


PROPOSITIONS

MAHMOOD AHMADI

(1) A high performance processing system must be boundless like an ocean.

(2) A problem can be completely solved if it can be modeled, simulated, and
implemented [This thesis, Chapter 3, 4, 5].

(3) Doing research in PhD is like climbing a mountain. You only think to rise.

(4) Existence of a false positive in Bloom filters shows that achieving the ideal
is not possible, instead one should aim at the near-optimal point [This
thesis, Chpater 4].

(5) An excellent research paper is like a famous song. The latter needs a tune,
a singer, and a poem like a paper needing an idea, an implementation, and
a presentation.

(6) High-performance computing is more of an art than a science.

(7) In the future, all processors will be reconfigurable [This thesis, Chapter 3].

(8) Bloom filters became popular 30 years after they were proposed by Burton
Bloom in 1970. Many good ideas are still to be (re-)discovered [This thesis,
Chapter 4].

(9) In order for all PhD students in the Netherlands to finish their study in 4
years, a radical change in the university system is required.

(10) A PhD thesis is like a mirror: your reflection can be seen in it.

These propositions are considered defendable and opposable and as such have
been approved by Prof. dr. C.I.M. Beenakker.

1



2 MAHMOOD AHMADI

(1) Een hoog-presterend verwerkingssysteem moet grenzeloos zijn als een oceaan.

(2) Een vraagstuk kan geheel worden opgelost als het gemodeleerd, gesimuleerd,
en gemplementeerd kan worden [Dit proefschrift, Hoofdstuk 3, 4, 5].

(3) Onderzoek tijdens je promotie is als het beklimmen van een berg. Je denkt
alleen aan stijgen.

(4) Het bestaan van een fout-positief in Bloom-filters laat zien dat het niet
mogelijk is het ideaal te bereiken, in plaats daarvan zou men moeten streven
naar het optimum [Dit proefschrift, Hoofdstuk 4].

(5) Een uitmuntend onderzoeksartikel is als een beroemd liedje. Het laatste
heeft melodie, zanger en gedicht nodig en het eerste bevat een idee, imple-
mentatie en presentatie.

(6) ‘High-performance computing’ is meer een kunst dan een wetenschap.

(7) In de toekomst zullen alle processoren herconfigureerbar worden [Dit proef-
schrift, Hoofdstuk 3].

(8) Bloom-filters werden 30 jaar nadat ze werden voorgesteld door Burton
Bloom in 1970, populair. Veel goede ideeën moeten opnieuw ontdekt wor-
den [Dit proefschrift, Hoofdstuk 4].

(9) Om te zorgen dat alle promovendi binnen vier jaar hun promotie behalen,
is een radicale verandering in het universiteits systeem nodig.

(10) Een dissertatie is als een spiegel: je spiegelbeeld kan er in worden gezien.

Deze stellingen worden verdedigbaar en opponeerbaar geacht en zijn zodanig
goedgekeurd door Prof. dr. C.I.M. Beenakker.



High-performance Processing

in Networked and Grid Environments





High-performance Processing

In Networked and Grid Environments

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag 18 may 2010 om 12:30 uur

door

Mahmood AHMADI

Master of science in Computer Engineering-Computer Architecture
Amirkabir University of Technology (Tehran Polytechnique), Iran

geboren te Kohdasht, Lorestan, Iran



Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. C. I. M. Beenakker

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft
Prof. dr. C. I. M. Beenakker, promotor Technische Universiteit Delft
Prof. dr. ir. I. Niemegeers Technische Universiteit Delft
Prof. dr. S. Yalamanchili Georgia Institute of Technology
Prof. dr. K. G. W. Goossens Eindhoven University of Technology
Prof. dr. F. Safaei Wolongong University, Australia
Prof. dr. J. Takala Tampere University of Technology, Finland
Dr. Ir. S. Wong Technische Universiteit Delft
Prof. dr. P.M. Sarro, reservelid Technische Universiteit Delft

ISBN 978-90-72298-06-5

Cover page: “A grid network of high performance computing systems”

Keywords: Reconfigurable architecture, Bloom filter, grid computing

Copyright c© 2010 M. Ahmadi
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without permission of the
author.



This dissertation is dedicated to Vahideh
and my family,

for all their understanding and support over the years.





High-performance Processing in
Networked and Grid Environments

Mahmood Ahmadi

Abstract

I
n this dissertation, we present several techniques to achieve the high-
performance processing in networked and grid environments. Many appli-
cations need a high-performance processing system to execute efficiently.

High-performance processing mainly stems from parallelism. The parallel
nature of grid computing is a very attractive solution to exploit the mentioned
parallelism by executing either different parts of an application or several
applications in parallel. In a grid system, the most important resources are
computing and communication resources. The computing resources are the
processors in the nodes on the grid. Communication within the grid is important
for distributing tasks and their required data to the nodes within the grid.

We propose an innovative high-performance platform to utilize reconfigurable
processors in grid environments. Furthermore, we focus on the communica-
tion infrastructures and network processing (processing required for packets)
platforms to utilize them through the grid environments. The collaboration
of reconfigurable processors in a grid environment is presented and several
compute-intensive multimedia kernels are simulated. Subsequently, we intro-
duce three approaches to accelerate network processing tasks using Bloom
filters in the networked and grid environments. The first and second techniques
present a cache architecture for a counting Bloom filter (CCBF) and a memory
optimization approach for Bloom filters using an additional hashing function
(BFAH). The third technique proposes a power efficient pipelined Bloom filter.

We present the results of our proposed approaches in collaboration of recon-
figurable processors in grid computing (CRGC) and Bloom filters in network
processing applications, e.g., packet classification. The experimental results
show that the CRGC approach improves performance up to 7.2x and 2.5x com-
pared to a GPP and the collaboration of GPPs, respectively. The results of the
CCBF and BFAH for packet classification show that the proposed techniques
decrease the number of memory accesses when compared to a standard Bloom
filter.

i





Acknowledgments

First of all, I am most grateful to Stamatis Vassiliadis for believing in me and
giving me the chance to do my PhD in his research group. It was my privilege
to work under his supervision, although for such a short period of time. I will
miss him and remember him always.

Equally, I would like, to thank Stephan Wong for his guidance and assistance.
His help in reviewing my research work and improve my writing skills was
extremely vital. My PhD work would not have been the same without his inputs.
I acknowledge Prof. Ir. C. I. M. Beenakker, my promotor at DIMES. I wish
to thank Prof. Dr. Kees Goossens and Prof. Jarmo Takala, the members of
committee, for their useful comments on this thesis.

I would like to thank everybody from the Computer Engineering Laboratory
where I had the opportunity to work in a truly international environment, with
people coming from all parts of the world, with different work experiences.

I would like to thank Faisal M Nadeem for his time spent to read my thesis and
Roel Meeuws and Core Meendrek for their time to translate the abstract and
propositions to Dutch. I am thankful to Lidwina, Bert Meijs and Erick for the
help and time they gave to me.

I would also like to acknowledge my Iranian friends Asadollah Shahbahrami,
Mojtaba Sabeghi, and Arash Ostadzadeh at Computer Engineering Laboratory.

I would like to express my deepest gratitude to my parents, my brother and my
sisters, for their love, trust, advices, and support during the entire life of mine.

Finally, special thanks go to Vahideh for her understanding, patience and support
when I had to work during many weekends over the years.

M. Ahmadi Delft, The Netherlands, 2010

iii





Contents

Abstract i

Acknowledgments iii

List of Acronyms xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 High-performance Applications . . . . . . . . . . . . 2

1.1.2 High-performance Computers: Current and Future . . 3

1.1.3 High-performance Processing: Resources and Require-
ments . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Challenges and Goals . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . 10

2 High-performance Processing Background 13

2.1 High-performance Computing Systems . . . . . . . . . . . . 14

2.1.1 Grid Computing . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Reconfigurable Processors . . . . . . . . . . . . . . . 16

2.2 High-performance Network Processing . . . . . . . . . . . . 18

2.2.1 Network Processing . . . . . . . . . . . . . . . . . . 18

2.2.2 Performance Modeling using Queuing Theory . . . . . 24

2.2.3 Packet Classification . . . . . . . . . . . . . . . . . . 28

v



2.2.4 The Bloom Filter Concept . . . . . . . . . . . . . . . 31

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Collaboration of Reconfigurable Processors in Grid
Computing . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Network Packet Processing . . . . . . . . . . . . . . 35

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Collaborative Reconfigurable Processors on Grid Computing 39

3.1 The Concept of Collaborative Reconfigurable Processors on Grid 40

3.2 Performance Model Analysis . . . . . . . . . . . . . . . . . . 43

3.3 Multimedia Kernels . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Motivation on Architectures for Multimedia Kernels . 47

3.3.2 Discrete Wavelet Transform . . . . . . . . . . . . . . 48

3.3.3 Co-Occurrence Matrix . . . . . . . . . . . . . . . . . 49

3.4 Simulation Environment and Tools . . . . . . . . . . . . . . . 50

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Bloom Filter in High-performance Network Processing 57

4.1 Cache Architecture for Counting Bloom Filter . . . . . . . . . 58

4.1.1 Pruned Counting Bloom Filter . . . . . . . . . . . . . 58

4.1.2 Cached Counting Bloom Filter Concept . . . . . . . . 60

4.1.3 Hashing Functions . . . . . . . . . . . . . . . . . . . 66

4.1.4 Packet Classifier Architecture Using Bloom Filter . . . 68

4.1.5 Packet Classifier Architecture Using CCBF . . . . . . 69

4.2 A Memory Optimization Approach for Bloom Filters using an
Additional Hashing Function . . . . . . . . . . . . . . . . . . 71

4.2.1 The BFAH Architecture and Concept . . . . . . . . . 71

4.2.2 The BFAH Architecture Analysis . . . . . . . . . . . 74

4.3 k-stage Pipelined Bloom Filter for Packet Classification . . . . 81

4.3.1 Power Model for Standard Bloom Filter . . . . . . . . 81

4.3.2 k-stage Pipelined Bloom Filter . . . . . . . . . . . . . 83

vi



4.3.3 4-stage pipeline Bloom filter . . . . . . . . . . . . . . 85

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Optimal Bandwidth Allocation in Network Processing Systems 89

5.1 NP-based Architecture Model . . . . . . . . . . . . . . . . . 90

5.1.1 Simple Abstract NP Model . . . . . . . . . . . . . . 90

5.1.2 Model Overview of Grid-oriented NP Network . . . . 91

5.2 Optimal Arrival Rate Allocation . . . . . . . . . . . . . . . . 94

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Performance Evaluation and Experimental Results 97

6.1 Collaborative Reconfigurable Processors in Grid Environments 98

6.1.1 Application Mapping on CRGC . . . . . . . . . . . . 98

6.1.2 Performance Evaluation . . . . . . . . . . . . . . . . 99

6.2 Bloom Filter Architectures Results . . . . . . . . . . . . . . . 102

6.2.1 System Testing . . . . . . . . . . . . . . . . . . . . . 103

6.2.2 Cache Counting Bloom Filter . . . . . . . . . . . . . 103

6.2.3 Memory optimized Bloom Filter Using an Additional
Hashing Function . . . . . . . . . . . . . . . . . . . . 108

6.2.4 k-stage Pipeline Bloom Filter Architecture Results . . 111

6.3 Network Processor Modeling . . . . . . . . . . . . . . . . . . 115

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Overall Conclusions 121

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Problem Statements Revisited . . . . . . . . . . . . . . . . . 125

7.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Future Research Directions . . . . . . . . . . . . . . . . . . . 128

Bibliography 133

List of Publications 145

vii



Samenvatting 149

Curriculum Vitae 151

viii



List of Figures

1.1 Performance projection for computing systems. The curves
show summation, position 1 (N=1), position 500 (N=500), and
notebook levels performance (Source: Meuer [74]). . . . . . . 4

1.2 General overview of the high-performance processing environ-
ment on compassing grid computing, reconfigurable computing
and network processing . . . . . . . . . . . . . . . . . . . . . 9

2.1 General overview of the distributed computing environment
with the place of grid computing. . . . . . . . . . . . . . . . . 15

2.2 Performance versus flexibility in different architectures. . . . . 18

2.3 (a) Bandwidth growth on the Ethernet interface (the dot-line
shows the projection of bandwidth growth). (b) Transistor and
MIPS (millions of instructions per second) trends over time
(source [75]). . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Packet processing model in network processor. . . . . . . . . 20

2.5 Abstract model of network processor organization. . . . . . . 23

2.6 Simple queuing model. . . . . . . . . . . . . . . . . . . . . . 24

2.7 Multi-server queuing model. . . . . . . . . . . . . . . . . . . 25

2.8 Closed and open queuing networks. (a) An open network. (b)
A closed network. . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Open Jackson network. . . . . . . . . . . . . . . . . . . . . . 27

2.10 Important fields that are used in packet classification algorithms. 29

2.11 Assigning values for ranges, based on the Nesting Level and
the Range-ID. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 An example of Bloom filter array and its use. . . . . . . . . . 33

ix



3.1 A general view of a collaborative grid environment with recon-
figurable processors and general-purpose processors (GPPs).
The lightblue box shows GPP and box with the circle inside
shows GPP augmented with RE (reconfigurable element). . . . 40

3.2 Basic primitives that are utilized in the neighborhood concept.
(a) A primitive with one requesting processing element and
n collaborator processing elements. (b) A primitive with two
requesting processing elements and one collaborator processing
element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Active primitives in the sample network. . . . . . . . . . . . . 43

3.4 The 2D DWT using the Daub-4 for an image of size N ×M . . 49

3.5 C implementation of the co-occurrence matrix. . . . . . . . . 50

3.6 The flowchart of application execution in CRGridsim simulator. 54

4.1 (a) The hash table architecture using counting Bloom filters for
four items (rules). (b) The hash table using pruned counting
Bloom filter. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 False positive probability for different configurations. . . . . 60

4.3 The counter probability distribution for different configurations
in counting Bloom filters. . . . . . . . . . . . . . . . . . . . 61

4.4 The l-level cached counting Bloom filter architecture. . . . . 62

4.5 The 3-level cached counting Bloom filter architecture. . . . . 64

4.6 The architecture of classifier using pruned counting Bloom
filter and tuple space. . . . . . . . . . . . . . . . . . . . . . . 68

4.7 The architecture of software packet classifier using CCBF. . . 70

4.8 A Bloom filter architecture with an additional hashing function. 73

4.9 A standard/counting Bloom filter architecture for four items. . 74

4.10 The hash table architecture using a Bloom filter with an ad-
ditional hashing function (a) An empty Bloom filter. (b) The
Bloom filter after the insertion of rule R0 (c) The Bloom filter
after the insertion of rules R0 and R1 (d) Final Bloom filter
after the insertion of four rules. . . . . . . . . . . . . . . . . 75

4.11 Average bucket size for standard, BFAH and pruned counting
Bloom filters when ln(2)k = m/n). . . . . . . . . . . . . . . 77

x



4.12 Maximum search length for standard, BFAH and pruned count-
ing Bloom filters when k = ln(2)m/n. . . . . . . . . . . . . 79

4.13 Number of collisions for standard, BFAH and pruned counting
Bloom filters when k = ln(2)m/n. . . . . . . . . . . . . . . 81

4.14 A standard Bloom filter with k hashing functions. . . . . . . . 82

4.15 k-stage pipelined Bloom filter architecture. . . . . . . . . . . 83

4.16 Our 4-stage pipelined Bloom filter architecture where the first
three stages contains one hashing function and the forth stage
contains k − 3 hashing functions that operate in a parallel
manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 (a) Simple abstract NP model. (b) Simple abstract NP queuing
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 NPs distribution in grid environment. . . . . . . . . . . . . . 92

5.3 Different configuration of NPs. . . . . . . . . . . . . . . . . 92

5.4 Model of a grid-oriented NP. . . . . . . . . . . . . . . . . . . 93

5.5 Typical curves in optimal arrival rate allocation. . . . . . . . 96

6.1 Speedup for different configurations with 2 collaborator pro-
cessing elements over one GPP. . . . . . . . . . . . . . . . . 101

6.2 Speedup for different configurations with 3 collaborator pro-
cessing elements over one GPP. (a) When reconfigurable ele-
ments (REs) are 2 times faster than GPP. (b) When reconfig-
urable elements (REs) are 5 times faster than GPP. . . . . . . . 102

6.3 The number of accesses in CCBF normalized to the number of
accesses in standard Bloom filter include mathematical simula-
tion and software implementation. (a) The number of accesses
in a 3-level CCBF for Fw1-100. (b) The number of accesses in
a 3-level CCBF for Fw1-1k. (c) The number of accesses in a
3-level CCBF for Fw5-1k. . . . . . . . . . . . . . . . . . . . 104

6.4 The number of accesses in CCBF normalized to the number of
accesses in standard Bloom filter include mathematical simula-
tion and software implementation. (a) The number of accesses
in a 3-level CCBF for Fw1. (b) The number of accesses in a
3-level CCBF for Ipc1. (c) The average number of accesses in
a 3-level CCBF for all of utilized rule-set databases. . . . . . 106

xi



6.5 The total size of cache in CCBF normalized to the number of
size of memory in standard Bloom filter. . . . . . . . . . . . . 107

6.6 Average bucket size for the standard Bloom filter, pruned count-
ing Bloom filter and BFAH. . . . . . . . . . . . . . . . . . . 109

6.7 Maximum search length for standard, BFAH and pruned count-
ing Bloom filters. . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8 Average number of collisions for all rule-set databases that nor-
malized to n (number of rules in rule-set database) for pruned
counting Bloom filter and BFAH and normalized to nk (number
of rules multiply by number of hashing functions) for standard
Bloom filter. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.9 Coefficient rate in k-stage pipelined Bloom filter for configura-
tion k = ln(2)m/n. . . . . . . . . . . . . . . . . . . . . . . . 112

6.10 Average number of ‘0’s in the bit-array of Bloom filter of
biggest tuple using software packet classifier for three different
Bloom filter configurations in the membership checking stage
(‘configuration 1’ with 8 hashing functions, ‘configuration 2’
with 15 hashing functions and ‘configuration 3’ with 4 hashing
functions). . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.11 Average mismatched packets rate for all packet traces in the
biggest tuple using software packet classifier for three different
Bloom filter configurations. . . . . . . . . . . . . . . . . . . 114

6.12 Coefficient rate in k-stage pipelined Bloom filter and 4-stage
pipelined Bloom filter for different configurations in terms of k
and m/n (k ≤ m/n) that are normalized to the coefficients of
a standard Bloom filter. . . . . . . . . . . . . . . . . . . . . . 115

6.13 (a) Arrival/service rates and optimal arrival rate curves for
different NPs. The blue and red areas show underload and
overload areas. (b) Grid-oriented NP-based architectures model
response time without optimal arrival rate allocation (N shows
the number of NPs). . . . . . . . . . . . . . . . . . . . . . . 117

6.14 (a) Arrival/service rate and optimal arrival rates curves with op-
timal arrival rate allocation for different NPs. (b) Grid-oriented
NP-based architectures model response time with optimal ar-
rival rate allocation (N shows the number of NPs). . . . . . . 118

xii



List of Tables

2.1 Sample classifier rules. . . . . . . . . . . . . . . . . . . . . . 29

2.2 Example of packet classification. . . . . . . . . . . . . . . . 29

2.3 Simplified example of rule classification. . . . . . . . . . . . 30

3.1 Performance analysis symbols and their definitions. . . . . . . 44

3.2 Images and their correspondence gridlets (subtasks) specifica-
tions for different multimedia kernels. MIs means million of
instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 The specification of processing elements in terms of MIPS. . . 52

3.4 Specifications of the simulated environment. . . . . . . . . . . 53

6.1 Application mapping of the 2D DWT on collaboration of GPPs
on a grid computing. . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Application mapping of the 2D DWT on collaboration of re-
configurable processors (elements) on a grid computing. . . . 99

6.3 Application mapping of the 2D DWT+co-occurrence matrix on
collaboration of GPPs on a grid computing. . . . . . . . . . . 100

6.4 Application mapping of the 2D DWT+co-occurrence matrix on
collaboration of reconfigurable processors (elements) on a grid
computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Rule-set database and packet trace specification. . . . . . . . . 103

xiii





List of Acronyms

ACC Adaptable Computing Cluster

ANPQ Abstract Network Processor Queuing model

ASIC Application-Specific Integrated Circuits

ASIP Application-Specific Instruction-set Processor

ASAN Active System Area Network

AQRGS The Architecture for QoS-enable Router and Grid-oriented
Supercomputer

BF Bloom Filters

BFAH Bloom Filters using an Additional Hashing Function

BOINC Berkeley Open Infrastructure for Network Computing

CRGC Collaboration of Reconfigurable processing elements in Grid
Computing

CAM Content Addressable Memory

CRGridSim Collaborative Reconfigurable Grid Simulator

xv



CCBF Cached Counting Bloom Filter

DRMC Distributed Reconfigurable Metacomputing

DPN Distributed Processing Network

DWT Discrete Wavelet Transform

FPGA Field Programmable Gate Arrays

FMO Fragment Molecular Orbital

GPP General-Purpose Processors

GRB Gamma-Rate Burst

ILP Instruction-Level Parallelism

MBHT Multi-predicate Bloom-filtered Hash Table

MVA Mean Value Analysis

MIPS Million Instructions Per Second

NP Network Processors

PLP Packet-Level Parallelism

PBF Pipelined Bloom Filter

P2P Peer to Peer

xvi



PE Processing Engine

RE Reconfigurable Element

RIP Routing Information Protocol

SIA Synchronous Iterative Algorithm

SOC System On Chip

SIMD Single-Instruction Multiple-Data

SPU Synergistic Processor Unit

SPE Synergistic Processing Element

SPEC Standard Performance Evaluation Corporation

TTM Time To Market

TTL Time To Live

TLP Thread-Level Parallelism

VLIW Very Long Instruction Word

VPN Virtual Private Network

xvii





Chapter 1

Introduction

T
he performance requirement of many scientific applications is rising
each year. Among these that require the highest are the following:
weather forecasting, modeling in material sciences, applied fluid dy-

namics, ecosystem simulations, biomedical imaging and biomechanics, molecu-
lar design and process optimization, nuclear power and weapons simulations,
design of pharmaceutical drugs, human genome, astronomy, numbers theory,
computational ocean sciences, speech and vision. Much research effort has
been put in building large-scale systems to efficiently compute these kind of
applications. In such systems, it is important to focus on (1) the computing
resources and (2) the communication resources. Therefore, designing and im-
plementing more powerful approaches to combine the computing techniques
and communication together is an efficient way to achieve higher performance.

We motivate in Section 1.1, the motivation about some computationally intensive
applications, their requirements, current high-performance processing systems,
and related networking applications. In Section 1.2, the challenges and goals
addressed in this dissertation are described and in Section 1.3, our methodology
is introduced. Finally, Section 1.4 describes the outline of the dissertation.



2 Introduction

1.1 Motivation

In this section, we present some instances of high performance applications, the
existing and future supercomputers and the requirement in the high performance
processing.

1.1.1 High-performance Applications

The ongoing demand for faster and high-performance computing systems is
expected to continue in the coming years due to the increasing complexity and
size of computationally intensive applications. Examples of these applications
are: weather forecasting, modeling in material sciences, applied fluid dynamics,
ecosystem simulations, biomedical imaging and biomechanics, molecular de-
sign and process optimization, nuclear power and weapons simulations, design
of pharmaceutical drugs, human genome, astronomy, numbers theory, com-
putational ocean sciences, speech and vision. The common characteristics
of these applications is their inherent level of parallelism. It is this inherent
parallelism that can be exploited to design ever-increasingly more powerful
computing systems to execute these applications. Some instances of these
applications with the number of operations required per simulation and required
high-performance computer systems are presented in the following.

In global climate modeling1 the calculation a series of factors in order to make
them sufficiently accurate is studied [4]. A future computer system must be
capable of performing 100 Exaflops 2 (1018) to 10 Zettaflops (1021) [38].

In nanoscience, a grid-enabled version of the Fragment Molecular Orbital
(FMO) method for Petascale Computing was developed. The FMO method
can execute all electron calculation in large molecules with more than 10s of
thousands of atoms. To execute the FMO program a Petascale computer system
with 10 Petaflops is needed while it was simulated on a 0.5 Petaflops computer
system [104].

High-performance computing will allow astrophysicists to investigate astrophys-
ical objects, systems, and events that cannot be studied by available computer
systems [79]. The total required computations for Gamma-Ray Bursts (GRBs)3

1-Global climate models (GCMs) are a class of computer-driven models for weather fore-
casting, understanding climate and projecting climate change.

2- flops (or FLOPS or flop/s) is an acronym meaning FLoating point Operations Per Second.
3-Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely energetic

explosions in distant galaxies.



1.1 Motivation 3

simulation is 270 Exaflop. Consequently, a computer system capable to run at 1
Petaflop/s performance would require 3 days [79].

1.1.2 High-performance Computers: Current and Future

In this section, the current-day systems and a projection to show the performance
needed of future computers are presented.

The Berkeley Open Infrastructure for Network Computing (BOINC) is a
non-commercial middleware system for grid computing [17]. BOINC has
about 570, 000 active computers (hosts) worldwide processing on average 1.9
Petaflops as of July 2009. NASA, Intel and SGI have announced to build a 1
Petaflops computer “Pleoades” in 2009 that expect to reach 10 Petaflops until
2012 [3]. At the same time, IBM intended to build a 20 Petaflops supercomputer
“Sequoia” at Lawrence Livermore National Laboratory until 2011. With the
current speed of progress, Supercomputers are projected to reach 1 Exaflops
in 2019. E. P. DeBenedictis of Sandia National Laboratories theorizes that a
Zettaflop computer is required to accomplish full weather modeling, which
could cover a two week time span accurately [1]. Such systems might be built
around 2030. In the following the projection done in TOP500 project presents
the future of high-performance computers and their performance. The TOP500
project was launched in 1993 to provide a reliable basis for tracking and detect-
ing trends in high-performance computing [73], [74]. Twice a year, a list of the
sites operating the worlds 500 most powerful computer systems is compiled
and released. The list contains a variety of information including the systems
specifications and major application areas. The projection into the future, based
on 30 lists of real data, by a least square fit1 on the logarithmic scale is depicted
in Figure 1.1.

From Figure 1.1, it can be observed that, in 2015, it is expected there will be
only Petaflop/s systems in the TOP500 list. The projection also shows that
the first Exaflop/s computer will enter the TOP500 list in 2019, and only one
year later, in 2020, there will be the first notebooks with a performance of
100 Teraflop/s. The TOP500 project provides a reliable basis for tracking and
detecting trends in high-performance computing.

1-A mathematical procedure to find the best-fitting curve to a given set of points by mini-
mizing the sum of the squares.



4 Introduction

5. Performance Development and Performance Projections 

In Figure 21, we have plotted the performance over the 
last 15 years at position N=500 (entry level perform-
ance), at the leading position (number one), as well as 
the total accumulated performance, the sum of all 500 
systems. As can easily be seen, all these curves show 
an exponential growth. The scale on the left-hand side 
is a logarithmic scale. 
 
If we compare this growth with Moore’s Law, we find 
that, even though Moore’s Law assumes a doubling in 
performance every 18 months for microprocessors, 
our growth is larger. We have a doubling for the sum 
in approximately 14 months, for the number one posi-
tion in approximately 13 months and even for the number 500 position in a little less than 13 months. There are 
two main reasons for this larger growth in performance: processor performance and number of processors 
used. 

1.167 TF/s

6.97 PF/s

478.2 TF/s

59.7 GF/s

5.9 TF/s

0.4 GF/s

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Fujitsu

'NWT' NAL

NEC

Earth Simulator

Intel ASCI Red

Sandia

IBM ASCI White

LLNL

N=1

N=500

SUM

   1 Gflop/s

   1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

  10 Gflop/s

  10 Tflop/s

    1 Pflop/s

IBM

BlueGene/L

Notebook

Notebook

1.167 TF/s

6.97 PF/s

478.2 TF/s

59.7 GF/s

5.9 TF/s

0.4 GF/s

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Fujitsu

'NWT' NAL

NEC

Earth Simulator

Intel ASCI Red

Sandia

IBM ASCI White

LLNL

N=1

N=500

SUM

   1 Gflop/s

   1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

  10 Gflop/s

  10 Tflop/s

    1 Pflop/s

IBM

BlueGene/L

NotebookNotebook

NotebookNotebook

 
Figure 21: Performance development 

 
Also note that the curves at positions one and 500 are quite different: At number one, we typically see a step 
function. Once a system has made number one, it remains there in the next couple of TOP500 lists. That was 
true for the “Numerical Wind Tunnel – NWT”, Intel’s ASCI Red and also for the “Earth Simulator”, which ranked 
first from June 2002 through June 2004. And it also proves true for the current number one supercomputer 
(since November 2004), IBM’s BlueGene/L at Lawrence Livermore National Laboratory (LLNL), holding this 
position at different stages of expansion. 
 
If we include a powerful notebook in this figure, we notice that its performance has reached 7 Gigaflop/s now 
and has thus grown by a factor of 10 within three years.  
 

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

N=1

N=500

S UM

1 Gflo p/ s

1 T f lo p/ s

100 M f lo p/ s

100  Gflo p/ s

100 T f lo p/ s

10  Gflo p/ s

10  T f lo p/ s

1 P flo p/ s
10  P flo p/ s

1 Ef lo p/ s
100  P f lo p/ s

10 Eflo p/ s

6-8 years

8-10 years

1 Petaflop/s

1 Exaflop/s

Notebook

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

N=1

N=500

S UM

1 Gflo p/ s

1 T f lo p/ s

100 M f lo p/ s

100  Gflo p/ s

100 T f lo p/ s

10  Gflo p/ s

10  T f lo p/ s

1 P flo p/ s
10  P flo p/ s

1 Ef lo p/ s
100  P f lo p/ s

10 Eflo p/ s

6-8 years

8-10 years

1 Petaflop/s

1 Exaflop/s

Notebook

 
Figure 22: Performance projection 

Again, as when discussing Intel’s ASCI Red, we have 
done a projection into the future, based on 30 lists of 
real data, by a least square fit on the logarithmic 
scale. For a powerful notebook, for example, this 
means that it will have a Teraflop/s performance in 
the year 2014, i.e. in less than 18 years after the first 
Teraflop/s system, ASCI Red, entered the HPC arena. 
 
Generally, it will take six to eight years for any system 
to move from position one to 500 and eight to ten 
years to move from position 500 to notebook level.  
 
The Linpack Petaflop/s threshold will be reached in 2008. One of the hot candidates for the first Petaflop/s 
system to enter the TOP500 list is IBM’s RoadRunner at Los Alamos National Laboratory, USA. In 2015, there 
will be only Petaflop/s systems in the TOP500 list. Our projection also shows that the first Exaflop/s computer 
will enter the TOP500 list in 2019, and only one year later, in 2020, there will be the first notebooks with a 
performance of 100 Teraflop/s. 
 
The rule seems to be that system performance increases by a factor 1,000 every eleven years: Cray 2 broke the 
Gigaflop/s barrier in 1986 (in pre-TOP500 times); Intel’s ASCI Red exceeded the Teraflop/s barrier in 1997; the 
first Petaflop/s system will enter the TOP500 list this year (2008); and, according to our projection, the 
Exaflop/s threshold will be reached in 2019. See Figure 22.  

Page 10 of 14 

Figure 1.1: Performance projection for computing systems. The curves show
summation, position 1 (N=1), position 500 (N=500), and notebook levels
performance (Source: Meuer [74]).

1.1.3 High-performance Processing: Resources and Require-
ments

As discussed earlier, many applications need a high-performance processing
system to execute efficiently. High-performance processing stems from the
provided raw performance and the efficient exploitation parallelism within a
computing system [22]. A well-known technique to achieve high performance
is to execute as many as possible parts of an application in parallel. Supercom-
puters are a good candidate to execute the high-performance applications. Some
concerns limits the utilization of supercomputers. The biggest issue is related to
their cost that makes them unaffordable for some applications. Another issues
with running supercomputer are cooling and the speed at which information
can be transferred or written to a storage device. The speed of data transfer
will limit the performance of supercomputer. Supercomputers consume and
produce massive amounts of data in a very short period of time. A supercom-
puter turns compute-bound problems into I/O-bound problems, hence, much
work on external storage bandwidth is needed to ensure that this information
can be transferred quickly and stored/retrieved correctly. Supercomputers get
extremely hot when they run. Therefore, they require complex cooling systems
to ensure that no part of the computer fails.

An effective solution to achieve the high-performance is the utilization of grid



1.1 Motivation 5

computing. The exploitation of the parallelism available in grid computing is
a very attractive solution to execute either different parts of an application or
several applications at the same time. The main advantage of grid computing
is that each node can be purchased as a simple computer system, e.g., desktop
computer or server, which when combined can produce similar computing
resources to a multiprocessor supercomputer, but at a lower cost. The most
important capabilities of grid computing are as follows [24], [69]: exploiting
under-utilized resources, parallel processing capacity, and reliability. A grid
system provides some mechanisms to exploit unused resources, e.g., desktop
machines, and servers. It manages and resubmits tasks when a failure is de-
tected to provide a reliable grid system. In a grid system, the most important
resources are the computing and communication resources [24]. The comput-
ing resources are provided by the processors of the machines on the grid that
these machines connected to a network (private, public, or the Internet).

The rapid growth in communication bandwidth today makes grid computing
practical, compared to the limited bandwidth available when distributed com-
puting first emerged. With the increase in improved communication more
applications can benefit from grid. It should be noted that without adequate
communication bandwidth, grid computing would be not possible. Commu-
nications bandwidth within the grid are important for sending tasks and their
required data to points within the grid. Some tasks require a large amount of
data to be processed which may not always reside on the machine running the
task. The bandwidth available for such communication can often be a critical
resource that can limit utilization of the grid.

Increasing the bandwidth in a grid node needs to exploit the suitable network
processing equipments. Within a grid node network processing operates as an
integral part to accelerate the processing of packets. Network processing refers
to the tasks performed on packets by network equipments. The important part of
network processing equipments are mainly routers and switches [9], [70], [115].
These networking equipments are comprised mainly of network elements that
are called network processors (NPs). Typically, a network processor comprises a
parallel programmable processor core with a number of memory interfaces and
special co-processors that are optimized for packet processing [9], [88], [112].
Network processors combine the flexibility of general-purpose processors with
the high-performance of application-specific integrated circuits (ASICs).

