
Challenge the future

Department of Precision and Microsystems Engineering

A Tentacle-Based Motion Planning Algorithm for Automated Vehicles

Zisen Li

Report no : 2025.034
Coach : Dr. B. Shyrokau
Professor : Dr. S.H. HosseinNia Kani
Specialisation : Mechatronic System Design (MSD)
Type of report : Master’s Thesis
Date : 14 July 2025

A Tentacle-Based
Motion Planning

Algorithm for
Automated Vehicles

Ensuring Real-Time Performance and
Passenger Comfort through Limiting Jerk

by

Zisen Li

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday July 21, 2025 at 10:00 AM.

Student number: 5932483
Project duration: September 1, 2024 – July 21, 2025
Thesis committee: Dr. ir. B. (Barys) Shyrokau, TU Delft, supervisor

Dr. S. H. (Hassan) Hossein Nia Kani, TU Delft
Dr. C. (Cosimo) Della Santina TU Delft
Ir. A. (Alberto) Bertipaglia, TU Delft

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Automated driving systems are expected to be revolutionary technologies that will reconstruct mobility
by improving safety and efficiency. Among the components of automated driving systems, motion plan-
ning plays a critical role as it determines how the vehicle reaches its target location from a given origin.
The current challenges of motion planning lie in real-time performance and passenger comfort, which
is also the main objective of motion planning algorithms. These challenges often occur simultaneously
but are treated separately. Neither of these challenges could be solved at a global level of motion
planning, which is mainly concerned with route selection and travel time minimization, and could be
computed in advance. Consequently, this thesis primarily focuses on local motion planning related to
the maneuvering of a vehicle, ensuring real-time performance and passenger comfort.

To address these two challenges, an extended tentacle-based motion planning algorithm is developed.
This is an interpolation curve-based algorithm that could work in real-time because there are no opti-
mizers or learning processes that cost a lot of computational resources in the algorithm. The most
important factor that affects passenger comfort in a ride is jerk, which is also known as the time deriva-
tive of acceleration. The proposed algorithm manages to control the jerk in both lateral and longitudinal
directions, thus ensuring ride comfort. Begin with the current state of the vehicle, including velocity,
attitude, and steering angle, a series of geometry curves called tentacles is generated and evaluated.
The maximum lateral jerk is limited during tentacle generation to avoid excessive impact on passengers
during maneuvering.

In most motion planning algorithms, geometry path planning and speed planning are treated separately.
However, in the proposed planning algorithm, the speed profile is generated based on the selected
best tentacle, thus making the speed profile more rational and adaptable to current maneuvers. In
addition, the target speed of the speed profile is decided based on road curvature and traffic conditions,
ensuring safety and avoiding wasting time on some low-speed traffic participants. More importantly, the
speed profile limits the maximum longitudinal jerk, thus making jerk limited in all directions and ensuring
passenger comfort.

To evaluate the performance of the proposed motion planning algorithm, simulations using a high-
fidelity vehicle model through IPG CarMaker and MATLAB/Simulink are implemented under various
conditions. Because this report does not focus on the design of the path-following controller, the vehicle
directly uses the output of the planner as control input during simulations. Even so, the algorithm
still manages to complete static and dynamic obstacle avoidance as well as adaptive following and
overtaking maneuvers at various speed ranges and road conditions. A virtual map of part of the campus
of TU Delft is also constructed using Carmaker and used for validation of the proposed algorithm under
urban traffic conditions. The proposed algorithm works effectively in complex environments and can
operate in real time at a frequency of 20 Hz while constraining the total jerk.

This research illustrated the capability of the developed tentacle-based motion planning algorithm to
ensure passenger comfort and safety under various traffic conditions. Although primarily serving as
a concept emphasizing feasibility through simulations rather than immediate on-road verification, the
proposed algorithm establishes a foundation for future real-vehicle implementation, thus contributing
towards resolving normal driving conditions essential for achieving fully automated driving.

i

Nomenclature

Abbreviations
Abbreviation Definition

AHP Analytic Hierarchy Process
AV Automated Vehicle
ADS Automated Driving Systems
CoG Center of Gravity
GPS Global Positioning System
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging
LQR Linear Quadratic Regulator
MPC Model Predictive Control
OCP Optimal Control Problem
PRM Probabilistic Road Map
RMS Root Mean Square
RRT Rapidly-exploring Random Trees
SQP Sequential Quadratic Programming
TTC Time-To-Collision

Symbols
Symbol Definition Unit

alat Lateral acceleration m/s2

aRMS
lat RMS of lateral acceleration m/s2

along Longitudinal acceleration m/s2

aRMS
long RMS of longitudinal acceleration m/s2

Cαf Lateral stiffness of the front axle N/rad
Cαr Lateral stiffness of the rear axle N/rad
d Length of the tentacle between the detection point

and the obstacle
m

ds Minimum braking distance m
f Refreshing rate Hz
Iz Moment of inertia in vertical direction kg∙m2

is Steering ratio −
jlat Lateral jerk m/s3
jRMS
lat RMS of lateral jerk m/s3
jlong Longitudinal jerk m/s3
jRMS
long RMS of longitudinal jerk m/s3
Kus Understeer gradient −
L Wheelbase m
Lc Collision distance m
Lt Safe length of the best tentacle m
l Length of the vehicle m
lc Crash distance m
lf Distance from center of gravity to the front axle m
lr Distance from center of gravity to the rear axle m

ii

iii

Symbol Definition Unit

ls Minimum lateral safe distance m
m Mass kg
n Number of tentacles −
R Curvature radius m
r Yaw rate rad/s
t Time s
v Velocity of the ego vehicle m/s
vlat Lateral velocity m/s
vlong Longitudinal velocity m/s
vobs Velocity of the obstacle m/s
vr Relative velocity m/s
vref Reference velocity m/s
vtar Target velocity m/s
w Width of the ego vehicle m
w0 Width of the unsafe region m
wo Width of the obstacle m
ρ Curvature m−1

ϕ Heading angle rad
δ Front wheel steering angle rad
δs Steering wheel angle rad

Contents

Abstract i

Nomenclature ii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Main Contributions . 3

1.3.1 Clothoid-Based Tentacle Generation for Lateral Jerk Limitation 3
1.3.2 Obstacle-Aware Adaptive Speed Planning with Longitudinal Jerk Constraints . . 3
1.3.3 Multi-scenario simulation with high-fidelity vehicle simulator 3

1.4 Thesis Structure . 4

2 Literature Review 5
2.1 Motion Planning for Automated Vehicles . 5

2.1.1 Sampling-based Method . 5
2.1.2 Interpolating Curve-based Method . 8

2.2 Baseline Method . 10
2.2.1 Tentacle-based Motion Planning Algorithm . 10
2.2.2 Limitations . 13

3 Methodology 15
3.1 Tentacle Generation . 15

3.1.1 Coordinate System . 15
3.1.2 Occupancy Grid Map . 16
3.1.3 Tentacle Generation Considering Lateral Jerk . 16
3.1.4 Collision Detection . 22

3.2 Tentacle Selection . 23
3.2.1 Selection Criteria . 23
3.2.2 Varying Parameters . 24
3.2.3 Consider Lateral Safe Distance . 26

3.3 Speed Planning . 26
3.3.1 Limitations . 26
3.3.2 Jerk-limited Speed Planning . 27
3.3.3 Modification of vref . 29

4 Simulation and Results 32
4.1 Framework . 32
4.2 Vehicle Control . 33

4.2.1 Lateral Control . 33
4.2.2 Longitudinal Control . 34

4.3 Common Road Scenario . 34
4.3.1 Scenario . 35
4.3.2 Results . 35

4.4 Highway Scenario . 36
4.4.1 Scenario . 36
4.4.2 Results . 36

4.5 Urban Scenario . 38
4.5.1 Scenario . 38
4.5.2 Results . 39

4.6 Comparative Analysis . 41

iv

Contents v

4.6.1 Passenger Comfort . 41
4.6.2 Real-time Performance . 41

4.7 Discussion . 42
4.7.1 Evaluation . 42
4.7.2 Limitations . 42
4.7.3 Future Works . 42

5 Conclusion 44

References 45

A Calculation of Minimum Braking Distance 48

B Solve the inequalities 50

List of Figures

1.1 Architecture of ADS [5] . 2
1.2 A complex urban scenario . 3

2.1 PRM visualization . 6
2.2 RRT approaches . 7
2.3 Polynomial curve method [17] . 9
2.4 Bezier curve method [18] . 9
2.5 G2 polynomial spline method [21] . 9
2.6 B-spline method [22] . 9
2.7 Tentacle paths for a speed set [29] . 11
2.8 Control path segment [29] . 11
2.9 Tentacle paths for a speed set [29] . 12
2.10 Control path segment [29] . 12
2.11 Tentacles at different steering angles [30] . 12
2.12 Path and curvature of an obstacle avoidance scenario 13

3.1 Coordinate system . 15
3.2 Occupancy grid map example . 16
3.3 Spline interpolation . 17
3.4 Collision avoidance of spline-based approach . 19
3.5 Occupancy grid map example . 20
3.6 Collision avoidance of clothoid approach . 21
3.7 Collision detection model [29] . 22
3.8 Tentacle pruning considering TTC . 23
3.9 Vclearance . 24
3.10 Vtrajectory [26] . 25
3.11 Comparison of constant and varying weighting parameters at different speeds 25
3.12 Tentacle pruning considering TTC . 26
3.13 Comparison of lateral safe distance at different speeds 27
3.14 Minimum braking distance-velocity . 27
3.15 Speed planning . 28
3.16 Comparison of lateral safe distance at different speeds 30

4.1 Framework of simulation of the proposed algorithm . 32
4.2 mapping relationship between throttle and brake openings and acceleration 34
4.3 Scenario 1 . 35
4.4 Simulation results of scenario 1 . 36
4.5 Scenario 2 . 37
4.6 Profiling the sub-functions f1, f2, and f3 in scenario 2 37
4.7 Simulation results of scenario 2 . 38
4.8 TU Delft campus and vehicle trajectory . 39
4.9 Simulation results of scenario 3 . 40
4.10 Vehicle trajectory without f2 . 40
4.11 Profiling the sub-functions f1, f2, and f3 in scenario 2 41
4.12 Planning time of scenario 1 . 43
4.13 Planning time of scenario 2 . 43
4.14 Planning time of scenario 3 . 43

vi

List of Tables

3.1 Comparison of algorithms on lateral jerk performance 21

4.1 Vehicle Parameters . 33
4.2 Dynamic Metrics of Each Simulation Scenario . 42
4.3 Planning Time Statistics for Each Scenario . 42

vii

1
Introduction

1.1. Background
Recently, the number of private vehicles has grown by leaps and bounds. Automobiles not only bring
convenience to people’s lives, but also begin to gradually become the third space of people’s lives.
However, the drawbacks of increasing car ownership, led by serious traffic safety problems, cannot be
ignored. According to the data, there were 1.19 million road fatalities in 2021 [1]. It has been shown
that most of the traffic accidents are caused by driver errors [2]. In order to reduce the possibility of
driver error and traffic accidents, automated driving technology is gradually being developed.

Research in automated driving technology began with early concepts in the early 1900s and has con-
tinued to advance with improvements in computational, artificial intelligence, and sensor technologies.
In the 1980s, the pioneering work of E. Dickmanns and the PROMETHEUS program drove the initial
development of automated driving technology, which enabled partially automated driving of vehicles in
closed environments [3]. In the mid-2000s, the DARPA Challenge Events became an important mile-
stone in the field of automated driving, bringing together experts from different fields and promoting
the interdisciplinary convergence of technologies [4]. These challenge events significantly accelerated
research and investment in automated driving technology, furthering automated driving research and
development in universities and industry.

Automated Driving Systems (ADS) consist of multiple collaborative subsystems to enable perception,
decision-making, and control. The main systems include acquisition, perception, communication, eval-
uation, path planning, and control modules. The architecture of an automated driving system is shown
in Figure 1.2. The system acquires data from the vehicle and the environment through proprioceptive
sensors and exteroceptive sensors. Proprioceptive sensors are responsible for acquiring information
about the vehicle’s own state, such as speed and acceleration, while exteroceptive sensors, such as
light detection and ranging (LiDAR), cameras, and radar, detect changes in the external environment.
The perception system is responsible for processing the sensor data and realizing functions such as
object detection, tracking, and lane recognition to understand the surrounding environment. The posi-
tioning system combines the Global Positioning System (GPS) and the Inertial Measurement Unit (IMU)
to determine the precise position of the vehicle on the road. The assessment system analyzes envi-
ronmental risks, including predicting the behavior of surrounding vehicles and pedestrians to improve
driving safety.

Based on this, the decision-making system makes behavioral decisions and generates a drivable path
from the current position to the target position, which is divided into global path planning and local
path planning to ensure the safety and efficiency of the path. The control system translates path plan-
ning results into specific maneuvering commands for the vehicle, such as accelerating, braking, and
steering, to ensure that the vehicle accurately executes the planned path. The actuation module is
responsible for implementing control commands to specific actuators such as the steering wheel, throt-
tle, and brake pedals. This module directly drives the vehicle movements to accomplish driving tasks.
The seamless collaboration between the systems enables automated driving in complex and dynamic

1

1.2. Problem Statement 2

Figure 1.1: Architecture of ADS [5]

road environments. Despite the significant progress of path planning algorithms in recent years, they
still face challenges regarding real-time performance, obstacle avoidance capability, and passenger
comfort. Therefore, continuous improvement of path planning methods, including techniques such as
graph search-based, sampling-based, optimization-based, and learning-based methods, has become
an important research direction in the field of automated driving.

1.2. Problem Statement
Traditional path planning algorithms usually focus on the feasibility and safety of the path, but less
research on the comfort of vehicle driving. Especially the lack of effective restrictions on the vehicle
lateral and longitudinal acceleration derivatives (jerk) in the path generation process, which results in
planned paths that are difficult to achieve comfortable driving in practical applications. In addition, the
more common path planning methods based on learning or numerical optimization, although they can
achieve higher planning accuracy, have high computational complexity and a large computational bur-
den, resulting in algorithms that cannot run in real time, which cannot meet the stringent requirements
for response speed in the actual automated driving environment. Therefore, how to take into account
both driving comfort and real-time performance in the motion planning process, especially under the
condition of strictly restricting the longitudinal and lateral jerk, to quickly plan a highly comfortable path
has become an important problem that needs to be solved. Based on this, this study will focus on the
following research question:

How to design an effective path planning method to ensure the real-time performance and com-
putational efficiency of the planning algorithm while significantly reducing the lateral and lon-
gitudinal jerk?

It should be noted that this research mainly focuses on the design of the motion planning algorithm
itself, and does not involve research at the perception and control levels. Specifically, at the perception
level, we assume that the environmental information captured by the sensors carried by the vehicle is
accurate and complete, with no omissions or errors, and is not affected by weather, light or environ-
mental conditions; information such as obstacle locations, auto-vehicle states, and road boundaries
are assumed to be accurately known, and thus the effect of perceptual uncertainty is not considered.
At the control level, it is further assumed that the controller used by the vehicle is an ideal controller
that can perfectly track the path generated by the planning algorithm without any lateral or longitudi-
nal tracking errors. These assumptions allow this research to focus on the performance of the motion

1.3. Main Contributions 3

planning algorithm, clearly defining the research boundaries and focus of this report.

