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Abstract

Role-Based Access Control (RBAC) is foundational to enterprise security, yet manual role engineering
remains error-prone and unscalable. Although automated role mining addresses this, existing methods
face a critical trade-off: exact approaches guarantee minimal roles but fail on real-world scales, while
heuristics scale but lack formal guarantees. This inconsistency forces enterprises into suboptimal, in-
secure configurations—increasing vulnerability risks and compliance costs. We resolve this instability
through a four-level resource-aware framework that dynamically adapts: (1) a memory-light heuristic,
(2) optimality-preserving reductions, (3) a greedy heuristic with logarithmic approximation bounds, and
(4) an ILP-based exact solver. Notably, our approach eliminates more than 99% of edges in 26 out
of 31 real-world systems, enabling globally optimal role configurations and achieving an average 53%
simplification of existing RBAC systems. Our heuristics achieve near-optimal solutions, while providing
significant speedups over prior heuristics. Beyond individual components, the unified, adaptive frame-
work minimizes suboptimal decisions at any scale. We open-source this framework to enable minimal
RBAC deployment at any scale.
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1
Introduction

In modern enterprises, cybersecurity plays a pivotal role in protecting sensitive data, ensuring regulatory
compliance, and maintaining operational integrity. Among its foundational components is Identity and
Access Management (IAM)— the discipline responsible for ensuring that only the right individuals have
access to the right resources at the right times. A cornerstone of IAM is access control, the mechanism
by which systems determine and enforce who is authorized to perform certain actions.

One of the most widely adopted models for enterprise access control is Role-Based Access Control
(RBAC). Originally proposed by Ferraiolo and Kuhn in the early 1990s, RBAC introduces roles as
an abstraction layer between users and permissions, simplifying permission management by grouping
access rights according to job functions or responsibilities. Its popularity stems from its simplicity, align-
ment with organizational structures, and ability to reduce administrative errors and security risks [11].
Decades later, RBAC remains a dominant paradigm, with commercial IAM platforms and regulatory
standards continuing to rely heavily on it [30].

However, as organizations grow and evolve, managing roles becomes a significant challenge. Enter-
prise environments often consist of thousands of users, complex departmental hierarchies, and evolv-
ing access requirements. This results in RBAC inefficiencies—such as redundant, overlapping, or
obsolete roles—that bloat access control policy and impair auditing, compliance, and system perfor-
mance [32]. Manual role engineering becomes infeasible at scale, motivating the need for automated
techniques.

This is where role mining becomes essential. Role mining aims to automatically infer a compact and
meaningful set of roles from existing user-permission assignments, reducing administrative burden
and improving policy quality. However, as an NP-hard problem [26], the Role Mining Problem (RMP)
presents significant computational challenges. Extensive research has been conducted in recent years
on the RMP, utilizing various methods that focus on diverse optimization objectives, constraints, and
algorithmic approaches.

These methods broadly fall into two categories. First, Optimal Approaches (ILP-based) that guarantee
solution optimality but face exponential complexity. Reduction rules, such as Ene et al.’s [9], improve
scalability through deterministic simplifications; however, they still require days to converge on mod-
ern benchmarks [38], making their direct application to enterprise environments impractical. Second,
Heuristic Approaches that scale effectively but sacrifice optimality guarantees. Most lack theoretical
quality bounds, though rare exceptions like Huang et al. [17] offer limited approximation guarantees for
specific problem variants. This absence of robust quality assurances limits their reliability for medium-
sized enterprise graphs where near-optimality is critical.

Despite the impressive advances in Role Mining, a fundamental gap persists: No methodology adjusts
the algorithm used, based on the dynamic size of the underlying problem. So far, practitioners must
choose upfront between optimality and scalability, unable to switch approaches mid-execution when
the dynamic problem size allows. Alternatively, the unified framework we propose can leverage fast
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heuristic approaches to reduce large input graphs effectively, and as the underlying problem size de-
creases, it can transition to more optimal approaches, thereby minimizing the approximation error on
large graphs while still allowing exact solutions on small instances.

This thesis addresses three central limitations in existing role-mining methods by answering the follow-
ing research questions:

• RQ1: Can classical role mining reduction rules be systematically reinterpreted through set cover
theory, and does this reformulation enable more efficient or theoretically grounded reductions
compared to traditional neighbor-based approaches?

• RQ2: Can a heuristic be designed that offers logarithmic approximation guarantees for the Role
Mining Problem, thereby bridging the scalability-optimality gap?

• RQ3: Can we develop a role mining methodology that dynamically decides between heuristic
and exact methods to balance scalability and solution quality adaptively?

To answer these questions, we introduce a four-level, resource-aware framework for role mining. Each
level of the framework corresponds to a progressively more accurate and computationally expensive
technique. The pipeline is designed to adapt based on the input graph size and available system re-
sources, ensuring the most effective feasible method is used at any time. This structured approach
enables rapid, approximate decisions when necessary and exact, optimal solutions when feasible. At
the first level, the framework uses a memory-light heuristic algorithm that iteratively selects large bi-
cliques without computing the entire set of maximal bicliques. This approach ensures scalability even
on massive graphs. At the second level, it applies biclique-based reductions, offering a reinterpreta-
tion of classical reduction rules such as domination, isolation, and subset through the lens of set cover
theory. These reductions simplify the input while preserving solution quality. At the third level, the
framework adopts a greedy heuristic applied to the set cover formulation. This stage provides a loga-
rithmic approximation bound and offers the first theoretical guarantee in role mining heuristics to our
knowledge. Finally, at the fourth level, when the graph is sufficiently small, the framework invokes an
ILP-based exact solver to compute the optimal solution. This layered architecture forms a multi-step
resource-aware decision framework, where each level defers to a more powerful layer only when re-
quired. In doing so, it bridges the gap between runtime performance and role-set quality, adapting to
the practical constraints of real-world deployment.

Our contributions are as follows:

• A principled reformulation of classical role mining reductions by drawing on ideas from the set
cover problem, providing theoretical foundations, improving modularity compared to previous
neighbor-based approaches, and opening the doors for further exploration of the efficiency of
these reduction rules.

• A greedy role selection heuristic with theoretical guarantees that functions as an effective middle
layer between heuristic and exact approaches.

• A pure memory-light heuristic that can efficiently handle input graphs of the size while also deliv-
ering quality role selections through well-informed choices.

• A four-level adaptive framework that integrates heuristic, reduction, approximate, and exact meth-
ods in a resource-aware fashion, bridging the gap between rigid heuristic or exact role mining
methodologies.

• An open-source implementation of the whole framework, along with the predecessor’s competitive
approaches, to support adoption and further research.

• A comprehensive experimental evaluation across real-world, synthetic, and benchmark datasets,
validating theoretical assumptions and demonstrating the competence of each component as well
as the overall framework.

The remainder of the thesis is organized as follows. Chapter 2 introduces the necessary background
and preliminary information in graph theory, bicliques, and the set cover problem. Chapter 3 reviews
related work in exact, heuristic, and hybrid role-mining techniques. Chapter 4 outlines the theoretical
foundations of our reductions and establishes the methodology. Chapter 5 presents the complete
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four-level framework. Chapter 6 evaluates its performance empirically. Chapter 7 discusses practical
observations, limitations, and future directions. Chapter 8 concludes.



2
Background

The RMP, particularly in its bottom-up formulation, can be rigorously studied through the lens of graph
theory. A central concept in this representation is that of bicliques [13], which provide a natural struc-
tural interpretation of roles in an RBAC system. This section introduces the necessary background
on bicliques and bipartite graphs, followed by a brief overview of constraint solvers in the role mining
context and an introduction to the Set Cover Problem.

2.1. Bipartite Graphs, Bicliques and Roles
A bipartite graph G = (V,E) partitions its vertex set V into two disjoint subsets A and B, where every
edge e ∈ E connects vertices exclusively betweenA andB. This structure naturally models access con-
trol systems: A represents users, B represents permissions, and edges denote direct user-permission
assignments, as illustrated in Figure 2.1.

Figure 2.1: User-permission assignments represented as a bipartite graph. Users (u1-u3) and permissions
(p1-p4) form disjoint partitions A and B. Edges indicate access rights.

A biclique (complete bipartite subgraph) consists of subsets A′ ⊆ A and B′ ⊆ B where every a ∈ A′

connects to every b ∈ B′. In Figure 2.1, vertices {u1, u2} and {p1, p2} demonstrate such a biclique
structure.

In role mining, it is essential to adhere to fundamental principles, such as the Least Privilege principle,
which ensures the RBAC system does not grant users permissions they did not initially possess [31].
Based on this constraint, we can establish a fundamental mathematical equivalence: the users and
permissions of any role in an RBAC system correspond precisely to a biclique in the original user–
permission graph, where all assigned users (A′) are connected to all role permissions (B′). Figure 2.2
demonstrates this critical relationship.

5



2.2. Constraint Solvers 6

Figure 2.2: Equivalence between a role in RBAC (left: users assigned to a role, which is connected to
permissions) and the corresponding biclique in the user-permission graph (right: users and permissions forming

fully connected subsets, A′ and B′).

This mapping between roles and bicliques enables a powerful formulation: constructing a set of
roles that collectively explain the observed access assignments is equivalent to covering the
user–permission graph with bicliques. Figure 2.3 demonstrates this equivalence through a concrete
example.

Figure 2.3: Equivalence between constructing a set of roles that collectively explain the user-permissions
assignments (left) and covering the user-permission graph using bicliques (right)

2.2. Constraint Solvers
Constraint solvers are general-purpose tools designed to solve optimization problems involving mathe-
matical constraints. These solvers operate on formal models such as Integer Linear Programs (ILPs),
Boolean satisfiability (SAT), or Constraint Satisfaction Problems (CSPs), finding variable assignments
that optimize an objective function while satisfying specified constraints.

Prominent ILP solvers such as Gurobi [15], CPLEX [19], and SCIP [35] employ sophisticated tech-
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niques including branch-and-bound, cutting planes, and presolving heuristics to navigate solution spaces
efficiently, even for large instances with thousands of variables and constraints.

Role Mining Applications
Different modeling approaches exist for leveraging constraint solvers for role mining. Some formula-
tions leave role construction entirely to the solver, generating all possible user-permission combinations—
an approach that scales poorly beyond toy examples due to combinatorial explosion. More practical
modeling approaches provide candidate roles to the solver (e.g., identified through biclique analysis)
and optimize for the minimal subset that ensures complete coverage of user-permission assignments.

This candidate-based approach leverages domain knowledge to constrain the solution space while
maintaining optimality guarantees, making constraint solvers viable for role mining on datasets of small
to moderate size.

2.3. Set Cover Problem
The Set Cover Problem (SCP) is a fundamental NP-hard problem in combinatorial optimization [6].
Given a universe U = {e1, e2, . . . , en} and a collection of subsets S = {S1, S2, . . . , Sm} where Si ⊆ U ,
the objective is to find the smallest subcollection C ⊆ S satisfying:

∪
S∈C

S = U with |C| minimized

This problem has numerous applications in fields like vehicle routing [12], airline crew scheduling [4],
information retrieval [8] and more [7].

Due to its NP-hardness [21], finding an exact solution is computationally infeasible for large instances.
Practical heuristic approaches include: greedy approximation algorithm, genetic algorithms [chen2024genetic]
and local search heuristics [balaji2024improved].

Integer Linear Programming Formulation
The SCP can be formulated as an ILP with binary decision variables:

xi =

{
1 if Si is selected
0 otherwise

The ILP minimizes set count while ensuring element coverage:

Minimize
m∑
i=1

xi

subject to: ∑
i:ej∈Si

xi ≥ 1 ∀ej ∈ U, xi ∈ {0, 1} ∀i

The constraints ensure that every element ej ∈ U is covered by at least one selected set, while the
objective function minimizes the total number of sets chosen. This ILP formulation provides an exact
solution to the SCP but can be computationally expensive for large instances due to its NP-hardness.
Nonetheless, it serves as a foundation for many exact algorithms and optimization techniques [6].

Greedy approximation algorithm
The greedy algorithm is among the most effective polynomial-time approximation techniques [36] due
to its balance of efficiency and solution quality. It iteratively selects the subset covering the maximum
number of uncovered elements until U is covered.

The algorithm achieves an approximation ratio of Hn (the n-th harmonic number), bounded by Hn ≤
lnn+ 1 where n = |U |. This means: The solution size is at most Hn times the optimal cover size. For
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example, if we have a number of elements, and the minimal number of subsets we need to use is m,
then the greedy heuristic is guaranteed to find a solution that uses at most m ∗ (ln(n + 1)) subsets.
Under standard complexity assumptions, this logarithmic factor is the best achievable in polynomial
time [10].