The performance of these network processors as main part of the network
processing to achieve higher bandwidth is usually hampered by slow memory
accesses. Such memory bottlenecks can be overcome by the following mecha-



6 Introduction

nisms: hiding of memory latencies through parallel processing and reducing the
memory latencies by introducing a multi-level memory hierarchy incorporating
special-purpose caches. An approach to achieve higher lookup performance
is to utilize the Bloom filter data structure that recently is utilized by network
processors [13], [39]. A Bloom filter is a simple space efficient randomized
data structure to represent a set in order to support membership queries [25]. A
Bloom filter is frequently utilized in network processing (areas), such as packet
classification, packet inspection, forwarding, peer-to-peer (P2P) networks, and
distributed web caching [27], [30], [39].

Not only performance but also flexibility is an important factor in designing a
grid-based high-performance computing systems. In order to design a flexible
grid-based high-performance computing system, it must utilize the processor
architectures with sufficient flexibility as well as high-performance. Different
approaches such as General-Purpose Processors (GPPs) and application-specific
processors have been proposed to provide flexibility and high-performance.
GPPs have been widely used in the past decades and they provide high de-
gree of flexibility. Application-specific processors provide more performance
than GPPs for specific applications they are designed to accelerate, while their
flexibility is limited. In order to provide the flexibility of GPPs with the high-
performance of application-specific processors, reconfigurable processors are
utilized. Reconfigurable computing has proven to be a promising technology
to increase the performance of certain algorithms in scientific and engineering
applications in recent years. Any application of iterative nature such as multi-
media processing, digital signal processing, bioinformatics, cryptography and
software defined radio, etc. can be mapped on an FPGA by programming it
using hardware description languages (HDLs). These applications have certain
kernels containing iterations which are processed in parallel on the processing
elements on an FPGA. The same applications can take much longer time when
they are run on a general-purpose processor (GPP) that processes the iterative
kernels in a sequential manner [26], [36], [113]. Therefore, the use of reconfig-
urable processors should be beneficial to achieve high-performance computing
in a grid system for compute-intensive applications. The target applications are
computationally intensive applications. When these applications are executed
on a grid node with the reconfigurable processor, the reconfiguration time is
very small as compared to computation time. Consequently, focusing on the
reconfigurable processors as a computing resource and Bloom filters for the
packet processing in network processing applications provides the performance
and flexibility required for a high-performance computing system.



1.2 Challenges and Goals 7

1.2 Challenges and Goals

In the previous section, we argued that flexibility and performance are two
important factors in the design of a high-performance computing system. Re-
configurable processors provide flexibility and performance for computationally
intensive applications. Furthermore, accelerating the network processing tasks
for the existing computing resource in grid computing makes it more beneficial.
Consequently, our general goal is to investigate:

• How to achieve high-performance and flexible processing in networked
and grid environments?

It is not our intention to propose an all-encompassing methodology for the
design of grids to support all (current and future) applications. However, we
identified that packet processing is a recurring operation and an integral part of
all grids. Consequently, we will focus on how to speed up packet processing to
further improve the (communication) performance of grids. In particular, we
identified that the Bloom filter is a promising technique to accelerate packet
processing. Our first problem statement is:

• How can Bloom filters be employed to speed up network processing in
the communication side of the grid nodes?

Bloom filters have been utilized in many applications to quickly determine the
membership of elements within a large dataset. The applicability of rules on
incoming packets can be perceived as a similar operation and, therefore we
expect that Bloom filters can contribute to the speedup of packet processing.
This is because the memory bottleneck due to the gap between memory and
processor in the packet processing systems can be overcome by utilization of
Bloom filters. The used Bloom filters for packet processing is exploited as an
integral part of the grid node.

As said before, flexibility in grids is a requirements that is gaining much
attention. We believe that reconfigurable computing could possibly be the
solution to provide the needed flexibility and at the same time improve the
performance of computing nodes. Our second problem statement is:

• How can reconfigurable computing be utilized to improve flexibility and
performance in grids?



8 Introduction

Reconfigurable computing has proven itself to be able to speed up many ap-
plications despite its lack in achieving high frequencies. However, frequency
is not the sole factor that determines performance. Field-programmable gate
arrays (FPGAs) - as the most utilized reconfigurable fabric nowadays - provide
a large amount of parallel structures that when exploited efficiently can greatly
contribute to the speedup of applications. It is expected that the parallelism
in many applications can be exploited to achieve higher performance. This
would immediately introduce two types of parallelism in our envisioned new
grid environment - coarse-grain parallelism and fine-grain parallelism. Appli-
cations running in grids can be broken down into (coarse-grain) tasks that are
distributed over the grid nodes, and (fine-grain) sub-tasks can be distributed
over the parallel processing elements within a single grid node. This distinction
opens up the (physical) possibility for collaborative grid computing as grid
nodes can now decide “how much parallelism they can handle” and forward
other tasks (tasks or sub-tasks) to other collaborating grid nodes. Consequently,
we define several goals within the second problem statement:

• Propose an initial organization of grid nodes encompassing reconfigurable
processors

• Determine the performance gains of utilizing reconfigurable processor
within grid environments

The reconfigurable processors used in grid nodes execute the submitted tasks.
It should be noted that the submitted tasks should have the inherent parallelism
to achieve more performance. The level of parallelism accepted by each node is
depended on different factors such as: application structure, and the grid node
specifications.

1.3 Methodology

In this section, we propose the different steps to achieve a high-performance
processing system as proposed in the previous section. These steps are listed in
the following:

• Investigate the collaboration between reconfigurable processors (ele-
ments) in a grid computing environment

• Propose several approaches to achieve more performance in network
processing applications using Bloom filters



1.3 Methodology 9

• Introduce an optimal bandwidth allocation approach for network proces-
sors in the networked and grid environments using queueing theory

We propose the collaboration of reconfigurable processors in grid computing.
This approach provides a flexible and high-performance framework to execute
computationally intensive applications. A combination of both reconfigurable
processors and grid computing is known as Collaborative Reconfigurable Grid
Computing. Figure 1.2 depicts a general overview of high-performance pro-
cessing environments with the place of grid computing.

Peer-to-peer
computing

Grid 
computing

Reconfigurable 
computing

Network processing Network processors

High- performance computing

High-performance network processing

High-performance processing

Supercomputing

Figure 1.2: General overview of the high-performance processing environ-
ment on compassing grid computing, reconfigurable computing and network
processing .

In Figure 1.2, the circle shows that we focus on grid computing, reconfigurable
computing, and the required network processing. To achieve higher perfor-
mance in the network processing systems, we focus on Bloom filters. Indeed,
due to its wide applicability in network processing, some modern network
processors incorporate a Bloom filter unit in their implementation. There are
numerous networking problems where such a data structure is required. Espe-
cially when space is an issue, a Bloom filter may be an excellent alternative
to keep an explicit list of the items. The major types of Bloom filters are the
following: standard Bloom filter, compressed Bloom filter, counting Bloom
filter, distance-sensitive Bloom filter, Bloom filter with two hash functions,



10 Introduction

space-code Bloom filter, spectral Bloom filter and dynamic Bloom filter. These
different Bloom filters are utilized in network processing and database appli-
cations [27], [39], [49]. We propose three additional types of Bloom filter to
achieve more performance in network processing:

• A multi-level memory architecture for a counting Bloom filter (cached
counting Bloom filter)

• A memory optimization approach for Bloom filters using an additional
hashing function

• A k-stage pipelined Bloom filter to decrease power consumption

These approaches are implemented for hash-based packet classification. The
advantages of these approaches are:

• Overcome memory bottleneck in network processors and packet process-
ing applications

• Increase the performance of network processing applications

Finally, we investigate an optimal bandwidth allocation approach for network
processors in the networked and grid environments using queueing theory and
Jackson models. In this approach to minimize the response time, the optimal
arrival rate for different NPs in a grid-oriented environment is determined.

1.4 Thesis Overview

This section discusses the organization of the remainder of this dissertation
which consists of the following chapters:

• Chapter 2 introduces some basic concepts and the necessary background
to better understand the remainder of this dissertation. It introduces the
definition of grid computing, reconfigurable processors, and the concept
of network processors and Bloom filter. Moreover, the performance
analysis of network processors using queuing theory is presented.

• Chapter 3 highlights the concept of collaboration of the reconfigurable
processors in a grid environment. It also describes the proposed solution
applied to multimedia kernels.



1.4 Thesis Overview 11

• Chapter 4 presents the Bloom filters in high-performance network pro-
cessing. It introduces the details of the three proposed approaches for
Bloom filters which include a cache organization for counting Bloom
filter, memory optimization approach for Bloom filter using an additional
hashing function, and a pipelined Bloom filter for packet classification.

• Chapter 5 describes the performance evaluation model and optimal band-
width allocation for network processing systems.

• Chapter 6 presents the experimental results of the proposed solutions for
high-performance processing that were discussed in the proceeding chap-
ters. It analyzes the results to demonstrate the benefits of the proposed
solutions.

• Chapter 7 presents the conclusion of this dissertation and describes the
main contributions of the described research. Finally, several future
research directions to continue the described work are presented.





Chapter 2

High-performance Processing
Background

A
dvancement of science and engineering and their impact on large scale
applications can be related to the progress and availability of high-
performance processing systems and grids. Each high-performance

processing system comprises computing and communication resources. Tradi-
tionally, general-purpose processors are utilized inside the grid as computing
resources, which can be replaced by reconfigurable processors to provide more
flexibility and performance. In addition, it must obvious that computing re-
sources need a high-performance network processing within the communication
resources. The network processing is investigated as major part of communica-
tion resources in a high-performance processing system. Network processing
refers to the tasks performed on packets by network equipment, e.g., routers
and switches. These networking equipments are comprised mainly of network
elements that are called network processors (NPs).

This chapter presents a background in the area of the high-performance
computing systems, and the network processing. Section 2.1 presents two high-
performance computing systems: grid computing and reconfigurable computing.
Section 2.2 introduces the network processing and applications. Section 2.3
presents related work. Finally, Section 2.4 summarizes this chapter.



14 High-performance Processing Background

2.1 High-performance Computing Systems

In this section, we briefly present grid computing and reconfigurable computing.
We discuss the motivation for grid computing, its capabilities, the concept of
reconfigurable processors and their benefits.

2.1.1 Grid Computing

A well-known method to increase the performance of large scale applications
with inherent level of parallelism is to execute as many as possible parts of
the application in parallel. The exploitation of the parallelism available in
grid computing is a very attractive solution to execute different part of an
applications. This is because, computing system e.g., desktop computers,
servers in the grid can be used as computing resource with lower cost in
compared to the supercomputers. Grid computing has emerged as the next
generation parallel and distributed computing methodology, which aggregates
dispersed heterogeneous resources for solving various kinds of large-scale
parallel applications in science, engineering, and commerce. Grid computing,
peer-to-peer computing and traditional network computing can all be considered
to be part of the distributed computing context. Grid computing is defined in
literature as systems and applications that integrate and manage resources and
services distributed across multiple control domains1 [33].

Some resources may be used by all users of the grid while others may have
specific restrictions [69]. Figure 2.1 depicts the place that grid computing
occupies within the distributed computing environment.

Grid computing is similar in structure to standard network computing and peer-
to-peer (P2P). In standard network computing, users are members of a single
organization and a network administrator has access to all of them. In grid
computing, users/resource owners are members of many organizations, or may
be individual private elements. There are three main types of grids as follows:

• Computational grids: the computational grid focuses on dedicating re-
sources for computing power; i.e., solving equations and complex mathe-
matical problems. Machines participating in this type of grid are usually
high-performance servers [33].

• Data grids: the grid architecture is responsible for storage and provid-
ing access to large volumes of data, often across several organizations.

1- A collection of resources controlled by a single support staff.



2.1 High-performance Computing Systems 15

Distributed computing 
environments

Peer-to-peer
computing

Grid computing

ComputationalData ServiceNetwork 
computing

Figure 2.1: General overview of the distributed computing environment with
the place of grid computing.

Storage can be memory attached to the processor or it can be secondary
storage using hard disk drives or other permanent storage media. Mem-
ory attached to a processor usually has very fast access but is volatile.
Secondary storage in a grid can be used in interesting ways to increase
capacity, performance, sharing, and reliability of data.

• Service grids: the grid provides services that are not available on a single
grid node [33]. Service grid is a system that provides function, program
licence, resource and support dynamic creating, running, maintaining,
and canceling of applications [69].

Grid Capabilities

The most important capabilities of grid computing are as follows [33], [69]:

• Exploiting under-utilized resources: in most organizations, there are large
amounts of under-utilized computing resources. Most desktop machines
are busy less than 5% of the time. In some organizations, even the
server machines can often be relatively idle. Grid computing provides a
framework for exploiting these under-utilized resources, therefore has the
possibility of substantially increasing the efficiency of resource usage.

• Parallel CPU capacity: the potential for massive parallel CPU capacity is
one of the most attractive features of a grid. The common attribute among
such uses is that the applications have been written to use algorithms that
can be partitioned into independently running parts. A computationally



16 High-performance Processing Background

intensive grid application can be thought of as many smaller sub-tasks,
each executing on a different machine in the grid.

• Virtual resources and virtual organizations for collaboration: the users of
the grid can be organized dynamically into a number of virtual organiza-
tions, each with different policy requirements. These virtual organizations
can share their resources collectively as a larger grid.

• Access to additional resources: In addition to CPU and storage resources,
a grid can provide access to increased quantities of other resources and
to special equipment, software, licenses, and other services.

• Resource balancing: for the grid-enabled applications the grid can offer a
resource balancing effect by scheduling grid tasks on machines with low
utilization.

• Reliability: grid management software can automatically resubmit tasks
to other machines on the grid when a failure is detected. In critical
real-time situations, multiple copies of the important tasks can be run on
different machines throughout the grid.

2.1.2 Reconfigurable Processors

Reconfigurable computing is defined as the study of computation using reconfig-
urable devices [26]. Configuration and reconfiguration is the process of chang-
ing the structure of a reconfigurable device at the time of start-up and at run-time,
respectively. Reconfigurable devices, including field-programmable gate arrays
(FPGAs), contain an array of computational elements whose functionality is
determined through multiple programmable configuration bits. These elements
are known as logic blocks and are connected using a set of routing resources
that are also programmable [26].

It is possible to describe a design simply by writing logical expressions, a level
higher than gates. Register transfer level (RTL) design is a popular discipline for
describing these logical expressions. It allows the designer to express the design
by describing the logic between each pair of register stages. VHDL is one
popular programming language that supports RTL hardware descriptions [54].
VHDL is a strongly typed, Ada-based programming language that includes
special constructs and semantics for describing concurrency at the hardware
level. These concurrency constructs are new for most programmers and can be
a source of confusion for beginners. VHDL is not a case sensitive language.



2.1 High-performance Computing Systems 17

One can design hardware in a VHDL IDE (such as Xilinx) to produce the
RTL schematic of the desired circuit. After that, the generated schematic can
be verified using simulation software (such as ModelSim) which shows the
waveforms of inputs and outputs of the circuit after generating the appropriate
testbench. To generate an appropriate testbench for a particular circuit or VHDL
code, the inputs have to be defined correctly. The key advantage of VHDL
when used for systems design is that it allows the behavior of the required
system to be described (modeled) and verified (simulated) before synthesis
tools translate the design into real hardware (gates and wires). Another benefit
is that VHDL allows the description of a concurrent system (many parts, each
with its own sub-behavior, working together at the same time). VHDL is a
Dataflow language, unlike procedural computing languages such as BASIC, C,
and assembly code, which all run sequentially, one instruction at a time.

Hardware/software partitioning, is the process of dividing an application be-
tween a microprocessor component (software) and one or more custom copro-
cessor components (hardware) to achieve an implementation that best satisfies
requirements of performance, size, designer effort, and other metrics. Hard-
ware/software partitioning is a hard problem because of the large number of
possible partitions. In its simplest form, hardware/software partitioning con-
siders an application as comprising a set of regions and maps each region to
either software or hardware such that some cost criteria (e.g., performance)
is optimized while some constraints (e.g., size) are satisfied. A partition is a
complete mapping of every region to either hardware or software. Even in this
simple formulation, the number of possible partitions can be enormous. If there
are n regions and there are two choices (software or hardware) for each one,
then there are 2n possible partitions.

Reconfigurable computing is intended to fill the gap between hardware and
software, achieving potentially much higher performance than software, while
maintaining a higher level of flexibility than hardware. If we consider two
scales, one for the performance and the other for the flexibility, then the general-
purpose computers can be placed at one end and the ASIPs1 at the other end as
depicted in Figure 2.2.

Between the GPPs and the ASIPs are reconfigurable processors. GPP is more
flexible than reconfigurable processor because of the higher design effort en-
tailed for designing in hardware. Ideally, we would like to have the flexibility

1-A processor designed for only a single application is called an Application-Specific
Instruction-set Processor (ASIP). The instruction set of the application is directly implemented
in hardware.



18 High-performance Processing Background

General-
purpose 

processors

Reconfigurable 
processors

Application-
specific

instruction 
processors 

Fl
ex

ib
ili

ty

Performance

Figure 2.2: Performance versus flexibility in different architectures.

of the GPP and the performance of the ASIP in the same device. We would
like to have a device able to adapt to the application quickly. Therefore, a
reconfigurable processors can be such device to achieve both performance and
flexibility [26].

2.2 High-performance Network Processing

In this section, the network processing concept and performance modeling of
network processing using queuing theory is presented. Subsequently, packet
classification and Bloom filters as an instance application and solution in the
network processing are highlighted.

2.2.1 Network Processing

The bandwidth growth of networks increased almost exponentially in the recent
years and is expected to continue to do so for years to come. This has been
fueled by emerging new technologies that are capable of achieving higher



2.2 High-performance Network Processing 19

bandwidths. Consequently, new applications are being developed that take
advantage of the new capabilities. In turn, more consumers are starting to
use these applications and thereby further increasing the demand for higher
bandwidth. As networks become the infrastructure for information, interactive
data, real-time data, huge multimedia content transport, and many other services,
the technology of networks must cope with various requirements, but primarily
that of speed. High-speed networking refers to two aspects of speed: the links
transmission rates from multi-Mbps (106 bits per second) to multi-Gbps (109

bits per second) and the complexity and speed of the required processing due
to the number of networks, addresses, services, traffic flows, and so on. If we
examine the speed of network links over the years, we find a similar but a higher
growth pattern than that of processing capabilities. In computing, this growth
is considered to double after every 2 years (according to Moores law1 ). For
example, If we look at Ethernet bandwidths, we find a speedup of 104 in the
past 27 years (from 10 Mbps approved in 1983 to 100 Gbps expected to be
approved in 2010, as depicted in Figure 2.3) which is doubling the bandwidth
every 24 months [35].

(a) (b)

Figure 2.3: (a) Bandwidth growth on the Ethernet interface (the dot-line shows
the projection of bandwidth growth). (b) Transistor and MIPS (millions of
instructions per second) trends over time (source [75]).

However, if we examine the increase from 100 Mbps (approved in 1995) to 100
Gbps, it is doubling the bandwidth every 18 months. Ethernet bandwidth growth
is going according to Moore’s law. The technological advances must also be

1-Moore’s law: The prediction by Gordon Moore that the number of transistors on a
microprocessor would double periodically (approximately every two years).



20 High-performance Processing Background

accompanied by improved network processing capabilities within routers and
switches that connect the networks. Therefore, network processors have been
incorporated within these devices to cope with the continuously increasing de-
mand for higher performance. Consequently, the design of network processors
remains an ongoing research and development effort. A network processor
comprises a parallel programmable processor core with a number of memory
interfaces and special co-processors that are optimized for packet processing
[9], [88], [112]. The network processor differs from traditional microprocessors
in two ways:

1. The instruction set of an NP contains special instructions for particu-
lar operations, e.g., bit manipulation, CRC calculation, and search and
lookup operations.

2. Special hardware function blocks are present to accelerate specific packet
processing tasks.

Finally, a network processor can be utilized in two different planes that differ
in the speed and manner they handle incoming packets; namely data plane and
control plane. This model is depicted in Figure 2.4.

Control plane

Data plane

Physical interface

Low speed

High speed

Figure 2.4: Packet processing model in network processor.

In the data plane simple tasks are performed, and most packets follow the fast
path through the NP that required very little processing. In the control plane
exceptional packets and complex routines are handled [46]. Fast path packets
correspond to data plane tasks, while slow path packets correspond to control
plane tasks.



2.2 High-performance Network Processing 21

Network processor general requirements

The most important requirements in the network processor systems are given in
the following:

• Performance: By executing key computational kernels in hardware,
NPs must be able to perform many applications at wire speed. Network
processors must be able to support high bandwidth connections, multi-
ple protocols, and advanced features without becoming a performance
bottleneck.

• Programmability: Having software as a major part of the system allows
network equipment to easily adapt to changing standards and applica-
tions. The network processor should be easily programmable in order to
support customization of feature sets and the rapid integration of new and
existing technologies. In order to meet this demand, network processor
manufacturers must strive to supply programming and testing tools that
are easy to use. These programming tools should be based on a simple
programming language that allows for reuse of code wherever possible.
In addition, programming tools must provide extensive testing capabili-
ties that provide intelligent debugging features, such as descriptive codes
and definitions, as well as code level statistics for optimization [88].

• Fast time to market (TTM): Time to market has become a critical factor
in achieving success with network equipment, it is the time required for
system vendor to bring a product from demand to commercial availability
and is known as a factor that determined the success or failure of the
product in the market [32].

• Serviceability: Users are demanding services such as real-time video,
secure private networks and voice over IP, these will require lot of ser-
viceability at the access and edge network elements [9].

Network processor functionalities

Typical functions performed by network processors are summarized below:

• Lookup and pattern matching: This function compares packet header
fields with specific patterns to classify the type of packets, for example it
performs a table lookup to return the relevant table entry or determine
the type of incoming packets, whether it is an IPv4 or an IPv6 packet.



22 High-performance Processing Background

• Forwarding: This function is defined as determining the output path for
incoming packets. It is implemented using hardware prefix tree structure
and special hardware [2].

• Access control and queue management: Once packets are identified,
they are placed in appropriate queues for further processing. Packets are
also checked against security access policy rules to see if they should be
forwarded or discarded.

• Traffic shaping and control: Some protocols or applications require
that, as traffic is released to the outgoing wire or fiber, it is shaped
to ensure that it meets delay or delay variation requirements. Other
requirements specify the priority of traffic between different channels or
message types [102].

• Data manipulation: This is where the packet is modified in some way,
this could be decrementing the Time To Live (TTL) field in a IP packet,
recalculating the CRC check, performing packet segmentation and re-
assembly and encryption or decryption of packets.

Network processor implementation

Each network processor is combination of many different elements, that are
described by the following:

• The processing engine: The basic programmable unit in the network
processor is a processing engine (PE). The PE may be clustered in a
group of two or more PEs. Different network processor use different
architectures for their PEs. The PEs may be grouped into functional
blocks or can be independent. Moreover, next to network processors
sometimes co-processors or hardware accelerators are utilized. A hard-
ware accelerator is the finite state machine that operates independently
of the PEs and is called a functional unit. If a hardware accelerator is
programmable it is called a co-processor. The abstract model of network
processor is depicted in Figure 2.5.

• Exploiting parallelism: All network processors are using parallel tech-
niques and pipelining. Basically, They use three types of parallelism:

1. Instruction-level parallelism (ILP).

2. Thread-level parallelism (TLP).



2.2 High-performance Network Processing 23

Processing engine

Processing engine

Lookup engine

Co−processor

Memory manager

Switch 
fabric

SRAM

Special hardware

Host processor

SDRAM

Figure 2.5: Abstract model of network processor organization.

3. Packet-level parallelism (PLP).

In ILP, the compiler or hardware instruction scheduler determines simul-
taneous execution of program instructions. In TLP, different threads are
executed to avoid idle time in memory references and processing engines,
i.e., if a thread waits for the memory it is stalled and then another thread
is started. In PLP, a mechanism should be used for packet ordering to
allow parallel processing of packets.

• NP memory organization: A critical resource in NPs is the memory
organization. There are three types of memories in NPs which include:
instruction memory, packet memory, and route table memory. Instruction
memory is usually small because the number of instructions in NP is
low. Packet memory that handles the buffered arrival packets, queued,
modified packets and read forwarding packets must be designed carefully
with a minimum delay. Routing table memory includes routing entry
that is read by the NP. The routing table requires update operations and
lookups thus it must be designed as fast as possible. One solution for



24 High-performance Processing Background

mentioned aim is use intelligent data structure, hardware accelerator for
lookup, content addressable memory (CAM) and SRAM.

• Dedicated hardware: All network processors incorporate special hard-
ware and integrated co-processors to perform common networking tasks.
Typical hardware functionality include CRC calculation, queue manage-
ment, forwarding engine and lookup engine.

• Network interface: The most important feature next to a network pro-
cessor is the network interface. This is the point where packet enters and
exit the network processor.

2.2.2 Performance Modeling using Queuing Theory

Queuing analysis is an important tool in computer and network modeling. A
queue is defined as a collection of items in which only the earliest added item
is accessed. Basic operations are add/enqueue (to the tail) and delete/dequeue
(from the head). The delete operation returns the item removed. Queuing is the
method by which tasks are ordered to access a computer resource. The basic
queuing model is depicted in Figure 2.6. It can be used to model computer
systems or communication equipments [5].

Queue Processor

1/μ=

1/μ

w

N=

T = Waiting items

λ

 Service time

Arrival rate =

ρ=   Utilization

Resident items (items in the system)

Figure 2.6: Simple queuing model.

In Figure 2.6, λ, µ and ρ show arrival rate, service rate and utilization, respec-
tively. There are different kinds of queuing models as follows:

1. Single-server queues

2. Multiple-server queues

3. Network of queues



2.2 High-performance Network Processing 25

The single-server queue is the simplest queuing model in that the central element
of the model is a single server that provides some service to input items. If the
server is idle, an item is served immediately. Otherwise, an arriving item should
wait. When the server completes serving an item, the item departs. If there are
items waiting in the queue, the next one is immediately dispatched to the server
(see Figure 2.6). The multi-server queue is a generalization of the single server
queue where all servers share a common queue. It is assumed that all servers
are identical; thus, if more than one server is available, it makes no difference
which server is chosen for the item. Whenever a server is ready to serve and
items still reside in the queue, the item at the front of the queue is dispatched
to the respective server. If all servers are busy, a queue begins to form. The
multi-server queue model is depicted in Figure 2.7.

Queue

1/μ

1/μ

λ/

λ/

λ/

n

n

n

λ

1/μ

Server 1

Server 2

Server n

Arrival rate

Figure 2.7: Multi-server queuing model.

Kendall introduced a simple notation to characterize queuing models [5], [21],
[99]. It is a three-part code denoted as a/b/c. The first letter specifies the inter-
arrival time distribution, the second one represents the service time distribution
and the last letter specifies the number of servers. Some examples are: M/M/1,
M/M/c, M/G/1, G/M/1 and M/D/1, where the letter G shows a general
distribution, M for the exponential distribution (M stands for memoryless
property of exponential distribution), and D for deterministic times [5].

Networks of queues and the Jackson theorem

Queuing network analysis is a valuable tool in determining the performance and
operating characteristics of real-world networked systems. A queuing network
is a collection of two or more nodes where items are being serviced. Items
arriving at the network request service from one or more of the nodes and



26 High-performance Processing Background

then may leave the network [21]. A fundamental and simple characteristic of
queuing networks is whether they are open or closed. An open network allows
items to enter and leave the network. In a closed network, items are “trapped”
and circulate among the various nodes in the network.

An example of open and close queuing models is depicted in Figure 2.8 The
dashed box in the figures indicates the logical boundary of the queuing network.
The circles are the nodes where items receive service. The arrows indicate the
paths items may take within the network.

Processors Processors

 
Input 2

Input 1

Output 1

Output 2 

(a) An Open Network (b) A Close Network
(a)

Processors Processors

 
Input 2

Input 1

Output 1

Output 2 

(a) An Open Network (b) A Close Network
(b)

Figure 2.8: Closed and open queuing networks. (a) An open network. (b) A
closed network.

Classification of queueing networks is especially important. Many classes of
networks have no known closed-form solutions. A network might contain
different classes of input items. An example of this can be found in computer
systems where user jobs enter and exit the system but certain system-level jobs
are always present and circulate continuously within the system. This is a mixed
network. There are several analysis methods related to queuing models. These
methods have been divided into two types: exact and approximate [21]. The
exact method, means a solution that is exact with respect to the assumptions.
Approximate method means that the solution, more or less, corresponds to what
occurs in a (presumably) more accurate model of a network. One exact model
to analyze queuing networks is called Jackson network. Jackson model for open
queuing networks is normally used when the incoming tasks are of the same
task class. A Jackson network consists of M nodes that satisfy the following
conditions:

1. Each node consists of ci identical exponential servers (the server with
exponential service time distribution) where the service rate of the ith
node is µi.



2.2 High-performance Network Processing 27

2. Items arrive from outside the system to the ith node according to a
Poisson process1 with rate si. Items may also arrive from other nodes
within the network.

3. Items from node i are routed to node j with probability pij or leave the
network with probability 1−

∑M
j=1 pij .

The arrival rate λi to each node i from all sources (external and internal) is

λi = si +
M∑

j=1

pjiλj , i = 1, ...,M (2.1)

In this equation, si is the external arrival rate in each node, pji is the routing
probability between node j and node i, λj is arrival rate to node j. For each
network, we have M arrival equations and these equations form a solvable
linear system. For networks that satisfy the above conditions, Jackson proved
that networks can be described by a M/M/ci model with arrival rate λi and
service rate µi. An open Jackson network example is depicted in Figure 2.9.

s1

s2

11
p

p
21 p

13

p
20

p
30

p
32

p
12

Server 1

Server 2

Server 3

Figure 2.9: Open Jackson network.

We analyze it to find the network parameters. The arrival and service rate for the
servers and routing probabilities (that node 0 is assumed outside the network)
are: p11 = 0.05, p12 = 0.45, p13 = 0.5, p21 = 0.1, p20 = 0.9, p30 = 0.8,

1-Poisson process is an important stochastic process used in computer systems performance
evaluation. A Poisson stochastic process has the property that events are independent, and the
inter-arrival times of events can be described using the exponential distribution [47].



28 High-performance Processing Background

p32 = 0.2 s1 = 106 item/sec, s2 = 2 × 106 item/sec, µ1 = 1.5 × 106

item/sec, µ2 = 3× 106 item/sec, µ3 = 106 item/sec.

Using Equation (2.1), the arrival equation for each server is:

λ1 = s1 + 0.1λ2 + 0.05λ1

λ2 = s2 + 0.45λ1 + 0.2λ3

λ3 = 0.5λ1

(2.2)

Solving these linear equations in Equation (2.2) yields λ1 = 1327433 item/sec,
λ2 = 2610619 item/sec, λ3 = 663717 item/sec. In the Jackson network
[53], [114], important parameters are: the mean number of items (mean queue
length) and mean resident time in network (response time). The mean number
of items in each node i (Ni) with utilization ρi is: Ni =

ρi

1− ρi
. Therefore, the

total mean number of items in the network is:

N̄ =
M∑
i=1

Ni =
M∑
i=1

ρi

1− ρi
(2.3)

The mean resident time (response time) in the network of an item is:

Ts =
N̄

λ
=

1
λ

M∑
i=1

ρi

1− ρi
=

1
λ

M∑
i=1

λi

µi − λi
(2.4)

In the Jackson network for optimal capacity allocation, we assume to have
control over the service rates µ1, ..., µM with the constraint that the total service
capability is fixed to a constant value c as follows: c =

∑M
i=1 µi. For a given

set of arrival rates λi, the optimal set µi that minimizes the average number of
items in the network N̄ =

∑M
i=1Ni is [53]:

µi = λi +
√
λi∑M

i=1

√
λi

(c−
M∑

j=1

λj) (2.5)

Jackson model for open queuing networks is normally used when the incoming
tasks are of the same task class with networks of single-server queues having
exponentially distributed service times.

2.2.3 Packet Classification

Traditionally, routers forward packets based on the destination address in the
packet. The support of many different services such as Quality of Service (QoS),



2.2 High-performance Network Processing 29

Virtual Private Network (VPN), policy-based routing, traffic shaping, firewalls,
and network security, increases the importance of packet classification. In
order to provide these services, the router must categorize the incoming packets
according to different criteria. These criteria are determined based on one or
more fields in the packet header. Packet header fields include destination and
source IP addresses, the protocol type, and the destination and source port
numbers is depicted in Figure 2.10.

Protocol
8 bits 32 bits

Source IP Destination IP
32 bits16 bits16 bits

Source port Destination port address address

Transport layer Network layer

Figure 2.10: Important fields that are used in packet classification algorithms.

Packet classification can be seen as the categorization of incoming packets
based on their headers according to specific criteria that examine specific fields
within a packet header. The criteria are comprised of a set of rules that specify
the content of specific packet header fields to result in a match. A packet
classifier can be implemented in either software or hardware. An example of a
real classifier in four dimension is presented in Table 2.1. In this table, the third
column ‘eq’ and ‘gt’ keywords are operations that mean equal and greater than.

Rules Destination IP (address mask) Source IP (address mask) Port No. Protocol No. Action
R1 192.168.190.69 255.255.255.255 192.168.80.11 255.255.255.0 * * Deny
R2 192.168.3.0 255.255.255.0 192.168.200.157 255.255.255.255 eq www tcp Deny
R3 192.168.198.4 255.255.255.255 192.168.160.0 255.255.255.0 gt 1023 udp Permit
R4 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 * * Permit

Table 2.1: Sample classifier rules.

In this classifier, the first rule R1 has the highest priority and rule R4 has the
lowest priority. An examples of packet classification is presented in Table 2.2.

Packet Header Destination Address Source address Port No. Protocol No. Action
P1 192.168.190.69 192.168.80.11 www tcp Deny
P2 192.168.3.0 192.168.200.157 www udp Permit
P3 192.168.198.4 192.168.160.10 1025 tcp Permit

Table 2.2: Example of packet classification.

