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ABSTRACT

The present investigation deals with two aspects of gas-liquid flows, viz.
interaction forces between the phases in bubble swarms and numerical
description of rotating gas-liquid flows. The insight obtained was applied
to the development of axial gas-liquid cyclones, as used i.a, as primary
separators in nuclear boiling water reactors.

The investigation on interaction forces in bubble swarms has led to
correlations for the drag force coefficient Cp and the virtual mass
coefficient B, occurring in the gas and liquid momentum balances. The
exper1menta1 ver1f1cat1on took place in both atmospheric a1r-water mixtures
and in steam-water mixtures at pressures between 5 and 7 MN/m Test
sections with constant and variable cross section were used in both cases
in order to study both steady and accelerating mixture flows. In all test
sections the superficial water velocity was varied between 0.9 and 2.5 m/s,
while the gas volume fraction was varied between 0.2 and 0.75. In the
atmospheric air-water experiments the gas volume fraction was measured in
addition to the axial pressure profile. These measurements were carried out
for 10 channel cross sections by means of photon absorption, permitting the .
two coefficients to be obtained directly from the one-dimensional momentum
balances. No such gas volume fraction measurements were possible for the
high pressure steam-water mixtures, requiring the development of special
procedures for computing the drag force and virtual mass coefficients from
the pressure profiles of the straight and converging test section,
respectively,

Computation of the two coefficients from the momentum balances required the
development of auxiliary correlations for two-phase frictional pressure
drop and for the bubble diameter. In addition the one-dimensional momentum
balances were corrected .for two-dimensional effects by means of a numerical
analyses, although these effects were found to be of minor importance.

The drag force coefficient could be represented by a function of the gas
volume fraction a only. In order to explain the considerable discrepancy
between this correlation and those applicable to solid-particle-liquid flows
a qualitative analyses was performed, based on the interaction of bubbles
and particles with the wakes of other bubbles or particles. Correlation of
the virtual mass coefficient required the introduction of a new parameter in
addition to the gas volume fraction. The relationship with this parameter,
called the peak velocity ratio and based on the relative velocities in the
neighbourhood of a bubble, was established by experiment and verified by
analyses based on potential flow. Dependence on the gas volume fraction
agrees with analytical correlations from the existing literature.

The before mentioned correlations were subsequently utilized in the numerical
description of the two-dimensional (rotation-symmetric) flow. This numerical
description required the solution of the system of eight coupled partial
differential equations consisting of the mass balances and the axial, radial
and tangential momentum balances of the two phases. Two different numerical
solution methods were investigated. The "alternating direction implicit"
(ADI) method separately solves a main system of six equations and a

secondary system of the two tangential momentum balances. This uncoupling

is desirable from the view point of limiting computer time and acceptable
because of the weak link between the tangential momentum balances and the
remaining balances. Much attention was paid during the realisation of this
solution method to the numerical stability of the process. The computing time
required, however, turned out to be excessive. After establishing that the
reasons were inherent to the combination of the method and the type of flow
to which it was applied a second solution method was developed and implemented

- 15 -




in the computer program ANALEST. In this solution method all the balances

are uncoupled and solved sequentially, each balance giving the solution for
one of the unknowns. This sequential solution procedure is repeated until

the values for the eight flow parameters remain constant. The ANALEST version
discussed in chapter 3, however, computes only seven parameters, viz. the
pressure and six velocities, while the spatial distribution of the gas

volume fraction is provided as input. The necessary steps for further
development of the procedure to the point where all eight flow parameters

are computed are also discussed in chapter 3.

The results of the afore mentioned work have subsequently been applied to

. the development of a venturi separator for nuclear boiling water reactors.
After a series of introductory experiments a venturi separator was designed
and tested with atmospheric air-water mixtures, the superficial water -
velocities and volumetric qualities of which were derived from data on part
load operation of a BWR. The separating efficiencies and pressure drop of
this separator have been compared to the requirements defined by reactor
manufacturers, taking into account economic aspects. Indications are given
concerning the further development of this venturi separator, taking into
account the transition from air-water to steam-water mixtures and the rules
for geometrical upscaling.

- 16 -
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INTRODUCTION

Statement of the problem

The ultimate purpose of the present investigation is to contribute to the
development of a so called venturi separator (cf. figure 1-1) for
application to steam-water mixtures of nuclear: boiling water reactors
(BWR). In the mid sixties PRINS [1] started an investigation in the
Laboratory for Thermal Power Engineering at Delft University of Technology
on various aspects of steam-water separation in nuclear steam supply
systems, resulting - among other things - in the proposal for a venturi
shaped centrifugal separator for BWR's. Although his first separator tests
yielded a rather poor separating performance, it was subsequently decided
in view of the possible advantages of the venturi separator to continue
its development in said laboratory under responsibility of the present
author.

A modern BWR power plant is a single loop system (cf. figure 4-1) with
forced circulation through the nuclear core where partial evaporation
takes place. The steam-water mixture passes through the primary separators
on top of the core whence the water is returned to the downcomer for
recirculation whilst the steam is led to the turbine by way of the
secondary impingement dryers. The primary separation - for which the

S,teo,m,ﬂhoyst_ﬁ,ﬂ

water level
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venturi separator is intended - deals with inlet mixtures containing up to
15% steam by weight. This Tlimit derives i.a. from the neutron moderating
function of the water; for safety reasons the reactor has to be under-
moderated, i.e. the thermal power output of the nuclear core decreases
with decreasing moderator-to-fuel ratio. At the steam exit water carry-
over may not exceed 20% by weight in order to prevent malfunction of the
secondary dryers resulting in

e loss of thermodynamic efficiency of the turbine cycle due to
- denting of turbine blades by erosion
- scale deposits on the turbine blades
e Jong term radioactive contamination of the turbine and condenser

The carry-under of steam into the downcomer has to be minimized as far as
possible because it causes

® decreased subcooling at the core inlet, resulting in
- reduction of thermal power output
- reduced stability margin
- Tower critical heat flux ratio
® danger for cavitation of the circulation pump
® reduced attenuatingcapability of the downcomer resulting in increased
fast neutron exposure for the reactor vessel's beltline region

Contrary to fossil-fired circulation boilers where separation takes place
in a steam drum, the BWR separators and dryers are located on top of the
reactor. core, i.e. the available area is determined by the reactor vessel
diameter.

Thus, though the problem of phase separation is essentially the same in
both types of boiler, the requirements are much more stringent and the
solution more difficult in BWR's.

The history of steam-water separation in BWR's, extensively reviewed by
Prins, started with gravity separation in the early small sized BWR

(<. 100 MWe) plants. Its application is restricted to such small reactor
sizes because the velocity of the steam leaving the free surface has to

be kept below around 0.4 m/s in order to prevent excessive liquid carry-
over. This exit velocity increases with increasing power output because
the amount of steam raised is proportional to the volume of the core,

i.e. approximately to the diameter cubed, while the free surface increases
proportional to the diameter squared, resulting in proportionality between
reactor size and steam velocity. Therefore mechanical separation was
introduced for BWR's with increasing power output. Several designs of
primary separators have been developed (cf. subsection 4.2.2.), all of

the centrifugal type. Most of them are located on top of the core and
therefore called upcomer cyclones, in contrast to. downcomer cyclones
placed in the downcomer next to the core. After considering the

advantages and disadvantages of both types Prins selected the upcomer
cyclone for further study and development, which subsequently focussed

on the venturi design. The compactness of this design represents an
advantage, the importance of which increases with reactor power as explained
by Prins (cf. section 4.3,). Further advantages are its simple geometry
and the expected relatively low pressure loss due to its converging-
diverging shape. The converging section increases the rotation, hence
only part of the rotation has to be generated by the guide vanes, which
should reduce pressure losses. Additional gain was expected from the
diffuser where part of the kinetic energy is transformed into static
pressure.

o 1B -




1.2

Scope of the investigation

Being an university research project, the present investigation not only
aims at an improved separator, but also at improved understanding of

.gas-liquid flows and the possibility to apply this insight for design

purposes other than steam-water separators. In the course of the
investigation its emphasis increasingly shifted towards this second, more
general objective.

This increasing emphasis on general applicability is reflected in the
development of a computer program based on the differential mass and
momentum balances for dispersedgas-liquid flow, used here to predict

the flow in the cyclone but applicable to a wide variety of other
two-phase flows.

Apart from the effort to develop a mathematical procedure for the solution
of the set of governing partial differential equations, a great deal of
effort was directed at completion of the phase momentum balances. Notwith-
standing the efforts of PRINS [1] and many others, no rigorous description
and correlations for interaction forces between the two phases are
available from literature, therefore the development of correlations for
the drag force and virtual mass of bubble swarms was included in the
present investigation,

Thus the work reported here consists of three distinct main parts, viz.

® an investigation on the drag force and virtual mass of bubble
swarms

® the development of a numerical procedure to solve the set of
eight coupled partial differential equations, defining the phase
mass and momentum balances

e experiments for the development of the venturi separator

The investigation on the interaction forces, discussed in chapter 2,

is based on experiments with atmospheric air-water mixtures as well as
high pressure (uptoj7MN/m2) steam-water mixtures. These experiments
cover the entire range of superficial water velocities - from 1.3 up to
2.5 m/s - and void fractions - from 0.2 up to 0.8 - of interest for the
venturi separator. Straight, converging and diverging test sections were
applied in order to study the effects of acceleration and deceleration.

Chapter 3 describes the development of two numerical procedures for
solving the set of mass and momentum balances for rotating gas-liquid
flows. One of the methods failed but is included in the discussion to
show the reasons for its failure. The results of the successful method
in its present ) state, i.e. not yet fully completed, are compared

with measurements for separator flows.

Chapter 4 goes into the primary separation in BWR's. The experimental
part consists of introductory experiments with rotating atmospheric
air-water mixtures. The directly measured data obtained from these
experiments are then combined with detailed information from application
of the numerical procedure and used to design a venturi separator.
Preliminary air-water tests on this separator are reported next. Because
these tests were performed on a downscaled version of the separator, this
chapter concludes with a discussion on the consequences of upscaling and
application to high pressure steam-water mixtures.

*)

"oresent" indicates the time of completion of this report.
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GAS-LIQUID INTERACTION FORCES IN BUBBLE SWARMS

Introduction

Apart from pure science for the sake of science, history of two-phase
flow studies starts - as is widely known and mentioned by PRINS [1] -
with the development of formulae and criteria for use in engineering
practice, which were meant above all for the design of hardware and
include only very Tittle physical aspects.

An excellent example of these "black box" correlations are the graphs
given by MARTINELLI and NELSON [2 ] for the determination of the
frictional and acceleration pressure drop - in case of forced circulation
boiling of water - in which the pressure and exit quality form the only
parameters in addition to the mass flow.

These graphs were in turn based upon local frictional pressure drop data
obtained by LOCKHART and MARTINELLI [3 ] through extrapolation from
single-phase flow data. This technique of extrapolation from single-phase
correlations has long remained at the base of the majority of two-phase
flow analyses for engineering applications and is still used at the
present time.

An improvement in two-phase flow analyses was achieved by the introduction
of simple analytical models such as e.g. the variable density single fluid
model proposed by BANKOFF [4 ] for predicting the average slip between
the phases at a given cross section in channel flow.

Subsequent analytical models based on two-phase flow characteristics ~ e.g.
the drift-flux model from WALLIS [7 ] - have led to better physical
understanding and correlations of increasing sophistication. However, for
engineering problems such as the centrifugal separation process treated in
this investigation, the number of relevant variables far exceeds the
capabilities of such simple analytical models, leading to the continued
need for empirical correlations of limited validity, generally obtained
from full scale experiments ( [27 1, [281,[291,1301).

The increasing availability of large, high-speed computers opened the
possibility for fundamental analyses based on the conservation laws for
mass and momentum.. The latter is described by the Navier-Stokes equations
which for the case of single-phase steady state turbulent flow, neglecting
body forces, may be written as follows:

2 S b

u,.igl = - L3P L ° Y - au1uJ (2-1)

J 8x; P 3X; axjaxj axj
These equations are solved by introduction of supporting equations for
the Reynolds stresses -p u%ul. A review of these supporting equations and
their applications in enginegring computations given by ROTTA[5 ] shows
these equations to be partly analytical and partly empirical. In two-
phase flow solution of the Navier-Stokes equations becomes extremely
difficult, mainly because of the necessary discretization of all the
bubbles and the introduction of their moving boundaries, including
coalescence and breaking up. Such discretization is only practicable if
the flow equations are greatly simplified. An example of this approach is
given by JOHNSSON, CLIFT and GRACE [6 ] for fluidized beds. The
simplifications they made - in using potential flow and doublets for the
representation of the bubbles and in very simple assumptions for bubble
rising velocity and coalescence of bubbles - are so extensive that the
rather good agreement with experiments is surprising. Nevertheless it is
unlikely that such simplifications can give good results for two-phase

flow computations in general.
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A much more generalized approach for solving the Navier-Stokes equations
is given by the well-known stochastical model. Most important in this
model is the elimination of discrete bubbles by the introduction of the
void fraction o defined as a time average by:

owmt— (2-2)

in which the concentration c equals one if the phase at the point of
interest is gas and zero if this point is in the liquid phase. It should
be noticed that the properties of the gas phase such as velocity, bubble
diameter, etc. remain unchanged by the introduction of this void fraction
and are part of the model.
The vectors of the gas and liquid velocities are defined in the same way
as: :

T

I Of c gg dt i
u_ = -
-9 e dt

0

and
/T (1-c) uy dt

Sk
by

2-4
OfT (1-c) dt &)

from which the superscribed dashes at the left hand sides - indicating the
time average - are always omitted because these velocities are the only
one known in the model.
An obvious analogy exists between these definitions and the square of the
turbulent velocity defining the Reynolds stresses:

fT utu! dt
0 i

—— (2-5)
F gk

0

which has been successfully used for computations of turbulent flow without
discretization of the turbulent velocity ul-itself. It should be stressed
at this point, that this model for two-phase flow is not an extrapolation
of single-phase flow, but is based on a stochastical description of the
flow valid for both turbulent single-phase and two-phase flow.

In two-phase flow analyses the fluctuations in liquid velocity caused by
flowing around the bubbles are eliminated by the introduction of the time
average velocity. As a consequence the pressure distribution around the
bubbles is also eliminated. Hence the resulting drag force and virtual
mass have to be introduced as body forces in the Navier-Stokes equations
for the time average velocities and pressure. The applicability of the
stochastical model for numerical approximations is thus predicated upon
the availability of correlations for these two interaction forces.
Experimental evidence on the magnitude of these interaction forces is
scanty for the case of bubble swarms relevant for this investigation, as
borne out by a fairly recent interpretive review by PRINS [1]. As will

g
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be evident from the foregoing, such quantitative data on the interaction
forces are prerequisite to numerical analysis of venturi separator flow.
The present chapter is therefore entirely devoted to the analytical and
experimental development of correlations for these interaction forces.

A second reason for the great attention paid to this subject stems from
its importance for future applications of the stochastical model to
numerical analysis of two-phase flow, analogous to the present day
numerical approach for turbulent single-phase flow. The potential for thus
raising the state-of-art of two-phase flow analysis to that presently
achieved for single-phase flow indicates increased future interest in the
stochastical model and thus in interaction force correlations extending
far beyond the scope of the present investigation.

One-dimensional model for gas-liquid flow

For the sake of simplicity the experiments reported in this chapter are
analyzed on the basis of a one-dimensional model. This simplification
appears justified because the flows under consideration are bubbly - and
froth flows for the higher void fractions - having a rather uniform
cross-sectional void distribution. Moreover a numerical evaluation of the
two-dimensional effects in these axial symmetric flows is subsequently
carried out (see subsection 2.2.4.) in order to reduce any error due to
the one-dimensional assumption.

This assumption also implies that - apart from subsection 2.2.4. - no
difference is made between the spatial average and local values at a cross
section, hence the superscribed dashes indicating average values are
henceforth omitted for the sake of simplicity.

Conservation laws

The steady state equations given below have been derived before by PRINS
[1] and are to be found in all pertinent handbooks e.g. WALLIS [7 1. The
main purpose of the following description is therefore to evaluate the
physical interpretation of the interaction forces, which may differ
slightly from previous derivations. In this discussion the interaction
forces are only discussed as general body forces Fp and Fp; their detailed
form will be discussed in subsection 2.2.2..

1. Mass balances

The total mass in the control volume of the one-dimensional cross section
shown in figure 2-1 remains constant, yielding:

d
However, due to change of phase the evaporating (or condensing) mass has

to be considered as a mass source or sink respectively, giving for the
gas phase:

FIGURE 2-1 A= B o <
Control volume for total /r
. . ug,uL,a,A.pq
mass considerations control volume
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d

a’z ¢g = ‘P]g (2—7)
where ¢14 is the evaporating mass flow per unit length.
For one—gimensional flow the gas mass flow may be written as:

d

3z (egehug) = ¢4 (2-8)
In the same way the mass balance for the liquid phase is derived as:

d

T (p-l(l-a)Au-l) = - tp-lg (2-9)

For the present experiments ¢4 serves as a correction. In case of
atmospheric air-water experiments the change of phase is related to the
humidity of the saturated air and may be taken zero without any significant
loss of accuracy. For the high-pressure steam-water experiments there is
some flashing due to the pressure drop in the test section and a little
condensation due to heat leakage from the test section; both corrections
are of little significance.

2. Momentum balance for the gas phase

For a complete derivation including extensive discussion of the various
steps is referred to PRINS[1 ]. The discussion in these subsections will
be limited to the essentials and additions to or deviation from this
reference.

As shown by Prins two types of interaction force have to be introduced to
represent the eliminated pressure distribution around a bubble, viz.

e the dragforce fp,
caused by the relative motion between the phases, and

e the acceleration force fp,
required to accelerate the fluid flow around the bubble, which is
represented by a virtual mass added to the mass of the bubble.