Reduction Rules
Preprocessing reduction rules simplify SCP instances without affecting optimality [6]:

1. Singleton Rule: If ∃ej contained only in Sk, select Sk and remove all covered elements.
2. Subset Rule: If Si ⊆ Sj , remove Sj (since Si covers its elements more efficiently).
3. Element Domination: If N(ea) ⊇ N(eb) (where N(e) is sets containing e), remove eb (covered

when ea is covered).

These rules significantly reduce instance size and accelerate both exact and heuristic solutions.



3
Related work

The RMP has been the focus of extensive research over the past two decades, particularly within the
broader field of RBAC systems [26] [20]. As organizations increasingly rely on RBAC to manage access
control at scale, the need for efficient, automated techniques to infer meaningful role structures from
large and complex user-permission datasets has grown accordingly. This chapter surveys the evolution
of methods for solving the RMP, with an emphasis on bottom-up, data-driven approaches. We begin
by contrasting the foundational paradigms of top-down and bottom-up role engineering, then proceed
to discuss key algorithmic strategies in role mining—particularly those that reduce the problem to well-
known combinatorial formulations such as the Minimum Biclique Cover problem. Special attention
is given to two influential papers that represent milestones in this research trajectory: Ene et al. [9],
who introduced a graph-reduction-based exact and heuristic role mining framework, and Tripunitara et
al. [38], who extended this line of work through the use of Maximal Biclique Enumeration (MBE). Their
respective contributions, strengths, and limitations are discussed in detail, forming the foundation upon
which this thesis builds.

3.1. Role Mining and recent methods
Two general approaches to role engineering in RBAC exist: top-down and bottom-up. A top-down
approach involves a thorough analysis of business processes, which are systematically decomposed
into smaller functional units [27, 33]. The permissions necessary to perform each task are identified,
and business roles are constructed accordingly. This process typically requires extensive manual effort
and collaboration among domain experts from various departments, who collectively possess a deep
understanding of organizational workflows. Top-down approaches are particularly effective for new
systems lacking existing permission data or for organizations with stable, compliance-driven environ-
ments. However, this method is time-consuming, demands substantial human involvement [18], and
may become obsolete as business needs evolve. Consequently, top-down approaches often struggle
to scale in modern, dynamic enterprise settings.

In contrast, bottom-up methods, also known as role-mining, aim to automatically discover a set of
roles by analyzing existing user-permission assignments. This approach is data-driven and scales
better to large, complex systems. Recent advances in bottom-up techniques have also enabled the
integration of business constraints into the mining process [42], enhancing compliance with evolving
business requirements. In this thesis, we are primarily interested in constructing roles for large real-
world enterprise systems, so we focus on bottom-up, role-mining approaches.

In the field of role mining, Vaidya et al. [39] is the first to define the RMP formally. Given a bipartite
graph that represents users and permissions, the RMP’s objective is to identify the smallest set of
roles that accurately reproduces the existing user-permission connections. This definition sets a clear
objective for what the role-mining algorithm should achieve - a compact RBAC system. The authors
map the RMP to other well-known NP-complete problems, demonstrating the RMP’s NP-completeness
and enabling the application of algorithmic approaches from these other problems to solve the RMP.

9
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A central contribution to the literature is the comprehensive survey by Mitra et al. [26], which classi-
fies role-mining problems and associated solution methods. At the core of problems is the previously
mentioned Basic Role Mining Problem (Basic-RMP), which is defined as finding the smallest set of
roles that accurately reconstructs the observed user-permission matrix. This optimization formulation
based on a single metric forms the problem basis for many subsequent studies. Other variants in-
clude Edge-RMP, which minimizes the total number of assignments, andMinNoise-RMP, which allows
limited deviation from the input matrix in exchange for a reduced number of roles. The most general
variant is theWeighted Structural Complexity Optimization (WSCO)model, which permits weighted op-
timization over all RBAC components, including roles, user-role and role-permission assignments, role
hierarchies, and direct exceptions. This thesis adopts the Basic-RMP formulation due to its concep-
tual clarity, widespread adoption in the literature, and its ability to be effectively reduced to established
combinatorial problems.

The survey by Mitra et al. also categorizes the main algorithmic paradigms for solving RMP. These in-
clude permission grouping-based heuristics, which cluster similar permission sets to define roles (e.g.,
CompleteMiner and FastMiner [40]); problem-mapping methods that translate RMP into known opti-
mization problems like tiling or biclique cover; matrix decomposition-based strategies using Boolean
Matrix Factorization (BMD [23], EBMD [24]); and graph-based approaches that exploit structural pat-
terns in the user-permission matrix (e.g., RH-Builder and RH-Miner [14]). Each family of methods
balances trade-offs between computational efficiency, solution interpretability, and role model com-
pactness.

We now explore recent works from different paradigms and then focus on those that our research more
closely relates to.

3.1.1. Recent Role Mining methods
Over the last decade, research in role mining has expanded into multiple paradigms—ranging from ma-
trix decomposition and set cover approximations to evolutionary search and dynamic policy adaptation.
In this section, we review representative recent contributions from each of these directions, highlight-
ing their core methodologies, strengths, and limitations before transitioning to the two works that most
directly inform our framework.

MFC-RMA: Matrix Factorization and Constraint-Role Mining Algorithm. Zhu et al. [42] propose
MFC-RMA, which formulates the role mining problem as a constrained Boolean matrix factorization
task. By clustering users and permissions using k-means and then enforcing cardinality and exclu-
sion constraints in a post-processing step, MFC-RMA efficiently reduces role-permission edge counts
while accommodating real-world business rules. Although this yields more manageable role sets, the
approach remains entirely heuristic. On the one hand, optimal solutions are not guaranteed, even for
small instances. On the other hand, the approach lacks formal approximation guarantees, which does
not provide confidence that even in worst-case application scenarios, the heuristic’s performance will
still be within.

addRole-EA: A New Evolutionary Algorithm for the Role Mining Problem. Anderer et al. [2]
introduce a genetic algorithm–based framework, addRole-EA, in which chromosomes encode variable-
length role sets, and fitness is balanced between reconstruction error and role count. This flexibil-
ity enables adaptive exploration of the solution space; however, the method provides no theoretical
performance guarantees and cannot be handed off to an exact solver once the candidate space is
reduced—leading to unpredictable performance on large or structured datasets.

Dynamic Optimization of Role Concepts Using Evolutionary Algorithms. Anderer et al. [1] ad-
dress the dynamic evolution of access control policies using custom crossover and mutation operators
to adapt role hierarchies over time. Their approach supports policy stability in the face of organizational
changes and enforces business constraints such as separation of duties. Nonetheless, their framework
prioritizes incremental updates over global optimality. It lacks theoretical guarantees, and by preserving
evolving structures rather than re-optimizing globally, it may accumulate inefficiencies over time.
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IAM Role Diet: A Scalable Approach to Detecting RBAC Data Inefficiencies. Moratore et al. [32]
present a fast and scalable method for detecting and removing redundancies in RBAC systems, fo-
cusing on practical inconsistencies and inefficiencies rather than complete role mining. By leveraging
efficient graph-based analysis, the approach identifies and eliminates obvious redundancies, such as
duplicate or subsumed assignments, at a large scale, making it particularly suitable as a pre-processing
step for role-mining pipelines. Although not a complete role mining solution, its efficiency and ability
to clean RBAC data suggest promising avenues for integration before more computationally intensive
role mining algorithms are applied. The method thus provides a practical and lightweight means to
enhance data quality and facilitate subsequent analysis.

Handling Least Privilege and Role Mining via Set Cover Approximation. Huang et al. [17] ex-
plicitly map the Basic-RMP and Least Privilege User Assignment Problem (LPUAP) to Set Cover and
propose greedy algorithms with provable ρH(γ)-approximation bounds. Their methods support SSD
constraints and dynamic role modifications (addition and deletion) and include a UPA matrix reduction
step to compress the problem prior to applying Set Cover. Despite the strength of the formulation,
several limitations persist: the reductions are applied only once, cannot be modularly reused, and the
framework offers no principled escalation from heuristics to exact optimization.

Our work builds on this theoretical foundation by recasting role mining reductions as classical kernel-
ization rules, allowing for iterative applications, and introducing a four-level pipeline that dynamically
selects the best strategy based on problem complexity. This approach provides both flexibility and
formal guarantees while scaling to real-world systems using commodity hardware.

Overall, recent work has aimed to extend the basic role-mining problemwith various interesting, helpful,
and impressive ideas/directions. However, the central problem of basic role mining problem is still
missing a central framework. It employs a variety of heuristic approaches and some optimal approaches
but lacks a unified framework that can integrate these and leverage the strengths of each.

We now turn to the two prior works that most directly influence our design: Ene et al. [9] and Tripunitara
et al. [38], whose contributions form the theoretical and practical basis for our improvements.

3.2. Fast exact reduction rules and fast heuristic method for RMP
Among all approaches surveyed by Mitra et al.[26], the problem-mapping method introduced by Ene et
al. [9] stands out for its superior performance across all datasets. Ene et al. [9] view the RMP as the
MCP problem, which involves covering all edges of a bipartite graph with the fewest possible bicliques.
Their main contributions consist of an exact algorithm that includes deterministic reductions and a fast
approximate algorithm that exhibits polynomial-time complexity.

Exact Approach & Reduction Rules
The exact algorithm aims to derive a minimum biclique cover for the input graph by identifying a mini-
mum clique partition for the dual graph, capitalizing on the inherent duality between these two problems.
The authors implement two iteratively applied reduction rules that simplify the dual graph while ensuring
the integrity needed to recover an optimal solution.

The first reduction rule functions by identifying and temporarily eliminating user-permission edges that
are logically implied by others. The authors denote such edges as dominator edges. In the following
chapter 4.1, we provide a detailed explanation of when these edges appear. The dominator edges are
removed from the graph and are later retrieved from roles that contain their dominated edges. The
computational complexity associated with this reduction is O(|E|3|V | log |V |).

At the same time, any edge that becomes isolated and cannot be merged with other edges to form a
larger biclique prompts the immediate creation of a new role for that edge. In this scenario, the only
biclique that includes the isolated edge is the singleton biclique, which establishes a direct connec-
tion between the specific user and the corresponding permission. Since we need to create roles that
describe all user-permission connections, the singleton biclique must be part of the solution, thereby
allowing us to definitively establish it as a role while removing the isolated edge from the graph.

In summary, the first graph reduction rule removes redundant edges, while the second one addresses
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isolated edges by creating a corresponding role for them. Interestingly, these reductions were impres-
sively effective on the datasets present at that time. Specifically, the reduction left no edge on six out
of eight datasets. On the remaining two, only about 2.15 percent of the edges remained.

Once no dominator or isolated edges remain, the reduction ends, and the exact algorithm solves the
remaining MCP problem instance using an ILP solver. This approach guarantees optimality but is only
feasible for small graphs since it is exponential in the worst case. Notably, since the reductions were
highly effective on the existing datasets, the dual graphs presented to the solver were relatively small.
As a result, the algorithm successfully found an optimal solution for all the instances.

Heuristic Approach
The second approach is a fast heuristic that constructs a cover by iteratively selecting and adding one
biclique at a time until all user-permission edges are covered. A node is greedily selected at each
iteration, and its neighborhood biclique gets activated as a role. This results in a fast and greedy
heuristic. A lattice-based post-processing algorithm follows that merges or removes roles to reduce
redundancy. Experimental results show that the heuristic performs remarkably well, often producing
results within a few percent of the optimal, with much lower computational cost.

3.3. Role Mining through MBE
Despite being effective on earlier datasets, themethod proposed by Ene et al. [9] encounters scalability
challenges when applied to newer role-mining benchmarks [3]. In particular, the initial reduction rules,
which previously eliminated most edges, are far less effective on complex, modern datasets, often
leaving a substantial portion of the graph intact. Moreover, the exact approach relies on reducing the
Minimum Biclique Cover problem to Minimum Clique Partition and subsequently to graph coloring—
transformations that drastically inflate the problem size. The resulting graph sometimes becomes up
to 10,000 times larger than the original bipartite input, making the method infeasible for large-scale
instances.

In response to these limitations, Tripunitara et al. [38] propose an alternative framework that remains
within bipartite graphs and bicliques to avoid the size blowup.