The packet classification problem is inherently hard from a theoretical stand-



30 High-performance Processing Background

Rules Destination IP (address mask) Source IP (address mask) Port No. Protocol No. Tuple space
R1 192.168.190.69 (255.255.255.255) 192.168.80.11 (255.255.255.0) * * [32,32,0,0 ]
R2 192.168.3.0 (255.255.255.0) 192.168.200.157 (255.255.255.255) eq www tcp [24,32,2,1]
R3 192.168.198.4 (255.255.255.255) 192.168.160.0 (255.255.255.0) gt 1023 udp [32,32,1,1]
R4 193.164.0.0 (255.255.0.0) 193.0.0.0 (255.0.0.0) eq www udp [16,8,2,1]
R5 192.168.0.0 (255.255.0.0) 192.0.0.0 (255.0.0.0) eq www tcp [16,8,2,1]
R6 0.0.0.0 (0.0.0.0) 0.0.0.0 (0.0.0.0) * * [0,0,0,0]

Table 2.3: Simplified example of rule classification.

point [19]. It has been shown that the packet classification requires either
O(log

(
N (K−1)

)
) processing time and linear memory size, or log(N) process-

ing time and O(NK) memory size, where N is the number of rules, and K
is the number of fields in header that used in rules [19], [67]. Most practical
solution either use linear time to search through all rules sequentially, or use
a linear amount of parallelism[19]. In general, there have been two major
solutions for packet classification: hardware, and software. A few pioneering
groups of researcher offered a collection of algorithmic solutions [20], [50],
[51], [67], [96], [106]. There are some limitation to meet a good performance
in high speed link in algorithmic solutions, therefore, architectural solution to
the problem were proposed. These solutions are as follows: exhaustive search
[51], [106], decision tree, grid-of-tries [96], [98] decomposition [51], and tuple
space search.

Tuple space search

A high-level approach for multiple field search employs tuple spaces with a
tuple representing information in each field specified by the rules. Srinivasan,
et. al., introduced the tuple space approach and the collection of tuple search
algorithms in [97], [98]. We provide a simplified example rule classification
on five fields in Table 2.3. Address prefixes cover 32-bit addresses and port
ranges cover 16-bit port numbers. For address prefix fields, the number of
specified bits is simply the number of non-wildcard bits in the prefix. For the
protocol fields, the value is simply a boolean: ‘1’ if a protocol is specified, ‘0’
if a wildcard is specified [98], [106]. The number of specified bits in a port
range are less straightforward to define. The authors introduced the concept
of nesting levels and Range-IDs to define the tuple value for port ranges. The
nesting level specifies the layer of the hierarchy and the Range-ID uniquely
labels the range within its layer. In this manner, all port ranges can be converted
to a (Nesting level, Range-ID) pair. We present in the following an example
to illustrate Range-IDs. The full range, in this example (0-65535) always has



2.2 High-performance Network Processing 31

0

1

2

Range−ID
(0, 65535)

(1024, 65535)

(80, 80)

Nesting level

Figure 2.11: Assigning values for ranges, based on the Nesting Level and the
Range-ID.

the id 0. The two ranges at level 1 namely, (0, 1023) and (1024, 65535) in our
example receive id 0, and 1, respectively. The example of mapping a port range
to a nesting level and a Range-ID for Table 2.3 is depicted in Figure 2.11.

In the following, we illustrate how a search key is constructed from a packet
based on a tuple. A search key for the tuple [8, 24, 2, 0, 1] is constructed by
concatenating the first octet of the packet source address, the first three octets
of the packet destination address, the Range-ID of the source port, the range
at nesting level 2 covering the packet source port number, the Range-ID of the
destination port range at nesting level 0 covering the packet destination port
number, and the protocol field. Finally, all algorithms using the tuple space
approach involve a search of the tuple space or a subset of the tuples in the tuple
space.

2.2.4 The Bloom Filter Concept

A Bloom filter is a simple space efficient randomized data structure to represent
a set in order to support membership queries. It was introduced by Burton
Bloom [25], [65], [95]. A Bloom filter is frequently utilized in network process-
ing (areas), such as packet classification, packet inspection, forwarding, P2P
networks, and distributed web caching [27], [30], [39]. The major variations
of Bloom filters include the following: compressed Bloom filter [76], counting
Bloom filter [43], distance-sensitive Bloom filter [60], Bloom filter with two
hash functions, space-code Bloom filter [64], spectral Bloom filter [34] and
dynamic Bloom filter [49] that are utilized in different network applications
[49].



32 High-performance Processing Background

Standard Bloom filter

The elements of set S are (x1, x2, ..., xn) is represented by an array V compris-
ing m bits that are initially all set to 0. A set of k independent hash functions
h1, h2, ..., hk (each with an output range between 1 and m) is utilized to set
k bits in array V at positions h1(x), h2(x), ..., hk(x) for all x in set S. More
precisely, for each element x ∈ S, the bits at positions hi(x) are set to 1 for
1 ≤ i ≤ k. Moreover, a location can be set to 1 multiple times. To verify
whether an item y is a member of the set S, the same set of hash functions is
utilized to determine hi(y) (for 1 < i < k) indicating the locations in array V
to be checked whether their content is a 1. If one of these location yields a 0, y
is certainly not a member of the set S. If all locations yield a 1, there is a high
probability that y is a member of the set S (positive). However, as increasingly
more bits in array V are set to 1, one can imagine that the probability of a false
positive increases. It must be clear now that there is an inverse relation between
the number of bits in the array and the false positive rate. In the extreme case,
when all bits in the array are set to 1, every search will yield a (false) positive.
The false positive probability is given as follows:

pf =

(
1−

(
1− 1

m

)kn
)k

≈
(

1− e
−kn
m

)k
(2.6)

In this equation, n represents the number of elements, m represents the number
of bits in the bit array and k represents the number of hashing functions. For a
given m and n, the value k (the number of hashing functions) that minimizes
the probability is as follows:

k =
m

n
ln2 ≈ 0.7

m

n
(2.7)

An example of a Bloom filter is depicted in Figure 2.12.

Figure 2.12 depicts the creation of a Bloom filter for a set of two items R1 and
R2 and the subsequent testing whether P1 and P2 are part of the set. Each
item Ri is hashed k times (using k independent hashing functions) and the
corresponding bits are set to 1. To check whether P1 or P2 is member of
the set, they are hashed with the same k hashing functions to determine the
locations in the array to check whether these locations were set. For P1, it is
clear that it is not part of the set.



2.2 High-performance Network Processing 33

0 0 0 0 0 0 0 0 0 00 0

0 1 0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 1 0

0

1 1

11

2
0

3
0
1
2

0
2
0
1
0

R2

R1 R2 R3

R1
R2

R3 R4

R4

1 R3

Address

1
2
3
4
5
6
7

8
9

10
11
12

R1

R2

R3

(A)

R4

R1 R2

P1 P2

R4

R1

 (B)

Figure 2.12: An example of Bloom filter array and its use.

Counting Bloom filter

The standard Bloom filter works fine when the members of the set do not change
over time. When they do, adding items requires little effort since it only requires
hashing the additional item and setting the corresponding bit locations in the
array. On the other hand, removing an item conceptually requires unsetting the
‘1’s in the array, but this could inadvertently lead to removing a ‘1’ that was the
result of hashing another item that is still member of the set. To overcome this
problem, the counting Bloom filter was introduced [43]. In the counting Bloom
filter, each bit in the array is replaced by a small counter. When inserting an
item, each counter indexed by the corresponding hash value is incremented
and, therefore, a counter in this filter essentially represents the number of
items hashed “to it”. When an item is deleted, the corresponding counters
are decremented. In the following, we utilize c(i) to denote the counter value
associated with each ith counter. Considering a Bloom filter for n items, with
k hashing functions, and m counters, the probability that the ith counter is
incremented j times is given as a binomial random variable in the following:

p (c(i) = j) =
(

nk
j

)(
1
m

)j (
1− 1

m

)nk−j

(2.8)

When using n-bit counters, an n-bit counter will overflow if and only if it
reaches a value of 2n. The analysis performed by Fan, et al., [43] shows that a
4-bit counter is adequate for most applications. The probability for 4-bit counter
to overflow is:

p (maxi〈c(i) ≥ 16〉) ≤ 1.37× 10−15m (2.9)



34 High-performance Processing Background

2.3 Related Work

In this section, we take a brief look at previous works regarding the collaboration
of reconfigurable processors in grid computing and network processing.

2.3.1 Collaboration of Reconfigurable Processors in Grid Com-
puting

In [77], the design and implementation of a metacomputer based on reconfig-
urable hardware was presented. The Distributed Reconfigurable Metacomputing
(DRMC) is defined as “the use of powerful computing resources transparently
available to the user via a networked environment”. The DRMC provides an
environment in which computations can be constructed in a high-level manner
and executed on clusters containing reconfigurable hardware. In the DRMC
architecture, applications are executed on clusters using the condensed graphs
model of computation that allows the parallelism inherent in applications to be
executed by representing them as set of graphs.

In [31], a limited flooding approach for mobile ad hoc networks was proposed
that utilized neighbors information to limit broadcast redundancies. It reduced
control overhead of ad hoc routing protocols and introduced some benefits
including efficient flooding, density, and mobility adaptation. A set of rules and
guidelines for the implementation of Distributed Processing Network (DPN) as
the basis for a dynamic reconfigurable architecture have been presented in [111].
The DPN presents the general architecture to solve complex problems using
reconfigurable computing.

Performance of reconfigurable architectures for image processing applications
was presented in [23]. The impact of hardware capacity, reconfiguration time,
memory organization, and bus bandwidth of FPGA-based systems on the per-
formance were studied. A speedup of up to 87 has been achieved over a GPP.
Performance of reconfigurable elements for gray level co-occurrence matrix
(GLCM) and Haralick texture feature for image sizes 512× 512, 1024× 1024
and 2048× 2048 was presented in [103]. The speedups of 4.75 and 7.3 were
obtained when compared with a general-purpose processor for GCLM and
Haralick co-occurrence matrix, respectively. The target hardware for this work
was Celoxica RC1000-PP PCI based FPGA development board equipped with
a Xilinx XCV2000E Virtex FPGA. In addition, a co-occurrence matrix media
kernel has been implemented on the various FPGA devices such as Virtex2
and Spartan3 and on a media-enhanced GPPs using MMX technology in [55].



2.3 Related Work 35

Minimum speedups of 20 were obtained using FPGA implementations over
media-enhanced GPPs, while the maximum speedups exceeds 100.

A performance model for fork-join class and Synchronous Iterative Algorithm
(SIA) was presented in [93]. They considered division of computation between
the workstation processor and the reconfigurable unit. They focused on algo-
rithms and applications that fit into the fork-join class and SIAs types. The
2D-FFT application has been implemented on both the standard cluster and
the prototype Adaptable Computing Cluster (ACC) in [110]. The ACC is an
architecture that attempts to improve high-performance cluster computing with
FPGAs, but not by merely adding reconfigurable computing resources to each
node. Rather, by merging cluster and reconfigurable technologies and enhanc-
ing the commodity network interface. A system infrastructure that allows local
mobile devices to interact with the grid is introduced in [48]. A proxy with the
ability of dual communication to transfer the request from the mobile device to
the grid is the main part of that architecture.

2.3.2 Network Packet Processing

Several research groups proposed a collection of software and hardware solu-
tions in packet classification area[19], [51], [67], [106]. These solutions are:
exhaustive search, decision tree, grid-of-tries, decomposition and tuple space
search [51], [98], [106]. Many algorithms exist in the packet classification area
and we discuss here only those algorithms that are related to our work. In [96],
[97], [98], were presented the tuple space approach and the collection of tuple
search algorithms. A high level approach for multiple field search employs
tuple space. A tuple defines the number of specified bits in each field of the rule.
The tuple-based algorithms utilize traditional hashing system. In [30], a cache
design based on the standard Bloom filter is investigated and has been extended
to support aging (adding the ability to evict stale entries from the cache), bound
misclassification rates, and use multiple binary predicates. It examines the exact
relationship between the size and dimension of the number of flows that can
be supported and the misclassification probability incurred. Additionally, it
presents extensions for gracefully aging the cache overtime to minimize misclas-
sification. In [39], [95], an extended version of the Bloom filter is introduced.
It presents a novel hash table architecture and lookup algorithm and converts
a Bloom filter into a counting Bloom filter and associated hash bucket which
improves the performance over a standard hash table by reducing the number
of memory accesses needed for the most time-consuming lookups. It needs to
reconsider all the items for each inserted item that consequently leads to longer



36 High-performance Processing Background

processing time. In [40], [39], an approach to packet classification which com-
bines architectural and algorithmic techniques is presented. The starting point
is crossproduct algorithm which is fast but has significant memory overhead
due to the extra rules needed to represent the crossproducts. It modifies the
crossproduct method to reduce the memory requirement. Unnecessary accesses
to the off-chip memory are avoid by filtering them through on-chip Bloom
filters.

Compressed Bloom filters were introduced in [76], which improved perfor-
mance when the Bloom filter is passed as a message in a distributed protocols.
The author investigated compressed Bloom filter for distributed proxy web
caching and showed that by using compressed Bloom filters, proxies can re-
duce the number of bits broadcast, the false positive rate, and the amount of
computation per lookup.

In [117], a hash architecture called a Multi-predicate Bloom-filtered Hash
Table (MBHT) using parallel Bloom filters is presented. It is generated off-
chip memory addresses in the base-2x number system, x ∈ {1, 2, ...}, which
removes the overhead of pointers. Using a larger base of number system, an
MBHT reduces on-chip memory size. A SPSwitch as a novel switching engine
to make wire speed forwarding decisions on flat information labels introduced
in [42]. It has been addressed some part of scalability issues in a data-oriented
forwarding layer for state reduction and line speed operations. SPSwitch has
been designed based on the Bloom filter systems. In [41], introduced the
retouched Bloom filter (RBF). The main idea is to remove each false positive
by resetting a carefully chosen bit in the bit vector that makes up the Bloom
filter. It analytically showed that the trade-off between false positives and false
negatives is at worst neutral, on average, when randomly resetting bits in the
bit vector, whether these bits correspond to false positives or not. In [57], [58],
[59], a two-stage pipelined Bloom filter was proposed for network intrusion
detection. It is shown that the smaller number of hashing functions implemented
in the first stage of a pipelined Bloom filter, the more the power saving is. The
authors also examined three type of hashing functions to observe the effect of
power saving. The challenge in the two-stage pipelined Bloom filter is related
to determine number of hashing functions in each stage. For each incoming
key the configuration (number of hashing functions) in each stage should be
changed or number of hashing function can be fixed. In the first case, some
configuration overheads is needed and in the second case the configuration
does not operate efficiently. In [86], the power, latency, and area characteristics
for two counting Bloom filters implementations using full custom layouts in a
commercial 0.13 µm technology were investigated. Their first implementation



2.3 Related Work 37

is based on a SRAM array of counts and the second is based on an array of
linear feedback shift register counters.

In [109], ASAN (Active System Area Network) is presented as a project dealing
with the combining the networking with computing together. They have studied
the ways to build a much more powerful network interface which is capable of
doing a lot of networking related computing task. The main idea is to utilize the
FPGA to construct active SAN that can perform the computation together with
communications when data is in transit. They have got good results by making
experiments on a Myrinet base system. The Active SAN focuses in the SAN
architecture to enhance the performance of cluster computer only. In [116], the
architecture for QoS-enable router and grid-oriented supercomputer (AQRGS)
focuses on constructing a new architecture for emerging grid applications and
at the same time, improving the performance of the grid node supercomputer.
It utilizes the network processor technology to offload the communication
overhead from the CPUs and improve the computing performance of the router.

In [82], the StepNP is introduced an exploratory network processor simulation
environment for exploring applications, multiprocessor network processing
architecture, and system on chip (SOC) tools. The StepNP is modeled at
the functional and transaction level and not at cycle accurate level. In [87],
a queuing model analysis is presented as a valuable tool for investigation
the performance and operating characteristic of communication networks and
computer systems. In [71], the optimal capacity allocation is considered in a
clustered web system environment. It formulates the problem as a nonlinear
program to minimize a convex separable function of the capacity assignment
vector. The solution can be applied in e-commerce service environment that
involves multiple clusters of machines and each cluster handles a particular set
of functions. An approximation method to solve the problem was developed. In
[83], the assignment of the service capacity in a queuing network is considered.
The author studies systems with several types of incoming items, general service
time distributions, stochastic or deterministic routing, and a variety of service
regimes. The residual-life approximation technique for the distribution of
queuing times was utilized. In [68], [108], analytical modeling using mean
value analysis (MVA) has been used in shared memory multi-processor systems.
This technique is shown to be efficient and reasonably accurate for large systems.
It used the closed queuing model and an MVA analysis. In [72], J. Lu, et. al.,
proposed a performance analysis of network processor-based application design
using the closed queuing model and an MVA algorithm.



38 High-performance Processing Background

2.4 Summary

In this chapter, some high-performance processing systems in the networked
and grid environments were introduced. These high-performance processing
systems focused on computing and communication. In the high-performance
computing systems, the capabilities of grid computing and reconfigurable archi-
tectures were presented. Reconfigurable architectures combined the flexibility
of a general-purposed system with the high-performance of application specific
systems. We also explained the grid computing concept and its capabilities. The
most important capabilities of grid computing are: exploiting under-utilized
resources, parallel CPU capacity, and reliability.

In the communication, we focused on network processors, and Bloom filters
to achieve higher performance in the network processing application such as
packet classification. Furthermore, we presented the queuing modeling to
evaluate the performance of network processors.



Chapter 3

Collaborative Reconfigurable
Processors on Grid Computing

I
n the previous chapter, we introduced and described in details the advan-
tages of reconfigurable processors and grid nodes as a computing resources
in a high-performance processing system. Reconfigurable computing has

proven to be a promising technology to increase the performance of certain
algorithms in scientific and engineering applications in recent years. At the
same time, in grid computing, a large pool of heterogeneous computing re-
sources is geographically dispersed over a large network such as the Internet. A
technique to achieve high-performance with flexibility is to utilize collaboration
of reconfigurable processors in grid computing.

In this chapter, we propose Collaboration of Reconfigurable processors in Grid
Computing (CRGC) (in Section 3.1). We analyze a lower and upper bounds
of performance for this CRGC (in Section 3.2). In Section 3.3, we present the
mapping of several computationally intensive multimedia kernels such as the
2D Discrete Wavelet Transform (DWT) and the co-occurrence matrix using
the proposed approach. To investigate our idea, we extend a version of grid
simulator (GridSim v4) that we termed the Collaborative Reconfigurable Grid
Simulator (CRGridSim) to support reconfigurable processor modeling and the
neighborhood concept on grid environment (in Section 3.4). We summarize this
chapter in Section 3.5.



40 Collaborative Reconfigurable Processors on Grid Computing

3.1 The Concept of Collaborative Reconfigurable Pro-
cessors on Grid

In grid computing, a large pool of heterogeneous computing resources is geo-
graphically dispersed over a large network, e.g., the Internet. Our approach to
achieve high-performance and flexibility is to utilize reconfigurable processors
in grid computing. We termed the utilization of reconfigurable processors that
collaborate together in a grid environment Collaborative Reconfigurable Grid
Computing (CRGC). The general view of CRGC is depicted in Figure 3.1.
This figure shows that the processing elements are the part of resources on
grid computing. Each processing element can be either GPP or Reconfigurable
Element (RE) also known as reconfigurable processor. The processing capa-
bility of GPP processing element in the simulation environment is defined in
the form of Million Instructions Per Second (MIPS) for Standard Performance
Evaluation Corporation (SPEC) benchmark. Moreover, the RE is defined by
its specifications such as reconfiguration time, reconfiguration file size, and its
speedup over a GPP. It should be noted that the RE is implemented as FPGA to
execute an amenable application with inherent level of parallelism. The same
application can take much longer time when executed on a GPP.

WAN

Wired network

Wired network
RE

RE

GPP

GPP
RE RE

GPP

RE

GPP

Figure 3.1: A general view of a collaborative grid environment with recon-
figurable processors and general-purpose processors (GPPs). The lightblue
box shows GPP and box with the circle inside shows GPP augmented with RE
(reconfigurable element).

Processing elements offload part of their computational workload to reconfig-



3.1 The Concept of Collaborative Reconfigurable Processors on Grid 41

urable computing resources. In this type of computing, various software codes
targeting different processing architectures are stored either in centralized or
decentralized manner and must be distributed to the computing resources when
needed.

In traditional grid computing, the grid is responsible for sending a task to other
processing elements. The task submission is performed in the following ways
[33]:

• Scheduling: The grid includes a task scheduler that automatically finds
the most appropriate processing elements on which to run any given task
that is waiting to be executed. Schedulers react to the current availability
of resources on the grid.

• Reservation: The grid reserves the processing elements in advance to
improve the quality of service.

• Scavenging: In a scavenging grid, each processing element that becomes
idle would typically report its idle status to the grid management element.

On the other hand, in CRGC, processing elements communicate and collabo-
rate together based on the neighborhood concept [8], [15], [115]. Each grid
processing element requests assistance from neighboring processing elements.
The tasks can be inserted into the grid through existing grid elements. In our
implementation of the neighborhood concept, the neighbor processing elements
are direct neighbor to a requesting grid element. The direct neighbor is defined
as a grid element that is physically (or geographically closely) located next to
the current requesting grid element. The network backbone can be seen as a col-
lection of primitives. A primitive is defined as a set of collaborator processing
elements, requesting processing elements with related communication links and
its network equipments, e.g., routers and switches. Two important primitives
are depicted in Figure 3.2.

Figure 3.2 (a) depicts a primitive with one requesting processing element and
n collaborating processing elements. In this figure, resource 0 is requesting
processing element and resource 1 to resource n are collaborator processing
elements. The primitive in Figure 3.2 (a) includes (resource 0, router 0, resource
1, router 1, resource n, and router n). A primitive with two requesting processing
elements and one collaborating processing element is depicted in Figure 3.2 (b).
The neighborhood concept with active primitives in the real grid is depicted in
Figure 3.3.



42 Collaborative Reconfigurable Processors on Grid Computing

Router n

Router 0

Router 1

Resource n
Resource 2

User 0

Router 2

Router 0

(B)( A)

User 0
User 1

Resource 0
Resource 0

element)
(main processing

Resource 1
(collaborator)(collaborator)

(collaborator)

(main processing (main processing
element 1)

Router 1
Resource 1

element 0)

(a)

Router n

Router 0

Router 1

Resource n
Resource 2

User 0

Router 2

Router 0

(B)( A)

User 0
User 1

Resource 0
Resource 0

element)
(main processing

Resource 1
(collaborator)(collaborator)

(collaborator)

(main processing (main processing
element 1)

Router 1
Resource 1

element 0)

(b)

Figure 3.2: Basic primitives that are utilized in the neighborhood concept. (a) A
primitive with one requesting processing element and n collaborator processing
elements. (b) A primitive with two requesting processing elements and one
collaborator processing element.

Based on Figure 3.3, we can observe that each user and the related requesting
processing element can find the correspondent neighbor processing element.
For example, user 0 and resource 0 can operate based on primitive in Figure 3.2
(a). From Figure 3.2, in the first scenario, resource 0 is assisted by resource 1
and in the second scenario, resource 0 is assisted by resources 1 and 2. We have
a similar condition for user 1, in this case resource 3 gets help from resource 5.



3.2 Performance Model Analysis 43

Resource 0

Resource 1

Router 1

Resource 2

Resource 3

Router 3

Router 5

Resource 5

Router 0

Router 2

Router 4

Resource 4

User 0

User 1
User 2

Figure 3.3: Active primitives in the sample network.

3.2 Performance Model Analysis

This analysis is performed to determine the performance bounds in term of
execution time for the collaborative reconfigurable processors on grid envi-
ronments. The maximum and minimum execution times show the lower and
upper bounds of performance, respectively. Table 3.1 describes all notations
and symbols which have been used in these equations.

The total processing time in a non-collaborative system without inter-task
dependency can be represented as Equation (3.1).

tnon−col =
n∑

i=1

MitGPP (3.1)

where tnon−col, Mi, and tGPP are the processing time in non-collaboration
system, the number of instructions of subtask i (each submitted task is broken
to several subtasks), and the processing time of each instruction by a GPP,
respectively. In addition, the total processing time in a collaborative system is
defined as Equation (3.2). This is because, in the CRGC system some of tasks
is processed by GPP and others are distributed among collaborator processing
elements. Therefore, the total processing time is the summation of processing
time by GPP and maximum of processing time by the collaborator processing
elements.



44 Collaborative Reconfigurable Processors on Grid Computing

Symbol Definition
Bw Network bandwidth
k Speedup factor of a reconfigurable processor over a GPP
kj Speedup factor of reconfigurable processor j over a GPP
kmax Maximum speedup factor of a reconfigurable processor over a GPP
Mi Number of instructions for subtask i

n Number of subtasks (gridlets)
n1 Number of subtasks that can be processed by neighbor collaborators
n1j Number of processed subtasks by collaborator j

npkt Number of packets
p Number of collaborator processing elements
rs Reconfiguration speed
rfs Reconfiguration file size
S Size of all subtasks (Bytes)
si Size of subtask i (Bytes)
sPkt Packet size
tcol Total execution time in a collaboration system
tcom Communication time between different processing elements
tGPP Processing time for each instruction by a GPP
tmax Maximum execution time of an application on CRGC
tmin Minimum execution time of an application on CRGC
tnon−col Total execution time in a non-collaboration system
tPEj Processing time of a subtask using collaborator processing element j

tptt Transmission time of a packet
tRE Processing time for each instruction by a RE that is equal to tGPP /k

trec Reconfiguration time

Table 3.1: Performance analysis symbols and their definitions.

tcol =
∑n−n1

i=1 MitGPP +max
{
tPEj

, j = 1..p
}
and n1 =

∑p
j=1 n1j (3.2)

where tcol is the processing time in a collaborative system, n1 is number of
subtask that is processed by the collaborator processing elements, and n1j is
a set of processed subtasks by an individual collaborator element. Moreover,
tPEj represents the processing time using collaborator processing element j
that is defined using the following Equation (3.3).

tPEj
=
(∑endj

i=startj
MitREj

)
+ trecj

+ tcomj
=

∑endj

i=startj
Mi

kj
tGPP +

rfsj

rsj
+ tcomj

(3.3)



3.2 Performance Model Analysis 45

In this equation, the subtasks from startj to endj (endj − startj = n1j) are
processed by collaborator j. The size of the reconfiguration file and the recon-
figuration speed are represented by rfs and rs, respectively. In addition, the term
trecj is reconfiguration time needed to reconfigure the collaborator processing
element j. If the submitted tasks cannot distribute on the collaborator elements
then tcom = 0, trec = 0, tcol = 0, and n1 = 0 in Equation (3.3). As a result,
tPEj = 0 and Equation (3.2) will be the same as the Equation (3.1). Therefore,
the main processing element (GPP) executes all submitted subtasks without
any assistance from neighbor collaborator processing elements. Consequently,
the lower bound of performance in term of maximum execution time (tmax) is
represented as:

tmax =
n∑

i=1

MitGPP = tnon−col (3.4)

To evaluate the upper bound, Equation (3.2) should be minimized. In this case,
some submitted tasks are executed by reconfigurable processors and the rest
are executed on main processing element. The upper bound of performance in
term of minimum execution time is represented as follows:

tmin = min
{∑n−n1

i=1 MitGPP +max
{
tPEj , j = 1..p

}}
(3.5)

The minimization of this equation depends on different parameters such as
number of collaborators elements, length and number of submitted subtask, the
reconfiguration time, the bandwidth of the network, the propagation delay, and
scheduling algorithm. To simplify the math analysis, we utilize the transitivity
property of inequalities to achieve the upper bound of performance [45].

tmin > min{tPEj
} = min

{∑endj

i=startj
MitREj

+ trecj
+ tcomj

}
=

min

{∑endj

i=startj
Mi

kj
tGPP +

rfsj

rsj
+ tcomj

}
and endj − startj = n1j and j = 1..p

(3.6)

We make some reasonable assumptions, for e.g., trec and tcom are assumed to
be very small and these parameters as said before can be ignored. Consequently,
Equation (3.6) is represented as:



46 Collaborative Reconfigurable Processors on Grid Computing

tmin > min

{∑endj

i=startj
Mi

tGPP

kj
, j = 1..p

}
(3.7)

The right side of Equation (3.7) includes endj − startj = n1j subtasks while
for p collaborator processing elements with n subtasks this equation is rewritten
as follows.

min

{∑endj

i=startj
Mi

tGPP

kj
, j = 1..p

}
≈ 1
p
min

{∑n
i=1Mi

tGPP

kj
, j = 1..p

}
(3.8)

The equation above is minimized when the denominator of the second term of
the inequality has the maximum value. The maximum value is achieved when a
reconfigurable processor with the highest speedup is employed. We can rewrite
the Equation (3.7) as follows.

tmin >
1
p

{∑n
i=1Mi

tGPP

max{kj}

}
=

1
kmaxp

{
∑n

i=1MitGPP } =
1

kmaxp
tnon−col

(3.9)

This equation shows the lower bound for the execution time in a collaborative
system is kmax times less than the execution time in a non-collaborative system,
where kmax is maximum speedup of a reconfigurable processor over a GPP.
Using Equation (3.4) and Equation (3.9) the lower and upper bounds of the
performance is expressed using the following equation.

1
kmaxp

tnon−col < tcol ≤ tnon−col (3.10)

3.3 Multimedia Kernels

In this section, we briefly describe a motivation why we selected multimedia
kernels, and subsequently the two chosen multimedia kernels: the 2D DWT
and the co-occurrence matrix.



3.3 Multimedia Kernels 47

3.3.1 Motivation on Architectures for Multimedia Kernels

In this section the main motivation to propose collaboration of reconfigurable
processors in grid computing for multimedia kernels is explained.

Many architectures ranging from application-specific processors to domain-
specific processors have been proposed to process multimedia applications [89].
The Application-Specific Integrated Circuits (ASIC) approaches offer the ad-
vantages of high-performance, but their design and debugging phases involve
a significant amount of time. Because the development cost cannot be spread
across multiple applications. In addition, they are suitable only for specific func-
tions, and future extensions are not possible without redesigning the hardware.
The GPPs enhanced with Single-Instruction Multiple-Data (SIMD) extensions
provide programmability compared to dedicated architectures, while GPPs
equipped with SIMD extensions need many overhead instructions such as
packing/unpacking and data re-shuffling instructions [90].

Advanced dedicated multimedia processors use Very Long Instruction Word
(VLIW) architectural schemes to exploit a high degree of Instruction-Level Par-
allelism (ILP) [62]. This is because VLIW architectures have many advantages
compared to superscalar processors. For example, VLIW processors employ
static instruction scheduling performed at compile-time rather than dynamic
scheduling performed at run-time as in superscalar processors, which requires
much more hardware [44]. Furthermore, hardware does not need to determine
which instructions can be issued in parallel.

Another related dedicated architecture to process multimedia applications is the
Imagine processor [80], which has a load/store architecture for 1D streams of
data records. Imagine is a stand-alone multimedia coprocessor. The focus of
the Imagine project is to develop a programmable architecture for graphics and
image/signal processing.

Recently, heterogeneous multicore Cell processor has been developed by a
partnership of IBM, Sony, and Toshiba for computational intensive applications
such as multimedia [56]. Cell is a heterogeneous chip multiprocessor consisting
of a PowerPC core that controls eight high-performance Synergistic Processing
Elements (SPEs). Each SPE has one SIMD computation unit that is referred to
as Synergistic Processor Unit (SPU). In order to bring multimedia data in form
amenable for SIMD processing in Cell processor, many overhead instructions
are needed. In addition, available compilers cannot exploit efficiently SIMD
vectorization automatically [89].

None of the proposed architectures, however, can provide high-performance



48 Collaborative Reconfigurable Processors on Grid Computing

with flexibility for multimedia applications. In other words, the requirements
of multimedia applications have been not matched well with the ability of the
existing architectures. This is because the nature of multimedia applications
is dynamic. They use a variety of multimedia algorithms, process different
media data such as text, handwritten data, image, video, and 3D data in differ-
ent processing environments ranging from desktop systems to mobile systems.
In addition, multimedia applications are very computationally intensive. For
example, some multimedia applications involve execution of complex algo-
rithms such as 3D video rendering, scalable video coding, and stereo vision in
real-time.

Therefore, we propose a parallel architecture to process multimedia applications
using collaboration of reconfigurable processors in grid computing. Collabora-
tion of different architectures should be used in order to meet the computational
demand of multimedia processing. Grid computing can provide a solution
to address issues related to handling large volume data and executing com-
putational intensive multimedia kernels efficiently. Subsequently, we present
two multimedia kernels the 2D DWT and co-occurrence matrix. We selected
these multimedia kernels because they are compute-intensive. For example, the
results [91] show that the 2D DWT consumes on average 46% of the encoding
time for lossless compression. For lossy compression, the 2D DWT on average
even requires 68% of the total encoding time.

3.3.2 Discrete Wavelet Transform

The digital wavelet representation of a discrete signal X consisting of N
samples can be calculated by convolvingX with the lowpass and highpass filters
and down-sampling the output results by 2, so that the two frequency bands
each contains N/2 samples. With the correct choice of filters, this operation
is reversible. This process decomposes the original image into two sub-bands:
the lower and the higher bands [100]. This transform can be extended to
multiple dimensions by using separable filters. A 2D DWT can be performed
by first performing a 1D DWT on each row (horizontal filtering) of the image
followed by a 1D DWT on each column (vertical filtering). The digital wavelet
transform is mainly used for image and video compression. Standards such as
JPEG2000 [84] are based on the 2D DWT. For our investigation we selected
the Daubechies’ transform with four coefficients [107]. Figure 3.4 depicts the
C implementation of the Daub-4 transform.

