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Preface

The objective of this thesis is to design a feature detection algorithm that can be implemented
for Ion-Mobility Imaging Mass Spectrometry. The first chapter discusses the importance of
omics in the study of biological specimens and cellular metabolism and analytical techniques
used for this study. This is followed by an introduction to Mass Spectrometry, one of the
most popular analytical technique in the field of omics. The chapter then explores the in-
strumentation behind mass spectrometry and its various modifications. Special attention is
given to Ion Mobility Imaging Mass Spectrometry and its applications. Chapter 2 focuses on
the data analysis aspect of mass spectrometry. A brief outline on the various data processing
procedures is presented. Out of the various procedures presented, the chapter goes in detail
regarding feature detection, which is the leading light of the thesis. The chapter presents an
overview on the different types of algorithms that are being used to carry out feature detec-
tion. This is followed by critical analysis of each type of algorithm. Chapter 3 lays down the
foundation of feature detection algorithm. A brief introduction to wavelet transform and it’s
properties are provided. This is followed by an introduction to wavelet transform maxima, a
technique commonly used for feature detection in real world signals. A brief literature study
of the technique is provided with an emphasis on the parameters being used. Based on the
results obtained from the test signal and the literature review, the research objectives for the
thesis is formulated. Chapter 4 presents the 2D feature detection algorithm. The algorithm is
broken down into four sections and the relevant theory around each section along with their
implementation is discussed and presented. In Chapter 5, we evaluate the performance of
the algorithm. This evaluation is performed on a synthetic and a real world data sample. A
brief outline on the description of the synthetic data sample and real world data sample is
presented. We then study the impact of the parameters used by the algorithm by performing
various experiments. This helped us to establish about the parameters used in the algorithm.
Lastly, using this knowledge, we compare the performance of the algorithm with an existing
2D feature detection algorithm. The final chapter concludes the research. It was found that
while the performance on the synthetic data sample was good, more study is required to
optimize the performance on the real world data sample. A brief sketch on the future work
associated with the development of the algorithm is provided.
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Chapter 1

Introduction to Omics and Mass
Spectrometry

1-1 Introduction

The field of Omics is a collection of various biological disciplines that aim for characterization
and quantification of biological molecules. The ending -ome is used for addressing the entities
studied in various biological fields. For example, the term Proteome refers to the sum of all
protein molecules present in a cell, tissue or an organism and Proteomics [5] is the science
that studies these molecules with respect to their biochemical properties, functioning and
structural changes in response to an internal or an external stimuli. Similarly, Transcriptome
is the set of all RNA transcripts expressed by an individual or a population of biological cells
and Transcriptomics [57] is the study of these RNA transcripts using high-throughput ana-
lytical methods. In all cases, the field of omics involve a detailed analysis of molecules in the
most crucial biological processes. The field principally comprises of study of deoxyribonucleic
acid (DNA) (genomics[2], epigenomics[98]), proteins (proteomics) and various other molecules
(metabolomics[33]). Apart from these categorical platforms, various other omic based sub-
disciplines have also emerged such as lipidomics[42] and metallomics[79] showing that the
discipline is constantly evolving. Figure 1-1 provides a brief overview of the various types of
omic platforms.

Omic based technologies play a crucial role in different biological applications. In clinical
biology, omic technologies are used for characterization of diseases and to study the efficiency
of existing clinical therapies. Omics based studies have been utilized in the field of food
science (foodomics) [16], defence [25] where researchers aim to identify potential biomarkers
of toxicity occuring within the warfighter as a pre-clinical indicator and in environmental
science where the impact of toxic substances at all levels of biological organizations (from
molecular level to community and ecosystem) is studied [97].
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2 Introduction to Omics and Mass Spectrometry

Figure 1-1: Overview of OMIC Platforms: Target Molecules, Analytical Methodologies used and
the structure of Generated Data [38]

1-1-1 Metabolomics

Among the various disciplines, metabolomics is the study of chemical processes involving
metabolites - the small molecular substrates, intermediates and by-products of cell metabolism.
In a nutshell, metabolic profiling provides an instant picture of the physiology of the cell.

Characterization of metabolites have enabled the use of precision medicine at a number of
levels, from characterization of metabolic changes caused due to presence of underlying dis-
ease to discovery and monitoring of new therapeutics [74]. Metabolomic based studies have
been used in study of pancreatic cancer [51], type 2 diabetes [35] and various other diseases.
Metabolomic based studies have also provided novel insights into the relationship between
diet and diseases. For example, Rauchert et al. [76] have explored the relation between
branched chain amino acids and obesity to insulin resistance. Thus, metabolomics have been
widely used for studying the perturbations in the human cell caused due to presence of a
disease, drugs or toxins in key biological processes.

In practice, metabolomics present a significant analytical challenge as it aims to study molecules
that have varying physical properties (such as hydrophilic organic acids or hydrophobic non-
polar lipids) [52]. As a result, metabolomic based technological platforms have taken the
strategy of dividing the metabolome based on their molecular properties - compound polar-
ity, functional groups, structural similarity, etc. The sample preparation and the analytical
technique used for the study of these subset of metabolites are then devised accordingly. Fig-
ure (1-2) provides a brief outline for the various analytical procedures developed for the study
of various molecules using Liquid Chromatography Mass Spectrometry (LC-MS) platforms.
In addition to challenges faced in sample preparation, there are significant challenges present
in the analysis of data produced by the instrument. Firstly, the diversity of technologies used

Gautam Sinha Master of Science Thesis



1-1 Introduction 3

Figure 1-2: Illustration of the various sample preparation techniques, types of chromatography
and types of analytical procedures used for LC-MS platforms[64]

in this field pose significant challenge when comparing results across laboratories due to vari-
ous issues (e.g difference in precision of instrument). Secondly, the degree of identification of
metabolites vary across methods, ranging from rigorously confirmed metabolites using stan-
dard references to ’unknown’ signals which may or may not be a potential biomarker. These
challenges have given researchers, the need to develop standard guidelines for reporting data
[34], a detailed outline for testing procedures to evaluate different metabolites in order to
obtain similar results [86] and the need to maintain open access repositories for modification
and verification of result[43].

1-1-2 Instrumentation

Various analytical techniques have been developed for the field of omics including RNA-based
sequencing techniques [15], Nuclear Magnetic Resonance spectroscopy (NMR) [58] and Mass
Spectrometry (MS) [27]. Among these methods, NMR and MS based techniques are the most
used analytical platforms in the field of metabolomics. High Resolution Nuclear Magnetic
Resonance spectroscopy (HR-NMR) is used for study of bio-fluids and intact tissues to produce
a complete profile of metabolite signals without any separation or derivatization of the sample
specimen [50]. MS based methods provide a comprehensive analysis of low molecular weight
compounds present in biological systems. Both of these approaches complement each other
and more information can be extracted with the integration of both of these technologies. For
this research, we will focus on the analysis of MS based techniques.
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1-2 Introduction to Mass Spectrometry

1-2-1 Mass Spectrometry

MS is based on the ability of electric field to influence the motion of charged atoms and
molecules in relation to their mass and charge. Therefore, by controlling the electric field
inside the spectrometer, one can deconvolve the motions of various molecules into distinct
particles with their specific mass-to-charge ratios (m/z).
Results of MS based investigations are represented on a 2D axis called as mass spectrum
where the x-axis represents the m/z ratio and y-axis represents the relative intensity of a
chemical compound with a specific m/z. For Imaging Mass Spectrometry (IMS) experiments,
the results obtained can be interpreted as spectral images, where each pixel is associated with
its own mass spectrum. In this case, the data consists of three key axes, the spatial axes (x
and y) and the spectral axis (m/z).

Instrumentation

The major components that govern the performance of Mass Spectrometers are :

1. Ion Source - The ionization step is the most critical step for characterization of an-
alytes in MS. Analytes need to be vaporized from a solid or liquid phase to gaseous
phase before being transferred into the vacuum system of the mass analyzer. This pro-
cess (desputtering) is fairly energetic and is used to transform analytes before they are
characterized.

Some of the most commonly used ionization processes are :

(a) Secondary Ion Mass Spectrometry (SIMS) [94]
(b) Desorption Spray Ionization (DESI) [46]
(c) Matrix Assisted Laser Desorption Ionization (MALDI) [45]
(d) Nanostructure Initiator Mass Spectrometry (NIMS) [40]
(e) Laser Desorption Ionization (LDI) [72]
(f) Electrospray Ionization (Electrospray Ionization (ESI)) [95]

The type of ionization process used is critical as it governs the: (i) spatial resolution
of the observed sample specimen (ii) the type of analytes which are ionized efficiently
and (iii) the sensitivity of the analysis. Different ionization processes require different
sample preparation steps.

2. Mass analyzer - Mass analyzer plays an important role for discriminating ions accord-
ing to their mass-to-charge ratio and their structure before these ions reach the detector.
The process of transferring ions to the mass analyzer can be done immediately after the
ionization process. Based on various specifications such as mass resolution, manipula-
tion of analyte ions (continuous or pulsed), length and quality of the vacuum system
being utilized, different types of mass analyzers can be used:
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1-2 Introduction to Mass Spectrometry 5

(a) Quadrupole instruments
(b) Time of flight instruments
(c) Ion traps
(d) Ion cyclotron resonance

3. Detector - After ions are separated in the mass analyzer, they need to be detected.
Commonly used detectors have multi channel plates where ions strike the detector’s
surface inside an individual channel, thereby inducing secondary electron and photon
emission. These secondary electrons now move towards the detector striking tunnels,
again generating more electrons. This phenomenon continues inside a channel until an
electron reaches the conductor which transmits the current generated to the amplifiers
thus completing the process of detection. One of the important instrumental param-
eter for IMS is detector sensitivity. This parameter controls the detection of analyte
molecules present in the specimen. Increase in sensitivity will lead to detection of low
abundant molecules but at the cost of increased noise levels. Increased sensitivity also
degrades the lifetime of the detector.

All these three components together produce an output in the form of measurements of m/z
and intensity. Different ionization sources can be combined with different mass analyzers
and detectors to detect different analytes present in the sample specimen. For example,
Quadrupole mass analyzers are shown to be compatible with continuous ionization sources
such as DESI. In this case, both the mass analyzer and the ionization source are suitable
for analysis of analyte molecules of low molecular weights. Similarly, orbitrap mass analyzers
combine well with ESI sources where multiply charged analyte ions are generated so that a
broader mass range can be investigated. As a result, orbitrap mass analyzers are popular in
proteomics investigations where intact protein molecules are analyzed. The resolution of the
image obtained in IMS can also be increased with the combination of different components.
For example, while MALDI-IMS instruments can achieve resolutions upto 1 µm, MALDI-
LDI-IMS based instruments have shown to achieve a maximum resolution of 0.6 µm [82].

1-2-2 Imaging Mass Spectrometry

MS based instruments,with some modifications, can provide temporal and spatial localization
of atoms and molecules with adequate resolution. IMS [63] is a powerful analytical platform
that allows untargeted investigations into the underlying spatial distribution of the molecu-
lar species present in a target biological specimen. Over the years, IMS has seen tremendous
development in instrumentation as well as in software which has made this sub-field an attrac-
tive avenue for study and analysis of various complex molecules present in different types of
living organisms. The technique has the capability to capture the spatial as well as the chem-
ical information of hundreds to thousands of molecules such as metabolites, lipids, peptides,
proteins in a single experiment.

In IMS, tissue samples of the target specimen are sectioned into thin slices, mounted on
conductive glass slides and coated with a light absorbing matrix which forms microcrystals
around the target specimen. The prepared sample is then converted to gaseous state either by
laser irradiation or by ESI [32]. A laser or an ion microprobe sequentially probes a discrete set
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6 Introduction to Omics and Mass Spectrometry

Figure 1-3: Visual Workflow for IMS analysis. (A)Sample Preparation. The brain of the target
specimen(crustacean) is collected and embedded in a supporting medium for sectioning into slides.
(B)Analysis. The mass spectrum for each grid point on the tissue sample is acquired using the
instrument. (C) Data Processing. After preprocessing, distribution of each molecule present in
the target sample is visualized and further statistical analysis procedures are conducted.[12]

of points on the surface of the target specimen in a raster pattern. The spatial resolution of
the image obtained is governed by the size of the laser spot on the surface, spacing between the
points on the surface of the target specimen and the type of sample preparation technique
being used. The resolution of the image obtained vary from 1 µm - 5 µm in commercial
instruments although higher resolutions of ≤ 1 µm can be achieved using advanced optical
systems [41]. The individual mass spectra obtained for each point probed on the surface of
the target specimen is stored digitally. Custom softwares help in selection of an analyte signal
from an array of mass spectra and in plotting the intensity of the analyte signal present across
sample surface. The intensity of the signal is represented by a color scale and as a result, an
image of an analyte’s ion distribution is generated (Figure (1-3)).

1-2-3 Liquid Chromatography Mass Spectrometry

In order to enhance the specificity and the sensitivity of the MS instrument, coupling of MS
instruments with chromatographic detectors was found to be extremely desirable. LC-MS
is one of the hyphenated analytical techniques that combines two techniques for analysis of
mixtures of organic compounds. The breakthrough for LC-MS was via the development of
ESI technique [ref]. The technique heavily improved the performance of LC-MS instruments
and had a great impact in the field of proteomics [75] to an extent that laboratories were able
to use this adapted technology.

With the modification of the instrumentation, LC-MS found its application in various fields
especially in the field of clinical biochemistry. LC-MS is extensively used in the field of
Therapeutic drug monitoring [3] where the technique is used to study immunosupressants
and anticancer drugs. In the field of toxicology, the instrument found its use for analysis
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1-2 Introduction to Mass Spectrometry 7

of toxic compounds via direct analysis of urine samples [96]. LC-MS also finds its use in
drug development [54] as the instrument allows fast analysis and structural identification of
different compounds thus speeding up the process of drug testing and development.

1-2-4 Ion Mobility Spectrometry

Ion Mobility Spectrometry (IM) refers to study of movement of ions present in gases under
the influence of an electric field. The analytical technique gained traction in the 1960’s when
it was demonstrated for screening chemical vapors to check the presence of trace quantities of
hazardous compounds. In order to enhance the sensitivity and selectivity of the instrument,
research efforts were dedicated towards the instrumentation side of this technique. As a re-
sult, portable IMS instruments were developed and were utilized for detecting explosives and
chemical warfare agents for military operations [59].

Principle of Operation

The main principle of IM is to separate ions in an inert gas under the influence of an electric
field. The applied electric field (E) forces the analyte ions to move through the buffer gas
with a velocity vd which is specific to the analyte ions’ mobility (K). This is represented as :

K = vd
E

(1-1)

Depending on the IM method used, the technique separates the ions by their differences in
mobility in either space or time. Mobility for each ion is also measured as a function of other
external parameters such as temperature and pressure which are often normalized to standard
pressure and standard temperature for the calculation of reduced mobility K0. This is given
as :

K0 = K
p

p0

T0
T

(1-2)

K0 is a valuable piece of information and is used in standalone IM systems as a means for
identification of molecules. The mobility and the m/z values can be used to calculate the
Collision Cross Section (CCS) or Ω which provides information about the conformation of
the analyte ions travelling in the drift tube. For a particular analyte, the CCS value can be
calculated using the Mason Schamp’s Equation [48] as :

Ω =
3
16( 2π

µkbT
)1/2ze

N0K0
(1-3)

where e = electron charge, z = ion charge, N0 = buffer gas density, µ = reduced mass of
collision parameters, kb = Boltzmann’s constant and T = drift region temperature. The
parameters such as buffer gas density, temperature vary for different IM platform and are
heavily dependent on the experiment. Figure (1-4) presents some of various the instrumenta-
tion involved in IM and highlights their specifications along with their commercial vendors.
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8 Introduction to Omics and Mass Spectrometry

Figure 1-4: Illustration of the various IMS platforms.The figures illustrate the different methods
of variation of electric field gradient used in different IMS platforms. The bullet points highlight
the instruments’ key attributes which includes : ability to measure CCS information, type of
electric field used, type of gas flow, ion packet distribution and the footprint of the instrument.
The last bullet presents the list of companies which manufactures the respective IMS method.[26]

Applications of Ion mobility mass spectrometry

Isomer Separation

While MS instruments provide high resolving power when differentiating between analytes of
different masses, separation of isomeric (or isobaric) species require fragmentation methods or
chromatographic techniques along with MS measurements. By utilizing the structural differ-
ences in the mobility dimension, IM-MS provides complementary information for separation
of isomers. Using IM-MS, isomeric compounds have been identified and separated in various
biological classes such as lipids [53], peptides [73]. IM-MS has also been successfully imple-
mented in separation of compounds with different conformation (enantiomers) [67]. Thus,
while isomeric separations in complex biological mixtures still remain a challenge, improve-
ments in Ion Mobility Spectrometry-Mass Spectrometry (IM-MS) and chromatographic based
separation techniques are starting to provide the necessary resolving power to characterize
and separate these compounds.

Signal Filtering by IM-MS

By providing a mobility dimension for characterization of analyte ions, IM-MS based tech-
niques have shown to increase the Signal-to-Noise Ratio (SNR) for specific analyte ions and
decrease the background noise. IM-MS based techniques such as Differential Mobility Ana-
lyzer (DMA), which is used to detect large analyte particles, have been shown to operate as
intrinsic mobility filters, where the instrumentation increases the SNR for a particular class
of analyte molecules. Mobility based filtering is important for for standalone IM systems and
has been used in the analysis of chemical vapors [65]. IM systems have also been used to
separate contaminant ions from proteins and peptides of interest [9]. Drift Tube Ion Mobility
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1-2 Introduction to Mass Spectrometry 9

Figure 1-5: Workflow for Untargeted Analysis by IM-MS. After a molecule of specific molecular
weight is detected by the instrument, additional information such as Mass Accuracy, Isotope
Ratio, Fragmentation Pattern and Cross References with existing CCS Libraries are incorporated
to increase the confidence on the spatial and formulaic structure of the molecule detected.[26]

Spectrometry (DTIMS) and Travelling Wave Ion Mobility Spectrometry (TWIMS) have been
extremely significant in the proteomic and metabolomic analyses of complex samples such as
soil, plant samples which possess high amounts of contaminant ions [14]. This is done by
separating molecules of interest such from high concentrations of contaminant materials in
the mobility dimension thereby increasing the proteome coverage of environmental samples.

Untargeted Analysis by IM-MS

One of the major advantages of IM-MS systems is its timescale of operation. Since IM-MS
separates analyte molecules on a milisecond timescale, it can be easily nested into exist-
ing MS/LC-MS systems to increase structural confidence in detection of the prioritized fea-
ture (Figure (1-5)). Incorporating mobility based information as additional descriptors can
increase the confidence of a molecule being correctly annotated in untargeted approaches.
However, encorporating CCS values for untargeted modes would be currently called ’known-
unknowns’ as the target analyte molecule should have been previously characterized by a pre-
vious mobility experiment and uploaded in the CCS database. Characterization of ’unknown-
unknowns’ is much more challenging where there is no support provided by the CCS database.
In these cases, ratio of mass to mobility(also called ’mass-mobility trendline’) is very useful
in characterizing unknown analyte molecules into a particular biological class [62]. These
mass-mobility trendlines (Figure (1-6)) are established by previously calculated CCS values
and are extrapolated to characterize unknown-unknowns. From a metabolomics’ perspective,
generation of high confidence and reproducible mobility measurements for establishing a base
library is one of the important challenges in the IM community.

Ion Mobility Spectrometry-Imaging Mass Spectrometry (IM-IMS)

While IM in itself is a powerful standalone device, the interfacing of IM-IMS enhanced the
analytical prowess of the MS instruments as both techniques provide complementary infor-
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10 Introduction to Omics and Mass Spectrometry

Figure 1-6: CCS Trend lines. The distinct trend lines observed for different class of molecules
using DTIMS and N2 as the drift gas.[14]

mation resulting in multidimensional characterization of the sample analytes. The interfacing
results obtained are of high resolution in the chemical space as the complementary informa-
tion of mobility and m/z provide very high level of selectivity and specificity [62]. Spraggins
et al. [83] demonstrated the use of IM-IMS in the field of molecular imaging. The instru-
ment utilizes the application of MALDI based IM technique along with Trapped Ion Mobility
Spectrometry (TIMS) (Figure (1-7)). The instrument was shown to achieve 10 µm spatial
resolution with m/z error of less than 5 parts per million (ppm). Here, IM based tech-
niques proved to be highly important as the instrumentation provided rapid separations of
analyte molecules (in the order of µs−ms ) compared to chromatography based separation
techniques(in the order of min-hr) thus making IM based systems suitable for imaging appli-
cation. The instrumentation was also shown to resolve isomeric and isobaric metabolites in
the low molecular weight region while maintaining high spatial resolution. This combination
of high resolution imaging combined with IM separations can be used to address many of the
challenges currently present in molecular imaging based applications.
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Figure 1-7: (A) Illustration of the instrumentation of MALDI timsTOF mass spectrometer. The
instrument is able to provide high-spatial resolution for the sample specimen using the MALDI
source for ionization. This is coupled with TIMS for mobility based separation of molecular species.
(B) Ion Mobility separation in TIMS. The electric field inside the TIMS funnel is adjusted to allow
separation of molecules based on their mobility. The electric field is first raised for accumulation
of molecules in the funnel. This is followed by lowering of the electric field in a pulsed manner
where the accumulated ions in the funnel are released based on their mobility.[83]

l
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Chapter 2

Data Analysis for Mass Spectrometry

MS data is difficult to process for a number of reasons. With increasing resolution of the
instrument as well as the increasing dimensions, the technique has experienced an exponential
growth in data file sizes. This emphasizes the need for key software developments to ensure
that effective analysis can be done without the loss of valuable information in the process.
We present some of the key data processing steps that are used for MS data analysis. As an
example, Figure (2-1) shows the complete data processing pipeline for LC-MS platforms.