Figure 1.2: A complex urban scenario

1.3. Main Contributions
1.3.1. Clothoid-Based Tentacle Generation for Lateral Jerk Limitation
This report proposes a clothoid-based tentacle generation method to solve the problem of sudden
curvature changes in the baselinemethod. Different from the circular tentacles, the curvature of clothoid
tentacles varies with arc length. The lateral jerk is limited under 2m/s3 through limiting the slope of
curvature growth. Besides, the weighting parameters used in the tentacle selection process are varied
depending on whether an obstacle is encountered or not, thus balancing the performance between
tracking the reference path and obstacle avoidance. Simulation results show that the proposed method
can reduce the maximum curvature jump at the joints by more than 80% compared with the baseline
method, which can significantly alleviate the vibration and lateral bumps caused by the discontinuous
path curvature of the vehicle, and improve the ride comfort and robustness of the vehicle maneuvering.

1.3.2. Obstacle-Aware Adaptive Speed Planning with Longitudinal Jerk Constraints
In order to further enhance the driving comfort, this report proposes a novel speed planning approach
that incorporates an explicit longitudinal jerk constraint. The speed planning algorithm takes the result
of tentacle selection and plans the most appropriate target speed based on the best tentacle, making
the speed profile more rational and adaptable to the current maneuver. The maximum longitudinal
jerk of the vehicle is limited within 3 m/s3 by a saturated PD controller that takes the speed error and
outputs the longitudinal jerk. In addition, the proposed speed planning algorithm dynamically adapts
traffic and road conditions by providing additional acceleration while overtaking moving obstacles and
reducing target speed when encountering curved roads.

1.3.3. Multi-scenario simulation with high-fidelity vehicle simulator
In order to verify the feasibility and robustness of the proposed motion planning algorithm in real sce-
narios, a joint simulation platform of IPG CarMaker and MATLAB/Simulink is constructed. In highway
conditions, the simulated vehicle cruises at the velocity of 90 km/h and performs path replanning and
avoidance in front of dynamic obstacles. In the urban condition, a stretch of road network around the
TU Delft campus was chosen as a simulation scenario, a speed limit of 30 km/h is set, and static as
well as dynamic obstacles (cyclists and vehicles) are introduced. The simulation process is performed
by calling the path and speed profiles generated by the proposed algorithm in real time, and detailed
vehicle dynamics simulation is performed by CarMaker. The test metrics include replanning time and
lateral and longitudinal acceleration and jerk. The results show that the maximum lateral and longitudi-
nal acceleration is limited within 2m/s2 in all conditions, which satisfies the comfort requirements. This
validation not only proves the practicality of the algorithm under multiple complex road conditions but

1.4. Thesis Structure 4

also provides a reusable joint simulation scheme for subsequent engineering deployment.

1.4. Thesis Structure
The rest of the report is organized as follows. In Chapter 2, the literature review on sampling-based
and interpolation curve-based planning algorithms is presented, discussing their strengths and weak-
nesses with respect to real-time performance and path comfort. Followed by a section showing the
baseline method of this research, the tentacle-based planning algorithm, and the challenges faced
within the scope of this thesis. In Chapter 3, the proposed methodology is introduced. Firstly, the chap-
ter shows how to generate a series of clothoid-based tentacle paths that restrict lateral jerk. Then, the
criteria for choosing the best tentacle path to execute are presented with a discussion of the selection
of parameters in the algorithm. A speed planning algorithm is also proposed with jerk control and adap-
tation to curved roads and overtaking conditions. In Chapter 4, a series of simulations using CarMaker
and Matlab/Simulink are conducted. The simulations involve highway and urban road conditions as
well as dynamic and static obstacle avoidance. Simulation results, including lateral and longitudinal
acceleration and jerk as well as real-time performance, are presented. Then, the overall strengths
and limitations of the proposed method are discussed. Chapter 5 draws final conclusions and makes
meaningful recommendations for future works.

2
Literature Review

This chapter elaborates on related works regarding motion planning techniques for automated vehicles
and explains the baseline method upon which the proposed algorithm is constructed. Firstly, some
representative approaches of sampling-based methods and interpolating curve-based methods are
represented and discussed regarding real-time performance and ride comfort. Then, the baseline
tentacle-based motion planning method is introduced, highlighting its advantages regarding both of
these metrics as well as drawbacks.

2.1. Motion Planning for Automated Vehicles
In the existing literature, there is a wide range of types of motion planning algorithms, which can be
broadly categorized into sampling-based methods, graph search-based methods, optimization-based
methods, learning-basedmethods, and interpolation curve-basedmethods etc. However, each method
has its own shortcomings: graph search methods are limited by the mesh resolution, computationally
intensive and difficult to smooth; optimization methods, despite the direct constraints on the comfort of
the non-linear solution, are seriously time-consuming and prone to fall into the local optimum; learning
methods require a large amount of labeled data, are time-consuming to train, and have poor model
interpretability. Given that the goal of this study is to balance real-time performance with smooth cur-
vature and low jerk, we choose a relatively balanced sampling-based and interpolation curve-based
planning framework, which can quickly generate feasible paths and ensure smooth and continuous
curvature through spline or polynomial interpolation.

2.1.1. Sampling-based Method
After research, basically all sampling-based methods could be classified into Probabilistic Maps (PRM)
and Rapidly-Exploring Random Trees (RRT). The PRM is designed to find collision-free paths in high-
dimensional configuration spaces. In the learning phase, PRM randomly generates collision-free nodes
within the free space, then attempts to connect each node to nearby nodes via a simple local planner,
producing edges only if the straight-line connection is collision-free. To improve coverage in challenging
regions such as narrow passages, additional sampling and connectivity checks are performed selec-
tively, ensuring the roadmap graph is sufficiently dense where it matters most. Once the roadmap is
built, the query phase integrates the user’s start and goal configurations by linking them to their near-
est roadmap nodes. A standard graph search method— such as Dijkstra [6] or A* [7] —then finds the
shortest node-to-node path. If a path exists, it is stitched together with the start and goal segments and
optionally smoothed to improve quality. As more samples are added, the roadmap becomes better
connected and the resulting path length typically decreases.

PRM’s strengths lie in its ability to bypass exhaustive exploration of the configuration space—random
sampling allows it to scale to high degrees of freedom—and its robustness across varied obstacle lay-
outs. However, its weaknesses include variable path quality, which depends heavily on the number of
samples and often requires post-processing to improve smoothness or optimality. Figure 2.1 shows
the visualization of PRM with a different number of sampling points. The red and blue points represent

5

2.1. Motion Planning for Automated Vehicles 6

the start and goal configuration, and the black blocks represent obstacles. The hollow blue points are
the random sampling points in the space, and the green lines are the edges between two neighboring
points. The small red dots show the points sampled inside the obstacle that are removed from the
roadmap. In Figure 2.1a, a feasible path is generated and shown in a pink line, which is suboptimal.
In figure 2.1b, the path generated has a shorter distance from start to goal when the number of sam-
pling points increases to 1000. PRM is also inherently designed for static environments; in dynamic
settings with moving obstacles, the precomputed roadmap may quickly become invalid, leading to plan-
ning failure. Moreover, narrow regions may remain under-sampled unless sampling density is locally
increased, which raises computational costs.

To address PRM’s suboptimal convergence, an improved algorithm called PRM* is proposed in [8], it
adapts the connection radius as a function of the current number of samples, ensuring each new sample
attempts connections within a gradually shrinking radius r, expressed as the following equation.

r(n) = γ

(
log(n)

n

) 1
d

(2.1)

where γ is a constant, d is the dimension of the space and n is the number of sampling points. This
dynamic radius maintains a target average number of connections per node and enables continuous,
incremental path cost optimization during roadmap construction. PRM* is probabilistically complete—if
a collision-free path exists, the probability of finding it approaches one as sampling continues—and
asymptotically optimal, meaning the cost of the best path in the roadmap converges to the true optimal
cost as the sample count grows without bound.

(a) 200 sampling points (b) 1000 sampling points

Figure 2.1: PRM visualization

In addition to PRM algorithm, the Rapidly-Exploring Random Tree (RRT) [9] quickly finds collision-free
paths in high-dimensional, non-holonomic spaces by growing a tree through random sampling. Starting
from the initial state, each iteration samples a random free-space configuration, finds the nearest tree
node, and “steers” a fixed step toward it. If the new segment is collision-free, it’s added to the tree.
Sampling continues until a node reaches the goal region, yielding a feasible path. RRT’s principal
advantages are its rapid exploration of large spaces and its probabilistic completeness. Its expected
runtime and failure probability can be bounded in terms of path length, clearance from obstacles, and
sampling density, ensuring predictable performance in practice.

However, RRT does not aim for optimality. As the number of samples increases, the cost of the best
path in the RRT tree converges to a suboptimal value. To address this, RRT* is proposed in [8], it aug-
ments the basic RRT framework with a “rewiring” mechanism and a dynamically shrinking connection
radius. When a new node is generated, RRT* identifies all existing nodes within a radius. Among these
neighboring nodes, RRT* chooses the parent that yields the lowest total cost to the new node, and then

2.1. Motion Planning for Automated Vehicles 7

attempts to reconnect each of those neighbors through the new node if this would lower their cost. By
continually performing this local optimization at each insertion, RRT* guarantees asymptotic optimality,
the cost of the best path in the tree converges to the globally optimal cost. Although these local rewiring
steps increase computational overhead, they produce significantly smoother, shorter paths than basic
RRT, making RRT* the preferred choice when path quality is critical.

Extensions of the RRT framework have been developed to handle additional practical constraints. The
Closed-Loop RRT (CL-RRT) proposed in [10] samples in the space of control inputs (e.g., steering and
acceleration commands) rather than configurations, using a feedback controller to predict closed-loop
system responses, shown in Figure 2.2a. CL-RRT also employs environmentally dependent biasing
schemes, focusing sampling near intersections or along likely lanes to improve efficiency in structured
environments, and it incorporates a collision risk penalty in its cost function. CL-RRT has been demon-
strated in urban driving scenarios to safely navigate dynamic obstacles.

For vehicles with non-holonomic dynamics such as cars that must follow curvature constraints, RRT*
can be further adapted by replacing the “steer” step with a model-specific steering function [11]. In
Dubins RRT*, each potential connection uses the minimum length Dubins path (combining straight
lines and maximum steering arcs). As with RRT*, rewiring then optimizes cost locally. This yields
feasible and asymptotically optimal paths for simple car-like models.

For more complex, nonlinear dynamics—such as a double integrator or a bicycle model that captures
yaw dynamics and load transfer—approximate steer functions solve two-point boundary-value prob-
lems via shooting methods in [12]. A repropagation step then adjusts descendant nodes whenever a
parent changes, preserving tree consistency. Heuristic “cost-to-go” estimation and conservative reach-
able set checking prune unlikely branches, improving runtime without sacrificing optimality. In high-
speed automated driving, mapping tire-friction limits into elliptical acceleration constraints at a pseudo-
flat output (the vehicle’s front center of oscillation [13]) enables dynamically feasible RRT* paths that
satisfy both steering and acceleration limits.

Practical variants such as Fast RRT [14] combine offline rule templates, which are predefinedmaneuver
segments for typical traffic scenarios with aggressive extensions that attempt direct connections to
the goal when possible, shown in Figure 2.2b. An environmental assessment module dynamically
selects between standard and aggressive extensions to accelerate convergence. The static obstacle
avoidance method adds a pruning step to eliminate redundant nodes and smooth the resulting path via
Bézier curve fitting. Sampling can be focused on a Gaussian sector ahead of the vehicle, and adaptive
sampling regions are defined by recent success rates, further improving efficiency.

(a) CL-RRT [10] (b) Fast RRT [14]

Figure 2.2: RRT approaches

Sampling-based path planning methods have the advantages of adaptability and simplicity of imple-
mentation in high-dimensional complex spaces. However, they may produce unsmooth, suboptimal

2.1. Motion Planning for Automated Vehicles 8

paths. In high-dimensional or dynamic environments, sampling inefficiency increases search time and
hampers real-time performance. Random sampling yields variable path quality, risking local optima or
failure in narrow passages. Repeated collision checks also incur high computational costs. Moreover,
these methods weakly address vehicle kinematics and dynamics, and handling multi-objective or con-
strained scenarios demands complex extensions. Overall, their limitations in path quality, efficiency,
and adaptability need further optimization or hybrid approaches.

2.1.2. Interpolating Curve-based Method
To address sampling-based methods’ shortcomings in smoothness and efficiency, we introduce inter-
polation curve–based motion planning methods. The core idea is to define key control points along a
global reference path and use analytical interpolation to generate continuous paths with smoothly vary-
ing curvature. This approach inherently satisfies vehicle kinematic and dynamic constraints while avoid-
ing the heavy computations of random sampling. The resulting paths exhibit no sharp turns or abrupt
curvature changes, improving compatibility with high-speed tracking. Moreover, curvature, accelera-
tion, or other constraints can be readily incorporated, enhancing flexibility in complex environments. In
the following, representative studies using polynomial, Bezier, and spline curves are presented.

In polynomial curve methods, cubic or quintic polynomials are constructed, which define vehicle paths
as functions of one or more independent variables (typically time or arc length). Coefficients of poly-
nomials are chosen to satisfy boundary constraints: typically position, velocity, and acceleration at the
start and end points. This smoothness is crucial for high-speed maneuvers, complex lane changes,
and respect for vehicle dynamics.

Building on these foundations, several real-time planners use polynomial-based endpoint interpolation
followed by optimization. One such framework [15] samples lateral and longitudinal offsets along the
road centerline, then connects pairs of sampled endpoints via cubic polynomials. The coefficients are
computed by gradient descent under curvature and heading constraints to avoid curvature disconti-
nuities during successive replanning, thus realizing a quadratic polynomial expansion at the current
attitude of the vehicle. An “inverse method” then discretizes speed profiles and fits cubic polynomi-
als to match vertex constraints. Finally, each candidate path is scored by weighted costs including
length, curvature, jerk and offset, and optimized via non-derivative simplex methods, yielding marked
improvements in path quality and runtime.

A specialized overtaking planner [16] models the overtaking maneuver in three phases (lane departure,
side-by-side passing, and lane return), using cubic polynomials in the first and third segments, and
matching positions and velocities at the phase boundaries. A nonlinear adaptive controller then tracks
the generated path, estimating the overtaken vehicle’s speed online to reduce the dependence on
external measurements.

A FRENETIX framework [17] offers a modular, high-performance planner capable of city and highway
driving. It updates the vehicle’s state, and samples a lattice of end states in time, lateral offset, and
longitudinal velocity. Quintic polynomials generate lateral paths while cubic polynomials generate longi-
tudinal ones. After transforming candidates back to Cartesian space, kinematic feasibility (acceleration,
curvature, and derivative limits) is checked, and paths are scored on comfort, offset, obstacle distance,
and collision probability. The feasible path with the best score is selected; if none exists, an emergency
braking path is generated.