Specification of the input data: An image with optional size, the data type of
each element is float. Computation: ALU operation: addition, Float operation:



3.3 Multimedia Kernels 49

void DWT_Daub_4() {
int i, j, jj, ii;
float low[] ={-0.1294, 0.2241, 0.8365 , 0.4830};
float high[]={-0.4830, 0.8365, -0.2241, -0.1294};

for (i=0; i<N; i++)
for(j=0, jj=0; jj<M; j++, jj +=2) {
tmp[i][j] = img[i][jj] * low[0] +

img[i][jj + 1] * low[1] +
img[i][jj + 2] * low[2] +
img[i][jj + 3] * low[3];

tmp[i][j + M/2] = img[i][jj] * high[0] +
img[i][jj + 1] * high[1] +
img[i][jj + 2] * high[2] +
img[i][jj + 3] * high[3];

}
for (i=0, ii=0; ii<N; i++, ii +=2)
for (j=0; j<M; j++) {
img[i][j]= tmp[ii][j] *low[0]+tmp[ii+1][j]*low[1] +

tmp[ii+2][j] *low[2]+tmp[ii+3][j]*low[3];

img[i+N/2][j]= tmp[ii][j] *high[0]+tmp[ii+1][j]*high[1] +
tmp[ii+2][j]*high[2]+tmp[ii+3][j]*high[3];

}
}

Figure 3.4: The 2D DWT using the Daub-4 for an image of size N ×M .

addition and multiplications Output is an image so that each element is float.

3.3.3 Co-Occurrence Matrix

Texture features are usually used in image and video processing. Texture fea-
tures determine the dependencies between neighboring pixels within a region
of interest in an image [37]. Haralick et al. [52] defined some texture features
which utilize co-occurrence matrices. The features are related to second or-
der statistics of neighboring pixels at different directions and distance. The
number of occurrences of two neighboring pixels with a distance d and with
a certain direction is stored in a co-occurrence matrix. The co-occurrence
matrix is always a square matrix of size Ngl ×Ngl, where Ngl is the number
of available gray levels in the image. Consequently, the size of this matrix is
dependent from distance and direction neighboring pixels and also from the



50 Collaborative Reconfigurable Processors on Grid Computing

image size. Co-occurrence matrix consists of relative frequencies P (i, j; d, δ)
of two neighboring pixels i, j separated by distance d at orientation δ in an
image.

In several image processing applications, for example medical images Haralick
texture features are computed for some Region Of Interest (ROI). The size of
the ROIs is not fixed and it is depended on the input image. As many ROIs are
selected, therefore for each ROI a co-occurrence matrix is computed. There
are eight directions, while only four of them are unique. the co-occurrence
matrix will be symmetry if all directions are considered. Figure 3.5 depicts the
C implementation of the co-occurrence matrix with considering eight different
directions.
for(i=1; i < img_height-1; i++)
for (j=1; j < img_width-1; j++)
{
GLCM[ img[i][j] ][ img[i-1][j-1] ]++;
GLCM[ img[i][j] ][ img[i-1][j] ]++;
GLCM[ img[i][j] ][ img[i-1][j+1] ]++;
GLCM[ img[i][j] ][ img[i][j-1] ]++;
GLCM[ img[i][j] ][ img[i][j+1] ]++;
GLCM[ img[i][j] ][ img[i+1][j-1] ]++;
GLCM[ img[i][j] ][ img[i+1][j] ]++;
GLCM[ img[i][j] ][ img[i+1][j+1] ]++;
}

Figure 3.5: C implementation of the co-occurrence matrix.

3.4 Simulation Environment and Tools

In this section, we present our simulation environment and its configuration to
simulate multimedia kernels. We investigate multimedia kernels as case study
on a network where this network includes primitives to construct a backbone
of reconfigurable processors on grid. In these primitives, different processing
elements collaborate together to execute an application in a grid environment.
Each processing element can be a GPP or a Reconfigurable Element (RE)
(reconfigurable processor). The specifications of processing elements is defined
in the form of Million Instructions Per Second (MIPS) for Standard Performance
Evaluation Corporation (SPEC) benchmark. In here, we used 30, 35, 40 and 50
MIPS for processing elements.

The simulation environment is an extended version of GridSim (a traditional



3.4 Simulation Environment and Tools 51

Java-based discrete-event grid simulator) [28], [101]. The features of the
GridSim toolkit include the following:

• It allows modeling of heterogeneous types of resources.

• Resources can be modeled operating under space- or time-shared mode.

• Resource capability can be defined (in the form of MIPS as per SPEC
benchmark).

• Resources can be located in any time zone.

• Weekends and holidays can be mapped depending on resources local
time to model non-Grid (local) workload.

• Resources can be booked for advance reservation.

• Applications with different parallel application models can be simulated.

• There is no limit on the number of application tasks that can be submitted
to a resource.

• Application tasks can be heterogeneous and they can be CPU or I/O
intensive.

• Multiple user entities can submit tasks for execution simultaneously in
the same resource, which may be time -shared or space-shared. This
feature helps in building schedulers that can use different market-driven
economic models for selecting services competitively.

• Network speed between resources can be specified.

• It supports simulation of both static and dynamic schedulers.

• Statistics of all or selected operations can be recorded and they can be
analyzed using GridSim statistics analysis methods.

We configured and prepared the GridSim simulator based on the multimedia
kernels properties to support the collaborative processing between reconfig-
urable processors. This extension of GridSim is called CRGridSim. The main
feature of CRGridsim is to simulate reconfigurable hardware. In CRGridsim,
each application can be broken down into different subtasks called gridlets
(subtasks). Each application is packaged as gridlets whose contents include the
task length in Millions of Instructions (MIs). The task length is expressed in



52 Collaborative Reconfigurable Processors on Grid Computing

terms of the items of the time it takes to run on a standard GPP [8]. To simplify
the simulation of the proposed approach the following assumptions have been
made. First, reconfigurable processors do not support partial reconfiguration.
Second, there is not any background traffic on the network.

In order to understand how many instructions are required to execute the
discussed multimedia kernels, we executed both the 2D DWT and co-occurrence
matrix kernels using the SimpleScalar toolset [18] for an image of size 1024×
1024. The number of committed instructions for the 2D DWT kernel is almost
46 MIs, while the number of committed instructions for the second kernel is
almost 83 MIs. This means that in order to provide each value for the first
decomposition level of the 2D DWT, 44 instructions should be processed, while
for the second kernel 80 instructions should be processed for each pixel.

Size of images and their correspondent gridlets (the required instructions to
process each image) are depicted in Table 3.2. Four groups of different images
with various sizes have been collected. Each image is sent in uncompressed form
to the processing elements. The required instructions to process each image
is packed up as a gridlet (subtask) and is submitted to the related processing
elements either GPP or RE. Table 3.3 depicts the specification of processing
elements in terms of MIPS.

Image # of instructions (MIs) for each gridlet
# of Group Size # of images 2D DWT Co-occ. matrix 2D DWT+ Co-occ. matrix

1 768× 1024 10 35 64 99
2 1024× 1024 10 46 84 110
3 1200× 1600 10 84 156 240
4 2134× 2848 10 267 493 760

Table 3.2: Images and their correspondence gridlets (subtasks) specifications
for different multimedia kernels. MIs means million of instructions.

Processing elements MIPS
Main GPP 30
Collaborator 1 (GPP or RE) 35
Collaborator 2 (GPP or RE) 50
Collaborator 3 (GPP or RE) 40

Table 3.3: The specification of processing elements in terms of MIPS.

The multimedia kernels have been simulated on the CRGC with different
configurations using topologies in Figure 3.2 (A). For our case, one main GPP
works with either 2 or 3 collaborator processing elements. In other words, we
assumed 3 and 4 processing elements collaborate as part of a grid environment.
Reconfigurable processors (elements) and GPPs are used as the collaborator



3.4 Simulation Environment and Tools 53

Parameter Value
Maximum packet size 32 and 64 KBytes
User-router bandwidth 100 Mb/sec
Router-router bandwidth 1000 Mb/sec
Number of images 40 (Table 3.2)
Number of users 1
Size of images Based on Table 3.2
PE specification (MIPS) Based on Table 3.3
Minimum speedup for RE 5 in compared to GPP
Reconfiguration file size 3 Mb
Reconfiguration speed 3 Mb/sec
Reconfiguration time 1 sec
Number of bits per pixel 24 bit

Table 3.4: Specifications of the simulated environment.

processing elements. The specifications of the simulated environment and
primitives are depicted in Table 3.4. The minimum speedup of reconfigurable
processors over GPPs for multimedia kernels has been set to 5. The reason for
this has been mentioned in the following. As we discussed in Section 2.3, a
co-occurrence matrix media kernel has been implemented on the various FPGA
devices in [55], [103]. Minimum speedups of 5 were obtained using FPGA
implementations over media-enhanced GPPs, while the maximum speedups
exceeds 100.

It should be noticed that for simulated topology the Routing Information Proto-
col (RIP) is executed by the simulator. The arbitrary number of collaborators
can be used that is depends on the application requirements and available pro-
cessing elements. However, increasing the number of processing elements
increases the overhead, for example the communication time. In order to map
the multimedia kernels on reconfigurable processors, the possible reconfigurable
parameters should be identified. For example, variable wavelet filter lengths
and variable wavelet decomposition levels are two reconfigurable parameters
for DWT. Different steps to execute an application on CRGC is depicted in
Figure 3.6.

In the first three steps, network topology and application mapping policy are
defined and parameters such as network bandwidth, packet size and number
of gridlets (subtasks) in the simulator are configured. Steps 4, 5, and 6 show
the execution of gridlets by collaborator processing elements. Available collab-
orator processing elements are selected to execute a set of gridlets, therefore,
main processing element packetizes each gridlet and sends to related collabora-



54 Collaborative Reconfigurable Processors on Grid Computing

The collaborator processing elements 
depacketize the received packets and process 

them and send back the calculated results to the 
main processing element.

6

Fi
na

liz
at

io
n

This step is 
performed 
in parallel 
manner

The main processing element receives the final 
results and sends the remaining other subtasks to 

the idle collaborator processing elements.

End

7

C
on

fig
ur

at
io

n
Ex

ec
ut

io
n

Determining application mapping policy and 
number of subtasks (gridlets).

Managing processing elements and finding idle 
collaborator processing elements to submit a 

subtask by main processing element.

Packetizing the subtasks and sending them to 
appropriate collaborator processing elements by 

main processing element.

Defining and configuring processing elements 
based on application characteristics.

1

3

2

4

5

Start

Defining network topology and configuring 
network bandwidth and packet size. 

Figure 3.6: The flowchart of application execution in CRGridsim simulator.



3.5 Summary 55

tor processing elements. The target collaborator processing element collects
received packets and executes the gridlets and finally send back results to main
processing element. In step 7, main processing element receives calculated
results and sends remaining gridlets to collaborator processing elements. The
simulation results and performance evaluation are presented in Chapter 6.

3.5 Summary

This chapter presented the concept of collaborative reconfigurable processors
in grid computing. More specifically, it is an approach to utilize reconfigurable
computing resources in a grid environment to collaborate in achieving a single
task or executing a single application. This approach intends to marry flexibility
with high performance.

Reconfigurable computing provides much more flexibility than ASIC and much
more performance than GPPs. Grid computing increases the performance of
computationally intensive applications by exploiting the parallelism. Each
part of an application can be executed on a processing element of a grid.
The collaboration is implemented using neighborhood policy. In this policy,
each processing element requests assistance only from its neighbor processing
elements. In addition, we analyzed the lower and upper bounds of performance
for the proposed architecture. We simulated the collaboration of four processing
elements with different configurations on a grid computing. Furthermore,
we mapped two computationally intensive multimedia kernels on the CRGC
environments using CRGridsim simulator.





Chapter 4

Bloom Filter in High-performance
Network Processing

I
n Chapter 2, we introduced the Bloom filter concept and its applications
in network processing. Most network devices, e.g., routers and firewalls,
require the processing of incoming packets (e.g., classification and for-

warding) at wire speeds. These devices mostly incorporate special network
processors that are comprised of a processor core with several memory inter-
faces and special co-processors that are optimized for packet processing. The
gap between processor and memory performance has been a major source of
concern for all of the computing society; this problem is exacerbated in packet
processing systems. Such memory bottlenecks can be overcome by the follow-
ing mechanisms: hiding of memory latencies through parallel processing and
reducing the memory latencies by introducing a special memory architectures.
One approach to achieve higher lookup performance is to utilize the Bloom
filter data structure that is recently utilized in embedded memory technology in
network processors.

In this chapter, we present three different approaches for Bloom filters. In
Section 4.1, a cache architecture for counting Bloom filter is presented. A
memory optimization approach for Bloom filter using an additional hashing
function (BFAH) is introduced in Section 4.2. Section 4.3 presents a power
efficient pipelined Bloom filter. Finally, Section 4.4, summarizes this chapter.



58 Bloom Filter in High-performance Network Processing

4.1 Cache Architecture for Counting Bloom Filter

A solution to decrease the processing time in the packet classification is the uti-
lization of Bloom filters [12], [40], [66], [95]. There are numerous networking
problems where such a data structure is required. Especially when space is an
issue, a Bloom filter may be an excellent alternative to keep an explicit list.

In this section, we first describe the counting Bloom filter and analyze the
probabilities of incrementing the counters. Afterwards, we introduce a new
multi-level cache architecture called the cached counting Bloom filter (CCBF).
In addition, the pruning procedure to optimize the memory utilization in the
counting Bloom filter is described. Based on the counting Bloom filter analysis,
we propose two multi-level cache architectures (an l-level and a 3-level one)
and, subsequently, present the performance analysis. The performance metric is
the number of accesses to different cache levels of the CCBF compared to the
memory accesses when using the standard Bloom filter. In the 3-level cache, we
further determine the size of cache levels for optimal false positive probabilities.
To test the CCBF concept, we implemented a software packet classifier utilizing
a 3-level CCBF employing tuple spaces that are traditionally utilized in hashing
systems.

4.1.1 Pruned Counting Bloom Filter

In a counting Bloom filter, we compute k hash functions h1(), ..., hk() over a
set of items and increment the related k counters indexed by these resulting
hash values. Subsequently, we store the item in the lists associated with each
of the k buckets hence a single item is stored k times in memory. Therefore,
it is needed to maintain up to k copies of each item requiring k times more
memory compared to a standard hash table. However, in a Bloom filter only
one copy need to be accessed while the other (k − 1) copies of item are
never accessed, therefore, the memory requirement can be minimized in the
mentioned architecture, resulting in the pruned counting Bloom filter. Figure
4.1 (a) depicts the results of hashing four items (rules). Additionally, in this
figure, we introduce the concept of buckets that are pointed to by the counters
storing the items (rules) of the set. The pruned counting Bloom filter for Figure
4.1 (a) is depicted in Figure 4.1 (b).

A method for pruning is to create a normal counting Bloom filter and only
keeping items with a minimum value in their counter, and for the items with
same counter, the item with lower index is selected. In this method, insertion



4.1 Cache Architecture for Counting Bloom Filter 59

2
0

0

1
2

0
2
0
1
0

R1 R2 R3

R1

R3 R4

R4

1

R1

R2

R3

R4

R1 R2

R3
R4R2

3

0
1
2
3
4
5
6
7
8
9

10
11

C
o

u
n

te
r
s

(A)

Memory addresses

(a)

2
0
3
0
1
2

0
2
0
1
0

R1

R1

R3
1

R2

R2

R4
R4

0
1
2
3
4
5
6
7
8
9

10
11

C
o

u
n

ters

Memory addresses

(B)

R3

(b)

Figure 4.1: (a) The hash table architecture using counting Bloom filters for four
items (rules). (b) The hash table using pruned counting Bloom filter.

and deletion of redundant items are preformed simultaneously. It must be noted
that during the pruned counting Bloom filter creation, the counter values are
not changed thereby, after pruning, the value of counters no longer expresses
the number of items in the list and is greater than or equal to the number of
items in each bucket (a memory buffer that are pointed to by the counters
storing the items of the set). In the pruning procedure, all the other copies
of an item except the one which is accessed during the search can be deleted.
Therefore, after the pruning procedure we have one copy for each item and the
result of this procedure is memory optimization. A limitation of the pruning
procedure occurs when performing the sequential insertion since the value of
counters after each insertion does not show the number of items in the bucket,
and also changes the counters of the other items that were formerly hashed in
to the buckets. This limitation is overcome by the searching the buckets that are
pointed to by the hashing functions and then recalculating the addresses of items
in these buckets. In other words, for inserting one item we must reconsider
all items in those buckets [12], [95]. In addition, this pruning technique only
works with counting Bloom filters which limits its application.



60 Bloom Filter in High-performance Network Processing

4.1.2 Cached Counting Bloom Filter Concept

According to definition of a Bloom filter, the number of hashing functions k
with m counters and n items can be expressed as:

k = g
m

n
(4.1)

where the value of g changes for different Bloom filter configurations. The
optimal value for g to have a minimum false positive rate is g = ln(2) ≈ 0.6931.
From Equation (2.6) and Equation (4.1), the false positive rate for different
value of g is depicted in Figure 4.2.

Figure 4.2: False positive probability for different configurations.

After the substitution of Equation (4.1) in Equation (2.6), we obtain the follow-
ing equation:

p (c(i) = j) =
(

gm
j

)(
1
m

)j (
1− 1

m

)mg−j

(4.2)

Using Equation (4.2), we can compute the probability of incrementing of the
ith counter for different values of g and m. Using Equation (4.2), the counter
probability distribution for different counting Bloom filter configurations is
depicted in Figure 4.3.

Based on the Figure 4.3, when g ≤ ln(2) the value of the counters with non-
zero probability changes between 0 and 3, and when g > ln(2) the value of



4.1 Cache Architecture for Counting Bloom Filter 61

Figure 4.3: The counter probability distribution for different configurations in
counting Bloom filters.

the counters with non-zero probability is increased (for g = 2, the value of the
counters changes between 0 and 5). g = ln(2) shows the optimal configuration
with minimum false positive probability. In the other words, the most of the
counters take the values between 0 and 3 when the counting Bloom filters
configure using g = len(2) ≈ 0.6931. Therefore, we can utilize a multi-level
caching memory to store the items based on their counters. Subsequently, we
introduce the cached counting Bloom filter (CCBF). The CCBF is slightly is
different from real cache. It works based on the counting Bloom filter properties.

Cached counting Bloom filter analysis

In this section, we present the analysis of the cached counting Bloom filter
(CCBF). The number of accesses to the memory depends on the fact whether
the Bloom generates a ‘positive’ or ‘negative’ result. For the negative case,
no accesses to the memory is needed since it is certain that they are not in the
original set. For the positive case, still it must be verified whether the item in
question is a member or not (false positive). Consequently, we assume in the
analysis that all tests are on different elements which would result in the testing
of n elements (the same number of items in the original set). The number of
accesses in a standard Bloom filter is nk(1 + pf ) memory accesses, where n
represents the number of items, k represents the number of hashing functions



62 Bloom Filter in High-performance Network Processing

and pf is false positive probability. A l-level cache counting Bloom filter is a
Bloom filter with each counter pointing to the level corresponding to its counter
value and with level l containing l buckets.The l-level cached counting Bloom
filter architecture is depicted in Figure 4.4.

level

Counting Bloom filter

1

input
key

C
C
C

C
C
C

Size M M M

H
as

h
in

g
 f

u
n
ct

io
n
s

...

...
1l l−1

l l−1

1,2,...,l

−level cache architecture

1,l−1

2,l−1

C

1,l

2,l

i,l

1,2,..,l−1

1

2

1

k1

k

2

1
2

k

C
C

Counters
1,1

2,1

l
i  ,1

l

,l−1
l−1,

C zero

i

Figure 4.4: The l-level cached counting Bloom filter architecture.

In this figure, Cil, l represents the counter with the value ‘l’ pointing to location
il within cache level ‘l’. Therefore, the values of C1,1, ..., Ci1,1 are equal
to 1, the values of C1,l−1, ..., Cil−1,l−1 are equal to l − 1 and the values of
C1,l, ..., Ci,l are equal to l. Czero shows the counters with value 0 and does
not point to any bucket in the cache memory. These counters are represented
by Czero. Ml represents the size of the cache memory in level l. From the
Figure 4.4, the number of accesses in l-level CCBF is equal to summation of
accesses in each level as follows:

NTotal l−CCBF = (N1 + ... + Ni + ... + Nl) (4.3)

In this equation, Ni represents the number of accesses in level i and
NTotal l−CCBF shows the total number of accesses in the l-level CCBF. Based
on definition of the CCBF, the size of a bucket in level i is equal to i. Therefore,
in each access, i items can be transferred. Consequently, the number of ac-
cesses depends on the number of levels that means the utilization of multi-level
cached counting Bloom filter decreases the number of accesses. The number of
accesses in level i is equal to number of the buckets in this level. To calculate
the number of buckets, the size of level i is divided by size of the bucket in this
level. From Equations 2.8 and 4.3, the expected number of accesses in CCBF is



4.1 Cache Architecture for Counting Bloom Filter 63

presented as follows:

NTotal l−CCBF = A
(
p(j = 1) + p(j=2)

2 + ...+ p(j=l)
l

)
= A

(
A
1

)(
1
m

) (
1− 1

m

)A−1 + ...

+ A

(
A
l

)(
1
l

)
( 1

m )l
(
1− 1

m

)A−l

(with A = nk(1 + pf ))

(4.4)

In Equation (4.4), p(j = l) shows the probability that a counter incitements l

time. A
(
p(j = l)

l

)
represents the number of expected accesses in level l for a

counting Bloom filter with n items and k hashing functions. To make simplify
equations above, Equation (4.5) can be utilized:(

1− 1
m

)nk

∼= e
−nk
m (4.5)

Using Equation (4.5), we can rewrite the Equation (4.4) as follows:

NTotal l−CCBF = A
(
p(j = 1) + p(j=2)

2
+ ... + p(j=l)

l

)
= Ae

−A
m

(
( 1

m
)

(
A
1

)
+ ... +

(
A
l

)(
1
l

)
( 1

m
)l

)
∼= Ae

−A
m

(∑l
i=1

1
ii!

(
A
m

)i)
(with A = nk(1 + pf ))

(4.6)

If we assume that m
n = c then we can rewrite Equation (4.6) as follows:

NTotal l−CCBF = nk(1 + pf )e
−k
c (1+pf )

(∑l
i=1

1
ii!

(
k(1+pf )

c

)i
)

(4.7)

After the normalization to nk(1 + pf ) number of accesses is expressed as
function of c and k as follows:

NTotal l−CCBF = e
−k(1+pf )

c

(∑l
i=1

1
ii!

(
k(1+pf )

c

)i
)

(4.8)

An l-level CCBF needs buckets with length l, that this means the CCBF must
support to transfer a bucket with l item in one I/O operation. In other words, the
designing of l level CCBF is impractical. Therefore, we propose a CCBF with
limited number of levels. Our observations from Equation (4.2) and the graph
depicted in Figure 4.3 show that the counter values are not likely to be larger
than 3. This means a 3-level CCBF is more beneficial than l-level CCBF. More



64 Bloom Filter in High-performance Network Processing

precisely, levels 1 and 2 store the elements for the counters with values 1 and 2,
respectively. Level 3 stores the elements for counters with value 3 or larger. As
the counters with values larger than 3 require more storage, the elements are
stored over multiple rows in the third level of the CCBF (segmentation). The
3-level CCBF is depicted in Figure 4.5.

Counters

input
key

C
C
C
C
C

C
C
C

l

Size M M

H
as

hi
ng

 f
un

ct
io

ns

C

i  ,1

2,1

1,1

1,2

2,2

i2,2

1,3

2,3

i3,3

C other

3 2

1

M 1

Counting Bloom filter

C zero

level 3

3−level cache architecture

2 1

1

k

1

k

1

k 1, 2, 3 1, 2

Figure 4.5: The 3-level cached counting Bloom filter architecture.

In Figure 4.5, the values of C1,1, ..., Ci1,1 are equal to 1, the values of
C1,2, ..., Ci2,2 are equal to 2 and the values of C1,3, ..., Ci3,3 are equal to 3.
Cother represents the counters with values larger than three and, therefore, they
point to a storage within level 3 of the CCBF. Figure 4.5 highlights the men-
tioned segmentation. Czero represents the counters with their value being zero.
In the following, we analyze the effects of the items with counter values larger
than three. The number of accesses in a 3-level CCBF is equal to number of
accesses in the levels 1, 2, and 3 combined. The number of accesses in third
level of cache can be computed as a summation of the number of counters with
value 3 and larger. Therefore, the number of accesses in a 3-level CCBF is
presented as follows:



4.1 Cache Architecture for Counting Bloom Filter 65

NTotal 3−CCBF = A
(
p(j = 1) + p(j=2)

2 + p(j≥3)
3

)
= A

(
p(j = 1) + p(j=2)

2 + p(j=3)
3

)
+

⌈
4
3

⌉
p(j = 4)A+ ...+

⌈
l
3

⌉
p(j = l)A

= A

(
A
1

)(
1
m

) (
1− 1

m

)A−1

+ A

(
A
2

)(
1
2

)
( 1

m )2
(
1− 1

m

)A−2

+ A

(
A
3

)(
1
3

)
( 1

m )3
(
1− 1

m

)A−3

+
∑l

i=4d
i
3e
(
A
i

)
( 1

m )i
(
1− 1

m

)A−i
A

(with A = nk(1 + pf ))

(4.9)

In Equation (4.9), NTotal 3−CCBF shows total number of accesses in 3-level
CCBF. Using Equation (4.5), the Equation (4.9) can be rewritten as follows:

NTotal 3−CCBF
∼= Ae

−A
m

(
A
m + 1

2∗2! (
A
m )2 + 1

3∗3! (
A
m )3

)
+

∑l
i=4d

i
3e

1
i!e

−A
m ( A

m )iA
(with A = nk(1 + pf ))

(4.10)

Numerical computations using Maple v.12.0 show that Equation (4.10) can be
a good approximation for Equation (4.9). Therefore, we can write the number
of accesses in a 3-level CCBF as follows:

NTotal 3−CCBF
∼= e

−nk(1+pf )
m

(
nk(1+pf )

m + 1
2∗2! (

nk(1+pf )
m )2 + 1

3∗3! (
nk(1+pf )

m )3
)

+
∑l

i=4d
i

3
e 1

i!e
−nk(1+pf )

m

(
nk(1+pf )

m

)i

(4.11)

After substitution of m
n with c the number of accesses in the 3-level CCBF is

written as follows:

NTotal 3−CCBF
∼= e

−k(1+pf )
c

(
k(1+pf )

c + 1
2∗2! (

k(1+pf )
c )2 + 1

3∗3! (
k(1+pf )

c )3
)

+
∑l

i=4d
i

3
e 1

i!e
−k(1+pf )

c

(
k(1+pf )

c

)i

(4.12)
In the following, we evaluate the size of the different cache levels in the CCBF
architecture. In short, the size of each cache level is equal to the multiplication
of nk and the probability of each counter value in the CCBF. The size of each
cache level in l-level CCBF is expressed as follows:

Sizej l−CCBF = nkjp (c(i) = (level number))
= nkjp (c(i) = j)

= nkj

(
nk
j

)(
1
m

)j (
1− 1

m

)nk−j
(4.13)



66 Bloom Filter in High-performance Network Processing

In Equation (4.13), j is level number, and Sizejl−CCBF shows the size of level
j in l-level CCBF. Using Equation (4.3) and Equation (4.5), we can rewrite
Equation (4.13) as follows:

Sizej l−CCBF
∼= nkje

−k
c

(
1
j!

(
k
c

)j)
where j is level number

(4.14)

Using Equation (4.14), the total size of the l-level CCBF cache after normaliza-
tion to nk (size of a standard Bloom filter) is:

SizeTotal l−CCBF = nkj
∑l

j=1(p(c(i) = j)

∼= e
−k
c

(∑l
j=1

j
j!

(
k
c

)j) (4.15)

In Equation (4.15), SizeTotall−CCBF shows the total size of l-level CCBF.
Applying this equation to the 3-level CCBF case, results in the following sizes
of the 3 levels (keeping in mind 4-bit counter, the with l being 16):

Size1 3−CCBF = e
−k
c k

c

Size2 3−CCBF = e
−k
c
(

k
c

)2
Size3 3−CCBF = e

−k
c

(∑l
j=3

j
j!

(
k
c

)j) (4.16)

4.1.3 Hashing Functions

Several kinds of hashing functions are utilized in packet classification: additive,
rotative, bit extraction, XOR-based, mixed, and universal hashing functions [81],
[85]. In additive hashing functions, the hash value is constructed by traversing
through the data and continually incrementing an initial value by a calculated
value relative to an element within the data. The calculation performed on the
element value is usually in the form of a multiplication by a prime number. In
rotative hashing functions, every element in the data string is used to construct
the hash value, but unlike additive hashing the values are put through a process
of bitwise shifting. In the bit extraction method, the hashing function entails
selecting j bits out of the i bits of the key. In XOR-based hashing functions, the
i-bit key is partitioned into j-bit segments. The segments are exclusive-ORed
to produce a hash address. In the mixed method, the hashing functions utilize
any or all of the mentioned techniques. It obvious that the performance of these
functions dependent on the key set [81], [85]. These hashing functions take
longer to execute compared to the earlier mentioned functions that only utilize
bitwise logical operations.

A solution to achieve a hashing function that is independent from the key set is
by utilizing a class of universal hashing functions that exploits bitwise logical



4.1 Cache Architecture for Counting Bloom Filter 67

operations in their definition. Let H represent a class of functions with input
set A and output set B. H is said to be universal if for all x, y in A, no pair
of distinct keys collide under more than (1/|B|)th of the functions where |B|
denotes size of B [29]. A special class of universal hashing functions is called
H3 hashing functions [29], [85]. The H3 class of hashing functions are defined
as follows: Let A = 0, 1, 2, ..., 2i − 1 be the key space, B = 0, 1, 2, ..., 2j − 1
be the address space, i denotes the number of bits in the key, j denotes the
number of bits in address, Q denotes the set of i× j boolean matrices, and I
represents the given key set, I = x1, x2, ..., xn, I ⊂ A. For a given q ∈ Q and
x ∈ A, let q(k) be the kth row of the matrix q and xk be the kth bit of x. The
hashing function hq(x) : A→ B is defined as follows:

hq(x) = x1.q(1)
⊕

x2.q(2)
⊕

...
⊕

xi.q(i) (4.17)

where . denotes the binary AND operation and
⊕

the XOR operation. The
hashing function from this class can be easily implemented in hardware. The
hardware stores the i × j boolean matrix that can be organized in a bank of
registers [85] where the boolean matrices can be generated in software and
then loaded into the bank of registers. We present an example of H3 hashing
function in the following.
Example: Let i be 4 and j be 3, then the address space is A = 0..15 and the
key space is B = 0..7, we randomly select an 4× 3 matrix q as follows:

q =


010
110
100
001


Then the hash address for key 13 and 10 are:

hq(13) = hq(1101) = q(1)
⊕

q(2)
⊕

q(4)

= 010
⊕

110
⊕

001 = 101
= 5

hq(10) = hq(1010) = q(1)
⊕

q(3)

= 010
⊕

100 = 110
= 6

Based on the tuple space representation for the rule-set database and IP packets,
the size of the input key is 88 bits long (32 bit source IP address, 32 bit



68 Bloom Filter in High-performance Network Processing

destination IP address, 8 bit Range-ID for source port, 8 bit Range-ID for
destination port and 8 bit protocol field). The maximum size of the tuple or
address space is assumed to be 216 rules for 16 bit address. Therefore, Q88×16

denotes a set of matrices to define the H3 class of hashing functions in the tuple
space packet classification algorithm [11].

4.1.4 Packet Classifier Architecture Using Bloom Filter

In this section, we present a software packet classifier using the pruned counting
Bloom filter. The two main parts of our architecture are: rule hash table
constructor and packet search. The architecture is depicted in Figure 4.6.

Rule 
Database

Determining 
tuple

Bloom hashing

B1

m

1

2

tuples
Hash tables for different 

Hash
key

Packet trace

T
up

le
 s

pe
cf

ic
at

io
n 

( 
m

 tu
pl

e)m keys

Bloom search

Packet matcher

Making 
Hash key

Action

Rules

R
ul

e 
ha

sh
 ta

bl
e 

 c
on

st
ru

ct
or

Pa
ck

et
 s

ea
rc

h

Figure 4.6: The architecture of classifier using pruned counting Bloom filter
and tuple space.

Rule hash table constructor component reads the rules from a rule set database
and extracts the rule specification to determine the related tuple that the rule
belongs to. After determining the tuple, the rule should be hashed, the next
procedure is making a hash key using the Bloom filter and finally store the
rules in the hash table. In this process, different hash tables with unequal size
are created, since each hash table correspond to a single tuple and each tuple



4.1 Cache Architecture for Counting Bloom Filter 69

included different rules and tuple specifications. Usually more than half of the
rules belong to two tuples, and this is depicted on the right side of Figure 4.6.
In this figure, m is the number of tuples and B shows the size of the buckets.
Packet search component processes the incoming packets to find matching rules
in the hash tables corresponding to tuples. Therefore, for each incoming packet,
a hash key is extracted based on each tuple specification. Subsequently, m hash
keys are used to access the m hash tables (after hashing) to determine whether
matching rules can be found. The accessing of the hash table can be performed
in a serial or parallel manner. Finally, the actual packet is checked against the
found rules in the packet matcher. For each packet, the number of hashing
operations are equal to the number of tuples in the system or the number of
distinct hash tables, thus the number of access in sequential search process per
packet is equal to the number of tuples.

4.1.5 Packet Classifier Architecture Using CCBF

In this section, we present the software packet classifier architecture that utilizes
a CCBF to store and retrieve the rules and incoming packets. The packet
classifier architecture includes three components as follows: rule hash table
constructor, packet search and CCBF unit. The software packet classifier
architecture is depicted in Figure 4.7.

Rule hash table constructor

This component reads the rules from a rule-set database and extracts the rule
specification to determine the related tuple that the rule belongs to. After
determining the tuple, the rule should be hashed, the next procedure is making
a hash key using the Bloom filter and finally stores the rules in the hash table.
In this process, different hash tables with unequal size are created by CCBF
unit, since each hash table correspond to a single tuple and each tuple included
different rules and tuple specifications. Usually more than half of the rules
belong to two tuples.