The primary theoretical contribution of this study is establishing an optimal Role-Based Access Control
(RBAC) system for any given graph where each role corresponds to a maximal biclique. A maximal
biclique is defined as one that cannot be included as a proper subset within any other biclique and
cannot be further expanded without losing its biclique properties.

The authors substantiate their claims through constructive proof. According to the definition of a non-
maximal biclique within a specific RBAC framework, it is possible to identify a maximal biclique that
encompasses both the users and permissions of the non-maximal biclique. Consequently, this allows
for expanding the role into the identified maximal biclique without granting any additional permissions
to the users since all users already possess access to these permissions.

As such, by demonstrating that they can transform any existing RBAC system into one that exclusively
employs maximal biclique roles without increasing the overall number of roles, the authors prove that
any optimal solution may be reformulated into another optimal configuration comprised solely of maxi-
mal bicliques. This characterization implies that limiting roles to maximal bicliques rather than allowing
for any biclique significantly reduces the search space (logarithmically) without compromising the solu-
tion’s optimality.

Following the insight that any optimal role configuration can be composed solely of maximal bicliques,
Tripunitara et al. [38] propose exact and heuristic approaches based on MBE. A key contribution of
their work lies in proposing a principled strategy for assessing the difficulty of a given input graph. They
identify the number of maximal bicliques in the graph as a natural measure of the instance’s hardness.

The authors use a practical threshold based on empirical analysis to determine which method to apply.
Specifically, if the number of maximal bicliques in the input graph is fewer than three million, the exact
approach is used; otherwise, they use their heuristic. To check the number of maximal bicliques in a
graph without exhausting memory, they run their MBE algorithm in a memory-light mode that counts
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maximal bicliques without storing them. This enables the system to quickly estimate problem difficulty
without incurring the full cost of biclique generation.

Exact Approach
The process begins by applying the reduction rules introduced by Ene et al. [2], which remove dominat-
ing and isolated edges to simplify the graph. Next, an algorithm enumerates all maximal bicliques within
the reduced graph. These bicliques are then submitted to an integer linear programming (ILP) solver
to select the smallest subset that covers all user-permission edges. The authors find that this process
reliably terminates within a reasonable time and produces optimal results for instances containing up
to three million maximal bicliques.

The optimal solution found here forms the optimal solution to the initial role-mining problem. Bicliques
represent roles, and there is an optimal solution that utilizes only maximal bicliques. As a result, by
providing the solver with all maximal bicliques, we equip it with all the necessary roles to construct a
minimal, complete set of roles. Consequently, the solver can cover all user-permission edges with the
least number of roles, thus solving the initial role-mining problem.

Heuristic Approach
When the number of maximal bicliques exceeds the three-million threshold, the authors resort to a
heuristic algorithm. This approach iteratively enumerates maximal bicliques and, upon finding one that
is sufficiently large (defined in their experiments as covering at least 200 edges), activates it as a role
and removes the covered edges from the graph. This cycle continues, progressively shrinking the
graph until it becomes small enough for the exact method to be applied. Interestingly, after every role
selection, they remove the covered edges from the input graph and run thememory-light MBE algorithm
to see if the remaining graph is small enough. Overall, this approach deliberately chooses maximal and
relatively large bicliques for their roles and leverages the exact approach as soon as possible. The loss
of optimality comes from the fact that not every large biclique is necessarily part of an optimal solution.
Importantly, this research takes the first step towards combining approximate approaches with exact
ones, a valuable property for safeguarding the quality of the results.

3.4. Comparison and Limitations of Related Works
In this section, we compare the methodology of the two foundational works: the reduction-based
method of Ene et al. [9] and the MBE-based method proposed by Tripunitara et al. [38]. Afterward,
we present the overall limitations of both the foundational and recent methods and present the method-
ological contributions of our approach.

3.4.1. Comparison of foundational approaches
In this section, we compare the two foundational approaches to bottom-up role mining. Both methods
share common goals, reducing problem complexity and improving role quality, but differ in their algorith-
mic design and computational trade-offs. We analyze their exact and heuristic components separately,
focusing on scalability, solution quality, and the ability to integrate with broader frameworks.

Comparison of Exact Approaches
The exact method used by Tripunitara et al. [38] and that of Ene et al. [9] begin with the same graph
reduction techniques. However, introducing themaximality constraint in the former significantly reduces
the number of candidate roles that must be considered, thereby shrinking the solution space. Moreover,
by operating directly onmaximal bicliques, Tripunitara et al. avoid the costly graph transformations used
in Ene et al.’s approach (i.e., the reduction to clique partition and further to graph coloring), which, as
discussed earlier, can introduce orders-of-magnitude blowup in the graph size. This results in a more
scalable and memory-efficient exact approach for modern datasets.

Comparison of Heuristics
The heuristic proposed by Ene et al. constructs roles incrementally by greedily selecting a root node
and forming a biclique around it. This method is fast but shortsighted, as the largeness of the chosen
biclique is solely based on the greedy choice of the root node.
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In contrast, the heuristic by Tripunitara et al. works only with maximal bicliques and activates only those
that exceed a predefined size threshold. This yields a more informed role selection process, leading to
better coverage with fewer roles. The experimental results of [38] confirm this advantage: Tripunitara
et al.’s heuristic consistently produces higher-quality solutions than its predecessor, though at the cost
of significantly higher computation time, sometimes requiring days instead of seconds.

3.4.2. Limitations of previous work
While effective, the initial reduction phase becomes prohibitively expensive for large graphs and can
even require multiple days of computation (see Table 2 of [38]). Therefore, their direct application on
large graphs is prohibited.

The MBE-based method exhibits two core limitations despite its promising performance:

1. Computational Inefficiency
First, the chosen enumeration process is inefficient and computationally expensive, which cascades
numerous problems down the line. Unavoidably, the slow MBE algorithm directly limits the efficiency
of the proposed MBE-based heuristic algorithm. The heuristic is responsible for handling the largest
graphs; therefore, when it is inefficient, it limits the scalability and efficiency of the entire methodol-
ogy. We verify this claim by examining the running times presented in their experiments, which span
several days of computation. Notably, these long runtimes were obtained not on standard moderate
computational resources but on a powerful 64-core server equipped with 256 GB of RAM.

2. Threshold Sensitivity
Solution quality is susceptible to the ”large biclique” threshold parameter. Excessively high thresholds
fail to identify bicliques in locally connected subgraphs, while overly low thresholds increase role count
and compromise optimality. This necessitates dataset-specific calibration, complicating deployment
across diverse environments.

Collectively, these approaches suffer from four fundamental gaps:

• Methodological Rigidity: Inability to dynamically transition between heuristic and exact methods
based on problem size or resource availability

• Theoretical-Practical Disconnect: No middle ground exists between exact methods (with guar-
antees) and heuristics (with scalability)

• Reduction Limitations: Reduction rules are applied only once, missing opportunities for iterative
simplification

• Implementation Constraints: The MBE heuristic’s dataset-specific thresholds and computation-
ally intensive, memory-bound sequential algorithm prevent out-of-the-box applicability

3.4.3. Summary and Contribution Layout
Table 3.1 synthesizes the comparative strengths and limitations of recent approaches. Crucially, exist-
ing methods universally lack three critical capabilities: theoretical guarantees for heuristics, optimality-
preserving reductions, and dynamic adaptation to varying problem sizes. These gaps directly motivate
our framework’s architecture.

Method Heur. Guarantees Opt. Reductions Adaptive
MFC-RMA [42] No No No
addRole-EA [2] No No No
Dynamic EA [1] No No No
Set-Cover Approx. [17] Yes No No
BMD [23] No No No
Fast Reductions [9] No Yes No
MBE [38] No Yes Partially
Unified Framework (Ours) Yes Yes Yes

Table 3.1: Comparative analysis of bottom-up role mining approaches. Heur. Guarantees: Solution quality
bounds for heuristic methods; Opt. Reductions: Optimality-preserving input reductions; Adaptive: Runtime

method switching. Our resource-aware framework uniquely achieves all three.
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As Table 3.1 demonstrates, existing methods exhibit fundamental limitations: heuristic approaches lack
guarantees, application of reduction based methods is limited, and the same goes for techniques that
can adjust the method they use based on the size of the underlying graph. This landscape reveals
a critical research gap: no methodology dynamically integrates theoretical guarantees, optimal
reductions, and resource-aware adaptation.

Our framework bridges this gap through:

• Set cover reformulation enabling logarithmic-approximation heuristics
• Optimal biclique reductions applied directly up to medium sized graphs, and post-heuristic
reduction to the larger graphs

• Four-level resource monitoring triggering real-time method transitions

This integrated approach delivers consistent solution quality while adapting computational effort to dy-
namic problem characteristics—a capability absent in prior work.



4
Reframing Reductions in Role Mining:

Theoretical Foundations and Design
Trade-Offs

This chapter revisits the reduction algorithm introduced by Ene et al. [9] and reinterprets it through the
lens of classical kernelization rules from the set cover literature. By explicitly aligning the reduction logic
with these well-established rules, we decouple them from specific implementation details and propose
a more modular and reusable reduction strategy.

A central insight of our analysis is that achieving optimality with these reductions requires access to
the complete set of maximal bicliques before any transformation is applied. This requirement, though
implicit in prior work, has not been formally articulated in the literature.

Our motivation for exploring a biclique-based alternative is twofold. First, neighbor-based reductions,
as initially proposed, can take several days to complete on large-scale datasets [38]. Moreover, their
contribution is fundamental to role mining, but to the best of our knowledge, no research has attempted
to suggest alternative implementations. Through such exploration, we may find directions that further
enhance the efficiency of these methods. Second, their design typically assumes single-pass applica-
tion, limiting adaptability in iterative frameworks. Building on these observations, we investigate two
key questions: (a) can biclique-based reductions offer improved efficiency under certain conditions,
and (b) does this formulation enable more modular and iterative reduction strategies

4.1. Reframing Prior Reductions and Theoretical Foundations
We reinterpret the core reductions of prior role mining methods [9, 38] using classical kernelization rules
from the set cover problem. This mapping offers both theoretical clarity and implementation flexibility.

Element domination rule Two user-permission edges, e and f , whose users and permissions can
form a biclique, are called neighbors. This occurs when the user associated with edge e has access
to the permission of edge f , and the user of edge f has access to the permission of edge e. Notably,
these edges may or may not share an endpoint.

A collection of neighbors for an edge includes all edges with which it can form a biclique. If all the
neighbors of edge a include all the neighbors of edge b, it implies that for every edge that edge b can
form a biclique with, edge a can also form a biclique with the same edge. As a result, every maximal
biclique containing edge b will also contain edge a. In role mining, the resulting roles need to cover
all the edges. Therefore, knowing a biclique covering edge b will be selected, allows edge a to be
temporarily removed and later added back to the biclique of edge a.

These reductions are variations of the element-domination rule of set cover. They can be performed

16
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by conducting subset checks on either the neighbors or the maximal bicliques of the edges. While
predecessors opted for the first approach, we will experiment with the second.

Singleton Rule (Isolated-edge rule) If an access-edge (u, p) has no neighboring edges, i.e., cannot
form a biclique with any other edge, then it must (for its inclusion) form a one-edge biclique (a singleton
role) itself. The algorithms immediately remove that edge and create a role for it. Equivalently, in set-
cover terms, such an edge appears in a single candidate set (biclique), which forces the inclusion of
that set.

Interestingly, the neighbor-based approach can only recognize an edge as isolated after it has removed
all its neighboring edges due to domination. The other edges within that biclique will dominate an
edge that is found in only one maximal biclique because they are part of all the bicliques to which the
isolated edge belongs—and potentially more. As the neighbor-based approach does not generate the
maximal bicliques, it cannot immediately determine whether an edge is part of just one biclique. This
identification occurs only after it removes all the dominating edges and discovers that the edge has
become isolated.

In contrast, the biclique-based approach, having generated all the maximal bicliques, can identify iso-
lated edges with a single pass. By recognizing these isolated edges, it can also mark for removal the
edges that are part of their respective bicliques. Therefore, with a single pass, both the isolated edges
and their associated dominator edges can be immediately identified and removed.

Subset Rule In classic set-cover, if one candidate set S is a subset of another T , one can discard S.
In the biclique cover context, maximal bicliques are, by definition, not strict subsets of one another and,
therefore, a variation of the subset set cover rule as well.

Recasting these reductions as set cover kernelization rules offers three benefits: (1) theoretical sound-
ness, (2) modularity across implementations, and (3) transparency in computational trade-offs. This
common abstraction provides a foundation for combining and comparing reduction strategies more
systematically.

