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Abstract

Coupling between porous media and free flow is widely present in many
applications. In fractured reservoirs, fractures are often treated as parallel
(smooth) plates, between which the flow is assumed to be steady state fully
developed, with no-slip boundary condition. Under these assumptions, the
Darcy law is employed inside fractures with permeability (/) as a quadratic
function of aperture (a), i.e., K; = a?/12. Although this model is a rough
simplification of real rock fractures, it is still widely used in subsurface flow
modelling.

This study aims to investigate the validity range of the so-called local
cubic law (LCL) by using a Darcy-Stokes-Brinkman model in which a unified
formulation describes the Stokes flow in the free-flow sub-domain and Darcy
flow in the porous sub-domain. Two simulation strategies are developed:
a sequentially coupled approach, and a fully coupled approach. The non-
linear velocity profiles inside the free flow require enough grid resolution to
be captured. As such, the grid resolution sensitivity is presented. More
importantly, the permeability contrast v between the two media is found
to be an important factor for the applicability of the LCL (Darcy-Darcy)
approach. A threshold of v ~ 1077 is found, below which the difference
between the two modelling approaches is negligible, and above which the
LCL model no longer provide reasonable results.
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Chapter 1

Introduction

1.1 Motivation

Coupled flow between porous media and free flow regions are observed in
numerous industrial, environmental and medical domains of interest: for
example, in the modelling of transport of contaminants in coastal areas,
river or basins; in bio-engineering applications, where blood oxygenators and
hemodialysis devices are based on the transport of chemicals from the main
blood stream in the arteries through a porous membrane (Discacciati and
Quarteroni, 2009); flow through oil filters (Iliev and Laptev, 2004); flow
between porous fiber tows (Ryol Hwang and Advani, 2010), etc.

Another example is the fluid flow in fractures. Naturally fractured geolog-
ical formations, such as carbonate reservoirs, are estimated to hold more than
60% of the world’s proven oil reserves and 40% of the world’s gas reserves,
and contain fractures that range from microscopic fissures to kilometer-wide
collections (Ahmed et al., 2006). Figure 1.1 shows some examples of fractures
at different scales (Guerriero et al., 2013).

Besides naturally fractured geological formations, most geothermal re-
sources occur in rocks that lack fracture permeability and fluid circulation,
creating the so-called enhanced geothermal systems concept (EGS), which
aims to create permeability through hydraulic stimulation or fracturing in
order to activate existing rock fractures or create new ones (Pruess, 2006).

Hydraulic fracturing is also widely accepted and applied to improve the
gas recovery in unconventional reservoirs - which include those with very low
permeability, complicated geological settings and in-situ stress field etc - e.g.,
shale gas, tight gas and coal seam gas (Li et al., 2015).

That said, fractures play a major role in flow and transport, as they create
complex paths for fluid movement, impacting reservoir characterization and,
ultimately, production performance and total recovery; Therefore, they need
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Figure 1.1: Examples of fractures at different scales

to be accounted for properly through adequate modelling.

One area of application of fluid flow modelling in fractures is the reser-
voir simulation of fractured petroleum reservoirs. The unexpected produc-
tion behaviour of many fractured reservoirs emphasizes the need for better
characterizing the fractures at various scales (Sarkar et al., 2004).



1.2 Modelling coupled free and porous media
flow

Challenges in modelling flow in fractured reservoirs include (Iliev and Laptev,
2004)

e choice of an adequate mathematical model for the flow in each subre-
gion

e Imposing proper interface conditions between the porous and fracture
media

e cfficient numerical method for field-scale simulations

All numerical algorithms for solving the coupled system of free fluid and
porous media can be traditionally classified into two groups of methods: (1)
two-domain and (2) single-domain approaches.

1.2.1 Two-domain approaches

The first group of methods uses different equations in different subdomains,
e.g., the (Navier—)Stokes equation in the channel region and the Darcy /Brinkman
model in the porous zones. These equations are coupled through suitable in-
terface conditions, e.g., the well-known Beavers-Joseph empirical slip-flow
condition, and that proposed by Le Bars and Worster, where the Stokes
equation still applies down to a depth § (fig. 1.2) (Le Bars and Worster,
2006).

The advantage of this approach is that one can use existing algorithms
and software for solving (Navier—)Stokes equations and porous media flows.
However, the disadvantage of the two—domain approach lies in coupling the
conservation equations in both regions through the use of appropriate bound-
ary conditions at the interface (Ehrhardt, 2000).

Figure 1.3 shows the different models used in free flow/porous media
coupling problem.

Coupled (Navier-)Stokes/Darcy equations

This is the most common yet mathematically most difficult case, since Darcy
and Navier-Stokes/Stokes equations are completely different systems of PDE
and need different number of interface conditions (Iliev and Laptev, 2004).

3



Le Bars & Worster
(2008)

Beavers & Joseph
(1967)

Darcy-Brinkman

Figure 1.2: Example of boundary conditions between free flow and porous
media

Coupled (Navier-)Stokes/Brinkman equations

In this case, the equations in the porous media (Brinkman) and in the channel
region (Navier-Stokes/Stokes) are of the same type. The two most common
types of coupling conditions that can be found in the literature are the conti-
nuity of velocity and continuity of the normal component of the stress tensor
(Lliev and Laptev, 2004).

1.2.2 Single-domain approaches

The second group consists of those algorithms, which solely uses one system of
equations in the whole domain (Navier—Stokes—Brinkman system) obtaining
the transition between both fluid and porous regions through continuous
spatial variations of properties (Ehrhardt, 2000).