Packet search

This component of the classifier processes the incoming packets to find matching
rules in the hash tables corresponding to tuples. Therefore, for each incoming
packet, a hash key is extracted based on each tuple specification. Subsequently,
m hash keys are used to access the m hash tables (after hashing) to determine



70 Bloom Filter in High-performance Network Processing

Making a hash 
key

Packet 
matcher

Determining 
tuple

Rule-set
database

Action

Rules hash table constructor

P
ac

ke
t s

ea
rc

h 

Hash key and tuple 
specifications

Bloom filter With 
H3 hashing

CCBF unit

Level 1

Level 2

Level 3

Bloom filter with H3 hashing

1 2 m

1 2 m

1 2 m

Hash key

Input packets

Tuple specifications

Hash table with 3-level cache

Figure 4.7: The architecture of software packet classifier using CCBF.

whether matching rules can be found. The accessing of the hash table can be
performed in a serial or parallel manner. Consequently, the actual packet is
checked against the found rules in the packet matcher. For each packet, the
number of hashing operations are equal to the number of tuples in the system
or the number of distinct hash tables, thus the number of access in sequential
search process per packet is equal to the number of tuples.

CCBF unit

An important part of the packet classifier architecture that is utilized by the rule
hash table constructor and packet search components is the CCBF unit. The
CCBF unit manages the counters and different cache levels. When an item
(rule) is inserted the related counters are changed, therefore, the cache level of
these items should be updated and the related buckets should move to the new
cache level. All counters are initialized to zero, therefore, after the insertion
some items, these counters should be updated by at lease one subsequently,
these items are stored in the level one and after the incrementing counters, these
items move to higher level. The content of the cache levels in the CCBF unit
are modified by the rule hash table constructor component but will only be



4.2 A Memory Optimization Approach for Bloom Filters using an
Additional Hashing Function 71

inspected by the packet search component. The CCBF unit manages the I/O
operations to/from cache levels. In the first and second cache levels with the
counter values 1 and 2 the I/O buffer size (bucket) is set to 1 and 2 and in the
third cache level the I/O buffer size is set to three. The CCBF unit segments the
buffer pointed to by counters that are larger than 3.

4.2 A Memory Optimization Approach for Bloom Fil-
ters using an Additional Hashing Function

In this section, we introduce a technique to eliminate the redundant items in
the standard and counting Bloom filters. In the standard and counting Bloom
filters, over an input item, k hashing functions are computed and the input item
is stored in the locations pointed to by the generated addresses produced by
the hashing functions. Therefore, in the standard and counting Bloom filters
we keep k copies of each item but only one copy is accessed and the other
(k− 1) copies of items are never accessed. As we discussed in Chapter 2.3.2, to
optimize memory in the standard and counting Bloom filters, a caching policy
or pruning technique can be used, respectively. The mentioned caching policy
exploits the Bloom filter properties to decrease the number of memory accesses.
The pruning technique reduces the memory utilization but has some limitations
as: high processing time due to incremental update, reconsideration of all items
when inserting items, and limited use as it works only in conjunction with
counting Bloom filter and thereby reducing its applicability.

We propose memory optimization technique using an additional hashing func-
tion and call Bloom filter using additional hashing function (BFAH). Our
proposal selects one of the generated addresses by the k hashing functions in
the Bloom filters. The utilization of an additional hashing function has the
following advantages: decreasing memory redundancy in comparison to stan-
dard Bloom filters, and increasing the performance in comparison to standard
Bloom filters, and its simplicity to implement in hardware. Subsequently, we
analyze different performance metrics for BFAH, pruned counting Bloom filter
(PCBF) and standard Bloom filter. The performance metrics that we consider
are: average bucket size, maximum search length, and the number of collisions.

4.2.1 The BFAH Architecture and Concept

In the standard and counting Bloom filters, each item is stored k times but
only one copy is accessed. For the counting Bloom filter, a pruning procedure



72 Bloom Filter in High-performance Network Processing

was proposed to minimize the memory utilization. Still, in the standard and
counting Bloom filters, the following questions should be addressed: How are
redundant items eliminated? How many empty slots without any item can be
found in the bit-array or array of counters? What is the maximum number of
accesses to fetch different items? Therefore, we utilize an additional hashing
function in the standard and counting Bloom filters to address these questions.
The proposed solution has the following features:

• Minimization of memory redundancy: In the BFAH each item is stored
only once.

• The distribution of the incoming items is more randomized in compar-
ison to other Bloom filters since in this procedure, the selection from
the generated addresses by hashing function is performed by a hashing
technique that assists in distributing incoming items uniformly.

• It can be applied to the all Bloom filter types. This is because, it works
based on the bit-array of Bloom filter.

• In the pruning technique the searching for an incoming item, requires
inspection of k counters in counting Bloom filter while in the BFAH a
single hash value is computed.

The architecture of the BFAH is depicted in Figure 4.8.

In Figure 4.8, an incoming item is hashed by k hashing functions and the
corresponding bits are set (or counters are incremented in the counting Bloom
filter) (see block A in Figure 4.8). Subsequently, one of the generated addresses
by the k hashing functions is selected by another hashing function. This address
is used to store the item in question. The additional hashing function receives
the incoming key and selects one of k received addresses to store in the memory.
The output of the additional hashing function is a number that represents the
index of one of k addresses pointed to by hashing functions (see block B in
Figure 4.8). The generated addresses by the k hashing functions (block A
in Figure 4.8) and generated number by the additional hashing function is
processed by the address selector unit in block A. This component selects an
address among the incoming addresses. It should be noted, that the additional
hashing function works alongside the others k hashing functions. Therefore,
the selected address by the additional hashing function and generated addresses
by k hashing functions are available at the same time in the address selector
unit. Additionally, in the pruned counting Bloom filter, the counters should be



4.2 A Memory Optimization Approach for Bloom Filters using an
Additional Hashing Function 73

k hashing 
functions

Address 
selector

Additional hashing 
function

Generated address by 
additional hashing function to 
select other addresses

Selected address 
to store in the 
memory

Bit-array (counters)

Key (incoming item)

h1

hk

hi(key)

k

A
dd

re
ss

es

1

k

Standard (counting) Bloom filter

Figure 4.8: A Bloom filter architecture with an additional hashing function.

searched to find the minimum counter but in this approach only one hashing
key by the additional hashing function is calculated.

Figure 4.9, depicts a standard/counting Bloom filter for four items. In this
Figure, bit-array and counters show standard and counting Bloom filters, re-
spectively.

Figure 4.10 depicts an example of how the BFAH operates using the Bloom filter
in Figure 4.9 as starting point. In this example, we utilize the divide hashing
function “key mod k” as additional hashing function where k represents the
number of hashing functions and index of incoming items is supposed as input
key. This is due to the simplicity of the hashing function in the example.

Figure 4.10 (a), depicts a Bloom filter before any insertion therefore the values
of the counters or bits in the bit-array are zero. In the first step, ruleR0 is hashed
to addresses 0, 2, and 4 using h0, h1, and h2 hashing functions (see Figure 4.10
(b)). The value of the counters are incremented (or bit-array is set) and then the
generated addresses by hashing functions should be selected to store the rule
R0 in the hashed address. Therefore, an additional hashing function selects one
address out of k generated addresses. The additional hashing function selects



74 Bloom Filter in High-performance Network Processing

2
0

3
0
1
2

0
2
0
1
0

1

R0

R1

R2

R3

R1

R0

R2

R3

(B)

0

0
1

0
2
0
1
0

1

Address

R0

R1

R2

R3

R0 R1

R0 R1 R3

R0
R1 R3
R2

R2 R3

R3
11
10
9
8
7

6
5
4
3

0
1
2

Address

11
10
9
8
7
6
5
4
3
2
1
0

(A)

0

0
1

0

0
1
0

1

1
1

1

B
it−

array

C
ounters

2 1

2

3

Figure 4.9: A standard/counting Bloom filter architecture for four items.

address 0 that was generated by hashing function h0 and R0 is stored in the
address 0. This is because the index of R0 that is ‘0’, is divided to 3 (0 mod
3 = 0) and, finally address 0 is selected to store the rule R0. In this example
number of hashing functions is 3.

Subsequently, R1 is hashed to addresses 0, 2, and 5 (see Figure 4.10 (c)).The
values of counters are incremented (bit-array is set) to 2, 2, and 1, respectively.
Using the additional hashing function “key mod k”, address 2 that was gener-
ated by hash function h1 is selected to store the R1. As depicted in Figure 4.10
(d), R2 is hashed to addresses 2, 6, and 8 and address 8 that generated by h2 is
selected to store rule R2. Finally, rule R3 after the hashing to addresses 5, 8
and 10 is stored at address 5.

4.2.2 The BFAH Architecture Analysis

We analyze the standard, pruned counting Bloom filters and the BFAH. In this
analysis, the average bucket size, the maximum search length and the number
of collisions are investigated.

Analysis of average bucket size

The average bucket size is defined as the total number of stored items in the
Bloom filter divided by the number of non-empty entries (buckets). In the



4.2 A Memory Optimization Approach for Bloom Filters using an
Additional Hashing Function 75

0 0
0 0
0

00
0 0

0

00
0 0

00
00

0 0
0 0

00

C
ounters

B
it-array

Address

0
1
2
3
4
5
6
7
8
9

10
11

(a)

1
2
3
4
5
6
7
8
9

10
11

Address

0

00
C

ounters
B

it-array

R0

R1

R2

R3

1 1
0 0
1

00
1 1

1

00
0 0

00
00

0 0
0 0

0 0

R0
h0

(b)

11

R0

R1

R2

R3

2 1
0 0
2

00
1 1

1

11
0 0

00
00

0 0
0 0

00

C
ounters

B
it-array

R1

h0

h1

R0

Address

0
1
2
3
4
5
6
7
8
9

10

(c)

0 0
0 0
0

00
0 0

0

00
0 0

00
00

0 0
0 0

00

C
ounters

B
it-array

Address

0
1
2
3
4
5
6
7
8
9

10
11

Address

0
1
2
3
4
5
6
7
8
9

10
11

2 1
0 0
3

00
1 1

1

12
1 1

00
12

1 1
0 0

00

C
ounters

B
it-array

R0

R1

R2

R3

h0

h1

h2
h0

R0

R1

R3

R2

1
2
3
4
5
6
7
8
9

10
11

Address

0

00

C
ounters

B
it-array

R0

R1

R2

R3

1 1
0 0
1

00
1 1

1

00
0 0

00
00

0 0
0 0

0 0

R0

11

R0

R1

R2

R3

2 1
0 0
2

00
1 1

1

11
0 0

00
00

0 0
0 0

00

C
ounters

B
it-array

R1

h0

h1

R0

Address

0
1
2
3
4
5
6
7
8
9

10

h0

(d)

Figure 4.10: The hash table architecture using a Bloom filter with an additional
hashing function (a) An empty Bloom filter. (b) The Bloom filter after the
insertion of rule R0 (c) The Bloom filter after the insertion of rules R0 and R1
(d) Final Bloom filter after the insertion of four rules.

standard Bloom filter with n items and nk insertions, the probability a bucket
receives exactly j insertions is expressed as:

p (b(i) = j) =
(

nk
j

)(
1
m

)j (
1− 1

m

)nk−j

(4.18)

In Equation (4.18), b(i) represents the number of items in bucket(i). In order
to calculate the probability of an empty bucket, j is set to 0. Therefore, the
probability of non-empty buckets is equal to 1 minus the probability of the empty
buckets. Consequently, the probability of a non-empty bucket is calculated as
follows:

p(non− empty buckets) =

(
1−

(
1− 1

m

)nk
)

(4.19)



76 Bloom Filter in High-performance Network Processing

From Equation (4.19), the expected number of the non-empty buckets is calcu-
lated as follows:

E(Number of non− empty buckets) = m

(
1−

(
1− 1

m

)nk
)

(4.20)

In a standard Bloom filter, the average bucket size is as follows:

Average bucket size in BF = Number of stored items
Number of non−empty buckets

= nk

m
(
1−(1− 1

m )nk
)
(4.21)

Initially, in the BFAH, in the first step, for n items nk hash operations are
performed using k hashing functions and the related bits in the bit-array are set.
In a Bloom filter with m bits (bit-array size), n items and k hashing functions,
1/m represents the probability any one of the m bits set by a single hashing
function operating on a single input item. (1−1/m) is the probability that the bit
is unset after a single hash value computation with a single item. The probability
that a bit is still unset after all the items are hashed into the Bloom filter by using

k independent hashing functions is
(

1− 1
m

)kn

. Therefore, the probability

of set bits in the bit-array is
(

1−
(
1− 1

m

)nk
)

. Consequently, the expected

number of set bits in the bit-array is calculated using t = m
(

1−
(
1− 1

m

)nk
)

.
In the next step, an additional hashing function selects n out of t addresses that
set in the previous step. Using Equation (4.20), the number of selected items by
the additional hashing function occupy t

(
1−

(
1− 1

t

)n) addresses, where t is
the number of set bits in the bit-array. Therefore, the average bucket size in the
BFAH is calculated as follows:

Average bucket size in BFAH = n

t(1−(1− 1
t )n)

with t = m
(
1−

(
1− 1

m

)nk
)
(4.22)

It should be noted, that n items are stored in the BFAH. Pruned counting Bloom
filter can be assumed as a standard Bloom filter with one hashing function
that selects n out of nk hashed items. Therefore, the average bucket size for
pruned counting Bloom filter is computed using Equation (4.22) when k = 1.
Equation (4.23), shows the average bucket size for pruned counting Bloom
filter.

Average bucket size in pruned counting Bloom filter = n

m(1−(1− 1
m )n) (4.23)

The average bucket size for standard, BFAH and pruned counting Bloom filters
using Equations (4.21), (4.22) and (4.23) for the configuration k = ln(2)m/n
that generates minimum false positive probability is depicted in Figure 4.11.



4.2 A Memory Optimization Approach for Bloom Filters using an
Additional Hashing Function 77

Figure 4.11: Average bucket size for standard, BFAH and pruned counting
Bloom filters when ln(2)k = m/n).

Figure 4.11 depicts average bucket size in term of m/n (m is number of bits
in the bit-array and n is the number of items). To generate minimum false
positive probability k = ln(2)m/n. From Figure 4.11, we can observe that
in a standard Bloom filter average bucket size with minimum false positive
probability is a constant value 1.38. The shortest average bucket size belongs to
the pruned counting Bloom filter. The graph in Figure 4.11 shows that BFAH
architecture has average bucket size shorter than standard Bloom filter and
longer than pruned counting Bloom filter. Additionally, from Figure 4.11, we
can observe that when the value of m/n is increased the average bucket size of
BFAH and pruned counting Bloom filter is closed to each other. In this case,
for m/n = 50 the difference of average bucket size between BFAH and pruned
counting Bloom filter is less than 1%.

Maximum search length

The maximum search length is defined as a maximum number of items that are
inserted in the buckets. It can be used as a worst case search to access an item.
In the standard Bloom filter, the expected number of items which their buckets
included j items is equal to average number of buckets multiplied by the item



78 Bloom Filter in High-performance Network Processing

per bucket Equation (4.18), therefore, it is calculated as follows:

E(Number of items which their buckets included j items) =

nkj

((
nk
j

)(
1
m

)j (
1− 1

m

)nk−j
)

(4.24)

In Equation (4.24), nk is the number of hashed items and j is the bucket size
(number of items per bucket). In BFAH, in first step, all nk hashed items are
hashed using k hashing functions and related bits in the bit-array are set. The
number of set bits in the bit-array is calculated using t = m

(
1−

(
1− 1

m

)nk
)

.
In the next step, an additional hashing function selects n out of t addresses that
set in the previous step. Therefore, in a BFAH, the probability of a bucket with
j items is represented as follows:

p ( Bucket with j items) =

(
n
j

)(
1
t

)j (
1− 1

t

)n−j (4.25)

Using Equation (4.25), the number of items with bucket size j in the BFAH is
calculated as follows:

E(Number of items which bucket size = j) = nj

((
n
j

)(
1
t

)j (
1− 1

t

)n−j
)

(4.26)
For pruned counting Bloom filter, maximum search length is computed when
in the standard Bloom filter the number of hashing functions is set to 1. Hence,
the number of items with bucket size j is calculated as follows:

E(Number of items which bucket size = j) = nj

((
n
j

)(
1
m

)j (
1− 1

m

)n−j
)

(4.27)

Using Equations (4.24), (4.26) and (4.28), the maximum search length for
standard, pruned counting Bloom filters and BFAH when k = ln(2)m/n is
depicted in Figure 4.12.

From Figure 4.12, it can be observed that, the maximum search length of BFAH
is shorter than standard Bloom filter and longer than pruned counting Bloom
filter. As an example, for m = 10000, n = 2000 and k = 4, 120, 3, and 1
bucket received more than 3 items in the standard, BFAH, and pruned counting
Bloom filters, respectively.

Number of collisions

A common problem in using hashing is collision which means the mapping
of incoming items to the same hash table location. Consequently, when an



4.2 A Memory Optimization Approach for Bloom Filters using an
Additional Hashing Function 79

Figure 4.12: Maximum search length for standard, BFAH and pruned counting
Bloom filters when k = ln(2)m/n.

incoming item is hashed to a hash table entry containing multiple items it must
be matched to all these items resulting in a much longer processing time. In the
standard Bloom filter, for each item, collision is detected when the number of
hashed items to the related location is larger than the bucket size. Therefore, in
the standard Bloom filter (using Equation (4.18)), the probability of number of
collisions for ith address in the bit-array is as follows:

p (col(i) with bucket size p) =∑pmax−1
j=p (j + 1− p)

(
nk

j + 1

)(
1
m

)j+1 (
1− 1

m

)nk−j−1 (4.28)

In Equation (4.28), col(i) shows the number of collisions for ith address when
the bucket size is set to p, while pmax shows the maximum bucket size. Using
Equation (4.28), the expected number of collisions in the standard Bloom filter
is as follows.

E (Number of collisions in the standard BF ) =

nk
∑pmax−1

j=p (j + 1− p)

(
nk

j + 1

)(
1
m

)j+1 (
1− 1

m

)nk−j−1 (4.29)

It is obvious that to calculate the number of hashed items to each address the
value of p is set to 1. As we discussed previously, we can extend Equation (4.28)



80 Bloom Filter in High-performance Network Processing

for BFAH and pruned counting Bloom filters. In the BFAH, in first step, all
nk hashed items are hashed using k hashing functions and related bits in the
bit-array are set. The number of set bits in the bit-array is calculated using
t = m

(
1−

(
1− 1

m

)nk
)

. In the next step, an additional hashing function
selects n out of t addresses that set in the previous step. Therefore, in a BFAH
(using Equation (4.28)), the expected number of collisions is presented as
follows.

E (Number of collisions in the BFAH) =

n
∑pmax−1

j=p (j + 1− p)

(
n

j + 1

)(
1
t

)j+1 (
1− 1

t

)n−j−1 (4.30)

For pruned counting Bloom filter (PCBF), number of collisions is computed
when in the standard Bloom filter the number of hashing functions is set to 1.
Hence, the number of collisions is calculated as follows.

E (Number of collisions in PCBF ) =

n
∑pmax−1

j=p (j + 1− p)

(
n

j + 1

)(
1
m

)j+1 (
1− 1

m

)n−j−1 (4.31)

Using Equations (4.29), (4.30) and (4.31), the number of collisions for the
standard, pruned counting Bloom filters (PCBF) and the BFAH when k =
ln(2)m/n is depicted in Figure 4.13. In this figure, the number of collisions
in the BFAH and pruned counting Bloom filters is normalized to n and in the
standard Bloom filter is normalized to nk. In the BFAH and pruned counting
Bloom filter number of the stored items is n while in the standard Bloom filter
is nk. In addition, the value of pmax is set to 16. This is because, the analysis by
Fan, et al. [43] for counting Bloom filter shows 4-bit counter is enough for most
applications. In the other words, in all types of Bloom filters the probability for
each address to receive more than 16 items is very small.

In Figure 4.13, we can observe that the number of collisions in BFAH and
pruned counting Bloom filter is converged when the value of

m

n
is increased.

As an example, for m = 20000, n = 1000 and k = 14 the number of collisions
are 1, 4 and 2509 for pruned counting Bloom filter, BFAH and standard Bloom
filter. It should be noted that in this example, 1000 items are stored in the BFAH
and pruned counting Bloom filter and 14000 items are stored in the standard
Bloom filter



4.3 k-stage Pipelined Bloom Filter for Packet Classification 81

Figure 4.13: Number of collisions for standard, BFAH and pruned counting
Bloom filters when k = ln(2)m/n.

4.3 k-stage Pipelined Bloom Filter for Packet Classifi-
cation

Demand for high-performance network applications and devices is constantly
driving the need for low-power solutions at the chip, system, and algorithm
levels. These low-power management solutions are key in the industry’s con-
tinuing quest to become smaller, cheaper, and high-performance. Due to the
large-scale integration and high speed circuitry, network processors deployed
in typical network equipment can consume more power than other components.
As a key attached component to the network processor, the packet classifier
must definitely be designed with power efficiency in mind. In this section,we
present a k-stage pipelined Bloom filter architecture and the analysis of power
consumption [16].

4.3.1 Power Model for Standard Bloom Filter

A Bloom filter consists of a set of hashing functions and a bit-array to lookup.
Therefore, the total power consumed by the Bloom filter is a summation of
power consumed by the hashing functions and the bit-array lookup. The archi-



82 Bloom Filter in High-performance Network Processing

tecture of a standard Bloom filter is depicted in Figure 4.14.

M
em

bership checking

0

1

0

1

0

1

h1

h2

h3

hk

Bit−array

0

1

0

Match/mismatch

k parallel hashing functions

Incoming key

k hashing functions

Figure 4.14: A standard Bloom filter with k hashing functions.

In Figure 4.14, a Bloom filter includes k hashing functions that are working
simultaneously. In a Bloom filter, all k-bits pointed by hashing functions are
set in the bit-array (m bits) in the programming stage and are checked in
the membership checking stage. Universal hashing functions are generally
utilized in the Bloom filter. We utilized a class of universal hashing functions
that is called H3 hashing functions[29], [85], [10]. A standard Bloom filter
utilizes k hashing functions in order to make a decision on the input. Hence,
the power consumed by a standard Bloom filter depicted in Figure 4.14 is a
summation of the power consumed by the hashing functions that is represented
by Pohash, and the power consumed by bit-array lookup operations that is
represented by Polookup, plus the power consumed by k-input ‘and’ operation
that is represented by PoGateAndk

.

PoBFStandard
=

k∑
i=1

(Pohashi
+ PoLookup) + PoGateAndk

(4.32)

In Equation (4.32), the power consumed by all hashing functions is equal,
therefore, Equation (4.32) is rewritten as follows:

PoBFStandard
= k (Pohash + PoLookup) + PoGateAndk

(4.33)



4.3 k-stage Pipelined Bloom Filter for Packet Classification 83

4.3.2 k-stage Pipelined Bloom Filter

In this section, we present the concept of the k-stage pipelined Bloom filter and
its analysis. The k-stage pipelined Bloom filter is a Bloom filter that implements
its hashing functions in a pipelined manner. A k-stage pipelined Bloom filter
architecture is depicted in Figure 4.15.

h1

h2

h3

En=1

En

En

Stage 1

Stage 2

En

hk

k hashing functions

Stage k

 Stage 3

Membership checking

0

1

0
1

0

0

0

1

0

1

Bit−array

Incoming key Match/mismatch

Figure 4.15: k-stage pipelined Bloom filter architecture.

Basically, a k-stage pipelined Bloom filter as depicted in Figure 4.15 consists
of k groups of hashing functions. Each stage always computes the hash values
and the next stage only compute the hash values if in the previous stage there
is a match between the input item and the bit-array sought. In Figure 4.15,

‘En’ represents matching in the previous stage and enables the next stage of the
pipeline. The ‘En’ signal adds a delay to the pipelined Bloom filter that causes
to increase the power consumed by the hashing function. The power consumed
due to the delay in compared to the power consumed by hashing functions in the
standard Bloom filter is negligible. The advantage of using a k-stage pipelined
Bloom filter is that if the current stage produces a mismatch, there is no need to
use the next stages in order to decide whether the input item is a member of the
bit-array. At worst, it will operate like a standard Bloom filter, which utilizes all
of the hashing functions before making a decision on the type of the input. The
k-stage pipelined Bloom filter is utilized in membership checking stage, since
in the programming stage all hashing functions are utilized and pipeline stages
are permanently full. In a Bloom filter with m bits (bit-array size), n items and
k hashing functions, 1/m represents the probability that any one of the m bits



84 Bloom Filter in High-performance Network Processing

set by a single hashing function operating on a single input item. (1− 1/m) is
the probability that the bit is unset after a single hash value computation with a
single item [16]. The probability that a bit is still unset after all the items are
programmed into the pipelined Bloom filter by using k independent hashing
functions is as follows:

Punset bit =
(

1− 1
m

)kn

≈ e
−kn
m (4.34)

Consequently, the probability that any one of the bits is set is as follows:

pset = (1− punset bit) = 1− e
−kn
m (4.35)

From Figure 4.15, we can write the power consumed by the pipelined Bloom
filter as follows:

PoBFpipelined
= Pohashh1

+ Polookuph1

+ pseth1

(
Pohashh2

+ Polookuph2

)
+ pseth1

pseth2

(
Pohashh3

+ Polookuph3

)
+ ...

+ pseth1
...psethk−1

(
Pohashhk

+ Polookuphk

)
+ PoGateandk

= Pohashh1
+ Polookuph1

+ A
(
Pohashh2

+ Polookuph2

)
+ A2

(
Pohashh3

+ Polookuph3

)
+ ...

+ Ak−1
(
Pohashhk

+ Polookuphk

)
+ PoGateandk

=
∑k

i=1A
i−1
(
Pohashhi

+ Polookuphi

)
+ PoGateAndk

with A =

1− e
−kn
m


(4.36)

In Equation (4.36), psethi
represents the probability to set the bit pointed to by

hashing function with index i. The power consumed by the pipelined Bloom
filter is represented as follows:

PoBFpipelined
=

∑k
i=1

1− e
−kn
m

i−1 (
Pohashhi

+ Polookuphi

)
+ PoGateAndk

(4.37)



4.3 k-stage Pipelined Bloom Filter for Packet Classification 85

From Equations (4.33) and (4.37), we can observe that difference between
these equations is related to their coefficients, the coefficient of Equation (4.33)

is k and coefficient of Equation (4.37) is
∑k

i=1

1− e
−kn
m

i−1

. In other

words, the power consumed by the k-stage pipelined Bloom filter is less than the

power consumed by the standard Bloom filter if
∑k

i=1

1− e
−kn
m

i−1

< k

or

∑k
i=1

1− e
−kn
m

i−1

k
≤ 1.

Coefficient rate =

∑k
i=1

1− e

−kn

m

i−1

k

(4.38)

It should be noted that Equation (4.38) represents the power consumed by a
k-stage pipelined Bloom filter that is normalized to the power consumed by a
standard Bloom filter.

4.3.3 4-stage pipeline Bloom filter

The architecture of a 4-stage pipelined Bloom filter is depicted in Figure 4.16.

In this figure, we can observe that the first three stages that are most frequently
used include only one hashing function and last stage includes other k − 3
hashing functions. This fact decreases power consumption in comparison to a
standard Bloom filter and pipeline latency in comparison to k-stage pipelined
Bloom filter architecture. Similar to the power model of the k-stage pipelined
Bloom filter, the power model for the 4-stage pipelined Bloom filter is as



86 Bloom Filter in High-performance Network Processing

Incoming packet

h1
En=1

En

En

Stage 1

Stage 2

k hashing functions

0

1

0
1

0

0

0

1

0

1

Bit−array

Stage 4

 Stage 3

h4

h5

h3

h2

hk

1

1

0

Membership checking

En

Group of parallel hashing functions

Match/mismatch

Figure 4.16: Our 4-stage pipelined Bloom filter architecture where the first
three stages contains one hashing function and the forth stage contains k − 3
hashing functions that operate in a parallel manner.

follows:
PoBFpipelined4

= Pohashh1
+ Polookuph1

+ pseth1

(
Pohashh2

+ Polookuph2

)
+ pseth1

pseth2

(
Pohashh3

+ Polookuph3

)
+ pseth1

pseth2
pseth3

(
Pohashh4

+ Polookuph4

)
+ ...

+ pseth1
pseth2

pseth3

(
Pohashhk

+ Polookuphk

)
+ PoGateand4

+ PoGateandk−3

= Pohashh1
+ Polookuph1

+ A
(
Pohashh2

+ Polookuph2

)
+ A2

(
Pohashh3

+ Polookuph3

)
+ A3

(
Pohashh4

+ Polookuph4

)
+ ...

+ A3
(
Pohashhk

+ Polookuphk

)
+ PoGateand4

+ PoGateandk−3

=
∑3

i=1A
i−1
(
Pohashhi

+ Polookuphi

)
+

∑k
i=4A

3
(
Pohashhi

+ Polookuphi

)
+ PoGateand4

+ PoGateandk−3

with A =

1− e
−kn
m



(4.39)



4.4 Summary 87

In Equation (4.39), if we consider the power consumed by ‘Gateand4’ and
‘Gateandk−3

’ (the power consumed by 4-input and (k-3)-input‘and’ gates), it is
equal to the power consumed by ‘Gateandk

’ then Equation (4.39) is rewritten
as follows:

PoBFpipelined4
=

∑3
i=1

1− e
−kn
m

i−1

+
∑k

i=4

1− e
−kn
m

3
(

Pohashhi
+ Polookuphi

)
+ PoGateandk

(4.40)

4.4 Summary

In this chapter, we presented three approaches to make more efficient Bloom
filters.

• In the first approach, we presented a new technique to embed a multi-level
cache memory in a counting Bloom filter (CCBF). Using the counting
Bloom filter property, the number of accesses and sizes of the l-level
and 3-level cache in the CCBF architecture were investigated. To realize
the analysis and simulation results, we implemented a software packet
classifier in basic tuple space using a H3 class of universal hashing
functions.

• In the second approach, we presented an innovative technique to decrease
the memory usage in the standard Bloom filter. We utilized an additional
hashing function to select a generated address by hashing functions in the
Bloom filter. Utilization of an additional hashing function increases the
performance of Bloom filter (in term of average bucket size, maximum
search length and number of collisions) in comparison to the standard
Bloom filter. Our analysis and software implementation results validate
this. The main advantage of the BFAH technique is that it be applied to
all Bloom filter types but the pruning technique only works with counting
Bloom filter. The pruning technique needs a parallel search among
the counters pointed to by hashing functions to find the counter with
minimum value while the BFAH approach accesses the item in question
by only one hash operation.

• In third approach, we presented a k-stage pipelined Bloom filter archi-
tecture to decrease the power consumption in packet classification. The



88 Bloom Filter in High-performance Network Processing

performed analysis show that the pipelined Bloom filter architecture de-
creases power consumption in comparison to the standard Bloom filter.
Our observation of the software packet classifier for real packet traces
shows that the first three stages of the pipelined Bloom filter detect most
of the mismatch packets, therefore, a 4-stage pipelined Bloom filter is
sufficient to classify packets. The 4-stage pipelined Bloom filter is more
appropriate than standard Bloom filter when the power consumption is
critical.

These approaches are useful in the design of low power and high-performance
memory architectures and processing engines (e.g., forwarding, packet intro-
spection and classification) utilized in the network processors and network
processing applications.



Chapter 5

Optimal Bandwidth Allocation in
Network Processing Systems

T
he bandwidth growth and applications variety fueled the need for high-
performance network processors (NPs). The packet processing tasks
have specific requirements in term of response time and throughput.

The traditional NP consumes many cycles when it needs to communicate with
other networking elements. Therefore, the utilization of more powerful network
processors should improve the communication between NPs and boost the
overall performance within the network. A valuable tool to analyze such
networks is the queuing network model. The queuing network model can be
utilized to derive a model for network processors for packet processing system
in a grid-oriented environment. In this model, it is important to be able to
determine how to best allocate the arrival rate (bandwidth) in such a manner
as to optimize various performance measures, such as the response time and
the number of items in the network.

In this chapter, we present a queuing model for the NP using Jackson model
in Section 5.1. The optimal bandwidth allocation is presented in Section 5.2.
Section 5.3 summarizes the main points in this Chapter.



90 Optimal Bandwidth Allocation in Network Processing Systems

5.1 NP-based Architecture Model

In this section, we present the simple abstract NP model and an NP-based
architecture model. Subsequently, we present the optimal arrival rate allocation
concept.

5.1.1 Simple Abstract NP Model

The handling of incoming packets by a network processor can be separated into
two planes, i.e., the data plane and the control plane, that differ in speed and
the manner in which packets are handled. In the data plane, simple and highly
repetitive tasks are performed. Most packets pass through this high-speed plane
of an NP. In the control plane, exceptional packets and complex routines are
handled. This model is depicted in Figure 5.1(a).

Control plane

Data planeHigh speed

Low speed

Physical interface

(A) (B)

Data plane

λ

Control plane

μ

μd μd

d

dλ pλd

(1−p) c

(a)

Control plane

Data planeHigh speed

Low speed

Physical interface

(A) (B)

Data plane

λ

Control plane

μ

μd μd

d

dλ pλd

(1−p) c

(b)

Figure 5.1: (a) Simple abstract NP model. (b) Simple abstract NP queuing
model.

Based on the abstract NP model, we can derive a queuing model with the
mapping of each plane on a separate queue. The related queuing model is
depicted in Figure 5.1(b). We call this model the Abstract NP Queuing (ANPQ)
model [14], [10]. In this figure, the λd and µd are the arrival rate and the service
rate in the data plane, respectively, and λc and µc are the arrival rate and the
service rate in the control plane, respectively, and λ is the arrival rate of the
overall system. Using Equation (2.4), the response time Ts in the ANPQ model
is:

Ts =
1
λ

(
λd

µd − λd
+

pλd

µd − pλd
+

(1− p)λd

µc − (1− p)λd

)
=

(
1

(µd − λd)
+

p

(µd − pλd)
+

(1− p)
(µc − (1− p)λd)

) (5.1)



5.1 NP-based Architecture Model 91

In this equation probability p shows the rate of items that is forwarded to data
plane. In addition, in this equation each term shows the response time related
to each queue in data and control plane.