Invented by Pierre Bezier for automotive body design, Bezier curves are parametric curves defined
by a series of control points and Bernstein polynomial, and can be calculated using the de Casteljau
algorithm [19] by recursively subdividing a Bezier curve into two segments. Early motion planning
methods proposed in [19] fit cubic Bezier curves at turns using midpoint constraints on corner bisectors,
then optimize control points to minimize curvature variation and curvature jumps between segments,
yielding smoother steering profiles.

A subsequent work [20] integrates obstacle avoidance by combining Bezier fitting with a time-varying
potential field representing road boundaries and obstacles defined in Frenet coordinates. A quartic
Bézier curve with five control points is optimized under curvature, curvature derivative, and dynamics
constraints using Sequential Quadratic Programming (SQP), with initial guesses from a simple heuris-
tic. The speed profile is then computed by a quadratic polynomial matching path length and velocity

2.1. Motion Planning for Automated Vehicles 9

Figure 2.3: Polynomial curve method [17] Figure 2.4: Bezier curve method [18]

boundaries.

In [18], a trajectory planning method is proposed using three-dimensional quartic Bezier curves for
collision avoidance and lane alignment, treating vehicle speed as a vertical coordinate alongside planar
position. By expressing lateral and velocity control points in terms of a single optimization variable (the
longitudinal coordinate of the final point), the planner minimizes obstacle proximity, curvature variation,
maneuver time, and acceleration constraints, yielding integrated path and speed solutions.

Splines are piecewise polynomial curves composed of segments defined over sub-intervals. They offer
local control, which means adjusting one control point affects only its neighboring segments, and avoids
the oscillations typical of high-degree polynomials. The first type of spline is polynomial spline, where
each segment is a low-degree polynomial joined at knots with continuity constraints up to a specified
derivative order. An efficient lane change algorithm is proposed in [21], it uses G2-quintic splines: by
constraining lateral jerk to have a single extremum, it bounds maneuver time to prevent overshoot, and
samples candidate paths within a safe region derived from map and dynamic information. Sampling
density is adapted to relative speeds, and experiments show robust performance in urban driving.

Figure 2.5: G2 polynomial spline
method [21]

Figure 2.6: B-spline method [22]

In addition to polynomial splines, a more commonly used type of spline is the B-spline curve. B-spline
curves are developed to address the shortcomings of Bézier curves, which could not locally control
the direction of the curve. A move of one control point on the Bézier curve causes the entire curve
to change. A B-spline curve is defined by a number of control points Pi and a basis function Ni,k(u).
An early approach [23] computes a safe corridor along mine walls via the Minkowski sum, then fits a
quadratic B-spline whose curvature variation is minimized to reduce jerk and maximize smoothness.

2.2. Baseline Method 10

Obstacle avoidance and vehicle dynamics constraints form a nonlinear program solved by SQP. Simul-
taneously, a velocity profile is optimized through acceleration, constant speed, and deceleration phases.
Compared to a prior piecewise 7th-degree method, this scheme yields smoother paths, shorter travel
times, and higher efficiency, particularly well suited to industrial settings with static obstacles.

Building on string stability theory, [24] embeds inter-vehicle perturbation attenuation directly into the tra-
jectory planner. Control points of a B-spline representation are optimized under objectives for smooth-
ness, spacing error, and lateral offset while enforcing dynamics, collision avoidance, and minimum
inter-vehicle distances. To mitigate communication delays, a real-time prediction model adjusts control
points, and only a small subset of trajectory parameters need to be shared among vehicles, reducing
bandwidth requirements. Simulations confirm smooth, stable platooning even with significant latency.

In [22], the infinite-dimensional Optimal Control Problem (OCP) is reconstructed by representing all
state and control paths as B-splines. The nonlinear variation of variables transforms the original con-
straints, as well as the constraints to avoid moving obstacles by separating hyperplanes through time
parameterization, into spline coefficient constraints. Each obstacle is predicted linearly, and the colli-
sion check is simplified to verifying that the vehicle’s polygon vertices remain on one side of a moving
hyperplane. A receding-horizon SQP solver updates and optimizes every cycle, minimizing travel time.
Extensive simulations demonstrate robust, collision-free performance in dynamic settings.

Reference [25] divides a lane-change maneuver into four phases, each modeled by a quasi-uniform
cubic B-spline whose control points anchor to phase start and end positions. The return to the original
lane mirrors the departure curve for continuity. Constraints enforce collision clearance, rollover and
side-slip limits, and road-boundary adherence. A unified cost function weights path safety, smoothness,
and comfort. Indicators are normalized to [0, 1] and combined; heading angle discretization generates
a limited candidate set, from which the lowest cost path is chosen.

Interpolation curve-based motion planning algorithms excel at producing smooth, continuous paths
with minimal jerk, making them highly efficient and comfortable in static or structured environments.
By fitting low-order polynomials or splines through predefined control points, they guarantee path and
derivative continuity, ensure passenger comfort, and simplify implementation. However, their reliance
on fixed waypoints and the need to recompute entire curves whenever obstacles move undermines
real-time performance. In complex, unstructured, or highly dynamic scenarios, where obstacles and
goals change unpredictably, interpolationmethods struggle to adapt quickly andmaintain computational
efficiency, limiting their practical applicability.

2.2. Baseline Method
2.2.1. Tentacle-based Motion Planning Algorithm
The tentacle algorithm is a motion planning method that mimics the behaviour of insects that use their
tentacle to detect and avoid obstacles, which is commonly used in automated vehicles. The core idea
is to generate a series of predefined paths (called tentacles) centered on the vehicle, representing the
possible motion paths at the current speed and direction. The shape of the tentacle can be circular [26],
straight, clothoid curves [27], or self-defined curves [28]. After tentacle generation, the best tentacle
is selected based on multiple criteria. Since only local planning is considered in each computation of
tentacles, the response of the tentacle-based algorithm is fast and suitable for dynamic environments.
Therefore, it is able to optimize path planning in combination with other methods (e.g., interpolating
curves, occupancy grids, and sampling-based methods) to enhance adaptability.

A real-time path planning algorithm for automated vehicles combining the tentacle algorithm and B-
spline curve is proposed in [29]. Firstly, a two-dimensional occupancy grid map with obstacle and road
boundary information around the self-vehicle is constructed. On the grid map, a set of circular tentacles
is generated offline when neglecting the vehicle’s initial steering angle. Vehicle speed is divided into
20 ranges, and for each range, 81 tentacles with different radii are generated. The radius rk of the kth

tentacles is defined based on the current speed set, shown by:

rk =


pkRj , k = 0, . . . , 39,

∞, k = 40,

p80−kRj , k = 41, . . . , 80.

(2.2)

2.2. Baseline Method 11

where p is the correction factor, and Rj is the initial radius of speed set j related to the current speed.
The vehicle’s speed is assumed not to change on each tentacle path. The generated tentacle path set
is shown in Figure 2.7.

Figure 2.7: Tentacle paths for a speed set [29] Figure 2.8: Control path segment [29]

The proposedmethod considers only the safety distance as the criterion for best tentacle selection. The
safety distance is derived by collision check of the detection area, which is generated by expanding with
the safe width along the path point on each tentacle. The execution time on the selected best tentacle
is set according to the speed set. In a situation where the safety distance is less than the minimum,
the vehicle will brake in the current direction and replan at the next interval.

After generating and selecting tentacle paths, cubic B-spline curves are used to generate follow-up
paths. The B-spline curve is generated using three control segments with four control pointsX0, X1, X2, X3

as shown in Figure 3.3, where Xstart and X0 is the start and end point of the executing tentacle path,
θg is the heading angle of the target point, and θ0 is the heading angle of X0. l1, l2, l3 are lengths of
each segments and α1, α2 are angles between two segments. In order to limit the maximum curvature
of the B-spline curve, the distance L of adjacent vertices and the angle α between them need to be
satisfied as:

L ≥ Lmin =
1

6

sinα

κmax

(
1− cosα

8

)−1.5

(2.3)

When the coordinate (xg, yg) of the target point X3 is determined by demand of the maneuver, and α1

and l1 are given, the expression of l2 and l3 can be derived as:
l3 =

(l1 − xg) sinα1 + yg cosα1

sin θg cosα1 − cos θg sinα1
,

l2 =
l3 cos θg + l1 − xg

cosα1
.

(2.4)

Then, the points in the transverse direction of the reference target point are sampled to generate a
set of B-spline curves based on Equation 2.4. The target points are selected as shown in Figure 2.9,
where the blue curve is the reference path, and the red curve is the best tentacle. G is the reference
target point, i.e., the point on the reference path where the obstacle is detected. The distance between
sampling points can be determined according to the actual scene. Based on the optimal tentacle path,
we only need to sample target points that are close to the sampling area. After collision detection of the
generated B-spline path set, the optimal path is selected in terms of path length, curvature, curvature
derivative, and offset between the target point and the reference path. The B-spline chosen and the
best tentacle paths are combined to form the total obstacle avoidance path.

In order to evaluate the performance of the aforementioned motion planning algorithm, the authors
design the simulations and experiments. The simulation is conducted in a lane-changing scenario to
avoid obstacles. As shown in Figure 2.10, the frame at the bottom of the figure stands for the self-
vehicle, and the black rectangle in front of the self-vehicle is the obstacle. The first subfigure from the
left shows the tentacles generated for obstacle detection; the second subfigure shows the best tentacle;
the third subfigure demonstrates the B-spline set (blue curve) generated based on sampling points and

2.2. Baseline Method 12

the executed tentacle path (red curve), and the fourth subfigure shows the selected optimal path. The
real-time performance of the proposed algorithm is also demonstrated with an average time of 4.9 ms
for the best tentacle path and 9.9 ms for B-spline path generation.

Figure 2.9: Tentacle paths for a speed
set [29]

Figure 2.10: Control path segment [29]

The proposedmethod in [29] is improved in a later work [30]. Instead of circular tentacles that ignore the
current steering angle, the improved tentacles are generated by first defining the curvature derivatives:

dρ

ds
= βs0.5 + C0 (2.5)

where s is the curve length and C0 is the initial curvature derivative related to the current steering angle.
Taking the indefinite integral of Equation 2.5 yields the curvature function that can be converted to
Cartesian coordinates. The improved tentacles with different initial steering angles are represented in
Figure 2.11.

(a) C0=0 (b) C0=0.02

Figure 2.11: Tentacles at different steering angles [30]

After collision detection, the best tentacle is determined by defining the total value as follows:

V = ω1Vld + ω2Vα + ω3VC (2.6)

2.2. Baseline Method 13

where Vld represents the distance criteria, which is defined based on the deviation distance of the
tentacle path from the reference path, Vα represents the angle criteria, which is defined based on the
angle difference between the tentacle and reference path, VC represents curvature criteria which is
defined based on curvature derivative of the tentacle. Weights ωi are chosen via Analytic Hierarchy
Process (AHP): pairwise comparisons based on accuracy and smooth criteria, eigenvalue consistency
check, yielding ω1 = 0.4954, ω2 = 0.2716, and ω3 = 0.2330. Simulations show significantly reduced
lateral error and curvature variation versus clothoid tentacles, at the cost of higher average planning
time (20.57 ms) compared to [29].

Figure 2.12: Path and curvature of an obstacle avoidance scenario

2.2.2. Limitations
For the problem at hand, the tentacle-based motion planning method is a promising approach, which
has the advantage that a series of pre-defined paths can effectively handle dynamic environments, and
the lower computational cost of the tentacles makes the algorithm real-time guaranteed. However, the
baseline method mentioned above is subject to some limitations that are presented below.

• The baseline algorithm considers only overtaking maneuvers in a straight line, so the tentacles
are designed to be circular and each has a constant curvature. Consequently, when the planner
decides to choose a different tentacle from the last replanning, a sudden change in curvature
appears, shown in Figure 2.12. The sudden change in path curvature leads to jerky lateral accel-
eration based on the relationship alat = v2κ with alat the lateral acceleration, v the velocity and
κ the path curvature, which can greatly affect ride comfort. The improved algorithm should
also consider the maneuver in a curved road and thus generate tentacles regarding the
self-vehicle’s initial steering and heading angles .

• The baseline algorithm chooses the best tentacle only based on the safe distance, which is con-
sidered too simple. The improved algorithm should implement more comprehensive criteria
for the best tentacle selection based on both safety (including safe distance and time to
collision) and the executability and comfort of each tentacle.

2.2. Baseline Method 14

• The baseline algorithm assumes the vehicle maintains a constant velocity when executing the
collision-avoidance path, which is unrealistic. Therefore, the improved algorithm will need a
velocity planning method to determine the velocity profile and the timing of acceleration
and braking.

• The proposed speed range for the baseline algorithm is under 40 km/h, which is suitable for urban
roads but too low for highways. The improved algorithm should consider the scenario of high-
speed overtaking maneuver when the vehicle may exhibit different dynamic properties.

• The baseline algorithmmanages to plan a lane-changing path when facing an obstacle in front, but
the path returns to the original lane after overtaking is not generated. The improved algorithm
should also generate the lane-changing path after finishing overtaking while making sure
the vehicle would not exceed the lane line boundary.

• The baseline algorithm validates only the path planning of static obstacle avoidance. The ef-
fectiveness of the algorithm for dynamic obstacle avoidance has yet to be verified. Therefore,
the improved algorithm should contain a frequent replanning process to handle sudden
obstacles and complex environments.

3
Methodology

To achieve a real-time motion planning algorithm that can cope with complex environments while sat-
isfying ride comfort, the proposed framework is presented in this chapter. The approach builds upon
the tentacle-based real-time path planning methodology [29] discussed in the previous chapter and
manages to fix the poor ride comfort by lateral jerk control. Besides, a novel speed planning method
with longitudinal jerk control is proposed to improve the feasibility in various traffic scenarios. This
chapter is organized as follows: firstly, the tentacle generation method is introduced to generate a se-
ries of executable tentacles, then the tentacle selection is implemented to find a safe tentacle to get to
the destination among all candidates. Finally, the speed planning method is proposed based on the
selected best tentacle.

3.1. Tentacle Generation
3.1.1. Coordinate System

Figure 3.1: Coordinate system

As shown in Figure 3.1, we adopt a right-handed, global inertial coordinate frame (X,Y) in the plane,
with its origin at a fixed reference point (e.g., map origin). The vehicle is simplified in the diagram to a
bicycle model. The vehicle’s position in this frame is given by (x, y), representing the coordinates of its
center of gravity (CoG). Its orientation (heading angle) is denoted by ϕ. Longitudinal and lateral velocity
of the vehicle CoG are given by vlong and vlat, and the steering angle δ is defined positive for a left
(counterclockwise) turn relative to the vehicle’s heading. The curvature of the vehicle’s travel path is

15

3.1. Tentacle Generation 16

denoted by ρ, with positive direction same as the steering angle. These variables and sign conventions
will be used throughout the proposed motion planning formulation.