4.2. Biclique-Based Reductions
In contrast to neighbor-based approaches, we apply reductions at the biclique level. First, we generate
all maximal bicliques (a step necessary for optimality, as shown in Section 4.3.1). Then, we iteratively:

(a) Identify bicliques with unique edges and activate them as roles.
(b) Remove dominating edges based on biclique membership.
(c) Discard bicliques that are strict subsets of others.

See Algorithm 1 for the pseudocode implementation of our biclique-based reduction rules.
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Algorithm 1 Iterative Biclique-Based Reductions
Require: Set of maximal bicliques M , edge-to-biclique map E , edge frequency map F
1: Initialize: coveredEdges← ∅, selectedRoles← ∅
2: repeat
3: changed← false
4: affectedBicliques← ∅

▷ Rule A: Singleton edges (freq = 1)
5: for all edges e such that F [e] = 1 do
6: Activate the unique biclique covering e
7: Add its users and permissions to selectedRoles
8: Mark all contained edges as covered
9: Add related bicliques to affectedBicliques
10: changed← true
11: end for

▷ Rule B: Domination via biclique set inclusion
12: for all pairs of uncovered edges (e1, e2) do
13: Let B1 ← E [e1], B2 ← E [e2]
14: if B1 ⊆ B2 then
15: Mark e1 as covered; record domination
16: Add B2 to affectedBicliques
17: changed← true
18: else if B2 ⊆ B1 then
19: Mark e2 as covered; record domination
20: Add B1 to affectedBicliques
21: changed← true
22: end if
23: end for

▷ Update bicliques and frequency maps
24: Remove covered edges from all affected bicliques
25: Remove bicliques that are strict subsets of others
26: Rebuild E and F
27: until changed = false
28: return selectedRoles

4.3. Comparison of Reduction Approaches
Table 4.1 summarizes the differences between the two reduction strategies. We further discuss their
respective trade-offs below.
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Table 4.1: High-Level Comparison of Reduction Algorithms

Neighbor-Based (Predecessor) Biclique-Based (Ours)
Data Structures:
• Dynamic adjacency maps (up_map, pu_map)
• RemovalMap, DominatorMap

Data Structures:
• Static set of maximal bicliques M
• edgeToBicliques, edgeFreq

Singleton Detection:
• Discovered once left isolated after neighbor re-
movals

Singleton Detection:
• Immediate via edge frequency = 1

Domination Check:
• Subset tests on neighborhoods (N(e) ⊇ N(f))

Domination Check:
• Subset tests on biclique sets

Graph Updates:
• Implicit edge removal (no need to rebuild any-
thing)

Graph Updates:
• Explicit subset biclique pruning and re-
calculation of data structures

Trade-Off:
• Low startup cost; scalable per iteration

Trade-Off:
• Higher upfront (/rebuild) cost; fast single pass
• Strong dependence on the number of bi-
cliques.

4.3.1. Optimality Requires Maximal Bicliques on original graph
A key requirement for ensuring optimality is that global information, in our case maximal bicliques, must
be extracted before reductions. To see why, consider the effect of applying reductions such as domina-
tion and singleton edge removal: both involve removing edges from the graph. If one were to enumerate
maximal bicliques after these reductions, the result would omit valid large bicliques that existed in the
original graph but were fragmented by prior edge deletions. In such cases, the missing edges are not
structurally absent—they were removed by reduction—yet their removal breaks the biclique property,
and the larger structure is no longer visible to the algorithm.

Therefore, our approach begins by enumerating all maximal bicliques upfront. This is not an optional
cost—it is required to guarantee that no useful structure is lost during preprocessing.

4.3.2. Iterative Reductions and Maintaining Maximality
As edges are removed, bicliques may become subset of others and cease to be maximal. In itera-
tive settings, we must detect and prune subset bicliques, and optionally re-maximize the remaining
structures. This step introduces a quadratic bottleneck in the number of surviving bicliques.

In contrast, neighbor-based reductions implicitly adapt as the graph shrinks, avoiding this recomputa-
tion. While they are limited in expressiveness, they scale efficiently across iterations.

Looking Forward. The biclique-based reductions have a strong dependence on the number of bi-
cliques. On the other hand, the neighbor-based reductions have a strong dependence on the number
of edges. Its interesting to empirically explore, how these different algorithmic designs affect the per-
formance of the algorithm. Furthermore, even if the experimentation does not favor our version, by
presenting this equivalence we can open directions for future research to explore the trade-offs and
potentials of each approach further.
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Methodology

We present an innovative four-level framework for resource-aware bottom-up role mining. Each level
in the framework represents a progressively more computationally intensive yet accurate strategy. A
powerful feature of this framework is its ability to automatically transition to higher levels of reasoning
as the size of the underlying graph allows. This adaptive mechanism yields two significant advantages.
First, it keeps runtimes reasonable by avoiding the use of computationally intensive methods on large
graphs. Second, it avoids making impulsive suboptimal decisions by employing approximate strategies
only when the problem size surpasses what a more accurate method can handle. In this way, it protects
the quality of the produced solution. In summary, this framework consistently applies the most optimal
method feasible, enhancing the scalability and optimality of the role-mining task.

This section introduces the four-level framework, followed by detailed explanations of each level and
the corresponding algorithms. Finally, we summarize the main idea and the contributions.

5.1. Proposed Four Level Resource-Aware Framework
We propose a novel, four-level framework for bottom-up role mining:

1. Step 1: Pure Memory-Light Heuristic: while all the maximal bicliques of the underlying graph
do not fit into memory:

(a) Sort the nodes in decreasing order of degree.
(b) Generate the first x maximal bicliques of the graph and select the largest one as the role.
(c) Remove its edges from the graph.

2. Step 2: Deterministic Reductions: Generate all maximal bicliques of the underlying graph.
While a fix-point has not been reached:

(a) Isolated edges: Recognize bicliques with unique edges, activate them as roles, and remove
their edges from the rest of the bicliques.

(b) Dominating edges: Remove dominating edges from the bicliques.
(c) Subset removal: Remove bicliques that are a subset of another biclique.

3. Step 3: Greedy Role Selection Heuristic (with theoretical guarantees): while the maximal bi-
cliques are too many for the constraint solver:

(a) Pick the (globally) largest biclique.
(b) Remove its edges from all other bicliques.

4. Step 4: Solver (optimal): The remaining bicliques are provided to an exact solver using ILP
formulation, which identifies the minimal set of bicliques that collectively cover all edges in the
graph.
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5.2. Maximal Biclique Enumeration algorithm
Both our pure heuristic approach and our reduction strategies are fundamentally reliant on MBE. In the
pure heuristic, we iteratively employ MBE to identify potential roles, whereas in the reductions, we use
it to generate all maximal bicliques from the remaining graph. Consequently, the performance of the
MBE algorithm we adopt directly affects the overall efficiency of our algorithm.

MBE is a vibrant area of research ([41], [28], [29], [25]); therefore, we consulted the latest studies
to identify the most effective algorithm currently available. At [29], we identified a solution that met
our research needs: achieving state-of-the-art performance with minimal computational resources and
an open-source implementation. We enhanced their implementation to retain all maximal bicliques
encountered during the enumeration process. We developed a memory-efficient variant that preserves
only the largest biclique discovered and terminates after producing a user-defined number of bicliques.

Importantly, we noted inefficiencies associated with the MBE algorithm utilized in prior works [38] de-
spite employing a combination of three distinct methodologies ([5], [37], [22]), the predecessor’s al-
gorithm demonstrates difficulties in scaling to substantial input sizes, specifically above 10000 edges
on commodity hardware. To substantiate our claims, we conducted empirical comparisons between
the state-of-the-art MBE algorithm we utilize and that of our predecessor, which we present in our
experimental evaluations.

5.3. Pure Memory-light Heuristic
When the number of maximal bicliques within an input graph exceeds the available memory capacity,
we employ a lightweight heuristic that avoids storing any bicliques. Its algorithm involves iteratively
enumerating up to a user-defined threshold x of bicliques and retaining only the largest biclique en-
countered. This biclique is activated as a role, and its edges are removed from the graph. The process
repeats until the number of maximal bicliques in the graph is sufficiently small to transition into Level 2.

This heuristic is designed for scalability and is effective even in massive graphs. However, it is important
to acknowledge its inherent sub-optimal nature. First, even though the largest observed biclique is
promising, its presence within an optimal solution is not guaranteed. Second, by removing edges early,
wemay eliminate promising biclique structures that would appear valuable in later stages. Nonetheless,
by constraining the threshold x and triggering a transition when the number of total bicliques falls below
a threshold y, we minimize non-optimal decisions while maintaining computational feasibility. Note that
if the number of maximal bicliques in the input graph is already below the threshold, the pure heuristic
will not select any roles, and the algorithm will proceed immediately to the next layer.

5.4. Biclique-Based Reductions
Once we have identified that all maximal bicliques can be loaded into memory and are, in a sense, a
manageable amount, we generate all the maximal bicliques and apply our reductions. In contrast to
our predecessor’s approach, we apply the reductions by observing the maximal bicliques rather than
dynamic neighborhoods in the user-permission graph.

No loss of optimality: These reductions apply deterministic choices and, based on the set cover
theory, do not affect the optimality of the solution. They allow us to reduce the maximum bicliques,
make themmore compact, and reach a size that the solver can solve sooner, i.e., with fewer suboptimal
decisions.

5.5. Greedy Role Selection Heuristic
The well-established ”Greedy” heuristic for the Set Cover problem operates by iteratively selecting the
globally largest candidate set, aiming to cover all edges with the least number of subsets. This heuristic
is recognized as the most natural and effective heuristic for the set cover problem [36]. By relating our
problem to this well-known NP-hard problem, we can effectively utilize its algorithms and theoretical
insights.

As a reminder from 2.3, if the optimal solution uses m candidate roles to cover all the |E| edges, then
the Greedy Role Selection Heuristic will return a solution that uses at most m ∗ (ln(|E|+ 1) candidate
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roles. This property was lacking in prior heuristics and presents a significant bound on role set quality,
particularly for mid-sized instances.

The main difference between this approach and the pure heuristic is the following: The pure heuris-
tic removes covered edges from the graph itself, which can inadvertently invalidate other promising
overlapping bicliques. Here, by working with already generated bicliques, we can still access all the
bicliques, even after removing covered edges from them. The pure heuristic may sacrifice global infor-
mation for the sake of scalability, while the greedy heuristic will not. Our experimental section presents
a comparative analysis of the performance of the pure and greedy heuristics, evaluating their respective
efficiencies and outcomes.

When the number of bicliques remaining becomes sufficiently small, allowing the solver to find an
optimal solution, we transition from the greedy approach to the exact one.

5.6. Optimal Role Selection approach
This step provides a minimal role set at the cost of potentially high computational. Therefore, if the
number of bicliques becomes sufficiently small, we formulate the role-mining problem as a binary in-
teger program and invoke Gurobi to compute an optimal solution. Each variable represents a biclique
(candidate role), and the constraints ensure complete edge coverage.

5.7. Overall Strategy and Contribution
On a high level, the inner layers provide better quality solutions but require more computations. There-
fore, the more decisions the algorithm makes on the outer layers, the more suboptimal these decisions
will be, and the less optimal the solution will also be. Conversely, the more decisions the algorithm
makes on the inner layers, the more optimal these decisions will be, and the more optimal the overall
solution will be.

The key advantage of this framework lies in its adaptive design: the algorithm consistently utilizes the
most optimal functional technique. When input size permits, the algorithm skips outer layers, such as
Pure and Greedy, entirely.

This architecture, to the best of our knowledge, is the first role-mining framework that explicitly integrates
theoretical guarantees, lossless reductions, and exact optimization within a resource-sensitive pipeline.
Importantly, it ensures that every non-optimal decision made is due to necessity, not design, and lays
the foundation for delivering the most optimal solution available resources can provide.

We empirically evaluate this framework and its components in the experiments that follow.
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Experiments & Results

Understanding the empirical behavior of our role-mining framework is critical to validating its practical
utility. This chapter presents a systematic evaluation of each component in the proposed four-level
pipeline: MBE, biclique-based reductions, greedy and pure heuristics, and the exact solver across
multiple datasets. The choice and placement of each algorithm in our pipeline is justified by (1) the
computational resources it requires and (2) its performance.

Our experiments are structured to address two core research questions:

1. Reduction Correctness and Generality: Do our biclique-based reduction rules perform the
same logical eliminations as the edge-centric methods in prior work, and how do their algorithmic
dependencies affect performance and applicability?