5.1.2 Model Overview of Grid-oriented NP Network

In this section, the grid-oriented NP architecture model is presented. This
model is not for specific NPs or their internal components such as buses and
memories. This model investigates the role of NPs as processing elements to
process incoming packets in a grid computing environment. In this model, one
of the NPs operates as master-NP and others cooperate as slave-NPs. When
the master-NP’s load is saturated, it requests cooperation from other NPs that
have a low load. After finding an NP as a slave, the master-NP defers part
of data packets to it for processing. The functions of a master-NP include
platform configuration and reconfiguration, load balancing, packet processing,
scheduling, management, and accounting of the slave-NPs. In this platform,
each NP can operate as a slave or a master at different times, it depends on
the condition of the NPs. The master-NP segregates input packets between
slave-NPs if it needs more processing power. When some packets cannot be
handled by slave-NPs, these will be forwarded back to the master-NPs. The
master-NP sends the packet stream to slave-NPs using direct path and receives
control and non-handled packets from slave-NPs. In the modeling, the behavior
of slave-NPs is evaluated based on the master-NP, therefore, the master-NP
is represented using the ANPQ model with slave-NPs as simple processing
elements.

Model analysis of network of NPs in Grid-oriented environment

Routers and switches are important parts of network processing and grid com-
puting networks. These hardware resources are comprised mainly of network
elements that are called network processors (NPs). The NPs in this platform
are spread in different network environments and locations. The general archi-
tecture is depicted in Figure 5.2.

In this architecture, the collaborative processing is the main ambition where the
one of NPs can operate as master-NP and others can collaborate as slave-NPs,
the concept is depicted in Figure 5.3.

Figure 5.3 depicts different configurations to collaborate NPs together. The
NP architecture in grid environments is depicted in Figure 5.4. In this figure,



92 Optimal Bandwidth Allocation in Network Processing Systems

Figure 5.2: NPs distribution in grid environment.

SlaveMaster

Slave Master

Slave Slave

Master

Slave

Slave

NP
1

NP
2

NP
3

NP
1

NP
2

NP
3

NP
1

NP
2

NP
3

Figure 5.3: Different configuration of NPs.

NP1 receives a packet stream S1, divides it to other streams, and sends those to
slave-NPs.

The model comprises two parts: a master-NP and a set of slave-NPs. The
master-NP includes two data plane processing units D and P1 and a control
plane processing unit C (based on the ANPQ model). We can observe that the
data plane processing unit receives the packet stream S1 and divides it between
different slave-NPs. In this figure, the Si (with i ≥ 2) represents external arrival
rate to different slave-NPs, Pdi (with i ≥ 1) represents the probabilities of
internal arrival rate between master-NP and slave-NPs and called the forward
routing probability. Pid (with i ≥ 2) represents the probabilities of internal



5.1 NP-based Architecture Model 93

Slave NPs

D

C

P

P

P

P

P

P

Backward probabilities

Master NP 1

P

NP
2

1

NP
n

p
d,0

P
d,1

P
d,2

d,n

1,0

2,0

2,d

n,0

n,d

S
1

S
2

S
n

Figure 5.4: Model of a grid-oriented NP.

arrival rate among slave-NPs and master-NP and called the backward routing
probability. The values of the backward routing probabilities is zero when the
slave-NPs can handle all packet streams. Pi0 represents the probability of the
outgoing stream for each NP, λi and µi represent the arrival rate and service rate
for different slave-NPs, respectively, λd represents the arrival rate for the data
plane processing unit of master-NP, λc represents the arrival rate for control
plane processing unit of master-NP, µd represents service rate for data plane
processing unit, µc represents service rate for control plane processing unit,
and µi represents service rate for different slave-NPs. Using Equations 2.1 and
2.4 we can write the arrival rate equations for different NPs in Figure 5.4 as
following:

λd =
s1 +

∑n
i=2 sipid

1−
∑n

i=2 pdipid

λ1 = pd1λd

λi = si + pdiλd, i = 2...n
λc = pd0λd

(5.2)

Using the Equation (2.4), the mean response time for our model can be deter-
mined as follows:

Ts =
1
λ

(
λd

µd − λd
+

λc

µc − λc
+
∑n

i=1

λi

µi − λi

)
=

1
λ

(
λd

µd − λd
+

pd0λd

µc − pd0λd
+

pd1λd

µd − pd1λd

+
∑n

i=2

si + pdiλd

µi − si − pdiλd
)

(5.3)



94 Optimal Bandwidth Allocation in Network Processing Systems

In Equation (5.3), we can observe that for some values the denominator of dif-
ferent terms can be zero therefore, the response time Ts will be increased. Since
some NPs are busy and can not handle the incoming packets. Consequently,
the slave-NPs with lower load and response time should be selected. Using
Equations (5.2) and (5.3), the model response time equation is extended as
follows:

Ts =
1
λ

(
C

µd − C
+

pd0C

µc − pd0C
+

pd1C

µd − pd1C

+
∑n

i=2

si + pdiC

µi − si − pdiC
)

with C =
s1 +

∑n
i=2 sipid

1−
∑n

i=2 pdipid

(5.4)

In the Equation (5.4), λ is the entire system arrival rate and equal to
∑n

i=1 si.

5.2 Optimal Arrival Rate Allocation

Based on the model described in previous section, we can observe that the value
of the arrival rate for each slave-NP is determined by the master-NP, but how
are the optimal arrival rates determined? In other words, we should find the
answers for these questions: How is the value of forward routing probability
pdi determined? Which slave-NPs can decrease/increase the response time? If
an slave-NP increases overall system response time how can this problem be
overcome? Therefore, we utilize an optimal arrival allocation mechanism and
find a sequence of slave-NPs to minimize system response time. Afterwards,
we can use the proportional allocation to distribute the incoming items between
different slave-NPs. An alternative to find the optimal arrival rate in the system
is the utilization of optimal capacity allocation policy that is presented in
Equation (2.5). To derive the Equation (2.5), we assumed that the value
of arrival rates are constant and the optimal service rate has been evaluated.
Thereby, we derive a new formula to estimate the optimal arrival rates. We
assume that we have control over the arrival rate λ1, λ2, ..., λM where λi is the
arrival rate for different slave-NPs. The slave-NPs are managed and controlled
by the master-NP, but with a constraint that fixes the total arrival capability to a
constant value c (due to the standard communication line bandwidth) as follows:∑M

i=1 λi = c. For a given set of service rates µi, we want to find the optimal
set λi that minimizes the items N̄ =

∑M
i=1Ni, where N̄ represents the mean

number of items or queue length that can be computed using Equation (2.3).



5.2 Optimal Arrival Rate Allocation 95

Therefore, we can derive the following equation:

N̄ =
M∑
i=1

λi

µi − λi
with constraint

M∑
i=1

λi = c (5.5)

In this equation the constraint is defined based on the arrival rates λi. This
equation is used to estimate the value of arrival rates. An alternative to min-
imizing Equation (5.5) is to use of Lagrangian multiplier. In mathematical
optimization problems, Lagrange multipliers is a method to find the local ex-
tremum of a function of several variables subject to one or more constraints.
This method reduces a problem in n variables with k constraints to a solvable
problem in n + k variables with no constraints [61]. Using the method of
Lagrangian multipliers, Equation (5.5) is rewritten as follows:

H =
M∑
i=1

λi

µi − λi
+ x(

M∑
i=1

λi − c) (5.6)

To minimize H , we differentiate and obtain the following equation:

∂H

∂λi
=

M∑
i=1

µi

(µi − λi)2
−Mx (5.7)

If we set the derivative to zero then we find that H is minimized by λi =

µi −
√
µi

x
substituting this expression for λi into

∑M
i=1 λi = c, we find that

1√
x

=
∑M

i=1 µi − c∑M
i=1

√
µi

. Hence the optimal value for the arrival rate obtained by

substituting x into the optimal value for λi, we have:

λi = µi −
√
µi(

∑M
j=1 µj − c∑M
j=1
√
µj

) (5.8)

The description of this concept is depicted in Figure 5.5.

In this figure, the curves A and B represent service and arrival rates of different
NPs, respectively. Curve C represents the optimal arrival rate for these NPs,
where they are estimated using Equation (5.8). We can observe that the mapping
of curves B and C in the same space generates different areas called overload
and underload areas containing NPs. The overload area represents saturated
NPs. This means for the NPs in the overload area the arrival rate values are
more than optimal arrival rates that these NPs increase the response time of



96 Optimal Bandwidth Allocation in Network Processing Systems

Figure 5.5: Typical curves in optimal arrival rate allocation.

whole system. The underload area represents NPs that can receive more arrival
rate. In the underload area, the arrival rate values are lower than the optimal
arrival rates. Based on the Figure 5.5, the areasE andG represent the underload
area and areas F and H represent overload areas. The value of the arrival rate
in the underload areas can increase to the optimal arrival rate values.

5.3 Summary

In this chapter, we proposed an abstract model for network processor using
queueing networks (ANPQ) and open queues. Based on the ANPQ, we de-
scribed the NP-based architecture model in a grid-oriented network environment
using the Jackson model. In network processing environments, an important
factor is to minimize the response time. Therefore, we presented an approach
to optimize the rate arrival allocation. In our approach, we derive a formula
that proposed a solution to select a set of NPs for packet processing, in order to
minimize the total system response time. This solution can be implemented in
grid-oriented environments to allocate optimal bandwidth.



Chapter 6

Performance Evaluation and
Experimental Results

T
his chapter presents the results of the proposed approaches that were
discussed in chapters 3, 4 and 5. These approaches include the perfor-
mance evaluation of collaboration of reconfigurable processors in grid

environments for multimedia kernels, the performance evaluation to optimize
Bloom filters in network processing application and an approach for the optimal
bandwidth allocation in the packet processing systems.

Section 6.1 presents the experimental results of collaboration of reconfigurable
processors in grid environments for multimedia kernels. Section 6.2 presents the
simulation and implementation results of three approaches in Bloom filters. The
simulation results of approach for optimal bandwidth allocation for network
processors is described in Section 6.3. Finally, Section 6.4 summarizes this
chapter.



98 Performance Evaluation and Experimental Results

6.1 Collaborative Reconfigurable Processors in Grid
Environments

In this section, we present the experimental results which have been obtained
using the CRGridSim simulator [15], [115]. First, we present the application
mapping on CRGC for multimedia kernels. Subsequently, the performance
evacuation of CRGC is presented.

6.1.1 Application Mapping on CRGC

Parallel architectures can be programmed using two models of parallel pro-
gramming, data parallelism and task parallelism. In data parallelism, data is
partitioned and distributed among the processing elements. For example, in case
of image processing applications, images are split into several sub-images and
each sub-image is processed by a processing element. In task parallelism, the
instructions can be grouped into tasks and each task is assigned to a processing
element. In other words, the task is split into a number of subtasks and each
subtask is assigned to a specific processor. In addition, the data necessary for
each subtask is sent to the appropriate processing element.

Based on the simulation environment presented in Chapter 3.4, we map our
applications on two different configurations. The first configuration is the
collaboration of GPPs with packet size of 64 KBytes. The second configuration
is the collaboration of reconfigurable processor (elements) with packet size of
64 KBytes. Tables 6.1 and 6.2 show the mapping of the 2D DWT on the first
and second configurations, respectively. GPP0 is the main processing element,
while other processors are the collaborator processing elements. Columns three
to six represent the number of assigned gridlets from each group (Table 3.2) to
each processing element. For example, in Table 6.1, GPP1 processes 3, 0, 2, and
2 gridlets from groups 1, 2, 3, and 4, respectively. The seventh column shows
the total number of processed gridlets by each processing element. The last
column represents the total number of executed instructions by each processing
element. For instance, in Table 6.1, GPP1 executes 3 × 35, 0 × 46, 2 × 84,
and 2 × 267 MIs for groups 1, 2, 3, and 4, respectively. The total executed
instructions (see Table 3.2) are 807 MIs (million of instructions).

Three collaborator processing elements in Table 6.1 process 7 + 8 + 10 = 25
gridlets, while the main processing element processes 15 gridlets. It should be
noted that these numbers are obtained by the executing of simulation program
presented in Chapter 3.4. In other words, the GPP0 processes the most number



6.1 Collaborative Reconfigurable Processors in Grid Environments 99

Resource Gridlets (based on table 3.2) Total # of
Type MIPS # of assigned # of assigned # of assigned # of assigned Total # of ins. for PEs

gridlets gridlets gridlets gridlets
from Group 1 from Group 2 from Group 3 from Group 4 assigned gridlets

GPP0 30 2 5 4 4 2+5+4+4=15 1704
GPP1 35 3 0 2 2 3+0+2+2=7 807
GPP2 50 2 2 1 3 2+2+1+3=8 1047
GPP3 40 3 3 3 1 3+3+3+1=10 762

Table 6.1: Application mapping of the 2D DWT on collaboration of GPPs on a
grid computing.

Resource Gridlets (based on table 3.2) Total # of
Type MIPS # of assigned # of assigned # of assigned # of assigned Total # of ins. for PEs

gridlets gridlets gridlets gridlets
from Group 1 from Group 2 from Group 3 from Group 4 assigned gridlets

GPP0 30 2 2 2 3 2+2+2+3=9 1131
RE1 35 3 3 3 1 1+3+3+3=10 762
RE2 50 1 3 3 3 1+3+3+3=10 1226
RE3 40 4 2 2 3 4+2+2+3=11 1201

Table 6.2: Application mapping of the 2D DWT on collaboration of reconfig-
urable processors (elements) on a grid computing.

of gridlets. On the other hand, three collaboration reconfigurable processors
in Table 6.2 process 10 + 10 + 11 = 31 gridlets, while the main processing
element processes 9 gridlets, which is the least number of gridlets compared
to other processing elements. As a result, the collaboration of reconfigurable
processors can process more gridlets than the collaboration of GPPs.

In order to increase the computational time, both media kernels are integrated
and executed together. Table 6.3 depicts the mapping of the execution of
both media kernels on the collaboration of GPPs, while Table 6.4 depicts
the mapping of the execution of both media kernels on the collaboration of
reconfigurable processors. Three collaborator processing elements in Table 6.3
process 8+13+10 = 31 gridlets, while the main processing element processes
9 gridlets. On the other hand, three collaboration reconfigurable processors in
Table 6.4 process 12+13+12 = 37 gridlets, while the main processing element
processes 3 gridlets. As a result, in collaboration mode, each collaborator
processing element processes much more gridlets than the main GPP.

6.1.2 Performance Evaluation

In order to evaluate the proposed approach, we considered two packet sizes, 32
KBytes and 64 KBytes (the largest packet sizes in the networks). Our results
show that using larger packet sizes lead to higher performance than smaller



100 Performance Evaluation and Experimental Results

Resource Gridlets (based on table 3.2) Total # of
Type MIPS # of assigned # of assigned # of assigned # of assigned Total # of ins. for PEs

gridlets gridlets gridlets gridlets
from Group 1 from Group 2 from Group 3 from Group 4 assigned gridlets

GPP0 30 2 3 2 2 2+3+2+2=9 2588
GPP1 35 2 2 1 3 2+2+1+3=8 2978
GPP2 50 2 4 5 2 2+4+5+2=13 3438
GPP3 40 4 1 2 3 4+1+2+3=10 3290

Table 6.3: Application mapping of the 2D DWT+co-occurrence matrix on
collaboration of GPPs on a grid computing.

Resource Gridlets (based on table 3.2) Total # of ins.
Type MIPS # of assigned # of assigned # of assigned # of assigned Total # of for PEs

gridlets gridlets gridlets gridlets
from Group 1 from Group 2 from Group 3 from Group 4 assigned gridlets

GPP0 30 0 0 1 2 0+0+1+2=3 1760
RE1 35 4 4 2 2 4+4+2+2=12 2916
RE2 50 3 3 3 4 3+3+3+4=13 4447
RE3 40 3 3 4 2 3+3+4+2=12 3167

Table 6.4: Application mapping of the 2D DWT+co-occurrence matrix on
collaboration of reconfigurable processors (elements) on a grid computing.

packet sizes. Larger packet sizes decreases the communication overhead due
to sending less packets. In our case, we have 40 images with a total size
of 294 MBytes. These images have 4539 packets of 64 KBytes and 9219
packets of 32 KBytes. In addition, we considered four different configurations,
collaboration of 3 GPPs, a GPP with 2 REs, 4 GPPs, and a GPP with 3 REs.
The configuration of 3 GPPs means that 2 GPPs are collaborating with a main
GPP. The star topology has been used for the collaboration mechanism that a
structure of this topology was depicted in Figure 3.2 (a).

Figure 6.1 depicts the speedups of the first two configurations, 3 GPPs and a
GPP with 2 REs over a GPP for different packet size. Figure 6.2 also depicts
the speedups of the last two configurations, 4 GPPs and a GPP with 3 REs,
over a GPP for different packet size. Our observations from these figures are
the following. First, increasing the packet size from 32 KBytes to 64 KBytes
improves the performance. As can be seen that the speedups for the packet
size 64KB are larger than the speedups for packet size 32KB. This is due to
the fact that larger packet sizes decreases the communication overhead. Sec-
ond, the collaboration of reconfigurable processors improve the performance
more than the collaboration of GPPs. For our configuration, the performance
improvement of the collaboration of reconfigurable processors over the collabo-
ration of GPPs is of up to 2.5. This is because, based on the specifications of
the processing elements in the simulation environment in Tables 3.3 and 3.4



6.1 Collaborative Reconfigurable Processors in Grid Environments 101

each reconfigurable processor processes more instructions than a GPP. Finally,
executing computational intensive applications yields much more performance
than non-computational intensive applications.

This is because the impact of the communication overhead will be reduced
compared to the computational time. As it can be seen in those figures, combi-
nation of both kernels increases the computational time and then it obtains more
speedups than the execution of each kernel separately. Additionally, increasing
the number of collaborator processing elements improves the performance.
This is because the submitted subtasks to each collaborator are decreased. This
reduces the number of processed instructions by each processing element. Fur-
thermore, from Figures 6.2 (a) and (b) it can be observed when the processing
power of RE changes from 2 to 5 the speedup of the system is increased.

6
7

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

2
3
4
5
6
7

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

0
1
2
3
4
5
6
7

3 GPP‐ 64 KB 1 GPP & 2 RE‐ 64 KB 3GPP‐ 32 KB 1 GPP & 2 RE‐ 32 KB

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

0
1
2
3
4
5
6
7

3 GPP‐ 64 KB 1 GPP & 2 RE‐ 64 KB 3GPP‐ 32 KB 1 GPP & 2 RE‐ 32 KB

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

Figure 6.1: Speedup for different configurations with 2 collaborator processing
elements over one GPP.

It should be noted that the theoretical upper bound of speedup that can be
obtained in CRGC approach is 15x using Equation (3.10), while the actual
speedup is 7.2x. The reason for this difference in the speedup is due to the
impact of following factors, communication time, reconfiguration time, ap-
plication mapping policy, and load balancing and application structure have
been considered. In addition, in a real network, each processing element can
collaborate with a limited number of neighbor processing elements. Increasing
the number of neighbor processing elements increases the communication time
and this reduces the performance.



102 Performance Evaluation and Experimental Results

5

6
DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

2

3

4

5

6
DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

0

1

2

3

4

5

6

4 GPP‐64 KB 1 GPP & 3 RE‐64 KB 4 GPP‐32 KB 1 GPP & 3 RE‐32 KB

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

0

1

2

3

4

5

6

4 GPP‐64 KB 1 GPP & 3 RE‐64 KB 4 GPP‐32 KB 1 GPP & 3 RE‐32 KB

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

(a)

7
8

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

3
4
5
6
7
8

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

1
2
3
4
5
6
7
8

4 GPP‐64 KB 1 GPP & 3 RE‐64 KB 4 GPP‐32 KB 1 GPP & 3RE‐ 32 KB

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

1
2
3
4
5
6
7
8

4 GPP‐64 KB 1 GPP & 3 RE‐64 KB 4 GPP‐32 KB 1 GPP & 3RE‐ 32 KB

DWT Co‐occurrence matrix DWT+Co‐occurrence matrix

Sp
ee
d
u
p

(b)

Figure 6.2: Speedup for different configurations with 3 collaborator processing
elements over one GPP. (a) When reconfigurable elements (REs) are 2 times
faster than GPP. (b) When reconfigurable elements (REs) are 5 times faster than
GPP.

6.2 Bloom Filter Architectures Results

In this section, the specification of different rule-set databases for the testing
purpose is introduced. Subsequently, the experimental results including sim-
ulation and implementation results for different Bloom filter approaches are
presented.



6.2 Bloom Filter Architectures Results 103

6.2.1 System Testing

For the testing purposes, we utilize different rule-set databases and packet
traces that have been used by the Applied Research Laboratory in Washington
University in St. Louis [94]. The specification of the rule-set databases and
packet traces is presented in Table 6.5.

Rule Database FW1-100 FW1-1k FW1-5k FW1-10k FW1 IPC1 ACL1
Number of rules 92 971 4653 9311 266 1550 752
Number of tuples 26 42 52 57 36 179 44

Packet trace FW1-100 FW1-1k FW1-5k FW1-10k FW1 IPC1 ACL1
Number of Packets 920 8050 46700 93250 2830 17020 8140

Table 6.5: Rule-set database and packet trace specification.

Table 6.5 includes seven rule-set databases and correspondent packet traces.
The rule-sets FW1, ACL1, and IPC1 are extracted from real rule-sets and others
generated by the Classbench benchmark. More details on Classbench, rule-set
databases, and packet traces can be found in [94].

In the rule-set database, each rule consists of 5 header fields including “[Source
IP address, Destination IP address, Source port, Destination port, Protocol]”
and the format is “@[Source IP address prefix in dot-decimal notation]/[Prefix
length] [Destination IP address prefix in dot-decimal notation]/[Prefix length]
[Low source port] : [High source port] [Low destination port] : [High des-
tination port] [Protocol value in hexadecimal]/[Protocol mask in hexadeci-
mal]”. An example of a rule in the rule-set database is : “@204.152.188.80/28
204.152.188.64/28 67 : 67 67 : 67 0x11/0xff”. The packet header trace for-
mat is “[Source IP address in decimal] [Destination IP address in decimal]
[Source port value in decimal] [Destination port value in decimal] [Protocol in
decimal]”. An example of a packet header in a packet trace is: “3337533518
2390673931 65535 65535 1 9” [6], [7], [94].

6.2.2 Cache Counting Bloom Filter

In this subsection, we present the implementation results of the CCBF architec-
ture in packet classification using tuple space search and subsequently compare
them to the simulation results. The implementation and simulation results for
Fw1-100, Fw1-1k and Fw1-5k rule-set databases are depicted in Figure 6.3.

In this figure, ‘Fw1-xx-Im’ shows the graph of the software implementation and
‘Fw-xx-Pr’ shows the graph of mathematical simulation results that are predicted



104 Performance Evaluation and Experimental Results

0.478 0.427 0.478 0.427 0.505 0.427 0.485 0.427 0.492 0.427 0.478 0.478 0.485 0.492 0.418 0.418
0 481 0 428 0 481 0 428 0 5 0 428 0 487 0 428 0 493 0 428 0 481 0 481 0 487 0 493 0 416 0 417

1 1k 1 1k Fw1 5k Im Fw1 5k Pr
0.481 0.428 0.481 0.428 0.5 0.428 0.487 0.428 0.493 0.428 0.481 0.481 0.487 0.493 0.416 0.417
Fw1‐100‐Im Fw1‐100‐Pr

0 6

Fw1‐1k‐Im Fw1‐1k‐Pr

0 6

Fw1‐5k‐Im Fw1‐5k‐Pr

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

es
se
s 0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

es
se
s 0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

es
se
s

0.4

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

f a
cc
es
se
s

0.4

0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

f a
cc
es
se
s

0 3

0.4

0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

of
 a
cc
es
se
s

0 2

0.3

0.4

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

be
r 
of
 a
cc
es
se
s

0 2

0.3

0.4

0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

be
r 
of
 a
cc
es
se
s

0 2

0.3

0.4

0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

m
be

r 
of
 a
cc
es
se
s

0.1

0.2

0.3

0.4

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0.1

0.2

0.3

0.4

0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0.1

0.2

0.3

0.4

0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9 4.3 5.8 7.2 8.6 11 11.5 13 14.5 c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9 4.3 5.8 7.2 8.6 11 11.5 13 14.5 c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9 4.3 5.8 7.2 8.6 11 11.5 13 14.5 c=m/n
Average‐ImAverage‐Pr

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9  4.3  5.8   7.2   8.6  11  11.5  13   14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9  4.3  5.8  7.2   8.6   11   11.5  13  14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44  2.9 4.3  5.8   7.2   8.6    11  11.5  13  14.5    c=m/n

(A) (B) (C)(a)

0.478 0.427 0.478 0.427 0.505 0.427 0.485 0.427 0.492 0.427 0.478 0.478 0.485 0.492 0.418 0.418
0 481 0 428 0 481 0 428 0 5 0 428 0 487 0 428 0 493 0 428 0 481 0 481 0 487 0 493 0 416 0 417

1 1k 1 1k Fw1 5k Im Fw1 5k Pr
0.481 0.428 0.481 0.428 0.5 0.428 0.487 0.428 0.493 0.428 0.481 0.481 0.487 0.493 0.416 0.417
Fw1‐100‐Im Fw1‐100‐Pr

0 6

Fw1‐1k‐Im Fw1‐1k‐Pr

0 6

Fw1‐5k‐Im Fw1‐5k‐Pr

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

es
se
s 0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

es
se
s 0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

es
se
s

0.4

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

f a
cc
es
se
s

0.4

0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

f a
cc
es
se
s

0 3

0.4

0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

of
 a
cc
es
se
s

0 2

0.3

0.4

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

be
r 
of
 a
cc
es
se
s

0 2

0.3

0.4

0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

be
r 
of
 a
cc
es
se
s

0 2

0.3

0.4

0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

m
be

r 
of
 a
cc
es
se
s

0.1

0.2

0.3

0.4

0.5

0.6

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0.1

0.2

0.3

0.4

0.5

0.6

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0.1

0.2

0.3

0.4

0.5

0.6

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9 4.3 5.8 7.2 8.6 11 11.5 13 14.5 c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9 4.3 5.8 7.2 8.6 11 11.5 13 14.5 c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9 4.3 5.8 7.2 8.6 11 11.5 13 14.5 c=m/n
Average‐ImAverage‐Pr

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐100‐Im Fw1‐100‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9  4.3  5.8   7.2   8.6  11  11.5  13   14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐1k‐Im Fw1‐1k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44 2.9  4.3  5.8  7.2   8.6   11   11.5  13  14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1‐5k‐Im Fw1‐5k‐Pr

N
um

be
r 
of
 a
cc
es
se
s

1.44  2.9 4.3  5.8   7.2   8.6    11  11.5  13  14.5    c=m/n

(A) (B) (C)(b)

0.485 0.492 0.418 0.418
0.487 0.493 0.416 0.417

(C)

13  14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1-5k-Im Fw1-5k-Pr

N
um

be
r o

f a
cc

es
se

s

1.44  2.9 4.3  5.8  7.2   8.6    11  11.5  13  14.5    c=m/n

(c)

Figure 6.3: The number of accesses in CCBF normalized to the number of
accesses in standard Bloom filter include mathematical simulation and software
implementation. (a) The number of accesses in a 3-level CCBF for Fw1-100.
(b) The number of accesses in a 3-level CCBF for Fw1-1k. (c) The number of
accesses in a 3-level CCBF for Fw5-1k.



6.2 Bloom Filter Architectures Results 105

from Equation (4.12). The vertical axis shows the number of accesses that is
normalized to nk (n is number of items and k is number of hashing functions).
The horizontal axis includes two sequences with the first sequence specified
by k (number of hashing functions) and the second sequence is specified by
c = m/n (m represents the size of address space in counter-array in CCBF and
n represents the number of items). The value of c = m/n is determined using
Equation (2.6) that estimates the optimal value for k to have the minimum false
positive probability. These rule-set databases (Fw1-100, Fw1-1k and Fw1-5k)
are synthetic that were generated by the Classbench benchmark. The software
implementation and mathematical simulation results for Fw1, Ipc1 and average
of all rule-set databases are depicted in Figure 6.4.

Figs. 6.4 (a) and 6.4 (b) depict the number of accesses for Fw1 and Ipc1 rule-set
databases that were extracted from real rule-set databases. Figure 6.4 (c) depicts
the average for all of utilized rule-set databases.

As we expected the mathematical simulation results verify the software imple-
mentation results although in the software implementation results number of
accesses are more than mathematical simulation results. The maximum differ-
ence between implementation and simulation results is 7.8%. This difference
is due to the following facts: number of tuples, distribution of rules inside the
tuples, and utilized hashing functions. In the packet classification using tuple
space, the number of tuples and the number of rules in the tuples are constant
for different rule-set databases and different tuples in each rule-set database.
In most rule-set databases, one tuple includes about half of the rules and some
tuples only have one or several rules. In the simulation analysis, the simulation
results were obtained by investigating a CCBF with a big bit-array and a single
set of items. The H3 hashing function selection procedure is random causing
some of them to generate more collisions that needs more accesses. If we can
utilize a process to select optimalH3 hashing functions, the number of accesses
should decrease and converge to the simulation results. The total size of cache
levels for real rule-set databases in a 3-level CCBF is depicted in Figure 6.5.

In this figure, ‘rule-set-im’ shows the total size of cache for rule-set database
‘rule-set’ where the results are extracted by a software packet classifier and
normalized to nk (number of items multiply by number of hashing functions).
Based on the software implementation the total cache size has some fluctuations.
This is due to internal gaps of buckets in the third cache level.



106 Performance Evaluation and Experimental Results

#DIV/0! 0.481
#DIV/0! 0.458
#DIV/0! 0.44
#DIV/0! 0.435
#DIV/0! 0.432
0.480333 0.407

0.483 0.429
#DIV/0! 0.427
#DIV/0! 0.428

Cache levels size

(A) (B) (C)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1-Im Fw1-Pr

N
um

be
r o

f a
cc

es
se

s

1.44 2.9  4.3  5.8  7.2 8.6  11  11.5  13  14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Average-Im Average-Pr

N
um

be
r o

f a
cc

es
se

s

1.44 2.9  4.3  5.8   7.2   8.6  11  11.5  13   14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Ipc1-Im Ipc1-Pr

N
um

be
r o

f a
cc

es
se

s

1.44 2.9  4.3  5.8 7.2  8.6  11 11.5  13  14.5    c=m/n

(a)

#DIV/0! 0.481
#DIV/0! 0.458
#DIV/0! 0.44
#DIV/0! 0.435
#DIV/0! 0.432
0.480333 0.407

0.483 0.429
#DIV/0! 0.427
#DIV/0! 0.428

Cache levels size

(A) (B) (C)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Fw1-Im Fw1-Pr

N
um

be
r o

f a
cc

es
se

s

1.44 2.9  4.3  5.8  7.2 8.6  11  11.5  13  14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Average-Im Average-Pr

N
um

be
r o

f a
cc

es
se

s

1.44 2.9  4.3  5.8   7.2   8.6  11  11.5  13   14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Ipc1-Im Ipc1-Pr

N
um

be
r o

f a
cc

es
se

s

1.44 2.9  4.3  5.8 7.2  8.6  11 11.5  13  14.5    c=m/n

(b)

(C)

13  14.5    c=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Average-Im Average-Pr

N
um

be
r o

f a
cc

es
se

s

1.44 2.9  4.3  5.8   7.2   8.6  11  11.5  13   14.5    c=m/n

(c)

Figure 6.4: The number of accesses in CCBF normalized to the number of
accesses in standard Bloom filter include mathematical simulation and software
implementation. (a) The number of accesses in a 3-level CCBF for Fw1. (b)
The number of accesses in a 3-level CCBF for Ipc1. (c) The average number of
accesses in a 3-level CCBF for all of utilized rule-set databases.



6.2 Bloom Filter Architectures Results 107

l

1.04

Fw1‐im Acl‐im Ipc1‐im Avg‐im

1.03
1.03
1.04
1.04

Fw1‐im Acl‐im Ipc1‐im Avg‐im
si
ze

1.02
1.02
1.03
1.03
1.04
1.04

Fw1‐im Acl‐im Ipc1‐im Avg‐im
ca
ch
e 
si
ze

1 00
1.01
1.01
1.02
1.02
1.03
1.03
1.04
1.04

Fw1‐im Acl‐im Ipc1‐im Avg‐im
To

ta
l c
ac
he

 s
iz
e

0.99
1.00
1.00
1.01
1.01
1.02
1.02
1.03
1.03
1.04
1.04

Fw1‐im Acl‐im Ipc1‐im Avg‐im
To

ta
l c
ac
he

 s
iz
e

0.99
1.00
1.00
1.01
1.01
1.02
1.02
1.03
1.03
1.04
1.04

1 2 3 4 5 6 7 8 9 10

Fw1‐im Acl‐im Ipc1‐im Avg‐im

1.44  2.9   4.3     5.8    7.2    8.6   11    11.5   13   14.5    c=m/n

To
ta
l c
ac
he

 s
iz
e

0.99
1.00
1.00
1.01
1.01
1.02
1.02
1.03
1.03
1.04
1.04

1 2 3 4 5 6 7 8 9 10

Fw1‐im Acl‐im Ipc1‐im Avg‐im

1.44  2.9   4.3     5.8    7.2    8.6   11    11.5   13   14.5    c=m/n

To
ta
l c
ac
he

 s
iz
e

Figure 6.5: The total size of cache in CCBF normalized to the number of size
of memory in standard Bloom filter.

Discussion

Our analysis and implementation show that the CCBF can be utilized for net-
work processing. The incoming items are stored in the memory similar to
traditional replacement algorithm that is called least frequently used replace-
ment algorithms (LFU)[105]. In the CCBF, a bucket with larger counter has
more reference, therefore it resides in a higher cache level with lower access
time and the bucket with lower counter resides in a lower cache level. The uti-
lization of CCBF needs some overheads to design CCBF unit in comparison to
a standard Bloom filter such as: a mechanism to manage different cache levels
and different counters that are implemented by a simple decoder to decode the
incoming key and generated address in to related cache level. A mechanism to
segment the large buckets (the buckets pointed by the counters that their size
are larger than 3), since in third level normal bucket size is set to 3 therefore,
larger counter should be segmented in to different buckets. To organize these
buckets we need to utilize some buffering techniques. From the Figure 6.5,
we can observe some difference between the software implementation and
simulation results in term of cache size. Therefore, in hardware implementation
this problem must be overcome. To eliminate this issue, we utilize the following
mechanisms:

• Shared global overflow area

• Level overflow area



108 Performance Evaluation and Experimental Results

A shared global overflow area is a memory space where overflow items are
stored. When the incoming item can not be stored on a level it is stored to the
shared global overflow area. The second solution is a level overflow area that is
allocated an additional memory for each level. This solution is more practical
to implement since the size of each level should be assumed larger than size of
level in simulation results.

