (A.8)

The reliability describes the sensitivity of the estimators for model errors. The reliability
is ensured by testing, which is discussed in the next section. Precision and reliability are
independent components of the quality description. A high precision of the observables
does not imply a reliable estimation of the unknown parameters and vice versa. Precision
and reliability together describe the accuracy.

A.2 Testing and quality control

Once estimates for the unknown parameters and their variance matrix are obtained, the
validity of the mathematical model is tested. That is, the model is tested for errors in
the observations y, in the design matrix A and in the variance matrix Qy.

Testing is performed by subsequent comparison of two hypotheses: the null hypoth-
esis H0 and the alternative hypothesis Ha, see Figure A.1. The null hypothesis describes
the situation that there are no errors in the model, whereas the alternative hypothesis
assumes that there is a certain error. Symbolically the hypotheses can be denoted as

H0 : E{y} = Ax ; D{y} = Qy, (A.9)

Ha : E{y} = Ax+ Cq∇ ; D{y} = Qy, (A.10)

where ∇ holds q additional unknown parameters and Cq describes the functional relation
of these parameters with the observation vector y.

Acceptance or rejection of H0 is based on the test statistic T q (Teunissen, 2000b)

T q = êT0Q
−1
y ê0 − êTaQ

−1
y êa, (A.11)

= êT0Q
−1
y Cq(C

T
q Q

−1
y Qê0Q

−1
y Cq)

−1CTq Q
−1
y ê0. (A.12)
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H0 Ha
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Figure A.1: The concept of hypotheses testing. The null hypothesis H0 is compared to an alternative
hypothesis Ha. The test statistic T q in relation to the critical value kα determines whether the null
hypothesis is accepted or rejected. The critical value is based on the chosen level of significance α.
The α represents the probability of incorrect rejection of H0, known as a Type-I error. The opposite
error, incorrect acceptance of H0, is denoted as a Type-II error. The probability of this error is
indicated by β. Often, the power of the test γ = 1 − β is used, i.e., the probability that H0 is
correctly rejected.

The test statistic has a χ2-distribution with q degrees of freedom

H0 : T q ∼ χ2(q, 0),

Ha : T q ∼ χ2(q, λ), (A.13)

where λ is the non-centrality parameter

λ = ∇TCTq Q
−1
y Qê0Q

−1
y Cq∇. (A.14)

A critical value kα is used to determine whether the H0 should be rejected

reject H0 if T q > kα. (A.15)

The critical value is determined from the χ2-distribution with q degrees of freedom by
choosing a level of significance α, see Figure A.1. The relation between α and kα is
denoted by

α(q) =

∫ ∞

kα

P (χ2|q, 0)dχ2, (A.16)

where P (.) is the probability density distribution. The α represents the probability of
incorrect rejection of H0 and should be as low as possible. Typical values for α are within
the range 0.001-0.05. Such an incorrect rejection of H0 is known as a Type-I error. The
opposite error, incorrect acceptance of H0 is denoted as a Type-II error. The probability
of a Type-II error is equal to β, as indicated in Figure A.1. In geodesy, instead of β
often the power of the test γ = 1 − β is used, i.e., the probability that H0 is correctly
rejected. The power of the test is a function of α, q and λ

γ(α, q, λ) =

∫ ∞

kα

P (χ2|q, λ)dχ2. (A.17)

A typical applied value of γ is 0.8 (Teunissen, 2000b). However, when tests of different
dimensions are compared, a value of 0.5 should be applied, see Section A.2.2.
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To reduce the probability of the two types of errors, both α and β should be as small
as possible, ideally zero. However, if α is chosen smaller, β increases, and vice versa, see
Figure A.1. To define a test that copes with this paradox, the Neyman-Pearson principle
is applied (Neyman and Pearson, 1933). This principle states that from all tests with
the same probability of Type-I errors, the one for which the chance of Type-II errors is as
small as possible should be used. The test statistic T q is a consequence of this principle
(Teunissen, 2000b).