3.1.2. Occupancy Grid Map
Occupancy grid map is a fundamental tool in the perception and navigation module of ADS, providing a
discrete, metric map of the environment around a vehicle by tessellating space into square cells, each of
which holds an estimate of whether that region is free or occupied. To map the occupancy grid, external
perception sensors - most commonly LiDAR, but also radar or camera systems - scan the surroundings
at fixed intervals. As mentioned in Chapter 1, this thesis assumes that the sensor measurements are
accurate, and the value of square cells could only be 0 or 1, which stands for free or occupied. In each
interval (at the same frequency as the planner’s operating frequency), the ideal sensor generates an
ego-centered, two-dimensional grid map with 1500 × 500 cells, with the size of each cell being 0.1m ×
0.1 m. The extent of the physical space environment around the vehicle is therefore known to be 150
m × 50m. Figure 3.2 shows an example of an occupancy grid map. The left panel shows a road scene
with two obstacles (solid rectangle) in front of the ego-vehicle (hollow rectangle). The right panel shows
the occupancy grid map of this scene, with the black area representing the occupied cell because of
obstacles and road boundaries, and the white area representing the navigable space.

(a) Road scene (b) Occupancy grid map

Figure 3.2: Occupancy grid map example

3.1.3. Tentacle Generation Considering Lateral Jerk
The curvature discontinuity problem of the baselinemethodmentioned in Chapter 2 could cause serious
problems on passenger comfort, considering lateral jerk jlat, which can be calculated as follows:

jlat(t) =
dalat(t)

dt
=

d

dt

[
v(t)2 ρ(t)

]
= 2 v(t)

dv(t)

dt
ρ(t) + v(t)2

dρ(t)

dt
. (3.1)

where alat is lateral acceleration, v is vehicle velocity, and ρ is curvature of the path. Although practically
the vehicle speed varies with time, the vehicle speed is assumed to be constant in order to compare
more intuitively the lateral jerk performance differences between the different algorithms. With a con-
stant speed v, Equation 3.1 becomes:

jlat(t) = v2
dρ(t)

dt
. (3.2)

In this report, the maximum lateral jerk is limited to 2 m/s3 as the comfort threshold. Not only does the
maximum jerk need to be limited, but frequent changes in the jerk during the ride may also lead to poor
comfort, so a criterion is also needed to evaluate the average comfort on the road. The Root Mean
Square (RMS) of lateral jerk in a period of time is defined as follows:

RMS
(
jlat
)
=

√√√√√√√√√√
N−1∑
i=1

(
jlat,i

)2
∆ti

N−1∑
i=1

∆ti

, ∆ti = ti+1 − ti. (3.3)

where t = [t1, t2, , tN] is the time period.

3.1. Tentacle Generation 17

Spline Interpolation Approach
Cubic natural splines are used to connect the tentacles selected for execution in two successive plan-
ning processes because cubic spline curves are not only guaranteed to have continuous function values
at the nodes, but also continuous first-order derivatives (tangent direction) and second-order deriva-
tives (curvature derivative). Besides, natural splines implicitly minimize the integral of the square of the
second-order derivative of the overall curvature while guaranteeing passage through a given point.

Figure 3.3: Spline interpolation

Figure 3.3 shows the situation that the vehicle has traveled to the end of the current tentacleX1X3, and
has planned the tentacle to be executed in the next interval X3X5. X2 and X4 are midpoints of X1X3

and X3X5, R1 and R2 are radius of X1X3 and X3X5. If R1 ̸= R2, then direct change from tentacle
X1X3 to tentacleX3X5 will cause curvature discontinuity, and this is where the cubic spline comes into
play. The algorithm takes coordinates of discrete points of arc X2X3 and X4X5 as nodes {(xi, yi)}ni=1

to define the spline. In each interval [xi, xi+1], the spline is represented by a cubic polynomial:

Si(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di, x ∈ [xi, xi+1] (3.4)

There will be a total of N − 1 segments, each with 4 unknown coefficients (ai, bi, ci, di) to be identified.
To solve these coefficients, several boundary conditions are introduced, the first is an interpolation
condition, which ensures the spline passes through the given (xi, yi) at all nodes:

Si(xi) = yi, Si+1(xi+1) = yi+1, i = 1, . . . , N − 1 (3.5)

Then come the derivative continuity conditions: at the interior node x2, ..., xN−1, it is required that both
the first and second order derivatives of the preceding and following segments are the same:

S′
i(xi+1) = S′

i+1(xi+1), S′′
i (xi+1) = S′′

i+1(xi+1), i = 1, . . . , N − 2 (3.6)

Finally is the natural boundary condition: at the leftmost and rightmost endpoints, it is required that:

S′′
i (x1) = 0, Si(xN) = 0 (3.7)

With all the boundary conditions, coefficients (ai, bi, ci, di) could be solved, thus defining the spline
curve X3X3 shown in Figure 3.3 by a blue dotted line to connect the two tentacles. This process could
be done in MATLAB using the function spline. Since curvature is defined by first and second order
derivatives:

ρ(x) =
S′′(x)

[1 + (S′(x))2]3/2
(3.8)

The derivative continuity conditions shown in Equation 3.6 ensure smooth transition of first and second
derivatives, thus ensuring smooth transition of curvature from ρ1 = 1/R1 to ρ2 = 1/R2.

Although there are splines to smooth the connections of curvature neighboring planning tentacles, if
the difference between the curvatures of neighboring planning is too large, it is still possible that the

3.1. Tentacle Generation 18

lateral jerk exceeds the maximum limit. A tentacle selection post-processing method is introduced in
Algorithm 1 to limit the curvature difference between two consecutive plannings. In each replanning
process, the maximum allowed curvature difference ∆ρmax is calculated based on current speed v
and maximum allowed jerk jmax according to Equation 3.2. After the tentacle set T is generated, the
tentacle selection method chooses the best tentacle (with index k) to execute, as described in Chapter
3.2. A saturation function then limits the change in the best tentacle index and selects the index ksat that
is closest to k under the condition that the difference from the tentacle index kpre used in the previous
planning is within the permissible range. Finally, the Spline function takes the previous tentacle and
current best tentacle as input and outputs the path smoothing by cubic spline.

Algorithm 1: Spline-based approach
1 Require T , v, jmax ;
2 foreach planning do
3 ∆ρmax ← CalculateMax∆ρ(v, jmax);
4 kpre ← ksat;
5 k ← TentacleSelection(T);
6 ksat ← Saturation(k, kpre,∆ρmax);
7 p← Spline(T (ksat), T (kpre));
8 return p

A comparison between the spline-based approach and the baseline approach is shown in Figure 3.4.
The ego vehicle travels at a constant speed of 10m/s and there are two obstacles 50m and 90m ahead
of it, the planner works at a frequency of 20Hz. Results show that the curvature changes of paths
generated by the spline-based approach are smoother compared to the baseline method, resulting in
a maximum lateral jerk of 2m/s−3, whereas the baseline method has no jerk limit and has a maximum
value of 98.72m/s−3. Besides, the spline-based approach also outperforms the baseline method in
RMS of lateral jerk, with a value of 0.53m/s−3 compared to 5.56m/s−3. It is worth noting that the
path planned by the spline-based approach has more lateral offset than the baseline method due to
the inability to quickly convert the tentacles after overtaking an obstacle, caused by the limitation of
maximum lateral jerk.

Clothoid Approach
A novel clothoid curve-based tentacle generation approach is proposed in this section. Unlike a circular
curve with constant curvature, a clothoid curve has a curvature that varies with arc length [31], which
improves the smoothness of the generated path. Additionally, the initial curvature of every clothoid
tentacle starts with the current curvature of the executing path ρ0, effectively avoiding current changes in
curvature. The clothoid tentacle generation approach is described in Algorithm 2. Firstly, the maximum
curvature of the planned path at the speed of v is defined as follows [31]:

ρmax =
amax
lat

v2
(3.9)

where amax
lat = 4m/s2 is the maximum allowed lateral acceleration that guarantees the stability of the

vehicle. The terminal curvature ρter(i) for each tentacle could then be defined as follows:

ρter,i = −ρmax +
2(i− 1)ρmax

n− 1
, i = 1, 2, . . . , n. (3.10)

where n is the number of tentacles, taken as 121 in this report. Hence, ρter, i = −ρmax, ρter, n(n) = ρmax

and ρter, i increases linearly in equal increments from −ρmax to ρmax. Next, the maximum slope of
curvature over arc length s could be calculated as:

dρ

ds
=

dρ

dt

dt

ds
=

dρ

dt

1

v
(3.11)

where dρ
dt is the time derivative of curvature obtained from Equation 3.2. For the tentacle that has the

largest change in curvature, the longest arc length is required to grow from the current curvature ρ0 to

3.1. Tentacle Generation 19

Figure 3.4: Collision avoidance of spline-based approach

the maximum curvature ρmax. Hence, the minimum length lmin required for this tentacle to increase
curvature should be:

lmin =
max(−ρmax − ρ0, ρmax − ρ0)

dρ
dsmax

(3.12)

We assume all the tentacles have the same length L, which is related to velocity:

L = t0v (3.13)

where t0 = 6s shows that the tentacle can show the possible position of the vehicle for at most t0
seconds. The faster the vehicle travels, the longer the tentacles, the better the advance judgment
of road conditions. For every tentacle, the curvature increases from ρ0 to the corresponding terminal
curvature ρter, i over the length of lmin, which makes sure that the slopes of all tentacles are less than
dρ
dsmax

, and thus limiting the maximum lateral jerk. The tentacles maintain their respective terminal
curvature ρter, i in the portion of their length beyond lmin and less than L. However, if lmin ≥ L, which
means the tentacle with the greatest curvature difference could not increase to the maximum curvature
within the length L. In this case, all tentacles should increase the curvature with the slope of dρmax.

After obtaining an expression for the curvature of each tentacle ρi as a function of arc length s, the
heading angle could be computed by integrating the curvature over the arc length:

ϕi(s) = ϕ0 +

∫ s

0

ρi(u) du, i = 1, . . . , n (3.14)

where ϕ0 is the current heading angle of the vehicle, and the coordinates of each tentacle xi(s) and
yi(s) could be computed by integrating the heading angle over the arc length with initial conditions x0

3.1. Tentacle Generation 20

and y0:

xi(s) = x0 +

∫ s

0

cos
(
φi(u)

)
du

yi(s) = y0 +

∫ s

0

sin
(
φi(u)

)
du

(3.15)

Algorithm 2: Clothoid tentacle generation
1 Require ρ0, v, jmax, ϕ0, x0, y0 L;
2 foreach planning do
3 Calculate ρmax using Equation 3.9 ;
4 dρmax ← CalculateMaxdρ(v, jmax);
5 lmin ← CaculateMinLength(dρmax, v) ;
6 ρter ← linspace(−ρmax − ρ0, ρmax − ρ0, n) ;
7 for i = 1 . . . n do
8 if lmin ≤ L then
9 Curvature ρ(i) grows from ρ0 to ρter within lmin and stay constant ;

10 else
11 Curvature ρ(i) grows from ρ0 at a slope of dρmax within L ;
12 ϕ(i)← Intergrate(ϕ0, ρ(i)) ;
13 T (i)← Integrate(x0, y0, ϕ(i)) ;
14 Tentacle selection method ;

Figure 3.5 shows a set of clothoid curves as well as their curvatures with initial coordinate x0 = 0m,
y0 = 0m, initial heading angle ϕ0 = 0.1rad, and initial curvature ρ0 = 0.02/m at the speed of 10m/s.
The tentacles are drawn at intervals for a clearer presentation, as shown in Figure 3.5b, the curvatures
of all the tentacles reach their respective terminal curvatures ρter, i starting from the current curvature
ρ0, and the terminal curvatures of the first and last tentacles are ρmax and −ρmax, respectively.

(a) Clothoid curve (b) Curvature of clothoid curve

Figure 3.5: Occupancy grid map example

Figure 3.6 shows the collision avoidance results of the proposed novel approach using the clothoid
curve compared with the baseline method [29], the spline-based approach proposed previously, and
the clothoid curve-based approach proposed in [31]. It could be seen that compared to the spline-
based approach, the path generated by the proposed clothoid approach is smoother in curvature, thus
having smaller jerk averages. As shown in Table 3.1, the proposed clothoid approach has the minimum

3.1. Tentacle Generation 21

RMS of lateral jerk among all four approaches with 0.58m/s3, while limiting the maximum value to
2m/s3. Although the clothoid approach proposed in [31] has the smallest extreme value on lateral
jerk, this method of making curvature grow all the way through the length of the tentacle makes the
lateral acceleration change so slowly that it is difficult to adjust back to the original lane quickly after
avoiding the first obstacle, causing a lot of oscillation. Taken together, the proposed novel clothoid
tentacle generation method has the best restriction on the lateral jerk, so all subsequent simulations
are performed by this method.

Figure 3.6: Collision avoidance of clothoid approach

Table 3.1: Comparison of algorithms on lateral jerk performance

Algorithm Maximum lateral jerk (m/s3) RMS of lateral jerk (m/s3)

Baseline algorithm [29] 98.72 5.56
Spline-based approach 2 1.08
Clothoid approach 2 0.58
Approach in [31] 1.64 0.96

3.1. Tentacle Generation 22

3.1.4. Collision Detection

Figure 3.7: Collision detection model [29]

After obtaining the set of tentacles, not all parts of all tentacles are safe and navigable due to the
presence of obstacles, so it is necessary to cut off the unsafe tentacles in order to choose the best
path among the safe ones. First, all tentacles are discretized into sets of points spaced 0.1m apart,
then a collision detection model [29] shown in Figure 3.7 is used to detect whether there is a collision
between the vehicle and obstacles. The collision detection model is constructed by three equal-sized
circles with centers on the vehicle’s central axis. The size of parameters is designed to be [29]:

r =

√(
l − 2d

2

)2

+
(w
2

)2
(3.16)

where w and l are width and length of the vehicle, h = 2r is the safe width and d = l/3 is the distance
between centers of circle. The detailed collision detection method is introduced in Algorithm 3. In
order to improve computational efficiency, the algorithm detects collision every five discrete points on a
tentacle, that is, the interval between two detections is 0.5m. For each detection, the CoG of the vehicle
is assumed to be on the detection point, the locations of the centers of the three circles C1, C2, and C3

are calculated according to the detection model shown in Figure 3.7. Then based on the occupancy
grid map constructed in Chapter 3.1.2 to determine whether an obstacle (or road boundary) falls into
the detection model: if not, it continues to check the next point; if so, only the portion of the tentacle
before this point is retained, and the rest is pruned. Finally, the length of the remaining part of each
tentacle is defined as the safe length L0.