6.2.3 Memory optimized Bloom Filter Using an Additional Hash-
ing Function

In this section, we present the implementation results of a software packet
classifier that utilizes the standard, pruned counting Bloom filters and a BFAH
in tuple space packet classification and consequently show the results. In the
figures that will be presented in next subsections the horizontal axis shows two
sequences of data. The sequence with label k shows the number of hashing
functions and later one shows the corresponding value of m/n that is calculated
based on Equation (2.6) to minimize false positive probability. In addition, the
graphs show the average bucket size, maximum search length and number of
collisions for all of the rule-set databases in Table 6.5.

Investigation average bucket size

In Section 4.2.2, we analyzed the average bucket size and observed that the
average bucket size in the BFAH is shorter than standard Bloom filter. We
present the average bucket size for the standard Bloom filter, pruned counting
Bloom filter and BFAH using a software packet classifier. The graph of average
bucket size for standard Bloom filter, pruned counting Bloom filter and BFAH
is depicted in Figure 6.6.

In Figure 6.6, the vertical axis shows the average bucket size in terms of the
items per bucket. From this figure, we can observe that the BFAH has the
average bucket size shorter than the standard Bloom filter and longer than the
pruned counting Bloom filter. Additionally, Figure 6.6 depicts that the average
bucket size of BFAH and pruned counting Bloom filter is very close. For
instance, when m/n = 26 and k = 18, the difference is 2%. Furthermore, the
increase in the number of hashing functions and the corresponding m/n value
decrease the average bucket size in BFAH and pruned counting Bloom filters.
It should be noted, when k = 1, three mentioned Bloom filters operate as a
simple hashing system.



6.2 Bloom Filter Architectures Results 109

1.5

1 4

1.45

1.5

A
ver

1.3

1.35

1.4

1.45

1.5

Standard Bloom filter

A
verage b

u
c

1.25

1.3

1.35

1.4

1.45

1.5

Standard Bloom filter

Pruned counting Bloom filter

A
verage b

u
cket s

1 15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Standard Bloom filter

Pruned counting Bloom filter

BFAH

A
verage b

u
cket size

1 05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Standard Bloom filter

Pruned counting Bloom filter

BFAH

A
verage b

u
cket size

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Standard Bloom filter

Pruned counting Bloom filter

BFAH

A
verage b

u
cket size

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Standard Bloom filter

Pruned counting Bloom filter

BFAH

A
verage b

u
cket size

1  2        3        4        5       6        7       8       9      10      11     12      13     14     15     16     17   18     k
1 44 2 9 4 3 5 7 7 2 8 6 11 11 5 13 14 4 15 9 17 3 18 7 20 21 6 23 24 5 26 /

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Standard Bloom filter

Pruned counting Bloom filter

BFAH

A
verage b

u
cket size

1  2        3        4        5       6        7       8       9      10      11     12      13     14     15     16     17   18     k
1.44  2.9    4.3    5.7     7.2     8.6     11    11.5  13    14.4   15.9 17.3   18.7   20    21.6  23    24.5   26    m/n

Figure 6.6: Average bucket size for the standard Bloom filter, pruned counting
Bloom filter and BFAH.

Investigation maximum search length

In Section 4.2.2, we analyzed the maximum search length for standard Bloom
filter, pruned counting Bloom filter and BFAH. In this section, we present the
maximum search length of the standard Bloom filter, pruned counting Bloom
filter and BFAH using a software packet classifier. The graph of maximum
search length for standard, BFAH and pruned counting Bloom filters is depicted
in Figure 6.7.

From Figure 6.7, we can observe that the maximum search length for BFAH,
and pruned counting Bloom filter is almost the same. In BFAH, the maximum
search length is changed between 3 and 4 while for the pruned counting Bloom
filter the maximum search length is 3. We can observe that when the m/n is
increased maximum search length for BFAH and pruned counting Bloom filter
converge to the same value. In the standard Bloom filter, increasing the number
of hashing functions increases the maximum search length. This is due to the
following reasons: first, the hashing functions are not uniform, and second the
generated addresses by different hashing functions for each incoming item are
mapped to the same address. While in the BFAH and pruned counting Bloom
filter only one out of k address is selected.



110 Performance Evaluation and Experimental Results

14

12

14

Standard Bloom filter

d l f l

8

10

12

14

Standard Bloom filter

Pruned counting Bloom filter

BFAH

M
ax

6

8

10

12

14

Standard Bloom filter

Pruned counting Bloom filter

BFAH

M
axim

u
m

6

8

10

12

14

Standard Bloom filter

Pruned counting Bloom filter

BFAH

M
axim

u
m
 sea

2

4

6

8

10

12

14

Standard Bloom filter

Pruned counting Bloom filter

BFAH

M
axim

u
m
 search

 len
g

0

2

4

6

8

10

12

14

Standard Bloom filter

Pruned counting Bloom filter

BFAH

M
axim

u
m
 search

 len
gth

0

2

4

6

8

10

12

14

Standard Bloom filter

Pruned counting Bloom filter

BFAH

1  2        3        4       5         6        7        8        9      10       11     12      13     14       15     16    17     18     k

M
axim

u
m
 search

 len
gth

0

2

4

6

8

10

12

14

Standard Bloom filter

Pruned counting Bloom filter

BFAH

1  2        3        4       5         6        7        8        9      10       11     12      13     14       15     16    17     18     k
1.44  2.9    4.3    5.7    7.2     8.6    11      11.5    13    14.4   15.9  17.3   18.7   20      21.6   23    24.5  26    m/n

M
axim

u
m
 search

 len
gth

Figure 6.7: Maximum search length for standard, BFAH and pruned counting
Bloom filters.

Investigation number of collisions

The graph of the number of collisions for standard, BFAH, and pruned counting
Bloom filters is depicted in Figure 6.8. In this figure, the average number
of collisions for all rule-set databases is normalized to n (number of rules in
rule-set database) for the pruned counting Bloom filter and BFAH. For the
standard Bloom filter, the number of collisions is normalized to nk. This is
because, in the BFAH and pruned counting Bloom filters n rule insertions and
in the standard Bloom filter nk rule insertions are performed.

Based on Figure 6.8, we can observe that the number of collisions for standard
and pruned counting Bloom filters remain at a constant level, and the number
of collisions for BFAH converges to the number of collisions in the pruned
counting Bloom filter when the value of m/n is increased.

Discussion

In general, we observed that the utilization of BFAH decreases the average
bucket size, maximum search length and the number of collisions in comparison
to the standard Bloom filter and is almost same in comparison with the pruned
counting Bloom filter. As we expected, the analytical results are verified by the
software packet classifier results. In addition, in the pruned counting Bloom



6.2 Bloom Filter Architectures Results 111

0.35

0.30

0.35

0 20

0.25

0.30

0.35

Standard Bloom filter

C
o

0.20

0.25

0.30

0.35

Standard Bloom filter

Pruned counting Bloom filter

C
o
llisio

n

0.15

0.20

0.25

0.30

0.35

Standard Bloom filter

Pruned counting Bloom filter

BFAH

C
o
llisio

ns

0 05

0.10

0.15

0.20

0.25

0.30

0.35

Standard Bloom filter

Pruned counting Bloom filter

BFAH

C
o
llisio

ns

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Standard Bloom filter

Pruned counting Bloom filter

BFAH

C
o
llisio

ns

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Standard Bloom filter

Pruned counting Bloom filter

BFAH

C
o
llisio

ns

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Standard Bloom filter

Pruned counting Bloom filter

BFAH

C
o
llisio

ns

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Standard Bloom filter

Pruned counting Bloom filter

BFAH

C
o
llisio

ns

k

Figure 6.8: Average number of collisions for all rule-set databases that normal-
ized to n (number of rules in rule-set database) for pruned counting Bloom
filter and BFAH and normalized to nk (number of rules multiply by number of
hashing functions) for standard Bloom filter.

filter, for each incoming item, k counters should be investigated but in the
BFAH the address is directly selected. Furthermore, BFAH can be applied to
all Bloom filters types while the pruning only works with counting Bloom filter.

The presented results show that the BFAH approach enhances different perfor-
mance metrics compared to the standard Bloom filters which this means the
memory bottleneck in high-performance network processing applications can
be overcome.

6.2.4 k-stage Pipeline Bloom Filter Architecture Results

In this section, we present the simulation and experimental results of our k-
stage pipelined Bloom filter architecture. The simulation results are based
on a mathematical analysis of our architecture using Maple v.12.0 and the
implementation results were generated using a software packet classifier[10].

k-stage pipeline Bloom filter results

The coefficient rate for configurations k = ln(2)m/n that generates a minimum
false positive probability is depicted in Figure 6.9.



112 Performance Evaluation and Experimental Results

Figure 6.9: Coefficient rate in k-stage pipelined Bloom filter for configuration
k = ln(2)m/n.

From Figure 6.9, we can observe that the growth of the number of hashing
functions increases the power saving rate. The simulation results show that the
utilization of pipelining in the Bloom filter decreases power consumption in
comparison to a standard Bloom filter. To realize the idea, we implemented
a software packet classifier and analyzed real packet traces to examine the
capability of the proposed solution.

We utilize a software packet classifier and determine the average number of
‘0’s in the bit-array of the Bloom filter that belonged to the biggest tuple. Our
observations in the execution of the software packet classifier show that when
the tuples are created the biggest tuple contains more than half of the rules. It
should be noted that the software packet classifier was tested and results were
generated for different packet traces and their correspondent rule-set databases.
The average number of ‘0’s pointed to by hashing functions in the bit-array for
different packet traces is depicted in Figure 6.10.

In Figure 6.10, three configurations are represented. In all these configurations,
the size of bit-array to have a minimum false positive probability is computed
from Equation (2.6). Since for the given number of hashing functions and the
number of rules, the size of bit-array in Bloom filter is computed. ‘configuration
1’ represents a Bloom filter with 8 hashing functions and bit-array size m =
11.2n (n is the number of rules). ‘configuration 2’ represents a Bloom filter
with 15 hashing functions and bit-array size m = 21.6n and ‘configuration
3’ represents a Bloom filter with 4 hashing functions and bit-array size m =



6.2 Bloom Filter Architectures Results 113

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
is

tr
ib

ut
io

n

Hashing function number

Configuration 1

Configuration 2

Configuration 3

Figure 6.10: Average number of ‘0’s in the bit-array of Bloom filter of biggest
tuple using software packet classifier for three different Bloom filter config-
urations in the membership checking stage (‘configuration 1’ with 8 hashing
functions, ‘configuration 2’ with 15 hashing functions and ‘configuration 3’
with 4 hashing functions).

5.1n. Based on the graphs in Figure 6.10, we can observe that for different
configurations there are some zeros in the bit-array of Bloom filter that are
pointed to by hashing functions in the membership checking stage. Since after
the bit-array creation in the Bloom filter programming stage using rule-set
databases, we check the different bits in the bit-array pointed to by hashing
functions in the membership checking stage. After the utilization of all packet
traces for each configuration, we normalize the number of zeros for each
packet trace to the number of packets in a packet trace and compute the average
number of zeros in all packet traces. Therefore, we conclude that in membership
checking stage of Bloom filter there are some zero bits in the bit-array that
are pointed to by hashing functions. We can decrease the power consumption
in the Bloom filter when it is utilized in packet classification by controlling
hashing functions. A question that should be addressed is related to designing
of the pipelined Bloom filter architecture. How can the number of zero’s be
utilized in the design of the pipeline architecture? We investigate the number
of mismatched packets in the different bits (pipeline stages) in the bit-array
of Bloom filter in the membership checking stage. The mismatched packet
detection rate is depicted in Figure 6.11.

From Figure 6.11, we can observe that more than 75% of mismatched packets



114 Performance Evaluation and Experimental Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
is

tr
ib

ut
io

n

Hashing function number

Configuration 1

Configuration 2

Configuration 3

Figure 6.11: Average mismatched packets rate for all packet traces in the
biggest tuple using software packet classifier for three different Bloom filter
configurations.

are detected by the first three stages and 17% of packets are matched against
of rules and 8% reminder are mismatched that are detected by other pipeline
stages. In the second configuration, we can observe that when the hashing
function number is changed between 11 and 13 some mismatched packets are
detected. To overcome the problem, we can utilize an additional pipeline stage
in the architecture to include other hashing functions which detects the rest of
mismatched packets. In other words, a 4-stage pipelined Bloom filter architec-
ture is useful for packet classification where the first three stages includes first
three hashing functions and last stage includes last k − 3 hashing functions.

4-stage pipeline Bloom filter results

From Equations (4.33), (4.37), and (4.40), which represent the power consumed
for the standard, k-stage, and 4-stage Bloom filters, respectively, we can observe
that the difference between them is related to their coefficients. The graph of
coefficients of the k-stage pipelined Bloom filter and 4-stage pipelined Bloom
filter that are normalized to the coefficients of a standard Bloom filter is depicted
in Figure 6.12.

From Figure 6.12, we can observe that the coefficient rate of power consumed
of the 4-stage pipelined Bloom filter is more than the k-stage pipelined Bloom
filter but less than the standard Bloom filter.



6.3 Network Processor Modeling 115

Figure 6.12: Coefficient rate in k-stage pipelined Bloom filter and 4-stage
pipelined Bloom filter for different configurations in terms of k and m/n
(k ≤ m/n) that are normalized to the coefficients of a standard Bloom filter.

6.3 Network Processor Modeling

In this section, we present the simulation results of the proposed approach
in Section 5. The simulation results have been generated using Maple v.10.0
Based on the general queuing model, the following assumptions have been
made to derive a model in grid-oriented environment:

1. Each NP is analyzed by (M/M/1) or (M/M/c) queuing model where
the incoming packets obeys the Poisson distribution. Additionally, the
service time distribution is exponential.

2. In many cases, the average service rate is much greater than the average
arrival rate, in this case the waiting queue would not grow too long. If
the input buffer is reasonably large dropping of packets is not an issue.

In this investigation, we assume a large pool of available NPs (64 in this
experiment) each having a random service and arrival rate to ‘mimic’ real
situation as if they were are already in operation. Furthermore, out of this pool,
the master-NP is allowed to choose up to 32 NPs as slave-NPs to assist itself
in the processing of incoming packets. This investigation is not intended to



116 Performance Evaluation and Experimental Results

provide the realistic for current-day processors, but instead we are trying to
determine that, out of two selection mechanisms which one is able to improve
the minimum response time. The model is used as a vessel to achieve this
determination as we expect its importance will become evident when more
processor cores will fit on future chips. The first selection mechanism is the
first-in and first-out (FIFO) mechanism that lists all possible slave NPs and
deciding which one to use is solely based on which NP was entered first in the
list. This is a simple selection mechanism that is easy to implement, but can
have some adverse effect on the minimum response time. The second selection
mechanism is optimal arrival allocation mechanism that chooses a sequence
of slave-NPs to assist the master NP. This mechanism is more complex as it
requires almost continuous monitoring, but it is expected to yield better results.
The FIFO mechanism behavior is depicted in Figure 6.13.

Figure 6.13 (a), depicts the service and arrival rates for different NPs based on
the FIFO mechanism. The response time for NP-based architecture model in
a grid-oriented environment is depicted in Figures 6.13 (b). From this figure,
we can observe that, the effect of overloaded NPs in response time, since when
the number of NPs is increased up to 32, the response time is not better than
when the number of NP is 1. This is because of some NPs have small service
rate when the 32 NPs are selected.

Therefore, the overload areas from Figure 6.13 (a) are omitted using optimal
arrival rate allocation. The result is depicted in Figure 6.14 (a). The related
response time for NP-based architecture in grid-oriented environment using
optimal arrival allocation is depicted in Figure 6.14 (b). From this figure, we
can observe that the NPs in underload areas the arrival rates are lower than
optimal arrival rates resulting in better response time.

6.4 Summary

This chapter presented the results of proposed approaches in collaboration
of reconfigurable processors in grid computing and Bloom filters in network
processing applications.

We simulated the collaboration of four processing elements with different
configurations on grid computing. Subsequently, we explore the mapping and
simulate several compute-intensive multimedia kernels such as the 2D DWT and
co-occurrence matrix on the proposed architecture. The experimental results
show that the CRGC approach improves performance of up to 7.2x and 2.5x
compared to a GPP and the collaboration of GPPs, respectively.



6.4 Summary 117

(a)

(b)

Figure 6.13: (a) Arrival/service rates and optimal arrival rate curves for different
NPs. The blue and red areas show underload and overload areas. (b) Grid-
oriented NP-based architectures model response time without optimal arrival
rate allocation (N shows the number of NPs).

In the Bloom filters, first approach introduced a multi-level memory hierarchy
and a special hardware cache architecture for counting Bloom filters that can
be utilized by network processors and packet processing applications such
as packet classification and distributed web caching systems. The results of
mathematical analysis and implementation of CCBF for packet classification
show that the proposed cache architecture decreases the number of memory



118 Performance Evaluation and Experimental Results

(a)

(b)

Figure 6.14: (a) Arrival/service rate and optimal arrival rates curves with
optimal arrival rate allocation for different NPs. (b) Grid-oriented NP-based
architectures model response time with optimal arrival rate allocation (N shows
the number of NPs).



6.4 Summary 119

accesses when compared to a standard Bloom filter. Based on the mathematical
simulation of CCBF architecture the number of accesses is decreased by at
least 53%. The implementation results of software packet classifier are at
most 7.8% (3.5% in average) less than correspondent simulation results. This
difference is due to some parameters in the packet classification application
such as: number of tuples, distribution of rules inside the tuples, and utilized
hashing functions. In the second approach, we introduced a new technique to
optimize memory utilization for standard Bloom filters that we call Bloom filter
with an additional hashing function (BFAH). Our results show that our approach
is able to reduce the average bucket size, maximum search length and number
of collisions when compared to a standard Bloom filter. In the third approach,
we presented a k-stage pipelined Bloom filter, the power consumption analysis
and utilized a software packet classifier to customize the k-stage pipelined
Bloom filter architecture in packet classification. The results of the software
packet classifier with real packet traces show that more than 75% of mismatched
packets can be detected by the first three stages of the pipelined Bloom filter
architecture (the remaining 25% comprises 17% matched and 8% mismatched
packets). Therefore, a 4-stage pipelined Bloom filter architecture with one
hashing function in the first three stages and k − 3 parallel hashing functions in
the last stage is more appropriate for power consumption optimization in packet
classification.





Chapter 7

Overall Conclusions

T
his dissertation introduced several techniques to achieve the high-
performance processing in networked and grid environments. Sub-
sequently, the collaboration of reconfigurable processors in grid envi-

ronment was presented and suitable applications such as multimedia kernels
were simulated in this environment. Finally, three approaches were presented to
achieve high-performance network processing using Bloom filters. The first and
second techniques presented a cache architecture for counting Bloom filter and
a memory optimization approach for Bloom filter using an additional hashing
function (BFAH). The last one proposed a power efficient pipelined Bloom filter.
Consequently, the related results was presented.

In this chapter, we present concluding remarks, major achievements and possi-
ble future directions of this research. This chapter is organized as follows. In
Section 7.1, a summary of the main conclusions of this dissertation is presented.
In Section 7.2, the problem statements addressed in this dissertation is revis-
ited. In Section 7.3, the major contributions described in the dissertation are
listed and finally, in Section 7.4, several possible future research directions are
presented.



122 Overall Conclusions

7.1 Summary

In Chapter 1, the importance of high-performance processing, its challenges,
problem statement and solutions to achieve high-performance processing sys-
tems are presented. A motivation on the need for high-performance processing
and the requirements of some high-performance processing applications was
described. We presented that the modeling and design of high-performance
processing systems is an ongoing research field. High-performance processing
comes from parallelism. High-performance processing is possible to exploit
parallelism in the applications that benefit from large scale distributed network.
The parallelism available in applications in grid computing is a very attractive
solution to execute either different parts of an application or several applications.
Two main parts of each high-performance processing system are computing and
communication resources. Furthermore, accelerating the network processing
tasks for the existing computing resource in grid computing makes it more ben-
eficial where Bloom filters are utilized in the network processing applications.
Therefore, we proposed two research problems to investigate:

• How can reconfigurable computing be utilized to improve flexibility and
performance in grids?

• How can Bloom filters be employed to speed up network processing in
grid nodes?

In Chapter 2, we presented a general background of high-performance pro-
cessing systems in networked and grid environments. Firstly, we presented the
concept of grid computing, reconfigurable architectures and their capabilities.
The most important capabilities of grid computing are parallel CPU capacity,
exploiting under-utilized resources, and reliability while reconfigurable com-
puting provides both performance and flexility. Therefore, the utilization of
reconfigurable processors as a resource in grid computing is more beneficial
to execute the computationally intensive tasks. Secondly, we discussed the
high-performance network processing as an integral part of each grid system.
Hence, we introduced the concept of network processors (NPs) as a main part
of most network equipments e.g., routers, switches, and firewalls. A network
processor (NP) is an application-specific instruction processor (ASIP) for the
networking application domain with architectural features and/or special cir-
cuitry for packet processing at wire speed. Typical functions performed by
network processors are the following: lookup and pattern matching, forwarding,
access control and queue management, traffic shaping and control, and data



7.1 Summary 123

manipulation. Subsequently, we presented an overview of packet classification
and Bloom filters. Bloom filter is a memory efficient and probabilistic data
structure to represent a set in order to support membership checking that are
utilized by many network processing applications. Additionally, we presented
queuing network theory and Jackson modeling to evaluate the performance of
network processing systems.

In Chapter 3, we proposed Collaboration of Reconfigurable processors in Grid
Computing (CRGC) that provides both flexibility and performance to process
the computationally intensive tasks. This is because, reconfigurable computing
provides much more flexibility than ASIC and much more performance than
GPPs. Grid computing increases the performance of computationally intensive
applications by exploiting the parallelism in certain application. Each part of
an application can be executed on a processing element or grid node of a large
grid network.

We presented our idea to build a network of heterogeneous processing elements
that are able to collaboratively work on any task that is inserted into the net-
work on any processing element. We introduced our idea using neighborhood
concept as a main part of collaboration policy that utilizes a set of primitives
in a network of processing elements. These primitives implement different
collaboration methods. We also analyzed a lower and upper bounds of perfor-
mance for this approach. Subsequently, we explored the mapping of several
computational intensive multimedia kernels such as the 2D Discrete Wavelet
Transform (DWT) and the co-occurrence matrix on the proposed approach.
To investigate the idea, we extend a version of grid simulator (GridSim v4)
that we called the Collaborative Reconfigurable Grid Simulator (CRGridSim)
to support reconfigurable processor modeling and neighborhood concept on
grid environment. These multimedia kernels are packed up as a set of gridlets
and these gridlets are simulated in simulation environment using CRGridSim
software simulation tool.

In Chapter 4, we introduced several approaches to optimize memory and power
in Bloom filters. The first approach introduced a multi-level memory hierarchy
and a special hardware cache architecture for counting Bloom filters that can
be utilized by network processors and packet processing applications such
as packet classification and distributed web caching systems. Based on the
counting Bloom filter analysis, we proposed two multi-level cache architectures
(an l-level and a 3-level one) and subsequently presented the performance
analysis. The performance metric is the number of accesses to different cache
levels of the CCBF compared to the memory accesses when using the standard



124 Overall Conclusions

Bloom filter. In the 3-level cache, we further determined the size of cache
levels for optimal false positive probabilities using mathematical simulation
and a software implementation. To test the CCBF concept, we implemented a
software packet classifier utilizing a 3-level CCBF employing tuple spaces that
are traditionally utilized in hashing systems.

The second approach introduced a new technique to optimize memory utiliza-
tion for standard Bloom filters that we called Bloom filter with an additional
hashing function (BFAH). The standard Bloom filter stores items from a set
k times at locations pointed to by addresses that are the result of k hashing
functions. The purpose of the additional hashing function is to select only one
out of the k generated addresses. Consequently, it is no longer needed to store
the k−1 redundant copies. In addition, we analyze several performance metrics
(the average bucket size, maximum search length and number of collisions)
for the proposed approach and compared to the standard and pruned counting
Bloom filters. We implemented our approach in a software packet classifier
based on tuple space search with the H3 class of universal hashing functions.

In the third approach, we introduced a k-stage pipelined Bloom filter archi-
tecture and the analysis of power consumption. Subsequently, we utilized a
software packet classifier to customize the k-stage pipelined Bloom filter ar-
chitecture in packet classification and analyzed the average number of ‘0’s in
the bit-array. Finally, we determined the packet mismatch rate for the different
packet traces. Our observation of the software packet classifier for real packet
traces showed that the first three stages of the pipelined Bloom filter detect
most of the mismatched packets. Therefore, a 4-stage pipelined Bloom filter
is sufficient to classify packets. The 4-stage pipelined Bloom filter is more
appropriate than standard Bloom filter when the power consumption is critical.

In Chapter 5, we proposed a solution to optimize the arrival rate allocation
between network processing elements to minimize their total response time. The
solution utilized queuing network models and an optimal capacity allocation
concept. Subsequently, we derived a formula to optimally allocate the arrival
rate between network processors (NPs). Using this formula, the optimal arrival
rate for different NPs can be evaluated to optimize response times. Furthermore,
the solution was applied to a grid-oriented network processor model.

In Chapter 6, we presented the results of our proposed approaches in collabora-
tion of reconfigurable processors in grid computing and Bloom filters in network
processing. In collaboration of reconfigurable processors in grid computing,
several compute-intensive multimedia kernels are studied and mapped using
collaboration of four processing elements in grid computing based on neighbor-



7.2 Problem Statements Revisited 125

hood policy and realistic assumptions. The experimental results show that the
CRGC approach improves performance of up to 7.2x and 2.5x compared to a
GPP and the collaboration of GPPs respectively.

The results of our mathematical analysis and implementation of CCBF for
packet classification showed that the proposed cache architecture decreases the
number of memory accesses when compared to a standard Bloom filter. Based
on the mathematical simulation of CCBF architecture the number of accesses
is decreased by at least 53%. The implementation results of software packet
classifier are at most 7.8% (3.5% in average) less than correspondent simulation
results. This difference is due to some parameters in the packet classification
application such as: number of tuples, distribution of rules inside the tuples, and
utilized hashing functions. We concluded from the results that incorporating
a multi-level cache memory to Bloom filters will improve the performance of
Bloom filter in comparison to a standard Bloom filter. Based on the simulation
results of CCBF architecture the number of accesses is decreased at least by
53%. The implementation results are at most 7.8% less than corresponding
simulation results.

Our results in BFAH show that our approach is able to reduce the average
bucket size, maximum search length and number of collisions when compared
to a standard Bloom filter.

We presented a k-stage pipelined Bloom filter, the power consumption analysis
and a software packet classifier to customize the k-stage pipelined Bloom
filter architecture in packet classification. The results of the software packet
classifier with real packet traces showed that more than 75% of mismatched
packets can be detected by the first three stages of the pipelined Bloom filter
architecture (the remaining 25% comprises 17% matched and 8% mismatched
packets). Therefore, a 4-stage pipelined Bloom filter architecture with one
hashing function in the first three stages and k − 3 parallel hashing functions in
the last stage is more appropriate for power consumption optimization in packet
classification.

7.2 Problem Statements Revisited

The answers to the research questions presented in Section 1.2, can therefore
be summarized as follows:

• How to achieve high-performance and flexible processing in networked
and grid environments? High-performance computing comes from paral-



126 Overall Conclusions

lelism in application kernels. Grid computing provides parallelism and
reconfigurable processors offer both parallelism and flexibility. There-
fore, we investigated to utilize both the flexibility and performance of
reconfigurable processor in grid computing. The achievement of high-
performance is possible using the collaboration of reconfigurable pro-
cessors in grid environment. The computing capabilities of resources
in such grid network can be enhanced by the collaboration of recon-
figurable processors. Another main resource in grid is communication
resource that is needed to process the packet in the grid. The main
part of communication resources are network equipments, e.g., routers,
switches, ad firewalls. These communication resources are comprised
of a set of network elements called network processors (NPs). Network
processors combine the flexibility of general-purpose processors with
the high-performance of application-specific integrated circuits for the
network processing tasks. The design of high-performance NPs improves
the performance of processing element in grid.

• Can Bloom filters be employed to speed up network processing in grid
nodes? Yes, the memory bottleneck due to the gap between memory
and processor in the NPs that utilized in network equipments can be
overcome. This is because of the proposed approaches in this disserta-
tion decreases memory redundancies and increases the performance of
memory. Therefore, a Bloom filter as an efficient data structure can be
embedded in the memory architecture design in network processors and
different network processing applications. In other words, the Bloom
filter accelerates packet processing as an integral part of each grid node.
In this way, a computing grid node can be utilized as a effective network-
ing infrastructure provides high-performance both in terms of computing
and communication. The Bloom filter accelerate the processing of re-
ceived packets from grid node and provide a much more efficient memory
architecture utilized in the network processors.

• How can reconfigurable computing be utilized to improve flexibility and
performance in grid networks? Reconfigurable processors provide the
flexibility and performance for the applications that are amenable to
acceleration with reconfigurable hardware; the part of the application to
be accelerated must typically exhibit a high degree of intrinsic parallelism
and it must be computationally intensive. The reconfigurable processors
as part of grid resources can be utilized to assists a grid node to execute
the inserted tasks.



7.3 Main Contributions 127

7.3 Main Contributions

In this section, the main contributions of the research described in this disserta-
tion are highlighted:

• In order to benefit advantages of both grid computing and reconfigurable
processors to achieve high-performance and flexibility, the collaborative
reconfigurable processors on grid computing (CRGC) was proposed. A
performance model analysis for the proposed approach to determine both
lower and upper bounds was investigated. Subsequently, the collaboration
has been implemented using neighborhood policy. In this policy, each
processing element requests assistance only from its neighbor processing
elements. The neighborhood policy is an efficient way to communicate
and collaborate processing elements together. The neighborhood policy
can be implemented using some primitives. A primitive is defined as a
processing element with related communication link and its equipments,
e.g., routers and switches, to the main processing element.

• The utilization of Bloom filter in high-performance network processing
was proposed. Three approaches to make the Bloom filters more efficient
were presented as follows:

– A new technique to embed a multi-level cache memory in a counting
Bloom filter (CCBF) was presented. Using the counting Bloom
filter property, the number of accesses and sizes of the l-level and 3-
level caches in the CCBF architecture were investigated. To realize
the analysis and simulation results, a software packet classifier in
basic tuple space using a H3 class of universal hashing functions
was implemented.

– A memory optimization technique for Bloom filter using additional
hashing function (BFAH) was presented. BFAH technique oper-
ates independently from the counters and bit-array in the counting
and standard Bloom filters, respectively. Analysis of the BFAH in
terms of different performance metrics (e.g., average bucket size,
maximum search length, and the number of collisions) compared
to the pruned counting and standard Bloom filters was performed.
The BFAH using a hash-based software packet classifier was im-
plemented. The presented results showed that the BFAH approach
increases performance in comparison to standard Bloom filter.



128 Overall Conclusions

– A k-stage pipelined Bloom filter architecture to decrease power
consumption was introduced. In the bit-array of a Bloom filter,
bits corresponding to the index pointed to by hashing functions
are checked and a “match”/“mismatch” was determined. The
match/mismatch determination process can be organized in a k-
stage pipelined Bloom filter architecture. The power consumption
analysis of k-stage pipelined Bloom filter was presented. The re-
sults of the software packet classifier with real packet traces showed
that more than 75% of mismatched packets can be detected by
the first three stages of the pipelined Bloom filter architecture (the
remaining 25% comprised 17% matched and 8% mismatched pack-
ets). Therefore, a 4-stage pipelined Bloom filter architecture with
one hashing function in the first three stages and k − 3 parallel
hashing functions in the last stage is more appropriate for power
consumption optimization in packet classification.

• The formulation and solution of an optimal bandwidth allocation strategy
using queuing network for NP-based architectures at system level was
proposed. The solution allocates optimal bandwidth between network
processors in a grid-oriented environment. It encompassed a new formula
based on the optimal capacity allocation concept in queuing network. The
presented simulation results showed that the proposed solution is able to
enhance the response time in NP-based architectures when compared to
a same NP-based architectures without optimal bandwidth allocation.

7.4 Future Research Directions

This section provides future research directions and improvements to the work
presented in this dissertation:

• In this dissertation, collaboration of reconfigurable processors in grid
environment was investigated. The presented results show that the CRGC
is useful for the computationally intensive tasks with minimum commu-
nication overheads. Several directions in this area are as follows:

– Designing and implementing the collaboration of reconfigurable
processors in grid environments based on the task-driven private
clusters that we call CRGC using task-driven private cluster ap-
proach. A task-driven private cluster is a dynamic collection of



7.4 Future Research Directions 129

processing elements on grid that is created when a task is submitted
to a processing element and after the finishing of the submitted
task the processing elements (resources) are released and cluster
is demolished. In the task-driven private cluster, the processing
element that is owner of task called clusterhead and constructs a
cluster using the cluster creation rules. Each cluster is identified by:
Id, Cid, Degree and a set of states. Id and state specify an individual
node, Cid shows id of cluster and degree shows the number of
processing elements in the cluster. The private cluster can be con-
structed based on limited flooding and neighborhood concepts. To
create and manage the private cluster some algorithms called cluster
creation, cluster reorganization and cluster splitting algorithms are
defined.
When a processing element within a private cluster submits a new
task, the current private cluster is split into new clusters. The split-
ting process can be performed in preemption or non-preemption
manners. In non-preemption policy if a current processing element
is executing a task from old clusterhead, the splitting operation
will suspend and wait for the processing element (PE) to finish the
submitted task by old clusterhead [31], [78]. In preemption policy
the current task return back to old clusterhead and the current pro-
cessing element declares itself as new clusterhead and constructs
new private cluster. To implement the task-driven private cluster
following questions should be addressed. When the size of cluster
grows the processing power is increased but the stability (life cycle)
of the cluster due to splitting decreases. Based on the processing
power of processing elements following research questions can
arise, which size for the cluster and task is optimal? How can Grid-
sim be utilized? If not what is the best solution? NS or OMNeT++
simulation software tools [31], [63], [92]?