The practical implementation of testing is based on an iterative scheme known as
the Detection, Identification and Adaption (DIA) procedure (Teunissen, 2000b). First,
H0 is tested to detect whether there are any errors in the model. In case of rejection
of H0, the source of the most significant error is identified, followed by adaption of
the model to account for the error. This three-step procedure is repeated until H0 is
accepted.

A.2.1 Detection

In the detection step the null hypothesis is tested by the Overall Model Test (OMT).
Here, no assumptions about specific kind of errors are made and the number of errors
is taken equal as the redundancy, hence the degrees of freedom q = m− n, where m is
the number of observations and n is the number of unknowns. As a consequence, the
redundancy of the model under Ha is zero, which implies that the residues êa are zero
as well. Therefore the test statistic Eq. (A.11) reduces to

T q=m−n = êT0 Q
−1
y ê0. (A.18)

In case H0 is rejected, the next step is the identification of the most significant error.

A.2.2 Identification

Identification of the most significant error is based on the testing of alternative hypothesis
Ha. The most common applied Ha is a test on outliers in the observations. This one-
dimensional test (q = 1) is also known as the w-test. In this case the Cq-matrix for a
certain observation has the form

Cq=1 =
[
0 · · · 0 1 0 · · · 0

]T
. (A.19)

The test is repeated for each observation. The observation with the highest test statistic
(above kα) is the most significant error. In case the observations y are uncorrelated,
hence Qy is a diagonal matrix, the test statistic for the i-th observation simplifies to

T q=1 =
ê20i
σ2
êi

. (A.20)

Apart from the one-dimensional tests also higher order Ha can be applied, e.g., to test
the correctness of coordinates of points. If more than one alternative hypothesis is tested
againstH0, e.g., the OMT and the w-test, inconsistencies in the testing can occur due to
the overlap of the different tests. For example, an inconsistency occurs when the OMT
is accepted, while a w-test leads to rejection of an observation. To minimize the chance
of inconsistencies, the B-method of testing is applied (Baarda, 1968; Teunissen, 2000b).
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The B-method ensures that an equivalent error at different dimensions, indicated with an
equal non-centrality parameter λq = λ0 for all q, can be detected with equal probability
γq = γ0. Since the level of significance α is dependent on λ, γ and q, this results in a
different α for each test. In practice, the set of parameters is initialized by choosing α1

for the one-dimensional test, together with the general power of the test γ0. de Heus
et al. (1994); Kampes (2006) show that it is essential to set γ0 = 0.5 to ensure that the
most significant alternative hypothesis among tests of different dimensions is identified.
Once α1 and γ0 are set, the corresponding λ0 is computed, followed by the αq per test,
using the relation

λ0 = λ(α1, 1, γ0) = λ(αq, q, γ0). (A.21)

Based on αq, the critical value kαq
can now be computed for each dimension. Actual

comparison of the different tests is only possible based on the test quotient, i.e., the test
statistic normalized by the critical value,

T q/kαq

{

> 1, reject H0,

≤ 1, accept H0.
(A.22)

From all test quotients larger than one, the highest identifies the most significant error.
This error is adapted.

A.2.3 Adaption

Once the most significant error is identified, the error is removed from the functional
model. For example, in case of the one-dimensional test on the observations, the cor-
responding observation is removed from the observation vector y and the design matrix
A is adapted. After adaption the DIA procedure is repeated until the OMT is accepted.

A.3 Prediction

A related technique to least-squares estimation is least-squares prediction. Whereas in
case of estimation a deterministic parameter vector x is guessed based on an observed
vector y, in case of prediction the same vector y is used to guess an unobserved random
vector y

0
. An example is the prediction of the temperature at a certain location based

on temperature observations at a number of meteorological stations.
Assume that the mathematical model can be denoted by the so-called trend-signal-

noise model

y = Ax+ s+ n, D{y} = Qy = Qs +Qn, (A.23)

where, apart from the familiar terms A and x, s is a signal with a certain temporal
and/or spatial correlation described by the covariance matrix Qs and n is uncorrelated
noise, characterized in Qn.