The advantage of this approach is that it avoids the explicit formulation
of boundary conditions at the fluid/porous interface, since velocity and stress
continuity across the interface are readily satisfied.

Pore-scale modelling

In this approach, often referred to as direct numerical simulation (DNS)
or pore-scale approach, the porous medium is represented as a connected
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Figure 1.3: Different ansatzes to model and to couple the problems in the
free flow region with porous media

domain of pore space filled with the fluid and the flow is governed by Navier-
Stokes/Stokes equations, as illustrated in Fig. 1.4. There is no need for
coupling conditions, since the same model is valid in the whole computa-
tional domain. Although this approach is physically correct and useful for
theoretical purposes, it is not feasible for real-field porous media since it
would need an unrealistic amount of CPU time and memory resources (Iliev
and Laptev, 2004).

Darcy model

Darcy’s law provides a linear relationship between pressure gradient and flow
rate, where the fluid flow unknowns are averaged quantities. There is no
macroscopic shear term associated with this equation, which, implemented
all over the free flow/porous domain, has the profile depicted in Fig. 1.3.

Brinkman equation in the whole domain

This approach is a reformulation of the model described above, so that a
single system of PDEs is governing the flow in the free flow and porous media
domains. The coefficients vary such that it reduces to Stokes equations in
the free flow region, and to Brinkman in the porous media (Iliev and Laptev,



Figure 1.4: Direct modelling or pore-scale approach where the solid is explic-
itly represented

2004). This model is reviewed later in more detail.

1.3 Parallel plate model and cubic law

The simplest model of flow through a rock fracture is the so-called parallel
plate model, in which the fracture is assumed to be bounded by two smooth
plates with a constant distance from each other. This is the only geometrical
model which allows an exact solution to be found, and it yields the so-
called “cubic law” — which relates the hydraulic conductivity to the fracture
aperture.

The main deviations from the cubic law comes from the fact that real rock
fractures have rough walls, and, hence, have variable apertures (Fig. 1.5).
Furthermore, there are usually regions where the two opposing faces of the
fracture wall are in contact with each other, effectively reducing the aperture
to zero and leading to the partial obstruction of the flow (Zimmerman and
Bodvarsson, 1996).



Figure 1.5: Scheme of real rock fracture, with wall roughness and variable
aperture

For a Poiseuille flow between parallel plates (Fig. 1.6), which assumes an
incompressible and Newtonian fluid, the average velocity in the x-direction
reads (McKinley, 2013)

dP H?
Unvg = —%@, (1.1)
/’I/I/Hi/////’/f___r_
[ -
[ e
[ Y
L uly) N H
Y i '}
| !
i !,,?
S T T S S

Figure 1.6: Velocity profile of a Poiseuille low between parallel plates

The velocity profile u(y) can be reconstructed through
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When Eq. (1.1) is compared with the 1D Darcy velocity,

dP H? dP k

_ - 1.3
dxr 12p dr p’ (13)
the permeability of a fracture can be identified as
HQ
ke = —. 1.4
=1 (1.4)

The cubic law relates the fracture transmissivity T to its aperture hy,
and reads (Zimmerman and Bodvarsson, 1996)

3
whf

T =ktA=—="
f f 12’

(1.5)

where A is the cross-sectional area why.

1.4 Objective of this study

Despite the assumption of an overly simplified fracture geometry, the parallel
plate model is still widely used in subsurface flow modelling (Zimmerman and
Bodvarsson, 1996). Hence, this study aims to verify the range of validity of
the LCL, i.e., for which reservoir and flow conditions this model is reasonable
— under a certain tolerance.

1.5 Methods

Since real reservoirs are large-scale, structurally complex and heterogeneous,
it is reasonable to assume certain hypothesis as to obtain a simplified reservoir
model, as shown in Fig.1.7. The fracture is represented by a channel bounded



by porous media regions which resembles the parallel plate model discussed
in section 1.3.

Porous matrix

Fracture

Jpe— - 1 o o

Figure 1.7: Fracture/free flow domain represented by the parallel plate model

The following assumptions are made:

10.

. Steady flow

Fully developed flow (no entrance effect, boundary layers are fully de-
veloped)

Incompressible flow (p = constant)

. Newtonian fluid (u = constant)

Single phase flow

- M= Meff

Permeability k£ = k(y), with binary values depending on free flow or
porous flow regions

. Viscous effects are dominant (Re << 1)

No flow or variation of properties in the z direction, with v, = 0 and

9/9z =0 (2D flow)

Rectangular and symmetric control volume

9



The assumption of incompressibility is acceptable for liquids (e.g. water,
gas-free oil) under typical subsurface conditions. The compressibility effect
is important for transient problems, since it contributes to the storativity of
the rock/fluid system. It is also reasonable to assume slow, laminar flow in
most subsurface situations, which yields Re << 1, meaning inertial terms are
negligible compared to viscous terms (Zimmerman and Bodvarsson, 1996).

Figure 1.8 illustrates the symmetrical half domain shown in Fig. 1.7,
which has dimensions (L,,L,,1) and consists of two sub-domains:

e a free flow region with permeability k¢ and height corresponding to
a variable half aperture h; and

e a porous media region with permeability k,, and height L, — hy.