2-1 Data Analysis Pipeline for MS

2-1-1 Visualization

IMS requires a visualization of distribution of various molecules throughout the tissue. Each
pixel of an image, produced by the instrument, contains an entire spectrum of chemical infor-
mation. Therefore, special software is needed to handle these kind of spectral images. Recent
efforts have been made to design open-source visualization tools that are user-friendly and
are applicable for multiple instruments. Out of the many softwares developed, MSIReader
[77] is one of the famous open-source software for visualization of IMS datasets that provides
a visual graphical interface as well as a MATLAB open source code for users. Other famous
softwares include MassImager [44] and LipostarMSI [88]. Apart from accessibility of the soft-
ware, efforts have been made in the direction of 3D visualization of MALDI Imaging datasets.
Patterson et al. [71] have developed an open source software for 3D reconstruction of IMS
datasets using multivariate segmentation.

One of the key points in visualization of IMS data is that the software should ensure that
the image shown is an accurate representation of the distribution of molecules. Cropping
images to remove chemical/background artefacts is not encouraged as this may lead to skewed
representation of distribution of molecules. Therefore, background details should be preserved
to capture the correct distribution of molecules [70]. With mass spectrometry, making an
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14 Data Analysis for Mass Spectrometry

Figure 2-1: Flowchart for the LC-MS Data Analysis. The flowchart listing consists of nine
different steps for untargeted analysis of target specimen. These steps can be grouped into four
namely : Raw Data Acquisition, Data Processing, Feature Detection and Biomarker Identification.
Parallelograms indicate data matrices. Rectangles indicate processing steps, Diamonds indicate
key choices, corners indicate file format choices and rounded rectangles indicate vendors and their
choice of software.[38]
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2-1 Data Analysis Pipeline for MS 15

increased presence in the case of biomedical applications as a diagnostic tool, appropriate
visualisation tools are critical for accurate diagnosis.

2-1-2 Data Compression

Multidimensional MS acquisitions tend to create large data files. As a result, data processing
becomes difficult and requires demanding computational methods. To alleviate this prob-
lem, several data compression strategies have been implemented. Among them, ’binning’
and Region Of Interest (ROI) are two of the most successful strategies that require the least
amount of computational strain for 2D MS datasets.

1. Binning

Binning in 2D LC-MS datasets involves the transformation of raw data into a two di-
mensional matrix representation with m/z values in one dimension and retention time
values in the other dimension. Conversion of this high resolution data into a matrix
representation requires division of the m/z axis into predefined (equidistant or custom)
sections. These predefined sections are referred to as bins and they determine the res-
olution of the instrument in the m/z dimension. Thus, by dividing the m/z dimension
in predefined bins, data compression as well as a compact matrix representation of the
data are obtained simultaneously. However, a drawback of the binning procedure is find-
ing the appropriate bin size. This is a very critical parameter and needs to be chosen
carefully, as the bin size is strongly correlated with the chromatographic peak profile.
If the bin size is too small, it may lead to generation of spurious chromatographic peak
profiles. If the bin size is too large, it may lead to merging of multiple peak profiles
which will lead to loss of spectral resolution in the m/z dimension.

2. ROI Compression

ROI based compression is an alternative compression technique to binning. The idea was
proposed by Stolt et al. [85] and is based on the concept of considering analytes located
in highly dense regions of data points surrounded by sparse regions of data points (’data
voids’). These highly dense region of data points contain interesting mass traces and
have significantly higher intensity than the established Signal-to-Noise Ratio (SNR)
threshold. In order to be classified as an ROI, the region must contain a minimum
number of consecutive data points within the mass deviation range, usually based on
the mass accuracy of the spectrometer. This condition prevents noise to be classified as
an ROI. However, additional filtering may be needed to prevent chemical/instrumental
artefacts present in the data sample to be classified as an ROI. The identified ROIs are
stored in a list and then later reorganized in the form of a matrix with retention time
as one dimension and m/z mean value of the ROI as the other dimension.
ROI based compression, circumvents the problem of defining bin size presented in the
binning procedure without the loss of spectral information.
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16 Data Analysis for Mass Spectrometry

2-1-3 Normalization

Normalization is used to remove systematic artefacts that are present in the mass spectra.
The artefacts present maybe due to matrix application, ion suppression or differential ion-
ization efficiencies in complex samples and can influence the intensity of peaks detected in
the mass spectra. These random effects can be reduced by various techniques present for the
normalization of the mass spectra. A brief outline of the various normalization techniques is
presented below:

1. Normalization to the Total Intensity Count (TIC)

Normalization to the TIC is the most commonly implemented normalization method in
MS data analysis [24]. The total intensity of the particular mass spectrum is calculated
and the intensity of each m/z of that mass spectrum is divided by this quantity. Nor-
malization to the TIC ensures that all signals have the same integrated area and the
underlying assumption is that there are comparable number of signals in each spectra
of the image pixel. However, this assumption fails when the selection of the sample area
is variable run-to-run leading to uneven distribution of molecules in each spectra.

2. Normalization to matrix related peaks

In addition to normalization to the TIC, the data sample can be further normalized to
matrix related peaks for MALDI imaging experiments to check for uneven application
of the matrix coating [37]. Different types of matrix coating on the sample lead to
different distribution of matrix ions after ionization and so matrix ion signals can be
used as a reference signal for normalization.

3. Normalization to Internal Standards

For samples with different tissue types, an externally applied Internal Standards (IS)
similar to compound of interest should be applied before or during matrix application.
In this case, normalization of each spectrum is done with respect to the intensity of
reference molecule. Normalization to an IS [11] reduces the impact of ion suppression
that arises from tissue inhomogeneity and improves the pixel-to-pixel variability. Other
options include normalization to an endogenous molecule that is consistently present
throughout the whole tissue.

2-1-4 Feature Detection

Feature detection is the task of searching for peaks which can be defined as bounded two-
dimensional MS signals with a local maxima and a relatively high SNR (Figure (2-2)). These
bounded two-dimensional signals indicate the presence of an analyte and can be in the range
of few hundreds to thousands depending on the complexity of the sample. There are various
methods proposed for carrying out feature detection in the LC-MS dataset. Centwave [87]
utilizes the concept of ROI for data compression and then look for features in the chromato-
graphic profile of the compressed data. Trevino et al. [89] proposed a grid-based method for
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Figure 2-2: Feature Detection. (A) Schematic Workflow of a Feature Detection algorithm is
presented. (B) Diagrammatic Representation of peaks present in an LC-MS data sample. The
presence of hills indicate the possibility of a feature in the data sample. Based on the m/z values
of the hills, as well as the Retention Time (RT) and the peak intensity information, the algorithm
combines several hills to form isotopic clusters.[1]

locating features where the algorithm directly operates on the raw 2D data sample. Some
algorithms incorporate prior information about the shape of the feature [93] and then use this
information to look for features in the data sample. Most of these algorithms require prior
pre-processing such as feature alignment and peak shaping prior to feature detection. On the
other hand, chemometric techniques [80] have also been proposed to resolve LC-MS datasets.
These techniques have the advantage that they allow feature detection without applying any
pre-processing techniques. An additional goal of feature detection is to distinguish analytes
present in the data sample from false positives.

2-1-5 Biomarker Identification

Following feature detection, the next step involves identification of isolated metabolites from
a referential database. Identification of target metabolites is an active area of research [21]
and involves hierarchical strategies for correct identification. According to Sumner et al. [86],
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four levels of identification of molecules can be defined starting from definitive identification
(level 1), which refers to matching of at least two orthogonal molecular properties of metabo-
lite found in the data sample with an authentic chemical standard. Levels 2 and 3 comprise
of putative metabolite identification, which provides metabolite-specific or class-specific iden-
tification and can be compared against various datasets. The final level (level 4) consists of
identification of unknown compounds in which case the method and platform used for iden-
tification of these compounds should be presented.

Biomarker identification is a complex task and the task becomes even more difficult when
untargeted metabolomic profiles are generated. The review by Dunn et al. [31] provides an
extensive study of all the computational tools available for untargeted metabolomic stud-
ies. The review concludes that in the past decades, the number of unknown metabolites
discovered, due to enhanced resolution of mass spectrometers as well as addition of other
chemical dimensions (e.g. chromatography profile), have increased. However, the propor-
tion of identified metabolites, with respect to unknown metabolites, still remain low (around
50%). Therefore, development of efficient computational and identification strategies is a
widely pursued research interest.

2-1-6 Biochemical Interpretation

The overall process of data analysis concludes with the biological interpretation of the results
linked with the identified biomarkers. The final result of the analysis is the confirmation or
rejection of an altered candidate biomarker driven by an initial biological hypothesis. These
results are then deciphered with the help of online databases. Various online databases
allow interpretation and cross-validation of altered metabolic pathways present in the sample
specimen, such as KEGG [47] and BioCyc [49]. With the help of these databases, alteration to
metabolic pathways can be studied in detail which can potentially contribute to identification
of new metabolic checkpoints.

2-2 Feature Detection

One of the initial steps of multidimensional MS Data analysis of complex biological samples is
to separate the information from the noise. This procedure is carried out in feature detection.
In a multidimensional MS data sample, a feature refers to bounded signal of interest that in-
dicates the presence of a molecule present in the biological sample. Now, due to the complex
nature of the data, with challenges such as varying feature widths, presence of chemical and
background artefacts, increasing size of data samples, irregular sampling, the procedure of
finding and identifying features becomes a complex task. In the past decades, different open
source algorithms and software pipelines have been developed to tackle these challenges.We
broadly these algorithms based on their method of operation.

2-2-1 Types of Algorithms

1. ROI based methods
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The algorithm first performs compression of the data sample based on the application of
ROI. This is then followed by peak deconvolution where the identified region of interests
are then deconvolved into separate 2D peaks, with each peak indicating the presence of a
molecule or an information of interest. This method was first implemented in Centwave
[87] and has been widely modified and adapted for other algorithms. Abdrakhimov
et al. [1] and Navarro et al. [68] provide two adaptations of this algorithm for LC-
MS and IM-MS based instruments. One of the main reasons for the method being
widely popular is that it requires the least amount of computational efficiency for the
compression technique and can separate information from noise effectively.

2. Grid Based Methods
These algorithms treat 2D MS data as an image and use image based algorithms to
separate features from noise. Trevino et al. [89] proposed a grid based method for
feature detection in Liquid Chromatography Mass Spectrometry (LC-MS) data samples.
The method has the advantage that it attacks the 2D data space directly instead of
processing each dimensions separately.

3. Model Based Approaches
These algorithms assumes a prior model on the shape of the feature and then use fitting
procedures to identify features present in the data sample. Literature suggests that
an ideal feature present in the data sample should have a Gaussian or a Lorentzian
shape [93]. Cox et al. [20] and Samanipour et al. [78] have proposed feature detection
algorithms that assume features to have a Gaussian shape and then perform Gaussian
fitting to look for Gaussian features present in the LC-MS dataset.

Having given a brief outline of the feature detection algorithms that are present, we briefly
present the working mechanism of some of the algorithms that are already being used in the
case of 2D Mass Spectrometry (MS) data sets

2-2-2 XCMS : Highly Sensitive feature detection for high resolution LC/MS

Tautenhahn et al. [87] describe the development of a feature detection algorithm CentWave
for high-resolution LC-MS datasets using region of interest algorithm and Continuous Wavelet
Transform (CWT).

The mechanishm of the algorithm can be broken down into two major steps :

1. The algorithm uses a density based approach [85] to identify regions of potential mass
traces(ROI). These ROIs are then filtered using an intensity based prefilter. Figure 2-3
shows an identified ROI present in a test sample.

2. This is then followed by application of continuous wavelet transform techniques to de-
convolve the peaks present in the identified region of interests. CWT techniques have
been actively used [55] for detection of ’peaks’ (1D features) for MALDI-time of flight
mass spectrometry. Figure 2-4 demonstrates the use of CWT for deconvolution of chro-
matographic peaks present in the signal.
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Figure 2-3: ROI Detection. The upper panel shows the mass trace of the mass signal with color
coded intensities. The corresponding chromatographic peak is displayed below.[87]

Parameters

The algorithm identifies three important parameters. These are :

1. Mass Deviation (µ) in ppm - typically set to be the multiple of the mass accuracy of
the mass spectrometer.

2. Prefilter (I) - ROIs are only retained if they contain at least k peaks with intensity >=
I.

3. Chromatographic Peak width range - e.g wmin, wmax in seconds for UPLC separation.

4. SNR threshold (SNRthr) - Threshold Signal/Noise ratio. Signal/Noise ratio is defined as
(maxo - baseline)/sd, where maxo is the maximum peak intensity,baseline the estimated
baseline value and sd the standard deviation of local chromatographic noise.

Advantages and Disadvantages

1. Advantages

(a) The ROI based compression method is one of the least computationally expensive
methods for capturing interesting mass traces thereby drastically reducing the
computational time of the algorithm.
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Figure 2-4: Chromatogram Peak Detection using wavelet transforms. The lower panel shows
the extracted ion chromatogram and the various gaussian peaks observed in the chromatogram.
The upper panel shows wavelet coefficients at different scales for the same chromatogram. The
cross mark indicates the scale at which the specific peak is optimally localized.[87]
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(b) CWT outperforms standard filters of fixed width in the case of peak deconvolution.
This is because CWT coefficients are able to capture peaks of varying widths at
different scales and is therefore excellent for peak deconvolution.

2. Disadvantages

(a) ROI based compression is customized for centroid mode acquisitions and the results
are relatively poor when the algorithm is adapted for profile mode acquisitions.

(b) The parameters need to optimized with respect to the data sample. When the
algorithm was compared with other feature detection algorithms, it was found
that the parameter ’intensity threshold’ had to be optimized continuously in order
to discover more features.

(c) The algorithm does not pose any constraint on ridge lines constructed using con-
tinuous wavelet transform [66]. Ridge line detection is the process of detecting and
connecting local wavelet maximum coefficients across all scales. Centwave dose
not pose any constraint on the minimum number of scales at which the the local
maximum coefficient should be present. As a result, the chance of detecting false
positive features increases.

(d) While calculating SNR, the algorithm establishes a box (region) around the de-
tected ROI and uses this box to estimate the baseline value and the standard
deviation of the local noise for the detected ROI. The size of this box depends
on the mass resolution of the spectrometer and the chromatographic peak width
range, both of which are instrument dependent parameters of which the user may
not be aware of.

2-2-3 Gridmass: a fast two-dimensional feature detection method for LC/MS

Trevino et al.[89] present another feature detection algorithm for High Performance Liquid
Chromatography coupled to Mass Spectrometry (HPLC/MS) experiments. The paper de-
scribes feature detection as the procedure to detect boundaries of a putative molecule within
the mass and time domains. In order to improve the computational efficiency of the process,
the paper proposes a direct two dimensional approach to feature detection rather than per-
forming a two-step peak detection. In this study, we briefly summarize the feature detection
pipeline implemented and discuss the advantages and disadvantages related with this method.

HPLC/MS data sample can be thought of as a 2D image with m/z and retention time acting
as the two dimensions of the image and the intensity (amount of molecules detected) being
the color of the image. The algorithm first generates a set of equally spaced probes that
span the entire m/z-retention time dimension. The probes are allowed to explore a small
rectangular region in its vicinity to look for local maxima (intensity) within the rectangular
region. The probe location is then shifted to the local maxima found in the region. This
process is repeated until no higher values exist within the exploring rectangle. All the probes
converging to the same maxima provides an estimate of the boundary of the feature detected.
The local maxima found contains information about the intensity, m/z and the retention
time of the feature detected. Figure (2-5) shows the overview of the implementation of the
algorithm as described above. Considering the implementation of the algorithm on a noisy
data sample, the algorithm is highly sensitive and specific for smooth surfaces and therefore
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2-2 Feature Detection 23

Figure 2-5: Feature Detection Gridmass.(A) The image representation of the LC-MS Data Space
is presented. The intensity is drawn in log10 scale. (B) Depiction of the Gridmass Algorithm for
two peaks found in the data space. Black dots represent the probes that will move towards there
local optimum. Dashed arrows show the movement of the probes after one iteration. The red
dots show the movement of one specific probe to the optimum location after a set of iterations.
The area explored by each probe is limited by a rectangle. (C) Depiction of Detection of two
features using the algorithm. The minimum height(intensity) threshold = 50 for this case. The
green and red polygons shows the boundary estimation of those two features. The corresponding
center of those features are represented by a cross mark.[89]
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additional criteria(feature width, ignore times, etc.) needs to be implemented to provide some
filtering in the features detected.

Parameters

The algorithm takes the following parameter as inputs:

1. Minimum Height Threshold - Intensities lower than this values will be ignored.

2. Width - Threshold width of the feature (chromatographic domain). In retention time
dimension, this is equal to 4 times gap between probes.

3. m/z tolerance - Threshold width of the feature (m/z dimension). In m/z dimension,
this is taken as 2 times gap between probes.

4. Intensity similarity ratio - For detecting artifact features having similar intensity and
mass.

5. ignore times - list of time ranges to be ignored.

6. smoothing times - The time interval considered for smoothing the feature by averag-
ing(retention time dimension).

7. smoothing m/z - m/z range for smoothing the feature by averaging (m/z dimension).

Advantages and Disadvantages

1. Advantages

(a) The algorithm is computationally fast. By fixing the grid points, the algorithm
essentially performs 1D (intensity) optimization in a local region defined by those
grid points. This is relatively fast as the search space is limited.

(b) The algorithm is highly sensitive. In principle, the algorithm in its default mode,
looks only for locations based on the change in intensity. As a result, the algorithm
picks up every part of the data space where change in intensity is observed. This
is good for identifying ’potential features’ with minimal change in intensity. These
detected ’potential features’ can then be filtered out based on additional filtering
parameters, which is better than not getting detected at all.

(c) The algorithm can operate on profile mode acquisition as well as centroid mode
acquisition.

2. Disadvantages

(a) There are many parameters that are needed to be optimized in the case of Grid-
Mass. This is because convergence to a feature using the optimization procedure
is not guaranteed. This makes the software very unfriendly for users who have no
information as to how the data was generated.
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(b) The parameter ’Intensity Threshold’ requires the user to know the SNR of the data
sample. However, no such method or idea was implemented which demonstrates
how to calculate the SNR for a given data sample.

(c) The parameter ’ignore times’ depends on the sample and the chromatographic
conditions. This means that the experimental conditions must be known by the
user before operating the algorithm.

2-2-4 Self Adjusting Algorithm for the Nontargeted Feature Detection of High
Resolution Mass Spectrometry Coupled with Liquid Chromatography Pro-
file Data

Samanipour et al. [78] propose a self-adjusting feature detection algorithm for High Resolution
Mass Spectrometry coupled with Liquid Chromatography (LC-HRMS) profile data. The idea
proposed by the paper is to perform 2D Gaussian fitting in the profile data (generated by
LC-HRMS technique) to detect features. The algorithm is self adjusting in the sense that
it only requires user defined parameters as only the first guess in an adaptive process. The
algorithm does not require optimization of parameters such as peak widths in the mass and
time domain as in the case of previous methods. The working mechanics of the algorithm is
presented below.

The algorithm is an iterative process where each point in the data space is processed indi-
vidually starting with the point with the highest intensity. Once the presence of a feature is
established in the chromatogram, the algorithms sets the intensity value of the feature to zero
and moves to the next most intense point in the data sample. For a single feature detected,
the algorithm goes through 9 steps during each iteration. These steps are :

1. Maximum Detection and Half-Height Placement - Figure (2-6) and Figure (2-7)

2. Signal Smoothing - Figure (2-8)

3. Signal Interpolation - Figure (2-9)

4. Gaussian Fit - Figure (2-10)

5. Baseline Tracing - Figure (2-11)

6. Gaussian Fit in the time Domain - Figure (2-12)

7. Signal Removal

Parameters

The algorithm takes four types of parameters :

1. Importing Parameters - The importing parameters include path to the file, the file
format and finally the mass range limit.

2. Stopping Parameters - The stopping parameters consist of four thresholds namely:
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(a) R2 i.e. of regression coefficient fit - This parameter determines the quality of the
recorded signal and acts as a decision making parameter as whether the signal is
peak.

(b) Maximum Signal Increment - This parameter prevents grouping of overlapping
features.

(c) Minimum Intensity of Peaks - Lower Bound for Peak Detection.
(d) Maximum number of Iterations - This parameter determines number of iterations

to be performed for a given data sample.

3. Filtering parameters - These parameters are used for filtering out detected features
based on their properties i.e. minimum peak width (2s), maximum peak width (300s)
in time domain. The parameters are mainly used for removing time domain features
that could be considered as noise/background.

4. Performance Parameters - These include Minimum peak width in the mass domain
and minimum peak width in the chromatographic domain. This is taken as an initial
guess and the algorithm will automatically adjust it according to the peak detected in
the data-sample.

Figure 2-6: Step 1 : Maximum in-
tensity detection in the m/z dimension
for a feature present in the wastewater
influent sample.[78]

Figure 2-7: Step 2 : Detection of
the half-height of a peak in the m/z
dimension.[78]

Advantages and Disadvantages

1. Advantages

(a) The algorithm is extensive. For every intensity point, the algorithm calculates the
peak width, peak shape, baseline in the m/z domain and then in the time domain.
Thus every feature, along with all of their properties, gets characterized.

(b) The algorithm is self adaptive. Apart from few initial parameters, the algorithm
adapts itself to the data provided without any interference.

(c) The algorithm can operate on profile mode acquisition as well as centroid mode
acquisition. This is because the algorithm first operates in the m/z dimension,
calculates all the necessary properties, and then moves to the retention time di-
mension.
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Figure 2-8: Step 3 : Smoothing of the
peak using moving average filter.[78]

Figure 2-9: Step 4 : Interpolation of
the smoothed signal using the Spline
function.[78]

Figure 2-10: Step 5 : Fitting of the
interpolated signal by a gaussian func-
tion using least squares method.[78]

Figure 2-11: Step 6 : Tracing the
baseline in the real signal through the
fitted gaussian function.[78]

2. Disadvantages

(a) The algorithm is time consuming. The algorithm first performs gaussian fitting
in the m/z dimension and then in the retention time dimension. For a particular
data sample tested in their paper, the algorithm took 7 hours to generate a list of
features with all of their properties.

(b) The algorithm parameter regression coefficient fit needs to be specified by the user.
Using a lower value may lead to detection of high number false positive and a higher
value will make the algorithm to noisy peaks.