Algorithm 3: Collision detection
1 Require T , Map;
2 for i = 1 . . . n do
3 foreach point j at interval of 5 points do
4 [C1, C2, C3]← CalculateCenter(T (i), j) ;
5 if IsColliding(Map, C1) + IsColliding(Map, C2) + IsColliding(Map, C3) == True then
6 Break ;

7 T ′(i) = Prune(T (i)) Calculate the safe distance for each tentacle L0(i)

8 return T ′, Ls

Actually, cutting off the tentacles directly in front of the obstacle does not actually guarantee safety,
because the obstacle may be moving and its speed may change at any time, so it is necessary to
maintain a certain safe distance between the ego vehicle and the obstacle in the longitudinal direction
at all times. The safe distance is defined by Time-To-Collision (TTC):

TTC =
d

vr
(3.17)

3.2. Tentacle Selection 23

where d is the length of the tentacle between the detection point and the obstacle shown in Figure
3.8, representing the distance to the obstacle, and vr = v − vobs is the relative velocity. The minimum
allowed TTC is decided to be 1.5s in this report. Figure 3.8 shows the pruning process, where tentacles
exceeding the road boundary will be pruned straight away (the part that was cut off is shown in red),
while the tentacles for tentacles intersecting obstacles, only the portion with a TTC greater than 1.5s
is retained (blue lines).

Figure 3.8: Tentacle pruning considering TTC

3.2. Tentacle Selection
This section introduces the method that selects the best tentacle to execute after obtaining the safe
parts of all tentacles. Firstly, the criteria of tentacle selection are introduced, then an improvement is
proposed by varying the parameters depending on the distance to the obstacle. The proposed algorithm
also considers the lateral safe distance to the obstacle.

3.2.1. Selection Criteria
Only one of all the tentacles is selected as the best tentacle and the path to be tracked by the vehicle
through the weighted sum of two decision-affecting values, namely Vclearance and Vtrajectory, which are
defined below. The sum of the two values is represented as follows:

V = a0Vclearance + a1Vtrajectory (3.18)

where a0 and a1 are weighting parameters. In this report, we use a0 = 2 and a1 = 0.5.

Clearance Criterion
The clearance criterion represents the safety of the tentacle based on the maximum distance for the
vehicle to drive along a tentacle before encountering an obstacle while maintaining longitudinal safe
distance, which is defined as below [26]:

Vclearance(L0) =

0 free tentacle

2− 2

1 + e−c·L0
otherwise

(3.19)

where L0 is the safe length of each tentacle calculated in Chapter 3.1.4, and c is a constant to yield
Vclearance(L0.5) = 0.5 at a distance L0.5 = 20m taken in our implementation as:

c =
ln(1/3)

L0.5
(3.20)

The function defined in Equation 3.19 is a sigmoid-like function, as shown in Figure 3.9, its value is
naturally normalized to the range [0, 1]: when L0 = 0m, Vclearance = 1; when L0 →∞, Vclearance → 0.

3.2. Tentacle Selection 24

Figure 3.9: Vclearance

Trajectory Criterion
In addition to ensuring safety, it should also be ensured that the chosen tentacle allows the vehicle to
follow a given reference path, e.g., generated by GPS waypoints or a global path planning algorithm,
which is the role played by Vtrajectory. The simplest approach to estimate Vtrajectory is to measure
the lateral and angular error of a single point on the tentacle taken at a collision distance Lc and its
corresponding point on the reference path shown in Figure 3.10. Collision distance Lc is defined as
follows:

Lc = t1v (3.21)

where t1 = 1.5s, the collision distance increases as the vehicle speed, which means the error is always
calculated at the position of the vehicle after 1.5s, so that if the error is too large, the vehicle can be
given the same reaction time to adjust the path. The error between each tentacle and the reference
path is calculated as follows: as shown in Figure 3.10, the measurement Vdist is calculated for each
tentacle by computing the distance b between the point on the tentacle and the corresponding point on
the trajectory and its relative tangent direction α [31]:

vdist = b+ caα (3.22)

where ca = 0.3m/rad represents a scale between the linear distance and the tangent orientations. The
Vtrajectory is the normalized value of Vdist, calculated in Equation 3.23 by Vmax and Vmin which are the
maximum and minimum values of Vdist calculated for all tentacles.

Vtrajecotry =
Vdist − Vmin

Vmax − Vmin
(3.23)

3.2.2. Varying Parameters
Results in Figure 3.4 and 3.6 are obtained using the tentacle selection criteria introduced previously.
It could be seen that the vehicle does not immediately return to the initial lane after passing the first
obstacle (50m to 60m), resulting in excess oscillation (100m to 120m) caused by not starting to avoid
the second obstacle in time. Therefore, different weights should be given to the parameters a0, a1 for
the obstacle avoidance phase and the completion of the obstacle avoidance phase. In the overtaking
phase, Vclearance should be weighted higher for efficiently selecting a safer tentacle to avoid obstacles,
while after passing the obstacle, Vtrajectory should be weighted higher for fast tracing of the reference
path.

No extra sensors are needed to check if the vehicle has passed the obstacle: according to Chapter
3.1.4, when performing collision detection, if a tentacle hits an obstacle, it is pruned so that the TTC of

3.2. Tentacle Selection 25

Figure 3.10: Vtrajectory [26]

the ego vehicle is always greater than 1.5s. If all tentacles do not meet an obstacle, it can be considered
that the overtaking is complete or that they have not yet encountered an obstacle; in this case, the
weighting parameters of the clearance criterion and trajectory criterion are selected as a0 = 2.5 and
a1 = 0.5. If any of the tentacles hit an obstacle, it could be assumed that the ego vehicle needs to avoid
this obstacle; in this case, the weighting parameters are selected as a0 = 0.5 and a1 = 0.5. Figure
3.13 shows the comparison of constant and varying weighting parameters at different speeds. Two
obstacles are located in two different lanes. At a ego vehicle speed of 10m/s shown in Figure 3.11a,
the vehicle using parameter-varying method starts to steer to the reference path than the parameter-
constant method after passing the first obstacle at 60m, resulting smoother path when avoiding the
second obstacle, with a RMS value of lateral jerk of 0.27m/s3, which is 41% less than the parameter-
constant method, which has a RMS value of 0.46m/s3. At a ego vehicle speed of 20m/s shown in Figure
3.11b although the difference between the two methods is not as great as at 10m/s, the parameter-
varying method still manages to return to the reference path faster, achieving a RMS value of lateral
jerk of 0.7m/s3, which is 9% less than the parameter-constant method, which has a RMS value of
0.78m/s3.

(a) 10m/s (b) 20m/s

Figure 3.11: Comparison of constant and varying weighting parameters at different speeds

3.3. Speed Planning 26

3.2.3. Consider Lateral Safe Distance
Although the collision detection and pruning process introduced in Chapter 3.1.4 ensures that the ex-
ecuted path is at a sufficient longitudinal safety distance from obstacles, we still need to make sure
that the vehicle will have a sufficient lateral safety distance when overtaking the obstacle to cope with
unexpected situations. As shown in Figure 3.12, compared to Figure 3.8, the best tentacle selected
(green line) has changed from 1 to 2 because tentacle 1 does not have enough lateral safety distance.
An unsafe region around the obstacle, considering lateral distance, is defined in Figure 3.12, shown in
red. The width of the unsafe region w0 is defined as follows:

w0 = w + wo + 2ls (3.24)

where w is the width of the ego vehicle, wo is the width of the obstacle given by the bounding box
of the obstacle derived by the obstacle recognition algorithm of the sensing module of ADS. ls is the
minimum safe lateral distance between the ego vehicle and the obstacle when passing through the
obstacle; in this report, ls = 1m is selected. Tentacles that fall into the unsafe region will be given
more cost and hard to select as the best tentacle. As shown in Figure 3.12, the best tentacle is shown
by the green line because it is the closest to the reference path while maintaining obstacle-free and
outside the unsafe region. Figure 3.12 illustrates the difference between taking into account or not the
lateral safety distance when choosing the optimal path under different velocities. Under both velocities,
the algorithm enables the vehicle to maintain a safe lateral distance of at least 1m from the obstacle
(computing the edge of the vehicle and obstacle), while the average jerk is increased because the
vehicle needs more steering for greater lateral distance.

Figure 3.12: Tentacle pruning considering TTC

3.3. Speed Planning
For an automated vehicle traveling at high speeds, it is necessary to slow down and avoid obstacles
in front of it to ensure safety. At the same time, for a low-speed vehicle, it is necessary to increase the
speed to save time within the regulatory limits. In this section, a speed profile is generated, including
time information. The speed profile must comply with traffic rules, take into account static and dynamic
obstacles, and be adapted to current road conditions. Firstly, a jerk-limited speed profile generation
method is introduced, then an adjustment term that specifically accounts for overtaking scenarios and
road curvature is proposed.

3.3.1. Limitations
Limitations on velocity, longitudinal acceleration, and jerk are important in speed planning in order to
ensure the ego vehicle complies with road regulations and improves driving comfort. There are two
limitations on vehicle velocity [32], expressed in Equation 3.25. The first limitation Vlim,1 concerns traffic
rules (traffic lights and road signs), and is presumed to be known by the sensing module of the vehicle.
The second limitation Vlim,2 is enforced to ensure vehicle stability and comfort by limiting the lateral
acceleration below the maximum allowed value of amax

lat = 4m/s2. This limit is calculated at every point

3.3. Speed Planning 27

(a) 10m/s (b) 20m/s

Figure 3.13: Comparison of lateral safe distance at different speeds

on the tentacle with the curvature ρ of this point known. vlim is the lesser of the two limitations, which
is also the maximum speed that the vehicle must not exceed during the planning process.

The maximum longitudinal acceleration along should also be limited to ensure ride comfort. A maxi-
mum acceleration threshold amax

acc = 2m/s2 and a maximum deceleration amax
dec = −4m/s2 threshold is

defined. The longitudinal jerk jlong is limited to a maximum value of jmax
long = 3m/s3.

Vlim,1 = Vroad

Vlim,2 =
√

amax
lat /ρ

vlim = min(Vlim,1, Vlim,2)

(3.25)

3.3.2. Jerk-limited Speed Planning

Figure 3.14: Minimum braking distance-velocity

Based on the selected best tentacle to execute, a reference speed control model shown in the following
equation is established:

vtar =

{
vinterpolate, Lt < ds + d0

vref , Lt ≥ ds + d0
(3.26)

3.3. Speed Planning 28

where vref is the reference speed, which is the speed that the vehicle will eventually need to reach. vlim
is the maximum velocity the vehicle could reach, which is derived in Chapter 3.3.1, Lt is the safe length
of the best tentacle derived in Chapter 3.2. ds is the minimum braking distance to satisfy maximum
deceleration amax

dec and jerk jmax
long limitations at current speed and acceleration; specific calculations are

presented in Appendix A. vinterpolate is the velocity when the shortest braking distance is Lt. vinterpolate
is obtained by interpolating the braking distance-velocity diagram shown in Figure 3.14. Each point
on the curve represents the shortest braking distance at different speeds, computed offline using the
method in Appendix A.

Figure 3.15: Speed planning

After obtaining the reference velocity vref , the reference acceleration aref is computed as follows. aref
is set to the maximum acceleration if the current speed is significantly lower than the reference speed,
while it is set to the maximum deceleration if the current speed is significantly higher than the reference
speed. ∆ is a small value to make sure the reference acceleration is set to zero when the current
velocity is close to the reference velocity to avoid oscillations at the steady state.

aref =


amax
acc , v < vref −∆

amax
dec , v > vref +∆

0, else
(3.27)

The longitudinal jerk is derived as the output of a PD controller that takes the error between reference

3.3. Speed Planning 29

acceleration and current acceleration as input. The PD controller is defined as follows:

e(t) = aref (t)− a(t)

j(t) = Kp e(t) + Kd
de(t)

dt
,

(3.28)

where Kp is the proportional gain, providing an immediate correction proportional to the current error.
Kd is the derivative gain, reducing steady-state error by accumulating past errors. The output of the
PD controller j is saturated between −jmax

long and jmax
long to meet the limitation on longitudinal jerk. The

longitudinal jerk is assumed to be constant between two plannings, and the acceleration and velocity
profiles can be derived by integrating over the longitudinal jerk.

Figure 3.15 illustrates the results of the proposed speed planning algorithm. The vehicle has to avoid
two obstacles 40m apart under different initial velocities. When the reference speed is 10m/s, the
vehicle hardly needs to slow down to avoid the obstacle. When the reference speed is 20m/s, the
vehicle starts to brake when the length of the best tentacle is shorter than the minimum braking distance
under the current speed. As soon as the speed drops to around 10m/s, the vehicle starts to steer and
starts to accelerate after passing the first obstacle, finally reaching the reference speed. When the
reference speed is 30m/s, the vehicle first brakes for a while and then releases the brake. This is
because the best tentacle changes from the one that follows the reference path to the one that avoids
the first obstacle. The length of the best tentacle is greater than the minimum braking distance, so
the vehicle stops to brake till the length of the best tentacle is so short that it has to slow down again
because of the second obstacle.

3.3.3. Modification of vref
In this section, vref is modified to adapt to dynamic traffic conditions and curvy roads. This parameter
now consists of several sub-functions, each of which deals with a different aspect of road conditions
and the dynamic environments.

Relative Velocity
When overtaking dynamic obstacles, it is critical to accelerate to ensure smooth road traffic flow and
increase time efficiency. If overtaking occurs in urban environments, acceleration also reduces the
exposure of the vehicle to oncoming traffic, thus ensuring safety. If the act of overtaking has been
decided, the acceleration should be maximum when the relative velocity vr is zero, decreasing as the
relative velocity increases [32]. Therefore, the first sub-function f1 is defined as the function of the
relative velocity vr, represented in a cubic polynomial:

f1(vr) = a1v
3
r + b1v

2
r + c1vr + d1, vr ∈ [0, v] (3.29)

where a1, b1, c1, d1 are polynomial coefficients, v is the current speed of ego vehicle. To calculate these
coefficients, several boundary conditions are constructed:

f1(
1

2
v − k1) = λ1, f1(

1

2
v + k1) = 0 where k1 ∈ [

1

2
v,∞]

f ′
1(
1

2
v − k1) = f ′

1(
1

2
v + k1) = 0

(3.30)

where λ1 = 0.2v is a gain to specify the upper bound of the function. Bringing the boundary conditions
back to Equation 3.29 yields that k1 is a parameter to be solved that uniquely determines the shape of
f1. Figure 3.16a represents the shape of f1 with k1 = 1

2v under v = 20m/s, the value of f1 reaches
the maximum when relative velocity is zero and minimum (0) when relative velocity is v, which means
the obstacle is static. The purpose of developing f1 is to provide additional acceleration to the vehicle
when overtaking dynamic obstacles [32].