Free Flow hy

Porous Media

0oy -

L,

Figure 1.8: Problem setup
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Chapter 2

Mathematical model

2.1 Governing equations

2.1.1 Free flow region

The flow in the free flow region is thus described by the incompressible Stokes
“creeping flow” equations, which is a simplification of the Navier-Stokes equa-
tions for low fluid velocities, when the inertial forces are negligible compared
to the viscous forces and the convective non-linear term (u - V)u can be ne-
glected. Together with the continuity equation derived from mass balance,
they read

V3 = Vp
T.ouzo (2.1)

2.1.2 Porous region

An incompressible flow in porous media is described by the Darcy model,
which reads, for a source term equal zero,

k
u=——Vp
0 (2.2)

V-u=0

The Brinkman’s extension of Darcy’s law is mathematically and physi-
cally preferable to Darcy’s law when examining boundary layer effects or to
account for the high porosity of the porous media. By virtue of the macro-
scopic shear term it contains, the Brinkman formulation is fully compatible
with the existence of boundary layer regions in the porous region (Neale and

11



Nader, 1974). Figure 1.3 illustrates how the Brinkman formulation, contrary
to Darcy’s, is able to capture and model boundary layer effects in the porous
media.

—petVu + K u+ Vp =0

Heff H p (2.3)

V-u=0

Here, K is the permeability tensor, which reads, for a homogeneous
isotropic medium,

b

)

and g is the so-called effective viscosity of the fluid, which depends on
the properties of the porous medium and can vary with relation to p. Such
effect is commonly attributed to tortuosity and porosity; it is, however, often
and reasonably assumed that p = pieg.

2.2 Reformulated problem

Having chosen the Brinkman model in the whole domain discussed in 1.2.2
and aiming to study the coupled fluid flow behaviour, one must solve three
equations for three unknown variables: pressure and the two components of
a 2D velocity field.

From the assumption that p.; = ¢ and rearranging equation (2.3), pres-
sure equation can be obtained by applying the divergence operator on the
momentum balance,

V. l_w?u +u+ va] =0,

k
V- (=kVu)+V - -u+V- (w) =0.
\V-/ [’[’



From the continuity equation, V - u = 0. Rewriting, the pressure equation
becomes, in vectorial and component form,

% (—5Vp> =V - (—kV?u), (2.4a)
2 2 2 2
O (RO0\_ D (Kop\ _ 9 (Pu PN 0 (5 0
Oxr \puox) Oy \udy Ox \ Ox? 0y? oy \ 0z? 0y?
(2.4Dh)

The flow field is determined by the solution of the momentum balance
equations in the x and y directions, that reads, in vectorial and component
form,

—uVu + %u = —Vp, (2.5a)
Pu,  O%uy 1 op
D*u,  0?uy L op
- P 9.
u(@ﬁ + ay? > + Uy dy (2.5¢)

The single domain approach is formulated such that it perceives the dif-
ferent subdomains by varying the medium parameters, reducing the main
Stokes-Brinkman equation to either Stokes-like model in the free flow region,
or Darcy-like model in the porous media:

D
— e VU +u K tu + Vp = 0. (2.6)

13



Defining the parameters a and [,

L — D
a:Vg u+pu + I@I = 0. (2.7)
S S

When permeability K >> 1, the term [ becomes negligible, and Eq.
(2.7) assumes the Stokes form (Eq. (2.1)).

Otherwise, when permeability is K << 1, the term o becomes negligible
close to «, and (2.7) assumes the Darcy’s model form (Eq. (2.2)).

(2.8)

a> [, Stokes
a << B, Darcy

2.3 Boundary conditions

The problem is governed by a set of second-order elliptic PDE’s which thus
requires boundary conditions over its entire boundary.

dp  pW —pE
dr L, N

1

dp dp
2. —(x=0)= —(x =1L
dx (z=0) dx (@ )

5. T

oy

At the axis of symmetry y = Ly, u, reaches its maximum value and the
Oou,

0y

= 0. The same condition is

viscous stress its minimum value, 7 =

14



applied at the south boundary, where the flow is Darcy-like and there are no
shear terms.

At the north (y = L,) and south (y = 0) domain’s boundaries, the no-flow
condition along the x-axis yields

ou 0%u
u,(y=0,L,) =0 = - =0 = > = 0.
Ox y=0.1, Ox y=0.1,
While the minimum stress condition yields
O, 9%u, 0*u
=0 =0 = Eq.(3.1) 3 =0.
8y y=0,L, 8x8y y=0,Ly ayQ y=0,L,
Substituting the above in Eq. (2.5¢),
0
o =0,
Yly—o.r,
Which, for porous bottom face, is consistent with no-flow vertical (sealing)
boundary condition.
At the west (z = 0) and east (r = L,) domain’s boundaries, where the
velocity field only has its horizontal component u = u,,
ou 0%u
uy(r =0,L;) =0 - 0 5 =0
8y r=0,L, ay r=0,L,
— = Ot 0= Ou
Eq.(3.1) =
ax x=0,L, 81:2 x=0,L,

Applying 0/0z to Eq. (2.5b) and substituting the above,

15
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Fow \ 022 oy? ox \k *)  0ox\ox)’
0 0 0

B 83%_ 0 (0Ou LB o __82])

W M@yQ x k\Ox ]  0x%

Pp
0x?