The mathematical model for the prediction of observations y
0
is

y
0
= A0x+ s0 + n0, D{y

0
} = Qy0 = Qs0 +Qn0

, (A.24)

where the parameters have similar meaning as above.
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Both mathematical models are combined in the following system of equations (Te-
unissen, 2007)
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, (A.26)

The estimators and predictors are

x̂ = (ATQ−1
y A)−1ATQ−1

y y,

ŷ = Ax̂,

ŝ = QsQ
−1
y (y −Ax̂),

n̂ = QnQ
−1
y (y −Ax̂), (A.27)

ŷ
0

= A0x̂+Qs0sQ
−1
y (y −Ax̂),

ŝ0 = Qs0sQ
−1
y (y −Ax̂),

n̂0 = 0,

where

Qy = Qs +Qn. (A.28)

The prediction error is defined as

ǫ̂0 = y
0
− ŷ

0
, (A.29)

with corresponding variance matrix of the prediction error

Qǫ̂0 = Qy0 −Qs0sQ
−1
y Qss0 + (A0 −Qs0sQ

−1
y A)Qx̂(A0 −Qs0sQ

−1
y A)T . (A.30)

Equivalent to the Best Linear Unbiased properties for the estimators (BLUE), it can be
shown that the predictors have minimum mean squared prediction error, are linear, and
unbiased (Teunissen et al., 2005). These predictors are denoted as Best Linear Unbiased
Predictors (BLUP). BLUP is equivalent to Kriging (Krige, 1951). In case the mean is
estimated, hence A,A0 are vectors of ones, the BLUP estimator is equal to Ordinary
Kriging. In case also an additional trend is modeled in A and A0, the BLUP estimator
will result in the same solution as obtained by Universal Kriging.
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A.4 Least-squares Variance Component Estimation (VCE)

Besides unknown parameters in the functional part of the mathematical model (Eq. A.1),
the stochastic part may also contain unknown elements. Using a parameterization of
the stochastic model, the statistical properties of the data can be estimated as well.
Here, least-squares Variance Component Estimation (VCE) is applied (Teunissen, 1988;
Teunissen and Amiri-Simkooei, 2008).

The mathematical model (Eq. A.1) is re-written to

E{y} = Ax ; D{y} = Qy = Q0 +

V∑

v=1

σvQv, (A.31)

where Q0 is the known part of the covariance matrix, σv are the unknown (co-)variance
components and Qv are the cofactor matrices, which are assumed known. The least-
squares estimator of the (co-)variance components is

σ̂ = N−1r, (A.32)

where N is a square (V × V ) matrix and r a (V × 1) vector. The elements of N and r
are (Amiri-Simkooei, 2007)

Nvw =
1

2
tr(QvQ

−1
y P⊥

AQwQ
−1
y P⊥

A ),

rv =
1

2
yTQ−1

y P⊥
AQvQ

−1
y P⊥

A y −
1

2
tr(QvQ

−1
y P⊥

AQ0Q
−1
y P⊥

A ), (A.33)

=
1

2
eTQ−1

y QvQ
−1
y e− 1

2
tr(QvQ

−1
y P⊥

AQ0Q
−1
y P⊥

A ),

where tr(.) indicates the trace of a matrix, i.e., the sum of the diagonal elements,
P⊥
A = I − A(ATQ−1

y A)−1ATQ−1
y is the least-squares orthogonal projector and e are

the residuals. Since Qy is part of the estimator itself, the solution is obtained by iteration,
starting with a covariance matrix based on a-priori knowledge or an identity matrix. The
inverse of the normal matrix N gives the covariance matrix of the covariance component
estimates

Qσ̂ = N−1. (A.34)

To estimate the (co-)variance components the system of equations Eq. A.31 must have
a large redundancy and the number of (co-)variance components should be limited. The
precision increases with increasing redundancy. Both values for variances and covari-
ances can be estimated. Positive values for the variance components are however not
guaranteed. Negative variance factors are an indication of a badly chosen (co-)variance
model or insufficient redundancy.