As the present model, based on the void fraction, does not distinguish
single bubbles, the forces fp and fp have to be transformed to volume
forces Fp and Fp acting on the control volume. Introduction of n as the
number of bubbles per unit volume i.e.:

n = o/% 43 - (2-10)
yields
£ T 43 _
FD = 0 fD/6 d . (2-11)
and
Fp = o fy/g d° (2-12)

Incorporation of these volume forces in the force balance for the control
volume of figure 2-2 yields:

d 2
Rarr (uApgug) Az + PAAz - ngAz - FDAAZ - FAAAZ =0 (2-13)
with:
P=-o 3P (2-14)
dz
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FIGURE 2-2

Control volume for momentum
considerations of gas phase

and:

wg = apgd (2-15)
Substitution of equations (2-14) and (2-15) in (2-13) gives the momentum
balance for the gas phase:

d
£ (ahogu?) + Fph = -ah B - aho g - o (2-16)
The viscosity forces inside the dispersed bubbles result in a shear stress
at the bubble surfaces which is incorporated in the drag force Fp;
therefore no distinct viscosity forces appear in this momentum balance.

An effect only roughly discussed by Prins concerns change of phase, which
is not properly taken into account in this momentum balance. This is shown
very clearly by substracting ug times the mass balance (2-8) from the
momentum balance (2-16) yielding:

du

aho iy 2 + 9qgug + Fh = o - who g - Fph (2-17)
where the term g ug represents the momentum of newly formed gas in case
of evaporation. The error made in the above momentum balances is the
omission of the initial momentum of the mass ¢]1q at the moment of
evaporation, viz. ¢jqu] resulting in the term ¢1g(ug-u1) instead of ¥1q4g
to the momentum balance for the gas phase.
However, it is not clear how this force should be distributed over the gas
and liquid phase. WALLIS [7 ] has introduced a fraction n resulting in an
additonal momentum of ny1q(ug-uy) for the gas flow and of (1—n)¢1g(ug-u])
for the liquid flow. The ?ac%or n depends mostly on the process
- evaporation or condensation - and on the interaction forces. The
resulting error in the gas balance ¢1q{(1-n)uqg + nuy} has been estimated
for the present steam-water experimen%s in Apgendix 2-A, based on flashing
due to pressure drop. The result:

014 ((1n)ug + nuy3| < fo.01 aA P (2-18)

g
indicates that this error is minor compared to the error in the measured

value of oA %g itself. For this reason use of the above improper
representation of the effects of phase change appears acceptable.

2.2.1.3. Momentum balance for the liquid phase

Again referring to Prins and to figure 2-3 the following equation is
derived for the liquid:

01 o ((1=)Aud) = = (1-a)A L = (1-a)Aojg + FpA - (PR A (2-19)

where the frictional pressure drop - commonly used in engineering practice -
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is related to the wall shear stress t,, by:
() A bz = 1,0 8z (2-20)

and py is supposed to be constant.

Most striking in this equation is the absence of the virtual mass force,
apparently violating Newton's third law which is used for all other forces
both here and in the gas balance. In discussing this point Prins has
followed the reasoning presented by HINZE [9 ] for a single solid particle,
concluding that Newton's third law is satisfied by the presence of the
force fp at the external boundaries of the total mixture.

As a consequence of the above the force Fp does exist in the momentum
balance of the mixture, influencing the pressure drop of the mixture.

As shown by PRINS [ 10 ] this approach is supported by the experimental
data of ROSE and GRIFFITH [ 11 ], who measured the force exerted by an
air-water mixture on a turning Tee, deflecting the flow at right angles
from its original direction.

The question appears in order why the drag force Fn is treated differently
from the virtual mass force by including it in equation 2-19. As a matter
of fact HINZE [9 ] concluded that it should not appear in the 1iquid
momentum balance. However, his theoretical analysis is based on a velocity
defect in the liquid velocity profile behind the particle or bubble, while
in case of swarms of bubbles (and particles) this velocity defect may be
assumed to be smoothed out rather quickly by the turbulence of the flow
itself. It thus appears plausible that the velocity wakes will not affect
the velocity profiles at the external boundaries of the liquid control
volume and only have to be taken into account at the internal boundaries.
However, as stated by WISMAN [12 ] and discussed in subsection 2.2.3.1.

the frictional pressure drop ( )f contains a term x;iFp, which implies

that a fraction A4 of the drag force Fp does "reach" the wall, which forms
part of the externa] boundaries. If the fraction x; - which depend on
geometrical and flow parameters - equals one the result is conform the
theoretical analysis of HINZE [9].

2.2.1.4. Momentum balance for the mixture
The momentum balance for the mixture is found by adding equations (2-16)

and (2-19):
£ (ahogu?) + oy L ((1-0)Au) + AF, =
= -A L - Aloog + (1-a)oq)g - AP, (2-21)

2.2.2. Phase interaction

In this subsection the mathematical formulation of the interaction forces
Fp and Fp will be derived with respect to single bubbles.

In addition a short review will be given of experimental and ana]yt1ca1
correlations for these interaction forces, for a more extended review
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see PRINS[1].

.1. Drag force

In engineering practice the drag force of a submerged body is usually
presented as:

fD D b §pu (2-22)
In order to give the drag force the same sign and direction as the

relative velocity u, the momentum flux is written as pup|up|, while in
case of spheres the cross section Ay equals % d2, yielding for the present:

2
o = Cp 7 d boqu.fu ] (2-23)

Substitution of fp in equation (2-11) yields:

Cp
FD =3 a T p]UrlUrl (2-24)
It should be noticed that this formula is only valid for one-dimensional
flow. For multi-dimensional flow a more extensive analysis is required
with respect to the representation of the momentum flux; this will be
discussed in subsection 3.1.1.2..
Eor practical use of the momentum equations a correlation for the ratio

f

7? is needed, as for example investigated by PRINS [1 ]. Referring the

discussion on correlations for the bubble diameter to subsection 2.2.3.2.,
the attention will be focussed to the drag force coefficient C

An extensive review of literature data for both single bubb]es and bubbTe
swarms was given by PRINS[1]. -
In addition to updating this information the present text 1ntends to put
it into a wider perspective by considering drag force coefficients for
four forms of two-phase flow, viz.

single solid particle
single bubble

swarm of solid particles
swarm of bubbles

This extension of the data results from the present author's view that no
significant discontinuities between these four flow forms are to be
expected. Apart from the difference in density (compare table tennis ball
versus solid ball) the only differences between bubbles and solid
particles are the presence of internal circulation and deformation in the
former case, while the main differences between single particles or bubbles
and swarms - apart from variations in bubble diameters due to coalescence,
to be discussed later - consists of wake effects exerted by particles or
bubbles on their downsteam followers. None of these differences is
connected with abrupt changes; hence it seems logical to expect continuous
transitions between the four flow forms and to compare them with each
other.

1.1. Single solid particle

From experiments with single solid spheres in infinite fluids SCHLICHTING
[13 ] constructed the "standard" drag curve shown in figure 2-4.

From this curve it appears that the proportionality with the momentum flux
inferred by equation (2-22) holds only in the region 700 < Re, < 2.10°,
for which Newton found the value Cp = 0.44. While the inertia effect
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dominates this region it can be completely neglected in comparison to the
shear forces at the particle surface for Rep < 1. For this latter region
the drag force is proportional to the relative velocity only, resulting in
a drag force coefficient - in equation (2-22) - given by Stokes' law as

24
CD_T{_E-E'
In consequence of the smooth transition zone between these two regions,
the drag force coefficient can be approximated reasonably well - for all
regions - by:

2 24

CD = 0.44 + FE;
More complex correlations are reviewed by SO0 [ 14 ], but the possible gain
in accuracy afforded by their use appears irrelevant for the present study
in view of the effects discussed in the following subsections.

5

for Rep <. 9,10 (2-25)

2.2.2.1.2. Single bubble

For experiments and analyses on single bubbles in stagnant liquid the
reader is referred - for the sake of brevity - to the extensive reviews
given by PRINS[1] and SO0 [ 14 ] and the resultant figure 2-5. For Tow
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FIGURE 2-6

Drag force coefficient for air bubbles in stagnant water as a function of
their Reynolds number
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values of Rep the drag coefficient is seen to follow Stokes' Taw, while
it tends to reach a constant value (Newton flow) for very high Rep values
(Rep > 5000).

The region of interest for the present investigation is roughly delimitated
by 1000 < Rep < 10,000, i.e. the region where the bubbles are flattened
to an ellipsoidal form which becomes mushroom-shaped with increasing
Reynolds number, while the drag force is increasingly dominated by vortex
shedding downstream of the bubbles.

Rise velocities of single bubbles in flowing water have been studied by
BAKER and CHAO [25 1. In figure 2-6 their results are presented in the
form of drag force coefficients as a function of the bubble Reynolds
number with the Reynolds number of the main stream as parameter.
Unfortunately the scatter in the experimental results is very large
warranting only general conclusions on the drag force coefficient. The
following conclusions have been drawn by the authors:

FIGURE 36 system Reynolds numbers
Dr:ag coeff?/c%ent for: demineralized water | tgp water
atr bubbles in flowing P
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* the minima in the curves occur at higher values of the bubble
Reynolds number compared to experiments in stagnant water,

* the drag coefficients tend to merge with increasing bubble Reynolds
numbers,

* the peak values of the drag coefficients for Rep > 3000 are lower
than in stagnant water.

The first and second conclusions together indicate that the main stream
turbulence modifies Stokes' law, but does not affect the Newton region,
pointing towards an influence of the effective viscosity in the bubble
Reynolds number.

Replacing the liquid viscosity ny in the bubble Reynolds number by the
turbulence viscosity

(2-26)

= £
g = ﬂ](l . \))




makes the bubble Reynolds number decrease by a factor (1 +-%) and

reshifts the curves in figure 2-6 to the left. Computation of the
kinematic turbulence viscosity at the centerline by Reichardt's formula
1526 =2

‘%X{ = 0.03335 Rey {2-27)
where
*
* p]u]D
RS (2-28)
and
T
e wikl e (2-29)
1 o

results in a value for (1 + <) of about 200 which is much too large for
the actual experiments. h
It appears more logical, however, to assume that the turbulence in the
neighbourhood of the bubble is determined only by eddies smaller than the
bubble itself, and hence to characterize this turbulence by the bubble
diameter rather than by the channel diameter. This leads to the insertion
of a modified Reynolds number:
*
pqU d
Re; =G
i

. | (2-30)

in correlation (2-27), resulting in a reduced value for the factor (1 + %)
of about 1 up to 4, which is the right magnitude for the correction of

the bubble Reynolds number. However, insufficient analytical or experimental
evidence is available to support the above assumption, hence no correlation
for the dependency of the main stream turbulence in the Stokes' region can
be proposed at present.

The third conclusion of Baker and Chao indicated a small dependency of the
drag coefficient in the Newton region on the turbulence, which is caused
by the shape of the bubbles. Use of the effective bubble diameter

=D X =
de B Vb (2-31)
- as done in all the referenced publications - introduces a dependency on
the shape of the bubble defined by:
2
_d
D=3 , (2-32)

e de

c

where d is the diameter of the projected bubble area in the direction of
flow.

The more spherical shape found by Baker and Chao compared to the results
reported in [20 ] and [.21 ] for stagnant water - most probably caused by
the inertia forces from the turbulence velocity acting randomly all over
the bubble surface - results in a decrease in projected area and thus in
a lower apparent drag coefficient. ‘
For stagnant water the value Cp_ = 2.6 derived: from figure 2-5, together
with the ratio: ¢
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= 30 =

él = 2.3 (2-33)
e

found by DAVIES and TAYLOR [22 ] for mushroom-shaped bubbles, result in a
drag force coefficient:

Cp = 0.49 (2-34)
In view of the possible measurement errors the agreement between this
value and Newton's value of 0.44 may be considered good. It is hence to
be expected that for very high turbulence the drag coefficient will again
approach the value of 0.44 holding for single bubbles in the Newton region.

1.3. Swarms of solid particles

Several authors have investigated the relative velocity of swarms of
particles in fluidization and sedimentation. In order to provide a
framework for evaluation of the relevant experimental data we shall first
derive an analytical expression - based on the velocity ratio

u Cg

—£ - for the ratio — between the drag force coefficient of particles in

up CD

swarms to that of a sing]é particle moving in an "infinite" fluid. For
non-accelerating flow the left hand sides of the momentum balances (2-16)

and (2-19) are zero. Elimination of %g from these equations and
substitution of equation (2-24) yields for particle-liquid flow (pg > pp)

Qa

D d
FD =30 T p-luo‘lur = oz(l-oz)(p-l-pp)g + a(a'g_)fr‘ | (2—35)

For the present analytical purpose the term a(%g)fr will be omitted,

1mp1ying2the omission of the effects of diameter ratio-ﬁ and Froude
u
number 5% .
Application of formula (2-35) to a single particle of the same diameter
yields:

(o]

C
D (o2} (o] . _ w
g equplupl = (o pp)g (2-36)
where CB and u? are the values pertaining to the single particle in an

infinite fluid.
Dividing equations (2-35) and (2-36) yields:

o]

Coa
D (1ma) ()2 (2-37)
CD Uy

Notwithstanding the general validity of the above correlation it is
tacitly assumed that the drag coefficient for any given value of o is
independent of the velocity, which assumption is only valid in the Newton
region. Although, as mentioned in 2.2.2.1.2., this is the only region of
interest for the present investigations, the considerations will now be
extended to the Stokes' region in order to show that a common physical
basis can be established for the interpretation of experimental results
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extending over the entire range of Rep numbers.
In this region the drag coefficient is always dependent on the relative
velocity as appears from Stokes' law:

_ K
CD = —F\Té; (2-38)

Distinction of this effect from the influence of the particle fraction on
the drag coefficient is obtained by transformation of equation (2-37) to

Re® u>
K 2
e e O e
ep uy
where:
0 ud
S ey
Re” = (2-40)
P W

In fluidization the Reynolds number for a swarm of particles Re% can be
derived from the definition valid for single particles:

2
o
Re® ~ _ Momentum _ _ (1-a)oqu,, (2-41)
p shear stress = su®
A 4
by STy |
Incorporation ofqthe tgrbu]ence viscosity by substituting equation (2-26)
du u '
g e r . .
and replacing 577'by - as usual, yields:
(1-a)p,usd
Re® = —r L (2-42)
and.thus:
a uoo
K—m = ——lT (1'0.)2 "—;: (2"43)
K (1 o+ ;) Ur

Although it should be possible with a reasonable effort to involve a

model for the turbulence viscosity ¢ for two-phase flow from the
considerations presented in subsections 2.2.2.1.2., 2.2.3.1. and 2.2.3.2.,
such an effort would far exceed the scope of the present investigations.
It is possible, however, to fulfill the aim of providing a common basis

of understanding for experimental results extending over the entire range
of particle Reynolds numbers by Timiting the attention at Tow Rep values
to the region where Ref < 1, where the turbulence viscosity e vanishes
because of low velocity and/or small particle diameter. The two equations
(2-37) and (2-43) obtained by analysis shall now be supplemented by
experimental velocity ratio data - for both fluidization and sedimentation -
published by RICHARDSON and ZAKI [31 ] and extending over the range

0.03 < Rep < 104. They presented their results in the form of the
correlation:

St .
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u
. | (2-44)
Uy
where Ug is the superficial velocity, thus:
u
o _ S -
o (2-45)
and
up -1
= = (1'0.) (2-46)
Uy
The power n was found to be dependent on Re; and-%.

For the sake of comparison of these experimental results with correlations
(2-37) and (2-43), derived with the implicit omission of the effects of

diameter ratio and Froude number, the power ng valid for % approaching
zero shall be used here.

A plot of the ng data is given in figure 2-7, from which it appears that
ng equals 2.39 and 4.65 in the Newton and Stokes' region respectively.
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Power ) from [ 31 1 as a function of the Reynolds number

a
u
Substitution of these values in equation (2-46) and use of —£ in
equations (2-43) and (2-37) yields: u,
e for the Newton region:

CCX

[—E] = (1-0)" 178 (2-48)

Coln

e for the Stokes' region:
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Qo
ol (10)7t6® (2-49)
K (1 +‘;)

For these specific fluidization and sedimentatian experiments the particle
diameters and velocities in the Stokes' region are so low that the
Reynolds number ReB - as defined in equation (2-30) - vanishes and thus
5 = 0. Considering the similarity between the two above formulae and the
11m1ted accuracy of the np data from RICHARDSON and ZAKI [31 ] it appears
Jjustified to represent the effect of particle volume fraction on the drag
force coefficient by one single correlation:

Cg K* -1.7
-.-:; = —= (1-0‘) (2"50)
CD N K
which modifies equation (2-25) for a single particle to the general
formula:
24 o T
Cp = (0.44 + RE;)(1—a) (2-51)

where Re, is defined in equation (2-42).

From the above it appears evident that the transition of ng from 4.65 to
2.39 coincides with the transition from the Stokes' region to the Newton
region, which would correspond to a transition from equation (2-37) to
equation (2-43). While this cannot be proved exactly in the absence of a

correlation for the factor (1 + %), the smooth transition of ny and the

coincidence of this transition zone with the transition zone of the
"standard" drag curve convinces the author of the general validity of
correlation (2-51). In addition it should be noticed that the factor

(1 + %) is only relevant in the region where Re+is not very large

p
(Rep < 500). Hence the value of Reynolds number Re; - defined by equation

(2-30) - determining the factor (1 + %) will also be fairly small,
Teading to a maximum estimated value of only 3 for (1 + %).

This value is borne out by comparison of the values obtained from equation
(2-51) to drag force coefficients derived by SO0 [ 14 ] on the basis of
the pressure drop correlation for fluidized beds obtained from ERGUN [ 32 ].

(1-0L)p-|urd
For the region — < 100 this comparison shows that the present
1

values can be made to coincide with those of Soo for (1 + %) values
between 1 and 2.5, which may be regarded as a justification of the above
mentioned upper 1limit for the factor (1 +-%).

A§ stated previously the influence of diameter ratio g-and Froude number .
u

g% is neglected up until now by omitting the last term of equation (2-35).
This last term - being positive while the Teft hand side (due to the sign
of uf) and the first term of the right hand side are negative - decreases
the abso]ute value of the relative velocity uf as RICHARDSON and ZAKI

[31 ] expressed by the rise of the value for n in correlation (2-44) o
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account of %n However, this does not affect the general validity of Cp og
u
correlation (2-51), because the effect of change of the velocity ratio —E
u
in the correlations (2-37) and (2-39) is eliminated by the addition of r
the term emanating from the last term of equation (2-35).
A further verification of the validity of correlation (2-50) may be
obtained by comparison with the semi-analytical approach of MERTES and
RHODES [ 33 ] who take into account the reduction of free area for the
flow around the particles with increasing particle volume fraction. On the
basis of the average free area in cell with a cubic particle arrangement
they find:

=
e JiE =

T (1-a) — (2-52)
u. (1-a) + 1.209 '

Substitution of this ratio in equation (2-37) yields:
o
ﬂ)_ = {(1'(1) + 1.209(12/3}2 (2_53)
= (1-a)

Figure 2-8 shows reasonable agreement between this correlation, correlation
(2-50) and some experimental data for particle fractions up to 0.6. The
deviation of correlation (2-53) for higher particle fractions is most
probably caused by the increasing improbability of a cubic arrangement

for these particle fractions, while the discrepancy between the experiments

and correlation (2-50) is probably caused by the-% and Froude effects
mentioned before. .