=0.
x=0,L,

The above says that, as long as k = k(y), pressure gradient is constant
on the west and east boundaries.

u, =0,7=0

~~~~~~~~ R S R
Free Flow

pW, u, =0 pE, u, =0

Porous Media

oo A S S

uy, =0,7=0

Figure 2.1: Scheme of boundary conditions on domain
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Chapter 3
Solution strategy

3.1 Finite-Volume discretisation

The finite-volume discretisation scheme guarantees the conservation of rele-
vant properties for each finite size cell, which makes this method attractive
for engineering purposes.

The numerical algorithm consists of the following steps:

1. Integration of the governing equations of fluid flow over all the domain’s
control volumes and applying Gauss’ divergence theorem

2. Discretisation of the governing equations into a system of algebraic
equations

3. Solution of the algebraic equations by an iterative method

The domain represented in figure 1.8 is discretised into a (NN, N,) grid
with finite control volumes, where ¥ = AxAyAz, and Az = 1. The pressure
grid (fig 3.1) is built such that pressure is cell-centered, and velocity is on
the interfaces (3.1).

The velocity grid is built such that velocity is cell-centered, with the pres-
sure nodes on the corners. This so-called staggered grid avoids unrealistic /non-
physical behaviour from oscillating pressure fields, besides not requiring in-
terpolations to calculate velocities, since they are exactly where they are
required for scalar transport (Versteeg and Malalasekera, 2007).

Figures 3.2 and 3.3 depict the staggered grids for velocity in the x and y
direction, respectively.

17



Figure 3.1: Representation of pressure-centered grid

| | |

5 I I

Figure 3.2: Velocity staggered
grid in x direction
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3.1.1 Continuity equation

Figure 3.4 represents the flux across control volume ABCD.

[ ] [ ] [ ]
Ui, 41
B—1 e
Ut j Uig1,;
° —_ ° — o
T(l,,'uj
AT
[ ] [ ] [ ]

Figure 3.4: ABCD control volume for mass balance on cell i,j

The 2D continuity equation for an incompressible fluid derived from mass
balance reads

_ e, Oy

Vo 8$+8y

—0. (3.1)

Integrating and discretising Eq. (3.1) over the faces of ABCD,

/ (u)n ~ —u?,|AB|, (3.2a)
AB

/ (u)n ~ ul ;| BC, (3.2b)
BC

[wn =z, D) (3.2¢)
CD
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/(u)n ~ —u!,| DA

DA

Summing up the set of equations (3.2),

Ay(ufﬂrl’j — uf]) + Am(u%”ﬁrl — uf]) =0.

3.1.2 Pressure equation

(3.2d)

(3.3)

The pressure equation described in Eq. (2.4a) is discretised in steps, be-
ginning with its LHS. A mobility parameter A = k/pu is defined, which is

harmonically averaged on the cell interfaces.
Applying the divergence theorem results in

/Vv.(—Avp)du:/av(—wp)-ﬁds.

Pij+1
[ ] [ ] [ ]
A3j+1
n fal
D \ )

[ ] [ ] [ ]
Pi—1,5 Dij Piv1,5
A IR
ey 1J
2
2V}

[ ] [ ] [ ]
Dij—

Figure 3.5: ABCD control volume for pressure-centered grid
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Integrating and discretising Eq. (3.4) over the control cell ABCD shown
in fig 3.5,

The integrals are approximated using discrete variables. The integral over
the faces of ABCD and the volumetric integral gives

z Pij —Pi-1j

Aé(—)\Vp)n ~ {AMJMJ AB|, (3.50)
/ (—AVp)n ~ Agﬁf% 1B, (3.5b)
BC - Y -

/ (~AVp)n (X, BB oDy, (3.5¢)
CD ) * .

/(—)\Vp)n ~ lAng] IDA. (3.5d)
DA Ay

Summing up the set of equations (3.5),

A Ay XAy
g:c (pij — Pi-1,5) + zj(pi,j — Pit1)+
—— ——
e T
(3.6)
N Az N o Ax
Y s S ) = RHS.
+ Ay (pz,j pz,j—l) + Ay (pz,j pz,]-f—l)
TY . TY .
1, 7,7+1
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The transmissibility coefficient T, which contains mobility and dimension

parameters, when multiplied by the pressure difference between grid blocks,
yields flow rate.

Following the same procedure for the RHS of Eq. (2.4a),

/VV-(—kV2u)dv:/av(—k:V2u)~ﬁds, (3.7)

Tui.j+2

Wi, j+1 Uit1,5+1
° _— ° _— °
Pij+1
Uil-1,5+1 Ui, 41 Ui41,5H41
J n fal
| | 7o
Wil Ut Uit1, Uit2,j
> ° > o > o —
Pi—1,j5 Di,j Pi+1,5
Ui—1,5 Us Wit1,5
- A IR
| | 7
U, 5—1 Uit1,5-1
[ ] ——) [ __> °
Pij—1
Tu,,j,l

Figure 3.6: ABCD control volume for pressure-centered grid with the respec-
tive velocities
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f«kl,] uz uy i
~ k:j:] v J i, Aqf;fl J uivj‘*‘liu%] 17:,.77 f]'—l
7 A + Ay Ay
; A 4B,
(3.8a)
) 2
/(—kV u)n = —k [8 by | Oy
2
. Ox Jy?
BC
u? v
it 141 % u =y
o i+l Y41 %1 Lira T
Kiji Az S R ST L -
Az + ’ =
5 BC
(3.8b)
2
/(—k:VQU)n _ |t Pt
A 0x? 0y?
CD
Ui i~ Yit1,) ug i
~ __ T 2 g Yig1,; % Yi,j41 U i
~ 7,+1:_] Ax ij - +1’]+A1 uz+1Yj - Ui+17j_Uf+1 =
Az + ’ =
A; cD|
(3.8¢)
2
/(—kVQu)n —k [a iy | O,
2
o Ox ay?
DA
u? o —u?
i1, u? — U
- k%’ AJ;,; i Y Auifl,j u?,j+1_uw ufj—uy_ 1
’ . > ] —
; A + Ay Ay
- Ay |DA|.
(3.8d)
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Finally, Eq. (3.9) is the discretised form of the pressure equation (Eq.
(2.4a)), valid for a general cell (7, j) excluding the boundaries, which will be
discussed later.

Tfj(pz’,j - pifl,j) + ﬂﬁl,j(pi,j - P¢+1,j) + E%j(pi,j - pi,jfl) + Tiz,/j+1(pi,j - pi,j+1) =

X 1 X X X 1 X X X ]

=k Ay [Axg (wipy; —2ui; +ui ;) + A (uijyr —2ui; +ui; )|+
1 1

—ki i Az lw<u%’—l,j+l —2uf ;o Fufy )+ Tyg(uzyj —2ui ;o )|+

1