A.5 Integer least-squares

The integer least-squares (ILS) technique was introduced by Teunissen (1993) as a solu-
tion to the ambiguity problem in Global Navigation Satellite Systems (GNSS) measure-
ments. However, the technique is applicable for all problems encountering a combination
of real and integer unknown parameters, as is the case in radar interferometry.
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The general integer least-squares problem can be formulated with the extended
Gauss-Markov model

E{y} = Aa+Bb, y ∈ R, a ∈ Z, b ∈ R; D{y} = Qy, (A.35)

where y denotes the vector of phase observations, a is the vector of unknown integer
valued ambiguities and b represents the unknown real valued parameters. The design
matrices A and B describe the functional relation between the observations and the
unknowns. The dispersion of the phase observations is expressed by the variance matrix
Qy.

The optimal estimates of the unknown parameters in a least-squares sense (L2-norm)
are obtained by solving the minimization problem

min
a,b

‖y − Aa−Bb‖2Qy
, y ∈ R, a ∈ Z, b ∈ R; D{y} = Qy, (A.36)

where ‖ · ‖2Q = (·)TQ−1(·). To account for the integer constraint a ∈ Z, the function to
be minimized can be orthogonally decomposed into the sum-of-squares (Teunissen and
Kleusberg, 1998)

‖y −Aa−Bb‖2Qy
= ‖ê‖2Qy
︸ ︷︷ ︸

1

+ ‖â− a‖2Qâ
︸ ︷︷ ︸

2

+ ‖b̂|a − b‖2Q
b̂|a

︸ ︷︷ ︸

3

. (A.37)

Hence, the original minimization problem is transformed into three individual problems.
The solutions to these problems are referred to as the float solution, ambiguity resolution
and the fixed solution, which are estimated in a three-step procedure (Teunissen, 1993).

Float solution

The float solution is obtained by disregarding the integer nature of the ambiguities a.
Hence, real valued estimates for the ambiguities and the parameters of interest are
estimated by solving the standard least-squares problem

min
a,b

‖y −Aa−Bb‖2Qy
, y ∈ R, a ∈ R, b ∈ R; D{y} = Qy. (A.38)

The solution and the accompanying covariance matrix is denoted as

[
â

b̂

]

;

[
Qâ Qâb̂
Qb̂â Qb̂

]

. (A.39)

An example of the probability density function for the ambiguity float solution â in case
of two ambiguities is shown in Figure A.2, Left.

Ambiguity resolution

Once the float solution is obtained, the float ambiguities â are used to resolve the
corresponding integer ambiguity estimates ǎ. This step requires a mapping S : R 7→ Z,
such that

ǎ = S(â). (A.40)
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Figure A.2: Left) Example of the float ambiguity PDF in 2D. Right) Example of the integer
ambiguity PMF in 2D. Figures are taken from Joosten (2000).

Because of the discrete nature of ǎ, this is a many-to-one map. In other words, different
real-valued ambiguity vectors â will be mapped to the same integer vector ǎ. Hence, a
subset Sz ⊂ Z can be assigned to each integer vector z ∈ Z

Sz = {x ∈ R | z = S(z)}, z ∈ Z. (A.41)

This subset is referred to as the pull-in region of z (Jonkman, 1998). It is the region
in which all ambiguity float solutions are pulled to the same fixed solution. Using the
pull-in regions, an explicit expression for the corresponding integer ambiguity estimator
can be given

ǎ =
∑

z∈Z

zsz(â), with the indicator function sz(â) =

{
1 if â ∈ Sz,
0 otherwise.

(A.42)

The pull-in regions define the integer estimator completely. Many forms of pull-in regions
can be constructed, however, not all of them are admissible. To be admissible, the pull-in
region of an integer estimator should fulfill the following criteria (Teunissen, 1999a)

⋃

z∈Z

Sz = R no gaps,

Sz1
⋂

Sz2 = 0 ∀ z1, z2 ∈ Z, z1 6= z2 no overlap,

Sz = z + S0 ∀ z ∈ Z integer remove-restore.