(c) The parameter ’Maximum number of iterations’ requires the user to have an es-
timate of the number of features that are roughly present in the data set. This
might be difficult to guess, if the sample is complex, a low guess will lead to less
number of features detected and a high guess will lead to increased computation
time.
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Figure 2-12: Step 7,8 : (a) The fitted Gaussian on the base peak in the m/z domain. (b) Fitted
Gaussian in the Time domain. (c) a 3d overview of the algorithm moving from base peak in the
m/z domain to the neighbouring scans in both direction(black arrow). [78]

(d) Although the half-height placement method bypasses the calculation of SNR by
only considering the upper half of the peak, the technique might fail in the case of
complex molecules where ’shoulder peaks (features)’ are present in the upper half
portion which might get smoothed out in Step 3.

2-2-5 Benchmarking feature detection algorithms

Performance evaluation on an annotated data sample

The performance evaluation of all the feature detection algorithms reviewed had a similar
framework. The algorithms were first tested on an experimental setup with known com-
pounds. In the case of GridMass and Centwave, the performance of the algorithms were
tested on a standard MM14 data sample. The MM14 compounds consisted of a mixture
marker compounds at a concentration of 20 µM which was analyzed using Electrospray Ion-
ization based Mass Spectrometry coupled with Ultra High Performance Liquid Chromatog-
raphy (UPLC/ESI-MS). Due to ESI technique being used, there were total of 296 features
generated (21 features per compound). These feature consisted of adducts, fragments as well
as their isotopic peaks. These features were first manually annotated before evaluating the
performance of the algorithms. In case of Self Adjusting Feature Detection algorithm, the
experimental setup consisted of a total of 55 samples with 4 equilibration injections, 3 internal
standard injections and 44 composite wastewater influent samples. In this case, the IS were
used for evaluation of the true positive and false negative detection while the equilibration
samples were used for false positive detection.

After the experimental setup was prepared, the performance of the algorithms were then
compared. The parameters of comparison were:

1. No. of features detected - The feature is said to correctly detected if the reported m/z
and retention time by the algorithms are found to be ≤ 0.1 with respect to the theoretical
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Figure 2-13: Comparison of features detected by Gridmass and Centwave from the Habanero
samples. (a) Venn-Diagram Representation of features detected by the algorithms after de-
isotoping using two height thresholds. (B) Percentage of false positives detected by the algorithms
for the two height thresholds at three p-values that determines the false calls.[89]

Figure 2-14: F-score values for two experiments. The first experiment(left) consisted of looking
for features in dilution series of seed extract. The second experiment(middle) consisted of looking
for features in dilution series of leaf extract. The third experiment consisted of looking for features
in a mixture of seed and leaf extract. The F-score is the benchmark for the three feature detection
algorithms in all the three experiments. Higher F-Score values represent better feature detection
performance.[87]
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values of the features. In the case of Self Adjusting Feature Detection Algorithm, the
presence of IS compounds were needed to be confirmed. The IS are correctly detected,
if the algorithm reported them within the range of ≤ 0.003Da in the m/z domain and
a retention time of ≤ 10s.

2. Computational efficiency - The time taken by the algorithm to complete feature
detection as well as the complete details of hardware(computer system) used.

3. Parameter optimization - The number of parameters that were needed to be opti-
mized in order to obtain optimum results.

4. False Discovery Rate (FDR) - The number of false positives and false negatives
detected by the algorithm.
Various methods have been proposed for estimating the quantity of FDR. Centwave
uses F-Score[90] for evaluation of the FDR. The F-Score is evaluated as :

F − score = 2.R.P
R+ P

(2-1)

where R = TP
NP and P = TP

N . TP is the number of True Positives, NP is total number
of real features and N is total number of features detected by the algorithm. A perfect
feature detection will achieve a F-Score of 100% and the presence of false positives and
false negatives will lower its values (Figure (2-14)).
Gridmass used rAnova[56] to estimate the FDR. The experiment comprised of using
seven biological replicates of a sample specimen followed by three technical replicates
injected non-consecutively. The difference between the features detected in technical
replicate and the biological replicate represented the false positives.

Performance evaluation on a complex data sample

After the evaluation on a data sample with annotated features, the algorithms were tested on
complex samples where the number of features are unknown. In these cases, the evaluation
of the algorithms becomes difficult. One of the first criteria for performance comparison is to
identify the number of features which are detected by both of the algorithms. This is then
put into perspective by taking into account the total number of features detected by each
algorithm individually. Venn diagram constructions are often used for visualizing the results
of this procedure (Figure (2-13)). Additional information such as feature width, differences
in m/z width and retention are also compared.
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Chapter 3

Wavelet Transforms

3-1 Introduction to wavelet transforms

Wavelet analysis refers to a class of time-frequency (or time-scale) representation of a signal
and is a standard tool used in signal and image processing applications.The technique has
found its application across various fields of science such as geophysics [91], astrophysics [6],
medical imaging [92].

Mathematically, wavelet transforms are characterized by: ψ which is the wavelet function, a
which characterizes the frequency of the signal and b which registers the position(or "time")in
the signal. All of these parameters simultaneously provide a time-frequency snapshot of the
signal.

Let s(x) be a finite energy, square integrable function i.e. s(x) ϵ L2(R). The wavelet transform
of the signal is given as:

s(x) 7→ W (b, a) =
∫ ∞

−∞
ψb,a(x)s(x)dx (3-1)

where ψb,a(x) is the wavelet analyzing function. For wavelet transforms, ψb,a(x) is given as :

ψb,a(x) = 1√
a
ψ(x− b

a
) (3-2)

In Equation (3-2), a controls the effective support of ψ. If a < 1, the wavelet analysis function
ψ gets contracted(or "squeezed") and if a > 1, ψ is dilated (or "stretched"). In both of these
cases, the shape of the wavelet function remains unchanged and only the effective width of
the wavelet function varies as a function of a. The parameter b controls the position of the
wavelet function.

For wavelet analysis, we introduce a frame of reference known as the "mother wavelet" given
as ψ1,0(x) = ψ(x). All other wavelet functions, which are derived from the mother wavelet, by
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32 Wavelet Transforms

Figure 3-1: Mexican hat wavelet function for different parameters a and b. Blue: a = 2 and
b = 0, Orange: a = 16 and b = 0, Green: a = 16 and b = 100

varying a and b are called "daughter wavelets". Figure (3-1) displays the mexican hat wavelet
function for varying a and b.

3-1-1 Properties of wavelet functions

Existence conditions

In order to represent time-frequency space accurately, the wavelet function ψ(x) must satisfy
the following conditions [22] :

1. Finite energy: The energy of the wavelet function should be finite i.e.∫ ∞

−∞
|ψ(t)|2dt < ∞ (3-3)

2. Finite support: The wavelet function should have finite support and should be well
localized in frequency domain and time domain. This is given by the admissibility
criteria. The admissibility criteria also guarantees invertibility of the wavelet transform.
Mathematically, the criteria is expressed as:

cψ = 2π
∫ ∞

−∞

| ˆψ(ξ)|2

|ξ|
dξ < ∞ (3-4)

A slightly weaker condition, derived from Equation (3-4), can be given as :

ψ̂(0) = 0 ⇔
∫ ∞

−∞
ψ(x) = 0 (3-5)
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Intuitively, Equation (3-3) and Equation (3-5) express that wavelets are oscillating functions,
well localized in time and frequency domains. If we combine this information with Equation
(3-1), we observe that wavelet transform is the convolution of the signal s with scaled, flipped
and conjugated wavelet ψ∗

a(x) = |a|−1/2ψ(x/a) i.e:

W (b, a) = (ψ∗
a ∗ s)(b) =

∫ ∞

∞
ψ∗
a(b− x)s(x)dx (3-6)

This means that the wavelet transforms performs a local filtering operation with a zero mean
function ψa,b(x) i.e. the transform coefficient |W (b, a)| is non-negligible when the wavelet
function ψb,a(x) matches any small part of the signal.

General Properties

Apart from the properties derived from the existence conditions, wavelet functions have other
significant properties that are useful for singularity detection :

1. Vanishing moments: A wavelet function is said to have a N vanishing moments iff:∫ ∞

−∞
xnψ(x)dx = 0, n = 0, 1, 2, 3...N (3-7)

This property guarantees that the wavelet transform is insensitive to polynomials up to
order N , which constitute the smooth part or the trend in the signal.

2. Constant relative bandwidth: If ψ̂ has a bandwidth of ∆ξ in frequency domain,
then ˆψb,a has a bandwidth of ∆ξ/|a|. This implies that wavelet functions work like a
filter with constant relative bandwidth i.e ∆ξ/ξ = constant. This property is helpful in
localizing the position of singularities in the time-frequency domain.

3. Invertibility An important property of the wavelet transform is invertibility i.e if
s(x) 7→ W (b, a), then s(x) can be reconstructed from the wavelet coefficients W (b, a).
The reconstruction formula is given as:

s(x) = cψ

∫ ∞

−∞
db

∫ ∞

−∞

da

a2 ψb,a(x)W (b, a) (3-8)

where cψ denotes the admissibility constant in Equation (3-4). This implies that the
signal s(x) can be seen as a linear superposition of the wavelets ψb,a with coefficients
W (b, a).

3-1-2 Type of wavelet transforms

The wavelet transform in equation(3-1) needs to be discretized for implementation. This
is achieved by restricting the parameters a and b to a discrete set of points i.e. Γ =
(aj , bj , j, k ϵ Z) in the (a,b) plane. Different discretization strategies lead to different types
of wavelet transforms. The two major types of wavelet transforms are:
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1. Continuous Wavelet Transform (CWT): In this case, the parameter a is chosen
independently based on some prior knowledge of the application and the parameter bj
varies from j = 0,1,2...N where N is the length of the signal s(x). This type of discretiza-
tion has the advantage of making the whole analysis invariant to global translations and
is very useful for feature detection. However, the discretization method will result in
a redundant transform space and will require different strategies for exploitation of
relevant information from the transform space.

2. Discrete wavelet transform (DWT): In DWT, the parameters are chosen as:

(a) scale parameter aj = aoλ
−j , j ϵ Z for some λ > 1

(b) translation parameter bk ≡ bk,j = kboaoλ
−j j, k ϵ Z

Thus we get :
ψj,k(x) = λj/2ψ(a−1

o λjx− kbo), j, k ϵ Z (3-9)

The most common choice is λ = 2 (octaves) and ao = bo = 1 which gives :

ψj,k(x) = 2j/2ψ(2jx− k), j, k ϵ Z (3-10)

DWT generates a dyadic lattice ((k2−j , 2−j), j, k ϵ Z) where the scale parameter and
translation parameter are dependent on choice of λ. The advantage of choosing the
discretization strategy is that it yields fast reconstruction algorithms and generates a
sparse representation of transform space. DWT is primarily used for signal denoising
[29] and compression applications [19].

3-1-3 Visualization of CWT

Given a one-dimensional signal, s(t) with length N , the CWT of the signal will be an
M x N matrix where M represents the number of scales, and N is the length of the
signal. This means that wavelet transform adds another dimension to the original signal
governed by the scale parameter a.
In two dimensional signals, the number of dimensions present in the wavelet transform
is also dependant on the nature of the wavelet function being used. In case of isotropic
wavelets, CWT consists of three dimensions (two spatial dimensions and the scale dimen-
sion). Isotropic wavelets are useful in singularity detection. For anisotropic wavelets, the
number of dimensions increase to four. The additional dimension is contributed by the
rotation parameter θ which characterizes the skew of the wavelet function. Anisotropic
wavelet functions are useful in identifying orientations or directional elements in the 2D
signal.
In practice, CWT is visualized from an energy perspective i.e we plot |W (a, b)|2 as a
function of a and b. This is known as a scalogram (analogous to spectrogram used
in short-time fourier transform). However, depending on the application, |W (a, b)|,
|W (a, b)|/cψ [4] are some of the other quantities that can be plotted as a function of a
and b. For our purpose, we will use the quantity |W (a, b)| for the scalogram.
As an example, we plot the scalogram for a gaussian signal g(t) in Figure (3-2).
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Figure 3-2: Top: Gaussian signal g(t). Bottom: Scalogram of the gaussian signal

3-2 Wavelet transform maxima (WTM)

For feature (peak) detection, the discretization used in CWT is very useful. CWT preserves
the dimension of the signal which helps in tracking the position and evolution (amplitude of
wavelet coefficient) of the feature in the transform space. However, CWT is redundant and
the results are often hard to interpret.
In order to work around the redundancy, we limit the transform space to a set of points that
can characterize the signal effectively. These set of points are chosen based on the intended
application. For our application, we are interested in characterizing the peaks present in the
signal. Peaks can be defined as local maxima points present in the signal. Therefore, we limit
the analysis to a set of local maxima points that are present in the wavelet transform space.
We define this set as:

Γlm =
{

(bj , ak) |W (bj−1, ak) < W (bj , ak) & W (bj , ak) > W (bj+1, ak) ∀ak j, k ϵ Z
}
(3-11)

Intuitively, Equation (3-11) means that for every scale a, we look for local maxima coefficients
in the position parameter b. The idea is demonstrated for the previously used gaussian signal
g(t) in Figure (3-3).
From Figure (3-3), we see that the set of maxima points can be grouped together to form
a connected structure in the transform space. These are called as chains (ridges). Roughly
speaking, a chain is a collection of maxima points that are connected (or correlated via some
metric) to each other in the transform space. The main idea is that these chains can be used
to completely characterize the nature of the local maxima point present in the signal.
The technique was developed by Mallat et al. [61] under the name of Wavelet transform mod-
ulus maxima (WTMM) for the application of signal denoising. Arneodo et al. [8] extended
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Figure 3-3: Top: Gaussian signal g(t). Bottom: CWT Scalogram with maxima points. The
white dots represent the location of local maxima wavelet coefficients at every scale a. These
local maxima points can be grouped together to form a connected structure called chain.

the technique for the analysis of fractals. Carmona et al. [17] proposed the technique for the
application of signal reconstruction.

3-2-1 Properties of wavelet transform maxima

1. Characterization of Lipschitz exponents [7]: Given a signal s(t) which consists of
a singularity γα(x− xo) of order α i.e :

γα(x− xo) =
{

0, x ≤ xo
(x− xo)α x > xo

(3-12)

Differentiating with respect to xα+1 we get:

dα+1γα
dxα+1 (x− xo) = Γ(α+ 1)δ(x− xo) (3-13)

where δ(x) is known as the dirac function. Now, let the wavelet be an nth derivative
function of a smooth function ϕ, i.e. ψ(x) = dn

dxnϕ(x) with n ≥ α+1. Then, the wavelet
transform of γα(x− xo) with respect to ψ(x) is given as :

Wγα(b, a) = Γ(α+ 1)aαd
n−α−1ϕ

dxn−α−1 (xo − b

a
) (3-14)

Assume that the modulus of (n − α − 1)th derivative of ϕ has N maxima points at
positions at (xl = 1, ....., N). Then, for each a, |Wγα | has N maxima points at locations
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(bl = axl + xo, l = 1, ...., N) which converges to xo as a tends to 0. Therefore, maxima
of |Wγα | will have N chains converging to xo as a tends to 0.
For a particular bl = axl + xo, we have :

|Wγα(bl = (axl + xo), a)| = Γ(α+ 1)aαϕl (3-15)

Taking log(base e) on both sides, we get :

|Wγα(bl = (axl + xo), a)| ∼ αln(a) + lnϕl (3-16)

where ϕl = ϕl = dn−α−1

dxn−α−1 (ϕ(xo−bl
a )).

Intuitively, this means that by looking at the slope of the log of the wavelet coefficients
along a chain, we can determine the singularity α governing the signal.

2. Behaviour of noise [61]: Let n(x) be a stationary white noise signal with variance
σ2. Let ψ(x) = 1

aψ(xa ). Then, it can be shown that:

E(|Wn(a, b)|2) = σ2||ψ||2

a
(3-17)

The above relation implies that the expected energy of noise in the wavelet transform
space is inversely proportional to the scale parameter a. Roughly, this means that chains
that are generated due to noise (i) have short length (ii) have decreasing strength as
scale a increases.
This idea can be extended to the case of additive gaussian noise. Let y(x) = yo(x)+n(x)
where yo(x) is the true signal and n(x) is zero mean white noise with variance σ2. Then:

E(|Wy(a, b)|2) = |Wyo(a, b)|2 + E(|Wn(a, b)|2) (3-18)

Using Equation (3-17), we get:

E(|Wy(a, b)|2) = |Wyo(a, b)|2 + σ2||ψ||2

a
(3-19)

Equation (3-19) means that the transform coefficients of the observed signal (yx) will
be strongly impacted by noise at lower scales and the impact will be reducted at higher
scales.

3. Theorem [60]: Let ψx = (−1)nθn be a wavelet function, where θ is a gaussian func-
tion. For any f ϵ L2(R), the modulus maxima of |Wf(b, a)| belong to a set of connected
curves that are never interrupted as scale decreases.

This means that chains can be traced back to the finest scale for wavelets that are
derived from derivatives of gaussian function.

3-2-2 Synthetic Example

In this section, we demonstrate the wavelet transform maxima technique using a test signal
and study the properties discussed above.
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Figure 3-4: Test Signal: s(t) = 30e−0.5( (3.5−t)2

(0.15)2 ) + 50e−0.5( (3.8−t)2

(0.05)2 ) + n(t)

Test Signal

The modelling of the clean test signal was based on the peaks observed in the mobility domain.
Mathematically, the clean test signal is given as :

s(t) = 30e−0.5( (3.5−t)2

(0.15)2 ) + 50e−0.5( (3.8−t)2

(0.05)2 ) (3-20)

where t = nT/N , N = 1024, T = 8 and n = 1, 2, ....1024. On the noiseless signal, we added
stationary zero mean gaussian noise n(t) with standard deviation σnoise = 1.5. Therefore, the
final test signal consisted of two gaussian peaks with gaussian noise (Figure (3-4)). The final
model can be represented as:

y(t) = s(t) + n(t) (3-21)

Wavelet transform

The next step was to compute the CWT of the test signal. For this, we chose mexican hat
function as our wavelet function. We used dyadic scales(octaves) with three voices per octave
as the scale parameter a. Mathematically, the scale parameter can be given as :

a = 2nj/K , K = 4, n = 1, 2, 3, j = 0, 1...5 (3-22)

In equation(3-22), j controls the number of octaves and K − 1 controls the number of voices
per octave. The minimum and maximum scale values were chosen as amin = 1 and amax = 32
respectively. This choice of scales is motivated by the conservative bounds governed by the
size of the filter. The size of the dilated wavelet filter should not increase the size of signal.

In CWT, the normalization factor of the wavelet function is an important factor that governs
the behaviour of the transform space. In our case, we use L1 normalized wavelet functions.
We say that the wavelet is L1 normalized when:
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Figure 3-5: Scalogram for the test signal

∫ ∞

−∞
|ψ(x)|dx =

∫ ∞

−∞
|ψb,a(x)|dx ∀a, b (3-23)

For L1 normalization, the wavelet function is given as:

ψb,a(x) = 1
a
ψ(x− b

a
) (3-24)

Mathematically, using L1 normalization has the advantage of penalizing the transform space
at higher scales. This can be used to reduce the impact of noise at higher scales (Equation
(3-17) and Equation (3-19)).

After deciding the scale parameter, the normalization factor and the number of scales, the
wavelet transform was computed using Equation (3-1). We present the scalogram for the test
signal in Figure (3-5).

Wavelet transform maxima

After computing the wavelet transform, we identified the local maxima coefficients at every
scale a. Note: WTM is slightly different from WTMM. The former computes the local
maxima over wavelet coefficients for every scale while the latter computes the local maxima
over absolute wavelet coefficients for every scale. The plot for local maxima coefficients is
given in Figure (3-6).

From the figure, it can be inferred that: (a) the density of local maxima points decreases as
scale increases (b) local maxima points corresponding to gaussian peaks have higher amplitude
than than local maxima points corresponding to noise.
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Figure 3-6: Scalogram for the test signal along with the local maxima coefficients. The white
dots represent the location of local maxima coefficient at every scale a

Analysis of chains

After local maxima points across scales were identified, we grouped these points across scales
to form chains. For demonstration, the chain construction was based on a naive distance based
algorithm i.e maxima points that are close together in scale space were grouped together to
form a chain. We present a chain generated by a gaussian peak (Figure (3-7)) as well as a
chain generated by the noise in the signal (Figure (3-8)).

The analysis lead to the following findings:

1. The majority of noise-induced chains were short and only dominated smaller scales.

2. Even if noise-induced chains were long, on average, the strength of wavelet coefficients
associated with noise-induced chains decreased as scale increased.

3. Chain associated with low intensity peaks behaved like noise at lower scales but grad-
ually gained strength at higher scales.

4. Chain associated with gaussian peaks tend to have their maximum wavelet coefficient
occuring at the scale which best represented the feature.

5. Along a chain, the finest scale represented the location of the peak in the test signal.

Overall, the initial analysis lead to the conclusion that wavelet transform maxima technique
can be used for peak detection. However, there were a number of important quantative and
qualitative criteria that were still needed to be defined in order to make the technique robust
and sensitive to peaks present in the IM-IMS datasample.

Gautam Sinha Master of Science Thesis



3-2 WTM 41

Figure 3-7: (a) Test Signal. The blue line represents the test signal and the orange line orange
line corresponds to the finest scale location(a = 1) for the given chain. (b) Scalogram of the
test signal. White dots correspond to maxima points that form a chain belonging to a gaussian
peak. (c) Wavelet coefficients along the chain. Maximum wavelet coefficient = 37.767 occuring
at scale a=8

Figure 3-8: (a) Test Signal. The blue line represents the test signal and the orange line orange
line corresponds to the finest scale location(a = 1) belonging to the chain. (b) Scalogram of the
test signal. White dots correspond to maxima points that form a chain belonging to noise. (c)
Wavelet coefficients along the chain. Maximum wavelet coefficient = 2.88 occuring at scale a=1
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Having performed some initial analysis, we now present existing literature pertaining to WTM
based peak detection.

3-3 Existing literature related to peak detection using WTM

Wavelet transform maxima has previously been used by Du et al.[30] for peak detection in
MS based datasample.
This short review explains the existing algorithm and emphasizes the parameters in use.