=k jAy [M(uf+27j —2ujy g ug) + Tyg(uf—&-l,j—&-l = 2ufy g ug )|

1 1

(3.9)
A matrix A of transmissibilities is assembled, in order to solve the linear
system for pressure Ap = ¢, i.e.

Dij—

Di—1,5
_7—1;’/‘7 T _7—;?] Z T _1—’1/:3-1,] cer _7;%]_1’_1 o pZ,‘] = RHS

A p

The right-hand side (RHS) of the pressure equation is composed by the
known velocities from the previous numerical iteration, and, at the boundary
cells, also by the prescribed pressure gradient.
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3.1.3 Momentum balance equations

The momentum balance equations (2.5b) and (2.5¢) are discretised over the
staggered velocity grids shown in figure (3.2) and (3.3).
Equation 2.5a is rearranged and an auxiliary vector w is introduced,

—V - (uVu— pe) + Hu =0, (3.10)
pvupe Ty

w

where e is a unitary vector.
Equation (3.10) is then integrated over an assigned control volume ABCD
in order to obtain a discretised equation for u, and wu,.

- / wn + / tu =0 (3.11)
O0ABCD ABCD

Velocity in x-direction (u,)

In this section, the subscript z is dropped for simplicity matters (u, = u).
Resolving Eq. (3.11) over the ABCD control volume (fig 3.7) in order to
obtain a discretised equation for a general velocity uy ;:

U, 541
° —_ °
n fa
D \
/U/ifila.j u 7.7 u’LJf’ld
— — ° —_
Dit1, Dij
A n
gV D
U, 51
° —_— °

Figure 3.7: ABCD control volume for u, velocity staggered grid
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The integrals are approximated using discrete variables. The integral over
the faces of ABCD and the volumetric integral gives us

Wi 5 — Uj—1.4
/wn ~ {uﬂmlﬂ —pz-_m} |AB|, (3.12a)
AB
/wn ~ [M“J_A“J“} IBC, (3.12b)
BC y
[ [T oD, (3.12¢)
CD
/wn% V‘J—A““] IDA|, (3.12d)
DA y
AzAyA
/ —U R U x)\:py' : (3.12¢)
ABCD b

Finally, summing up the interface and volumetric integrals, the discretised

equation for the momentum balance in x-direction reads, for a general uy ;,

—pa wig1 —pa”t w4+ 2u(a+a )] iy —paT uig —pa g =
Ay pic1j — Ay pij. (3.13)

Where a = Az/Ay and b = AzAyAz.
Equation (3.13) is a linear system of the form A*u, = ¢, where

—pa, J=I+(N,+1)
A7, =< —pa™t, J=1+1 (3.14)
AL+ 2u(a +at), J=1
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Velocity in y-direction (u,)

Once again, the subscript y is dropped for simplicity matters (u, = u).
Similarly, Eq. (3.11) is resolved for the ABCD control volume shown in fig

3.8 to obtain a discretised equation for U?,j:

TUij+1
|
e B Di.j C e
'I/fl.jT‘ TU/.J' TUI‘H;
.« A DPij—1 D .
T

‘ Us j—1

Figure 3.8: ABCD control volume for u, velocity staggered grid

[wn= W”‘A:f—”] IAB|, (3.152)
AB
/ wn [MUJ‘A;”“ - pz-,j] IBC, (3.15b)

BC

/wn ~ [M“J_AZ*“ CD|, (3.15¢)
CD
Wi — Wi
/ wn ~ [M]Ay“ +pm-_11 |DA|, (3.15d)

DA
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AxzAyA
/ P~ fo : (3.15¢)
ABCD bJ

Summing up 3.15, the discretised equation for the momentum balance in

x-direction reads, for a general u! i

—pa vy —pa”t uiyy + AT+ 2p(a+a7)] wiy —paT vy —pa wigen =
Az Pij—1 — Ax Dij- (316)

Equation (3.16) is a linear system of the form A¥u, = ¢,, where

—pa, J=1+(N,+1)
AYy =1 —pat, J=1+1 (3.17)
DAL+ 2u(a +at), J=1

3.1.4 Implementation of boundary conditions

Equations (3.9), (3.13) and (3.16) describe the velocity and pressure fields
for the overall domain. These equations are modified at domain’s boundaries
to incorporate the prescribed boundary conditions.

Pressure equation

At the west and east domain’s boundaries pressure is prescribed. At the north
and south boundaries, where no-flow condition is prescribed, the pressure
gradients will be zero, i.e.,

0 -
dp

/(—Wp)n% A?,mjd: L,)| |BC|, (3.18)

BC,N Y

0 7

d
/ (—AVp)n ~ Agﬁ%: 0)| |DA. (3.19)
DA,S Y
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Momentum balance in x-direction

For the domain’s west boundary (i = 1), half a control cell is used, with vol-
ume ¥ = (Az/2)AyAz. For these cells, the boundary conditions discussed
in sec. 2.3 modify the volumetric and surface integrals on AB, BC and DA,
with CD remaining the same:

0

duy
/ wn ~ M%—pw 1AB], (3.20a)
AB,W
i — Uiy BC
wn & l,uud Au ’JH] | 5 |, (3.20b)
BOW Y
wn & {M“]_AZ*“ +pm} |CD, (3.20¢)
cDW
i 1,]— DA
wn & [,uu J Au ] 1] | 5 |, (3.20d)
DAW 4
1 AxAyAz
ABCD,W J

Summing up the set of egs. (3.20), the discretised equation for the mo-
mentum balance in x-direction for u; ; reads

+M(a+a_l)l wij —pa”t Uit g Uil =

= Ay pw — Ay p;;. (3.21)

—pa bA
g Mg *[ 2

Likewise, for the east boundary (i = N, + 1), the volumetric and surface

29



integrals on BC, CD and DA are modified, and AB remains the same:

Wi 5 — Uj—1.4
AB,E
wn ~ lu“’ﬂ A“ ’J“l | > 3 (3.22b)
BC,E y
0
g
/ wn & u%%—pbﬂ |CD|, (3.22¢)
CD,E
i 1,5 — DA
wn ~ [M“ ] A“ J 1] | ; ] (3.22d)
DA,E Y
1 AzAyAz
ABCD,E 7

Summing up the set of equations (3.22), the discretised equation for the
momentum balance in x-direction for uy, 1 ; reads

-1
2
=Aypi_1; — Ay pg. (3.23)

2

_ —ua
+ua+a)| uy Tﬂ Ui g1 =

-1
Uij—1 —Ha@ = U1, +[

For the domain’s north and south boundaries, the integrals over the BC
and DA interfaces are respectively modified.
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wn~ |12 1Boy (3.24)
dy
BC,N .
0
- o
/ wn ~ uaa% IDA| (3.25)
DA,S Y

Momentum balance in y-direction