(A.43)

Hence, there should be no gaps, ensuring that every float ambiguity vector can be
assigned to an integer solution. Moreover, there should be no overlap, ensuring that
there are not multiple integer solutions for a certain float solution. And last, the pull-in
regions are translated copies of each other, enabling translations with an integer amount
z while preserving the solution. Three admissible integer estimators are integer rounding,
integer bootstrapping and integer least-squares (Teunissen, 1999a). These estimators
are discussed in Section A.5.1.
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Fixed solution

The estimated integer ambiguities ǎ are used to correct the float estimates of the pa-
rameters of interest b̂. The resulting fixed solution is obtained by

b̂|a
.
= b̌ = b̂−Qb̂âQ

−1
â (â− ǎ). (A.44)

The variance matrix of this estimator is (Teunissen, 1999b)

Qb̌ = Qb̂ −Qb̂âQ
−1
â Qâb̂ +Qb̂âQ

−1
â QǎQ

−1
â Qâb̂, (A.45)

where
Qǎ =

∑

z∈Z

(z − a)(z − a)TP (ǎ = z). (A.46)

Hence, the variance of the fixed solution is not only dependent on the variance of the float
solution, but also on the chance of success in the ambiguity resolution. This chance of
success is denoted by the success rate P (ǎ = z) (see further Section A.5.2). Because of
its discrete nature, the fixed ambiguities ǎ have a probability mass function (PMF) (see
Figure A.2, Right). As a consequence, the fixed solution b̌ has a multi-modal probability
density function.

A.5.1 Admissible integer estimators

Three integer estimators which fulfill the criteria introduced by Eq. (A.43) are the inte-
ger rounding, integer bootstrapping, integer least-squares estimator. To illustrate these
estimators, the float ambiguity solution, consisting of a vector with estimates and cor-
responding covariance matrix, is written as

â =








â1
â2
...
âq







; Qâ =








σ2
â1

σâ1â2 · · · σâ1âq
σâ2â1 σ2

â2
· · · σâ2âq

...
...

. . .
...

σâq â1 σâq â2 · · · σ2
âq







. (A.47)

Integer rounding

The simplest integer estimator is rounding of entries of the float ambiguity solution to
their nearest integer values. The integer estimator ǎR is

ǎR =








ǎR,1
ǎR,2
...

ǎR,q







=








[â1]
[â2]
...

[âq]







, (A.48)

where [·] denotes the rounding to the nearest integer operator. Since each component
of the real-valued ambiguity vector is rounded to its nearest integer, the absolute value
of the maximum difference between the float and fixed solution is 1/2. Therefore, the
pull-in region for integer rounding in R is an q-dimensional cube with sides of length
one.



A.5. Integer least-squares 187

Even though the rounding technique is an admissible estimator, it does not take
the ambiguity correlation into account, and therefore, does not satisfy the minimization
criteria formulated by means of Eq. (A.37). Exception is the case when there is no
correlation between the float solutions, i.e., when the covariance matrix Qâ is a diagonal
matrix.

Integer bootstrapping (sequential conditional rounding)

An integer estimator which takes some of the correlation between the float ambiguities
into account, is the so-called integer bootstrapping estimator, also known as the sequen-
tial conditional rounding estimator. The integer solution is computed in a sequential
order. The first ambiguity (â1) is simply rounded to its nearest integer. After that,
the real-valued estimates of the remaining ambiguities are corrected by means of their
correlation with the first ambiguity. In a next step, the second (corrected) ambiguity is
rounded to its nearest integer, and so on. The bootstrap estimator ǎB can be expressed
by (Teunissen, 1998)

ǎB =








ǎB,1
ǎB,2
...

ǎB,q







=








[â1]
[â2 − σâ2â1σ

−2
â1

(â1 − ǎB,1]
...