Road Curvature
The reference speed should decrease with increasing road curvature and the condition that the best
tentacle is significantly different from the curvature of the road, even in straight roads (for instance,

3.3. Speed Planning 30

(a) f1 (b) f2 (c) f3

Figure 3.16: Comparison of lateral safe distance at different speeds

during lane changes). Hence, two sub-functions f2 and f3 are defined as the function of the road
curvature ρrd and curvature difference between the best tentacle ρbt and the road ρrd:

f2(ρrd) = a2ρ
3
rd + b2ρ

2
rd + c2ρrd + d2, ρrd ∈ [0, ρmax

rd] (3.31)

f3(|ρrd−ρbt|) = a3|ρrd−ρbt|3+b3|ρrd−ρbt|2+c3|ρrd−ρbt|+d3, |ρrd−ρbt| ∈ [0, |ρrd−ρbt|max] (3.32)

where a2, . . . , d2 and a3, . . . , d3 are polynomial coefficients, ρmax
rd is the maximum possible curvature

of the road, which is taken as 0.1/m for urban conditions and 0.03/m for highway conditions. Several
boundary conditions are constructed to calculate the coefficients of f2 and f3:

f2(
1

2
ρrd − k2) = vref , f2(

1

2
ρrd + k2) = (1− λ2)vref where k2 ∈ [

1

2
ρmax
rd ,∞]

f ′
2(
1

2
ρrd − k2) = f ′

2(
1

2
ρrd + k2) = 0

(3.33)

f3(
1

2
|ρrd − ρbt| − k2) = 0, f3(

1

2
|ρrd − ρbt|+ k2) = λ3vref where k3 ∈ [

1

2
|ρrd − ρbt|max,∞]

f ′
3(
1

2
|ρrd − ρbt| − k2) = f ′

3(
1

2
|ρrd − ρbt|+ k3) = 0

(3.34)

where λ2 = 0.4 and λ3 = 0.2 provide a lower bound for f2 and an upper bound for f3 respectively, vref
is the reference velocity obtained in Equation 3.26. Similar to f1, k2 and k3 are parameters to be solved
that uniquely determine the shape of f2 and f3. The diagrams of f2 and f3 are depicted in Figure 3.16.
Thus, starting from the zero-curvature base speed kb specified in the base frame and the optimal path,
f2 and f3 act to gradually reduce the speed of the vehicle as the curvature increases [32].

The target velocity vtar is defined in terms of f1, f2, and f3 as the modification of vref :

vtar = kff1 + f2 − f3 (3.35)

kf is a boolean value that determines whether or not to activate f1, while f2 and f3 are always activated.
If the behavioral decision to overtake the front vehicle is made and the relative speed vr is less than
a certain value, then kf = 1; otherwise, kf = 0. The limitation on vr is imposed because if there is a
large relative velocity, the obstacle can be considered as a static one, and too small a value of f1 can
cause unwanted jerks.

As the f1 varies with the relative velocity, and f2 and f3 vary with continuous curvature. Its first derivative
(for acceleration) and second derivative (for jerk) must be limited to themaximum allowable acceleration
and jerk. Take f1 as an example, the constraints on acceleration and jerk are given as follows:

|∂f1
∂t
| = |(3a1v2r + 2b1vr + c1)

∂vr
∂t
| ≤ |amax

dec | (3.36)

3.3. Speed Planning 31

|∂
2f1
∂t2
| = |(6a1vr + 2b1)

(
∂vr
∂t

)2

+ (3a1v
2
r + 2b1vr + c1)

∂2vr
∂t2
| ≤ |jmax

long | (3.37)

According to the boundary conditions of f1 shown in Equation 3.30, a1, b1, c1, d1 could all be expressed
in terms of k1, so the range of values of k1 could be derived after solving Equation 3.36 and 3.37. See
Appendix B for details of the solution process. Suppose kmin

1 is the smallest value that k1 can take.
If kmin

1 < 1
2v, then take k1 = 1

2v to define f1, and conversely take k1 = kmin
1 to define f1. Similar

approaches could be used to solve the value ranges of k2 and k3 that can fully define f2 and f3. The
target velocity vtar could therefore be derived using Equation 3.35.

4
Simulation and Results

In this chapter, the proposed tentacle-based motion planning algorithm is validated through compre-
hensive simulations using IPG CarMaker combined with MATLAB/Simulink. Previous analyses and
preliminary algorithm designs treated the vehicle as a simplified point mass, neglecting the intricate
dynamics associated with the actual behavior of vehicles and tires. This simplification, while conducive
to theoretical analysis, may ignore critical behaviors that only occur under real driving conditions. Thus,
performing simulations on a high-fidelity platform is essential to evaluate the algorithm’s performance
accurately. By evaluating scenarios including straight and curved lane highway driving, as well as com-
plex urban environments exemplified by the TU Delft campus scenario, this simulation phase is crucial
in demonstrating the algorithm’s effectiveness in maintaining passenger comfort, ensuring safety, and
confirming its real-time performance. Results obtained from these simulations validate the robustness
and practicality of the proposed approach, highlighting its capacity to manage dynamic and static ob-
stacles while adhering strictly to lateral and longitudinal jerk constraints.

4.1. Framework

Figure 4.1: Framework of simulation of the proposed algorithm

The framework of the simulation process of the proposed tentacle-based motion planning algorithm is
shown in Figure 4.1. The framework consists of three modules: perception, planning, and control, and
forms a closed-loop structure with a high-fidelity vehicle dynamics simulation environment provided
by CarMaker. First, the perception module acquires road environment information, including obstacle

32

4.2. Vehicle Control 33

locations and road boundaries, through the object sensor and road sensor defined in CarMaker, and
then generates an occupancy grid map. The planning module first generates a set of tentacles and gets
them pruned according to the occupancy grid, then selects the optimal tentacle after considering indi-
cators of safety and path deviation, and further performs speed planning to meet comfort requirements
based on the best tentacle. The control module employs lateral and longitudinal controllers to track
the best tentacle and speed profile, and outputs corresponding steering angle and throttle/brake com-
mands to the CarMaker vehicle model. The simulation model provides real-time feedback of vehicle
state data to the planning and control module, enabling closed-loop control. This effectively validates
the proposed algorithm’s real-time performance, robustness, and ability to balance safety and comfort
in complex dynamic environments.

4.2. Vehicle Control
In this section, simple lateral and longitudinal controllers for the vehicle are developed to enable the
vehicle to accurately follow the path and speed profile planned by the planning module. The parameters
of the vehicle model we use in CarMaker are given in Table 4.1. Both controllers work at a frequency
of 100Hz.

Table 4.1: Vehicle Parameters

Symbol Description Unit Value

m Mass kg 2065
Iz Moment of inertia in vertical direction kg∙m2 2900
is Steering ratio - 16.46
L Wheelbase m 1.97
lf Distance from front axle to CoG m 1.17
lr Distance from rear axle to CoG m 1.80
l Vehicle length m 4.64
w Vehicle width m 1.89

Cαf Front axle cornering stiffness N/rad 115000
Cαr Rear axle cornering stiffness N/rad 97000

4.2.1. Lateral Control
For the lateral controller, the goal is to find a suitable sequence of front wheel angle deltas that will
cause the vehicle to travel along the planned path. Since the focus of this chapter is on the verification
of the planning algorithm, a simple open-loop controller based on the bicycle model is implemented.
The dynamic bicycle model of a vehicle is shown as follows [33]:

˙vlat = −
(
Cαf + Cαr

mvlong

)
vlat +

(
−vlong +

lrCαr − lfCαf

mvlong

)
r +

Cαf

m
δ

ṙ =

(
lrCαr − lfCαf

Izvlong

)
vlat +

(
−
l2fCαf + l2rCαr

Izvlong

)
r +

(
lfCαf

Iz

)
δ

(4.1)

where vlat and vlong are lateral and longitudinal velocity defined in Figure 3.1, r is yaw rate. Cαf and
Cαr are front and rear axle cornering stiffness, which a characteristics of the tire. Iz is the moment of
inertia of the vehicle in the vertical direction. δ is the steering angle of the front wheel. Based on the
bicycle model, the steady-state curvature response gain Gss

cur could be derived as follows [33]:

Gss
cur =

ρ

δ

∣∣∣
ss

=
1

L+
Kusv

2
long

g

(4.2)

where L = lf + lr is the wheelbase of the vehicle. g is the gravitational constant. Kus is the understeer
gradient that indicates the understeer or oversteer characteristics of a vehicle [33], which is defined in

4.3. Common Road Scenario 34

Equation 4.3.

Kus =
mg

L

(
lr

Cαf
− lf

Cαr

)
(4.3)

Equation 4.2 gives a relationship between path curvature ρ and steering angle δ, which could be used as
the control law of an open-loop controller. Given the curvature sequence of the best tentacle obtained
in Chapter 3.2, one can derive the front wheel steering angle sequence. Then, the steering wheel angle
sequence δs is computed by the following relationship and input into the CarMaker vehicle model for
further response.

δs = isδ (4.4)

where is is the steering ratio, which refers to the ratio between the steering wheel angle and the front
wheel angle.

4.2.2. Longitudinal Control
Different from the simulations in Chapter 3, the longitudinal controller in this chapter could not directly
control acceleration, but instead indirectly controls acceleration by controlling the throttle and brake
openings. Figure 4.2 illustrates the mapping relationship between throttle and brake openings and
vehicle acceleration. As shown in Figure 4.2a, before reaching a certain speed, acceleration barely
changes with speed. After that speed, the speed and acceleration change inversely proportional to
each other since the selected vehicle model is an electric vehicle. However, Figure 4.2b represents
that the deceleration remains virtually unchanged across all speed ranges.

Similar to Chapter 3.3.2, a PI controller is implemented for longitudinal control. The controller takes the
error between the current velocity and the target velocity vtar obtained in Chapter 3.3.3, and outputs the
target acceleration atar. Then the desired throttle or brake pedal position is obtained by interpolating
the target acceleration in the look-up table constructed through the data in Figure 4.2. In addition, since
different throttle or brake openings at different speeds will result in different accelerations, another look-
up table is constructed to obtain the increment of throttle or brake to meet the limitation of maximum
longitudinal jerk under different velocities.

(a) Throttle (b) Brake

Figure 4.2: mapping relationship between throttle and brake openings and acceleration

4.3. Common Road Scenario
In this section, the simulation focuses on the vehicle’s driving and obstacle avoidance performance on
ordinary roads outside built-up areas (Buiten de bebouwde kom) in the Netherlands. Ordinary roads
outside built-up areas typically connect towns, rural areas, and suburban regions, characterized by
two-way traffic without a physical central median. Such roads typically have one or two lanes in each
direction, with a speed limit generally set at 80 km/h, and a standard road width of 3.5 meters per lane.

4.3. Common Road Scenario 35

4.3.1. Scenario
Figure 4.3 shows the scenario of the simulation. The initial speed of the ego vehicle (white rectangle)
is set to 50 km/h, and the target speed is 80 km/h. In the simulation scenario, two types of slower
vehicles (black rectangles) are placed in front of the vehicle in different lanes: one traveling at 36 km/h
and the other at 54 km/h. This scenario is designed to simulate real-life overtaking situations where
there are significant differences in speed.

During the simulation process, the ego vehicle should first decelerate, gradually adjusting its speed
until it reaches the same speed as the slow-moving vehicle ahead (36 km/h), while maintaining a safe
following distance. Thereafter, the vehicle will execute an overtaking maneuver when conditions permit,
i.e., by changing lanes to the adjacent lane to overtake the slow-moving vehicle ahead, and ultimately
returning to its target cruising speed (80 km/h).

Figure 4.3: Scenario 1

4.3.2. Results
Figure 4.4 shows the simulation results of this scenario. The ego vehicle first accelerates to a cruising
speed of 80 km/h, then brakes to the speed of the obstacle 1 (36 km/h) to follow it. At this point, the
vehicle cannot overtake obstacle 1 because obstacle 2 is still in the left lane. After obstacle 2 passes
obstacle 1, the ego vehicle can speed up and overtake obstacle 1 while keeping a safe distance from
obstacle 2.

The level of longitudinal jerk remains basically below the maximum value of 3 m/s3. However, some
oscillations appeared when the vehicle approaches the cruising speed (from 10s to 12s and after 38s),
causing a jerk up to 4m/s3. This happens because of the resistance encountered by the vehicle: when
approaching the target speed, the target acceleration should be zero, but when the throttle is set to zero,
the speed will decrease due to resistance, at which point the target acceleration will again be greater
than zero, causing a cycle of oscillation. The level of lateral jerk also remains below the maximum value
of 2 m/s3 for most of the time, except for some moments before 27s when the vehicle has just started
to overtake obstacle 1, the best tentacle is switching back and forth between following and overtaking
before finally passing obstacle 1. This happens because of multiple reasons, such as the error of the
lateral controller, and the error of estimation of the current curvature.

4.4. Highway Scenario 36

Figure 4.4: Simulation results of scenario 1

4.4. Highway Scenario
The simulation verification in this section primarily focuses on the vehicle’s driving and obstacle avoid-
ance performance on Dutch highways (autosnelweg). The highways are designed for high-speed ve-
hicle traffic, typically featuring physical central dividers and multiple lanes. The maximum speed limit
on highways is 130 km/h. Furthermore, due to the theoretical minimum speed limit of 60 km/h on
highways, autonomous vehicles will only encounter dynamic obstacles traveling at speeds similar to
their own, and will not encounter obstacles traveling at much slower speeds or static obstacles.

4.4.1. Scenario
Figure 4.5 shows the scenario of this simulation. The vehicle is traveling on a two-lane, one-way
highway, with each lane measuring 3.5 meters in width. The highway used in this simulation combines
straight and curved sections, with smooth curvature transitions at the junctions between straight and
curved sections. The curvature profile of the highway is represented in the first sub-figure in Figure
4.6. The initial speed of the vehicle is set at 90 km/h. In the simulation scenario, a moving obstacle
traveling slightly slower than the vehicle, at a speed of 80 km/h, is positioned ahead of the vehicle in
the same lane. The vehicle needs to accelerate to overtake the vehicle in front as quickly as possible.
This scenario is designed to simulate typical overtaking requirements at high speeds.

4.4.2. Results
Figure 4.7 illustrates the results of the simulation of the highway scenario. The vehicle is cruising at 90
km/h for the first 25 seconds, then the tentacle encounters the moving obstacle. After calculating the

4.4. Highway Scenario 37

Figure 4.5: Scenario 2

Figure 4.6: Profiling the sub-functions f1, f2, and f3 in scenario 2

relative velocity between the ego vehicle and the obstacle, the vehicle decides to overtake. Meanwhile,
the value of sub-function f1 introduced in Chapter 3.3.3 is activated and computed to obtain an extra
acceleration for overtaking. As shown in Figure 4.6, the value of f1 decreases as the relative velocity
decreases when accelerating. The ego vehicle finally accelerates to around 105 km/h to overtake the
obstacle. After completing the overtaking maneuver, f1 is deactivated to return to the original cruising
speed of 90 km/h.

Due to the road curvature, sub-functions f2 and f3 are also calculated, shown in Figure 4.6. The value
of f2 remains at the cruising speed on the initial straight road and decreases when the road curvature
increases, but the decline is very limited because the maximum allowed curvature on a highway usually
does not exceed 0.002m−1. When the curvature increases, there is a difference between the road
curvature and the optimal tentacle curvature, and the value of f3 is also affected.

Both longitudinal and lateral jerks are within the maximum allowed range, except for a few points. The
longitudinal jerk reaches a high level when a change in the curvature of the road ahead is detected at
the beginning, and then remains at that level until the vehicle needs to accelerate to pass the obstacle.
The lateral jerk reaches a high level when the vehicle decides to steer and change lanes to overtake.