A Dirichlet boundary condition w, = 0 is prescribed at all boundaries. There
is, thus, no need to solve for u, at the north and south boundaries. For the
west and east boundaries, the integrals on faces AB and CD are respectively

modified.

| wiy — ugke=0]
wn ~ [M A ] |AB] (3.26)
AB,W
0
| uiy —ufe =L,
wn /& [,u Auj2 |C'D| (3.27)
BC,E
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3.2

Fully coupled approach

The fully coupled approach solves both the momentum balance equations and
the continuity equation simultaneously, dismissing the need for a pressure

equation.

The set of equations (2.3) in for a 2D flow field reads

o
o

0%,

0x?

2
0%u,

0x?

9%u, 1 dp
Pe + 22 = 2
+ Iy ) + kux—l— o 0, (3.28a)
D*uy\ dp
= = = .28b
+8y2>+kuy+8y 0, (3.28Db)
Ou, — Ouy
— = 0. 2
5ty =0 (3.28¢)
Ay, ) Uy
Ay, ) uy,| = |RHS
X
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3.3 Sequentially coupled approach

The sequential coupling algorithm is essentially a guess-and-correct proce-
dure which solves for the pressure and velocity fields sequentially in an iter-
ative fashion.

The algorithm is initiated with a guessed velocity field u = u* to solve
Eq. (2.4), which yields a pressure field p’. The latter is then used to solve
Eq. (2.5), yielding a new velocity field «'. If the solution has not yet con-
verged, the loop restarts with an initial velocity field which corresponds to
the solution of the previous iteration, u* = u/. Likewise, the pressure field
from the previous iteration is stored as p* = p'.

e

u,p

Solve pressure equation

k
V. <—qu'> = V- (—kV2u)

/

p

Set u* = u
" , Solve momentum balance

_,UVQU, + %u/ —_ —Vp’

Converged?

no

yes
E Stop }
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3.3.1 Convergence criteria

The criteria used to determine whether convergence has been achieved is
based on residual values, which quantifies the local imbalance of a conserved
variable in each control volume.

Recalling that the linear system for which the pressure is being solved is
of the form Ap = ¢, The residual value at iteration v for pressure is calculated
as

R’ =q. — Ap”. (3.29)

p
Likewise, the residual value for velocity is
Rl/

u

=q — Au"t (3.30)

At each iteration, egs. (3.29) and (3.30) are calculated at each control
cell, and convergence is achieved when the infinite norm of both residual
vectors are smaller than a stipulated tolerance (Eq. (3.31)).

IRl < tol A ||Rulloc < tol (3.31)
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Chapter 4
Numerical results

Numerical results are presented in this chapter. First, the code is validated
and consistency of the discretisation scheme is checked. This is done by sim-
ulating Stokes-Brinkman in pure free flow and comparing it against the ana-
lytical Stokes solution. Then, the sequentially coupled algorithm is compared
against the fully coupled approach. Finally, the Stokes-Brinkman model re-
sults for different fracture apertures, permeability contrasts and grid sizes are
presented. These results are then compared against the Darcy-Darcy model.

4.1 Stokes flow: code validation and consis-
tency study

A 2D domain, as shown in Fig. 4.1, is considered. The whole domain is set
to be a pure free flow region - i.e., no porous medium is present. Thus, the
Stokes-Brinkman solution should coincide with the analytical solution to the
Stokes equation. The simulation parameters are presented in table 4.1.

Free Flow

no slip

Figure 4.1: Pure free flow domain
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Ap Lx Ly hf Nx Ny k}ff

1 1 1 1 10 1280 10°—10°

Table 4.1: Parameters for pure Stokes flow

4.1.1 Choice of permeability in the free flow region

In this case, the permeability of the free flow region ks is varied. Figure 4.2

presents the infinite norm of the error of the Stokes-Brinkman solution with

respect to the analytical Stokes solution, against k¢, in a log-log scale.
Figure 4.3 illustrates two data points from the previous plot.

1071
1072

1073

Hum _uanHoo

10~

107°

bl vl vl vl ol

10_6 Bl vl e e v
10 10' 10* 10 10* 10°
Permeability (ksr)

Figure 4.2: Infinite norm of the error vs. permeability in free flow region

Recalling Eq. (2.7), @ >> [ must hold so that the latter can become
negligible for this equation to assume the Stokes form.

Figure 4.3a illustrates the case when the value of ks is not large enough
and there is still influence of the term f.

Figure 4.3b shows the case where, using a larger ks value, the solution
is much closer to the analytical solution, i.e., its behaviour is a better match
for the expected Stokes solution.
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Ux profile - pure free flow, k = 1

Ux profile - pure free flow, k . = 10°

) 1
1
09 / / 09k
/
08 / osl
07} / 07l
061 / L 06
-
Zos5r / Z05F
0.4 i 0.4
03f // - 03t
02t L 1 02r |
01 //4/, ’ — Stokes-Brinkman | | 01Fb — Stokes-Brinkman | |
. 4{3 . —-—- Stokes . —-—- Stokes
0 < L L L L L L L L L 0 L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
Ux Ux
5
(a) kpy =1 (b) kyy =10

Figure 4.3: Velocity profiles for pure free flow

4.1.2 Consistency of the discretisation scheme

Since the exact solution to the Stokes problem is known, consistency can be