[âq −
∑q−1

i=1 σâq âi|Iσ
−2
âi|I

(âi|I − ǎB,i]







, (A.49)

where I = 1, . . . , i− 1. Since the integer solution depends on the order of the ambigu-
ities, the sequence should start with the most precise float ambiguity. The real-valued
sequential least-squares solution can be obtained by means of the triangular decompo-
sition of the covariance matrix of the ambiguities Qâ = LDLT , where L denotes a unit
lower triangular matrix with entries

lj,i = σâj âi|Iσ
−2
âi|I

, (A.50)

and D a diagonal matrix with the conditional variances σ2
âi|I

. Although the integer boot-

strapping technique is an admissible integer estimator and takes some of the ambiguity
correlation into account, like in the case of the rounding the solution does in general not
satisfy the minimization criterion as formulated in Eq. (A.37).

Integer least-squares (ILS)

The integer least-squares estimator is the only estimator which is fully based on the
minimization criterion in Eq. (A.37)

min
a∈Z

(â− a)TQ−1
â (â− a). (A.51)

Due to the variance matrix Qâ, the integer least-squares estimator takes all the correla-
tion between the ambiguities into account. In contrast to rounding and bootstrapping,
the integer least-squares solution ǎLS is at shortest distance to the float solution, in the
metric of the variance matrix Qâ.

Unfortunately, this minimization problem cannot be solved directly. A discrete search
in the solution space is necessary to find the optimal solution (Teunissen, 1993). In order
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to avoid a search through the complete space of integers Z, it is possible to identify a
smaller search space that still contains the integer least-squares solution. This ambiguity
search space, i.e., a hyper-ellipsoid centered at â of which its shape is defined by the
variance matrix Qâ, is bounded by

(â− a)TQ−1
â (â− a) ≤ χ2, (A.52)

where the factor χ2 is a positive constant. This constant should be chosen sufficiently
large, i.e., that the search space contains at least one integer vector. A convenient
strategy to find a suitable value for χ2 is by using the integer bootstrap solution

χ2 = (â− ǎB)
TQ−1

â (â− ǎB). (A.53)

Hence, a χ2 is found which at least contains one integer solution (the bootstrap solution)
and is assumed to be small enough to strongly reduce the search space. Once the size
of the search space is set, the actual discrete search can be performed. In de Jonge and
Tiberius (1996) an efficient search procedure is described.

However, due to the often high correlation between the ambiguities, the search space
becomes very elongated. As a result, the discrete search becomes highly inefficient and
slow in terms of computation time. To reduce the search time, the LAMBDA method
was introduced.

LAMBDA method

To reduce the correlation between the ambiguities, a decorrelating transformation is
performed. This procedure, together with the integer least-squares technique, forms
the LAMBDA method (Least-squares AMBiguity Decorrelation Adjustment method),
(Teunissen, 1993). By means of the decorrelation transformation the ambiguity search
space is transformed to a shape as similar as possible to a hyper-sphere, e.g., as if Qâ
were a diagonal matrix (that is, ambiguities are uncorrelated). A complete decorrelation
is however not possible, since in that case the integer nature of the solution would be
lost.

The transformation is denoted by

ẑ = ZT â, Qẑ = ZTQâZ. (A.54)

The matrix Z must have integer entries and must be volume preserving (i.e., |Z| = ±1)
to be an admissible transformation matrix (Teunissen, 1993). Moreover, it can be shown
(see for example Teunissen (1994)), that in spite of the decorrelating transformation,
the minimization constraint is satisfied

(ẑ − z)TQ−1
ẑ (ẑ − z) = (â− a)TQ−1

â (â− a). (A.55)

Just as in case of the original ambiguities, the discrete search for the integer solution
can now be performed. The size of the search space can be determined based on the
bootstrap solution of the decorrelated ambiguities. Once the optimal solution ž is found,
the solution of the original ambiguities ǎ′ can be retrieved by

ǎ′ = Z−T ž. (A.56)
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Note that the solution obtained with or without decorrelation of the ambiguities is the
same, i.e., ǎ′ = ǎ. This is however not necessarily the case for the bootstrap solutions
ǎ′B and ǎB.