It shall be noted, however, that substitution of the velocity ratio from
(2-52) into equation (2-43) valid for the Stokes' region results in poor
agreement with the experiments. No explanation has been found for this
fact. However, the striking coincidence of the experimental data from the
Stokes' and Newton region -~ as appears in figure 2-8 - justifies the
validity of correlation (2-51).
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2.2.2.1.4. Swarms of bubbles e
Investigation of the drag coefficient ratio —g for bubble flow is more
C
D

complex than for particle flow, because of complex physical effects such
as changes in shape (flattening), coalescence and internal circulation.

O0f these the Tatter appears of minor relevance for the present investi-
gation, while the two former shall be combined into the influence of the
bubble diameter. For variable bubble diameter equation (2-37) changes into

e a u
gD (2-54
B u®

D r

where it should be noticed that in the Stokes' region Cp in turn depends
on the bubble diameter.
The influence of the bubble diameter clearly appears in the experiments
reported by ZUBER and HENCH [ 34 ], on the movement through stagnant water
of bubbles formed by air entrainment through perforated plates with
various orifice diameters. In figure 2-9A the air throughput - and hence
the superficial and relative velocities - are seen to be dependent of the
orifice diameter, which undoubtedly influences in the bubble diameter.
For orifice diameters of 4.06 and 1.52 mm and a relative velocity
exceeding about 0.4 m/s approximation of the bubble diameter as being a
few times greater than the orifice diameter leads to Reynolds numbers of a
few thousands, i.e. just within the Newton region. Thus for these two
cases the drag coefficient can be assumed to satisfy the correlation:

cg = Cp f(a) (2-55)

where Cp is the same for both cases.
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Application of equation (2-35) to these cases of bubble flow in stagnant

d . . .
water - °p + p_ and (Hg)fr = 0 - leads for equal void fraction in both

g
cases to:

o Qa

%a{;% D]Uiluc:.l}l = %a{d—g p]u$[u$|}2 = a(l-a)(p]-pg)g (2-56)

where the subscripts 1 and 2 indicate the test with orifice diameters of
4.06 and 1.52 mm respectively. :
Substitution of equation (2-55) yields:

da
o 1 o
u — =u (2-57)
r o r
2 d2 1

The assumption of proportionality between bubble diameters and orifice
diameters results in an almost exact agreement with equation (2-57) for

the aforementioned orifices as shown in figure 2-9B.

This good agreement is in great contrast with the experiments with 0.41 mm
orifice diameter. The disagreement in this latter case can be explained by
the much smaller bubble diameter and the resulting Tower relative velocity,
which jointly caused a decrease of the bubble Reynolds number to about 100,
i.e. the bubbles are in the Stokes' region and rise uniformly and steadily.
Zuber and Hench found a transition from this "ideal bubbly flow" when the
void fraction reaches a value of 0.3 (see figure 2-9A). It is the present
author's opinion that at this point coalescence of the bubbles becomes
significant, resulting in a shift to the Newton region and thus to relative
velocities of the same magn1tude as in the tests with 1arger orifice
diameter. This opinion is confirmed by f1gure 2-9A.

The description of this Tatter flow regime - called churn-turbulent by
Zuber and Hench - as agitated and unsteady with significant agglomeration,
agrees with the large turbulence in the Newton region caused by vortex
shedding of the bubbles in this region.

In view of the bubble Reynolds numbers to be expected in the present
investigation on separator flows the churn-turbulent flow regime is the
regime of interest.
The relative velocity in the churn-turbulent is known (see e.g. WALLIS
[71) to increase with increasing void fraction. HENCH and JOHNSTON [ 35 ]
approximated the results of Zuber and Hench in the churn-turbulent regime
by:
_ 0.756 a -

Usg = T(1=a) | el

Figure 2-9A shows this approximation to be in fair agreement with the

experimental results.
For these experiments in stagnant water equation (2-58) can be written as:

_ 0.756

Ug = Ur = W (2‘59)
and substitution in equation (2-35) Teads to:

c

7? = 54.9 (1-a)3 (2-60)

PRINS [1 ] adopts the factor (1-a)3 but found for his experiments - with
superficial water velocities from 2 up to 3 m/s - a constant value of 30
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instead of 54.9.
A more careful examination of Zuber and Hench's relative velocity data
according to figure 2-9B indicates, however, that:

_ _0.36
" (1-a)
is a much better approximation (omitting the relatively minor influence of
the bubble diameter postulated in (2-57)) leading to:
C
2 = 2.2 (1-a)° (2-62)

u 2 (2-61)

The steep increase of relative velocity and corresponding decrease of the
drag coefficient with increasing void fraction is confirmed by the
experiments of SMISSAERT [36 ] for flowing water. However, despite the
rather Tow water flow rates of these experiments, including even a series
in stagnant water, increase of the relative velocity shown in figure 2-10
is less steep than found by Zuber and Hench.

A first approximation shows a dependency of the relative velocity on void

fraction varying from (1'&)—1.8 for stagnant water up to (1-a)—2'5 for a
superficial water velocity of 0.244 m/s. Although it would obviously be
desirable to have at one's disposal measurements made at higher superficial
water velocities, the present data appear adequate for confirming the
influence of the superficial Tiquid velocity on the exponent of correlations
like (2-61).
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WALLIS [7 ] stated part of the void fraction dependency and the dependency
of the superficial water velocity in channel flow to be an effect of
nonuniform flow and found by analysis that the true relative velocity - in
the experiments of Smissaert - varies only with a factor (1-a)~1-0 and is
independent of the superficial water velocity. This analysis, however, is
based on the model of ZUBER and FINDLAY [37 ] for two-dimensional effects.
As proved in appendix 2-B and discussed in subsection 2.2.4. this model: of
Zuber and Findlay is incorrect for predicting the two-dimensional effects,
making the result of Wallis doubtful.
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.2. Virtual mass

This doubt is increased when considering - as mentioned before - that the
water velocity must have some influence on the relative velocity in channel -
flow via the frictional pressure drop and bubble diameter.

Notwithstanding qugntitative uncertainties the above review does show a

large decrease of 7? with increasing void fraction while for particle

flows an increase appears. This contrast between these two types of two-
phase flow can hardly be explained by differences such as internal
circulation and deformation in the case of bubbles. While no simple
explanation for this difference is to be found in literature up till now a
tentative in this direction will be made in subsection 2.4. on the basis
of the experimental results of the present investigation.

In order to eliminate all additional effects as thoroughly as possible
supporting analyses will be carried out with reference to:

- the wall shear stress, in order to eliminate the influence of the
frictional pressure drop on the relative velocity

- the bubble diameter, in order to be able to study the drag
coefficient proper

- the effects of nonuniformities in channel flow.

The experiments will be performed at water velocities and void fractions
characteristic for separator flow in order to maximize the relevance of
the results for the purpose of the present investigation, while the void
fraction will be varied over a wide range in order to determine the
dependency on this most important parameter as thoroughly as possible.

The virtual added mass mentioned in subsection 2.2.1.2. causing the
additional acceleration force Fp in equation (2-13) has been incorporated
in fluid dynamics analyses for a Tong time (see e.g. LAMB[391]).

Although - as shown below - it appears as an increase of the particle mass
and is hence named "virtual added mass" it has nothing to do with the
momentum of the particle, as is indicated clearly by Kelvin (see LAMB [39 ])
who named this additional term impulse. In fact it is a resultant force
from the pressure on the particle surface caused by the inertia of the
surrounding fluid: in case of change of the relative velocity of the
particle the flow around it becomes unsteady and the pressure distribution
on the particle surface will differ from that of the initial steady flow.
Thus for an accelerating particle a component resulting from the unsteady
part of the velocity distribution around the bubble is added to the pressure
distribution of the steady situation which constitutes the particle drag.
The analysis of this additional force is always based on frictionless
potential flow (see e.g. MILNE-THOMSON [40 ]), where the particle drag
vanishes and the pressure distribution on the particle surface results
directly in the additional acceleration force. HINZE [ 9 1 made such an
analysis for a single sphere with velocity ug(t) in an infinite fluid

with velocity ug=(t) at infinity, uss(t) and ug(t) having both the same
direction. After computation of the pressure distribution Hinze derived
the following momentum (and force) balance for the sphere (written in
Lagrange notation):

du du du

™ a3 _dpy ,_ T 3 S T 43 s _ _f*® _
-gd ["(a’i)m]—6dpsa-§+1—2-dpf(a'fs— ‘a’.q) (2 63)

The left hand side of this equation represents the pressure gradient force,
while the first term of the right hand side is the acceleration force of

o
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the sphere itself. The second term is the additional force fp due to the
"virtual added mass": it appears as if the mass of the particle - with
respect to the relative motion - were increased by an amount equal to
half the 1iquid displaced. This value of one half is only valid for a
'sphere and will change for different shapes of the submerged body: the
more streamlined the body the smaller the "virtual added mass" and vice
versa. Therefore the additional force is written as:

e 5 el dUS dufoo

fa =5 4 Beelar, - @) SR
where the virtual mass coefficient B depends on the shape of the body and
the direction of the flow to the body.
Values for B for ellipsoids with various axis ratios and various angles
of attack are given in[39 ] and [41 ].
Writing equation (2-64) in Euler notation for stationary motion and
extending it to a homogeneous distribution of n particles per unit volume
through the use of equation (2-12) leads to:

f
A
Fah = o
A 1d3

d
A = aApfus EY'B(us—uf”) (2-65)

In this expression the virtual mass coefficient B is part of the
differential quotient because this quotient stems from the differentiation
of the velocity potential in which the effects of neighbouring particles
on the velocity distribution and hence on the virtual mass coefficient are
incorporated.

For gas-1iquid flows the additional force in the momentum balance for the
gas phase (2- 16) shou]d thus be written as:

FAA 0y H— (uABU (u g u])) (2-66)
as derived by PRINS [1 1.

An attempt to quantify the postulated dependency of the virtual mass
coefficient B on the void fraction was made by ZUBER [42 ], who used the
well-known (see e.g. MILNE-THOMSON [ 40 ]) virtual mass of a sphere placed
in the center of a second sphere filled with liquid. Assuming the diameter
ratio of the spheres equal to al/3 the virtual mass for this type of flow
yields:

faii {%§§§l (2-67)

A more profound analysis was performed by VAN WIJNGAARDEN [ 43 ], who
investigated the virtual added mass of randomly distributed spheres using
the virtual added mass of pairs of spheres with centerlines either parallel
or perpendicular to the velocity of the liquid. For low "void fractions"
the result is:

B = 3(1 + 2.780) + 0(a?) (2-68)

which should be considered an 1mprovement over correlation (2-67)
approximated as B = 3(1 + 3a) + 0(a?) for low values of the void fraction.
These analytical resu]ts, indicating increasing virtual mass coefficient
B with increasing void fraction, are contradictory to the analysis by
PRINS [ 10 ] of the experiments of ROSE and GRIFFITH [11 ] with air-water
mixtures in a turning Tee, which show a marked decrease of the virtual
mass coefficient B with increasing void fraction. The same trend appears
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in the experiments of PRINS [1 ] for air-water mixtures in a converging
channel, which he correlated by:

B = 3.155 (1-&)10'85 (2-69)

While granting possible inaccuracies due to the admittedly difficult data
reduction from experimental flow parameters to values for B, the trend of
decreasing virtual mass coefficient found by Prins is far too pronounced
to leave room for doubt. It is moreover to be expected because of the
decreasing amount of liquid flowing around the bubbles.

In order to find a reasonable explanation for this discrepancy between
analytical and experimental results VAN WIJNGAARDEN [ 43 ] made a second
approach to the problem by studying the momentum flux of a bubble-liquid
mixture in a given control volume. This approach differs from the model
described before by taking into account the momentum caused by the
inhomogeneities in the liquid velocity in the neighbourhood of a bubble/
particle, whereas the present model deals only with the time average
velocities (cf. equations (2-3) and (2-4)) and incorporates local effects
in the neighbourhood of the bubbles/particles in the interaction forces
Fp and Fp.

In appenéix 2-C it is shown that inclusion of the liquid velocity peaks
at the bubble boundary always results in an increase of the momentum flux
proportional to the square of the peak value, which is consistent with the
result given by Van Wijngaarden:

2 1 2

where for the sake of simplicity the mass of the bubbles is set to zero.

The proport1ona11ty of the additional term with (ug-uj)? instead of
-u1) as appears in expression (2-66) is used gy Van Wijngaarden to

egplg1n the discrepancy between analyses and experiments. Writing the

additional term - ap]( g u]) of express1on (2-70) in the more general

form of a v1rtua1 mass term aB'p1(u -u1) and equating it to the virtual
mass term aBpjug(ug-uy) of expression (2-66) leads to the equation

u_-u
p=5' L1 (2-71)
9

u_-u
The velocity ratio —%T—l in this expression was evaluated by Van Wijngaar-
den - on the basis of%ﬁs result for the bubble velocity in a mixture

instantaneously acce]eraged from the stagnant state -~ and found to depend
on the void fraction as

*) It should be stressed that this result refers to an instantaneously
accelerated mixture, while in the present investigation stationary
vertiecal gas-liquid flows are studied. The discrepancy, for example,
between the slip after acceleration - expressed in equation (2-72) =

written as s = 35—7;§7E'and the well-established formulae of BANKOFF
2
[4]1 s = %E% for the ever existing slip in the case of vertical flow,

points to the questionable applicability of Van Wijngaarden's second
approach to the flows studied by Prins and in this investigation.
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kel

~ (1-0.93a) (2-72)
g

This offers the possibility of a decreasing coefficient B with void
fraction and hence is a possible explanation for the inconsistency between
the decrease of B found experimentally in[1 ] and [10 ] and the increase
to be expected from the analytical approach described above.
While this may reconcile the two descriptions it is impossible - at the
present stage of knowledge - to decide which of the two is preferable
and/or correct. This is due to the uncertainty about the definition and
representation of the local pressure fluctuations in the neighbourhood
of the bubbles/particles in Van Wijngaarden's second approach.
For historical reasons the author has retained the classical description
of equation (2-66) for the present investigation. In addition, however,
the experimental results will be examined too - in subsection

u_-u

]

2.3.1.6.2.2. - for proportionality with the factor %j in order to

g
investigate the validity of equation (2-71).

Supporting analyses

Before the momentum balances (2-16) and (2-19) can be utilized to obtain
experimental values for the interaction forces Fp and Fp the following
three flow variables - which will not be measureg in the experiments -
have to be known:

- the frictional pressure drop (gg)fr, in order to complete the

Tiquid momentum balance Cp
- the bubble diameter d, in order to separate CD from the quotient .3
defining the drag force Fp
- the two-dimensional effects due to the non-uniform velocities and
void fraction in the channel flows of these experiments, in order
to incorporate the local variations in a cross-section.

The physical background and resulting correlations for these variables
will be discussed in the following subsections.

1. Frictional pressure drop

In the present investigation the frictional pressure dop - or wall shear
stress - as it appears in the Tiquid momentum balance reaches values up
to the same magnitude as the interaction forces, hence an accurate
pressure drop correlation is prerequisite for an accurate determination
of the interaction forces. For this purpose the author proposed a new
pressure drop corre}ation having a better accuracy than existing
correlations [ 12 1*/. This correlation was derived with the following
considerations in mind:

e any correlation proper for two-phase flow should retain its
validity for single-phase flow, which is an extreme case of two-
phase flow.

e the drag force of the discontinuous phase, in addition to being
represented by the F term in the momentum balance, will also

*

77The present text covers only the analytical background and essential
steps of the derivation; for a more extensive description the reader
18 referred to the original paper.
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influence the wall shear stress through the phenomena of wake
formation adjacent to the bubbles (or particles).

e the Reynolds number - determining the turbulence - should be based
on the actual flow conditions.

Elaboration of the second principle leads to the general description of
the frictional pressure drop:

_lm
D

o=

dp

(Hi)fr Mtp * A4Fp

where \p and A are the friction factors for the momentum flux and
volumetric drag force respectively, and the momentum flux for two-phase
flow is defined by*):

(2-73)

2 2
Mtp = (1—0L)p-|u-| + apgug (2-74)
The drag force Fp for non-accelerating flow was given in subsection
Ritsksleds A8
Fn = a(1-a)(py-p,)9 + a(gg) (2-35)
D P17Pq dz’fr
Substitution of expressions (2-74) and (2-35) in equation (2-73) yields:
A
dp _ m _ 2
(@z)fr = Trmar)p (1madequy X
P, U A: pyTP
o 9. 9y2,, 1,71 99D 2
x]1+ TiaT > (u]) + 2 x o > u% ] (2-75)

The Reynolds number is defined as the ratio of the inertia and viscosity -
forces. The inertia force is represented by the momentum flux, given for
two-phase flow by expression (2-74).

The viscosity force for wall friction must of course be related to the
situation at the wall. For adiabetic vertical two-phase flow there is
always a boundary layer of pure liquid. Hence the viscosity force is
represented by:

du]

fv - M dr (2-76)
du]
In single-phase flow the differential quotient r: is well characterized

by the quotient of the mean velocity and the channel diameter, yielding
the well-known Reynolds number. In case of two-phase flow it will be clear
that, whereas the numerator of the quotient can again be characterized by
the true 1liquid velocity only, the denominator cannot be characterized by
the channel diameter. This last fact is particularly evident for annular
flow, where the thickness of the Tiquid Tayer is much more characteristic
for the Tiquid flow at the wall than the channel diameter. A simple
computation of this liquid layer thickness in case of annular flow yields:

2t = (1-/a)D (2-77)

* = . . .
) The effects of non-uniformity in channel flow are not taken into account
in order to be consistent with single-phase flow practice where the same
effects exist but are always omitted.
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Use of this annular flow model yields for the Reynolds number for two-phase
flow:

(1—a)p]u% + ap u?