3-3-1 Wavelet parameters

1. Choice of wavelet: The first step would be to decide the wavelet function ψ(x). In
order to obtain good results, the wavelet function should match the characteristic nature
of the peaks that are present in the data sample. Therefore, the authors chose mexican
hat function (Figure (3-1)) to be the wavelet function for peak detection.

2. Choice of scales a: The next step is to decide the range for the scale parameter a that
will characterize the transform space. As wavelet functions ψa,b(x) can be seen from a
matched filtering point of view, the range is governed by prior knowledge of the peak
widths present in the signal and should be given as inputs by the user. Conservative
bounds for amin and amax are 1 and N respectively where N is the length of the signal.
The number of scales between amin and amax is also assumed as a prior input given by the
user. However, Carmona et al. [17] define that chains should be slow varying and smooth
in nature (with respect to their amplitude |W (bj , ak)|) for better characterization of the
signal. So, we assume that the number of scales between amin and amax should be high
(in the range of 20-50). Choosing high number of scales also compensates for the lack
of knowledge regarding peak widths present in the signal.

3. Translation parameter b: As the algorithm uses CWT, the translation parameter is
same as the length of the signal.

3-3-2 Algorithm

The algorithm is divided in two parts: (i) Construction of chains from the CWT space (ii)
Peak detection criteria for discriminating chains triggered due to noise from chains triggered
due to actual peaks.

3-3-3 Chain construction

Suppose the 2D CWT coefficient matrix is M x N where M is the number of scales and N
is the length of the data sample.

1. Identify the local wavelet maxima coefficients present at the coarsest scale amax. These
are the initialization points for the chains that start from the scale amax. Set the initial
gap number corresponding to the chain as 0.
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2. For every local wavelet maxima coefficient present at amax, go to scale amax−1. Search
for the nearest local maxima point (nearest with respect to the translation parameter b)
at the scale amax−1. The nearest local maxima point should be within a search radius.
The search radius is taken to be proportional to the scale and the wavelet being used.
Gregoire et al. [39] uses a search radius as 1.5aj where aj is the scale at which we are
searching for the local maxima coefficient(in this case, it would be amax−1). Remove
this local maxima point. If no local maxima is located within the search radius, increase
the gap number by 1 for that particular chain. Repeat this procedure till amin.

3. After all the chains that were initialized from the scale amax are constructed, remove
the chains which have gap numbers larger than the gap threshold.

4. Now, repeat Step 1 - Step 3 for all the local maxima points present at scale amax−1 that
were not linked in the previous step. These are the initialization points for the chains
that start from the scale amax−1. Set the initial gap number corresponding to the chain
as 0.

5. Repeat Step 1 - Step 4 until the initialization reaches the row corresponding to smallest
scale amin.

Peak Detection Criteria

After all the chains are constructed, four rules are used for separating chains originating from
mass peaks from chains originating from noise.

1. Maximum wavelet chain coefficient: The scale at which the chain has maximum
wavelet coefficient should be within a range. The idea is to use this maximum wavelet
coefficient in order to determine the peak width associated with the feature.

2. Length of chains: The length of the chain should be higher than a threshold provided
by the user.

3. SNR: The Signal-to-Noise Ratio (SNR) value should be higher than a threshold value
provided by the user. The author defines SNR as :

SNR = (Signal strength/local noise strength)

Signal strength corresponds to maximum wavelet coefficient in a chain (within a scale
range). The local noise strength of a peak is defined as the 95-percentage quantile of
the absolute CWT coefficient values at scale a = 1 within a local window.

4. Shoulder peak criteria: Shoulder peaks are small peaks that surround major peaks.
Chemically, these peaks are associated with the matrix molecules. In the wavelet space,
these peaks tend to form short chains with relatively high wavelet coefficients. Thus,
by reducing the threshold value for rule 2, these peaks can be detected. The algorithm
provides an option for this by selecting a window around the major peaks and then
reducing threshold value associated with rule 2.
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3-3-4 Parameters

Having reviewed the algorithm, we present a list of all the parameters being used as well as
their function.

1. a (range): Scales

2. Gap threshold (int): Gaps that can be tolerated in a chain.

3. Window size (int): The window that is used for searching for the local maxima while
constructing chains.

4. Scale range (int): The upper threshold on which the algorithm needs to calculate the
maxima wavelet coefficient value present in a chain

5. Length Threshold (int): Minimum length required to be considered as a chain belonging
to the feature.

6. SNR Threshold (float): Minimum SNR value to be considered as a peak.

7. Local window (int): Size of the local window used for calculation of SNR.

8. Shoulder peak window (int): Size of the window surrounding the major peak for detec-
tion of shoulder peaks.

Analysis of the parameters

Based on the functioning of the algorithm, we present our analysis and understanding of the
parameters.

1. Window size : We found this parameter is difficult to specify as a prior input given by
the user. This is because the MS spectrum is noisy in nature. Having too narrow of a
window will lead to maxima points not forming chains and having too wide of a window
will lead to formation of wavy (incorrect) chains.

2. Gap threshold : We found the gap parameter is not justified from a theoretical point of
view. Suppose, a maxima point is present at scale aj , j ϵ Z. If that maxima point is not
getting connected to any other maxima point at scale aj−1, then it means that maxima
point is characteristic to that scale aj and it should be terminated at that scale. The
use of gap in chains will lead to construction of incorrect chains. Also, the gap threshold
is dependent on the window size being used. Having a large window will lead to chains
with zero gaps but are incorrectly constructed. Having a small window size will lead to
chains with many gaps.

3. SNR : The algorithm assumes that the scale where the wavelet coefficient is maximum
in chain best represents the feature. However, this is only true for isolated features. In
MS, depending on the sample being studied, the peaks can be very close to each other.
This leads to bias (peaks begin to merge in transform space) in the maximum wavelet
coefficient present in a chain. As a result, the wavelet coefficient gets maximized at
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coarse scales which do not represent the width of the peak. In order to mitigate this
effect, the author introduces another parameter called scale range which caps the scales
being used for identification of the maxima coefficient in a chain. However, users with
no prior information about wavelet transforms or MS will find this parameter difficult
to interpret.

4. Local Window : The window size used for calculating the noise strength requires prior
knowledge about the instrument and the sample.

5. Noise Strength : In the calculation of SNR, the author estimates noise strength as 95%
quantile of absolute CWT coefficients at scale a = 1 in a local window. However, we
found that CWT coefficients tend to bias this value as they are correlated to each other
in the transform space. Also, CWT coefficients at scale a = 1 does not capture the
high frequency components which usually represents the noise in the signal. In order to
capture the high frequency component, the scale parameter a should be less than 1.

6. Shoulder peak window : This window size requires prior knowledge about the data
sample.

3-4 Existing literature regarding to thresholding of wavelet chains

Real world signals are noisy in nature and this noise gets translated to wavelet transform
space. As a result, after construction of wavelet chains, we see that there are some chains
that are triggered due to noise and some chains that are triggered due to information (in
our case, chemical peaks). Therefore, it becomes important to remove the chains that are
triggered due to noise for feature detection.
Different authors have proposed different techniques related to thresholding of wavelet chains.
We provide a brief overview of these techniques below.

3-4-1 Slope-Amplitude Histogram

Antoine et al. [7] proposed a classification method based on computing the slope and am-
plitude of the wavelet chain (in their work, they refer to chains as ’ridges’) and used it to
discriminate bright spots present on the surface of sun from cosmics in space in Extreme-
ultraviolet Imaging Telescope (EIT) images. They used isotropic wavelets for the wavelet
transform, since directions were irrelevant in this context. The method is as follows:

1. Define a ridge R as a 3D curve ( ⃗r(a), a) such that for every scale a ϵ R+, |W [f ]( ⃗r(a), a)|2
is a local maxima coefficient in transform space and r⃗ is a smooth and continuous
function of a.Here, f is the signal and W [f ]( ⃗r(a), a) refers to the wavelet transform of
the signal at scale a. The condition r⃗ is continuous and smooth function means that
the 3D curve (ridge) is smooth and does not show heavy variations as a function of a.

2. Compute the amplitude of the ridge using the following equation.

AR = lim
a→0

|W [f ](r⃗(a), a)|2 (3-25)

Essentially, this refers to the squared wavelet coefficient of the ridge as scale a → 0.

Master of Science Thesis Gautam Sinha



46 Wavelet Transforms

Figure 3-9: (a) Academic Signal (a mixture of singularities and gaussian functions). (b) Slope-
Amplitude Histogram (Logarithm of amplitude is plotted to reduce the range). (c) Discrimination
of features based on slope-amplitude histogram. Triangles point to singularities and circles point
to gaussian functions.[7]

3. Compute the slope of the ridge using the following equation.

SR = lim
a→0

d ln(|W [f ](r⃗(a), a)|2)
d ln(a) (3-26)

4. Compute these quantities for all the ridges present in the transform space.

5. Compute a 2D histogram of these two quantites to show the distribution of ridges as a
function of their slope and amplitude.

6. Use the 2D histogram to discriminate between features.

Figure (3-9) presents an academic example where the 2D histogram was used to discriminate
between simulations of impulse functions and gaussian functions.

3-4-2 Norm and length based thresholding

Donoho et al. [13] in their software package WAVELAB implement a norm and length based
thresholding of wavelet chains. The implementation is as follows:
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1. Define a threshold value for every scale, Ta = Drange||W [f ](·, a)||p. Here,||W [f ](·, a)||p
is the p-norm (default is infinity norm) of the wavelet transform of the signal f(x) at
scale a and Drange is referred as the "dynamic range" which is given as an input by
the user (parameter value should lie between 0 and 1). If any wavelet local maxima
coefficient (belonging to a chain) at scale a, is less than this threshold value Ta, then
the complete wavelet chain is removed.

2. Count the number of scales for which a chain exist. This will be referred to as the
length of the wavelet chain. If the wavelet chain does not persist an octave (in terms of
length), then the chain is considered weak and removed.

3-4-3 Bootstrap based thresholding

Carmona et al. [17] proposed a bootstrap based thresholding of wavelet local maxima coeffi-
cients in the wavelet transform space in their software package SWAVE+. The procedure is
based on learning the nature of noise in the signal and then developing a thresholding value
Ta for every scale a in the transform space. Wavelet local maxima coefficients that are below
this threshold value are then removed. The complete procedure is given below:

1. Given a signal f(x), compute the mean m(x) of the signal using a moving average
window. The default window size used in the algorithm is 8.

2. Compute n(x) = f(x) −m(x). This is a representation of noise in the signal.

3. For B = 1:128:

(a) Perform sampling with replacement of the signal n(x). Represent this signal as
p(x)

(b) Compute the wavelet transform of p(x) for every scale a.

(c) For every scale a, compute the 95th percentile wavelet coefficient in the transform
space. Store this value.

4. Average the stored values for every scale a (as every scale will have 128 values). This
will give a threshold value Ta for every scale.

5. Remove wavelet local maxima coefficients, at scale a, if it is less than this threshold
value Ta.

It is to be noted that bootstrapping assumes that no parametrization of the noise in the signal
is available. If we assume a distribution for the noise in the signal, say ∼ N(0, σ), then n(x)
can be used to compute σ. Step 3(a) is then replaced by simulation of the noise ∼ N(0, σ).
The rest of the steps remain the same.
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3-5 Research Objectives

After studying WTM and its application in MS spectrum, we present our research objectives:

1. Design of 2D wavelet function: In the previous section, we saw that the wavelet
function was tailored to the peaks present in the MS spectrum. For 2D feature detection,
our objective would be to design(or use) a wavelet function adapted to the peaks in the
IM-IMS data samples.

2. Minimize the hyperparameters used by the algorithm: Current algorithm uses
many window parameters for chain construction, calculation of local noise and detection
of shoulder peaks. All of these parameters require knowledge about the instrumentation,
data sample being studied and wavelet transform. The objective would be to completely
automate the process of chain construction.

3. Minimize the criteria for peak detection: In the previous paper [30], the au-
thor introduces three criteria for peak detection namely, maximum wavelet chain coef-
ficient, length of chains and SNR for detection of MS peaks. Our objective would be to
minimize the criteria used for peak detection.
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Chapter 4

2D Feature Detection Algorithm for
Ion Mobility Imaging Mass

Spectrometry

The proposed 2D feature algorithm can be divided into the following sections (Figure (4-1)):

1. Partitioning the data sample into overlapping sections

2. 2D CWT of each section of the data sample

3. Denoising of CWT coefficients

4. Automatic local maxima clustering and chain construction

5. Peak Detection Criteria: Effective length thresholding

In order to demonstrate the working mechanics of the algorithm, we will use a small section
of a real world data sample. Details regarding the data sample and the section are given in
Figure (4-2). In IM-IMS data, the selected test section is considered to be on the lower side
of SNR. However, this region is good for demonstration of the algorithm. Performance and
evaluation for other sections will be demonstrated in Chapter 5.

4-1 Step 1 : Partitioning of the data sample

IM-IMS instruments tend to create large data files. Mathematically, the spectral information
generated from the IM-IMS instrument can be represented in a 2D M x N matrix where M
characterizes the number of mobility bins and N represents the number of m/z bins. Usually,
the number of m/z bins is in the order of ∼200k to 400k and the number of mobility bins is
in the order of ∼6k.
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Figure 4-1: Layout of the feature detection algorithm

Figure 4-2: Test section extracted from real world IM-IMS data sample. (a) Complete mobility
information. The intensity values in the plot is obtained by summing the 2D test section along
columns. (b) 2D Test Section (c) m/z information. The intensity values in the plot is obtained
by summing the 2D test section along rows. Here, m/z values are in the range of 681-683 m/z.
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4-2 2D Continuous Wavelet Transform 51

Based on this information, we partition the 2D matrix along the m/z bins and retain the
complete mobility information in each partition. Each partition contains some overlapping
portions in order to minimize the boundary effects. We run the peak detection algorithm on
each section separately and the common peaks detected in overlapping sections are removed.

4-2 2D Continuous Wavelet Transform

’

4-2-1 Design of the wavelet function

In the previous chapter, we discussed that the wavelet function ψ(x) should resemble the
peaks present in the data sample for better characterization in terms of wavelet coefficients.
A visual analysis (Figure (4-2)) of the data sample reveals that the peaks are anisotropic
in nature. The anisotropic nature of the peak is because the information in the 2D matrix
is generated from two different sub instruments. Information on the m/z axis is governed
by the mass spectrometer which usually characterizes a peak in the range of 3-20 mass bins
(rows) whereas mobility information is governed by the resolution set by the user for the ion
mobility spectrometer and usually characterizes peaks in the range of 200-500 mobility bins
(columns). Therefore, the 2D peaks tend to appear stretched along the mobility axis.
Based on this information, we use a generalized 2D mexican hat function as our wavelet
function. The function allows us to control the width of the wavelet function along both
dimensions separately. Mathematically, generalized 2D mexican hat wavelet function can be
expressed as:

ψ(x, y) = 1
2πσxσy

(2 − (x
2

σ2
x

) − ( y
2

σ2
y

))e
−( x2

2σ2
x

)−( y2

2σ2
y

)
(4-1)

In equation (4-1), σx and σy control the width of the wavelet function along rows and columns
respectively. Details regarding the numerical implementation of the wavelet function can be
found in the works of Freeman et al. [36].

4-2-2 Normalization factor

As in the previous case, we use L1 Normalization for the wavelet function. For the given
wavelet function ψx,y, the L1 normalization factor was found to be 1/(2πσxσy) and ||ψx,y||11
was approximately equal to 1.4 for different values of σx and σy. This was numerically verified
by the following procedure:

1. Numerically implement equation (4-1) for different values of σx and σy

2. For a given wavelet function ψx,y, compute
∑
x

∑
y |ψ(x, y)|

3. Record this value for various wavelets functions having different σx and σy.

The plot for
∑
x

∑
y |ψ(x, y)| for various ψx,y with varying σx and σy is presented in Figure

(4-3).
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Figure 4-3: L1 Norm values for varying widths. The normalization factor is given as: 1/(2πσxσy).
The widths (equivalently scales) of the wavelet functions are chosen according to Table (4-1).

4-2-3 Parameters

In equation (4-1), we introduced two parameters namely σx and σy. Both of these parameters
function as the scale parameter a for different dimensions, where changing σx or σy will change
the effective support of the wavelet function without affecting it’s shape. In this section, we
define the parameter and explain the method of choosing σx and σy for our peak detection
algorithm .

1. σx (float64): The parameter governs the width of the wavelet function along rows.
In our case, rows correspond to the mobility axis. The choice of σx is based on the
minimum expected peak width along the mobility dimension. A working estimate of
this quantity would be 1% of the total mobility bins present in the data sample.

2. σy (Array[Float64]): The parameter governs the width of the wavelet function along
columns. In this case, we specify a range of values for σy based on the expected peak
widths along the m/z axis. Conservative lower bound and upper bound for σy would
be 1 and N/10 respectively, where N is the total number of mass bins present in each
section.

Explanation of parameters

It is important to understand the reason behind the datatype used for σx and σy and it’s
relation with respect to 1D case scenario demonstrated in the previous chapter.

In the 1D case scenario, wavelets can also be viewed as a set of filters of increasing widths
where a determines the width of the wavelet function. If we assume that the user has no
information about the expected peak widths in the data sample, the user can compensate
for the lack of information by selecting maximum number of widths within the conservative
bounds. However, the range, which the user supplies, should be monotonically increasing for
correct characterization of scalogram and chains.

Now, if we consider the 2D case, we have two parameters σx and σy which govern the width
of the wavelet function and are independent of each other. If we assume that the user has
no information about the expected peak widths in the data sample, then the user will need
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to supply a range for σx and σy independently. This will lead to a total number of #{σx} x
#{σy} wavelet functions and will make the algorithm computationally expensive. Also, the
monotonic nature of peak widths will be violated. For example, we take the wavelet function
ψ(x, y) generated from (σx, σy) = (2, 8) and ψ′(x, y) generated from (σ′

x, σ
′
y) = (4, 2). These

two wavelets are not monotonically related to each other as the width is increasing along
rows but decreasing along columns. This violation of monotonic nature of widths will lead to
incorrect construction of chains.

One way to work around this case, would be to map a single parameter s to (σx, σy) . For
example:

∀s ϵ R+, s 7→ (σx, σy) :=
{
σx = 4s
σy = s

(4-2)

This type of mapping can be used to preserve the monotonically increasing nature of widths.
However, in our case, the 2D data is generated from two different and fairly independent
sub-instruments. Introducing a mapping similar to equation (4-2) would mean that there is
an implicit relation between mass spectrometer and ion mobility spectrometer which is not
true.

As a result, our final choice was to fix one of the widths as a single parameter and take a range
of values for the other width. This will preserve the monotonically increasing nature of peak
width in one dimension. As peaks along the m/z axis are characterized by less number of data
points, we found that the overall 2D peak is more sensitive to m/z information. Therefore,
our final design decision was to fix σx as a single parameter given as an input by the user and
to fix σy as a range, given as an input given by the user. Experiments and results related to
choice of σx will be discussed in chapter 5 and chapter 6 respectively.

For the given chapter, the choice of σx and σy is presented in Table (4-1). These choices are
motivated based on the peaks observed in the real world IM-IMS data sample.

a σy = 0.5a σx Size of wavelet: floor[10σx] X floor[10σy]
2.0 1.0 64 640 X 10

2.3784 1.1892 64 640 X 11
2.828 1.414 64 640 X 14
3.3635 1.6817 64 640 X 16

4.0 2.0 64 640 X 20
4.7568 2.3784 64 640 X 23
5.6568 2.828 64 640 X 28
6.7271 3.3635 64 640 X 33

8.0 4.0 64 640 X 40
9.5136 4.7568 64 640 X 47
11.3137 5.656 64 640 X 56
13.454 40 64 640 X 67
16.0 8.0 64 640 X 80

Table 4-1: Scale parameters. σx and σy correspond to width of the wavelet function along rows
and columns respectively. The last column presents the size of the wavelet filter
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(a) σy = 2 (b) σy = 4

(c) σy = 8 (d) σy = 16

Figure 4-4: Different mexican hat wavelet functions obtained using equations (4-1) and Table
(4-1). The plots are obtained by computing the impulse response of the wavelet filter. In all of
the cases, σx = 64.
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4-2-4 Convolution

After deciding the width parameters, the next step would be convolution of the partitioned
section with the wavelet function. For the given algorithm, convolution is carried out in the
spatial domain. In order to minimize the boundary effects, we use edge based padding. Figure
(4-5) demonstrates the convolved product of the test section with different 2D mexican hat
wavelet functions.

4-3 Denoising of CWT coefficients

After computing the wavelet transform, the next step is denoising of CWT coefficients. As
we want to perform peak detection in the transform space (and not perform reconstruction),
we define denoising as removing (zeroing out) wavelet coefficients that originate due to the
noise in the signal. Denoising CWT coefficients has the advantage of removing wavelet local
maxima coefficients generated due to noise, thus improving the overall speed of the algorithm.
Our approach to denoising is based on Term-by-Term Hypothesis testing (significance testing)
[84] of wavelet coefficients.

4-3-1 Thresholding by hypothesis testing

In order to denoise the wavelet transform space, we need to decide which coefficients should
be kept and which coefficients should be zeroed out. This can be formulated as a binary
hypothesis test for every wavelet coefficient present in the the transform space.
Mathematically, the test can be formulated as :

H0 : wa,x,y = 0 against H1 : wa,x,y ̸= 0 (4-3)

Here, a is the scale parameter (equivalent to width parameter σy as discussed previously) and
x, y are the spatial location in the 2D plane.
The main idea for the formulation of the null hypothesis H0 is based on the observation that
regions where the data matrix is locally homogeneous will yield nearly zero-valued wavelet
coefficients.
Rejection of the null hypothesis depends on double sided p-value of each coefficient.

p = Prob(|wa,x,y| > τ |H0) + Prob(−|wa,x,y| < −τ |H0) (4-4)

In this equation, τ refers to the detection threshold.
Implementing equation (4-4) would require the knowledge of distribution of wa,x,y under the
null hypothesis H0 and numerical value of critical threshold τ .
If we assume that the coefficients have a zero mean gaussian distribution i.e.

wa,x,y ∼ N(0, σa) (4-5)

where σa is the distribution of the coefficients at scale a, then the p-value can be given as:

p = 2( 1√
2πσn

)
∫ +∞

|wσy,x,y |
e−t2/2σ2

ndt = 2(1 − Φ(|wσy ,x,y|/σn)) (4-6)
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(a) a = 2 (b) a = 4

(c) a = 8 (d) a = 16

Figure 4-5: Absolute CWT coefficients of the test section for different scale parameters a
(equivalent to width parameter σy).
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where Φ is the standard normal cumulative distribution function.