To summarize, the integer least-squares technique provides the optimal solution. Ap-
plying the LAMBDA method, the optimal solution is found in a computational effective
way due to the decorrelation of the ambiguities.

A.5.2 On the quality of the solutions: Success rate

In order to judge the correctness of the solution the probability of correct integer am-
biguity estimation can be computed, defined as the success rate P (ǎ = a). Note that
the ambiguity success rate can be computed without collecting real data at all, hence
purely based on the functional and stochastic assumptions in the mathematical model.

In (Teunissen, 1999a) it is shown that the integer least-squares (ILS) technique
maximizes the success rate

P (ǎLS = a) ≥ P (ǎX = a), (A.57)

where X stands for any other arbitrary integer estimator.
Due to the complicated geometry of the ILS pull-in regions, the numerical computa-

tion of the ILS success rate P (ǎLS = a) is difficult. A lower bound of this probability is
given by the success rate of the bootstrapped integer estimator (Teunissen, 1998), i.e.,

P (ǎLS = a) ≥ P (ǎB = a) =

n∏

i=1

(

2Φ
( 1

2σi|I

)
− 1

)

, (A.58)

where σi|I are the conditional variances and Φ(x) is defined as

Φ(x) =

∫ x

−∞

1√
2π

exp(−1

2
v2)dv. (A.59)

An upper bound of the ILS success rate can be computed using the ADOP (Ambiguity
Dilution Of Precision, see (Teunissen, 1997)). The upper bound is (Teunissen, 1998)

P (ǎLS = a) ≤ P

(

χ(n, 0)2 ≤ cn
ADOP 2

)

, (A.60)

with cn = ( n2 Γ(n2 ))
2

n / π. Here, Γ is the Gamma function and χ2(n, 0) is a variable
with a central Chi-square distribution. The ADOP [cycles], which is defined as the
geometric mean of the conditional covariances σi|I , is

ADOP =
√

detQâ
1

n . (A.61)

The ADOP is a scalar representation of the quality of the ambiguity resolution.





Adopted PSI terminology B
To clearly describe and annotate the processing flow of the Delft implementation of
Persistent Scatterer Interferometry (DePSI) a specific terminology is adopted. The ra-
tionale behind the terminology is described here.

The DePSI terminology is based on a similar approach as applied in conventional geodetic
networks, using first-order and second (or higher)-order points. The first-order points
are more thoroughly tested than the second-order points. The first-order points form
a first-order network, which is used for the estimation of phase screens, such as the
atmospheric and orbital phase screens. The second order points are referred relative
to this first-order network—which is considered to be correctly unwrapped—and serve
as a densification of the PS distribution. As a consequence of this setup, errors in
the first-order network will propagate undetected in the second-order network. Iterative
approaches and additional testing should be applied to prevent this.

While establishing a network, different phases can be distinguished, i.e., (a) the
initial classification of points based on certain characteristics, after which the point is
considered a candidate for testing, or a ’Candidate’ for short, and (b) the testing of
these candidate points based on their phase behavior. If a point is not rejected during
the testing procedure, it is not a candidate anymore. This convention is summarized in
Table B.1. The scheme can be extended to higher-order levels, in the limit to the ’level
infinite’, at which all pixels in an image are considered.

There is a class (set) of points which is coherent, but which is erroneously not identified
as such. This can be due to two causes:

1. these points do not satisfy the criteria to become candidates, hence, their phase
behavior is simply not evaluated, or

2. these points are identified as candidates, but during the testing procedure, they
are falsely rejected as PS.

These points are referred to as Type-1 errors or Type-1 error points (falsely rejected as
PS or PSC), or as undetected PS.

Lower-order PS candidates are a subset of higher-order PS candidates, i.e., the set of
PSC2 (second-order PS candidates) also contains the PSC1 (first-order PS candidates).
Hence, rejected PSC1 are tested again in the second-order network and possibly accepted
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Table B.1: Conventions in DePSI terminology.