– Implementation of CRGC for some computation intensive applica-
tions such as sequence alignment in Bio-computing, and number
theory using real FPGAs and reconfigurable processors.

– The performed analysis to determine the performance bounds in
CRGC shows that a general performance model based on different
parameters such as the number of collaborators elements, the size
and number of submitted subtask, the reconfiguration time, the
bandwidth of the network, the propagation delay, and scheduling
algorithm can be derived. This performance model is presented



130 Overall Conclusions

in terms of some equations (see Equation (3.2)). To derive this
performance model in the simple form the related equations should
be optimized. The optimization process can be performed through
the optimization techniques, e.g., linear programming, integer pro-
gramming.

– A CRGC consists of reconfigurable processors and general-purpose
processors while in the traditional grid only general-purpose pro-
cessors are utilized. The functionality of reconfigurable processors
depends on the parameters such as reconfiguration time, area, and
code generation techniques. These parameters play important roles
in the scheduling policies. Therefore, the scheduling of the subtasks
in CRGC needs new algorithms and solutions that are different from
the techniques used in the grid with general-purpose processors.

• In this dissertation, several approaches to optimize memory and power
for Bloom filter were presented. The research in Bloom filter open new
trends in network processing applications. Another approach in Bloom
filter is an implementation of a Bloom filter using SIMD architectures.
In a Bloom filter, hashing functions operate in parallel manner while in
a software implementation of web caching application that is utilized
in Squid Linux proxy systems these hashing functions executed in a
sequential manner. Therefore, a solution to accelerate the calculation of
hashing keys using on SIMD is an efficient way to get more performance.

• In this dissertation, the BFAH and CCBF approaches to increase the mem-
ory performance were proposed. The combination of both approaches
increases the performance of Bloom filters. In other hands, the BFAH that
utilizes a cache architecture is more beneficial than either BFAH or CCBF.
This means for each bloom filter both BFAH and CCBF approaches are
applied. This is because of BFAH minimizes memory redundancies and
the resulting decreases the size of cache levels of CCBF.

• In this dissertation, an approach for optimal bandwidth allocation for
a set of network processors was proposed. A new research trend is to
make a performance model for reconfigurable processors and generalize
it for the collaboration of reconfigurable processors in grid and networked
environments. In other words, using multi-class queuing networks, a
performance model for reconfigurable processors and their specifications
is proposed. This model is a mixed queuing network (close and open
queuing networks) that is based on the reconfigurable processors prop-
erties. The closed queuing network models the reconfiguration phase



7.4 Future Research Directions 131

of reconfigurable processors and the open queuing network models the
task execution on the reconfigurable processors. Subsequently, the per-
formance model is applied for the reconfigurable processor embedded
to a general-purpose processor. Finally, a network of reconfigurable
processors and general-purpose processors is modeled using a multi-class
queuing network.





Bibliography

[1] “Supercomputing”. http://www.filepie.us/?title=Supercomputing.

[2] “White Paper Challenges in Building Network Processor Based Solu-
tions”. www.futsoft.com/pdf/ NPwp.pdf.

[3] “NASA Collaborates with Intel and SGI on Forthcoming Petaflops Su-
percomputers ”. http://www.climatescience.gov/default.php, May 2008.

[4] “U.S. Global Change Research Program, the Essential Principles of
Climate Sciences ”. http://www.climatescience.gov/default.php, March
2009.

[5] I. Adan and J. Resing. “Queuing Theory”. http://www.cs.duke.edu/ fish-
hai/misc/queue.pdf, February 2001.

[6] M. Ahmadi, S. A. Ostadzadeh, and S. Wong. “An Analysis of Rule-set
Databases in Packet Classification”. In Proceedings of the 18th Annual
Workshop on Circuits, Systems and Signal Processing, ProRisc 2007,
pages 24–30, November 2007.

[7] M. Ahmadi, S. A. Ostadzadeh, and S. Wong. “Rule-set Database Inspec-
tion: Towards Data Utilization in Packet Processing”. In Proceedings of
International Conference on the Latest Advances in Networks (ICLAN-
2008), pages 122–128, December 2008.

[8] M. Ahmadi, A. Shahbahrami, and S. Wong. “Collaboration of Recon-
figurable Processors in Grid Computing for Multimedia Kernels”. In
Proceedings of the 5th International Conference on Grid and Pervasive
Computing (GPC-2010), 2010.

[9] M. Ahmadi and S. Wong. “Network Processors: Challenges and Trends”.
In Proceedings of the 17th Annual Workshop on Circuits, Systems and
Signal Processing, ProRisc 2006, pages 223–232, November 2006.



134 BIBLIOGRAPHY

[10] M. Ahmadi and S. Wong. “A Performance Model for Network Processor
Architectures in Packet Processing Systems”. In Proceedings of the 19th
International Conference on Parallel and Distributed Computing and
Systems (PDCS 2007), pages 176–181, November 2007.

[11] M. Ahmadi and S. Wong. “Hashing Functions Performance in Packet
Classification”. In Proceedings of International Conference on the Latest
Advances in Networks (ICLAN-2007), pages 127–132, December 2007.

[12] M. Ahmadi and S. Wong. “Modified Collision Packet Classification
Using Counting Bloom Filter in Tuple Space”. In Proceedings of the
25th IASTED International Conference on Parallel and Distributed Com-
puting and Networks (PDCN 2007), pages 70–76, February 2007.

[13] M. Ahmadi and S. Wong. “A Memory-optimized Bloom Filter using An
Additional Hashing Function”. In Proceedings of IEEE Globecom 2008
Next Generation Networks, Protocols, and Services Symposium, pages
2479–2483, December 2008.

[14] M. Ahmadi and S. Wong. “An Approach for Optimal Bandwidth Al-
location in Packet Processing systems”. In Proceedings of 6th Annual
IEEE/ACM Conference on Communication Networks and Services Re-
search 2008 (CNSR 2008), pages 208–214, May 2008.

[15] M. Ahmadi and S. Wong. “On Incorporating Reconfigurable Archi-
tectures into Grid Environments Using GridSim”. In Proceedings of
the 19th Annual Workshop on Circuits, Systems and Signal Processing,
ProRisc 2008, pages 43–50, November 2008.

[16] M. Ahmadi and S. Wong. K-stage pipelined bloom filter for packet clas-
sification. In The 7th IEEE/IFIP International Conference on Embedded
and Ubiquitous Computing (EUC-09), pages 64–70, August 2009.

[17] D. Anderson. “Open-source Software for Volunteer Computing and Grid
Computing”. http://boinc.berkeley.edu/.

[18] T. Austin, E. Larson, and D. Ernst. “SimpleScalar: An Infrastructure for
Computer System Modeling”. IEEE Computer, 35(2):59–67, February
2002.

[19] F. Baboescu, S. Singh, and G. Varghese. “Packet Classification for Core
Routers: Is There an Alternative to CAMs?”. In Proceedings of 22th
International Conference IEEE INFOCOM, pages 53–63, March-April
2003.



BIBLIOGRAPHY 135

[20] F. Baboescu and G. Varghese. “Scalable Packet Classification”.
IEEE/ACM Transaction on Networking, 13(1):2–14, February 2005.

[21] R. O. Baldwin, N. J. Davis, S. F. Midkiff, and J. E. Kobza. “Queueing
Network Analysis: Concepts, Terminology, and Methods”. Journal of
Systems and Software, 66(2):99–117, December 2003.

[22] G. Bell and J. Gray. “What’s Next in High-performance Computing?”.
Communication of the ACM, 45(2):91–95, February 2002.

[23] D. Benitez. “Performance of Reconfigurable Architectures for Image
Processing Applications”. In Journal of Systems Architecture, volume 49,
pages 193–210, November 2003.

[24] V. Berstis. “Fundamentals of Grid Computing”. http://publib-
b.boulder.ibm.com/Redbooks.nsf/, November 2002. IBM Redbooks
paper.

[25] B. H. Bloom. “Space /Time Trade-offs in Hash Coding with Allowable
Errors”. Communication of the ACM, 13(7):422–426, July 1970.

[26] C. Bobda and R. Hartenstein. “Introduction to Reconfigurable Comput-
ing Architectures, Algorithms, and Applications”. Springer, 2007.

[27] A. Broder and M. Mitzenmacher. “Network Applications of Bloom
Filters: A Survey”. In Proceedings of 14th Annual Allerton Conference
on Communication, Control, and Computing, pages 636–646, October
2002.

[28] R. Buya and M. M. Murshed. “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing”. Concurrency and Computation: Practice and
Experience, 14(13-15):1175–1220, May 2002.

[29] J. Lawrence Carter and Mark N. Wegman. “Universal Classes of Hash
Functions”. In Proceedings of the 9th annual ACM symposium on Theory
of Computing, pages 106–112. ACM Press, 1977.

[30] F. Chang, F. Wu-chang, and L. Kang. “Approximate Caches for Packet
Classification”. In Proceedings of 23th IEEE International Conference
INFOCOM, pages 2196–2207, March 2004.



136 BIBLIOGRAPHY

[31] T. C. Chiang, P. Y. Wu, and Y. M. Huang. “A Limited Flooding Scheme
for Mobile ad hoc Networks”. In Proceeings IEEE International Confer-
ence on Wireless and Mobile Computing, Networking and Communica-
tions, pages 473–478, August 2005.

[32] P. Clowley, M. Franklin, and H. Hamidioglu. “Network Processor
Design: Issues and Practices”. Morgan Kaufmann, 2003.

[33] E. Cody, R. Sharman, R. H. Rao, and S. Upadhyaya. “Security in
Grid Computing: A Review and Synthesis”. Decision Support System,
44(4):749–764, 2008.

[34] S. Cohen and Y. Matias. “Spectral Bloom Filters”. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
pages 241–252, 2003.

[35] D. Comer and L. Peterson. “Network Systems Design Using Network
Processors”. Prentice-Hall, 2003.

[36] K. Compton and S. Hauck. “Reconfigurable Computing: A Survey of
Systems and Software”. ACM Computer Survey, 34(2):171–210, 2002.

[37] R. W. Conners and C. A. Harlow. “Theoretical Comparison of Tex-
ture Algorithms”. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 2(3):204–222, May 1980.

[38] E. P. DeBenedictis. “Reversible Logic for Supercomputing”. In Pro-
ceedings of the 2th Conference on Computing frontiers, pages 391–402,
2005.

[39] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood. “Fast Packet
Classification Using Bloom Filters”. Technical Report 27, Department of
Computer Science and Engineering, Washington University in St. Louis,
May 2006.

[40] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood. “Fast Packet
Classification Using Bloom Filters”. In Proceedings of the ACM/IEEE
Symposium on Architecture for Networking and Communications Sys-
tems, pages 61–70. ACM, 2006.

[41] B. Donnet, B. Baynat, and T. Friedman. “Retouched Bloom Filters:
Allowing Networked Applications to Flexibly Trade Off False Positives
Against False Negatives”. In Proceedings of the ACM CoNEXT 2006
conference, pages 1–12, 2006.



BIBLIOGRAPHY 137

[42] C. Esteve, L. F. Verdi, and M. F. Magalh. “Towards a New Generation
of Information-oriented Internetworking Architectures”. In Proceedings
of the 2008 ACM CoNEXT Conference, pages 1–6, 2008.

[43] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary Cache: A
Scalable Wide-Area (WEB) Cache Sharing Protocol”. IEEE/ACM Trans-
actions on Networking, 8(3):281–293, 2000.

[44] P. Faraboschi, G. Desoli, and J. A. Fisher. “The Latest Word in Digital
and Media Processing”. IEEE Signal Processing Magazine, pages 59–85,
March 1998.

[45] S. Finch. “Transitive Relations, Topologies and Partial Orders”.
http://algo.inria.fr/bsolve/, 2003.

[46] White Paper for Roke Manor Research. “An Introduction to Net-
work Processors”. http://www.roke.co.uk/ download/ white papers/
network processors introduction.pdf.

[47] P. J. Fortier and H. E. Michel. “Computer System Performance Evalua-
tion and Prediction”. Digital Press Elsevier, 1th edition, 2003.

[48] T. Guan, E. Zaluska, and D. D. Roure. “A Grid Service Infrastructure
for Mobile Devices”. In Proceedings of First International Conference
on Semantics, Knowledge and Grid (SKG-05), pages 42–46, May 2005.

[49] D. Guo, J. Wu, H. Chen, and X. Luo. “Theory and Network Applications
of Dynamic Bloom Filters”. In Proceedings of 25th IEEE International
Confeence on Computer Communications (INFOCOM 2006), pages
1–12, April 2006.

[50] P. Gupta and N. McKeown. “Packet Classification on Multiple Fields”.
In Proceedings of the International Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication,
pages 147–160, 1999.

[51] P. Gupta and N. McKeown. “Algorithms for Packet Classification”. IEEE
Network, 15(2):24–32, March-April 2001.

[52] R. M. Haralick, K. Shanmugam, and I. Dinstein. “Textural Features
for Image Classification”. IEEE Transaction on Systems, Man, and
Cybernetics, 3(6):610–621, November 1973.



138 BIBLIOGRAPHY

[53] P. G. Harrison and N. M. Patel. “Performance Modelling of Communica-
tion Networks and Computer Architectures”. Addison-Wesley Longman,
1st edition, 1992.

[54] S. Hauck and A. DeHon. “Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation”. Morgan Kaufmann, 2007.

[55] D. K. Iakovidis, D. E. Maroulis, and D. G. Bariamis. “FPGA Architecture
for Fast Parallel Computation of Co-occurrence Matrices”. Microproces-
sors and Microsystems, 31:160–165, 2007.

[56] IBM. “Synergistic Processor Unit Instruction Set Architecture”, January
2007. Version 1.2.

[57] I. Kaya and T. Kocak. “A Low Power Lookup Technique for Multi-
Hashing Network Applications”. In Proceedings of the IEEE Computer
Society Annual Symposium on Emerging VLSI Technologies and Archi-
tectures, pages 179–185, 2006.

[58] I. Kaya and T. Kocak. “Energy-Efficient Pipelined Bloom Filters for
Network Intrusion Detection”. In IEEE International Conference on
Communications (ICC06), pages 2382–2387, June 2006.

[59] I. Kaya and T. Kocak. “Low-power bloom filter architecture for deep
packet inspection”. IEEE Communications Letters, 10(3):210–212,
March 2006.

[60] A. Kirsch and M. Mitzenmacher. “Distance-Sensitive Bloom Filters”.
In Proceedings of the 8th Workshop on Algorithm Engineering and
Experiments (ALENEX-8), 2006.

[61] D. Klien. “Lagrange Multipliers Without Permanent Scarring”.
http://www.cs.berkeley.edu/ klein/papers/lagrange-multipliers.pdf, Au-
gust 2004.

[62] K. Konstantinides. “VLIW Architectures for Media Processing”. IEEE
Signal Processing Magazine, 15(2):16–19, March 1998.

[63] M. Kozlovszky, B. Mikls, and A. Vargas. “Enabling OMNeT++-based
Simulations on Grid Systems”. In Proceedings of the 2th International
Workshop on OMNeT++, 2009.



BIBLIOGRAPHY 139

[64] A. Kumar, j. Xu, J. Wang, O. Spatschek, and E. Li. “Space-code Bloom
Filter for Efficient per-flow Traffic Measurement”. In Proceedings IEEE
INFOCOM, pages 1762–1773, 2004.

[65] S. Kumar and P. Crowley. “Segmented Hash: An Efficient Hash Ta-
ble Implementation for High Performance Networking Subsystems”.
In Proceedings of the Symposium on Architecture for Networking and
Communications Systems (ANCS05), pages 91–103, October 2005.

[66] V. S. Kumar, M. J. Thazhuthaveetil, and R. Govindarajan. “Offloading
Bloom Filter Operations to Network Processor for Parallel Query Pro-
cessing in Cluster of Workstations”. In 12th International Conference
on High Performance Computing, pages 170–179, 2005.

[67] T. V. Lakshman and D. Stiliadis. “High-Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching”. In
Proceedings of the Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (ACM/SIGCOM),
pages 203–214, 1998.

[68] E. D. Lazowska, M. K. Vernon, and J. Zahojan. “An Accurate and Ef-
ficient Performance Analysis Technique for Multiprocessor Snooping
Cache-Consistency Protocols”. In Proceedings of the 15th Annual In-
ternational Symposium on Computer Architecture, pages 308–315, May
1988.

[69] Minglu Li, Xian-He Sun, Qianni Deng, and Jun Ni, editors. “Research
of Online Expandability of Service Grid”, volume 3033 of Lecture Notes
in Computer Science. Springer, 2003.

[70] B. Liljeqvist and L. Bengtsson. “Grid Computing Distribution Using
Network Processors”. In Proceedings of the IEEE Conference on Parallel
and Distributed Computing Systems, pages 13–19, 2002.

[71] W. Lin, Z. Liu, C. H. Xia, and L. Zhang. “Optimal Capacity Allo-
cation for Web systems with End-to-end Delay Guarantees”. Journal
Performance Evaluation, 62(1):400–416, October 2005.

[72] J. Lu and J. Wang. “Analytical Performance Analysis of Network
Processor-Based Application Design”. In Proceedings of International
Conference on Computer Communications and Networks, pages 78–86,
October 2006.



140 BIBLIOGRAPHY

[73] H. W. Meuer. “TOP500 Project ”. http://www.top500.org/project.

[74] H. W. Meuer. “The TOP500 Project: Looking
Back Over 15 Years of Supercomputing Experience ”.
http://www.top500.org/files/TOP500 Looking back HWM.pdf,
January 2008.

[75] A. Miller. ”A New Way to Think About Structuring Concurrent Applica-
tions”. http://www.javaworld.com/javaworld/jw-02-2009/jw-02-actor-
concurrency1.html, 2009.

[76] M. Mitzenmacher. “Compressed Bloom Filters”. In Proceedings of the
20th annual ACM Symposium on Principles of Distributed Computing
(PODC 01), pages 144–150, 2001.

[77] J. P. Morrison, P. D. Healy, and P. J. O’Dowd. “Architecture and Imple-
mentation of a Distributed Reconfigurable Metacomputer”. In Proceed-
ings 2th International Symposium on Parallel and Distributed Comput-
ing, pages 153–158, October 2003.

[78] S. Ni, Y. Tseng, Y. Chen, and J. Sheu. “The Broadcast Storm Problem in
a Mobile Ad Hoc Network”. In Proceedings of the 5th annual ACM/IEEE
International Conference on Mobile computing and networking, pages
151–162, 1999.

[79] C. D. Ott, E. Schnetter, G. Allen, E. Seidel, J. Tao, and B. Zink. “A Case
Study for Petascale Applications in Astrophysics: Simulating Gamma-
ray Bursts”. In Proceedings of the 15th ACM Mardi Gras Conference,
pages 1–9, January 2008.

[80] J. D. Owens, S. Rixner, U. Kapasi, P. Mattson, and B. Towles. “Media
Processing Applications on the Imagine Stream Processor”. In Proceed-
ings IEEE International Conference on Computer Design, September
2002.

[81] A. Partow. “General Purpose Hash Function Algorithms”. http://
www.partow.net/ programming/ hashfunctions/index.html.

[82] P.G. Paulin, C. Pilkington, and E. Benisiudane. “StepNP: A System-
Level Exploration Platform for Network Processors”. IEEE Design and
Test of Computers, 19(6):17–26, November 2002.



BIBLIOGRAPHY 141

[83] P. K. Pollett. “Resource Allocation in General Queueing Networks with
Applications to Data Networks”. In Proceedings of the 16th National
Conference of the Australian Society for Operations Research, pages
75–90, September 2001.

[84] M. Rabbani and R. Joshi. “An Overview of the JPEG2000 Still Image
Compression Standard”. Signal Processing: Image Communication,
17(1):3–48, January 2002.

[85] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. “Efficient Hardware
Hashing Functions for High Performance Computers”. IEEE Transaction
on Computer., 46(12):1378–1381, 1997.

[86] E. Safi, A. Moshovos, and A. Veneris. “L-CBF: a Low-Power, Fast
Counting Bloom Filter Architecture”. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 250–255, 2006.

[87] C. H. Sauer and K. M. Chandy. “Computer Systems Performance Mod-
eling”. Prentice Hall, March 1981.

[88] N. Shah. “Understading Network Processors”. Master’s thesis, Berkeley
University, September 2001.

[89] A. Shahbahrami. “Avoiding Conversion and Rearrangement Overhead
in SIMD Architectures”. PhD thesis, Delft University of Technology,
September 2008.

[90] A. Shahbahrami, B. Juurlink, D. Borodin, and S. Vassiliadis. “Avoid-
ing Conversion and Rearrangement Overhead in SIMD Architectures”.
International Journal of Parallel Programming, 34(3):237–260, June
2006.

[91] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. “Implementing the 2D
Wavelet Transform on SIMD-Enhanced General-Purpose Processors”.
IEEE Transaction on Multimedia, 10(1):43–51, January 2008.

[92] OMNeT++ Community Site. ”OMNeT++”. http://www.omnetpp.org/,
2009.

[93] M. Smith and G. D. Peterson. “Parallel Application Performance on
Shared High Performance Reconfigurable Computing resources”. Per-
formance Evaluation, 60(1-4):107–125, 2005.



142 BIBLIOGRAPHY

[94] H. Song. “Evaluation of Packet Classification Algorithms”. http://
www.arl.wustl.edu/ hs1/PClassEval.html, 2006.

[95] H. Song, J. Turner, S. Dharmapurikar, and J. Lockwood. “Fast Hash
Table Lookup Using Extended Bloom Filter: An Aid to Network Process-
ing”. In Proceedings of the International Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, pages 181–192, August 2005.

[96] V. Srinivasan. “IP Lookup and Packet Classification”. PhD thesis,
Washington University, August 1999.

[97] V. Srinivasan. “A Packet Classification and Filter Management System”.
In Proceedings of the International IEEE Conference INFOCOM, pages
1464–1473, 2001.

[98] V. Srinivasan, S. Suri, and G. Varghese. “Packet Classification Using
Tuple Space Search”. In Proceedings of the International Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 135–146, 1999.

[99] W. Stallings. “Queuing Analysis”. ftp://shell.shore.net/members/w/s/ws/
Support/QueuingAnalysis.pdf, 2000.

[100] E. J. Stollnitz, T. D. Derose, and D. H. Salesin. “Wavelets for Computer
Graphics: Theory and Applications”. Morgan Kaufmann, 1996.

[101] A. Sulistio, G. Poduval, R. Buyya, and C. K. Tham. “On Incorporat-
ing Differentiated Levels of Network Service into GridSim”. Future
Generation Computer Systems, 23(4):606–615, 2007.

[102] D. Suryanarayanen. ”A Methodology for Study of Network Processing
Architecture”. Master’s thesis, North Carolina State University, 2001.

[103] M. A. Tahir, A. Bouridane, F. Kurugollu, and A. Amira. “Accelerating the
Computation of GLCM and Haralick Texture Features on Reconfigurable
Hardware”. In Proceedings of the International Conference on Image
Processing, pages 2857–2860, 2004.

[104] T. Takami, J. Maki, J. Ooba, Y. Inadomi, H. Honda, T. Kobayashi,
R. Nogita, and M. Aoyagi. “Open-architecture Implementation of Frag-
ment Molecular Orbital Method for Peta-scale Computing”. In Proceed-
ings of the 2th IEEE/ACM International Workshop on High-performance
Computing for Nano-science and Technology (HPCNano06), 2007.



BIBLIOGRAPHY 143

[105] A. S. Tanenbaum and A. S. Woodhull. “Operating Systems: Design and
Implementation (3rd Edition)”. Prentice-Hall, 2006.

[106] D. E. Taylor. “Models, Algorithms, and Architectures for Scalable
Packet Classification”. PhD thesis, Department of Computer Science
and Engineering Washington University, August 2004.

[107] M. A. Trenas, J. Lopez, E. L. Zapata, and F. Arguello. “A Memory Sys-
tem Supporting the Efficient SIMD Computation of the Two Dimensional
DWT”. In Proceedings IEEE International Conference on Acoustics
Speech and Signal Processing, volume 3, pages 1521–1524, May 1998.

[108] T. Tsuei and W. Yamamoto. “A Processor Queuing Simulation Model
for Multiprocessor System Performance Analysis”. In Proceedings of
5th Workshop on Computer Architecture Evaluation using Commercial
Workloads (CAECW), pages 58–64, 2002.

[109] C. Ulmer, C. Wood, and S. Yalamanchili. “Active SANs: Hardware Sup-
port for Integrating Computation and Communication”. In Proceedings
of the Workshop on Novel Uses of System Area Networks at HPCA (SAN
2002), pages 48–59, February 2002.

[110] K. D. Underwood, R. R. Sass, and W. B. Ligon. “Acceleration of a
2D-FFT on an Adaptable Computing Cluster”. In Proceedings of the 9th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FFCM-01), pages 180–189, 2001.

[111] F. M. Vallina, E. Oruklu, and J. Saniie. “Distributed Processing Network
Architecture for Reconfigurable Computing”. In Proceedings of the In-
ternational IEEE Conference Electro Information Technology, volume 3,
page 6, May 2005.

[112] S. Vassiliadis, S. Wong, and S. Cotofana. “Network Processors: Issues
and Prospectives”. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA2001), pages 1827–1834, June 2001.

[113] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels, G.K. Kuz-
manov, and E. Moscu Panainte. “The Molen Polymorphic Processor’.
IEEE Transaction on Computers, pages 1363–1375, November 2004.

[114] J. Virtamo. “Queueing Course, Complete Lecture Notes”.
http://www.netlab.hut.fi/ opetus/s383143/ kalvot/english.shtml, 2005.



144 BIBLIOGRAPHY

[115] S. Wong and M. Ahmadi. “Reconfigurable Architectures in Collaborative
Grid Computing: An Approach”. In Proceedings 2th International
Conference on Networks for Grid Applications (GridNets 2008), October
2008.

[116] C. Wu and X. Yang. “An Integrated Architecture for QoS-enable Router
and Grid-Oriented Supercomputer”. In Proceedings of 3th International
Conference in Networking and Mobile Computing (ICCNMC 2005),
pages 1218–1226, August 2005.

[117] H. Yu and R. N. Mahapatra. “A Memory-Efficient Hashing by Multi-
Predicate Bloom Filters for Packet Classification”. In INFOCOM, pages
1795–1803, April 2008.



List of Publications

Conference Proceedings (International)

1. M. Ahmadi, and F. Nadeem, and S. Wong, “Towards the Performance
Analysis of Reconfigurable Hardwares in Grid Networks”, in Proceed-
ings of the 23th Canadian Conference on Electrical and Computer Engi-
neering (CCECE 2010) (Calgary, Canada), May 2010.

2. M. Ahmadi and A. Shahbahrami and S. Wong, “Collaboration of Re-
configurable Processors in Grid Computing for Multimedia Kernels”, in
Proceedings of the 5th International Conference on Grid and Pervasive
Computing (GPC 2010), (Hualien, Taiwan), May 2010.

3. M. Ahmadi, and S. Wong, “K-Stage Pipelined Bloom Filter for Packet
Classification”, in Proceedings of the 7th IEEE/IFIP International Con-
ference on Embedded and Ubiquitous Computing (EUC 09), (Vancouver,
Canada), August 2009.

4. A. Shahbahrami and M. Ahmadi and S. Wong and K.L.M. Bertels, “A
New Approach to Implement Discrete Wavelet Transform using Collabo-
ration of Reconfigurable Elements”, in Proceedings of the International
Conference on ReConFigurable Computing and FPGAs (ReConFig 09),
(Cancun, Mexico), December 2009.

5. M. Ahmadi, and S. Wong, “A Memory-optimized Bloom Filter using An
Additional Hashing Function”, in IEEE Globecom 2008 Next Generation
Networks, Protocols, and Services Symposium, (New Orleans, USA),
December 2008.

6. M. Ahmadi, and S. Wong, “An Approach for Optimal Bandwidth Allo-
cation in Packet Processing systems”, in Proceedings of the 6’th Annual
IEEE/ACM Conference on Communication Networks and Services Re-
search 2008 (CNSR 2008), (Halifax, Canada), May 2008.



146 List of Publications

7. S. Wong, and M. Ahmadi, “Reconfigurable Architectures in Collaborative
Grid Computing: An Approach”, in the 2th International Conference
on Networks for Grid Applications (GridNets 2008), (Beijing, China),
October 2008.

8. M. Ahmadi, A. Ostadzadeh, and S. Wong, “Rule-set Database Inspec-
tion: Towards Data Utilization in Packet Processing”, in Proceedings of
International Conference on the Latest Advances in Networks (ICLAN
2009), (Toulouse, France), December 2008.

9. M. Ahmadi, and S. Wong, “A Cache Architecture for Counting Bloom Fil-
ters”, in Proceedings of 15th IEEE International Conference on Networks
(ICON2007), (Adelaide, Australia), November 2007.

10. M. Ahmadi, and S. Wong, “Modified Collision Packet Classification
Using Counting Bloom Filter In Tuple Space”, in Proceedings of the 25th
IASTED International Conference on Parallel and Distributed Computing
and Networks (PDCN 2007), (Innsbruck, Austria), February 2007.

11. M. Ahmadi, and S. Wong, “Hashing Functions Performance in Packet
Classification”, in Proceedings of International Conference on the Latest
Advances in Networks (ICLAN 2007), (Paris, France), December 2007.

12. M. Ahmadi, and S. Wong, , “A Performance Model for Network Processor
Architectures in Packet Processing Systems”, in Proceedings of the 19th
International Conference on Parallel and Distributed Computing and
Systems (PDCS 2007), (Cambridge, Massachusetts, USA), November
2007.

Conference Proceedings (Local)

1. M. Ahmadi, and S. Wong, “On Incorporating Reconfigurable Architec-
tures into Grid Environments Using GridSim”, in Proceedings of the 19th
Annual Workshop on Circuits, Systems, and Signal Processing (PRORISC
2008), (The Netherlands), November 2008.

2. M. Ahmadi, A. Ostadzadeh, and S. Wong, “An Analysis of Rule-set
Databases in Packet Classification”, in Proceedings of the 18th Annual
Workshop on Circuits, Systems, and Signal Processing (PRORISC 2007),
(The Netherlands), November 2007.



List of Publications 147

3. M. Ahmadi, and S. Wong, “Network Processors: Challenges and Trends”,
in Proceedings of the 17th Annual Workshop on Circuits, Systems, and
Signal Processing (PRORISC 2006), (The Netherlands), November 2006.

4. M. M. Homayounpour, and M. Ahmadi, “Automatic Transcription and
Time Alignment of Persian Speech Database Using HMM”, in Proceed-
ings of the 4th International Conference Computer Society of Iran ,
(Tehran, Iran), 1998.





Samenvatting

In deze dissertatie presenteren we verscheidene technieken om hoge prestaties
te behalen in netwerk en grid-omgevingen. Veel applicaties hebben een verw-
erkingssysteem met hoge prestaties nodig om efficient te worden uitgevoerd.
Hoge prestaties stoelen doorgaans op parallelisme. De parallele aard van grid-
computing is een erg aantrekkelijke oplossing om het genoemde parallelisme
te gebruiken door ofwel verschillende delen van een applicatie, ofwel verschil-
lende applicaties parallel uit te voeren. In een grid-systeem zijn computing en
communicatie de meest belangrijke resources. De computing resources zijn de
processoren op de knooppunten van het grid. Communicatie resources binnen
een grid zijn belangrijk om taken en hun benodigde data naar de knooppunten
van het grid te distribueren.

Wij stellen een innovatief platform met hoge prestaties voor om herconfigureer-
bare processoren te gebruiken in grid omgevingen. Daarenboven concentreren
we ons op de communicatie infrastructuur en netwerkverwerkingsplatformen
(verwerking benodigd voor packets) om deze te gebruiken in grid omgevingen.
We presenteren de samenwerking van herconfigureerbare processoren in een
grid omgeving en simuleren verscheidene rekenintensieve multimedia kernels.
Vervolgens introduceren we drie manieren om netwerkverwerkingstaken te ver-
snellen gebruikmakend van Bloom-filters in netwerk- en grid-omgevingen. De
eerste twee technieken presenteren een cache-architectuur voor een Counting
Bloom-filter (CCBF) en een geheugenoptimalisatie voor Bloom-filters door een
extra hash-functie te gebruiken (BFAH). De derde techniek die we voorstellen
is een vermogensefficiente gepipelinede Bloom-filter.

We presenteren de resultaten van onze voorgestelde technieken in samenwerking
met herconfigureerbare processoren in grid-computing (CRGC) en Bloom filters
in netwerkverwerkingsapplicaties, bijv. packet classificatie. De resultaten laten
zien dat de CRGC aanpak de prestaties verbeteren tot 7.2x en 2.5x in verhouding
tot resp. een GPP en een set van samenwerkende GPPs. De resultaten van de
CCBF en BFAH voor packet classificatie tonen dat de voorgestelde technieken



150 Samenvatting

het aantal geheugentoegangen verminderd in vergelijking met een standaard
Bloom-filter.



Curriculum Vitae

Mahmood Ahmadi was born in Koohdasht, Lorestan, Iran on the 23th of
September 1973. In 1992, he graduated from Shahid Rajaei high school and
at the same year he accepted as Bachelor student in Hardware and Computer
Engineering in Isfehan University. He received his MSc in Computer Architec-
tures and Engineering at the Amirkabir University of Technology (Polytechnic
Tehran) in June 1997. His MSc thesis, supervised by Dr. M.M. Homayoupour,
is entitled: “Automatic Alignment and Transcription of Speech Databases using
Hidden Markov Models with Gaussian Mixtures”. In 1998, he was offered
the permanent position as lecturer in Computer Engineering Department, Razi
University, Kermanshah, Iran. He worked there from 1998 till 2005.

In October of 2005, he joined the Computer Engineering Laboratory, Faculty
of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft
University of Technology, as full time PhD student under the supervision of Prof.
Dr. S. Vassiliadis and Dr. Ir. J.S.S.M. Wong. His research interests include:
computer architecture and engineering, Bloom filters, network processing,
packet classification, high-performance processing, performance modeling,
queuing theory, reconfigurable computing, and speech signal processing. He is
member of IEEE, ACM and HiPEAC.