Now given a Type 1 error level, α. Here, type 1 error is the probability of rejecting the null
hypothesis when the null hypothesis holds true and α is the risk of committing of the error.
If p > α, then the null hypothesis H0 is not excluded, i.e. the value of the coefficient could
be due to noise. However, if p ≤ α then the coefficient is likely not generated due to noise
and hence the null hypothesis H0 is rejected.

In equation (4-6), we define critical threshold τ as:

τ = Φ−1(1 − α/2) (4-7)

Using (4-6) and (4-7), we get:

|wσx,x,y| ≥ τσn wσx,x,y is significant
|wσx,x,y| < τσn wσx,x,y is insignificant

(4-8)

Choosing τ = 3, corresponds to α = 0.002.

Based on equation (4-8), the thresholding policy for wavelet coefficients at scale a is given as:

w(a, x, y) =
{

0 if w(a, x, y) < 3σa
w(a, x, y) if w(a, x, y) ≥ 3σa

(4-9)

This equation retains only positive significant coefficients. The negative coefficients corre-
spond to locations which are out of phase with the wavelet function and are thus removed.

4-3-2 Noise level estimation

The final step before using equation (4-9) as the threshold policy would be to estimate σa.
We estimate σa with the following relation:

σa = σ2Dσ
0,1
a (4-10)

Here, σ2D corresponds to standard deviation of the noise in the 2D data and σ0,1
a is the

standard deviation of the wavelet transform of zero mean white noise with variance = 1 at
scale a.

We observe that there are two terms that requires to be estimated in order to calculate σa.
The second σ0,1

a term is obtained by the following procedure:

1. Simulate zero mean white noise with variance = 1.

2. Compute the wavelet transform using scale parameter a.

3. Compute the standard deviation of the wavelet coefficients obtained in step 2.
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Figure 4-6: Standard Deviation of wavelet transform of Zero mean white noise with variance =
1 for different scales a.

Figure 4-7: Layout of the denoising pipeline at a given scale a in the feature detection algorithm.

The results for the second term, corresponding to the scales considered in equation is displayed
in Figure (4-6).

We estimate the first term σ2D using DWT [28]. The estimate of σ2D using DWT is given as:

σ̂2D = M.A.D(w1)/0.6745 = median(|w1 −median(w1)|)/0.6745 (4-11)

where M.A.D. stands for median absolute deviation, w1 corresponds to DWT coefficients
obtained at the finest scale using orthogonal wavelet functions and 0.6745 is a correction
factor specific to gaussian distribution. For 2D data, the estimator is applied at the diagonal
sub-band of the finest scale.

4-3-3 Overall Pipeline

Having discussed the specifics of the denoising algorithm, we now present the complete
pipeline for denoising of CWT coefficients for a single scale (a). The pipeline can be ex-
tended to all values of a independently.

The results of denoising on the test section is presented in Figure (4-8). Figure (4-9) presents
the fraction of wavelet coefficients retained at each scale a after denoising.
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(a) a = 2 (b) a = 4

(c) a = 8 (d) a = 16

Figure 4-8: Denoised wavelet coefficients of the test section at different scales.

Figure 4-9: Fraction of wavelet coefficients retained after denoising for different scales. The
fraction is obtained by : (No.of non-zero wavelet coefficients at scale a/ No. of absolute no-zero
wavelet coefficients before denoising at scale a)
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4-4 Automatic Local maxima clustering and chain construction

The implementation of this idea is adapted from the works of Bijaoui et al. [10]. After
denoising, the next step is to identify and connect local maxima coefficients that are related
to each other in transform space. This procedure can be broken down into three sections:

1. Local maxima detection - Local maxima coefficients are identified at every scale a.

2. Automatic local maxima clustering - This section is required to account for shoul-
der peaks contained in the data sample. Shoulder peaks typically exist surrounding
dominant peaks, forming short chains around long chains (which corresponds to domi-
nant peaks). Therefore, we first cluster local maxima coefficients across transform space.
Every cluster will lead to formation of at least one chain.

3. Chain construction- After clustering the local maxima coefficients, we construct
chains based on some optimization criteria.

4-4-1 Local maxima detection

We define a local maxima at any scale a as a point whose coefficient value is strictly greater
than the coefficient values of it’s surrounding eight point neighbourhood. In our algorithm,
we ignore the local maxima coefficients that exist at the border of the partitioned data i.e
points that have less than eight point neighbourhood are not candidates for local maxima
coefficients.

After defining the local maxima point, we detect local maxima coefficients at every scale a.
Figure (4-10) displays the detected local maximas in the denoised wavelet transform of the
test section at scale for different scales.

4-4-2 Automatic local maxima clustering

Next step is to cluster local maxima points that are related to each other in transform space.
Mathematically, if there exists a local maxima coefficient at position bloc and scale a repre-
sented as W (bloc, a), then the objective is to identify local maxima coefficients at scale a− 1
that are related to the coefficient W (bloc, a) (Note that in this step, there could be more than
one local maxima coefficient related to W (bloc, a)).

Gregoire et al. [39] specify a window around the position bloc to capture local maxima points
present at scale a−1. This window is based on the prior knowledge of the wavelet being used
and the scale being investigated. However, this window was found to be restrictive and it did
not take the behaviour of the data or the behaviour of surrounding wavelet coefficients into
account.

Thus, in order to make this procedure data driven, we use watershed segmentation [81] to
establish a region of influence around the local maxima point. Starting from user-defined
markers, the watershed algorithm treats bin values as a local topography (elevation). The
algorithm floods basins from the markers until basins attributed to different markers meet on
watershed lines.

Gautam Sinha Master of Science Thesis



4-4 Automatic Local maxima clustering and chain construction 61

(a) a = 2 (b) a = 4

(c) a = 8 (d) a = 16

Figure 4-10: Detected local maxima coefficients present in the denoised wavelet coefficients of
test section at different scales a. White dots represent the local maximas at each scale.

Master of Science Thesis Gautam Sinha



62 2D Feature Detection Algorithm for Ion Mobility Imaging Mass Spectrometry

(a) a = 2 (b) a = 4

(c) a = 8 (d) a = 16

Figure 4-11: Watershed segmentation of denoised wavelet coefficients at different scales a.
White dots represent the local maximas detected at this scale. Each local maxima is associated
with its region of influence.
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In our case, we define markers as the local maxima coefficients that are present on a scale
a. Thus, using watershed segmentation, we are able to characterize a region of influence
around a given local maxima point. This region of influence will act as the search window to
look for local maxima points present at scale a−1. Figure (4-11) demonstrates the watershed
segmentation performed on the denoised wavelet transform of the test section at dyadic scales.

Implementation of local maxima clustering

1. Initialize from the coarsest scale amax, set a′ = amax.

2. For every local maxima point at scale a′ (Note that this will give us clusters that start
from a′ = amax):

(a) Set search radius = Region of influence corresponding to the local maxima point.
(b) Identify all local maxima points in a′ − 1 that belong in the search radius. These

local maxima points are now part of the cluster.
(c) Modify the search radius. New search radius = Region of influence corresponding

to local maxima point at scale a′ + Region of influence corresponding to local
maxima point at scale a′ − 1.

(d) Remove the local maxima points that got detected at scale a′ − 1.
(e) Go to scale a′ − 2 and repeat till a′ = amin.

3. Set a′ to a′ − 1 and repeat till amin (This will give us clusters that are initialized from
a′ = amax−1).

Figure (4-12) gives a pictorial representation of the algorithm.

Denoising Clusters

After the clustering operation is completed, we remove clusters that have a length of one.
Clusters having a length of one means that there is only one local maxima point in that
cluster. This local maxima point was not able to find other local maxima points at coarser or
finer scales and therefore no chains can be constructed in this cluster. This means that the
local maxima point is specific to that scale. We attribute this type of local maxima point to
noise and therefore remove them.

4-4-3 Chain construction

The final step after clustering is chain construction. The process of chain construction is
similar to clustering operation described above. A key difference is that a local maxima point
at scale a will get linked to only one local maxima point at scale a − 1. This local maxima
point should be closest (in terms of position parameter b) to the previous local maxima point
and should be within the region of influence of the previous local maxima point. Also, chain
construction is done within a cluster i.e. local maxima points that are candidates for chain
construction should belong to the same cluster.
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Figure 4-12: Visual demonstration of the local maxima clustering algorithm. (a) Cluster ini-
tialized by a local maxima coefficient at scale a. (b) Search radius defined for detecting local
maxima coefficients at scale a− 1. The search radius = Region of influence associated with local
maxima coefficient at scale a (c) Local maxima coefficients detected at scale a− 1. These local
maxima coefficients lie within the search radius defined earlier and are linked to the initialized
cluster. After linking, they are removed. (d) Modified search radius. The search radius now
includes regions of influence associated with local maxima coefficients detected at scale a−1. (e)
Local maxima detected at scale a − 2. The local maxima coefficients that lie within the search
radius belong to the initialized cluster and are linked and removed. This process continues till
scale amin is reached. The local maxima coefficient that lie outside the search radius will not be
linked. Instead, they will initialize a new cluster from scale a− 2 and the process from step(a) to
step(e) will be repeated.
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Figure 4-13: Pictorial demonstration of the chain construction algorithm. The chain construction
takes place within a cluster (marked with a circle). The black arrows represent a chain. The dashed
red lines represent potential local maxima coefficients that were rejected based on the distance
criteria. (a) Chain initialized by a local maxima coefficient at scale a. (b) Search radius defined
for detecting local maxima coefficients at scale a − 1. The search radius = Region of influence
associated with local maxima coefficient at scale a (c) Local maxima coefficients detected at
scale a − 1. These local maxima coefficients lie within the search radius defined earlier. The
closest local maxima coefficient (in terms of position parameter b) gets linked and removed. This
is indicated with a black arrow. The remaining local maxima coefficient will initiate a new chain
from scale a− 1 (d) Modified search radius. New search radius = region of influence associated
with local maxima coefficient linked at scale a − 1. (e) Local maxima coefficients detected at
scale a− 2. The closest maxima point that was within the search radius defined in (d) was linked
and removed (marked with black arrow). This process continues till scale amin is reached.

Implementation of Chain Construction

1. Initialize from the coarsest scale in a cluster amax, set a′ = amax−cluster.

2. For every local maxima point at scale a′(Note that this will give us clusters that start
from a′ = amax−cluster):

(a) Set search radius = Region of influence corresponding to the local maxima point.
(b) Identify all local maxima points in a′ − 1 that belong in the search radius. The

closest local maxima point gets linked.
(c) Modify the search radius. New search radius = Region of influence corresponding

to local maxima point at scale a′ − 1.
(d) Remove the local maxima point that got linked at scale a′ − 1.
(e) Go to scale a′ − 2 and repeat till a′ = amin−cluster

3. Set a′ to a′ − 1 and repeat till amin−cluster (This will give us clusters that are initialized
from a′ = amax−cluster−1).

Figure (4-13) gives a pictorial representation of the algorithm.
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4-5 Peak detection criteria : Effective length thresholding

After construction of chains, the final task is to separate chains that are triggered due to
noise from chains that are triggered due to chemical peaks. In the literature, we found
that thresholding of wavelet chain can be done based on their length, magnitude of wavelet
coefficient (belonging to a chain) at the the finest scale or the wavelet chain energy (refer
Section 3-4). We wanted to define a single parameter that combines all of the above three
criteria. For this, we define a parameter called effective length. Effective length represents
the number of scales at which the local maxima coefficients (belonging to a chain) are greater
than the surrounding noise level. The algorithm takes user defined threshold length as input
and if the effective length of a given chain is greater than the threshold length, the chain is
likely triggered due to a chemical peak.

The procedure for calculating effective length can be broadly broken down into three steps:

1. Assuming gaussian distribution of local noise, calculate the noise parameter σlocal from
the local surrounding of the local maxima wavelet coefficient belonging to a chain.

2. Simulate the wavelet transform of σlocal for all scales a. Generate a threshold value
using the transform space.

3. If the local maxima coefficient of a chain generated by the data at scale a is greater
than the the local maxima coefficient generated by the wavelet transform of σlocal at
scale a, then effective length+=1.

We present the details about the parameters involved in each of the mentioned steps:

4-5-1 Calculation of σlocal

σlocal refers to the standard deviation noise parameter corresponding to the local surrounding
of the wavelet local maxima point. We define the local surrounding as the column or the
row corresponding to the local maxima point. Based on our definition of the 2D matrix, the
column would correspond to the mobility information for a particular m/z value and the row
would correspond to the m/z information (within the partitioned data sample) for a particular
mobility bin value.

The steps for calculating σlocal are:

1. For every wavelet local maxima point in a chain, extract the column and the row,
corresponding to the local maximum point, in the data sample.

2. Compute the standard deviation parameter for the row and column independently, using
DWT. Label them as σm/z and σmobility.

3. If σm/z > σmobility, σlocal = 2σm/z else σlocal = σmobility.
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Explanation for σlocal

It is important to understand the choice of σlocal with respect to the given data sample. The
2D IM-MS data sample is in continuous profile mode. As a result, the observed peaks have
significant width along both the dimensions. In order to account for the nature of continuous
profile data, we consider noise both in the horizontal direction and vertical direction of the
local maxima point. Also, often it is observed that peaks with high signal to noise ratio are
very broad with widths in the range of 80-120 m/z bins. If the width of the peak (along m/z
direction) is greater than the width of the largest wavelet function then the algorithm will
detect several false peaks that lie on the surface of the main peak. In order to minimize this
effect, we put a penalty factor of 2 in the horizontal direction of noise.

4-5-2 Translation of the detection level to wavelet transform space

After the local noise level has been established, the next step would be to translate the noise
level to the wavelet transform space. This translation needs to be adapted to the quantity
being studied which are local maxima points. An additional requirement would be that the
translation should generate a significant threshold value so that local maxima points that lie
on the surface of the peaks can be removed effectively. Based on these criteria, we decided that
the threshold level will be governed by the maximum of local maxima points of the wavelet
transform of the local noise level σlocal. However, this procedure will become expensive as
the behaviour of σlocal will vary for every local maxima point based on its location in the
partitioned data sample. In order to simplify the procedure, we develop a relation similar to
the one developed in the denoising procedure of wavelet coefficients. The complete procedure
is as follows:

1. Generate a simulation of zero mean gaussian noise with variance = 1.

2. For every scale a

(a) For B = 1:50
i. Simulate zero mean white noise with variance = 1.
ii. Compute the wavelet transform(corresponding to scale a).
iii. Identify the maximum of the local maxima points in the transform space.
iv. Store the value.

(b) After the cycle is complete, we will have 50 values corresponding to the maximum
value generated from the simulation.

(c) Compute the average of the values. This will give the average maximum of the
local maxima coefficients generated due to wavelet transform of the zero mean
white noise with variance = 1 at scale a. This value can be denoted as Ma.

(d) The contribution of local noise at scale a can now be given as:Ta,local = σlocalMa.

Steps (i) - (iv) can be implemented separately. Essentially, the maximum of local maxima
coefficients at scale a is not a stable statistic i.e. it varies with every simulation. As a result,
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Figure 4-14: Layout of the pipeline for calculation of Ta,local. The quantity Ma can be deter-
mined independently.

we used multiple simulations followed by averaging in order obtain a stable representation of
this quantity. Experiments related to the equation used in step(d) are given in Chapter 5.

The complete pipeline for deriving the threshold value Ta,local for a wavelet local maxima
coefficient is given in Figure (4-14)

4-5-3 Effective length threshold

Once we have established the threshold value generated due to local noise at scale a, we
compare it with the local maxima coefficient belonging to a chain at scale a. If the latter
quantity is higher than the former, we say that at scale a, the local maxima point is dominant.
Else, the local noise is dominant at scale a. We perform this comparison for all the scales for
which the chain exists and record the number of scales at which the local maxima coefficient
is dominant. If this quantity is greater than a threshold length (given by the user), we say
that the chain is triggered due to a chemical peak.

Figure (4-15) presents the results with varying effective threshold length for the test section.

4-6 Parameters

Having presented the functioning of the algorithm, we provide a brief overview of the param-
eters, with their description, used in the algorithm is presented below.

In the next chapter, we will perform experiments related to these parameters in order to
understand their impact on the performance of the algorithm and to gain some working
knowledge about the optimal values of these parameters.
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(a) Effective length threshold = 8. Total
number of detected peaks = 17

(b) Effective length threshold = 4. Total
number of detected peaks = 31

(c) Effective length threshold = 2. Total
number of detected peaks = 43

Figure 4-15: Detected peaks(white dots) using different effective length threshold for the given
test section.
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1. σx - Describes the width of the wavelet function (along rows). The parameter is based
on the minimum width of the peak in the mobility dimension. Default value = 64 (1%
of the mobility dimension).

2. σy = 0.5a - Describes the widths of the wavelet function (along columns). The param-
eters is based on the possible widths of peaks along the m/z dimension and therefore
takes a range of values as input. Default value = Dyadic values starting from 1 to 8
with three voices per octave.

3. Effective length threshold - Parameter that thresholds the wavelet chains con-
structed in transform space. Default value = 4.

4. Number of noise simulations - Hyperparameter that controls the number of noise
simulations required for calculating Tlocal,a. Default value is 50.

5. Penalty Factor - Hyperparameter that is used in calculation of σlocal. Default value
= 2.
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Chapter 5

Performance evaluation of the
algorithm

Having discussed the functioning of the algorithm in the previous chapter, we will now eval-
uate the performance of the algorithm by conducting various experiments. First, we will
evaluate the parameters that are being estimated by the algorithm. Next, we will evaluate
the performance of the algorithm based on the parameters that are given as inputs by the
user. This will help us to establish some working knowledge about the input parameters and
their overall impact on the algorithm. Using this knowledge, the final evaluation will be to
compare the designed algorithm with an existing feature detection algorithm.

The chapter is divided into four major experiments:

1. Experiment 1 - Denoising CWT coefficients

(a) Evaluate the performance of the estimator σ̂2D obtained using DWT.
(b) Evaluate the equation: σa = σ2Dσ

0,1
a

2. Experiment 2 - Effective length threshold parameter

(a) Evaluate the equation: Ta,local = σlocalMa

(b) Evaluate the performance of the algorithm by varying the effective length threshold
parameter for the synthetic IM-IMS data sample.

(c) Evaluate the performance of the algorithm by varying the effective length threshold
parameter for the real world IM-IMS data sample.

(d) Evaluate the penalty factor used in estimating σlocal for the real world IM-IMS
data sample.

Master of Science Thesis Gautam Sinha



72 Performance evaluation of the algorithm

3. Experiment 3 - Scale parameter

(a) Evaluate the performance of the algorithm by varying σx on a synthetic IM-IMS
data sample.

(b) Evaluate the performance of the algorithm by varying σx on a real world IM-IMS
data sample.

4. Experiment 4 - Compare the performance of the designed algorithm with
an existing peak detection algorithm.

5-1 Data samples

Before we begin the performance evaluation of the algorithm, we present a brief description
of the data samples being used for this evaluation.

5-1-1 Real world data sample

Real world IM-IMS data sample

The first IM-IMS data sample we will be using is obtained from a cross section of a mouse
kidney tissue. In the data sample, the m/z values range from 600-950 and the number of
mobility bins is 5857. The total size of the 2D matrix is 80049 x 5857. Details about the
sample preparation and the instrument used can be found in [83].

For the evaluation of the algorithm, we will use small sections of this data sample partitioned
along the m/z axis. Each of these partitioned sections are different from one another in a
quantitative and qualitative manner.

Based on our observations, we briefly highlight some of the properties of the selected sections.
It is important to note that we refer to these sections by their m/z range. This is because we
retain the complete mobility information associated with the m/z range i.e no. of columns =
5857 for all partitions.

1. 670-672 m/z - Low SNR with scattered peaks

2. 704-706 m/z - High SNR with broad peaks.

3. 770 - 772 m/z - High SNR with overlapping peaks.

4. 920 - 922m/z - Moderate SNR with narrow peaks widths.

Figure (5-1) presents a visual representation of the partitioned 2D data matrices.
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(a) 670-672 m/z (b) 704-706 m/z

(c) 770-772 m/z (d) 920-922 m/z

Figure 5-1: Different sections of the real world 2D IM-IMS data sample. The sections are
obtained by partitioning the data sample along the m/z axis. The mobility dimension is completely
preserved in all of these sections i.e. no. of columns in the 2D matrix = 5857 for all the partitioned
sections.
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5-1-2 Synthetic data samples

Synthetic IM-IMS data sample

Our synthetic data sample is modelled and developed based on our observations of the real
world data sample. The procedure used for developing this synthetic data sample is briefly
described below.

1. We select a small range of 207-212 m/z. We set the resolution of the m/z instrument
equal to 65000. In Time of Flight (ToF) instruments, the sampling interval linearly
increases as the m/z value increases. This information combined with the resolution
gave a total of 1500 m/z bins (data points) for the selected range of m/z values.

2. Based on the range of the m/z values, we select chemical compounds that will be used in
the data sample. These compounds were selected using the online molecular database
[69].

3. We insert isotopes (with their relative intensities) related to every chemical compounds
in the data sample. This is done using the python package Molmass. Given a chemical
compound, Molmass computes the possible isotopes of that chemical compound as well
as the relative percentage of these isotopes.

4. For every chemical compound:

(a) We model the m/z peak. For the m/z peaks, we use pseudo-voigt function [23] as
our template. Psedo-voigt function is defined as the sum of a gaussian function
and a lorentzian function with a weighing parameter η which shifts the function
profile towards gaussian function or lorentzian function. The equation is given as:

pV (x) = I.[η( 1
σ

√
2π

)e− (x−xo)2

2σ2 + (1 − η) 1
π

Γ
2

(x− xo)2 + (Γ/2)2 ] (5-1)

where x0 describes the peak location, I is the shared intensity , η is the weighing
parameter controlling the behaviour of the peak function and Γ is the full width half
maximum parameter shared between gausssian function and lorentzian function.
We implement this function using the python package Hyperspy.