checked. Figure 4.4 shows the log-log plot of the infinite norm of the error
as a function of the grid cell size in the y direction, Ay. The system is found
to be second order accurate, which is in accordance with the second order
spatial discretisation scheme.

1072

1073

10~*

||uw _uan”oo

107°

107°

1072

Ay

1071

Figure 4.4: Infinite norm of the error vs. grid cell size Ay
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4.2 Sequentially coupled vs. Fully coupled
approach

In this section, the sequentially coupled algorithm presented in section 3.3
is verified against the fully coupled approach shown in section 3.2, which is
taken as reference.

The pressure profiles obtained for the fully coupled and sequential cou-
pling are shown on figs. 4.5a and 4.5b, respectively.

Pressure - fully coupled Pressure - sequential coupling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
Lx Lx

(a) Fully coupled (b) Sequential coupling
Figure 4.5: Pressure profiles
The results obtained through both approaches are in perfect agreement.

In the sequential coupling, the solution converges after one iteration, as the
initial guess for the velocity field u* = 0 is correct. Recalling Eq. (2.4b),

o |, 0%u 0% o | 0%u 0%u

LHS = —— | bk——+k— | — — | b-Z+k—2

ox 0x? + Oy? dy 0x? + 0y?

—_— — —_ —

(1] 2] (3] [4]
The constant pressure gradient yields # = 0 and u, = 0, and perme-
x
0

ability k = k(y) results in — = 0. For this reason, the initial and final

ox

pressure profiles are the same.
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On a hypothetical scenario where k = k(x) and the same sharp interface

Uz # 0 and the final result would

show an unrealistic peak on pressure. The same applies for the original k =
k(y) but with an applied pressure gradient along the y-direction since this
results in u, # 0. Consequently, [4] would be non zero and the pressure
gradient would no longer be constant.

Figure 4.6 presents the velocity profiles u, for both coupling approaches,
for different apertures and permeability contrasts.

between free flow /porous media is kept,

Ux profile - aperture: 0.5 Ux profile - aperture: 0.25
1 : : / 1 : : : : :
0.9 Vs 1 09
08 1 08
0.7 [ _— 1 0.7 B
06 e - 06 /
Josp ' E Zo05f

0.4( | oaf
0.3 1 03
0.2 1 02F 4
0.1 Sequential coupling | | 01F Sequential coupling | |
’ Fully coupled : Fully coupled

0 I ! 0 . . . . . ! ! !

0 0.05 0.1 0.15 0 0005 001 0015 002 0025 003 0.035 0.04 0.045

Ux Ux
- =107 (b) g = 1/4, kym kg = 107!
(a) hy = 1/2, kpm/kss =10 b) ht = 1/4, kpm/kss = 10

Figure 4.6: Velocity profiles for the sequentially and fully coupled approaches

4.3 Stokes-Brinkman model vs Darcy-Darcy
model

The test cases present the sequential coupling results of velocity in x-direction
(ugz), which is the solution to the discretised momentum balance presented
in Eq. (3.13) with the respective boundary conditions.

The numerical solution, which corresponds to the Stokes-Brinkman ap-
proach, is compared against the analytical Darcy-Darcy approach, where flow
in both free flow and porous media is governed by Darcy’s law (Eq. (2.2)).

Permeability in the free flow is geometrically related to aperture as de-
scribed in Eq. (1.4), and permeability in the porous media is the result of
an applied contrast v, where k,,, = vk
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Ultimately, the Darcy-Darcy approach is to be compared with the Stokes-
Brinkman simulated velocity profile and verify, under a stipulated tolerance,

the range of validity of Eq. (1.5).
This comparison is done in two manners:

1. qualitatively, through the comparison between the Stokes-Brinkman
computed velocity profile and the reconstructed velocity profile plot-
ted from Eq. (1.2), corresponding to the Darcy-Darcy approach, and

observing how the two curves fit;

2. quantitatively, by calculating the normalized difference €, between the
averaged Stokes-Brinkman velocity profile U, and the Darcy-Darcy ve-

locity u,, in the whole domain.

Table 4.2 shows the parameters used for the simulations.

Ap Lm Ly Nx kff

1 1 1 10 10°

Table 4.2: Fixed parameters

(4.1)

Since k = k(y), i.e., the value of permeability is constant along the x
direction, a high resolution in the x direction is not necessary, thus, N, is

kept to a low, constant value.

Fracture aperture is equal to the factor hy multiplied by the domain’s
length in the y direction L,, but for simplicity matters, since L, = 1, the

fracture aperture is referred simply as hy.
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The assigned permeability of free flow, ks¢, is set to a value high enough
to represent an infinitely permeable porous media, so that it mimics a free
flow region.

4.3.1 Sensitivity to permeability contrast

The permeability ratio v = kyp/ky = 12k,n /h} is varied for different aper-
ture sizes, as shown in Fig. 4.7. The remaining parameters are fixed accord-
ing to table 4.2, and Ny = 1280.

Free Flow

Porous Media

P A A

Figure 4.7: Varying aperture setup

Figure 4.8 shows the relationship between the normalized difference and
permeability ratio. For each curve representing an aperture size, each value