4.5. Urban Scenario 38

Figure 4.7: Simulation results of scenario 2

4.5. Urban Scenario
In urban road environments, automated vehicles face not only static obstacles but also dynamic par-
ticipants such as vehicles, bicycles, and pedestrians. Such environments are particularly typical in
university campus settings, where traffic participant density is high and behavioral patterns are com-
plex and variable, imposing strict safety and adaptability requirements on motion planning algorithms.
This section will validate the effectiveness of the proposed motion planning algorithm in such complex
scenarios through simulation. The simulation environment specifically selects the TU Delft campus
with a road network layout. The scenario includes both static roadside parked vehicles and bicycles
moving at different speeds, fully reflecting the complexity of urban road traffic. Through this simulation,
the algorithm’s performance in real-world applications can be directly evaluated.

4.5.1. Scenario
The scenario of TU Delft is represented in Figure 4.8a, the vehicle starts from the green arrow, drives
along the red route around the campus, and finally returns to the initial position. Jaffalan and Rotter-
damseweg are both two-lane, two-way roads, with a speed limit of 30 km/h. After the vehicle turned
onto Cornelis Drebbelweg, it became a two-way single lane without a center line. In this scenario, the
vehicle will encounter several typical situations, including 1) overtaking stationary vehicles parked on
the side of the road; 2) following the vehicle ahead at different speeds; 3) overtaking moving cyclists
and vehicles, then returning to the reference path. During these operations, the road curvature dynam-
ically changes from low-curvature straight paths to high-curvature corners. The initial velocity of the
vehicle is set to 10 km/h, and the cruising speed is set to 30 km/h.

4.5. Urban Scenario 39

(a) TU Delft campus in Google Maps (b) Vehicle trajectory

Figure 4.8: TU Delft campus and vehicle trajectory

4.5.2. Results
Figure 4.8b shows the vehicle trajectory during the simulation as well as the velocity at each point
along the trajectory. The vehicle first accelerates along Jaffalaan to cruising speed, then decelerates
to get through the first corner. After entering Rotterdamseweg, the vehicle maintains a cruising speed
of 30 km/h while successively overtaking a bus and a van parked at the side of the road. On Cornelis
Drebbelweg, the ego vehicle follows the vehicle in front at a speed of 18 km/h because there is not
enough space to overtake. On Leeghwaterstraat, the ego vehicle accelerates to overtake two cyclists
traveling at 12 km/h and a vehicle traveling at 20 km/h. The maneuver is also shown in the speed
profile in Figure 4.9. The lateral acceleration reaches a maximum of around 1.6m/s2 during right-angle
turns at 18s, 75s, and 95s, and the longitudinal acceleration is limited between −2 m/s2 and 2 m/s2.
The longitudinal jerk reaches the maximum of ±3 m/s3 when the vehicle brakes and stays below ±3
m/s3 in other cases, while the lateral jerk reaches the maximum of 2 m/s3 at corners and the cases
where the vehicle starts to avoid moving obstacles, indicating a comfortable and smooth drive.

Figure 4.11 represents the value of the sub-functions f1, f2, f3 during simulation as well as the road
curvature. The maximum road curvature reaches 0.15m−1 at right-angle turns while remaining zero at
straight lanes. The sub-function f1 provides additional acceleration when the ego vehicle overtakes the
cyclists and the ahead vehicle on Leeghwaterstraat at around 100s and 115s. Although f1 is calculated
when encountering previous static obstacles, f1 is not activated at that time. The value of f2 decreases
when encountering the three right-angle turns, ensuring that the vehicle is slowed down sufficiently to
pass through. Figure 4.10 represents the trajectory without f2, where the vehicle could only be slowed

4.5. Urban Scenario 40

Figure 4.9: Simulation results of scenario 3

down due to the decrease in the length of the best tentacle. Compared to Figure 4.8b, the vehicle is
unable to slow down sufficiently, causing it to veer off the road. f3 also only works when going through
right-angle turns, further reducing the vehicle speed when the curvature of the best tentacle is different
from the road curvature.

Figure 4.10: Vehicle trajectory without f2

4.6. Comparative Analysis 41

Figure 4.11: Profiling the sub-functions f1, f2, and f3 in scenario 2

4.6. Comparative Analysis
4.6.1. Passenger Comfort
The maximum values and RMS values of the longitudinal and lateral acceleration, as well as the lon-
gitudinal and lateral jerk, in different simulation scenarios can be found in Table 4.2. Scenario 1 has
the highest maximum longitudinal acceleration and the RMS of longitudinal acceleration because the
vehicle needs to brake hard to follow the front vehicle that has a significant different speed. All three
scenarios have relatively large maximum longitudinal jerks that exceed the maximum allowed value
of 3 m/s3, which could cause longitudinal discomfort at certain moments. Scenario 2 has the highest
RMS of longitudinal jerk because cruising on winding roads requires frequent adjustments to the throttle
opening. The maximum and RMS lateral acceleration as well as the RMS lateral jerk remained at low
levels in all three scenarios, indicating that the passengers will not feel uncomfortable due to greater
lateral forces. The maximum lateral jerk exceeded the permissible range of 2 m/s3 in both scenarios 1
and 2 when the vehicle decides whether to overtake the obstacle, indicating possible discomfort. Over-
all, the proposed algorithm can guarantee passenger comfort in both lateral and longitudinal directions
in the vast majority of cases.

4.6.2. Real-time Performance
The planning time of each simulation scenario is represented from Figure 4.12 to 4.14. The maximum,
minimum, and average planning times for each scenario are given in Table 4.3. We could tell that
the planning time is related to the vehicle speed because the length of the tentacles is defined to be
directly proportional to speed in Equation 3.13. A shorter tentacle needs less time in collision detection
in the occupancy grid map. As a result, the urban scenario shown in Chapter 4.5, which has the lowest
average vehicle speed (under 30km/h), has the lowest computational time, while the highway scenario
shown in Chapter 4.4 has the longest planning time due to the highest average speed. Although the
most planning time is required in highway scenarios, the planner could still work at a frequency of 20Hz
with a maximum planning time of 49.4ms, verifying the real-time performance of the proposed algorithm
in various scenarios.

4.7. Discussion 42

Table 4.2: Dynamic Metrics of Each Simulation Scenario

Metric Scenario 1 Scenario 2 Scenario 3

amax
long (m/s2) 2.27 1.28 2.05

aRMS
long (m/s2) 1.09 0.28 0.45

jmax
long (m/s3) 4.57 6.53 5.56
jRMS
long (m/s3) 2.29 3.24 2.11
amax
lat (m/s2) 1.18 0.98 1.58

aRMS
lat (m/s2) 0.29 0.66 0.53

jmax
lat (m/s3) 5.22 3.24 3.17
jRMS
lat (m/s3) 0.58 0.38 0.35

Table 4.3: Planning Time Statistics for Each Scenario

Metric Scenario 1 Scenario 2 Scenario 3
Max Planning Time (ms) 38.8 49.4 24.2
Min Planning Time (ms) 21.4 28.3 18.8
Mean Planning Time (ms) 30.4 38.2 20.0

4.7. Discussion
4.7.1. Evaluation
The proposed tentacle-based motion planning algorithm demonstrated robust and effective perfor-
mance in multiple simulated scenarios. The extensive validation, carried out using the IPG CarMaker
and MATLAB/Simulink joint simulation platform, highlights the algorithm’s real-time capability and its ef-
fectiveness in maintaining passenger comfort by limiting lateral and longitudinal acceleration and jerk.
The algorithm consistently performs safe maneuvers in a variety of driving scenarios, such as high-
way cruising, urban navigation in complex road networks, and static and dynamic obstacle avoidance.
Specifically, the planner maintained real-time operation at a frequency of 20 Hz, ensuring prompt re-
sponses to dynamic changes in the environment. Furthermore, simulation results indicate significant
reductions in jerk, with maximum lateral and longitudinal jerk limited to comfortable thresholds, thereby
effectively improving ride comfort.

4.7.2. Limitations
Despite the promising results, the proposed algorithm has certain limitations that restrict immediate
real-world deployment. First, the algorithm currently assumes perfect perception, with sensor inputs
considered accurate and comprehensive, ignoring uncertainties typically encountered in practical sce-
narios such as sensor noise or adverse weather conditions. Second, although ride comfort is guar-
anteed most of the time, there are still occasional noticeable jerks in both the longitudinal and lateral
directions that could cause discomfort. It might be partly due to that the performance of the planning
module is limited by the simple open-loop lateral controller and PD longitudinal controller, which could
cause significant tracking errors from the reference path and speed profile. Additionally, the algorithm
has primarily been validated through simulation scenarios. Although these scenarios were relatively
comprehensive, they could not fully cover all aspects of complex real-world driving dynamics. There-
fore, the performance of the proposed planning algorithm in unpredictable, highly dynamic real-world
environments has not yet been tested and requires further research.

4.7.3. Future Works
First, future research should focus on enhancing the robustness of the algorithm by integrating percep-
tion uncertainties and incorporating sensor noise models. Implementing methods such as probabilistic
occupancy grid mapping and sensor fusion techniques could significantly improve the planner’s robust-

4.7. Discussion 43

ness in realistic scenarios. Second, an advanced path-tracking controller should be implemented to
reduce the influence of the controller on the performance evaluation of the planner. Optimal controllers
that are based on vehicle dynamics models like Linear Quadratic Regulator (LQR) and Model Predic-
tive Control (MPC) controllers should be considered. Third, the current planning method considers
primarily ride comfort while neglecting emergency situations that require urgent maneuvering, which is
also an important part of ensuring the safety of automated vehicles. Further improvements should be
focused on the timing of widening the acceleration and jerk constraints to allow the vehicle to do emer-
gency maneuvers. Additionally, subsequent work should include extensive testing on real vehicles to
validate the algorithm under practical conditions, taking into account actuator delays and sensor data
uncertainties. Addressing these enhancements will be crucial for bridging the gap between simulation
results and practical applicability in fully autonomous driving systems.

Figure 4.12: Planning time of scenario 1

Figure 4.13: Planning time of scenario 2

Figure 4.14: Planning time of scenario 3

5
Conclusion

This thesis report proposes a tentacle-based motion planning method for automated vehicles, aimed
at addressing two key challenges in automated driving: real-time performance and ride comfort. Un-
like traditional motion planning methods, which often separate geometric path planning from speed
planning, this algorithm achieves an organic integration of the two by simultaneously generating and
evaluating geometric paths (tentacles) and corresponding speed profiles. This integration significantly
improves the adaptability and rationality of the velocity profile to driving maneuvers, thereby enhancing
overall driving comfort.

The key contribution of this study lies in the constraint of jerks in both lateral and longitudinal directions.
By utilizing clothoid tentacles, the algorithm ensures a continuous curvature profile, effectively eliminat-
ing abrupt curvature changes and significantly reducing lateral jerks compared to the baseline method.
Additionally, by effectively constraining longitudinal jerk using a PD controller, the algorithm considers
the vehicle’s initial and final states, ensuring smooth acceleration and deceleration.

Comprehensive simulation validation across various traffic scenarios, including highways, common
roads, and urban environments, has demonstrated the robustness and practicality of the proposed
method. These simulations utilize a high-fidelity vehicle dynamics model integrated with IPG CarMaker
and MATLAB/Simulink, demonstrating real-time performance at 20Hz. The algorithm completed static
and dynamic obstacle avoidance, and overtaking maneuvers while ensuring comfort. Specifically, both
lateral and longitudinal acceleration were kept below 2 m/s2, and lateral and longitudinal jerks are
mostly kept below 2 m/s3 and 3 m/s3, respectively.

However, the algorithm still has certain limitations, primarily due to assumptions made in the report,
such as perfect environmental perception and ideal vehicle control. The absence of sensor data un-
certainties means that further validation is required before practical application. While the algorithm
generally maintains ride comfort, occasional jerks persist due to limitations of the simple lateral and
longitudinal controllers, causing tracking errors.

Future research directions include integrating sensor data, sensor data uncertainties, and actuator de-
lays to enhance the algorithm’s robustness under real-world complex conditions. In addition, advanced
path-tracking controllers and emergency route generation methods need to be developed. Finally,
testing on real vehicles is needed to provide valuable practical constraints and algorithm optimization
insights, bridging the gap between simulation and actual deployment.

In summary, this paper successfully demonstrates that the proposed tentacle-based motion planning
algorithm significantly improves passenger comfort and real-time computational efficiency, laying a
foundation for future research toward automated driving.

44

References

[1] Global Road Safety Facility. Global Road Safety Facility Annual Report 2024. Annual Report.
Washington, DC: Global Road Safety Facility, World Bank, 2024.

[2] Kateřina Bucsuházy et al. “Human factors contributing to the road traffic accident occurrence”. In:
Transportation Research Procedia 45 (2020). Transport Infrastructure and systems in a changing
world. Towards a more sustainable, reliable and smarter mobility.TIS Roma 2019 Conference
Proceedings, pp. 555–561. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2020.
03.057. URL: https://www.sciencedirect.com/science/article/pii/S2352146520302192.

[3] Ernst Dieter Dickmanns and Volker Graefe. “Dynamic monocular machine vision”. In: Machine
Vision and Applications 1.4 (1988), pp. 223–240. ISSN: 1432-1769. DOI: 10.1007/BF01212361.
URL: https://doi.org/10.1007/BF01212361.

[4] M. Buehler, K. Iagnemma, and S. Singh. The 2005 DARPA Grand Challenge: The Great Robot
Race. Springer Tracts in AdvancedRobotics. Springer Berlin Heidelberg, 2007. ISBN: 9783540734291.
URL: https://books.google.nl/books?id=rjxuCQAAQBAJ.

[5] David González et al. “A Review of Motion Planning Techniques for Automated Vehicles”. In:
IEEE Transactions on Intelligent Transportation Systems 17.4 (2016), pp. 1135–1145. DOI: 10.
1109/TITS.2015.2498841.

[6] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische Mathematik
1.1 (1959), pp. 269–271. ISSN: 0945-3245. DOI: 10.1007/BF01386390. URL: https://doi.org/
10.1007/BF01386390.

[7] Nils J. Nilsson. “A Mobile Automaton: An Application of Artificial Intelligence Techniques”. In:
International Joint Conference on Artificial Intelligence. 1969. URL: https://api.semanticsch
olar.org/CorpusID:12735356.

[8] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion planning”.
In: The International Journal of Robotics Research 30 (2011), pp. 846–894. URL: https://api.
semanticscholar.org/CorpusID:14876957.

[9] StevenM. LaValle. “Rapidly-exploring random trees : a new tool for path planning”. In: The annual
research report (1998). URL: https://api.semanticscholar.org/CorpusID:14744621.

[10] Yoshiaki Kuwata et al. “Real-Time Motion Planning With Applications to Autonomous Urban Driv-
ing”. In: IEEE Transactions on Control Systems Technology 17.5 (2009), pp. 1105–1118. DOI:
10.1109/TCST.2008.2012116.

[11] Sertac Karaman and Emilio Frazzoli. “Optimal kinodynamic motion planning using incremen-
tal sampling-based methods”. In: 49th IEEE Conference on Decision and Control (CDC). 2010,
pp. 7681–7687. DOI: 10.1109/CDC.2010.5717430.