(b) After modelling the m/z peak, we model the mobility peaks associated with the
m/z peak. Our observation suggested that mobility peaks tend to be of gaussian
shape with extended tails. As a result, the mobility peaks are modelled using skew
normal distribution function. This function has a parameter α which controls the
skew of the normal distribution function. Mathematically, this function can be
represented as :

f(x) = ϕ(x)Φ(αx) (5-2)

where ϕ(x) = e− x2
2 /

√
2π and Φ(αx) =

∫ αx
−∞ ϕ(t)dt. Positive value of α causes

the distribution function to skew towards right and negative value of α causes the
distribution function to skew towards left. Magnitude of the α controls the degree
of skew.
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(a) Synthetic data sample (without
noise)

(b) Synthetic data sample (with noise).
Noise parameters (0,100)

Figure 5-2: Synthetic data sample. M/z range: 208 m/z-212 m/z. Mobility bins: 6000. White
dots mark the true peaks associated with chemical compounds.

The number of mobility peaks, associated with an m/z peak, is randomized between
2 and 5. It is more important to note that this randomization does not mimic the
actual mobility information associated with the molecule and is mostly used for
introducing variation while modelling the synthetic data sample.

(c) After modelling the peaks in both the dimensions, we compute the outer product
of the mobility peaks and m/z peak.

5. After all the 2D peaks have been modelled, we add zero mean white noise with param-
eters ∼ N(0, 100) to the 2D matrix. Adding gaussian white noise may lead to negative
values in the 2D matrix. These values are zeroed out.

Figure (5-2) presents the smooth and noisy synthetic data sample with marked peaks.

Synthetic Image data sample

In the last step of design of 2D IM-IMS data sample, we zeroed out the negative values which
may occur due to additive gaussian noise. This skews the noise parameter σ to a different
value and therefore cannot be used for estimation of σ2D. As a result, we use a different
2D data where we do not zero out the negative values. Figure (5-3) presents the sample 2D
image data which will be used for our experiment of estimation of the noise parameter σ. We
use this image because it has natural high frequency components (water droplets) and low
frequency components (background forest, mountains,sky) which can impact the estimation
of the noise parameter σ2D.
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Figure 5-3: 2D Image - Happy elephant

5-2 Experiment 1 - Denoising CWT coefficients

The experiments in this section are related to section (4-3). The quantities being studied are:
σ̂2D and σa from equation (4-10).

5-2-1 Experiment 1.1 - Estimation of standard deviation parameter σ2D of gaus-
sian white noise

Methodology

For this experiment, we use Figure (5-3) as our reference 2D image and add gaussian noise
to this image. After this we evaluate the average performance of the estimator and compute
it’s bias and variance. The procedure is as follows:

1. For a given σ2D

2. For B = 1:100 :

(a) Add gaussian noise σ2D to this image.
(b) Compute the estimate σ̂2D using DWT.
(c) Store the value.

3. Average the stored values. This will give E[σ̂2D].

4. Compute the bias: σ2D − E[σ̂2D].

5. Using the stored values, compute the variance of the estimator: V ar(σ̂2D).

6. Repeat the procedure for varying σ2D.
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Results

σ2D E[σ̂2D] |σ2D − E[σ̂2D]| V ar(σ̂2D)
0 0.5311 0.5311 1.232e-32
7 7.8831 0.8831 0.00037
21 21.5829 0.5829 0.0031
64 64.1515 0.1515 0.0313
120 119.960 0.0391 0.1060
254 253.640 0.3591 0.4822

Table 5-1: Results for experiment 1.1 with varying noise parameter ∼ (0, σ2D). E[σ̂2D] is the
estimated σ2D averaged over 100 simulations. The last two columns represent the bias and the
variance of the estimator.

Discussion

Before we begin our analysis, we highlight the following equation. Given a signal with zero
mean additive gaussian noise.

y(x) = f(x) + e(x) ....e(x) ∼ N(0, σ2D) (5-3)

The wavelet transform of y(x) can be represented as:

W (y(x)) = W (f(x)) +W (e(x)) (5-4)

1. When the signal is smooth, i.e. y(x) = f(x), then the estimate computes the M.A.D.
of the high frequency wavelet coefficients inherent to the image. This introduces a bias
in the estimate.

2. This bias has an impact at lower values of σ2D (σ2D = 0 to 7). Mathematically, the
contribution of second term in R.H.S. of equation (5-4) is negligible compared to the first
term. So the estimator remains skewed towards the high frequency components inherent
to the image. The lower variance values further establishes the negligible impact of noise
to the image

3. As σ2D (σ2D = 21 to 120) increases, the contribution of the second term in the RHS
of equation (5-4) starts dominating the first term i.e. more wavelet coefficients (at the
finest scale) start demonstrating noisy behaviour. Now the estimator starts to capture
the behaviour of noise present in the image. As a result, the bias starts to decrease.

4. At higher values of σ2D the variance of the estimator starts to increase. This is because
every simulation of noise has a strong (and different) impact on the image which leads
to variation in the estimate.

5. Overall, the estimator is robust. We found that the bias of the estimator was always
less than 1 from the true values.
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5-2-2 Experiment 1.2 - Estimation of σa using the equation: σa = σ2Dσ0,1
a

In this experiment, we evaluate the equation:

σa = σ2Dσ
0,1
a (5-5)

where σa stands for standard deviation of wavelet coefficients at scale a, σ2D refers to the
standard deviation of the noise in the 2D data and σ0,1

a is the standard deviation of wavelet
transform of zero mean white noise, with standard deviation equal to 1, at scale a.

The motivation of this experiment is to validate the performance of the equation so that
parameter σ2D (or ˆσ2D) gets correctly translated to wavelet transform space. This translation
varies depending on the wavelet function and the scale being used.

Methodology

For our experiment, we use generalized 2D mexican hat as our wavelet function. The scale
parameters used in this experiment is given in Table (5-2). This choice is based on our
observations regarding the size of peaks that are present in the data sample. The procedure
for evaluating the equation is as follows:

1. Given: scale a, noise parameter ∼ N(0, σ2D)

2. Simulate zero mean white noise with variance equal to σ2D. The size of the 2D matrix,
for the simulation, is chosen as 4096 x 4096. This is to mitigate any possible boundary
effects.

3. Compute the wavelet transform of this simulation at scale a.

4. Compute the standard deviation of the transform coefficients. This will give σ̃a (we
use a different notation for this term to differentiate between the value computed using
simulation and the value computed using the equation).

5. Store the value

6. Compute σa by using the equation (5-5).

7. Compare the two values obtained in Step 6 and Step 4.

8. Repeat the steps for different values of a.

9. Repeat the experiment for different values of σ2D.
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a σy = 0.5a σx Size of wavelet: floor[10σx] X floor[10σy]
2.0 1.0 64 640 X 10

2.3784 1.1892 64 640 X 11
2.828 1.414 64 640 X 14
3.3635 1.6817 64 640 X 16

4.0 2.0 64 640 X 20
4.7568 2.3784 64 640 X 23
5.6568 2.828 64 640 X 28
6.7271 3.3635 64 640 X 33

8.0 4.0 64 640 X 40
9.5136 4.7568 64 640 X 47
11.3137 5.656 64 640 X 56
13.454 40 64 640 X 67
16.0 8.0 64 640 X 80

Table 5-2: Scale parameters. σx and σy correspond to width of the wavelet function along rows
and columns respectively. The last column presents the size of the wavelet functions

Results

a σ̃a σa = σ2Dσ
0,1
a

2.0 0.5485 0.5450
2.3784 0.5110 0.5084
2.828 0.4747 0.4728
3.3635 0.4402 0.4377

4.0 0.4077 0.4036
4.7568 0.3772 0.3714
5.6568 0.3483 0.3414
6.7271 0.3210 0.3139

8.0 0.2955 0.2890
9.5136 0.2718 0.2664
11.3137 0.2500 0.2458
13.454 0.2298 0.2264
16.0 0.2112 0.2081

Table 5-3: Results for experiment 1.2 with σ2D = 10. a correspond to scale parameter of the
wavelet function. σ̃a is the standard deviation of the wavelet coefficients corresponding to scale a
computed using simulation. The last column is the standard deviation of the wavelet coefficients
at scale a using equation (5-5).
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a σ̃a σa = σ2Dσ
0,1
a

2.0 2.711 2.7225
2.3784 2.527 2.538
2.828 2.3491 2.3590
3.3635 2.1758 2.1850

4.0 2.0102 2.0179
4.7568 1.8538 1.8586
5.6568 1.7075 1.7083
6.7271 1.5717 1.5679

8.0 1.4458 1.4390
9.5136 1.3290 1.3226
11.3137 1.2206 1.2176
13.454 1.1219 1.1207
16.0 1.0342 1.0293

Table 5-4: Results for experiment 1.2 with σ2D = 50. a correspond to scale parameter of the
wavelet function. σ̃a is the standard deviation of the wavelet coefficients corresponding to scale a
computed using simulation. The last column is the standard deviation of the wavelet coefficients
at scale a using the equation (5-5).

a σ̃a σa = σ2Dσ
0,1
a

2.0 8.2318 8.1633
2.3784 7.6695 7.6039
2.828 7.1152 7.0619
3.3635 6.5737 6.5403

4.0 6.0568 6.0467
4.7568 5.5712 5.5848
5.6568 5.1167 5.1505
6.7271 4.6910 4.7383

8.0 4.2975 4.3512
9.5136 3.9411 3.9958
11.3137 3.6198 3.6717
13.454 3.3267 3.3747
16.0 3.0552 3.1035

Table 5-5: Results for experiment 1.2 with σ2D = 150. a corresponds to scale parameter of the
wavelet function. σ̃a is the standard deviation of the wavelet transform of noise corresponding
to scale a computed using simulation. The last column is the standard deviation of the wavelet
coefficients at scale a using the equation (5-5).

Discussion

1. The equation produces a robust estimate of σa. The values obtained by the equation
were able to approximate the values obtained by the simulation for all scales a and for
varying σ2D.
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5-3 Experiment 2 - Effective length based thresholding

The experiments in this section are related to effective length based thresholding. We evaluate
the performance of the parameters (both estimated and user-driven) related to this quantity.
See Section 4-5 for further details.

5-3-1 Experiment 2.1 : Evaluation of the equation Ta,local = σlocalMa

For this experiment, we will evaluate the performance of the equation:

Ta,local = σlocalMa (5-6)

Here, Ta,local is the threshold level at scale a. This threshold level is defined as the maximum
local maxima that is generated due to wavelet transform of local noise (with the assumption
that the local noise has a gaussian distribution with parameters ∼ N(0, σlocal) at scale a.
The parameter Ma is the average of maximum local maxima that is generated by the wavelet
transform of zero mean white noise with variance = 1 at scale a (number of simulations used
for averaging = 50). Equation (5-6) is similar to equation (5-5) except that in this case, Ma

is obtained by averaging a number of simulations to get the desired quantity. This averaging
is motivated as the maximum local maxima generated due to wavelet transform of noise
is not a stable statistic i.e. different simulations of wavelet transform of noise (with same
distributions) can result in different values of maximum local maxima.

Methodology

In order to evaluate the performance of the given equation, we simulate noise with different
noise parameters and assess how the equation performs in these scenarios.

For the given experiment, we use generalized 2D mexican hat function as our wavelet function.
The scale parameters used in this experiment is given in Table (5-2). The procedure for
evaluation is as follows:

1. Given: scale a, local noise parameter ∼ N(0, σlocal)

2. For B = 1:100 :

(a) Simulate zero mean white noise with variance equal to σlocal. The size of the
2D matrix, for the simulation, is chosen as 2048 x 2048. This is to mitigate the
boundary effects. Note that this size is different from 4096 x 4096 which was used
in experiment 1.2. This is to reduce the computation cost of the experiment (as we
are running it 100 times). A rule of thumb is that as long as the size of simulation
is greater than twice the size of the largest wavelet function (in this it will be 640
x 80), it can be used for simulation.

(b) Compute the wavelet transform of this simulation for scale a.
(c) Identify all the local maxima wavelet coefficients and select the one with the max-

imum value.
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(d) Store the selected coefficient.

3. Average the selected coefficients. This will give the average maximum local maxima
generated due to wavelet transform of noise at scale a. We will refer to this quantity
as T̃a,local (we use a different notation for this term to differentiate between the value
computed using simulation and the value computed using the equation).

4. Compute Ta,local using the equation (5-6).

5. Compare the values obtained in Step 3 and Step 4.

6. Repeat the steps for different values of a.

7. Repeat the experiment for different values of σlocal.

Results

a T̃a,local Ta,local = σlocalMa

2.0 7.1775 7.1864
2.3784 6.7035 6.5958
2.828 6.2405 6.2222
3.3635 5.7437 5.7354

4.0 5.2829 5.3081
4.7568 4.8117 4.9500
5.6568 4.4353 4.4292
6.7271 4.0562 3.9378

8.0 3.6405 3.6492
9.5136 3.2777 3.2271
11.3137 3.0061 2.8673
13.454 2.6731 2.7235
16.0 2.4091 2.3211

Table 5-6: Results for experiment 2.1 with noise parameter ∼ σlocal = 10. a corresponds to
scale parameter of the wavelet function. T̃a,local is the threshold level which is defined average
maximum local maxima of the wavelet transform of noise corresponding to scale a (obtained using
simulation). Ta,local is the threshold level obtained using equation (5-6).
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Figure 5-4: Results for experiment 2.1: Magnitude of maximum local maxima coefficients at
different scales. Noise parameters ∼(0,10). The yellow lines show the maximum local maxima
obtained at different scale a for 50 simulations. The red line is the average of the values obtained
using simulation for different scales a (T̃a,local). The blue line represents the theoretical value
Ta,local obtained using equation (5-6).

Figure 5-5: Results for experiment 2.1: Magnitude of maximum local maxima coefficients at
different scales. Noise parameters ∼(0,50). The yellow lines show the maximum local maxima
obtained at different scale a for 50 simulations. The red line is the average of the values obtained
using simulation for different scales a (T̃a,local). The blue line represents the theoretical value
Ta,local obtained using equation (5-6).
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Figure 5-6: Results for experiment 2.1: Magnitude of maximum local maxima coefficients at
different scales. Noise parameters ∼(0,150). The yellow lines show the maximum local maxima
obtained at different scale a for 50 simulations. The red line is the average of the values obtained
using simulation for different scales a (T̃a,local). The blue line represents the theoretical value
Ta,local obtained using equation (5-6).

Figure 5-7: Experiment 2.1: Magnitude of maximum local maxima coefficients at different
scales. Noise parameters ∼(0,500). The yellow lines show the maximum local maxima obtained
at different scale a for 50 simulations. The red line is the average of the values obtained using
simulation for different scales a (T̃a,local). The blue line represents the theoretical value Ta,local

obtained using equation (5-6).
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a T̃a,local Ta,local = σlocalMa

2.0 36.0283 35.9323
2.3784 34.2775 32.9790
2.828 32.0075 31.1113
3.3635 29.3288 28.6773

4.0 26.6104 26.5408
4.7568 24.1344 24.7503
5.6568 22.1072 22.1463
6.7271 19.9878 19.6893

8.0 17.7061 18.2461
9.5136 15.7023 16.1355
11.3137 14.2217 14.3368
13.454 13.0898 13.6175
16.0 12.0285 11.6055

Table 5-7: Results for experiment 2.1 with noise parameter ∼ σlocal = 50. a corresponds to
scale parameter of the wavelet function. T̃a,local is the threshold level which is defined average
maximum local maxima of the wavelet transform of noise corresponding to scale a (obtained using
simulation). Ta,local is the threshold level obtained using equation (5-6).

a T̃a,local Ta,local = σlocalMa

2.0 106.3778 107.7971
2.3784 98.8475 98.9372
2.828 91.8654 93.3341
3.3635 84.9134 86.0321

4.0 79.0019 79.6225
4.7568 71.9171 74.2510
5.6568 65.9728 66.4390
6.7271 58.6215 59.0680

8.0 52.4662 54.7384
9.5136 46.6948 48.4065
11.3137 42.0021 43.0104
13.454 37.9815 40.8526
16.0 33.8542 34.8165

Table 5-8: Results for experiment 2.1 with noise parameter ∼ σlocal = 150. a corresponds to
scale parameter of the wavelet function. T̃a,local is the threshold level which is defined average
maximum local maxima of the wavelet transform of noise corresponding to scale a (obtained using
simulation). Ta,local is the threshold level obtained using equation (5-6).

Discussion

1. The overall decreasing nature of Ta,local is due to the normalization factor (L1 normal-
ization) being used.

2. The deviation between T̃local,a and Ta,local starts to increase for higher values of σlocal.
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a T̃a,local Ta,local = σlocalMa

2.0 354.3785 359.3238
2.3784 338.4224 329.7908
2.828 319.3189 311.1138
3.3635 292.8059 286.7736

4.0 266.1218 265.4085
4.7568 243.1156 247.5034
5.6568 221.2568 221.4633
6.7271 201.1383 196.8933

8.0 179.0033 182.4616
9.5136 163.0599 161.3552
11.3137 149.9761 143.3682
13.454 135.6627 136.1754
16.0 121.2517 116.0551

Table 5-9: Results for experiment 2.1 with noise parameter ∼ σlocal = 500. a corresponds to
scale parameter of the wavelet function. T̃a,local is the threshold level which is defined average
maximum local maxima of the wavelet transform of noise corresponding to scale a (obtained using
simulation). Ta,local is the threshold level obtained using equation (5-6).

This might be due to the strong variations introduced by higher values of σlocal.

3. Overall, the equation produces a fair estimate for the threshold level parameter local,a.
However, the deviations start to increase with increase in the value σlocal. Further
testing is required to assess the validity of the equation.

5-3-2 Experiment 2.2: Evaluating the performance of the algorithm by varying
the effective threshold length on the synthetic IM-IMS data sample

Effective length represents the number of scales at which the wavelet local maxima coefficients
(belonging to a chain) is greater than the threshold level. In our implementation of the
algorithm, we take user defined input as the threshold for effective length. Chains lower than
this threshold are considered to originate due to noise and are rejected.

In this experiment, we will vary the effective length threshold parameter and analyze the
peaks that get detected in the noisy synthetic IM-IMS data sample (Figure (5-2b)).

Methodology

For the given experiment, we use generalized 2D mexican hat function as the wavelet function.
The scale parameters used in this experiment is given in (5-2). The various effective length
threshold parameters that will be used in this experiment are: 2,4,6,8,10,12.

Chains which have effective length greater than the threshold effective length are considered
to originate due to chemical peaks. The spatial location of the finest scale wavelet coefficient
(belonging to a chain) determines the position of the peak. We say that a chemical peak is
detected if this location is at a distance of ≤ 0.01 Da in the m/z dimension and less than
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100 mobility bins (rows) from the true chemical peak. Else, it will be considered as a false
positive.

The performance of the parameter (and the algorithm) will be evaluated using the F-Score
metric. F-score is defined as:

F − score = 2.R.P
R+ P

(5-7)

where R = TP
NP and P = TP

N . TP is the number of true positives, NP represents the total
number of true chemical peaks in the data sample and N is total number of peaks detected
by the algorithm. A perfect feature detection will achieve a F-Score of 100% and the presence
of false positives and false negatives will lower its values. In order to analyse the results, the
confusion matrix associated with the detected peaks will also be studied.

Results

Results for varying effective length threshold is presented in Figure (5-8) and Figure (5-9).
The confusion matrix associated with the various effective length threshold is presented in
Table (5-10). The F-score plot is shown in Figure (5-10).

Effective length T.P. F.P. F.N. T.N.
2 42 4 6 0
4 42 4 6 0
6 40 2 8 0
8 35 0 13 0
10 33 0 15 0
12 29 0 19 0

Table 5-10: Results for Experiment 2.2: Peak detection in the noisy synthetic IM-IMS data
sample with varying effective length threshold parameter (2 to 12). The table present the confusion
matrix associated with the different effective length threshold parameter. T.P, F.P, T.N. and F.N.
stand for True Positive, False Positive, True Negative and False Negative respectively.

Observations

Before we begin the discussion regarding the performance of the algorithm, we present our
definition of SNR for characterization of peaks. As we are only concerned with detection of
peaks (and not peak widths), we define SNR as:

S.N.R = Imax.peak
σ̂2D

(5-8)
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(a) Effective length threshold=2 (b) Effective length threshold=4

(c) Effective length threshold =6 (d) Effective length threshold=8

Figure 5-8: Results for Experiment 2.2: Peak detection in the noisy synthetic IM-IMS data
sample with varying effective length threshold parameter (2 to 8). Total number of true peaks in
the data sample = 48. In every sub-figure, the white, black and magenta dots represent the true
positives, false negatives and false positives detected by the algorithm respectively.
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(a) Effective length threshold=10 (b) Effective length threshold=12

Figure 5-9: Results for Experiment 2.2: Peak detection in the noisy synthetic IM-IMS data
sample with varying effective length threshold parameter (10 to 12). Total number of true peaks
in the data sample = 48. In every sub-figure, the white, black and magenta dots represent the
true positives, false negatives and false positives detected by the algorithm respectively.

Figure 5-10: Results for Experiment 2.2: Peak detection in the noisy synthetic IM-IMS data
sample with varying effective length threshold parameter. F-score(%) plot.
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Here, Imax.peak refers to maximum intensity value of a peak in the smooth data sample and
σ̂2D is the estimated noise in the data sample. Here we use σ̂2D because the behaviour of
added noise is known and uniform across the sample. However, in real world IM-IMS data
sample σ̂local will be a better parameter for computing SNR.

1. The general behaviour of the parameter is as follows:

(a) Having a higher threshold value (8 to 12) implies that more number of local max-
ima coefficients (belonging to a chain) should be greater than the surrounding local
noise level (in the transform space). This leads to discovery of only strong promi-
nent peaks. Also, we observe that having a higher effective length threshold value
decreases the number of false positives detected by the algorithm (in this case, it
is zero).