= 99 ._
Retp - U =
™ (1-V2)D
(1-a)pqu4D
. e S SR B 9 -2 9) (2-78)
M e -

For vanishing void fraction the definitions of frictional pressure drop
and Reynolds number for two-phase flow - given by equations (2-75) and
(2-78) respect1ve1y - change into the normal definitions for single-phase
Tiquid flow. In view of the first consideration for two-phase flow Ap
will hence have to equal the friction factor A for single-phase flow.

The present correlation states that this equality is not only true for
vanishing void fraction but holds for all void fractions, yielding:

0.500
0.32
Retp

which correlation originates from the values for smooth pipes in the Moody
diagram [44 ] for single-phase flow, as used by DUKLER et al [45].

The only remaining parameter to be determined from experimental data is
the friction factor a5 for the interaction force. For this purpose only
those published wall shear stress data which were obtained directly from
the force acting on a Toose sleeve in the test section have been utilized,
in order to obtain maximum accuracy. A total of 236 measurements has been
gleaned from the investigations of MALNES [46 ], CRAVAROLO [47 ] and NIESE
[48 1 after further screening based on the systematic error in their
experiments.

The range of relevant flow parameters for the selected measurements
tabulated in table 2-11, is seen to cover the entire range of interest
for the present investigation. Because of the selection of the annular
flow model as the basis for the two-phase flow Reynolds number it is
essential to investigate the validity of the correlation for other flow
patterns. For this purpose all 236 measurements have been plotted in a
flow pattern map - see figure 2-12 - in order to assess whether the range
of flow parameters is sufficiently wide to be representative for the
various two-phase flow regimes. This flow pattern map based upon the
superficial gas and 1iquid velocities, has been verified by HEWITT and
ROBERTS [49 ] for a wide range of density ratios p g/p], including those
of the present measurements. As can be seen from figure 2-12 all flow
patterns are represented by the selected data, thereby confirming their

)\m = 0.00560 +

(2.103 < Retp < 2.105) (2-79)

parameter range or values
void fraction [-1] 0 - 0.91
liquid velocity [m/s ] 0.6 - 62
gas velocity [m/s ] B0 - 29.3
density ratio [-] 0.001 - 0.046
TABLE 2-11 liquid viscosity [Ns/m2 ] | 0.0010 and 0.0012
diameter [m] 0.0250 and 0.1143
Range of flow parameters of the b i ongii Wl 4 1 x 10° - 2.5 x 10°
. . or two-phase flow
frietional pressure drop data
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FIGURE 2-12
Flowpattern of all 236 data for the frictional pressure drop

suitability for establishing a correlation aiming at general validity.

Both for determination of the interaction force friction factor ) and

for evaluation of the final pressure drop correlation three statistical
parameters have been computed viz. the arithmetic mean deviation §, the
standard deviation ¢ and the scatterband y defined as the fractional
deviation with respect to § including 68% of the measurements. These three
parameters are all based upon the fractional deviation & between calculated
and measured values, defined by:

P.-M. :
T o
8; = _FE—-— X 100% (2-80)

where M; and P; are the measured and predicted values for the i-th
measurement. Hence

é =

flta 33

5. (2-81)

1
n =1 1

and

n -
\/(1.21(61--6)2)/<n-1) (2-82)
The scatterband ¢y is derived by hand from the frequency distribution of
the deviation. The introduction of this additional statistical variable
has been proposed by DUKLER et al [45 ] because the frequency distribution
of the deviation & is not symmetric - in which case y would equal ¢ - due
to the fact that the deviation § can vary only from -100% to +=%.

A first computation of individual friction factors i; for each measurement
indicates that the drag force has only a weak influence on the frictional
pressure drop, A being of the same magnitude as the friction factor for
momentum Ap.

This small contribution to the frictional pressure drop results in a wide
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scatter for the individual friction factors Aj. Physical considerations
indicate that Xj should decrease with increasing turbulence because the
velocity wakes of the bubbles in the center region of the channel are
smoothed out by turbulence before they "reach" the wall and thus cannot
effect the wall shear stress. In view of this trend - being the same as
for Ay - and the abovementioned equal magnitude of the two friction
factors, the proposed correlation for the friction factor Aj is simplified
to A5 = K\ps the generally existing dependency of K on one or more flow
parameters is ignored and K is assumed to be a constant.

For the full set of 236 measurements the 'value K = 0.3 was found to result
in zero mean deviation. On the other hand additional computagion 1imited
u

to a subset of 39 measurements for which the Froude number 5% was smaller

than 4, so as to obtain a relatively large contribution of the drag force
term in correlation (2-75) yielded K = 1.65 as the best value.
In view of the weak influence of A5 on the pressure drop predicted by the
proposed correlation (2-753, it appears to be sufficiently accurate for
the present investigation* to choose A; - rather arbitrarily - as:

A{ = 0.5 A, (2-83)
This is borne out by an evaluation of the accuracy of pressure drop
correlation (2-75) in comparison with the accuracy of two other correlations
viz. those of DUKLER (case 2) [45 ] - which was the most accurate existing
correlation - and of LOCKHART-MARTINELLI [3 ], which is the most widely
used correlation in engineering practice.
The results of these computations - based on the correlations (2-75) and
(2-79) - are represented in table 2-13, both for all 236 measurements
taken together and for separate groups of measurements divided according
to parameter range and source. In addition to the three statistical
parameters mentioned above, the value |§| + y has also been tabulated.
As stated by DUKLER et al [45 ] this value gives the best measurement of
the spread; hence the selection for the best correlation is based on these
values. For each separate group of measurements the_best correlation thus
defined is marked with an asteriskX.

* g §
*yiFurther analyses on A; in [ 60 | result in the correlation:
=0.735

Re o u
- _tp \/Am o 7g (g2
LY [1 + 7 V/B b1 + .97 y (“Z) ]

which gives a significant improvement in accuracy for the 182
measurements with water as liquid phase. However, the decrease of
accuracy for the 54 measurements with alcohol as liquid phase indicates
that this correlation has no general validity. Further extension of the
set of experimental data in [ 51 | using measurements from [ 52 1, [ 53 ]
and [ 54 1 and analysis of this total set of 482 measurements confirm
the lack of general validity of the above correlation for A;. The final
conclusion of [ 51 1 is that the Reynolds number for two-phase flow
(expression (2-78)) should be changed to:

(1=a)p,u,D 0. S
Re :___.___Z_Z_[J.,.__O‘__.Q(_ﬂ)g]
& n; 20 Agt ¥
to improve the accuracy of A; beyond that of the present correlation
which, however, is sufficient for the present purpose.
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correlation

Dukler (case 2) Lockhart-Martinelli present correlation

flow parameter or source g:‘:- ) o v [18]+w] & o v |8+ & o v |18+
all measurements 236 2.9 31.2 30.0 32.9 | 49.7 81.0 74.5 124.2| 1.7 27.8 26.5 28.2%
void fraction a=0.0-0.2 50 |-11.6 13.7 12.9 24.5 |-11.4 13.5 13.0 2u.4| -9.2 12.7 12.0 21.2%
a=0.2-0.4 | 61 -5.9 25.2 31.5 37.4 8.6 53.2 50.5 59.1| -5.1 23.0 25.9 31.0%
a=0.4-0.6 53 9.3 32.1 3u4.5 u43.8 66.7 83.9 95.0 161.7 0.8 24.7 23.5 2“.3’

a=0.6-0.8 | 47 26.8 35.3 40.0 66.8 |139.9 70.6 79.2 219.1| 15.5 31.7 32.3 u7.8"

a=0.8-1.0 25 -4.8 31.6 27.5 31.3%| 66.5 55.1 50.0 116.5| 15.7 u1.1 37.5 53.2
density ratio pg/°l~0'001 110 |-12.4 18.8 23.6 36.0 |-16.6 18.5 22.3 38.9|-10.8 17.4 20.8 31.6%
08/01=0-018-0.028 u6 1.0 23.1 .21.9 22.9 | 68.0 38.6 43.8 111.8| -0.8 20.6 22.0 22.8%
pg/pl=0.036-0.0M6 80 25.1 35.8 39.8 64.9 [130.4 72.7 102.5 232.9| 20.2 32.6 32.9 53.1%
liquid viscosity nf‘0.00lO 182 |-11.2 17.8 35.0 u46.2 10.7 43.7 47.0 57.7|-10.7 14.9 15.0 25.7%
nlﬁ0.0012 S4 48.5 22.3 21.0 69.5 [172.7 50.2 55.0 227.7| 43.4 18.6 14.6 58.0%
diameter D=0.0250 | 195 5.3 33.4 38.3 u43.6 62.4 83.6 70.0 132.4| 3.5 29.8 34.2 37.7%
D=0.1143 41 -8.5 11.3 11.7 20.2 -8.7 18.4 11.8 20.5] -7.1 11.3 9.9 17.0‘
Cravarolo 126 16.3 33.7 38.5 54.8 |107.6 69.2 75.0 182.6| 12.5 30.5 30.7 43.2"%
Niese 41 -8.5 11.3 11.7 20.2 -8.7 18.4 11.8 20.5| -7.1 11.3 9.9 17.0‘
Malnes 69 |-14.7 21.8 25.0 39.7 |-20.1 21.3 24.6 u44.7|-13.0 19.9 22.4 35.4%

TABLE 2-13

Comparison of various pressure drop correlations (values in percent)

It appears clearly from table 2-13 that the present correlation compares

favourably with the other two correlations for each group except that for
a,= 0.8 - 1.0, while even for this latter group the mean deviation and
spread are not unduly large. The small disadvantage for this group is
probably caused by the fact that in this case the wall shear stress is not
dominated by a water layer, the high void fraction pointing towards a mist
flow pattern with only a very thin liquid layer at the wall where the
shear stress is determined by the gas flow. However, this flow pattern is
of no direct interest for the purpose of the present investigation.

Table 2-13 confirms the well-known fact that the Lockhart-Martinelli
correlation yields large deviations. This is particularly conspicious for
high density ratios, where the correlation has been improved for steam-
water mixtures by that of MARTINELLI and NELSON [2 ], which, however, is
not suitable for other mixtures as used in the present evaluation.
Comparing the present correlation to that of DUKLER (case 2) [45] the
improvement is seen to be rather small - 0-10% for |§| + y in general -
but very consistent throughout the entire range of two-phase flow
conditions. In addition the present correlation has the great advantage

of being firmly based on a two-phase model rather than on extensive
mathematical curve fitting. The curve fitting technique used for Dukler's
correlation results in a complex polynomial of the fourth degree for the
logarithm of the volumetric quality. By contrast the present correlation
results in a simple computation of the frictional pressure drop, with
possibilities for further simplification for many types of two-phase flow,
as discussed in[12].

Notwithstanding the fact that an annular flow model lies at the basis of
the present correlation, no indications are found that the validity is
restricted to this flow regime (except for the mist flow region mentioned
above). It may be freely used for other flow regimes including the churn
turbulent flow regime which is predominant in the present experiments on
the interaction forces.
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Friction factor Ay as a function of the Reynolds number
for two-phase flow Re tp

Due to the proportionality of Aj to Ay postulated by correlation (2-83)
the friction factor Ay is the only remaining parameter determining the
predicted pressure drop. The values needed for the friction factor iy to
fit the measured frictional pressure drops are plotted in figure 2-14
against the Reynolds number for two-phase flow. The results show a random
spread on both sides of the line representing equation (2-79), while none
of the measurements shows a deviation above 65%.

For application in the present investigation it should be noticed that use
of expression (2-75) for experiments with accelerating flows will of course
require the addition of acceleration terms to the last term, which is
derived above from equation (2-35) for non-accelerating flow.

2.2.3.2. Bubble diameter

As mentioned in the introduction of subsection 2.2.3. the reason for
developing a correlation for bubble diameters is to separate the drag
C

force coefficient Cp from the quotient 7? - appearing in the expression

for drag force F - in order to compare the Cp values proper for bubble
swarms with those of particle swarms and single bubbles.

The bubble size is likely to be determined by the balance between the
surface tension and fluid stresses, i.e., by a suitably.defined Weber
number. The definition of the Weber number usually found in literature,
where the fluid stresses are based upon the relative velocity, does not
present a suitable basis for such a correlation, as found by PRINS[1].
However, HINZE [55 ] stated that the fluid stress causing the breakup of
bubbles/drops is determined by the dynamic pressure forces of the
turbulent motion; resulting in the following critical Weber number:
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pcu'zd
e, = 2= (2-84)
.2

where pc is the density of the continuous phase and u
turbulence velocity.

This correlation is only valid if the shear stress due to viscosity is of
minor influence, which is stated by HINZE [55 ] to be the case if the
viscosity group:

is the mean square

d

Vpdcd
and the viscosity ratio nq/nc does not reach extreme values.
Even for very small bubb]es %d = 1074 m) the viscosity group reaches values
of only 6.1072 and about 2.1073 for atmospheric air-water and high
pressure steam-water mixtures respectively, while the ratio ny /n varies
between 0.02 and 0.2. Hence correlation (2-84) may be cons1dered valid
for the present investigations and the problem of computing the bubble
diameter resolves into establishing a correlation for the mean square

<1 (2-85)

turbulence velocity u'? and determining the value for Wecp.

In highly turbulent flows the energy spectrum can be approximated by
Ko]mogoroff s energy distribution law leading to a mean square turbulence

velocity u' 2 which is independent of v1scos1ty and solely dependent on the
energy dissipation per unit mass and time ¢ [m?/s? ] according to the
relation

u'? = 2.0(ed)?/3 (2-86)

where the constant 2.0 has been proposed by BATCHELOR [57 7.
The specific energy d1551pat1on e 1s, in appendix 2-D, derived from the
mechanical energy balance as*

_o

C
R L 7T-ur|u |[1+gE ] (2-87)

Substitution of this expression in (2-86) yields for the mean square
turbulence velocity:

: (2-88)

= 2.0(3} T%E'CD [1+Ep ]

while substitution of this result in definition (2-84) for the Weber
number yields:

*}

The main contribution of the energy dissipation stems from the relative
motion of the bubbles through the liquid, yielding that:

¢ -21’nd vl 1,
A 3 a CD D u2|u ' Z—aki
»r r
and
p 2 A p,=p
g =22 () g Lo b %D [
p &0y ¥ m Pz %l¥yg

are mostly negligibly small compared to unity.
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= (2-89)
For the Reynolds stresses pé—_f act1ng on the bubble surface HINZE [ 58 ]
derived the expression (1-o)pjujuj, which indicates that p¢ = (1-a)p
This is reasonable if a spec1f1c gubb]e is considered surrounded by a
bubbly mixture having a 1iquid mass - and thus momentum - proportional to
(1-a)p]. Taking into account this effect the Weber number reads as:
i 2.5/3
(10L)-|rd C

We = 2.0 ~ e 7T [ 1+eg e

(2-90)

The determination of the critical value for the Weber number will be based
upon the model of SEVIK and PARK [56 ]. This decision appears justified

by the verification by Sevik and Park of their model for two series of
experiments referring to different types of two-phase flow, viz.

- their own experiments with a single air bubble in a circular free
water jet, where they found experimental and predicted values for
the critical Weber number of 2.52 and 2.48 respectively

- measurements of CLAY [59 ] with droplets in a liquid for small
droplet fraction, for which HINZE [55 ] determined a value of
Wec = 1.18 and the model predicts - for PgPe - a value of 1.0.

This model of Sevik and Park is based upon the assumption - stated without
further explanation - that one of the natural frequencies of the bubble is
equal to a frequency existing in the flow and that breakup of a bubble as
occurring in actual practice will be due to resonance between these two
frequencies.

According to LAMB [ 39 ], the natural frequency of the n-th order mode of a
spherical bubble/drop.is given by:

ooy = L) g (o =
2

while Sevik and Park propose for the flow-induced frequency:

u'?

f = e (2—92)

where the characteristic length 1 is taken equal to the diameter of the
bubble. In the present author's opinion this latter choice can be justified
by the fact that the flow-induced frequency is determined by the eddies
passing by the bubble: small eddies do not contain enough energy to affect
the bubble, while eddies Targer than the bubble only entrain the bubble in
their flow field, leaving the eddies with sizes approaching the bubble
diameter to affect the deformation of the bubble

The statement of Sevik and Park that f2 = f%, yields:

u'?d e

_ 2 (n-1)n(nt1) (nt2)
o 2

ch+(n+1)pd

(2-93)

This correlation shows that the higher order natural frequencies affect
bubbles of larger diameters. Thus the process of coalescence of small
bubbles to a larger bubble is limited by breakup of this latter as it
reaches the size where its lTowest natural frequency equals the flow-
induced frequency, while a larger bubble - generated by accident - breaks
up immediately by resonance at one of the higher order frequencies. The
lowest natural frequency of order n=2 is thus seen to define the maximum
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bubble size.

In accordance with the approach taken for the Weber number of expression
(2-90) the natural frequency of a particular bubble is supposed to be
defined by the density of the surrounding mixture yielding p. = (l-a)p]+apg,
while of course pj = pq.

Together with the subs%itution of n=2 in expression (2-93) this yields:

2z
(1-a)pqu'"d _ 2.43 (2-94)
o 1+ 1.5+a Pg
1-a p]
With introduction of:
_ 1.5+a E (2-95)
Ew - 1-a p]

which is mostly small compared to unity for gas-liquid flows and considering
the earlier reasoning that p. = (1-a)py, equation (2-94) reads as:

_ 2.43 -
oy = 358 (2-9%)

Substitution of expression (2-90) for the Weber number in correlation
(2-96) yields the correlation for the bubble diameter:

C
1.22 3/5 D -2/5
d = (TJ,—EE —25)*2(3 o/f7a g L1vgp 1) (2-97)
Pyl
“p

From this result it ?ppears that the quotient I has to be known to compute
the bubble diameter®).

This quotient can be obtained from the momentum balances (2-16) and (2-18).