2. Heuristic Performance and Generalization: How effective are our pure and greedy heuristics
in practice? How closely do they approximate optimal solutions, and to what extent do their
theoretical guarantees translate into real-world performance? Furthermore, how does the pure
heuristic mitigate memory bottlenecks while preserving quality?

To this end, we conduct the following empirical investigations:

• MBE:We compare the enumeration performance of our implementation against that of prior work,
focusing on scalability and completeness.

• Reduction Analysis: We verify that our biclique-based reductions yield equivalent results to
the neighbor-based rules of predecessors while enabling greater flexibility and more transparent
dependency management.

• Heuristic Evaluation: We measure the effectiveness and computational requirements of both
the greedy and pure heuristics across real and synthetic data. We demonstrate that in practice,
both heuristics consistently outperform the worst-case theoretical bounds while achieving near-
optimal solutions.

• End-to-End Pipeline Validation: Finally, we evaluate the complete framework on 31 corporate
datasets. We compare overall runtime, memory usage, and final role set size to a baseline im-
plementation that mimics the structure of earlier state-of-the-art systems.

We begin by detailing our experimental setup, including the datasets, implementations, hardware, and
chosen thresholds.

6.1. Experimental Set-up
We now present the datasets, hardware, and implementations used in our experiments.

6.1.1. Datasets
We evaluate our methods on three distinct suites designed to test scalability, realism, and robustness:

23
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• Real-World: A proprietary dataset comprising 31 access-control graphs extracted from a large
enterprise with approximately 80,000 users. Each graph corresponds to a department or team
and reflects authentic user–permission assignments. In the initial teams, we observe a variety of
users and permissions, with numbers ranging from tens to a few thousand users. Additionally, the
number of edges ranges from a few hundred to approximately ten thousand. In larger datasets,
the number of users and permissions reaches several thousand, and the total number of edges
exceeds a million.

• RMP Library [3]: A curated set of publicly available benchmarks traditionally used in the role min-
ing literature. These include small, medium, and large graphs, enabling comparisons with prior
methods and access to ground-truth optimal solutions for smaller instances. The specific charac-
teristics of these datasets are shown in Figure 6.1. Additionally, a dataset called COMP, which
includes 16 larger graphs, exists, and we leverage it for full framework validation. Information
about COMP can be found in the Appendix Table A.3.

• Synthetic Dataset: We generated bipartite graphs using two controlled strategies. In the first,
we control the number of bicliques and the input size, which are the number of permissions and
the number of users. In the second step, a controlled set of seven bipartite graphs is generated,
all with a fixed number of bicliques and input size and varying only the edge count. This approach
enables precise comparison of specific algorithmic behaviors (especially in MBE and reductions)
under different edge densities while holding structural parameters constant.

Table 6.1: RMP data information.

Folder File Users Perm. Edges

small 1 49 44 600
small 2 50 48 1082
small 3 49 96 1369
small 4 50 88 1932
small 5 99 93 1372
small 6 99 96 2152
small 7 99 193 9371
small 8 100 184 4415
medium 1 499 479 15567
medium 2 500 468 33959
medium 3 500 427 22988
medium 4 499 883 23949
medium 5 499 980 47674
medium 6 500 924 48058
large 1 999 910 60288
large 2 999 992 49579
large 3 999 910 23778
large 4 999 3446 74347
large 5 1000 3522 148067
large 6 999 3545 62292

6.1.2. Implementations and Hardware
All implementations, ours and the re-implemented baselines, are open-sourced and publicly available
at: https://github.com/ckindynis/proper-role-mining.

Maximal Biclique Enumeration: Our approach (shown asMBESOTA in the plots) uses the sequential
variant of Pan et al.’s state-of-the-art MBE algorithm without GPU acceleration. For the pure heuristic
stage, we further modified this algorithm to enhance memory efficiency and allow early termination
after generating a user-defined number of bicliques. As a baseline for comparison, we include the
predecessor algorithm developed by Tripunitara et al. [38] (shown as MBE Predecessor in the plots).

Reduction Rules: Our method applies biclique-based reductions (shown as Biclique-based in the

https://github.com/ckindynis/proper-role-mining
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plots), as detailed in Section 4.1. For comparison, we evaluate our approach against those of the
predecessor’s neighbor-based reduction rules, which follow the approach introduced by Ene et al. [9]
(shown as Neighbor-based in the plots).

Hardware: Experiments were conducted on corporate datasets using a machine equipped with an
Intel i5-1245U processor (1.6 GHz) and 16 GB of RAM. For the RMP Library and synthetic datasets,
we used an AMD Ryzen 7 4800H processor (2.9 GHz), also with 16 GB of RAM.

Parameters and Thresholds
All thresholds used in our framework were informed by preliminary empirical calibration. Our goal was
to identify values that strike a balance between runtime feasibility, memory constraints, and solution
quality.

• Reduction Threshold (|B|reductionmax = 500,000)
This threshold determines when the algorithm transitions from the pure heuristic stage to the
reduction phase. Its value is guided by the maximum number of maximal bicliques that can be
safely held in memory on our hardware configuration. Through repeated runs on medium-to-large
graphs, we observed that exceeding this threshold resulted in memory usage consistently spiking
above 4GB, leading to degraded performance or system-level failures. Thus, the 500,000 cutoff
reflects a hardware-informed upper bound that balances computational feasibility with role quality.

• Enumeration Cap per Iteration in Pure Heuristic (|B|iter = 1,500,000)
This threshold defines the number of bicliques we enumerate and consider before selecting one
as a role in our pure heuristic. Intuitively, the more we consider, the more informed our selection
will be. An intuitively practical lower bound on the value of this threshold is (|B|reductionmax = 500, 000).
To be observed when we have fewer than |B|reductionmax bicliques and proceed to our reductions, we
must at least enumerate that many.

In practice, we extend this enumeration limit to 1.5 million bicliques per iteration. We noticed that,
due to the MBE’s efficiency, the enumeration of these additional bicliques does not introduce
a computational overhead; however, it does offer us the chance to view more bicliques before
making a selection.

• Solver Threshold (|B|ILPmax = 200,000)
When the number of remaining bicliques falls below this cap, we invoke the Gurobi ILP solver
to compute an exact minimal role set. We experimented with a range of values and consistently
observed that when the candidate biclique set was below 200,000, the solver could reliably return
optimal solutions within a short amount of time. For values above this threshold, solution times
became highly variable and, in some cases, unbounded within practical time limits that allow
multiple experiments. Thus, the 200,000 threshold reflects the empirically observed reliability
boundary of the solver under our experimental constraints.

• Solver Timeout: 30 seconds
Due to the variability in Integer Linear Programming (ILP) solution times and the need for consis-
tent execution in our pipeline, we have implemented a 30-second timeout for solver runs. If this
time limit is exceeded, the pipeline will automatically revert to the greedy heuristic.

Importantly, we set these values in a way that allows us to conduct various experiments with our com-
putational resources and the time constraints of our research. For deployment in a real-world scenario,
we recommend incrementally increasing these thresholds, particularly the solver and reduction limits,
while monitoring for solver timeouts and spikes in memory usage. This flexibility allows our framework
to serve not only as a research tool but also as a practical engine for effective role mining in real-world
RBAC systems.

6.2. Results
This section presents the empirical results of our evaluation, organized around the key components of
the framework and the two core research questions: (1) (a) Do our biclique-based reductions produce
the same logical effects as predecessor methods? (b) If so, are there cases where they offer more
efficient computation? (2) How well do our heuristics, pure and greedy, approximate optimal solutions?
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Based on performance and computational requirements, is the placement of the pure heuristic on the
outer layer and the greedy on the inner layer justified?

6.2.1. Maximal Biclique Enumeration algorithms
To evaluate the performance of our MBE component, we compared it against the predecessor’s imple-
mentation across all three dataset suites. The results are presented in Figures 6.1 to 6.5.

Figures 6.1 and 6.2 illustrate the scalability difference between our MBE and the predecessor’s, both
in terms of time and memory usage in artificial datasets.

Varying input size and number of edges For Figure 6.1 we dynamically increase the input size
along with the number of edges. As input size increases, the predecessor’s runtime and memory
consumption grow steeply, while our method maintains near-constant efficiency. For instance, at input
size 300, the predecessor exceeds 850 seconds and 600 MB of memory, whereas our method remains
under 1 second and under 10 MB.
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Figure 6.1: Runtime and memory usage comparison of predecessor’s MBE and state-of-the-art MBE algorithm
we leverage (Number of users = Number of permissions = Input size)

Fixing input size, number of bicliques and increasing only the number of edges A similar per-
formance gain is observed in Figure 6.2 under the more controlled experiments, where fix the number
of users (175), the number of permissions (175), and the number of bicliques (122), and vary only the
number of edges.
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Figure 6.2: Runtime and memory usage comparison of MBE algorithms with increasing edge density (artificial
data)

Running the new MBE on a larger scale To further evaluate the scalability of our MBE algorithm,
we extend the previous experiment to significantly larger graphs, with an input size of 15,000 and over
10,500 bicliques. The results, shown in Figure 6.3, use a linear (non-logarithmic) scale to highlight
absolute performance. Remarkably, the algorithm processes graphs with up to 80 million edges in
under 1.75 seconds, demonstrating not just efficiency but exceptional speed.
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Figure 6.3: Scalability of the new MBE algorithm on large artificial graphs

To step away from any potential caveats associated with controlled artificial datasets, we also verify the
difference in performance on the RMP and real-world data.

RMP data In RMP data, we notice the difference in efficiency immediately from the small dataset. In
Figure The predecessor’s MBE terminates with the 8 hour only for three out of eight instances, while
the MBE we leverage successfully terminates in all the datasets in less than a minute. Note that dataset
seven is the one with the most number of edges (see Table 6.1) which justifies the increased runtime.
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Figure 6.4: Runtime and Memory usage comparison of the new MBE and the predecessor’s MBE algorithm on
RMP-small datasets (Predecessor’s approach time out without providing a solution after eight hours)

Real-world data Figure 6.5 verifies the significant efficient gains of the newMBE algorithm on the real-
world datasets as well. Here, our MBE consistently completes in milliseconds, while the predecessor’s
method quickly becomes impractical, exceeding 10,000 seconds from the fifth in size dataset. Specif-
ically on that dataset, the predecessor required over 14,000 seconds, while our method completed
in 0.000033 seconds. Furthermore, the predecessor fails on dataset #8, timing out after eight hours,
while our method processes it in just 0.0004 seconds. Notably, the predecessor’s MBE approach also
timed out for the subsequent datasets, whereas our approach successfully processes even the larger
datasets in a matter of seconds. Lastly, we note that the state-of-the-art MBE algorithm we leverage is
also more efficient in terms of memory.
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Figure 6.5: Runtime and memory usage comparison of the new MBE algorithm and predecessor’s MBE
algorithm on real-world data (Predecessor’s approach time out without providing a solution after eight hours)

Implications We have incorporated a significantly more efficient MBE algorithm than the one used
by our predecessors, which brings three important enhancements to our role-mining framework. We
examine these by revisiting how our reduction method and pure heuristic work.
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Firstly, before applying the reductions, it is necessary to enumerate all maximal bicliques. Dependence
on an inefficient MBE approach could hinder our ability to complete the crucial MBE step in a timely
manner for larger graphs. Therefore, while the size of the problem would suggest that a more optimal
approach is possible, an MBE inefficiency would hinder our ability to transition to the more accurate
method. As a result, we would spend more time on the pure heuristic approach, compromising the
quality of our results. Therefore, we establish that selecting a more efficient MBE algorithm ensures
we can efficiently and as early as needed transition to the more optimal approaches and, as a result,
safeguard the quality of the roles we produce.

The pure heuristic employs the MBE algorithm multiple times, once for each role selection. Importantly,
as the first algorithm in our framework, the pure heuristic is essential for managing graphs of any size.
Relying on an efficient MBE algorithm directly enhances the scalability of our whole framework.

In each iteration, the pure heuristic enumerates a specific number of maximal bicliques. By employing
an efficient MBE algorithm, we can quickly generate a significant number of maximal bicliques. These
bicliques are candidate roles from which the pure heuristic can choose. Their increase enables the pure
heuristic to make more informed decisions, ultimately enhancing the quality of the roles it produces.

Overall, with such an efficient MBE algorithm, we gain three significant performance enhancements:

• We guarantee that the pivotal MBE step, from the pure heuristic to the reductions and more
optimal methods, can be reliably and efficiently performed, ensuring that this transition occurs
when available, thereby protecting the quality of the results.

• We are confident that our pure heuristic can be efficiently applied to large graphs, ensuring that
our framework can handle graphs of any size.