of v corresponds to a different value of k,,,. Thus, an increasing contrast
implies the same free flow permeability, but lower matrix permeability.

Figure 4.8 shows that there is a threshold of v ~ 10~ below which
the difference between the Stokes-Brinkman and Darcy-Darcy solutions is
negligible.

Figures 4.9 - 4.11 show the influence of permeability contrast for varying
apertures hy = 1/2, hy =1/4 and hy = 1/8.
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Normalized differnece (e)
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10—+
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Figure 4.8: Normalized difference versus permeability ratio
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Ux profile - aperture: 0.5, k pr“/k": 1e-02

Ux profile (avg) - aperture: 0.5, k pm/kﬁ: 1e-02
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Figure 4.9: Velocity profiles for varying apertures and fixed v = 1072
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Ux profile - aperture: 0.5, k pr“/k": 1e-04

Ux profile (avg) - aperture: 0.5, k pm/kﬁ: 1e-04
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Figure 4.10: Velocity profiles for varying apertures and fixed v = 10~%
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Ux profile - aperture: 0.5, k pr“/k": 1e-08

Ux profile (avg) - aperture: 0.5, k Im/k": 1e-08
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Figure 4.11: Velocity profiles for varying apertures and fixed v = 1078
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4.3.2 Sensitivity to resolution

The number of grid cells in the free flow region (N,,) decreases for a decreas-
ing aperture size, as represented in Fig. 4.12. Thus, for a fixed resolution
N,, as aperture decreases, the normalized difference increases as an impact
of loss of resolution.

N,
Nyf Yy
A A A A A DA A A A e

(a) Ny =4, hy =05, N, =2

(b) Ny =4, hy = 0.25, N, = 1

Figure 4.12: Change of aperture hy with constant N,

For a fixed resolution N, in the fracture, the aperture and total resolution
N, varies such that N,, = Nyh; = constant, as represented by Fig. 4.13.

N Nyf
yf
P A A S A A N A A

(a) Ny =4, hy =0.5, Ny, =2

(b) Ny =8, hy = 0.25, N, = 2

Figure 4.13: Change of aperture hy with constant N,

Figure 4.14 shows that as long as the resolution N, is kept fixed, the
normalized difference is the same for any fracture aperture.



Figures 4.15 - 4.17 show the influence of permeability contrast for fixed
apertures hy = 1/2, hy = 1/4 and hy = 1/8, for N, = N,h; = 320.
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[\
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Permeability ratio ()

Figure 4.14: Normalized difference versus permeability ratio
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Ux profile - aperture: 0.5, k pr“/k": 1e-02

Ux profile (avg) - aperture: 0.5, k pm/kﬁ: 1e-02
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Figure 4.15: Velocity profiles for varying permeability contrasts, hy = 1/2

and N,, = 320
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Ux profile - aperture: 0.25, k pr“/k": 1e-02 Ux profile (avg) - aperture: 0.25, k pm/k": 1e-02
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Figure 4.16: Velocity profiles for varying permeability contrasts, hy = 1/4
and N,, = 320
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Figure 4.17: Velocity profiles for varying permeability contrasts, hy = 1/8
and N,, = 320
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Chapter 5
Conclusion

A threshold of v = kpn/kyp = 1077 is revealed from testing sensitivity to
porous media permeability, below which the relative error stabilizes, and
above which the relative error decreases in the proportion e oc 4~ /2.

The decrease in aperture needs to be followed by an increase in resolution
to achieve reasonable results, at a cost of higher computational cost/time.
An alternative would be the local refinement of the grid for the areas of
the domain where properties and velocity vary substantially more, such as
the fracture and the boundary between the two medias, as proposed by the
multiscale method.

An insight on which method better suits the application in question is
given by the results, which depends on the characteristics of the problem and
which particulars are the objects of study.

The Darcy-darcy approach is sufficient for cases of high permeability con-
trast between porous media and free flow (v < 1077), or simply when the
interaction between the two medias is not the focus of study. The Stokes-
Brinkman approach is preferred for smaller contrasts between porous media
and free flow (y > 1077), i.e., when the porous media is highly permeable.

The fully coupled approach has the advantage of ensuring mass balance
and avoids the need of iteration loops, however, for large linear systems, the
computational time/cost can be much higher than an iterative method such
as the sequential coupling. The elliptic pressure equation used in the latter
approach has potential to be exploited in the field of multiscale simulation for
more effective simulation, particularly of larger and heterogeneous domains.
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