For practical application it appears more convenient to incorporate the 7?

ratio. in the drag force Fp according to equation (2-24), resulting in the
following expression for the bubble diameter:

B f1.22 o 1/3 3/5 g 2B
s 1+ ( 7) u (2-98)
1 W (1-a)equ, F LA PR
D u. E
where EE now has to be computed as:
dp
(5) ¢ U
- dz’fr L (2-99)
P

3
E FD

*) The explicit correlation for the bubble diameter yields:

—“—2 (3 a/I-ao & [1+£E])‘2/3
Dzu

d = —=——
1+gw

b &

which, however, in general as well as for the present investigation
canmot be applied because it requires an explicit correlation for the

drag force coefficient Cpe
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while gy remains unchanged*).

Experimental verification for this correlation is obtained by comparison
of the resulting diameters with the bubble diameters measured by PETRICK
[38 1 for 12 upward and 12 downward atmospheric air-water flows with void
fractions up to 0.35.

The measured bubble diameters appear, of course, as bubble size
distributions. Physical analyses (see e.g. KOTTLER [60 ]) lead to the
Tog-normal distribution**), which, however, does not take into account the
Timitation of a maximum existing diameter. The upper 1imit distribution
proposed by MUGELE and EVANS [ 62 ], does take this limitation into account
and gives a good approximation of the Tog-normal distribution for the
smaller bubble diameters. The cumulative fraction***) for measurement

2-R (cf. table 2-16) - which is representative for all of Petrick's
measurements - is plotted in figure 2-15 against the bubble radius and
shows good agreement for the experimental values with the upper 1imit
distribution, and thus with the Tog-normal distribution as far as the
smaller bubbles are concerned. This good agreement appears for all of
Petrick's experiments for which the characteristic parameters are
tabulated in table 2-16.

10

e s s —
3 Log-normal distribution
measurement 2-R from |38 e Gt
4 i = ﬁl.g] 11"
- Sauter diameter ds=5.25/ upper Limit \
d =49 b T il
% J | 80 =h 0/7 distribution \
geometric mean diameter r
dgm=3.20
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1 ’/

o
®
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FIGURE 2-15 e
Representative example L1y | AN oo by Ly
of the measurements 0.01 U R1E 10 20 40 60 80 95 99 998 9999
from PETRICK [ 38 1] — = cumulative froction [*/s]

i

After completion of the above derivation the author became aware of the
derivation by NAGEL and KURTEN [ 86 1 of a simular correlation for bubble
diameters also based on Kolmogoroff's law (Z.e. expression (2-86)).
However, rather than deriving the specific energy dissipation from the
mechanical energy balance they obtained this parameter from measured
pressure losses. The most significant difference is the use of Sevik's
and Park's model in the present correlation yielding the critical Weber
number, whereas Nagel and Kilrten give only an estimation of the magnitude
based on data for particle cohesion given by RUMPF [ 87 ].

Lack of time has prevented the inclusion of a comparison between Nagel

and Kilrten's results and those obtained by the present author.
*
ol In the log—normal distribution the frequency distribution for the
logarithm of the bubble diameters equals a normal Gaussian distribution

(see e.g. MASTERS [ 61 ] for formulae and description).

The cumulative fraction x% is defined as the fraction with diameters
less than dy. The cumulative fraction of a log-normal distribution is
represented by a straight line on probability paper.

***)

4281 -
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distribution

code flow parameters dparamegers diameter dgq
number ugy o x.103 H%%’ agii ﬁ:gi;{— p;gjg?t
UPWARD FLOW
1R 0.46| 0.0637| 0.20 5.93
2R 0.46| 0.170 0.61 1.625| 2.16 4.90 4.20
3R 0.46 | 0.303 1.53 1.600 | 2.47 3.03 3.10
4R 0.46 | 0.346 2.01 1.465]| 2.29 3.76 2.84
5R 0.66 | 0.0770| 0.20 1.680| 2.16 5.30 5.58
6R 0.66 | 0.188 0.62 1.493( 2.34 3.75 3.85
7R 0.66 | 0.316 1.52 1.700| 2.76 2.75 2.81
8R 0.66 | 0.351 1.96 1.598 | 2.02 3.23 2.55
9R 0.84 | 0.0763( 0.20 1.9501 1.91 5.10 5.02
10R 0.84 | 0.176 0.61 1.740| 2.72 3.24 3.41
11R 0.84 | 0.307 1.50 2.54
12R 0.84 | 0.335 2.00 1.5031 2.17 2.56 2.22

DOWNWARD FLOW

. 1D 0.28 | 0.0899 | 0.0142 1.903 | 1.56 8.80 8.15
2D 0.28 | 0.137 0.0164 1.575 2.16 6.67 6.67
3D 0.28 | 0.177 0.0228 1.600 | 2.52 6.30 5.98
4D 0.28 | 0.184 0.0260 1.608 | 1.75 6.48 5.91
5D 0.40 | 0.1060 | 0.0366 1.761 | 1.64 7.78 6.90
6D 0.40 | 0.155 0.0574 1.643 | 1.85 6.54 5.85
70 0.40 { 0.199 0.0796 1.525 | 2.15 5.74 5.28
8D 0.40 | 0.230 0.0983 4.99
9D 0.49 | 0.1110 | 0.0579 1.563 | 2.00 5.60 6.55

10D 0.49 | 0.165 0.0830 1.575 (1 2.07 4.68 5.40
11D 0.49 | 0.216 0.1060 1.740 | 2.78 4.00 4.74

12D 0.49 | 0.246 0.1160 4.44

TABLE 2-16
Experimental values of PETRICK [ 38 1 and predicted bubble diameter

The existence of a bubble diameter distribution instead of a single bubble
diameter implies that the diameteE predicted by the correlation may differ

from the value to be used in the 7? ratio. The following reasoning may help
clarify this point.

From the physical background of the correlation - which assumes that the
bubbles coalesce until the critical size is reached - it might at first

be inclined to expect that the predicted diameter equals the maximum
diameter. However, the fact that some bubbles - just below the critical
size - will coalesce to bubbles Tlarger than the critical diameter and
exist for a while before breaking up, makes it clear that a small fraction
of the bubbles has a diameter larger than the predicted diameter. For the
present this fraction is assumed to be 20% (i.e. that the predicted
diameter is dgp) which assumption will be varified.

As indicated by equations (2-10), (2-11) and (2-23) the diameter in the

quotient 7? stems from the summation of the individual drag forces fp to
the volumetric drag force FD*), i.e.:

* . . . oii o o e s
*) The existence of different relative velocities for each individual
bubble is omitted from this analysis.




i€1 D, 1 i el (2-100)
n
-and the transformation of Ly di to %-%-by means of the equation:
Sl n 3
R 151 di (2-101)
G
Thus the diameter in the quotient & is defined by:
n
%
a 1;1 ; (2-102)
iZy 4

which is known in literature as the Sauter or volume-surface diameter

(see e.g. MASTERS [61 ]).

For the size distribution of measurement 2-R - mentioned before as
representative for Petrick's measurements - this Sauter diameter is
computed as dg = 5.25 mm, while the predicted diameter appears to be

dggp = 4.90 mm from figure 2-15. In view of the inaccuracy in the derivation
of equation (2-102) caused by the variation in relative velocity u, for
~each individual bubble this difference of 7% betgeen dg and dgg can be

ignored and the Sauter diameter in the quotient 7? may therefore be
represented by dgq.

The resulting diameters computed*) with the correlation are compared to
the measured values for dgg in figure 2-17. The agreement is surprisingly
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FIGURE 2-17
| 1 1 | 1 | sk |
Comparison of experimental and 0 1 2 4 6 8 10
predicted bubble diameters —== experimental diameter dgg (mm]

b Due to the fact that PETRICK [ 38 1 has only tabulated the void fraction,
quality and superficial water velocity an estimate has to be made for
the air density in order to determine the slip and relative velocity.
From the lay out of the test loop the local pressure is estimated as
1.4 bar yielding Py SRR
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good, having a scatterband of only 15%, while the validity of the present
model is firmly supported by the fact that the model gives a good
agreement for both upward and downward flows.

This result of predicting dgg - and thus a good approximation of the
Sauter diameter - from the size distribution makes the correlation
directly applicable €or computing the drag force coefficients Cp from the

experimental values 7?.

2.2.4., Two-dimensional effects

The cross-sectional variations in velocity and void fraction known to
exist in channel flow were not taken into account in the derivation of
the momentum balances (2-16) and (2-19) where the flow was assumed to be
one-dimensional. Considering, for example, the first term of the momentum

g ;) this term has to be written as

H— Sap ugdA in case of nonuniform channel flow. Instead of this cross-

ba]ance for the gas phase a—-(aAp

sect1ona1 average *) of a product of flow parameters é%-<apgug>A the
one-dimensional approach deals with the product of cross-sectional

averages for each individual flow parameter, é% <a>A<pQ><Ug>2, which two

expressions are well-known to differ. For two-phase flow the cross-
sectional averages for the gas and liquid velocities <ug> and <uj> may be
meaningless and even misleading for steep radial void fraction profiles.
Hence the computations are always based on:

_ <qU_> U
U = 9 _ _S9 (2-103)
g <> <o>
and:
<(1-a)u,> u
- 17 _ sl B
Uy = S B (2-104)

These two-dimensional effects can be taken into account by the introduction
of correction factors as appears from the model of ZUBER and FINDLAY [37 ].
However, as proved in appendix 2-B this model is based on an incorrect
physical background and interpretation of experimental data. Moreover it
proposes one single correction factor instead of a set of individual
correction factors for each of the terms of the momentum balances.
Therefore the model of Zuber and Findlay is not used and the present
author proposes instead to use a set of correction factors of which, for
example, the factor for the acceleration term of the gas phase is defined

by:
<ap U2>
K, = —2— (2-105)
- 1 75Q,2
o‘pg(-éfg')
where for the sake of simplicity a and 59 are defined as a = <o> and
0. = <pa>.
g g

Although these correction factors may vary along the axial coordinate due

* . .
) A cross-gectional average, further to be denoted by brackets <>, is

defined as <x> = %-f xdA.
A
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to flow profile changes, this effect is assumed to be neg]igib]e*) and
thus the momentum balances are based on constant correction factors.
Substitution of the expressions (2-24) and (2-66), for the drag force and
impulse respectively, in the momentum balances (2-16) and (2-19) yields:

e for the gas phase:

d d 2 B
K1 i3 (aApgug) + K21p] 1 (BaAug) - 22p] a—— (BaAu u]) =

C
. dp _ . D
K30LA = K4aApgg 30A T °1 (K51ug+K52u] 2K53ugu])

(2-106)
e for the liquid phase:
d d
Kooy gz ((1-0)Auy) = =K (1-a)A G5 - K (1-a)Aoig +
+ 3ah i (Kg 24K 3K u ug) = (SB) A (2-107)
a P1\Ns1Yg ¥ eag™ dz’fr

where the superscribed dashes - indicating cross-sectional averages - have
been omitted.

The terms for the interaction forces Fp and Fp are seen to split into two
and three terms respectively, concerning the gas and liquid velocity
instead of the relative velocity; this is done because the correction
factors Ky and Kg would be indefinite in case of zero relative velocity.
The values for this set of correction factors - Ky up to Kg - defined in
table 2-21 shall becvobtained by using estimated radial distribution
functions for the velocities and void fraction. The velocity distributions
are assumed to follow the power law known from single-phase turbulent flow,
viz.

u

U:Z Gk E)l/P (2-108)
and

u

= (1 - E)l/q (2-109)

%

In single-phase flow the radial velocity distribution is known (see e.g.
[63 1) to be dependent of convergence and divergence of the channel.
Assuming this to hold also for two-phase flow, it is necessary to
distinguish the following four geometries corresponding to the test
sections used in the present investigation (cf. subsections 2.3.1.3.2. and
£ iR 2. 2. )5

- a straight pipe

- two converging test sections with a half angle of convergence of
2012' and 3940' respectively

- a diverging part of a test section with a half angle of divergence
of 7030'.

In the absence of firm evidence to the contrary it seems reasonable to

o

.The practical justification for this assumption even for converging and
diverging charnnel is given by the values of table 2-21.

- §H -




start from values of p for the straight pipe lying on either side of the
single-phase value p=7, i.e. to assume p=6, 7, 8 for the straight pipe.
Various qualitative considerations such as the increasing uniformity of
the flow distribution for converging channels and the increased uncertainty
for the distribution of the gas velocity then lead to the chosen power
values shown in table 2-18.

Although radial distribution functions for the void fraction can be
obtained from the measurements on atmospheric air-water mixtures reported
in subsection 2.3.1.4.2., the polynomial approximation of these
distributions are too complex to be suitable for the preseng analysis.
Therefore the void fraction distribution is also chosen as*):

2o(1-p 1/n (2-110)

where the range for n given in table 2-18 is wide enough to cover all
relevant geometries. As indicated in table 2-21, a fourth parameter, a,

is required in addition to the local phase velocities and void fractions
in order to obtain quantitative values for the various correction factors.
This stems from the fact that - in contrast to the Tocal velocities and
void fraction - the local "liquid fraction" (1-a) is not strictly
proportional to its mean value (1-a). Correction factors containing the
"Tiquid fraction" - either directly or via the mean 1liquid velocity

u
uy = I%% - may therefore be expected to show a dependency on the mean

"Tiquid fraction". As shown in table 2-18 the mean void fraction a is

velocity distribution: liquid phase uiXL =(1- E)l/p
t
Yg _ r\1/q
gas phase —ﬁ—g- = (1 - R)
¢
geometry power p power q
diverging 7930' | 4 5 6 7 4 5 6 7
straight 6 7 8 56 7 8 9
converging 2°12' [ 7 8 910 7 8 91012 14
converging 390" | 910 12 14 16 18 20 | 9 10 12 14 16 18 20

void fraction distribution: X = (1 - %)1/"
“t
TABLE 2-18 all geometries  power n: 34567 8910 12 14
Powers for distribution cross-sectional average o: 0.1 0.2 0.3 0.4 0.5 0.6 0.7

functions

* . . . "
) The difference in correction factors resulting from the use of the

"eamel back" void fraction profile, having a maximum near the wall

- as measured tn [1]1, [64] and [65 ] - was found too small to warrant
its selection in addition to equation (2-110) all the more so, because
such "eamel back" void fraction distributions were not found in the
present author's experiments.




varied from 0.1 up to 0.7, such being the range of interest for the
present investigation.

Combination of the chosen values for the four parameters p, g, n and o
yields for each of the correction factors a number of values ranging from
1050 for the straight test section up to 3430 for the converging test
section with the largest angle of convergence. These values were first
evaluated by means of histograms, typified by those shown in figure 2-19
for the factor Kg;. From these histograms it was concluded that:

* all the correction factors differ from unity in the positive sense,
justifying the use of correction factors greater than unity as an
improvement over the value 1 of the one-dimensional model

* the variation of the mean values due to the geometry is significant.

diverging 7° 30' straight converging
80— 2° 12 3 40'
n=1120 n=1050 n=1680 n=3430
® -+
e 1.022 -.q1.017 - | 1.007
(L] jrpep ? Comasl
% 60— _17 | |
= |
7 i | |
¢ sol- I
x 1.035 :
- |
30| l
20
FIGURE 2-19 i
Histograms for e o —l
the two-dimensional ot L3 L 1] L | | 1 |
correction factor K6 1.00 1.05 1.00 1.04 1.00 1.04 1.00 1.04

———= correction factor K6

Subsequently the origin of the extreme values of the correction factors
was investigated by consecutive variation of each of the distribution
parameters while keeping the other three at constant representative
values. As an example of these analyses the four graphs for the correction

factor K are shown in figure 2-20. These analyses lead to the conclusion
that:

* extreme values for the correction factors occur only if one or more
of the distribution parameters are extreme, i.e. if the powers p,

q and/or n are less than 4 and/or the mean void fraction greater
than 0.6.

Special attention was paid to the correction factors K; and K, involving
the pressure gradient %g. In case of converging and diverging channels the

pressure varies over each cross-section and hence the corresponding
correction factors deviate from unity. In [66 ] an analytical correlation
relating the cross-sectional average of the pressure gradient to the

pressure gradient at the wall (gg)w was derived. K5 and K5 were found to

depend on the second derivative of the pressure at the wall (%—g)w and on
z

the local channel diameter D in addition to the angle of convergence/ °

divergence. The deviation from unity, however, was found to be so small

g




- 58 -

TTTTT T T TTIT T 7T 0 T T T T 1
B p=7 7 B

=7 U] .
=06 - 12

10+ 1.04—
LIl C | | | | |
0 5 10 15 0 01 02 03 04 05 06 07
——= void fraction power n —————= mean void fraction &

Ks

sl

[ X

1

202

2 00
Wt
NN

FTTTT

=1

TTTTT TTTT [T TTTTTTTTTTT

!
13 " -~ 13
32 n=7 ~
X 2 =04 12— 4 —

wJ— =l 10} |
LUt rtetd I O I I

0 5 10 15 0 5 10 15

——=Lliguid power p ——==gas power g

F-UR=0 -]
non n —
(= B ]

FIGURE 2~20

Dependency of correction factor Kg on the four distribution parameters

for practical conditions - about 0.002 - that the correction factor K5 and
K, will be taken equal to unity. For practical reasons the same is done
for the factor K, representing the variation of the gas density in a
cross-section.