• In each iteration of our pure heuristic, we can enumerate and consider a considerable amount of
maximal bicliques (candidate roles). This capability enables it to make well-informed role selec-
tions (that are nearly globally promising), ultimately allowing us to achieve near-optimal results
(see 6.2.3).

Overall, these results confirm that, through the new MBE algorithm, we are not simply saving compu-
tational time; we fundamentally shift the scalability boundaries and improve the quality of results of the
entire role-mining framework.

6.2.2. Reduction algorithms
To evaluate our proposed biclique-based reduction strategy against the predecessors’ neighbor-based
reductions, we conducted a comparative analysis across real-world literature and artificial datasets.
This analysis directly addresses RQ1, which investigates whether re-framing reduction rules using set
cover theory first gives the same reduction and second yields any performance advantages.

From the RMP data, we observed that our reduction algorithm struggled to terminate in medium and
large datasets; therefore, we focused on presenting the results for small instances. Additionally, for the
seventh file of the small RMP dataset, since the number of maximal bicliques exceeds our threshold,
we used our pure heuristic and, therefore, omitted this dataset from the reduction experiments. For
the real-world datasets, we utilize 26 datasets for which the pure heuristic was not required, again to
ensure a common ground for the two reductions.

Table 6.2 demonstrates that both reduction methods eliminate the same number of edges and identify
an equal number of isolated edges. For each isolated edge, a corresponding role is created, and the
counts of these roles are presented in the final two columns.
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Table 6.2: Number of edges removed and the number of roles promoted by Predecessor’s reduction approach
(NB (Neighbor-Based)) and Ours (BB (Biclique-Based)

Folder File Edges Rem. Pred Rem. Ours Roles Pred Roles Ours

small 1 600 417 417 4 4
small 2 1082 581 581 1 1
small 3 1369 1369 1369 25 25
small 4 1932 1196 1196 0 0
small 5 1372 1372 1372 49 49
small 6 2152 1108 1108 3 3
small 8 4415 2877 2877 3 3

In Figure 6.6, we present the run time and memory usage of the reduction algorithms for the small
instances of the RMP data. In all instances, the predecessor’s approach outperforms our implementa-
tion in terms of both runtime and memory usage. These results indicate that the balance between the
number of edges and the number of bicliques in these datasets does not favor our approach.
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Figure 6.6: Runtime and memory usage comparison of our vs predecessor’s reduction algorithms, on RMP
small data. A logarithmic scale is used to better capture the differences in execution time, particularly for the

predecessor’s approach.

In Table 6.3, we notice the equivalence of the reduction methods by observing that the two versions
have the same effects again, this time in the real-world data. We remove the same number of edges
(”Rem.”) and promote the same number of roles (through the identification of bicliques with isolated
edges).

Additionally, we observed the substantial impact the reduction rules had on these real-world datasets.
In the 26 datasets where the pure heuristic was not applied, not even 1%of the initial edges remained
after the reductions. Thanks to these reductions, we successfully found the optimal solution for
all 26 datasets presented here; more details on that are provided in Section 6.2.4.
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Table 6.3: Number of edges removed and the number of roles promoted by Predecessor’s reduction approach
(NB (Neighbor-Based)) and Ours (BB (Biclique-Based), along with their effectiveness on real-world data.

File Edges Rem. NB Rem. BB % Edges Left Roles NB Roles BB

0 171 171 171 0.00 7 7
1 306 306 306 0.00 9 9
2 514 514 514 0.00 18 18
3 1471 1471 1471 0.00 20 20
4 2587 2587 2587 0.00 55 55
5 2751 2751 2751 0.00 85 85
6 2810 2791 2791 0.68 52 52
7 4244 4238 4238 0.14 139 139
8 4263 4247 4247 0.38 93 93
9 6215 6205 6205 0.16 109 109
10 12810 12810 12810 0.00 151 151
11 13119 13119 13119 0.00 69 69
12 17573 17543 17543 0.17 262 262
13 27339 27330 27330 0.03 280 280
14 50328 50322 50322 0.01 548 548
15 50618 50606 50606 0.02 376 376
16 52511 52472 52472 0.07 222 222
17 53203 53203 53203 0.00 804 804
18 65172 65165 65165 0.01 551 551
19 66824 66807 66807 0.03 546 546
20 115277 115257 115257 0.02 977 977
21 124130 124014 124014 0.09 1215 1215
22 133217 133087 133087 0.10 1427 1427
23 164213 164132 164132 0.05 1351 1351
25 253750 253363 253363 0.15 890 890
27 437478 437091 437091 0.09 1991 1991

Figure 6.7 compares the runtime and memory usage of our biclique-based reductions with those of
the predecessor’s neighbor-based approach on real-world data. The results are unambiguous: the
predecessor’s method is significantly more efficient, with 15 out of 26 datasets showing 10–100× faster
execution. This is primarily due to the algorithmic complexity profiles. The predecessor’s neighbor-
based reductions operate in time cubic in the number of edges (O(|E3|)), while our biclique-based
method depends on the number of maximal bicliques (O(|B|2) for subset checks). On large datasets,
the number of maximal bicliques can growmuch faster than the number of edges, causing our approach
to become memory-bound and computationally expensive, especially as graphs scale.

Despite this, our analysis confirms that both methods achieve identical reductions and produce the
same number of roles (Table 6.3), validating the equivalence of our set cover–inspired approach. How-
ever, the practical implication is clear: for real-world enterprise data, the predecessor’s edge-centric
method is preferable for efficiency.
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Figure 6.7: Runtime and memory usage comparison of our vs predecessor’s reduction algorithm, on real-world
data

Implications of the effectiveness of the reductions These impressively effective reductions are a
decisive advantage of our approach compared to many recent works. We substantially simplify large
input graphs into much smaller and manageable instances, which our optimal methods can easily solve.
In fact, we successfully found the optimal solution to all 26 datasets in which the pure heuristic was not
used.

This set of deterministic reductions enables us to effectively reduce the input size without compromising
optimality. As a result, we can utilize stronger algorithms in larger graphs and achieve better solutions
than other role-mining approaches that do not leverage these reductions. This advantage is also why
the method we built upon, developed by our predecessor [9], outperformed all other role-mining ap-
proaches across multiple datasets, as documented in the comprehensive survey by Mitra et al. [26].

Performance analysis of the two reduction algorithms on artificial datasets To verify the claim
that the two reduction versions mainly depend on different parameters, (a) the predecessor is on the
number of edges, and (b) ours is on the number of bicliques, we conduct a few experiments on artificial
datasets where we control these two parameters. We set the number of users and permissions to
the same ”input_size” value. We also set the number of maximal bicliques and vary the number of
edges. First remark: keeping the number of users, permissions, and bicliques fixed and varying the
number of edges is not a trivial task. Therefore, we do not have complete control over the values of
these parameters, but we were able to achieve this under six different scales of edge densities. Second
remark: We are aware that this approach may not accurately capture common real-world data patterns;
however, we are using it to gain clarity on the performance complexities of our algorithms.

Figure 6.8 presents the first results under the configuration of 750 input size, 525 maximal bicliques,
and the displayed varying number of edges. We observe that when the number of bicliques is relatively
low compared to the number of edges, our algorithm performs better. Even as the number of edges
increases, the runtime of our algorithm remains consistently low (below 10 seconds), in contrast to the
neighbor-based approach used by previous methods, which can exceed 1000 seconds in runtime. This
result validates the design principles behind our algorithms, indicating that the predecessor’s approach
is more heavily affected by the number of edges than ours.
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Figure 6.8: Runtime and memory usage comparison of our and predecessor’s reduction algorithms on artificial
data with low number of bicliques

Implications Our analysis confirms that both reduction approaches achieve identical structural sim-
plifications while preserving solution optimality, validating their theoretical equivalence. This work pro-
vides foundational value to the research community in three key areas: First, by establishing the direct
connection between classical role mining reductions and set cover kernelization rules, we enable prin-
cipled extensions to these methods. Second, our observation that biclique-based reductions operate
on fixed structures per iteration—unlike the neighbor-based approach with dynamic neighborhoods—
reveals promising parallelization pathways worthy of exploration. Third, by open-sourcing both variants,
we provide implementation transparency that facilitates direct comparison and future extendability.

The exceptional effectiveness of these reductions, consistently eliminating more than 99% of edges
in real-world graphs, demonstrates their critical role in scalable role mining. While the predecessor’s
edge-centric method demonstrates superior efficiency in our benchmarks, the optimal choice depends
on the characteristics of the dataset. Practically, our framework’s dual-implementation strategy delivers
significant operational advantages: Practitioners can empirically optimize by benchmarking variants
against specific RBAC environments, researchers gain extensibility for exploring hybrid or parallelized
strategies, and organizations achieve deployment flexibility through dynamic selection of reduction
engines based on real-time graph metrics.

6.2.3. Heuristics
This section evaluates the trade-offs between our two heuristic strategies: the Pure Heuristic, which
is designed for minimal memory usage and scalability, and the Greedy Heuristic, which is based on
a set cover formulation with a provable logarithmic approximation guarantee. The experiments aim to
assess how each approach balances solution quality, memory consumption, and runtime performance,
thereby addressing RQ2.

Pure Heuristic vs Greedy Heuristic
Figures 6.9, 6.10, and 6.11 present results on the RMP benchmark suite. The Greedy Heuristic con-
sistently produces role sets much closer to the optimal. For example, the greedy solution typically falls
within 5–15% of the optimal number of roles, while the pure heuristic can deviate more significantly.
However, this accuracy comes at a high memory cost. Across all RMP datasets, the greedy variant
requires up to 3 orders of magnitude more memory than the pure heuristic 6.11. The minimal memory
requirement of the pure heuristic, consistently staying below 100 MB, confirms its suitability for deploy-
ment in constrained environments or for handling huge graphs. Figure 6.10 illustrates that both the
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Greedy and Pure heuristics surpass the worst-case theoretical upper bound of the Greedy Heuristic,
with the greedy achieving that often with an order of magnitude better performance.
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Figure 6.9: Role count comparison of pure heuristic, greedy heuristic, and optimal solutions on RMP data
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Figure 6.10: Greedy heuristic performance relative to the theoretical upper bound on RMP data
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Figure 6.11: Memory usage of pure heuristic versus greedy heuristic on RMP data

A similar argument can bemade about the pure heuristic runs on the real-world datasets. We look at the
results in Figure 6.12. We immediately notice the minimal memory requirement that the Pure Heuris-
tic comes with again. Additionally, we observe the impressive performance of both of our heuristic
methods.
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Figure 6.12: Role count comparison and memory usage of pure heuristic and greedy heuristic on real-world data

Implications Thus, the Greedy Heuristic offers near-optimal results, with slightly better results than
the Pure Heuristic, while the Pure Heuristic provides near-optimal results with minimal memory re-
quirements.

Pure Heuristic: Ablation study
To further investigate the Pure Heuristic’s behavior, we analyze how node ordering impacts its role
quality and progression toward Level 2 reductions. Figures 6.13 and 6.14 show the results of sweep-
ing through three ordering strategies: no reordering, ascending by degree (RInc), and descending by
degree (RDec).
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Figure 6.13: Effect of node reordering on pure heuristic role quality (RMP data)
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Figure 6.14: Effect of node reordering on pure heuristic role quality (real-world data)

We find that reordering can affect role quality in edge cases, especially when the cap on biclique enu-
meration is tight. However, for most datasets, the number of roles produced remains stable across
reordering strategies, indicating robustness. Notably, ascending degree order (RInc) performs slightly
better on large datasets, likely due to the algorithm prioritizing less-connected nodes first and minimiz-
ing overlap. This stability allows for flexible deployment: one can trade off between runtime (by skipping
reordering) or role quality (by applying the most suitable order), depending on application needs.

6.2.4. Real world validation of the complete framework
The empirical evaluation of our four-level adaptive framework on 31 enterprise datasets and the RMP
library directly addresses RQ3: Can we develop a role mining methodology that dynamically decides
between heuristic and exact methods to adaptively balance scalability and solution quality? Our results
demonstrate that the framework successfully integrates resource-aware decision-making with formal
guarantees, delivering practical benefits in both security and operational efficiency.

Operational Impact: Role Reduction
Our framework consistently produces much more compact RBAC configurations than manually engi-
neered systems, as shown in Table 6.4. Across all datasets, the average role reduction is 53.17%
(ranging from 31.30% to 89.89%). This reduction directly translates to:

• Reduced attack surface: Fewer roles imply 50% fewer privilege escalation paths, significantly
lowering vulnerability risks.