(b) Lowering the threshold value leads to discovery of more true positives but it also
increases the number of false positives detected (Table (5-10)).

(c) At threshold value = 2, we see that there are multiple false positive peaks getting
detected near the true peak.

2. Despite setting the threshold parameter to it’s lowest value, 6 true peaks were still not
detected.

3. The F-score plot (Figure (5-10)) shows that, for a given set of scales, effective length
of 4 is the optimal threshold value for detection of peaks in the synthetic IM-IMS data
sample.

Discussion

1. If we look at the histograms given in Figure (5-11a) and Figure (5-11b), we see that
while almost all of the true positive peaks that are detected by the algorithm form
chains with length 13, their effective length is randomly distributed varying from 4 to
13.

2. Figure (5-12a) shows the peaks that are detected by the algorithm whose wavelet chains
have an effective length of less than 6. We see that there are 3 false positives and 2
true positives that are detected with below this threshold effective length.The chains
corresponding to these true positives usually gain their strength at higher scales (Figure
(5-12b)).

3. Considering the redundancy of the scales (three voices per octave), the wavelet coef-
ficients (in a chain) belonging to true positives tend to behave smoothly. This means
that if they have gained their strength at a particular scale, their coefficients tend to
remain stronger than the threshold level for a couple of scales. This behaviour can be
used to evaluate if the constructed chain is correct. This is also useful in selecting the
threshold value for effective length.

4. Using these observations, we found that an effective length of 4 is the optimal threshold
for the given set of scales. This threshold length guarantees that chains have minimum
strength to be considered as a potential true positive peak.
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(a) Length (b) Effective length

Figure 5-11: Experiment 2.2: Evaluating the performance of the algorithm by varying the
effective threshold length on a synthetic IM-IMS data sample. Histogram plots of (a) length (b)
effective length corresponding to wavelet chains associated with true positives.

5. The false positives that are detected have a pattern. They usually lie on the surface of
the true positive. This makes their wavelet coefficients greater than the threshold level
at higher scales (Figure (5-12a)).

6. The reason for detection of these false positives is based on the size of σx which is fixed.
Having a fixed σx, will lead to generation of false positives that lie on the surface of the
true positives if σx is significantly less than the width of the true peak (along rows).

7. A brief characterization of the undetected peaks using the definition of SNR is presented
in Figure (5-13). The main reasons for these undetected peaks would be (i) their
maximum intensity values are comparable to the noise in the data sample and (ii) fixed
value of σx which leads to suboptimal representation (in terms of wavelet coefficients’
magnitude) in the transform space.
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Figure 5-12: Experiment 2.2: Evaluating the performance of the algorithm by varying the
effective threshold length on a synthetic IM-IMS data sample. (a) Peaks corresponding to chains
that have an effective length of less than 6 and greater than 2. (b) Wavelet chain corresponding
to the true positive marked by a red square. The blue line represents the wavelet coefficients of the
local maxima connected in a chain and the orange line represents the threshold value generated
by the local noise at every scale.

5-3-3 Experiment 2.3: Evaluating the performance of the algorithm by varying
the effective threshold length on a real world IM-IMS data sample

In this experiment, we will vary the effective length threshold parameter and analyse the
peaks that get detected in the real world IM-IMS data sample.

Methodology

For the given experiment, we use generalized 2D mexican hat function as the wavelet function.
The scale parameters used in this experiment is given in Table (5-2). The various effective
length threshold parameters used in this experiment are: 2,4,6,8,10,12.

The partitioned data sections used in this experiment is briefly discussed in Section (5-1-1).
Figure (5-1) presents the visual overview of the 2D data sections that will be used in this
experiment.

As we do not know the ground truth for this data sample, we will assess the performance of
the parameter based on the peaks being detected.
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(a) Maximum peak intensity(from left to right) = 34 and 51 σ̂2D =
52.6635 SNR (from left to right) = 0.6538 and 0.9807

(b) Maximum peak intensity(from left to right) = 44 and 81 σ̂2D =
52.6635 SNR (from left to right) = 0.846 and 1.556

(c) Maximum peak intensity = 44 σ̂2D = 52.6635 SNR = 0.846

(d) Max peak intensity= 59 σ̂2D = 52.6635 SNR = 1.1346

Figure 5-13: Experiment 2.2: Evaluating the performance of the algorithm by varying the
effective threshold length on a synthetic IM-IMS data sample. Mobilograms (individual columns of
the data matrix) of undetected peaks. These peaks were not detected at the lowest possible value
for effective length threshold. In every sub-figure, the blue line represents the noisy mobilogram,
the orange line represents the smooth mobilogram and the red line marks the location of the
undetected peaks. We calculate the SNR value for undetected peaks using equation (5-8).

Master of Science Thesis Gautam Sinha



94 Performance evaluation of the algorithm

Results

Results for varying effective length threshold for different partitioned sections of the data
sample are presented in:

1. 670-672 m/z - Figure (5-14)

2. 704-706 m/z - Figure (5-15)

3. 770-772 m/z - Figure (5-16)

4. 920-922 m/z - Figure (5-17)

Table (5-11) presents the total number of peaks detected in the various test sections for
varying effective length threshold.

Test Section E.L = 2 E.L. = 4 E.L = 6 E.L.=8 E.L = 10 E.L = 12
670-672 m/z 40 32 29 25 18 11
704-706 m/z 79 61 48 40 29 25
770-772 m/z 97 69 54 41 36 27
920-922 m/z 83 58 37 30 28 24

Table 5-11: Results for Experiment 2.3: Peak detection in the real world IM-IMS data sample
with varying effective length threshold parameter (2 to 12). The table presents the total number
of peaks detected for varying effective length threshold.

Observations

1. The general performance of the algorithm is fair across all test sections.

2. Having a high threshold value leads to detection of less number of prominent peaks and
having a low threshold value leads to detection of high number of false positives.

3. In region 704-706 m/z and 770-772 m/z, that the algorithm is potentially detecting a
high number of potential false positives are detected horizontally (along rows) at lower
threshold levels (Figure (5-15b)).

4. In all the test regions, the algorithm detects high number of potential false positives
vertically along mobility dimension.

5. In region 920-922 m/z, most of the potential true positives are only detected at lower
threshold values.
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(a) Effective length threshold=2. (b) Effective length threshold=4.

(c) Effective length threshold = 6. (d) Effective length threshold=8.

(e) Effective length threshold=10. (f) Effective length threshold=12.

Figure 5-14: Results for experiment 2.3: Evaluating the performance of the algorithm by varying
the effective threshold length on a real world IM-IMS data sample. Test section : 670-672 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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(a) Effective length threshold=2. (b) Effective length threshold=4.

(c) Effective length threshold = 6. (d) Effective length threshold=8.

(e) Effective length threshold=10. (f) Effective length threshold=12.

Figure 5-15: Results for Experiment 2.3: Evaluating the performance of the algorithm by varying
the effective threshold length on a real world IM-IMS data sample. Test section : 704-706 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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(a) Effective length threshold=2. (b) Effective length threshold=4.

(c) Effective length threshold = 6. (d) Effective length threshold=8.

(e) Effective length threshold=10. (f) Effective length threshold=12.

Figure 5-16: Results for Experiment 2.3: Evaluating the performance of the algorithm by varying
the effective threshold length on a real world IM-IMS data sample. Test section : 770-772 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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(a) Effective length threshold=2. (b) Effective length threshold=4.

(c) Effective length threshold = 6. (d) Effective length threshold=8.

(e) Effective length threshold=10. (f) Effective length threshold=12.

Figure 5-17: Results for experiment 2.3: Evaluating the performance of the algorithm by varying
the effective threshold length on a real world IM-IMS data sample. Test section : 920-922 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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Discussion

1. High number of potential false positives are getting detected across various dominant
mobility spectra. As the mobility peaks are noisy in nature and have extended tails,
there are regions where the observed SNR of the region is high, but there are no promi-
nent peaks. Having a fixed value of σx increases (or decreases) the number of peaks
detected along a single mobility spectrum. Figure (5-19a) and Figure (5-18) provides
an example of this problem. Analysis of wavelet chains (Figure (5-20)) corresponding
to these peaks show that their chains have high wavelet coefficient values than the cor-
responding threshold values (noise chains) at different scales. In order to remove these
peaks, we would need to vary σx (wavelet width along rows) as a scale parameter a′.
However, our current design decision does not allow this. As a result, for the choice of
σx in this experiment, we detect high number of potential false positives along dominant
mobility spectra.

2. In the test section 704-706 m/z, there are multiple peaks that are detected horizontally
(along rows) near the main dominant peak (Figure (5-19b)). This is because the peaks
in this region are broad and have high SNR. As the data is noisy, this generates multi-
ple wavelet local maxima coefficients with large coefficient values in the the transform
space. As a result, we see multiple potential false positives getting detected near the
main dominant peak. However, an interesting pattern to note is that wavelet chains cor-
responding to these type of local maxima points have a negative slope. (Figure (5-21)).
This is because as scale a increases the wavelet function expands along columns and so
the wavelet coefficients introduced due to noise loses its strength to the dominant peak
around it. As a result, their chains have a decreasing slope.

3. In the test section 920-922 m/z, most of the potential true positives are detected at
lower threshold values. This is because the region has narrow m/z peaks. As the size
of wavelet function(σy or a) increases, the wavelet local maxima coefficients associated
with these narrow peaks starts to merge with dominant peaks in the transform space. As
a result, the chains corresponding to these narrow peaks have short length. Figure (5-
22) presents a magnified region of the test section 920-922 m/z and manually annotated
true positives. Figure (5-23) presents the peaks detected by the algorithm for different
effective length thresholds. We see that at threshold length = 6, one of the manually
marked peak is not detected by the algorithm.

In order to detect these peaks, we need to keep a low value for effective length threshold.
But lower effective length leads to detection of high number of false positives. As a
result, there are high number of peaks getting detected in this region.

4. Based on all of the above observations, for the given set of scales, we found that effective
length of 4 would be an optimal choice for peak detection. However, more tests are
required to check whether should this parameter be treated as a global parameter for
all clusters (group of wavelet local maxima points in wavelet transform space) or this
parameter should vary for different clusters.
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Figure 5-18: Experiment 2.3: Evaluating the performance of the algorithm by varying the
effective threshold length on a real world IM-IMS data sample. Test section : 670-672 m/z with
complete mobility information (a) Visual representation of the text section. White dots mark the
peaks detected by the algorithm. The red box highlights the region that will be magnified for
analysis (b) Magnified region. The red box marks the columns that will be summed to obtain a
1D representation of the 2D signal. (c) Summed mobilograms. Orange lines represent the peaks
detected by the algorithm. The red box indicates a region where the SNR is relatively high but
there is no peak like structure. As the width of the wavelet function is less than the width of the
region, multiple potential false positives start getting detected.

(a) Analysis Region 1 - Potential
false positives in the mobility spec-
trum.

(b) Analysis Region 2 - Potential
false positives

Figure 5-19: Experiment 2.3: Evaluating the performance of the algorithm by varying the
effective threshold length on a real world IM-IMS data sample. Test section : 704-706 m/z with
complete mobility information. In every sub-figure, the red boxes mark some of the potential false
positives (exhibiting a pattern) that are detected throughout the test sections.
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Figure 5-20: Experiment 2.3: Evaluating the performance of the algorithm by varying the
effective threshold length on a real world IM-IMS data sample. Test section : 704-706 m/z with
complete mobility information. (a) Visual representation of the test section. White dots mark
the peaks detected by the algorithm. Red box correspond to some of the potential false positives
that are detected by the algorithm. (b)-(e) Wavelet chain corresponding to the potential false
positives marked by the red box. In every plot, the blue line represents the wavelet local maxima
coefficients connected in a chain and the orange line represents the threshold value generated by
the local noise at every scale.

5-3-4 Experiment 2.4: Evaluating the performance of the algorithm by varying
the penalty factor on a real world IM-IMS data sample

In this experiment, we vary the penalty factor and analyze the peaks that are detected in the
real world IM-IMS data sample.

The penalty factor controls the local noise level around the wavelet local maxima point. This
level will be used for generating the threshold value for every scale a. In the current imple-
mentation of the algorithm, we use this penalty factor specifically for the row corresponding
to the wavelet local maxima point. The rule is given as:

If σm/z > σmobility, σlocal = 2σm/z else σlocal = σmobility.

where σm/z is the noise parameter corresponding to the row of local wavelet maxima point
and σmobility is the noise parameter corresponding to the column of the local wavelet maxima
point.
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Figure 5-21: Experiment 2.3: Evaluating the performance of the algorithm by varying the
effective threshold length on a real world IM-IMS data sample. Test section : 704-706 m/z with
complete mobility information. (a) Visual representation of the test section. White dots mark
the peaks detected by the algorithm. Red box correspond to potential false positives that are
detected by the algorithm. (b)-(c) Wavelet chains corresponding to the potential false positives
marked by the red box. In every plot, the blue line represents the wavelet local maxima coefficients
connected in a chain and the orange line represents the threshold value generated by the local
noise at every scale. These wavelet chains have a decreasing slope.

Figure 5-22: Experiment 2.3: Evaluating the performance of the algorithm by varying the
effective threshold length on a real world IM-IMS data sample. Test section : 920-922 m/z with
complete mobility information. (a) Visual representation of the test section.Red box indicates
the region that will be magnified (b) Magnified region: The "+" sign marks manually annotated
peaks. These peaks have widths in the range of 3-8 data points (along columns).
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(a) Effective length threshold=2.
Total no. of peaks detected = 15

(b) Effective length threshold=4.
Total no. of peaks detected = 10

(c) Effective length threshold = 6.
Total no. of peaks detected = 7

Figure 5-23: Experiment 2.3: Evaluating the performance of the algorithm by varying the
effective threshold length on a real world IM-IMS data sample. Peaks detected by the algorithm
in the magnified region (Figure (5-22)). At effective length threshold value = 6, the manually
marked true positive does not get detected.
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Methodology

For the given experiment, we use generalized 2D mexican hat function as the wavelet function.
The scale parameters used in this experiment is given in Table (5-2). The effective length
threshold parameter is set to 4. The penalty factors being studied in this experiment are:
1,2,3.

The partitioned data section used in this experiment is given in Figure (5-1b). This section
represents broad and prominent peaks which are noisy in nature.

As we do not know the ground truth for this data sample, we will assess the performance of
the parameter based on the peaks being detected.

Results

Results for varying penalty factors on a partitioned section of the data sample is presented in
Figure (5-24). Table (5-12) presents the total number of peaks detected for varying penalty
factor.

Test Section P.f = 1 P.f = 2 P.f = 3
704-706 m/z 87 61 58

Table 5-12: Results for experiment 2.4: Evaluating the performance of the algorithm by varying
the penalty factor on a real world IM-IMS data sample. Test section: 704-706 m/z with com-
plete mobility information.The table presents the total no. of peaks detected for varying penalty
factor(P.f).

Discussion

1. Not penalizing the horizontal direction (i.e. setting penalty factor = 1) leads to detection
of false positives along the surface of the peak in horizontal direction. The broad
nature of peak along with its noisy nature leads to local maxima points which have
wavelet coefficients with large amplitudes. These coefficients have higher values than
the threshold level determined by the local noise level for a number of scales. As a
result, they get detected by the algorithm.

2. Increasing the penalty factor from 2 to 3 did not produce much difference in the number
of potential false positives detected.

3. Having a penalty factor removes some peaks but those peaks are usually present in the
bottom region of the data sample which has instrument artefacts and are not used for
peak detection.
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(a) Penalty factor = 1, bottom
view. (b) Penalty factor = 1, top view.

(c) Penalty factor = 2, bottom
view. (d) Penalty factor = 2, top view.

(e) Penalty factor = 3, bottom
view. (f) Penalty factor = 3, top view.

Figure 5-24: Results for experiment 2.4: Evaluating the performance of the algorithm by varying
the penalty factor on a real world IM-IMS data sample. Test section: 704-706 m/z with complete
mobility information. The results of every penalty factor is presented both from a top view and
bottom view. In every sub-figure, the white dots mark the peaks detected by the algorithm.
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5-3-5 Experiment 2.5: Evaluating the number of noise simulations required for
obtaining a stable value for Ma.

For this experiment, we will evaluate the hyperparameter Ma used in equation (5-6). Here,
Ma refers to the average of maximum local maxima that is generated by the wavelet transform
of zero mean white noise with variance = 1 at scale a. As previously discussed in experiment
2.1, we know that maximum local maxima is not a stable statistic and varies with simulation.
In order to minimize the variability, we average a certain number of simulations. Based on
this idea, the objective of this experiment is to determine the optimal number of simulations
N required for averaging.

Methodology

For the given experiment, we use a generalized 2D mexican hat function as the wavelet
function. In order to keep the computation cost of the experiment, we demonstrate this
experiment on a single scale. The scale parameter being used is a = 2 (which corresponds to
σy = 0.5a = 1 and σx = 64).

We introduce two parameters :

1. N - Number of simulations required for averaging to obtain Ma. This is the test pa-
rameter being studied in this experiment. The values that will be considered for n are
: 1,10,20,50.

2. B - The number of samples generated using the test statistic with fixed n. The idea
is to generate B samples of the parameter Ma with fixed n and calculate the variation
within these samples. In order to keep the computation cost low, B is taken as 10.

As we do not know the true (or theoretical value) of the parameter Ma, the experiment will
be focused towards obtaining a stable representation of the value Ma. The procedure for
evaluation is as follows :

1. For B = 1:10

(a) For i = 1:N
i. Simulate zero mean gaussian noise with variance = 1. The size of the noise

matrix is taken to be 2048 X 2048. This is to reduce the computation cost
and to mitigate any boundary effects.

ii. Compute the wavelet transform of the noise matrix for scale a = 2.
iii. Zero out the negative coefficients.
iv. Identify the maximum local maxima in the wavelet transform of the noise

matrix.
v. Store the value.

(b) Average the obtained N values to obtain Ma. This will be considered a single
sample.

(c) Store this value.
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Figure 5-25: Experiment 2.5: Evaluating the number of noise simulations required for obtaining
a stable value for Ma. Box plot guide. The samples used in this plot were obtained using 1024
randomly sampled points from the distribution gaussian distribution ∼ N(0, 1).

2. After obtaining B samples, plot the box plot to highlight the variability in the samples.
Figure (5-25) presents a guide to read the box plot

3. Repeat the experiment for different values of N .

Results

The minimum , maximum, and the range (maximum - minimum) obtained for different values
of N are presented in Table (5-13). The box plot representation for different values of N is
presented in Figure (5-26).

N Maximum Value Minimum Value Mean Median Range
1 0.868 0.690 0.743 0.725 0.177
10 0.795 0.716 0.757 0.752 0.079
20 0.782 0.726 0.749 0.748 0.0560
50 0.769 0.745 0.757 0.757 0.0241

Table 5-13: Results for experiment 2.5: Evaluating the number of noise simulations required for
obtaining a stable value for Ma. Statistics obtained for different values of N used in estimation
of Ma. B is fixed as 10 for each case.

Discussion

1. The general inference that can be drawn form Table (5-13) and Figure (5-26) is that
lower values of N leads to a higher variation (range) in values of Ma. Higher variation is
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Figure 5-26: Results for experiment 2.5: Evaluating the number of noise simulations required
for obtaining a stable value for Ma. Box plot for different values of N . In every box, the yellow
line marks the median of the sample and the dashed green lines mark the mean of the samples.

not useful because if the experiment is repeated, there is a possibility that value Ta,local
will not remain the same and as a result it can impact the effective length of a chain.

2. As N increases, this variation starts to decrease and the mean and median obtained for
the samples of Ma shift to higher value. This can be seen for N = 50 and is a direct
result for averaging a higher number of simulations for calculation of Ma. We can infer
that for that taking a higher number of simulations N will increase the stability of the
parameter Ta,local.

3. For the given, experiment we would say that taking N = 50 ensures stability in the
estimation of parameter Ma. However, this comes with a large computation cost and
therefore, more research is required in reducing the computation cost of this parameter.

5-4 Experiment 3: Wavelet width parameters

The experiments in this section are related to the parameter σx. This parameter is associated
with the width of the wavelet function (along rows) and governs the overall performance of
the algorithm. We conduct experiments to understand the impact of this parameter on the
performance of the algorithm.

5-4-1 Experiment 3.1: Evaluating the performance of the algorithm by varying
σx on a synthetic IM-IMS data sample.

Methodology

For the given experiment, we use generalized 2D mexican hat function as our wavelet function.
The penalty factor used in this experiment is 2. The effective length threshold parameter used
is 4. The choice of σx and σy(a) used in this experiment are presented in Tables (5-14) - (5-17).
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We say that a chemical peak is detected if this location is at a distance of less than ≤ 0.01
Da in the m/z dimension and less than 100 mobility bins (rows) from the true chemical peak.
Else, it will be considered as a false positive.