Table 2-21, in addition to giving the definitions for the correction
factor, lists their mean values and standard deviations for each of the
four geometries. From this table it appears that the two-dimensional effect
can be described by four correction factors. Furthermore it appears that
three of these correction factors - including the two with the greatest
deviation from unity - refer to the relative velocity as it appears in the
interaction forces Fp and Fp, leading to the conclusion that the two-
dimensional effects almost exclusively affect the relative velocity.
Taking for example a close look at the results for a straight pipe it is
found that:

<aug(ug-u])> = 1.009 aug(1.oo9ug - 1.047u]) (2-111)

and

2 - - - \2
<a(ug-u]) > = a(1.oo9ug - 1.045u]) (2-112)

The deviation relative to &Gg(ﬁg-ﬂ1) and_&(ﬁg—ﬁ])2 respectively is seen

to be largest for small slip ratios s = 3g: in case of s = 1.2 this

1
relative deviation is 10% and 35% respectively, indicating on one hand
that the two-dimensional effect has to be taken into account, but on the
other hand that the rather rough estimation described above is sufficiently
accurate for the present investigation.
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channel geometry
zgﬁ' definition diverging straight converging
7930 %12 3%0"
<ap uUd >
K ?T4ki3 1.027 1.019 1.009 1.006
1| aeg3h +0.014 |  +0.008| +0.007 | +0.004
K21 equal to K1
<au u~|>
Kop 1.079 1.057 1.037 1.028
- Ysg Ys1 + 0.040 + 0.040 + 0.035 + 0.019
o = — — —_ 53
3 -0
d
<a -a£>
Z
K 1.000 1.000 1.000 1.000
3 AL
a(gh), + 0.003 + 0.001 + 0.002
<ap >
Ka Tg—— equal to Kq
ap
g
K51 equal to K1
<au]2>
K 1.127 1.092 1.079 1.042
52 | _ ugy ? + 0.060 + 0.050 + 0.050 + 0.035
o(15) = 5 - -
K53 equal to K22
(1-a)uj
Kg 1.035 1.022 1.017 1.007
=7 a61.9 + 0.014 + 0.008 + 0.006 + 0.006
(1-a)(1=3) 5 & e -
d
K i 3% equal to K
7| e @ ’
Z'w
<(1-a)p >
K e 5 | equal to K
8 = 3
(1-a)eq

TABLE 2-21

Two-dimensional effect correction factors and their standard deviation

Experimental data

The aim of this part of the investigation is to develop correlations for

the drag force coefficient Cp and virtual mass coefficient B, primarily
for use in computations of venturi separators under boiling water nuclear
reactor conditions i.e. for steam- water mixtures at a pressure of 7 MN/m2
and (saturation) temperature of 286°C. However, in view of the difficulty
to achieve highly accurate measurements under these conditions,
introductory atmospheric air-water experiments were included in order to
determine as accurately as possible the physical aspects relevant for the
interaction force coefficients and to develop correlations based on this
physical background.

These correlations were subsequently verified and extended by means of
steam-water experiments under reactor conditions and at 5 MN/m?
(saturated).

In view of the differences between the air-water and steam-water
experiments they will be discussed separately.
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Air-water experiments

These experiments were carried out in three test sections (cf. subsection
2.3.1.3.2.): a straight tube, a converging and a venturi-shaped test
section. The latter two were included in order to create accelerating and
decelerating flows required for virtual mass studies and to observe the
influence of acceleration/deceleration on the drag force coefficient Cp
first determined in the straight tube.

.1. Outline of the method

.1.1. Drag force coefficient

Both for the straight tube and the converging/diverging test sections the
drag force coefficient Ch is computed from the liquid phase momentum
balance for pseudo one-dimensional flow (2-107), yielding*):

G

D B KGD] dz((l'a)Au])+K7(1'u)A ,_p_ +K8(1'0L)Ap]g+A( p
d

dz az)er

2 2 [ Kgyug - Kgoug
%aAp](K51ug+K52u]— K53ugu1)

Kgpug = "Kguy

The drag force coefficient Cp is subsequently obtained by multiplying the

(2-113)

quotient ag-by the bubble diameter d computed according to correlation

(2-98).
The right hand side of expression (2-113) is computed from measurements
for

- the void fraction o (cf. subsection 2.3.1.4.2.), measured at ten
levels along the test section from which the derivative %% is

computed by means of a least square approximation for a Chebyshev
polynomial.
- the pressure distribution along the test section (cf. subsection

2.3.1.4.3.), yielding the pressure gradient g% from a polynomial

approximation based on the spline method.
- the water mass flow ¢p] (cf. subsection 2.3.1.4.1.), yielding the
om1
liquid velocity: u, = +— L
1 (1 aip1n
- the air mass flow dmg (cf. subsection 2.3.1.4.1.), yielding the
¢

. . _ _ng
air velocity: ug = apgA
The cross-sectional area A and its derivative gé-are of course known for

S
az'fr
and the two-dimensional correction factors K are established according to

each test section geometry, while the frictional pressure drop (

the correlation and analyses of subsections 2.2.3.1. and 2.2.4. respectively.

*) m
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e last term of the denominater stems from

- giving the drag force the

7
same direction as the corrected relative velocity — introduced before in
expression (2-23) and omitted temporarily in subsection 2.2.4. for sake of
simplicity.
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The liquid phase momentum balance is the obvious choice for computation of
the drag force coefficient because of the absence of the virtual mass term
in this balance. Nevertheless a weak influence of the virtual mass still
remains: the frictional pressure drop and bubble diameter correlation
contain the drag force Fp, which contains in turn acceleration terms and
thus impulse - additiona? to expression (2-35) for non-accelerating flow -
as mentioned before at the end of subsection 2.2.3.1.

Therefore the drag force and virtual mass coefficient are computed simul-
taneously in case of the converging and venturi-shaped test section,
whereas for the straight test section the very small contribution of the
virtual mass term is eliminated by taking the virtual mass coefficient B
equal to zero.

2.3.1.1.2. Virtual mass coefficient

The virtual mass coefficient B is obtained from experiments in the con-
verging and venturi-shaped test sections only, because in the straight
test section the impulse is too small compared to the other terms of the
momentum balance: the acceleration being due to expansion of the air only.

The virtual mass coefficient B is computed from the mixture momentum
balance because the drag force Fp does- not exist in this balance. Differ-
entiating the virtual mass term ?or reasons explained in subsection
2.3.1.6.2.2., this balance results in a first order differential equation
for B:

dB
Boy EF'(“A(K21 g Kzz”gul))+“A°1( 21'g Kzz“g“1) o

=K, & (aho qu ) Kepy I ((1-0)Au?)-K oA 2 +

d d
- K (1-a)A G -K4aApgg-K8(1-a)Ap]g-A(a§)fr (2-114)

This differential equation is integrated numerically - from bottom to top
of the test section - with a fourth order predictor/corrector method,
described in most handbaoks on numerical analysis (e.g. [67 ]1).

The four distinct function values B and %% needed at the bottom of the

test section to start the predictor/corrector method are der1ved by a
central difference approximation for the three values B_j, B - at the
coordinates z-Az, z and z+Az respectively - yielding a set 09 three coupled
algebraic equations derived from equation (2-114) from which By and

(%%)O are computed. These values are the input for the Runga-Kutta method
which is chosen to achieve the first four values required for more accurate
fourth order predictor/corrector methad in use for further integration
along the test section.

The flow parameters to be measured are the same as mentioned above for the
drag force coefficient Cp. Experience showed that for relative velocities
|u ?<0 4 m/s - occurr1ng in the venturi-shaped test section, where the
relative velocity in the diffuser part changes from pos1t1ve to negative -
the impulse becomes too small to compute the virtual mass coefficient with
reasonable accuracy. Therefore the numerical integration is terminated if
the relative velocity decreases to 0.4 m/s and restarted - in the same way
as described above - at the coordinate where the value u, = - 0.4 m/s is
reached.
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2.3.1.2. Range of variables

In addition to the classification into accelerating, steady and decelerating
flow for the three test sections mentioned before, a wide range of flow
velocities for each of the phases is desirable for the present investigation,
where for a proper description of the two-phase flow mixtures the air
velocity should be defined in terms of void fraction.

Within the upper 1imit of o = 0.75 imposed by the Timited air supply to the
test section and a Tower Timit of o = 0.25 selected from the viewpoint of
relevance for this investigation, five nominal void fractions were selected
viz. 0.25, 0.38, 0.50, 0.63 and 0.75 in order to restrict the total amount
of experiment work.

The upper Timit for the water velocity is related to the superficial

velocity to be expected in the steam-water separator, viz. about 2 m/s. In
the absence of a meaningful lower 1imit five superficial water velocities
decreasing by fixed intervals were selected: 0.9, 1.3, 1.7, 2.1 and 2.5 m/s
(in combination with the selected void fractions this results in superficial
air velocities ranging from 0.4 up to 15 m/s). A number of 25 mixture adjust-
ments is thus obtained for each test section.

The above flow values refer to the inlet of the test sections.

The water mass flows follow from the superficial water velocities and test
section inlet areas. The superficial air velocities needed for the desired
void fractions are computed using the results of ROUMY { 68 ]. The air mass
flows are then obtained with a simple correction for density changes due to
variations in test section shape and water velocity.

The 3 x 5 x 5 = 75 measurements are coded by a number consisting of three
figures:

e the first figure refers to the test section;
0 (which is often omitted) indicates the straight test section,
1 means the converging test section (one cone), .
2 means the venturi-shaped test section (two cones).
e the second number refers to the superficial water velocity;
1 stands for the Towest velocity (0.9 m/s) and 5 for the highest
velocity (2.5 m/s).
e. the third number refers to the nominal void fraction;
1 stands for the lowest (0.25) and 5 for the highest nominal void
fraction (0.75).

So, for example, measurement 142 means the experiment in the converging
test section with the fourth superficial water velocity, viz. 2.1 m/s, and
the second nominal void fraction, viz. 0.38.

2.3.1.3. Description of the test facility

2.3.1.3.1. Air-water loop

Water is circulated by a centrifugal pump, whereas the air is blown once
through the test section, as indicated in the schematical flow sheet of
figure 2-22.

The water discharged from the pump passes through a venturi-type flow-

meter and enters the air-water mixer. After the mixer a flow-straightener
and a straight mixing length of about 3 meter is available for establishing
fully developed two-phase flow before entering the test section.

The air leaving the test section is separated from the water in a centrifugal
separator tank.

From the separator tank the water flows to a settling tank where any carry-
under air is separated by gravity from the water returning to the pump. This
Delta centrifugal pump has a maximum capacity of 40 kg/s at a head of 23 m,
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the flow through the circuit being adjustable by means of a bypass around
the pump .

The air is taken from the 3 MN/m2 utility net in the laboratory and throttled
to 0.2-0.4 MN/m2. After passing through a flowmeter and being mixed in the
air-water mixer it flows through the test section, is separated from the
water and discharged to the laboratory hall.

The air-water mixer is schematically presented in figure 2-23. It consists
mainly of 585 pipes with a bore of 4 mm each through which the air enters
the mixer. These pipes are divided. into two groups of 195 and 390 pipes
respectively. The first group is used for the lower void fractions (0.25

and 0.38); the second group serves for the medium void fractions (0.50 and
0.63), while the use of the two groups together results in a direct approxi-
mation of the largest void fraction (0.75). For each group the air enters
from two sides to homogenize the distribution across the cross section.
Distribution of the water, which flows around the pipes, is achieved by
built-in flow resistances, while in addition the cone at the top of the
mixer causes a further homogenelzat1on of the mixture.

The tanks and mixer are made of stainless steel and the piping of plastic
(P.V.C.) to avoid rust in the circulating flow, while the parts between the
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mixer ‘and separator' tank are made of clear perspex for direct observation
of the two-phase flow.

2.3.1.3.2. Test section geometries

As shown in figure 2-24 the three test sections are each 1.725 m long so as
to make them interchangeable in the loop and contain 11 pressure taps,
making a total of 13 pressure measurements including the two pressure taps
of the common inlet section.

Void fraction measurements are carried out for the cross-sections corres-
ponding to the ten lowest pressure taps of each test section. The pressure
taps and measurement levels are numbered from bottom to top: e.g. tap 5 is
connected with measurement level 3', tap 7 with Tevel 5', etc.

In the straight test section the measurement levels are distributed equi-
distantly, while in the converging test section six of the ten measurement
levels are placed in the cone where the velocity increases by about a factor
of two from inlet to outlet. In the venturi-shaped test section attention
is focussed on the region just ahead of the throat - where the acceleration
is greatest - and the diverging part of the test section. It should be
noticed that in both converging parts of the test sections the acceleration
increases from bottom to top and thus a wide range of accelerations is
covered by the use of only two test sections.
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2.3.1.4. Instrumentation and data acquisition

The instrumentation is schematically presented in figure 2-25, while the
details are listed in appendix 2-E. The present subsection describes the
measuring techniques and the formulae to compute the flow quantities from
the measured values. In addition an error estimation is given for these
flow quantities.

2.3.1.4.1. Flow measurements

The water flow venturi-type flowmeter mentioned earlier was made of brass

to DIN 1952 [ 69 ] standards resulting in in- and outlet diameters of 99.4
mm and a throat diameter of 73.715 mm.

The formula for the computation of the mass flow is:
b1 = BA, 72012P | (2-115)

where

- B and A, are constants, derived from [ 69 ] for the abovementioned
d1mens1ons

- p7_is the water density computed on the basis of a second order
po]ynom1a1 for the water temperature

- Ap is the pressure difference, measured and computed as described
in subsection 2.3.1.4.3.
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The accuracy of this measurement is determined by:

® the possible error in the product BAO for the prevailing manufacturing
tolerances given in [69 ] as + 1.9%.

e the error in the differential pressure consisting of an error of 1%
in the measuring pressure difference cell and a standards deviation
of about 0.75% due to fluctuations in the measured signal itself,
yielding a total error of

/1.92 + 3(1% + 0.75%) = = 2.1%

The air mass flow ¢,f, measured with rotameter flowmeters, has to be
corrected for density deviations from the design conditions, viz.

=
J P (2-116)

‘mg = ®mf Y 1.3 203
where

)

- ¢mf is the flow indicated by the flowmeter (which gives an electric
output signal by transforming the displacement of the float into a
change of impedance of a coil).

- pf and T¢ are the pressure (in bars) and absolute temperature down-
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stream of the flowmeters. The pressure is obtained by adding the
measured barometric pressure to the pressure differential between
atmosphere and flowmeter outlet.

The mass flow through the flowmeter thus obtained is further corrected for
moisture taken up by the almost dry air upon entering the mixer and test
section. The mass flow of saturated wet air in the test section is:

~ 14X .
CPmgts = ®mg T.0002 (2-117)

where

- x is the quality of saturated air

- the factor 1.0002 is an estimation of the quality at the flowmeter:
X¢ = 0.0002 (air supply from compressed air mains with an estimated
relative humidity of 5%).

The quality of saturated air is given (cf. e.g. BAEHR [70 ]) by:

p
X %0, 6230 et (2-118)

PtsPsat

where pts is the actual pressure in the test section and pgat the partial
pressure of the water vapour, which is computed from the measured temperature
on the basis of a second order polynomial.

The density of the wet air - required for computation of the volumetric
air flow and air velocity - is accordingly obtained from [70 ]:

5 -5 -5 _
Pg = (348.3 Pyg-10 T-131.6p 410 )/Tts _ (2-119)
The possible error in the mass flow ¢pqts stems from:

e flowmeter inaccuracy, given by the manufacturer as 3%;

® the standard deviation of the fluctuating flowmeter output signal,
which is less than 0.1%;

e the error in the flowmeter pressure due to inaccuracy of the pressure
difference cell and the standard deviation of the measured signal,

yielding a total of /1%40.75% = & 1.25%;
e the relative error in the absolute temperature: 0.3%,

while the error in the quality x can be ignored because of the small
effect of this correction. Thus a total error is derived of:

2

/3%40. 1243 (1.25%40.32) = £ 3.2

for the air mass flow.

The error in the volumetric air flow and superficial velocity is in addition
increased by the error in the test section pressure pig which also equals
1.25%, resulting in an overall error of:

/3.22+1.252 =+ 3,4%

for the computed gas velocities.

2.3.1.4.2. Void fraction measurements

The void fraction is measured by the y-ray technique, already mentioned as
standard for two-phase flow investigations by PRINS [1].

The great advantage of this method is its high accuracy in the absence of
obstructions in the flow channel, which is in contrast with electric
resistance or impedance void gauges, hot wire anemometry and isokinetic
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As detailed below the average void fraction over a chord in the test
section is measured by the absorption of a collimated photon beam directed
along the chord through the flowing mixture, where the reduction in radiation
intensity is a measure of the amount of material encountered by the beam.
Two additionally measured attenuation signals from the air- and water-
filled test sections serve as references for this signal from the mixture.
The measurement of these attenuation signals requires that the reduced
intensity of the photon beam be measured in such a way that only those
photons are counted which have had no interaction with the attenuating
material, i.e. that scattering effects be eliminated.

The distinction between photons which did not interact with the material
and those that did, can be based on:

e direction: starting with a photon beam containing only parallel
photons, only those photons which did not interact will still have
the same direction after passing through the material,

® energy: using a y-source with mono-energetic photons only those
photons which did not interact will still have the same energy
after passing through the material.

For the production of a beam of parallel photons from a point source a
semi-infinite channel is theoretically needed. The same theoretical require-
ment applies for the detection channel which must separate the photons

with the original beam direction from the others.

Because of the finite channel dimensions and the absence of a mono-energetic
y-source a combination of both approaches is used. The Tead shielding
placed in front of the photon counter contains a channel with a rather
large length/diameter ratio (length: 70 mm, inner diameter 2.3 mm). The
channel in the source holder is rather short and ends in an expanding cone
to facilitate alignment of the source and detector; this expanding cone
does not affect the collimation because the source is perceived by the
measuring area at the photon counter as a point source with a very small
angle, while the lead shielding prevents photons from outside this small
angle from reaching the detector, so that the photons which are counted

are nearly parallel. In addition to this distinction in the direction of
the photons, only photons within a very narrow energ; spectrum are measured.
This is made possible by the use of a 0.5 Curie Cs!37 source. Cesium has a
662 keV peak in its photon spectrum and emits almost no higher energy
photons (photon absorption by pair production is thus eliminated because

it requires a photon energy exceeding 1020 keV). By measuring only photons
in a small "window" around this peak the measurement with mono-energetic
photons is approximated, while in addition the effect of back-scattered
photons in the counter is eliminated.

This "window" is adjusted on the count rate meter (cf. schematical figure
2-25) where a pulse height analyser discriminates the photons within the
desired narrow span of energy. The photons are detected by a scintillation
counter consisting of a NaJ crystal and a photomultiplier tube, the Tatter
being connected to the high voltage supp]y adjusted at a vo]tage of about

1000 Volts. In this configuration the maximum count rate is 1.8x10% photons/s,
which is chosen close to the maximum limit of 2x10% photons/s of the

detector, in order to minimize the statistical error in the amount of

photons delivered by the source.

* " " g g

yAnothelﬂ more recent measuring technique showing the same advantage is the
Laser Doppler technique, which however until now can only be used for low
void fractions.
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As mentioned above the photon beam coincides with a chord of the cross
section under investigation, hence only the mean void fraction of each
chord can be measured. By measuring a large number of these chordal void
fractions, the mean void fraction for the cross section can be computed.
For this purpose a sidewise translation in the plane of the cross section
is imparted to the source and counter. In principle no translation should
occur during each chord measurement, which consists of 5 discrete scans -
at intervals of 0.25 second - of the continuous intensity signal: the
purpose of this discretization is to eliminate stochastic effects. However
the practical realization of such a discontinuous motion would require
highly co plex mechanisms; therefore a very slow continuous translation is
used instead as an approximation. Two electric motors cause a displacement
of 115 mm in 420 seconds, during which time the intensities of 84 chords
are measured, and there after return the installation to the initial
position in 60 seconds (the scan command for each chord is controlled by a
cam mounted on one of the two electric drive motors).