• Lower administrative overhead: Compact role sets simplify policy management and reduce
manual intervention.

• Simplified compliance auditing: Smaller, well-defined roles streamline regulatory compliance
and audit processes.
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Table 6.4: Percentage of roles after role mining versus initial number of roles

File Init. Roles Mined Roles. % Decrease

0 34 7 79.41
1 89 9 89.89
2 40 18 55.00
3 33 20 39.39
4 266 55 79.32
5 190 85 55.26
6 191 60 68.59
7 255 142 44.31
8 167 100 40.12
9 292 114 60.96
10 405 151 62.72
11 202 69 65.84
12 684 276 59.65
13 876 285 67.47
14 802 551 31.30
15 739 382 48.31
16 602 236 60.80
17 1650 804 51.27
18 815 555 31.90
19 1119 554 50.49
20 1808 985 45.52
21 3620 1262 65.14
22 3917 1487 62.04
23 3902 1380 64.63
24 830 565 31.93
25 1632 978 40.07
26 3329 1719 48.36
27 4434 2132 51.92
28 6857 4169 39.20
29 13846 7071 48.93
30 6713 4575 31.85
31 6519 4564 29.99

These results validate the practical security and operational advantages of automated role mining in
real-world enterprise environments.

Adaptive Behavior Analysis
The framework automatically selects components based on input size and resource constraints. Fig-
ures 6.5 and 6.6 show which components were activated per dataset, while tables A.1, A.2 and A.3 in
the Appendix A contain additional information.

• Optimal Execution (26/31 datasets): For Files 0–23 and 25–27, reductions alone allowed direct
ILP solving, yielding 100% optimal solutions without heuristic steps.

• Degraded Execution (5/31 datasets): For larger graphs (Files 24, 26, 28–30), the pipeline pro-
gressively applied all of its four components. Non-optimal roles came only from heuristic stages,
averaging 8.2% of total roles.

This design indeed prioritizes exact methods when possible and limits heuristics to cases where full
solving is infeasible.

6.2.5. Computational Efficiency
Despite running on consumer-grade hardware (16GB RAM), the framework processed all datasets
within practical time limits:
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• No solver timeouts (30s limit),
• Memory usage under 4GB,
• Linear runtime scaling with problem size (e.g., File 30: 1.3M edges→ 1.5 hours).

This efficiency contrasts sharply with prior work, which required high-end servers (256GBRAM, 64-core
processors) for similar datasets [38]. Our framework’s ability to operate within resource constraints is
a direct result of its adaptive thresholds and efficient algorithmic components.

Table 6.5: Experimental results showing framework performance across real-world data.

File Edges Roles Pure H. Red. R. Greedy R. Gurobi R. Total Time
0 171 0 7 0 0 00:00:01
1 306 0 9 0 0 00:00:01
2 514 0 18 0 0 00:00:01
3 1471 0 20 0 0 00:00:01
4 2587 0 55 0 0 00:00:01
5 2751 0 85 0 0 00:00:01
6 2810 0 52 0 8 00:00:01
7 4244 0 139 0 3 00:00:01
8 4263 0 93 0 7 00:00:01
9 6215 0 109 0 5 00:00:01
10 12810 0 151 0 0 00:00:02
11 13119 0 69 0 0 00:00:02
12 17573 0 262 0 14 00:00:02
13 27339 0 280 0 5 00:00:02
14 50328 0 548 0 3 00:00:10
15 50618 0 376 0 6 00:00:08
16 52511 0 222 0 14 00:00:19
17 53203 0 804 0 0 00:00:10
18 65172 0 551 0 4 00:00:23
19 66824 0 546 0 8 00:00:10
20 115277 0 977 0 8 00:01:06
21 124130 0 1215 0 47 00:00:29
22 133217 0 1427 0 60 00:01:04
23 164213 0 1351 0 29 00:00:35
24 211329 40 516 0 9 00:07:31
25 253750 0 890 0 88 00:04:04
26 311307 18 1659 0 42 00:04:03
27 437478 0 1991 0 141 00:34:49
28 1090388 378 2044 56 1691 01:18:48
29 1301047 101 6694 0 276 00:43:10
30 1349999 243 3003 0 1329 01:30:42
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Table 6.6: Experimental results showing framework performance across RMP datasets (small, medium, large,
and comp)

Folder File Edges Roles Pure H. Red. R. Greedy R. Gurobi R. Total Time

small 1 600 0 4 0 20 00:00:01
small 2 1082 0 1 0 24 00:00:03
small 3 1369 0 25 0 0 00:00:01
small 4 1932 0 0 0 25 00:00:10
small 5 1372 0 49 0 0 00:00:01
small 6 2152 0 3 0 47 00:00:02
small 7 9371 16 0 47 64 00:00:50
small 8 4415 0 3 13 34 00:00:09
medium 1 15567 0 58 0 92 00:00:05
medium 2 33959 48 0 221 172 00:03:09
medium 3 22988 10 0 85 160 00:00:39
medium 4 23949 0 19 0 181 00:00:06
medium 5 47674 56 2 240 283 00:04:34
medium 6 48058 64 0 255 257 00:04:50
large 1 60288 39 5 106 308 00:03:04
large 2 49579 17 1 398 206 00:01:33
large 3 23778 0 33 0 466 00:00:06
large 4 74347 0 69 0 331 00:00:08
large 5 148067 101 2 0 401 00:16:32
large 6 62292 0 58 0 442 00:00:06
comp 1 49283 8 48 46 312 00:00:40
comp 2 60564 14 13 48 347 00:00:57
comp 3 56981 12 56 19 330 00:00:46
comp 4 70122 22 14 43 364 00:01:22
comp 5 278809 57 1251 36 721 00:10:07
comp 6 332985 63 108 64 1848 00:11:21
comp 7 411702 75 1303 0 681 00:11:31
comp 8 494455 184 218 0 1761 00:20:30
comp 9 646399 1005 1314 1138 1390 01:08:20
comp 10 812337 1017 2347 75 503 01:49:29
comp 11 1053246 1281 1667 138 1318 01:45:25
comp 12 1331702 1543 76 2088 2876 03:36:16
comp 13 573065 404 1220 113 2043 00:38:39
comp 14 665217 409 143 216 3127 00:45:10
comp 15 726448 464 1399 0 1906 00:48:10
comp 16 844106 533 3241 0 0 01:07:12
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Discussion

Having established the empirical analysis of our proposed role-mining framework, we now reflect on
its broader implications, practical deployment insights, and remaining limitations. We begin by sum-
marizing the framework’s performance across the evaluated tasks, followed by insights gained from
real-world applications. We then discuss the avenue for extending this framework to a structure-aware
role-mining that enables organizations to encode structural preferences into the algorithmic decision-
making process. Finally, we conclude with a discussion of current limitations. Finally, we conclude with
a discussion of current limitations.

7.1. Performance Overview of the Framework
Our proposed four-level framework was designed to adaptively balance scalability, memory usage, and
solution quality in role mining. Through extensive experimental evaluation, the framework consistently
outperforms prior approaches across several critical dimensions:

• Conclusion on MBE Integration: The integration of a significantly more efficient MBE algorithm
[29] delivers profound benefits to our role-mining framework. Specifically, it enables the frame-
work to (i) transition seamlessly from heuristics to more optimal layers by ensuring that MBE is not
a computational bottleneck, (ii) scale effectively to massive graphs, an essential requirement for
real-world deployment, and (iii) generate a richer set of candidate roles per iteration in the pure
heuristic stage, allowing for more informed and higher-quality role selections. A practical exam-
ple that quantifies the scalability impact is the experiment on the larger RMP datasets, where the
very closely related heuristic of Tripunitara et al. [38] took 4-6 days to terminate, whereas ours
terminated within 1-3 hours, while also requiring significantly fewer computational resources. Im-
portantly, these enhancements go beyond reducing runtime. They fundamentally redefine the
operational capacity of the framework by enabling it to preserve solution quality under resource
constraints while scaling to previously intractable problem sizes. Therefore, the MBE algorithm is
not just a performance upgrade; it is a key enabler of the framework’s adaptability, effectiveness,
and overall competitiveness.

• Equivalence of the biclique-based reductions with the neighbor-based reductions of the
predecessor: Through our empirical analysis of the reductions, we verify the theoretical assump-
tion wemade in 4, that two reduction versions are essentially the same (two variations of the same
rules). Real-world deployment of both approaches demonstrated the predecessor’s approach as
more effective. Nonetheless, through these analyses, we have gained valuable insights into how
these reductions can be leveraged, and we open the door for future analysis to explore the po-
tential of these reductions further.

• Effectiveness of the Reductions: The integration of reductions into our framework plays a criti-
cal role in our ability to minimize non-optimal decisions. Through our real-world deployment, we
demonstrated that we can transform any input graph into its reduced version, which contains
fewer than 1% of its initial edges, using optimal and deterministic decisions. Without a doubt, any

40
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role-mining pipeline that does not incorporate these or equivalent reduction strategies is likely to
miss significant improvements in solution quality and efficiency.

• Greedy Role Selection Heuristic: The greedy heuristic’s performance confidently surpasses
the theoretical upper bound, often achieving near-optimal results in real-world environments as
well. Its performance demonstrates that the greedy heuristic is a reliable component of our 4-level
resource-aware role mining framework and that we can confidently rely on it for handling the first
role promotions in small to medium-sized datasets, knowing that the heuristic choices it makes
lead to near-optimal results.

• Scalable And Effective Pure Heuristic: Apart from mentioning the heuristic’s main component,
MBE’s impressive efficiency, which allows our heuristic to be used for even massive graphs, we
want to explicitly mention the impressive performance the heuristic achieves in terms of the pro-
duced mined roles. Even if we run the pure heuristic alone, we still get near-optimal results in real-
world settings. This means that this heuristic is not only capable of promoting roles on massive
graphs, but the roles it produces are of very high quality. Therefore, due to the MBE’s efficiency,
we can achieve a heuristic that does not sacrifice quality for efficiency but rather achieves both to
an impressive degree. As a result, we are pleased to utilize the pure heuristic as the outer layer
of our four-level, resource-aware role-mining framework.

• Overall: Overall, we see that our four-level resource-aware framework can be confidently used
for user-permission graphs of any size, delivering near-optimal solutions in all cases, as justified
by the deployment of this framework in literature, as well as real-world datasets. Notably, the
framework’s thresholds allow for adjustment to available computational resources, enabling its
use even on an ordinary employee laptop, such as the one used in our experiments.

These results validate the practicality of a multi-step decision framework that escalates computational
investment based on available resources and problem complexity. The framework successfully nav-
igates the space between fast heuristics and optimal solutions, achieving competitive performance
across datasets of varying sizes and structures.

7.2. Observations from Real-World Application
During real-world deployment, we observed two recurring issues in the structure of generated roles:

• Many roles consist of a single user and all their assigned permissions.
• Some roles overlap significantly with others.

The first issue was also noted by Ene et al. [9], who observed that about four-fifths of their roles
consist of a single user and all of its permissions. While this may initially appear undesirable, such
roles can reveal outliers or miss-configurations in access control policies. These ”orphaned” roles,
representing users with entirely unique permission sets, can serve as indicators of exception handling,
special privileges, or potential errors in policy assignments. In terms of role mining, these singleton-
user roles are unavoidable when covering unique permission sets; a separate role for that user must be
constructed, and by the maximal nature of the biclique, it naturally includes all of the user’s permissions.

The second issue stems from the inherent nature of maximal bicliques: they often overlap. Although
generating only maximal bicliques helps limit the candidate space, overlap between them can intro-
duce redundancy in the final role set. To maintain scalability, we generate roles directly from maximal
bicliques. However, post-generation refinement could further reduce unnecessary overlap. We pro-
pose this as a direction for future work: a post-processing algorithm that merges or refines overlapping
roles without compromising coverage or minimality guarantees.

7.3. Constraint-Aware Role Mining
Deploying our algorithm in a real-world context revealed a key insight: being able to incorporate
structural preferences into the roles our algorithm generates can significantly increase its value
to the organization. Our framework’s design, which involves evaluating multiple candidate roles before
making a selection, allows the natural integration of domain-specific preferences. This flexibility enables
a powerful extension: structure-aware role mining, in which organizations can explicitly define desirable
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or undesirable role patterns based on factors such as internal policy, maintainability, or administrative
cost.

For example, an organization may prefer roles with at least five users and five permissions, a concept
known in the literature as cardinality constraints [16], and penalize singleton-user roles unless the
user has truly unique permissions. These structural preferences can be formalized as cost or reward
functions associated with each candidate biclique, allowing the algorithm to balance structural quality
with coverage. In practice, this could be integrated as follows.