Initial selection After testing
(leading to PS ’Candidates’)

Pixel/network Abbreviation Pixel/network Abbreviation

General PS Candidate PSC PS PS
First-order First-order PS Candi-

date or first-order candi-
date network

PSC1 First-order PS or first-

order network

PS1

Second-order
(densification)

Second-order PS Can-

didate or second-order

candidate network

PSC2 Second-order PS or
second-order network

PS2

Third-order Third-order PS Candi-

date or third-order can-

didate network

PSC3 . . . . . .

. . . . . .
Infinite-order All Pixels PSC∞

as PS2. Note that this subset construction is not applicable for the detected PS, i.e.,
PS1 and PS2 cannot contain the same points.



Algorithm implementation C
The DePSI algorithm is implemented in Matlab R©. The main script guides the complete
processing flow, which is illustrated in Figure 3.1. Here, nine main modules can be
distinguished, see also Section 3.1:

1. Initialization.

2. Persistent Scatterer Candidates (PSC) selection.

3. Network construction.

4. Trend estimation (optional).

5. Atmosphere estimation.

6. Interferogram selection (optional).

7. Densification.

8. Deformation modeling (optional).

9. Output generation.

The algorithm is initialized based on two input files. The first file contains the specifi-
cation of the interferometric data stack, including filenames, acquisition dates, baselines
and image crop parameters. In the second input file the processing flow is specified by
defining the processing steps to apply and setting various parameters based on a-priori
information about the area of interest and the expected deformation signal. By chang-
ing this input file a certain step can be re-run based on different parameter settings to
improve the result.

After each processing step a result file is adapted with a summary of the processing
results and the associated processing time. Furthermore, a series of figures is created
of the most important intermediate results, which supports the interpretation of the
final results. All (created) processing variables are saved to a single Matlab R© .mat file,
whereas the large data volumes are stored in binary format.

Within the input file with parameters also the maximum usable amount of internal
memory can be specified. Based on the allocated memory, the processing in each step
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is divided in buffers. Hereby, the inversion of the first-order network is the most compli-
cated part of the algorithm. However, by using a partitioned model, also this step can
be performed within a certain memory buffer. The use of buffers enables the possibility
to run DePSI on machines with various memory capacity, i.e., local desktops with 1
or 2 GB of internal memory and dedicated servers. Moreover, a parallelization of the
processing is possible.

The final results of the algorithm are stored in binary files as well as comma-separated
value files (.csv), which can be used to visualize the data in a Geographic Information
System (GIS), or to integrate the measurements with other geodetic observations.



Curriculum Vitae

I, Frederik Johannes van Leijen, was born on July 24, 1977, in Woerden, the Netherlands.
In 1995, after secondary school, I started studying Geodetic Engineering at the Delft
University of Technology. During my studies, in 1998-1999, I was a board member of
the Landmeetkundig Gezelschap Snellius, the student union associated with the Geodetic
Engineering track. In 2000 I went four months to Cape Town, South Africa, for a
traineeship at the University of Cape Town, working on the simulation of satellite radar
images. I obtained my MSc degree in 2002 based on a thesis regarding the stochastic
modeling of the tropospheric delay of microwave signals.

After a year of traveling around the world, I started my PhD project in 2003. During
my PhD I had the opportunity to work on various related projects, such as the Persistent
Scatterer Interferometry Codes Cross-Comparison And Certification (PSIC4) and Ter-
rafirma projects of the European Space Agency (ESA). In 2006 I worked four months at
the Rosenstiel School of Marine and Atmospheric Science, University of Miami, USA, as
a Fulbright Scholar. In 2007 I co-founded Hansje Brinker, a Delft University of Technol-
ogy spin-off company that provides satellite radar interferometry based services. In 2013,
after being five years at Hansje Brinker, I returned to Delft University of Technology as
a researcher in geodesy and remote sensing.








	front_thesis_freek_press.pdf
	Slide Number 1
	Slide Number 2

	back_thesis_freek_press.pdf
	Slide Number 1
	Slide Number 2