Each of the 84 periods of 5 seconds of the measuring stroke consists of 4
seconds pure translation and 1 second of combined translation and scanning.
The translation velocity - being 0.274 mm/s - thus yields a displacement of
only 0.274 mm during each series of 5 recordings, which is small with
respect to the diameter of the photon beam, viz. 2.3 mm, and the nominal
chord spacing of 115/84 = 1.4 mm.

Moreover this Tow translation velocity causes a slow variation of the
intensity signal required for a proper measurement: the continuous signal
of the count rate meter is obtained by integration of the counted discrete
photons requiring an integration time of about 1 second to reach the proper
value.

The small remaining error is eliminated in the further computation of the
mean chordal void fraction, as the errors are about the same for the mix-
ture and air- and water-filled attenuation signals because of their iden-
tical starting position and therefore cancelled out.

The positions of the 84 chords are identical for each of the three signals
due to the precision of the initial position of the cam - controlling the
scan command - at the start of each measurement traverse.

Prior to computation of the mean chordal void fractions chords located
beyond the inner tube diameter are eliminated by using the photon intensity
signals measured on the empty (air-filled) test section. These intensities
show a dip at each side of the test section where the inner boundary is
reached, because the wall thickness across the measuring chord is highest
at that point. The exact location of the inner boundary is established by
interpolation between this Towest intensity and the values for two adjacent
chords, assuming that the intensity curve is symmetrical with respect to
the dip, which assumption is borne out by practice (cf. figure 2-26).

The mean void fractions for the remaining chords are obtained by comparing
the three intensity signals for the test section filled with the flowing
two-phase mixture, pure liquid and pure gas respectively, using the attenuation
law for radiation:

I, = Ie - (2-120)

u is the absorption coefficient

t is the thickness of absorbing material traversed by the beam

Iop is the initial beam intensity

I+ is the intensity of the beam after attenuation by the absorbing
material. ‘
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Successive attenuation by the various absorbing material yields for
® the gas signal:

= g -
Ig Ioe .e (2-121)
e the liquid signal:
-p,L, -u,t
I,=1e 'Ke ® (2-122)

where

Lk is the chord length

t is the total wall thickness along the beam

- ugs u] and u¢ are the absorption coefficients for the gas, Tiquid
a%d test sect1on material respectively.

From the review of the method given by SCHROCK [71 ] it follows that under
normal conditions the mixture can be assumed to give an attenuation equal
to the combination of a Tiquid layer with thickness (1-<a>g)Ly and a gas
layer with thickness <o>yL,, yielding for the mixture signal:

-(1-<a>k) u-ILk -<a> L, -y, t
- gkt "
Im = Ioe .e .e (2-123)
Combination of the various formulae yields:
I =(u_=uq)<o> L
me=e 9 177Kk (2-124)

and

I, =g ol
T? e (hgmuplty (2-125)

yielding for the mean chordal void fraction:




(2-126)
g
In : 18

In order to standardize the computation of the mean cross-sectional void
fraction irrespective of test section shape the original set of mean chordal
void fractions is transformed to a fixed number of 41 equidistant chords
per cross section. The coordinates of the chords are expressed in relative

radii,

between -0.95 and 0.95. To avoid singularity problems at the test

section walls - where the void fraction equals zero - the chords coinciding
with the wall (-1.00 and 1.00) are replaced by chords with coordinates -
0.99 and 0.99.

The void fractions on these 41 standard chords are approximated by a
Chebyshev polynomial of order 12 (13 terms) computed from the set of
measured void fractions by the method of least squares. This approximation
results in a further smoothing of the void fraction measurement errors.

For computation of the mean cross-sectional void fraction®

the chordal

void fraction is considered to represent the mean void fraction for a small
area adjacent to the actual chord, yielding for the mean cross-sectional
void fraction:

oy
OZep T K; n

4

n—

1<a>knAn (2-127)

In order to determine the error in the mean cross-sectional void fraction,
the errors in the mean chordal void fraction are first analyzed, after
correcting for the dead time of the counter and for background radiation.
Such errors are due to:

imperfect collimation of the photons

spread in photon energy i.e. deviation from the ideal mono-energetic
beam

the stochastic character of the measured intensities due to both the
stochastic photon emission from the Cs!37 source and the stochastic
character of the two-phase flow itself. Insertion of the standard
deviation of the signals in formula (2-126) results in an error of
A<a>k = 0.003

the change in the absorption coefficient pq due to variation in the
gas density from about 1.3 kg/m? during megsurement of the gas signal
up to a maximum of about 3 kg/m3 during measurement of the mixture
signal (occurring for maximum flow in the converging test section).
This error is established at less than 0.75% in[72 1.

inaccurate chord location due to errors in the determination of the
inner boundaries of the test section and to vibration of the test
section and translation unit.

An exact analysis of the combination of these errors is almost impossible.
Therefore the error analysis is based upon the actual measurements: the
deviations between the measured mean chordal void fractions and the more or
less smoothed values obtained by least square approximation for the compu-
tation of the void fractions at the 41 standard chords are assumed to be

#) The radial void fraction distribution — which becomes of special interest. in
the separator experiments discussed in sections 4.2. and 4.3. - 18 computed
from the same set of 41 standard chord void fractions by a method discussed
in appendix 2-F.
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characteristic for the error in the former set of values.

These deviations appear to be independent from the actual mixture composition

and show a rather consistent radial distribution from about 0.015 for the

chords in the middle of the cross section up to about 0.06 for the 2 or 3

chords ciosest to the test section walls. In view of the small contribution

of these outside chords to the mean cross-sectional void fraction - as

evident from formula (2-127) - a uniform value of 0.02 is assumed for this

deviation.

It is evident that the true measurement error in the mean chordal void

fractions will be larger than 0.02 due to the imperfect smoothing of the

12th order Chebyshev polynomial. In the absence of an analytical formulation

for this remaining error in the void fractions of the standard set of 41

chords, it is also estimated at 0.02.

The error in the mean cross~sectional void fraction caused by this chordal
0.02 _

or = Tar ™ 0.003,

resulting in a relative error varying from 1.2% to 0.4% for the range of

void fractions between 0.25 and 0.75.

error can be approximated from formula (2-127) as A<o>

2.3.1.4.3. Pressure measurements

A1l pressure measurements in this investigation are pressure difference
measurements, except for an additional measurement of the atmospheric
pressure - by means of a barometer - in use for the computation of the
absolute pressures in the test section.

The pressure differences measured are:

e the twelve differences between the thirteen taps (always two adjacent
taps)

e the difference between the lowest tap (number 1) and atmosphere

e the difference.between atmosphere and the highest tap (number 13)

e the difference between atmosphere and the air pressure after the
flowmeters

e the static pressure difference across the venturi flowmeter for water

These 16 differences are measured with two different differential pressure
cells actuated by the displacement of an elastic membrane. This displacement
is measured by two induction coils in the cell forming a Wheatstone bridge
together with two resistances in the carrier frequency amplifier.

The cells' original maximum pressure ranges are reduced from 0.1 MN/m? to
0.01 and from 1 MN/m? to 0.2 MN/m2 respectively by adjusting the amplifier
in order to improve the accuracy: the 5 largest differences are measured
with the highest range cell and the other 11 with the lowest range cell.
In view of the stochastic character of the two-phase flow each pressure
difference is measured 5 times at 0.25 second intervals by connecting the
amplifier output to 5 subsequent channels of the data logger. The most
probable measurement value and its standard deviation are derived from
these measurements in the way discussed in subsection 2.3.1.5.

The accuracy was further improved by eliminating the drift - which was
found to amount to a few percent of the maximum range, most probably due
to temperature effects - by measuring a "positive" and "negative" pressure
difference. This is done by interchanging the connections of the pressure
taps to the cell between each two measurements and averaging the two
resulting absolute values thus eliminating any zero error.

The interchange of the tap connections to the cells is done by electronic
switching of magnetic valves, controlled by the same central processing
unit - designed and built at the author's Taboratory - which also controls
the switching of the entire magnetic valve system used for subsequent
connection of the different taps to the differential pressure cells.

s




The barometer measuring the atmospheric pressure has an electric output and
was built at the author's laboratory. A wire of high electric resistance
(material: kanthal) extends through and above the usual mercury column; due
to the Tow resistance of the mercury column the resistance of this wire
depends solely on the length of wire extending above the column. This
resistance is measured using an amplifier of the type employed for strain
gauge measurements.

The formula in use for the barometric pressure is:

+
1 K56

pb = Kl 2 th o K3e o K4 Wﬁ (2‘128)

where h and 6 are the measured height of the column and the ambient tempe-
rature respectively, while the last two terms represent corrections for the
temperature dependency of the specific resistance of the kanthal wire and
for the small amount of air enclosed above the column.

The six constants K are obtained by calibration yielding a standard devi-
ation of 3 millibar.

The computation of all differential pressures consists of three consecutive
steps, viz.

e correction of the sign of the measured value: due to the measurement
of "positive" and "negative" pressure differences half the measured
values are assigned the opposite sign.

e computation of the measured differential pressure at the measuring
cell, i.e. converting millivolts to N/m2

e incorporation of the hydrostatic pressure differences due to the
water-filled connections between taps and cells.

The resulting formula combining these three steps reads:
p, =* KmV ] +pi98h (2-129)

where

Apy is the resulting n-th pressure difference

[mV ], is the measured millivolt value, obtained from "positive"

and "negative" measurements

K is the gauge value of the differential pressure cell

Ah, is the difference in height between the taps of the n-th pressure
di?ference.

The standard deviation is obtained by combining the standard deviations of
the sets of "positive" and "negative" values:

= /i(op + a7)

’s p " “n

The deviation between the two total pressure differences obtained by
summation of the 12 individual differences Ap;(i=2...13) and by substraction
of the overpressures at the bottom Apy and the top Apjs of the test section
respectively, viz.

13

e = (ap, - Ap,,) - 5L, AP; (2-130)

is combined with the set of 14 standard deviations in order to provide
ultimate corrections for the pressure differences as follows:

= 1 £ -1
e Bl 1 (2-131)
G .
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From these corrected differential pressures the absolute pressures

subsequently used for computing the pressure gradients gp are obtained by
addition:

AP, + Py (2-132)

where p, is the atmospheric pressure.

The error in these pressure gradients can be derived from the measurement
‘error ¢ defined by (2-130) which was found to have a standard deviation
less than 0.8% of the total pressure difference across the test section
Apt. The correction described above will decrease this error. By contrast
the polynomial approximation used to obtain the gradients %% from the
absolute pressures will introduce some inaccuracy increasing the error in
the gradient. Hence the final error in the pressure gradients is estimated
to be 0.8%.

2.3.1.4.4. Temperature measurements

Three temperatures are measured, viz.

e the temperature of the water, required for computation of the air
and water densities in the test section

e the temperature of the air downstream of the flowmeters, required
for correction of the measured air flow

e the ambient temperature, required for correction of the barometer
pressure.

These temperatures are measured with standard chromel-alumel thermocouples,
with their cold junctions held at 50 + 0.05°C by a transostat Hence the
absolute temperatures follow from:

T = (273+50) + K [mV; ] (2-133)

where the constant K is given by the manufacturer.

Because of the weak influences of the temperature on the resu]ting flow
var1ables the thermocouples are not calibrated: the accuracy is estimated
at + 1°C.

2.3.1.4.5. Data handling

The analog signals received by the data logger are converted in a digital
voltmeter. This voltmeter includes a scanner which sends the digital

signals to a punch encoder, whence they are transmitted to a paper tape
puncher: an 8-hole adjusted ASKI-code is used on the paper tape.

Of the 100 available data logger channels only 22 are in use. The associated
transducers and thermocouples are:

e channels 0 through 4: photon intensity ratemeter

e channel 5: 0.006 to 0.06 kg/s air flowmeter

e channel 6: 0.03 to 0.3 kg/s air flowmeter

e channel 7: reserved for a third air flowmeter in use with the
separator tests reported in subsection 4.3.

e channel 8: thermocouple downstream of the air flowmeters

e channel 9: ambient temperature thermocouple

e channel 10: water flow thermocouple

e channel 11: amplifier for barometric pressure

e channel 12 through 16: 0.01 MN/m2 pressure difference cell

e channel 17 through 21: 0.2 MN/m? pressure difference cell.
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During measurement of the photon intensities only the first 5 channels are
connected to the digital voltmeter.

During measurement of the pressure differences all 22 channels are succes-
sively connected with the digital voltmeter, with the first 5 channels
giving only dummy values. This cycle is repeated 24 times by the central
processing unit, corresponding to the "positive" and "negative" measurements
of the 12 pressure differences measured with the low range pressure difference
cell (the high range cell is in use for only 6 pressure differences).

For each channel the polarity, 5 digits and a blank are punched at a rate

of 4 channels per second.

Prior to computation of the flow variables from the measured millivolt
values, the punched data are reordered and the most probable value for each
measured quantity is derived from its stochastic set of values, as discussed
in the next subsection.

2.3.1.5. Data processing

As already discussed above for the void fraction and differential pressures,
the stochastic character of two-phase flow is taken into account by
measuring the signals for all relevant parameters several times. The

present subsection deals with the acquisition of these data sets, and the
computation of the most probable value for each set.

In order to provide a better understanding of the data acquisition the
sequence of measurements and of punched tape processing will be exposed.
Table 2-27 specifies the measured values and their measuring frequencies.
The measurement sequence is repeated for each of the ten measurement levels
along the test section under investigation. Such a level measurement consists
of the void fraction measurements at the concerning level and the measure-
ment of all pressures, flows and temperatures.

In order to minimize the number of air and water reference photon intensi-
ties these reference values are measured only once for ?ach level prior to
the complete measurement for three mixture adjustments* . The mixture
measurements at each level start with the measurement of the photon intensi-
ty consisting of 84 chordal measurements of 5 values each.

The intensity measurement is followed by the measurements of the pressure
differences, flows and temperatures as shown in table 2-27. This cycle is
repeated 12 times because there are 12 pressure differences (including 1
zero) to measure. Each cycle consists of a "positive" and "negative"
measurement (cf. 2.3.1.4.3.), yielding a total of 24 scans. As stated in
subsection 2.3.1.4.3. each value is measured 5 times, hence this procedure
results in 2 sets of 5 values for each pressure difference including that
of the venturi water flow meter. Simultaneously a set of 24 values for each
of the signals of the air flowmeter, temperatures and barometric pressure
device is obtained.

The resulting paper tape, consisting of the ten level measurements for the
three mixture adjustments considered, is rearranged by the computer to
yield measurement sets of 5, 2x5 or 24 values per level for each of the
measured parameters. From each of these sets the most probable value and
its standard deviation is derived.

Despite the availability of numerous subroutines for the analysis of
stochastic signals, none of these was found satisfactory for eliminating

. In order to ensure a proper read out of the punched tape the mixture measure-—
ments are separated on the tape by the adjustment code number (cf. subsection
2.3.1.2.) and the level number, while in addition the complete measurement
f‘or a measurement level is predicted by its level number.
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TABLE 2~-27

Sequence and number of
the measured values

measuremnentlevel 1

reterence measurements for the void fraction

- air-reference

84 chords (5 measured values each chord) 420
- viater-reference
idem 420
T TR R IJ

mixture adjustment A

void fraction measurement

- 84 chords (5 measured values each chord)
L T

AQAAI

1st pressure differences
(and flows, temperatures, etc.)

5 dummy values
low range airflowneter
high range airflowmeter
1 dummy value
thermocouple airsupply
thermocouple surrounding
thermocouple watercircuit
‘barometric pressure device =
pressure difference cell 1 |
(5 measured values for one pressure difference)
- pressure difference cell 2
idem

"positive" measurement 22

"negative" measurement 22
idem

femceasae=: 1
s

2nd pressure differences 22 + 22 1
(and flows, temperatures, etc.) )
idem

NG A PN, PR AT T A

up to and including the 12th pressure differences

_

10 (22 + 22)

mixture adjustment B

idem 420 + 12 (22 + 22) = 9481

mixture adjustment C

iden 420 + 12 (22 + 22) = 948'

N AL

9(2x420 + 3x948) =
9 x 3684

up to and including measurementlevel 10

33156

total number 10 x 3634

i

extreme values from the present experiments in such a way as to obviate the
need for manual checks for punching errors and extreme values on the 12,000
numbers per series, i.e. a total of some 12,000 x 3 (test sections) x 25

(mixture adjustments)

= 900,000 numbers. Hence a special subroutine was

developed which eliminates the extreme values as well as computing the most
probable value from the remainder.

As can be seen in the flow sheet of this subroutine PROBMEAN in figure 2-28
the determination of extreme values starts with the computation of the mean
value and its standard deviation of the entire set under consideration. Any
value deviating from this mean value by more than 1.3 times the
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mean value X
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deviation 0
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factor CF=13

yes no

extreme values
6 )CFx0y
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standard
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maximum
deviation €

extreme volue
€ max yCFx0py,
elimination

extreme value

no es
full set 2

mean value mean value
reduced set Xp complete set X

standard standard

deviation on deviation 0"=0p
the basis of the
full set and Xr

FIGURE 2-28 , | L
Flowsheet of subroutine PROBMEAN C:

standard deviation is supposed to be an extreme value*): if no such
deviation exists the mean value of entire set represents the most probable
value.

The existence of one or more extreme values implies that the previously
computed mean value should not be used for further computations: instead

of this mean value the median value from the set will be used as a yardstick
for defining extreme values together with a new standard deviation computed
on the basis of this median value.

A new check for extreme values is subsequently carried out with reference
to this median value. This recheck is necessary both because the new
standard deviation is greater than that previously computed on the basis

of the mean value and because the maximum deviation itself also changes.