The performance of the parameter (and the algorithm) will be evaluated using the F-Score
metric.

a σy = 0.5a σx Size of wavelet: floor[10σx] X floor[10σx]
2.0 1.0 16 160 X 10

2.3784 1.1892 16 160 X 11
2.828 1.414 16 160 X 14
3.3635 1.6817 16 160 X 16

4.0 2.0 16 160 X 20
4.7568 2.3784 16 160 X 23
5.6568 2.828 16 160 X 28
6.7271 3.3635 16 160 X 33

8.0 4.0 16 160 X 40
9.5136 4.7568 16 160 X 47
11.3137 5.656 16 160 X 56
13.454 40 16 160 X 67
16.0 8.0 16 160 X 80

Table 5-14: Experiment 3.1: Evaluating the performance of the algorithm by varying σx on a
synthetic IM-IMS data sample. Wavelet function : Generalized 2D mexican hat function. The
table presents the scale parameter a, the widths (σx and σy) and the size of the wavelet function
(in terms of rows and columns).

a σy = 0.5a σx Size of wavelet along: floor[10σx] X floor[10σy]
2.0 1.0 32 320 X 10

2.3784 1.1892 32 320 X 11
2.828 1.414 32 320 X 14
3.3635 1.6817 32 320 X 16

4.0 2.0 32 320 X 20
4.7568 2.3784 32 320 X 23
5.6568 2.828 32 320 X 28
6.7271 3.3635 32 320 X 33

8.0 4.0 32 320 X 40
9.5136 4.7568 32 320 X 47
11.3137 5.656 32 320 X 56
13.454 40 32 320 X 67
16.0 8.0 32 320 X 80

Table 5-15: Experiment 3.1: Evaluating the performance of the algorithm by varying σx on a
synthetic IM-IMS data sample. Wavelet function : Generalized 2D mexican hat function. The
table presents the scale parameter a, the widths (σx and σy) and the size of the wavelet function
(in terms of rows and columns).
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a σy = 0.5a σx Size of wavelet: floor[10σx] X floor[10σy]
2.0 1.0 64 640 X 10

2.3784 1.1892 64 640 X 11
2.828 1.414 64 640 X 14
3.3635 1.6817 64 640 X 16

4.0 2.0 64 640 X 20
4.7568 2.3784 64 640 X 23
5.6568 2.828 64 640 X 28
6.7271 3.3635 64 640 X 33

8.0 4.0 64 640 X 40
9.5136 4.7568 64 640 X 47
11.3137 5.656 64 640 X 56
13.454 40 64 640 X 67
16.0 8.0 64 640 X 80

Table 5-16: Experiment 3.1: Evaluating the performance of the algorithm by varying σx on a
synthetic IM-IMS data sample. Wavelet function : Generalized 2D mexican hat function. The
table presents the scale parameter a, the widths (σx and σy) and the size of the wavelet function
(in terms of rows and columns).

a σy = 0.5a σx Size of wavelet: floor[10σx] X floor[10σy]
2.0 1.0 128 1280 X 10

2.3784 1.1892 128 1280 X 11
2.828 1.414 128 1280 X 14
3.3635 1.6817 128 1280 X 16

4.0 2.0 128 1280 X 20
4.7568 2.3784 128 1280 X 23
5.6568 2.828 128 1280 X 28
6.7271 3.3635 128 1280 X 33

8.0 4.0 128 1280 X 40
9.5136 4.7568 128 1280 X 47
11.3137 5.656 128 1280 X 56
13.454 40 128 1280 X 67
16.0 8.0 128 1280 X 80

Table 5-17: Experiment 3.1: Evaluating the performance of the algorithm by varying σx on a
synthetic IM-IMS data sample. Wavelet function : Generalized 2D mexican hat function. The
table presents the scale parameter a, the widths (σx and σy) and the size of the wavelet function
(in terms of rows and columns).

Results

Results for varying σx is presented in Figure (5-27). The confusion matrix associated with
the various values of σx used in this experiment is presented in Table (5-18). The F-score
plot is shown in Figure (5-28).
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(a) σx = 16 (b) σx = 32

(c) σx = 64 (d) σx = 128

Figure 5-27: Results for experiment 3.1: Evaluating the performance of the algorithm by varying
σx on a synthetic IM-IMS data sample. In every sub-figure, the white, black and magenta
dots represent the true positives, false negatives and false positives detected by the algorithm
respectively.

Master of Science Thesis Gautam Sinha



112 Performance evaluation of the algorithm

σx T.P. F.P. F.N. T.N.
16 43 171 5 0
32 41 30 7 0
64 42 4 6 0
128 40 1 8 0

Table 5-18: Results for experiment 3.1: Evaluating the performance of the algorithm by varying
σx on a synthetic IM-IMS data sample. The table present the confusion matrix associated with the
different effective length threshold parameter. T.P, F.P, T.N. and F.N. stands for True Positive,
False Positive, True Negative and False Negative respectively.

Figure 5-28: Results for experiment 3.1: Evaluating the performance of the algorithm by varying
σx on a synthetic IM-IMS data sample. F-score(%) plot.

Discussion

1. For σx = 16 and σx = 32, we see high number of false positives being detected. This is
because if the size of σx is lower than the size of peaks present in the noisy data sample,
then multiple peaks will get detected on the surface of the true peaks.

2. For σx = 128, the higher value of wavelet width resulted in reduced the number of
false positives. But, it also resulted in detection of less number of features (Figure (5-
27d)). Most of the peaks that were not detected had short peak widths or were close
to another dominant peak in the data matrix. For these peaks, the higher value of σx
lead to reduced strength in terms of magnitude of wavelet coefficients.

3. The F-score (Figure 5-28) for chosen values of σx shows that the wavelets obtained using
σx = 64 and σx = 128 have similar performance. But, we believe that σx = 64 yields
better results. This is because, we prioritize detecting more features than reducing the
number of false positives. Choosing σx = 64 resulted in detection of more peaks with
minimal increase in false positives. The same cannot be said for σx = 16.

4. Ideally, σx should also vary along with σy for optimal detection of features. But, for
the designed algorithm, choosing σx equal to 1% of the mobility dimension (rows) can
yield satisfactory results.
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5-4-2 Experiment 3.2 : Evaluating the performance of the algorithm by varying
σx on a real world IM-IMS data sample

In this experiment, we will vary σx threshold parameter and analyse the peaks that get
detected in the real world IM-IMS data sample.

Methodology

For the given experiment, we use generalized 2D mexican hat function as our wavelet func-
tion.The penalty factor used in this experiment is 2. The effective length threshold is taken
as 4. The choice of σx and σy(a) used in this experiment is presented in tables (5-14) - (5-17).
The partitioned data sections used in this experiment is briefly discussed in Section (5-1-1).
Figure (5-1) presents the visual overview of the 2D data sections that will be used in this
experiment.
As we do not know the ground truth for this data sample, we will assess the performance of
the parameter based on the peaks being detected.

Results

Results for varying σx for different partitioned sections of the data sample are presented in:

1. 670-672 m/z - Figure (5-29)

2. 704-706 m/z - Figure (5-30)

3. 770-772 m/z - Figure (5-31)

4. 920-922 m/z - Figure (5-32)

Discussion

1. In general, the observations of this experiment are similar to the case of synthetic data
sample. Choosing lower values of σx (16 or 32) results in high number of false positives
getting detected whereas choosing σx = 128 results in less number of potential false
positives but also less number of potential true positives getting detected.

2. The horizontal false positives that are detected in the case of sections with high SNR
reduce for σx = 16 (Figure (5-31a) and Figure (5-30a)). This can be observed by looking
at the transform space related to these potential false positives. In the case of σx = 16
we detect multiple local maximas in the region of potential false positives whereas in
the case of σx = 128 we observe one local maxima in that region. The smaller size of
σx = 16 leads to generation of multiple local maximas but it also reduces the coefficients
strength. Choosing a large value for σx will make the wavelet function large (especially
the positive part of the wavelet function) and will yield high coefficient values.

3. In the case of real world data sample, choosing σx ≤ 1% of the mobility bins will lead
to detection of high number of potential false positives. However, further testing is
required for the ideal choice of σx.
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(a) σx = 16 (b) σx = 32

(c) σx = 64 (d) σx = 128

Figure 5-29: Results for experiment 3.2: Evaluating the performance of the algorithm by varying
the width of the wavelet function on real world IM-IMS data sample. Test section : 670- 672 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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(a) σx = 16 (b) σx = 32

(c) σx = 64 (d) σx = 128

Figure 5-30: Results for experiment 3.2: Evaluating the performance of the algorithm by varying
the width of the wavelet function on real world IM-IMS data sample. Test section : 704- 706 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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(a) σx = 16 (b) σx = 32

(c) σx = 64 (d) σx = 128

Figure 5-31: Results for experiment 3.2: Evaluating the performance of the algorithm by varying
the width of the wavelet function on real world IM-IMS data sample. Test section : 770 - 772 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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(a) σx = 16 (b) σx = 32

(c) σx = 64 (d) σx = 128

Figure 5-32: Results for experiment 3.2: Evaluating the performance of the algorithm by varying
the width of the wavelet function on real world IM-IMS data sample. Test section : 920-922 m/z
with complete mobility information. In every sub-figure, the white dots mark the peaks detected
by the algorithm.
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5-5 Experiment 4 - Comparison with an existing peak detection
algorithm

The final experiment in this chapter is to compare the performance of our algorithm with an
existing peak detection algorithm on a real world IM-IMS data sample. For this, we use Self
Adjusting Feature Detection algorithm (SAFD) [78] as our companion algorithm. The choice
for SAFD is motivated by the following criteria : (i) freely available (ii) works on continuous
profile data (iii) uses python/julia as the programming language. See section 2-2-4 for more
details about the functioning of the algorithm.

Methodology

2D WTM algorithm parameters

The parameters used in 2D WTM are given in Table (5-20). The parameter σy is adapted
based on our understanding of the maximum and minimum peak width present in the IM-IMS
data sample (along m/z dimension). Rest of the parameters were optimized based on the
results of the previous experiments.

SAFD algorithm parameters

The parameters used in SAFD are given in Table (5-21). These parameters were optimized
based on our understanding of the algorithm and the real world IM-IMS data sample.

Hardware and Software specifications

Table (5-19) presents the hardware specifications of the computer on which the experiments
were performed.

Specification Version
Processor Intel(R) Core(TM) i7-9750HF CPU @ 2.60GHz

RAM 8 GB RAM
SSD Yes
OS Windows 11

Software platform for 2D WTM algorithm Jupyter Notebook 6.3.0
Software platform for SAFD Jupyter Notebook 6.3.0

Table 5-19: Experiment 4: Comparison of the designed algorithm with an existing peak detection
algorithms. Hardware spectifications
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Test Sections

The partitioned data sections used in this experiment is briefly discussed in Section (5-1-1).
Figure (5-1) presents the visual overview of the 2D data sections that will be used in this
experiment.
We say that a common chemical peak is detected if the peaks detected by both the algorithms
are at a distance of less than 5 m/z bins (columns) and less 100 mobility bins (rows). Else,
they will be considered as peaks specific to the algorithm.
As we do not know the ground truth for this data sample, the performance of the algorithms
will be based on the peaks detected and the computation time of the algorithms.

2D WTM parameters Value
σx (mobility dimension) 64
σy = 0.5a (m/z dimension) Dyadic scales from 1 to 8 with three voices per octave
Effective length threshold 4

Penalty factor 2
Number of noise simulation 50

Table 5-20: Experiment 4: Comparison of the designed algorithm with an existing peak detection
algorithms. Optimized parameters for 2D WTM algorithm.

SAFD parameters Value
Number of iterations 200

Maximum peak width (mobility dimension) 1200
Minimum peak width (mobility dimension) 200

Minimum peak width (m/z dimension) 4
Resolution 50000

Minimum intensity 10
Overlapping features threshold 5 (Default value)

SNR Threshold 2

Table 5-21: Experiment 4: Comparison of the designed algorithm with an existing peak detection
algorithms. Optimized parameters for SAFD.

Results

Results for different test sections are presented in Figure (5-33) - Figure (5-36). Table (5-22)
presents the total number of peaks detected by both the algorithms. Table (5-23) presents
the computation time of both the algorithms.
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Figure 5-33: Results for experiment 4: Comparison of the designed algorithm with an existing
peak detection algorithm on a real world IM-IMS data sample. Test section : 670- 672 m/z
with complete mobility information. White dots mark the common peaks detected by both of
the algorithms, black dots represent the peaks detected by the SAFD algorithm and the magenta
dots represent the peaks detected by our 2D CWT algorithm.

Gautam Sinha Master of Science Thesis



5-5 Experiment 4 - Comparison with an existing peak detection algorithm 121

Figure 5-34: Results for experiment 4: Comparison with an existing peak detection algorithm on
a real world IM-IMS data sample. Test section : 704-706 m/z with complete mobility information.
White dots mark the common peaks detected by both of the algorithms, black dots represent the
peaks detected by the SAFD algorithm and the magenta dots represent the peaks detected by
our 2D WTM algorithm.

Master of Science Thesis Gautam Sinha



122 Performance evaluation of the algorithm

Figure 5-35: Results for experiment 4: Comparison with an existing peak detection algorithm on
a real world IM-IMS data sample. Test section : 770-772 m/z with complete mobility information.
White dots mark the common peaks detected by both of the algorithms, black dots represent the
peaks detected by the SAFD algorithm and the magenta dots represent the peaks detected by
our 2D WTM algorithm.
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Figure 5-36: Results for experiment 4: Comparison with an existing peak detection algorithm on
a real world IM-IMS data sample. Test section : 920-922 m/z with complete mobility information.
White dots mark the common peaks detected by both of the algorithms, black dots represent the
peaks detected by the SAFD algorithm and the magenta dots represent the peaks detected by
our 2D WTM algorithm.
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Region SAFD peaks 2D WTM peaks Common peaks(detected by both methods)
670-672 m/z 11 16 16
704-706 m/z 4 39 19
770-772 m/z 5 50 17

3.3635 5 42 12

Table 5-22: Results for experiment 4: Comparison with an existing peak detection algorithm.
The total number of peaks detected by both the algorithms. The column SAFD peaks and 2D
WTM peaks refer to peaks detected by the SAFD and 2D WTM algorithms exclusively. The last
columns refer to peaks detected by both the algorithms.

Algorithm Computation time
SAFD ∼ 40 seconds

2D WTM (Breakdown presented below) ∼ 30 minutes
(i) Simulation (for noise parameters) ∼ 1500 seconds

(ii) 2D CWT + denoising + watershed transform ∼ 30 seconds
(iii) Local maxima clustering + cluster denoising ∼ 45 seconds

(iv) Chain construction + Effective length thresholding ∼ 108 seconds

Table 5-23: Results for experiment 4: Comparison with an existing peak detection algorithm.
Computation time required for processing the test section by different algorithms. The compu-
tation time is recorded for each test section used in benchmarking the algorithm. For 2D WTM
based algorithm, we present the breakdown for the time taken by different sections of the algo-
rithm.

Discussion

1. Overall, we found that the 2D WTM based algorithm is more sensitive and detects more
peaks than SAFD for all the given test sections.

2. In the test section 704-706 m/z (Figure (5-34)), SAFD detects less number of potential
false positives than the 2D WTM based algorithm

3. The 2D WTM based algorithm outperforms the SAFD algorithm in the 920-922 m/z
test section (Figure (5-36)).

4. SAFD outperform the designed 2D WTM based algorithm with respect to computation
time. The major portion of the time consumed by the latter goes in estimating the noise
parameter which requires 51 (50+1) simulations of wavelet transform of zero mean white
noise with variance = 1 for all scales a.

5. The computation time for chain construction depends on the number of scales (a) being
used. Using higher number of scales will lead to increased computation time, using
lower number of scales will reduce the resolution of the transform space which may
result in construction of incorrect chains and lower number of features being detected
(for a fixed effective length threshold value). Further investigation is required regarding
the optimal number of scales for peak detection.

Gautam Sinha Master of Science Thesis



Chapter 6

Conclusion

The research was conducted for the design of a feature (peak) detection algorithm for IM-IMS
data. Traditional algorithms depended on instrument and data specific parameters which
cannot be optimized without prior knowledge. Therefore, the objective of this thesis was to
design a robust feature detection algorithm that uses minimal information from the user.

Based on the objectives of the research, we proposed a 2D WTM algorithm for feature de-
tection. 2D WTM has the advantage of reducing the redundant CWT space into a discrete
subset of points that matches the definition of the feature (in this case peaks or local maxima
points). These subsets of points can then be grouped together in the transform space to form
’chains’. Based on the various properties of these chains, we can deduce that the local maxima
point in the original data space is due to noise or due to a true chemical peak.

By carefully examining the IM-IMS data sample, we decided to use 2D generalized mexican
hat function as our wavelet function. This choice was motivated based on the shape of the
peaks observed in the data sample. The wavelet function has two parameters σx and σy
which govern the width of the wavelet function along rows and columns respectively. Based
on the increasing scale condition, we decided to construct the transform space by fixing the
parameter σx and varying σy.

For thresholding of constructed chains, we introduced a parameter called as "effective length".
Effective length is the total number of scales for which the wavelet local maxima coefficient
(belonging to a chain) is greater than its surrounding noise level. This noise level is governed
by the maximum local maxima coefficient generated by the wavelet transform of local noise
(assuming gaussian additive noise). We say that the a peak is detected if the effective length
of the given chain is greater than the threshold effective length.

We evaluated the performance of the designed algorithm on a synthetic IM-IMS data sample
and a real world IM-IMS data sample. While the performance of the algorithm was fair on the
synthetic data sample, the performance of the algorithm was fair on the real world IM-IMS
data sample.
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126 Conclusion

6-1 On scale parameters σx and σy

The algorithm developed is constrained by the choice of σx which takes a single value as an
input. By performing tests on synthetic and real world IM-IMS data sample, we found that
this value should be approximately equal to 1% of the mobility dimension to generate fair
results. Choosing a value ≤1% for σx lead to detection of high number of false positives while
choosing a large value for σx lead to detection less number of true positives. However, there
was no research conducted where σx considered a range of values as an input. Theoretically
and through experiments, we found that considering a range of values for σx should be the
next step for optimizing the algorithm.

For σy, the research was performed based on dyadic scales (from a = 2 to 16) with three voices
per octaves. This choice had a vague motivation that peak widths along the m/z dimension
belonged within this range was not adapted to the data sample being studied. While the
choice of dyadic scales with three voices per octave along with an threshold effective length
of 4 yielded decent results, the range of σy should be computed from the data itself.

We provide an outline for the future work for determining the scale parameters:

1. Determine a range for σx by studying the data along the mobility dimension - In this
thesis, we managed to establish that 1% of the mobility dimension is fair choice for
the width of the wavelet function (along rows). Choosing 2% lead to detection of less
number of true positives. Therefore, the range of values that sigmax takes should be
between 1% and 2% of the mobility dimension.

2. Determine a range for σy by studying the data along the m/z dimension - This can be
done if the resolution of the instrument can be derived from the data itself. The idea
would be to determine the expected peak width (in terms of data points or m/z bins)
from the resolution and select a set of scales around the expected peak width. Another
possible direction would be to identify the most prominent peak in the m/z dimension
and the peak width associated with it. This peak width can then be used to determine
a set of scales for the wavelet functions (in the m/z dimension).

3. Investigate the optimal choice for (σx, σy) as pairs and study its impact on the construc-
tion of chains - After determining the range for σx and σy, the idea would be selecting
(σx, σy) such that the increasing nature of the widths is maintained. Research should be
focused on whether this increasing necessary is a necessary condition for construction
of chains and if not, how will the choice of (σx, σy) impact the construction of chains.

6-2 On construction of chains

In our algorithm, we used watershed segmentation in order to define a search space for the
local maxima point thereby automating the process of chain construction. However, the
problem with this method is that it requires the whole 3D matrix (scale parameter adds
another dimension to the transform space making it a 3D matrix) in memory. We achieved
this by using Numpy package command np.memmap which writes the 3D matrix into disk.
However, this is not an optimal solution when working with huge data matrices.
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Future work should be focused on construction of chains using only local maxima points.
Carmona et al. [18] proposed a random walk algorithm for automatic construction of wavelet
chains (ridges) in the transform space but the algorithm was focused for time-series based
signals (speech signals). Future research should focus on developing algorithms for 2D MS
based signals. One direction would be to construct a cost function that takes the wavelet
coefficient value into account.

6-3 On local noise level

For determining the local noise level (for effective length based thresholding), we used a
quantity "maximum local maxima" coefficient generated by wavelet transform of local noise
(assuming additive gaussian noise). The local noise level determined using this quantity
yielded fair results on the synthetic IM-IMS data sample. However, it was found that peaks
whose maximum intensity values are comparable to the noise level will not be detected by
the algorithm.

The estimation of the local noise level also required multiple simulations of zero mean white
noise with unit variance as "maximum local maxima" coefficient as it is not a stable statistic.
This drastically increased the computation time of the algorithm rendering the algorithm not
useful for big data matrices.

Future work should be focused on generating local noise level that requires minimum number
of simulations and whose values can be determined analytically. A possible direction would be
to the use the equation Ta,local = kσa where k is chosen such that it matches the threshold level
as implemented in the current version of the algorithm. We believe that a correct estimation
of local noise level in the transform space will yield better results.

6-4 On effective length based thresholding

In our algorithm, we used effective length based threshold as an input to be provided by the
user. We found that the effective length of 4 was the optimal threshold length for the given
set of scales. However, the relation between scale parameter and the effective length was
not explored. It could happen that if we use a different set of scales, the optimal effective
length might change. So, future work should be focused on generalizing the effective length
parameter for different scales.
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Glossary

List of Acronyms

LC-MS Liquid Chromatography Mass Spectrometry
NMR Nuclear Magnetic Resonance spectroscopy
HR-NMR High Resolution Nuclear Magnetic Resonance spectroscopy
MS Mass Spectrometry
SIMS Secondary Ion Mass Spectrometry
DESI Desorption Spray Ionization
MALDI Matrix Assisted Laser Desorption Ionization
NIMS Nanostructure Initiator Mass Spectrometry
ESI Electrospray Ionization Technique
ESI Electrospray Ionization
IM Ion Mobility Spectrometry
IM-MS Ion Mobility Spectrometry-Mass Spectrometry
IM-IMS Ion Mobility Spectrometry-Imaging Mass Spectrometry
TIMS Trapped Ion Mobility Spectrometry
CCS Collision Cross Section
DTIMS Drift Tube Ion Mobility Spectrometry
TWIMS Travelling Wave Ion Mobility Spectrometry
DMA Differential Mobility Analyzer
SNR Signal-to-Noise Ratio
LDI Laser Desorption Ionization
ESI Electrospray Ionization
IMS Imaging Mass Spectrometry
TIC Total Intensity Count
IS Internal Standards
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138 Glossary

CWT Continuous Wavelet Transform
ROI Region Of Interest
RT Retention Time
HPLC/MS High Performance Liquid Chromatography coupled to Mass Spectrometry
LC-HRMS High Resolution Mass Spectrometry coupled with Liquid Chromatography
UPLC/ESI-MS Electrospray Ionization based Mass Spectrometry coupled with Ultra

High Performance Liquid Chromatography
FDR False Discovery Rate
DWT Discrete wavelet transform
WTM Wavelet transform maxima
WTMM Wavelet transform modulus maxima
SAFD Self Adjusting Feature Detection algorithm
ToF Time of Flight
EIT Extreme-ultraviolet Imaging Telescope
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