For the Pure Heuristic, rather than selecting the largest biclique, the algorithm could be tuned to se-
lect the highest-scoring biclique within a ”green zone” of structurally preferred roles while discarding
bicliques in a predefined ”red zone” (i.e., roles that will never be adopted). Additionally, the reductions
remain unchanged, as any role activated through reduction is structurally necessary to ensure cover-
age and, therefore, cannot be avoided. Then, for the Greedy Heuristic, similar to the pure heuristic,
biclique selection can be adjusted to account for structure-aware scoring rather than relying purely on
size. Lastly, for the Exact Solver, the ILP formulation can be extended to minimize the total cost of se-
lected roles (rather than just their count), with each biclique assigned a weight reflecting its desirability.

By incorporating structural preferences into the layers of our pipeline, our framework can be tailored
to specific business objectives, offering a scalable and flexible alternative to both rigid automation and
costly manual work. Additionally, more constraints, such as Separation of Duties [34], can be modeled
using a similar approach. In this way, organizations can transition from inflexible role engineering to a
customizable, intelligent framework that enforces security requirements while promoting interpretable,
manageable, and contextually appropriate roles.

7.4. Limitations
While our framework demonstrates strong performance and flexibility, certain limitations remain:

Pure Heuristic Threshold: The behavior and quality of the pure heuristic under different biclique
enumeration limits and orderings warrant deeper analysis. For instance, how frequently does it discover
the optimal or near-optimal biclique within the first k candidates? Understanding this distribution could
guide better dynamic cap selection or early termination strategies.

Threshold Calibration: For this research, we established different thresholds with values that en-
abled us to conduct various experiments. Future research or real-world deployment is advised to con-
tinually push the limits of these thresholds, checking for memory usage or solver timeouts to achieve the
best results that this framework (and available resources) can provide. Regarding this, future research
could also delve deeper into the analysis of how the computational resources and performance of each
component scale to illustrate the chosen thresholds clearly and further conceptualize the underlying
scalability and optimality trade-off.

Edge-Based Thresholding: Currently, the thresholds are set solely based on the number of bicliques
and do not take into account the number of edges in the graph. While this approach works at a funda-
mental level, the decision to change levels could be more informed by also considering the number of
edges. For example, we can have x number of large bicliques that do not fit in memory and x number of
small bicliques that do fit in memory. Investigating how the number of edges, together with the number
of bicliques, affects the thresholds is an interesting direction for future research.

Resource Limitations: This research did not utilize computational clusters of any kind, and the exper-
iments were conducted on the computational resources of a standard laptop. As a result, the empirical
results achieved in the literature data do not surpass those of the predecessor’s work [38] (which lever-
aged proper computational resources, such as 256GB of RAM or 64-core processors). Future work
could empirically analyze the performance of our work in comparison to other recent works under the
same settings to empirically showcase the different trade-offs the approaches offer.
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Post-processing Step For Overlap Removal Omission: While our method generates roles effi-
ciently, we have not yet implemented a follow-up step to remove overlaps, which could help improve
the quality of the produced roles, especially for real-world deployments.

Future work may explore enhancements in these directions to make the framework more dynamic,
interpretable, and robust for operational deployment. Future work may explore enhancements in these
directions to make the framework more dynamic, interpretable, and robust for operational deployment.
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Conclusion

Here, we present the summary of our work and point directions for future research.

8.1. Summary
In this work, we introduced a resource-aware, four-level framework for solving the Role Mining Problem.
Our design integrates four key components: a memory-light, pure heuristic; biclique-based reductions
inspired by set cover theory; a greedy approximation with theoretical guarantees; and an exact ILP
solver. The pure heuristic ensures scalability under tight memory budgets, avoiding complete enumer-
ation of maximal bicliques. The reduction phase systematically simplifies the problem space while pre-
serving optimality. The greedy layer leverages set cover approximation theory to deliver near-optimal
solutions efficiently. Finally, the ILP layer guarantees exact solutions when feasible.

Through a comprehensive evaluation of real-world, synthetic, and benchmark datasets, we demon-
strate that our framework’s underlying MBE component outperforms that of previous methods in both
runtime and memory usage. Additionally, our heuristics achieve near-optimal results. Our reductions
are highly effective, removing more than 99% of the edges in 24 out of 31 real-world datasets, for which
we successfully found the globally optimal solution. Lastly, the deployment of the role-mining frame-
work resulted in simplifications of up to 89% across the teams of a real-world organization, illustrating
the significant benefit that practical role-mining approaches can bring to real-world applications.

By combining efficiency, scalability, theoretical rigor, and real-world deployment, we present this frame-
work as an effective and scalable solution for role mining. Overall, our approach resulted in a compre-
hensive toolkit for both researchers and practitioners in the field of role-based access control and policy
inference.

Lastly, we have mapped components of our framework to well-known problems, which significantly
enhances the expandability of our framework. Currently, the choice of each of these components
is extremely promising. However, as research in the SCP, MBE, Constraint Solvers, or role-mining
heuristics progresses, more efficient and better-performing algorithms than our current choices may
arise. Importantly, as this happens, one can replace the outdated algorithms with more efficient ver-
sions and, using this framework, still have a state-of-the-art role-mining algorithm. So, even though
the individual components of our four-level role-mining framework may become outdated as research
progresses, through the theoretical analysis, mapping to well-known problems, and adaptive nature of
our framework, we see this four-level resource-aware biclique-based role-mining framework being a
central foundation in the world of role mining, for now, and for the future.

8.2. Future work
While the proposed framework offers a principled and practical solution to the Role Mining Problem, it
also opens several promising directions for future research. Below, we outline these promising direc-
tions for future work.

44
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• Extend this implementation by introducing a post-processing algorithm that removes overlap be-
tween the generated roles.

• Extend this implementation by analyzing how early the largest biclique is found by the pure heuris-
tic and adjusting the thresholds accordingly to save processing time.

• Explore the trade-offs between the two reduction versions further. For example, explore whether
a parallelized version of the biclique-based reductions can surpass the corresponding one of the
neighbor-based one, e.g., taking into consideration that the biclique-based reductions work on
fixed bicliques within each iteration and the potential avenue from parallelization could be higher.

• Extend this implementation by iteratively applying the set cover (biclique-based) reduction rules
along with the iterative greedy heuristic. This would allow smaller and fewer bicliques, enabling
an earlier transition to the solver, albeit at the cost of introducing more computations. Explore the
benefit of this trade-off.

• Extend this implementation by exploring if applying intuitive reduction rules (e.g., removing users
having the same permissions and permissions having the same users) to the user-permission
graph can improve the speed of the later reductions or enable the earlier transition to more optimal
levels.

• Extend this implementation, incorporating cardinality or separation of duty constraints, through a
structure-aware approach we suggest in Section 7.3

• Collect implementations of other recent role mining algorithms (e.g., the ones mentioned in Sec-
tion 3.1.1) and our open-source implementation, and conduct empirical comparisons to concep-
tualize the strengths and weakness of the different approaches, and potentially illustrate their
limitations in regards to our adaptive framework.
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Table A.1: Input, heuristic, and reduction results (Files 0–30)

File Edges Pure R. Pure T. E. PH Bicl. PH MBE T. Red. R. E. Red. Red. T.

0 171 0 00:00:00 171 18 00:00:00 7 0 00:00:00
1 306 0 00:00:00 306 37 00:00:00 9 0 00:00:00
2 514 0 00:00:00 514 33 00:00:00 18 0 00:00:00
3 1471 0 00:00:00 1471 25 00:00:00 20 0 00:00:00
4 2587 0 00:00:00 2587 236 00:00:00 55 0 00:00:00
5 2751 0 00:00:00 2751 626 00:00:00 85 0 00:00:00
6 2810 0 00:00:00 2810 253 00:00:00 52 19 00:00:00
7 4244 0 00:00:00 4244 308 00:00:00 139 6 00:00:00
8 4263 0 00:00:00 4263 911 00:00:00 93 16 00:00:00
9 6215 0 00:00:00 6215 1016 00:00:00 109 10 00:00:00
10 12810 0 00:00:00 12810 1689 00:00:00 151 0 00:00:01
11 13119 0 00:00:00 13119 198 00:00:00 69 0 00:00:01
12 17573 0 00:00:00 17573 9694 00:00:00 262 30 00:00:01
13 27339 0 00:00:00 27339 6683 00:00:00 280 9 00:00:01
14 50328 0 00:00:00 50328 3945 00:00:00 548 6 00:00:09
15 50618 0 00:00:00 50618 40473 00:00:01 376 12 00:00:05
16 52511 0 00:00:00 52511 10406 00:00:00 222 39 00:00:17
17 53203 0 00:00:00 53203 47086 00:00:01 804 0 00:00:07
18 65172 0 00:00:00 65172 2951 00:00:00 551 7 00:00:22
19 66824 0 00:00:00 66824 23439 00:00:01 546 17 00:00:08
20 115277 0 00:00:00 115277 14770 00:00:00 977 20 00:01:04
21 124130 0 00:00:00 124130 75481 00:00:03 1215 116 00:00:21
22 133217 0 00:00:00 133217 122699 00:00:03 1427 130 00:00:55
23 164213 0 00:00:00 164213 66130 00:00:03 1351 81 00:00:28
24 211329 40 00:06:47 44329 421451 00:00:05 516 18 00:00:33
25 253750 0 00:00:00 253750 147635 00:00:12 890 387 00:03:28
26 311307 18 00:03:26 96001 434924 00:00:04 1659 106 00:00:29
27 437478 0 00:00:00 437478 120331 00:00:13 1991 387 00:33:55
28 1090388 378 01:12:16 212975 493146 00:00:05 2044 9250 00:06:22
29 1301047 101 00:40:20 388601 495333 00:00:06 6694 888 00:02:36
30 1349999 243 01:11:37 277335 499367 00:00:03 3003 7556 00:18:55

Note: Pure R. = Roles by Pure Heuristic, Pure T. = Time Pure Heuristic, E. PH = Edges post Pure Heuristic, Bicl.
PH = Bicliques post Pure Heuristic, MBE T. = Time MBE, Red. R. = Roles by Reduction Rule A, E. Red. = Edges

post Reduction Rule A, Red. T. = Time Reductions (00:00:00 run-times stands for running times of some
milliseconds)
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Table A.2: Heuristic, solver, and non-optimal roles (Files 0–30)

File Greedy R. Greedy T. Gurobi R. Gurobi T. Gurobi F. Non-Opt.

0 0 00:00:00 0 00:00:00 0 0
1 0 00:00:00 0 00:00:00 0 0
2 0 00:00:00 0 00:00:00 0 0
3 0 00:00:00 0 00:00:00 0 0
4 0 00:00:00 0 00:00:00 0 0
5 0 00:00:00 0 00:00:00 0 0
6 0 00:00:00 8 00:00:00 0 0
7 0 00:00:00 3 00:00:00 0 0
8 0 00:00:00 7 00:00:00 0 0
9 0 00:00:00 5 00:00:00 0 0
10 0 00:00:00 0 00:00:00 0 0
11 0 00:00:00 0 00:00:00 0 0
12 0 00:00:00 14 00:00:00 0 0
13 0 00:00:00 5 00:00:00 0 0
14 0 00:00:00 3 00:00:00 0 0
15 0 00:00:00 6 00:00:00 0 0
16 0 00:00:00 14 00:00:00 0 0
17 0 00:00:00 0 00:00:00 0 0
18 0 00:00:00 4 00:00:00 0 0
19 0 00:00:00 8 00:00:00 0 0
20 0 00:00:00 8 00:00:00 0 0
21 0 00:00:00 47 00:00:00 0 0
22 0 00:00:00 60 00:00:00 0 0
23 0 00:00:00 29 00:00:00 0 0
24 0 00:00:00 9 00:00:00 0 40
25 0 00:00:00 88 00:00:01 0 0
26 0 00:00:00 42 00:00:00 0 18
27 0 00:00:00 141 00:00:00 0 0
28 56 00:00:00 1691 00:00:01 0 434
29 0 00:00:00 276 00:00:00 0 101
30 0 00:00:00 1329 00:00:01 0 243

Note: Greedy R. = Roles by Greedy Heuristic, Greedy T. = Time Greedy Heuristic, Gurobi R. = Roles by Gurobi
Solver, Gurobi T. = Time Gurobi Solve, Gurobi F. = Gurobi Failures, Non-Opt. = Non-Optimal Roles.
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