[12] Jeong hwan Jeon et al. “Optimal motion planning with the half-car dynamical model for au-
tonomous high-speed driving”. In: 2013 American Control Conference. 2013, pp. 188–193. DOI:
10.1109/ACC.2013.6579835.

[13] Jürgen Ackermann. “Robust decoupling, ideal steering dynamics and yaw stabilization of 4WS
cars”. In: Automatica 30.11 (1994), pp. 1761–1768. ISSN: 0005-1098. DOI: https://doi.org/
10.1016/0005-1098(94)90079-5. URL: https://www.sciencedirect.com/science/article/
pii/0005109894900795.

[14] Liang Ma et al. “Efficient Sampling-Based Motion Planning for On-Road Autonomous Driving”.
In: IEEE Transactions on Intelligent Transportation Systems 16.4 (2015), pp. 1961–1976. DOI:
10.1109/TITS.2015.2389215.

45

https://doi.org/https://doi.org/10.1016/j.trpro.2020.03.057
https://doi.org/https://doi.org/10.1016/j.trpro.2020.03.057
https://www.sciencedirect.com/science/article/pii/S2352146520302192
https://doi.org/10.1007/BF01212361
https://doi.org/10.1007/BF01212361
https://books.google.nl/books?id=rjxuCQAAQBAJ
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://api.semanticscholar.org/CorpusID:12735356
https://api.semanticscholar.org/CorpusID:12735356
https://api.semanticscholar.org/CorpusID:14876957
https://api.semanticscholar.org/CorpusID:14876957
https://api.semanticscholar.org/CorpusID:14744621
https://doi.org/10.1109/TCST.2008.2012116
https://doi.org/10.1109/CDC.2010.5717430
https://doi.org/10.1109/ACC.2013.6579835
https://doi.org/https://doi.org/10.1016/0005-1098(94)90079-5
https://doi.org/https://doi.org/10.1016/0005-1098(94)90079-5
https://www.sciencedirect.com/science/article/pii/0005109894900795
https://www.sciencedirect.com/science/article/pii/0005109894900795
https://doi.org/10.1109/TITS.2015.2389215

References 46

[15] Wenda Xu et al. “A real-time motion planner with trajectory optimization for autonomous vehicles”.
In: 2012 IEEE International Conference on Robotics and Automation. 2012, pp. 2061–2067. DOI:
10.1109/ICRA.2012.6225063.

[16] Plamen Petrov and Fawzi Nashashibi. “Modeling and Nonlinear Adaptive Control for Autonomous
Vehicle Overtaking”. In: IEEE Transactions on Intelligent Transportation Systems 15.4 (2014),
pp. 1643–1656. DOI: 10.1109/TITS.2014.2303995.

[17] Rainer Trauth et al. “FRENETIX: A High-Performance and Modular Motion Planning Framework
for Autonomous Driving”. In: IEEE Access 12 (2024), pp. 127426–127439. DOI: 10.1109/ACCESS.
2024.3436835.

[18] Te Chen et al. “Trajectory and Velocity Planning Method of Emergency Rescue Vehicle Based
on Segmented Three-Dimensional Quartic Bezier Curve”. In: IEEE Transactions on Intelligent
Transportation Systems 24.3 (2023), pp. 3461–3475. DOI: 10.1109/TITS.2022.3224785.

[19] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. “Path Planning Based on Bézier Curve for Au-
tonomous Ground Vehicles”. In: Advances in Electrical and Electronics Engineering - IAENGSpe-
cial Edition of the World Congress on Engineering and Computer Science 2008. 2008, pp. 158–
166. DOI: 10.1109/WCECS.2008.27.

[20] Zheng Ling et al. “Bézier curve-based trajectory planning for autonomous vehicles with collision
avoidance”. In: IET Intelligent Transport Systems 14 (Jan. 2021), pp. 1882–1891. DOI: 10.1049/
iet-its.2020.0355.

[21] Zhiyuan Li et al. “Efficent Lane Change Path Planning based onQuintic spline for Autonomous Ve-
hicles”. In: 2020 IEEE International Conference on Mechatronics and Automation (ICMA). 2020,
pp. 338–344. DOI: 10.1109/ICMA49215.2020.9233841.

[22] TimMercy, Ruben VanParys, andGoele Pipeleers. “Spline-BasedMotion Planning for Autonomous
Guided Vehicles in a Dynamic Environment”. In: IEEE Transactions on Control Systems Technol-
ogy 26.6 (2018), pp. 2182–2189. DOI: 10.1109/TCST.2017.2739706.

[23] Tomas Berglund et al. “Planning Smooth and Obstacle-Avoiding B-Spline Paths for Autonomous
Mining Vehicles”. In: IEEE Transactions on Automation Science and Engineering 7.1 (2010),
pp. 167–172. DOI: 10.1109/TASE.2009.2015886.

[24] Robbin van Hoek, Jeroen Ploeg, and Henk Nijmeijer. “Cooperative Driving of Automated Vehicles
Using B-Splines for Trajectory Planning”. In: IEEE Transactions on Intelligent Vehicles 6.3 (2021),
pp. 594–604. DOI: 10.1109/TIV.2021.3072679.

[25] Yulong Zhang et al. “An Obstacle Avoidance Path Planning and Evaluation Method for Intelligent
Vehicles Based on the B-Spline Algorithm”. In: Sensors 23.19 (2023). ISSN: 1424-8220. DOI:
10.3390/s23198151. URL: https://www.mdpi.com/1424-8220/23/19/8151.

[26] Felix von Hundelshausen et al. “Driving with tentacles: Integral structures for sensing andmotion”.
In: Journal of Field Robotics 25.9 (2008), pp. 640–673. DOI: https://doi.org/10.1002/rob.
20256. eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / rob . 20256. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20256.

[27] Hafida Mouhagir et al. “Evidential-Based Approach for Trajectory Planning With Tentacles, for
Autonomous Vehicles”. In: IEEE Transactions on Intelligent Transportation Systems 21.8 (2020),
pp. 3485–3496. DOI: 10.1109/TITS.2019.2930035.

[28] Neşet Ünver Akmandor and Taşkin Padir. “A 3D Reactive Navigation Algorithm for Mobile Robots
by Using Tentacle-Based Sampling”. In: 2020 Fourth IEEE International Conference on Robotic
Computing (IRC). 2020, pp. 9–16. DOI: 10.1109/IRC.2020.00009.

[29] Zhuoren Li et al. “Real-time Local Path Planning for Intelligent Vehicle combining Tentacle Algo-
rithm and B-spline Curve”. In: IFAC-PapersOnLine 54.10 (2021). 6th IFAC Conference on Engine
Powertrain Control, Simulation and Modeling E-COSM 2021, pp. 51–58. ISSN: 2405-8963. DOI:
https://doi.org/10.1016/j.ifacol.2021.10.140. URL: https://www.sciencedirect.com/
science/article/pii/S2405896321015421.

[30] Zhuoren Li et al. “A Real-time Path Planner based on Improved Tentacle Algorithm for Autonomous
Vehicles”. In: 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of
Things Engineering (ICBAIE). 2022, pp. 629–634. DOI: 10.1109/ICBAIE56435.2022.9985832.

https://doi.org/10.1109/ICRA.2012.6225063
https://doi.org/10.1109/TITS.2014.2303995
https://doi.org/10.1109/ACCESS.2024.3436835
https://doi.org/10.1109/ACCESS.2024.3436835
https://doi.org/10.1109/TITS.2022.3224785
https://doi.org/10.1109/WCECS.2008.27
https://doi.org/10.1049/iet-its.2020.0355
https://doi.org/10.1049/iet-its.2020.0355
https://doi.org/10.1109/ICMA49215.2020.9233841
https://doi.org/10.1109/TCST.2017.2739706
https://doi.org/10.1109/TASE.2009.2015886
https://doi.org/10.1109/TIV.2021.3072679
https://doi.org/10.3390/s23198151
https://www.mdpi.com/1424-8220/23/19/8151
https://doi.org/https://doi.org/10.1002/rob.20256
https://doi.org/https://doi.org/10.1002/rob.20256
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20256
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20256
https://doi.org/10.1109/TITS.2019.2930035
https://doi.org/10.1109/IRC.2020.00009
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.10.140
https://www.sciencedirect.com/science/article/pii/S2405896321015421
https://www.sciencedirect.com/science/article/pii/S2405896321015421
https://doi.org/10.1109/ICBAIE56435.2022.9985832

References 47

[31] Chebly Alia et al. “Local trajectory planning and tracking of autonomous vehicles, using clothoid
tentacles method”. In: 2015 IEEE Intelligent Vehicles Symposium (IV). 2015, pp. 674–679. DOI:
10.1109/IVS.2015.7225762.

[32] Fadel Tarhini, Reine Talj, and Moustapha Doumiati. “Safe and Energy-Efficient Jerk-Controlled
Speed Profiling for On-Road Autonomous Vehicles”. In: IEEE Transactions on Intelligent Vehicles
(2024), pp. 1–16. DOI: 10.1109/TIV.2024.3416551.

[33] M. Abe. Vehicle Handling Dynamics: Theory and Application. Butterworth-Heinemann, 2015.
ISBN: 9780081003732. URL: https://books.google.nl/books?id=yOzHBQAAQBAJ.

https://doi.org/10.1109/IVS.2015.7225762
https://doi.org/10.1109/TIV.2024.3416551
https://books.google.nl/books?id=yOzHBQAAQBAJ

A
Calculation of Minimum Braking

Distance

Consider a vehicle at initial longitudinal speed v, acceleration a, and jerk j. We wish to compute the
minimum stopping distance ds subject to the constraints

a(τ) ≥ amax
dec ,

∣∣ȧ(τ)∣∣ =
∣∣j(τ)∣∣ ≤ jmax

long ,

where amax
dec = −4m/s3 is the maximum allowable deceleration and jmax

long = 3m/s3 is the maximum
allowable magnitude of jerk.

We decompose the braking maneuver into two phases:

1. Phase 1: Jerk-limited deceleration to amax
dec .

Apply the maximum negative jerk jmax
long to reduce the current acceleration a down to amax

dec . The
duration of this phase is

t1 =
a−

(
−amax

dec

)
jmax
long

=
a+ amax

dec

jmax
long

.

Under this jerk profile, acceleration varies as

a(τ) = a− jmax
long τ, 0 ≤ τ ≤ t1,

and speed evolves according to

v(τ) = v + a τ − 1
2 j

max
long τ2.

Hence, the speed at the end of Phase 1 is

v1 = v + a t1 − 1
2 j

max
long t21,

and the distance traveled is

d1 =

∫ t1

0

v(τ) dτ = v t1 +
1
2 a t

2
1 − 1

6 j
max
long t31.

2. Phase 2: Constant-deceleration braking to zero speed.
At the end of Phase 1, apply the maximum deceleration amax

dec until the vehicle comes to rest. The
duration of this phase is

t2 =
v1 − 0

amax
dec

=
v1

amax
dec

.

The speed in this phase is
v(τ) = v1 − amax

dec τ, 0 ≤ τ ≤ t2,

48

49

and the distance traveled is

d2 =

∫ t2

0

v(τ) dτ = v1 t2 − 1
2 a

max
dec t22.

Summing the two phases gives the minimum braking distance:

Dmin = d1 + d2 = v t1 +
1
2 a t

2
1 − 1

6 j
max
long t31 + v1 t2 − 1

2 a
max
dec t22

with
t1 =

a+ amax
dec

jmax
long

, v1 = v + a t1 − 1
2 j

max
long t21,

t2 =
v1

amax
dec

.

This two-phase strategy yields the shortest stopping distance while respecting both acceleration and
jerk limits.

B
Solve the inequalities

Take the inequalities in terms of sub-function f1 as an example. For Equation 3.36, the parameters
a1, b1, c1 could be represented by k1 as follows according to Equation 3.30. Let ∂vr

∂t = m.

a1 =
λ1

4k31

b1 = −15λ1

2k31

c1 =
3(10λ1 − k1λ1)(k1 + 10)

4k31

Target Inequality:
| − (3a1v

2
r + 2b1vr + c1)m| < |amax

dec |

Step 1: Simplify 3a1v
2
r + 2b1vr + c1

We have:
3a1v

2
r + 2b1vr + c1 =

3λ1(v
2
r − 20v + 100− k21)

4k31
=

3λ1

[
(vr − 10)2 − k21

]
4k31

Step 2: Substitute into the original inequality and rearrange

| −
3λ1

[
(vr − 10)2 − k21

]
4k31

m| < |amax
dec |

which gives
3λ1

[
k21 − (vr − 10)2

]
4k31

m < |amax
dec |

Multiply both sides by 4k31 (k1 > 0):

4|amax
dec |k31 − 3λ1mk21 + 3λ1m(vr − 10)2 > 0

Step 3: Write as a cubic equation and apply Cardano’s method

4|amax
dec |k31 − 3λ1mk21 + 3λ1m(vr − 10)2 = 0

Divide both sides by 4|amax
dec |:

k31 −
3λ1m

4|amax
dec |

k21 +
3λ1m(vr − 10)2

4|amax
dec |

= 0

50

51

Let
α =

3λ1m

4|amax
dec |

, γ =
3λ1m(vr − 10)2

4|amax
dec |

so the cubic becomes
k31 − αk21 + γ = 0

Step 4: Depress the cubic (eliminate the quadratic term) and use Cardano’s formula
Let k1 = y + α

3 , then

y3 + py + q = 0, p = −α2

3
, q = γ − 2α3

27

Cardano’s Formula:

y =
3

√
−q

2
+

√(q
2

)2
+
(p
3

)3
+

3

√
−q

2
−
√(q

2

)2
+
(p
3

)3
k10 = y +

α

3

Conclusion:
The inequality holds if k1 > k10.

	Abstract
	Nomenclature
	Introduction
	Background
	Problem Statement
	Main Contributions
	Clothoid-Based Tentacle Generation for Lateral Jerk Limitation
	Obstacle-Aware Adaptive Speed Planning with Longitudinal Jerk Constraints
	Multi-scenario simulation with high-fidelity vehicle simulator

	Thesis Structure

	Literature Review
	Motion Planning for Automated Vehicles
	Sampling-based Method
	Interpolating Curve-based Method

	Baseline Method
	Tentacle-based Motion Planning Algorithm
	Limitations

	Methodology
	Tentacle Generation
	Coordinate System
	Occupancy Grid Map
	Tentacle Generation Considering Lateral Jerk
	Collision Detection

	Tentacle Selection
	Selection Criteria
	Varying Parameters
	Consider Lateral Safe Distance

	Speed Planning
	Limitations
	Jerk-limited Speed Planning
	Modification of vref

	Simulation and Results
	Framework
	Vehicle Control
	Lateral Control
	Longitudinal Control

	Common Road Scenario
	Scenario
	Results

	Highway Scenario
	Scenario
	Results

	Urban Scenario
	Scenario
	Results

	Comparative Analysis
	Passenger Comfort
	Real-time Performance

	Discussion
	Evaluation
	Limitations
	Future Works

	Conclusion
	References
	Calculation of Minimum Braking Distance
	Solve the inequalities