If the greatest deviation in this recheck is found to be an extreme value
the corresponding value is removed and the same procedure is repeated with
the median and standard deviation of the reduced set. However, to prevent
elimination of too many measured values on behalf of the reduced standard

*) The factor 1.3 stems from the sets consisting of 5 values; according to the
Gaussian—distribution — which is assumed to be valid for these stochastic
signals = only 19.4% of the values has a deviation exceeding 1.3 times the
standard deviation. Hence the existence of such a deviation for 20% - equi-
valent to one value - of the set yields an overrepresentation of extreme'
values which should be eliminated.
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deviation the comparison factor 1.3 is then adapted by an increase of 0.4
per eliminated value. This procedure is continued until there are no more
extreme values and the arithmetic mean value of the final reduced set is
taken as the most probable value. The standard deviation resulting from
the subroutine is based on the complete initial set of values and the
resulting mean value. The incorporation of possible extreme values in the
standard deviation is necessary because the existence of extreme values
indicates an inaccurate measurement, which should be manifested in a large
standard deviation.

It should be noted that this subroutine PROBMEAN is used too for the
computation of the most probable axial pressure distribution which distri-
bution is measured ten times, i.e. once for each of the ten level measure-
ments, differing a Tittle from each other due to small deviations in the

readjusted mass flows. The pressure gradient %% - required for the

computations of the interaction forces as described in subsection 2.3.1.1. -
is obtained from this most probable distribution by a polynomial approximation
on the basis of the spline method. In this method the total length of the

test section is divided in a suitable number of intervals each having their
own approximation polynomial (see e.g. [73 ]). For the present investigation
the polynomials are chosen to be of degree three, while the total approxi-
mation is taken continuous for the function value p and its first derivative
%%. The void fraction derivative %% is obtained from the data of the indi-
vidual measurement levels by a Chebyshev polynomial approximation. This
polynomial will have an additional smoothing effect on the small deviations
due to fluctuations in the readjusted air and water flow, while in addition
the most probable values of these flows are used in the f1na1 computations
of the interaction force coefficients.

2.3.1.6. Results

Prior to deriving the interaction force coefficients the direct results,
viz. pressure, void fraction and phase velocities, will be discussed in
order to give an impression of the character of the investigated flows and
of the accuracy of the measurements.

2.3.1.6.1. Pressure, void fraction and velocity distribution

From the total set of 75 measurements 5 measurements with constant void
fraction and 5 measurements with constant superficial water velocity have
been selected for each of the three test sections in order to show the
influences of these two basic parameters.

In view of the region of interest for the present separator investigation
a void fraction of 0.63 and a superficial water velocity of 2.1 m/s have
been selected for this purpose, i.e. the measurements carrying a 4 as last
and penultimate figure respectively, according to the code of subsection
e I (e

Measurements 245 and 254 were not carried out because the combination of
high pressure (p > 260 kN/m?) and high volumetric quality requires an
extremely large air mass flow which was not available for this investigation.

2.3.1.6.1.1. Axial pressure profiles

These distributions are presented in the figures 2-29 through 2-31 for each
of the three test sections.

The pressure gradient in the straight test section (figure 2-29) appears

to be almost constant and dominated by the hydrostatic pressure gradient:

in the "row" for constant superficial velocity the gradient a— decreases

- 78 -




with increasing void fraction due to the proportionality with the hydro-
static pressure grad1ent {(1-a)pq + apqlg. For high void fractions 0.63

and 0.7% this decrease is term1nated dﬂe to the increase of the frictional
pressure drop which is proportional to the square of the real water velocity.
In general the frictional pressure drop is of minor influence as can be
seen in the "column" for constant void fraction, where the pressure gradient
remains almost constant notwithstanding the variation in superf1c1a1 and
real water ve10c1ty

For the converging test section (figure 2-30) the domination of the
acceleration pressure drop - proportional to the square of the real water
velocity - appears clearly for both constant void fraction and superficial
water velocity. The total pressure drop reaches a level up to 100 kN/m2 -
where expansion of the air becomes significant as will be discussed in the
next subsection. In the tail end of the test section - having an inner
diameter of 0.07 m - the pressure gradient is mostly determined by the
frictional pressure drop due to the increased real water velocities and
decreased diameter. The almost constant pressure gradient downstream of
pressure tap 11 (measurement level 9) point towards a fully developed flow
only 0.2 m (equivalent to 3D) after leaving the converging cone.

The measurements in the venturi-shaped test section (figure 2-31) show a
larger acceleration pressure drop in the converging part due to the greater
area reduction. Pressure recovery in the diffuser takes place at Tow
efficiency and depends on the void fraction, which is in agreement with the
experiments and analysis of KORSTANJE [74 ]. From the continuing pressure
increase at the last pressure tap - 0.18 m downstream of the diffuser - it
appears that the diffuser is probably too short causing separation of the
flow from the wall. The most significant feature of the flow downstream of
the throat is the huge void fraction caused by expansion of the air, and
its different radial distribution discussed below.

From figure 2-31 it is obvious that the steep gradient at the throat typical
for the venturi pressure profile requires a highly sophisticated approxi-

mation technique for computation of the gradient-%gz this was found by a

polynomial approximation based on the spline method (see e.g. [73 ]) where
pressure profile and test section geometry can be taken into account by the
choice of the sp]1nes Measurement 244 may serve as a typical example: the
standard deviation is 0.41 kN/m? and the maximum deviation 0.96 kN/m2, which
is an extreme]y good approximation in view of the total pressure drop of

260 kN/mZ2.

The very steep pressure gradient of measurement 244 - a pressure drop of

150 kN/m? over a distance of only 0.08 m - points to the possibility of a
shock wave due to reaching the critical mass flow. This point will be
discussed in subsection 2.3.1.6.1.4..

2.3.1.6.1.2. Axial void fraction profiles
For the straight test section (figure 2-32) the small void fraction gradient
caused by expansion of the air is small enough - %% < 0.03 - to justify

omission of the virtual mass term as described in subsection 2.3.1.1..

In case of the converging test section (figure 2-33) the void fraction
decreases in the lower part of the cone where the acceleration of the air
exceeds that of the water. At the end of the cone the pressure drop reaches
a magnitude where expansion of the air becomes sufficiently important to
yield increasing void fractions. It is obvious that these effects are
proportional to the pressure gradients and hence depend on the superficial
water velocity and the void fraction itself, determining the real water.
velocity.
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This fact appears clearly for the experiments in the venturi-shaped test
section (figure 2-34) where the void fraction increase in the throat and
diffuser as well as the decrease in the lower end of the cone are more
marked than in the converging test section. The increase in volumetric
quality due to expansion is so large that the void fraction in the diffuser
generally Ties between 0.75 and 0.95: only in case of the lowest void
fraction is there a decrease at the end of the diffuser due to the compress-
ion effect of the pressure recovery. Unfortunately this increase restricts
the range of void fractions in the diffuser, thus hampering the 1nvest1gat1on
of void fraction effects in decelerating flows.

2.3.1.6.1.3. Radial void fraction profiles

For each mixture adjustment - shown in figure 2-35 through 2-37 - four
radial void fraction distributions are selected from the ten measured at
the various measurement levels in order to make the graphs more transparent.
Figure 2-35 confirms that the radial distributions are constant along the
straight test section as was to be expected. In addition it can be concluded
that the error in local void fraction Aa < 0.04, while the maximum errors
occur mostly at high Tocal void fractions.

The profiles are in agreement with the general shape function used in
subsection 2.2.4. for computing two-dimensional effects. The shape depends
mostly on mean void fraction: with increasing mean void fraction the void
distribution becomes more homogeneous (flatter), while there is only a
slight tendency to more peaked profiles with increasing superficial water
velocity.

In the converging test section (figure 2-36) the profiles become slightly
more peaked in the cone, which is in agreement with the small decrease of
the mean void fraction, flattening again towards the tail end as is shown
by the profiles at measurement level 10.

In the converging part of the venturi-shaped test section (figure 2-37)

the same somewhat steeper profiles occur, while the flattening in the
throat (measurement level 6) is of the same magnitude as in the tail end
of the converging test section. In contrast to these rather small profile
variations in the straight and converging parts of the test sections, the
profiles in the diffuser part change abruptly and significantly. The radial
void fraction distributions in the diffuser are almost homogeneous for all
mean void fractions and superficial water velocities, as shown by the
profiles at measurement level 10. In the author's opinion this effect is
caused by superposition upon the normal bubble diffusion of a radial mass
transport - required to "fill" the diffuser - which is relatively greater
for the air due to its lower density. For measurement 242 this latter effect
dominates to such an extent that the void fraction near the wall exceeds
that in the center of the test section.

The combination of this homogeneous profile and a high mean void fraction
leads to an annular mist flow, as can be seen in the "column" of figure
2-37, where it should be noticed that the fluctuations of the high void
fractions in the bulk of the flow are caused by measurement errors and
have no physical meaning.

2.3.1.6.1.4. Axial velocity profiles

In figure 2-38 the relative velocity in the straight test section appears
strongly dependent on the void fraction and almost independent of the
superficial water velocity. This is in agreement with the data of SMISSAERT
[36 ] discussed in subsection 2.2.2.1.4., as borne out by figure 2-41
showing some of the present author's and Smissaert's data. The higher
relative velocity found by Smissaert for the higher void fractions may be
attributed to the larger frictional pressure drop caused by the smaller
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test section diameter, an effect which becomes significant for these higher
void fractions.

The acceleration in the converging test section of both water-and air, the
latter more marked due to the lower air density, is clearly seen in figure
2-39. There even occurs an overshoot of the air velocity at the end of the
cone which, however, is eliminated in the first 0.2 m of the tail end.

The same overshoot of the air velocity occurs in the converging part of

the venturi-shaped test section (figure 2-40), where in addition an
"undershoot" occurs in the diffuser part. This greater deceleration of the
air is even of such a magnitude that the relative velocity becomes negative
in the upper part of the diffuser and the downstream tail pipe.

The magnitude of the velocities in this venturi-shaped test section - up

to 74.5 m/s for the air at measurement 244 - is such as to raise the
question of sonic velocity. From Titerature (e.g. WALLIS £7 1) the velocity
of sound for homogeneous flow (no slip between the phases) is known as

¢? = {(apy + (1-a)pq) (— + 1%y  (2-134)
Pglg RETM

reaching a maximum_for adiabatic flow where the velocity of sound for air

is determined by c2 = KgR T. For such an adiabatic atmoshperic:- air-water
flow the velocity 8f soung lies between 25 and 30 m/s for void fractions
between 0.2 and 0.8, values often exceeded by the air velocities in the
venturi-shaped test section. However, in the present author's opinion only
the continuous phase - i.e. the liquid - is relevant for the shock wave
phenomena associated with the velocity of sound. Only for level 7 of
measurement 244 does the water velocity exceed the velocity of sound for

the actual conditions: 37.3 m/s vs. 32.1 m/s. However, even in this case

no phenomena indicating supersonic flow in the diffuser occurred, confirming
the present author's opinion that due to deviations from the homogeneous
model underlying equation (2-134) and local variations of the void fraction
and velocities in the actual cross section the water velocity did not exceed
the velocity of sound.
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2.3.1.6.2. - Interaction force coefficients

In this subsection the measured values for the drag force and virtual mass
coefficients and their error analyses are presented while the physical
analysis of these results together with those of the steam-water experiments
will be discussed in subsection 2.4..

2.3.1.6.2.1. Drag force coefficient

The values for the drag force coefficient Cp are plotted in figures 2-42
through 2-44 for the straight, converging and venturi-shaped test section
respectively. From these figures it is concluded that:

* the drag force coefficients may be approximated with reasonable
accuracy by:
Cp = 0.44 (1-0)° (2-135)

while noticing that

- the scatterband is wider for the converging and venturi-shaped
test section than for the straight test section

- the converging and venturi-shaped test sections show a slight
tendency towards somewhat lower coefficients

* the coefficients are independent of the 1iquid velocity, hence the
variation of the relative velocity with the Tiquid velocity - as
measured by SMISSAERT [36 ] and in the present investigation (see
figure 2-10 and 2-41) - must be attributed by the effects of varying
frictional pressure gradient and bubble diameter

* the aforementioned slight tendency to lower coefficients for
accelerated flows will subsequently be found to result mainly from
measurement errors and should therefore not be attributed to any
significant influence of the acceleration.

Two error sources influencing the above results should be identified and
corrected at this stage:

® measurement errors: in appendix 2-G it is shown that the measurement
error in the liquid acceleration term - absent in case of the straight
test section - results in large deviations for the measurements in
the converging test section, which will further increase for the
venturi-shaped test section. Appendix 2-G goes on to explain that
these large deviations cause a downward shift in logarithmic graphs,
which forms a plausible explanation for the differences in scatter-
bands visible in figures 2-42 through 2-44

® a two-dimensional effect not discussed in subsection 2.2.4., viz.
the strong variation of the drag force coefficient Cp and the relative
velocity up over a cross section due to the strong dependency of Cp
on"a: Cp = 0.44 (1-2)® and the existence of a inhomogeneous void
fraction distribution. This effect - to be further discussed and
quantified in appendix 2-H - will generally cause a difference in
location between the relative velocity used for computation of the
coefficient Cp and the mean cross-sectional void fraction used in
the proposed correlation for Cp. In appendix 2-H a numerical approxi-
mation is elaborated for the correct local void fractions: the
resulting correlation for Cp based on the proper local void fractions
is plotted in figure 2-45 together with some measurements from the
diffuser part of the venturi-shaped test section, where this second
two-dimensional effect does not exist because the void fraction
distribution is almost homogeneous (cf. subsection 2.3.1.6.1.3.).
Figure 2-45 shows a rather good agreement between these measurements,
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which may be approximated by Cp = 0.44 (1-a)4:25 for void fractions
smaller than 0.8, and the numerical approximation proposed in
appendix 2-H, viz. Cp = 0.44(1-0)4-75, In view of the possible
errors introduced in appendix 2-H the actual measurements are sup-
posed to give the most accurate correlation, yielding

4.25
)

Cp = 0.44(1-a for o < 0.8 (2-136)

where o is the local void fraction.
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In view of the significant difference between the results on the basis of
local void fractions: Cp = 0.44(1-a%4'25 and those for the pseudo-one
dimensional model: Cp = 0.44(1-<a>)® - including the abovementioned second
two-dimensional effect - a distinction will be made further on between
these two types of results.

2.3.1}6.2.2. Virtual mass coefficient
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In accordance with the analyses in subsection 2.2.2.2. the possible
dependence of the virtual mass coefficient B on void fraction o and

slip s was first investigated under the assumption that these dependences
could be separated, i.e. that B = Kg g(a).h(s).

From the evaluation of several sets of data, each having approximately
constant void fraction o« and slip s it appears, however, that the variations
in virtual mass coefficient within each group exceed the normal scatter due
to measurement errors indicating the need for a third parameter. Reexami-
nation of the analyses in subsection 2.2.2.2. shows that these are all
based upon potential flow, implying a constant shape of the velocity
distribution near the spheres under investigation. This in turn implies
that the peak velocity u® - defined in figure 2-46 - for potential flow




centre level

velocities at
the centre Level

FIGURE 2-46

Liquid velocity near a sphere

ug:Gg
around a single sphere always equals half the relative velocity u, (see

. [41]), whereas it is highly likely that the peak velocity ratio
u

U—'W1]1 in reality vary with other parameters such as the Tiquid viscosity.
r @D

Inclusion of the peak velocity ratio-%— as a relevant parameter for the
virtual mass coefficients yields a geH&ra] correlation:

B = Ky.f(z-).g(a).h(s) (2-137)

€B
The peak velocity rat1o — is analysed in appendix 2-I and it is found
that:

® K
u 4 7
— = 'ﬁjﬁ' for ReWe > K (2-138A)

U, ele 7
and
u’® Re
T =2 for ReWe < K_ (2-1388B)
r 6
(1-u)p]urd (1- a)p-lu d
where Re = = Sy W B i, while the constants Kg and K5

have to be deter%1ned together with the function f( )

The determination of each of the three functions f( ) g(a), h(s) and the
constant K is discussed and described in appendix 2 J These analyses
yield as a final, slip-independent (h(s) = 1) correlation

G2 ®
2 u ,0.65 1.569 ,u ,0.65
—sceners {2 u——) o= _—_—_Z'(Tf) (2-139)
1+(1-a) 1+(1-0) ¢
in which the constants K; and K; - of correlation (2-138) for the peak
D

velocity ratio %— - are determined as 10000 and 35000, respectively.

B = }

r : . . : = i’
The separate dependencies on void fraction a and peak velocity ratio %—

are shown in figures 2-47 through 2-50. From these figures it appears ’
that the correlation is mainly based upon the values measured in the
converging test section; the scatterband found for these measurements is
of the same magnitude as that for the Cp values in the converging test
section (cf. figure 2-43).

The scatterband for the experiments in the venturi-shaped test section is
much larger than that of the converging test section, as might be expected
from the error analysis of appendix 2-G, while the shift to Tower values

= 0y &
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- also found for the drag force coefficients - should again be attributed
to these large measurements errors.
The following additional remarks on correlation (2-139) appear in order:

* the value B = 0.5 agrees with the analysis for a single sphere in
@
potential flow (o ~ 0 and %— = 3),
r
* in the lower range of o values the dependence on the void fraction

g(a) = ———31——71 - shown in figures 2-49 and 2-50 - is in good

_ 1+(1-a)
quantitative agreement with the function (1+2.780) derived analyti-
cally by VAN WIJNGAARDEN [43 1.

* the dependence on the void fraction is so weak that the correction
from mean to local void fraction discussed in appendix 2-H and
subsection 2.3.1.6.2.1. may be omitted. Hence correlation (2-139)
is valid for both cross-sectional mean and local void fractions.

* the independency on the slip is concluded to be very likely in
appendix 2-J, but cannot be proved by large changes in accuracy of
the investigated correlations with respect to the experimental
results.

* the virtual mass coefficients fitting this correlation exceed the
values obtained from Prins' correlation (2-69): B = 3.155(1-a)10.85
by several orders of magnitude. This significant difference is due
to the fact that Prins, in obtaining his correlation from experimental
results; has taken the virtual mass coefficient B constant along

the test section. In this way the part aAp] g 4 SE of the virtual

mass term 3 uAp]BugU is omitted from the momentum balances, whereas
the present computations indicate it to be mostly large compared to
the remaining part B-%~ uAp]ugU and always negative in the converging
parts of the test sections due to the negative differential quotient
33 ). Henee this omission will result in the much Tower virtual mass

coefficients reported in[1].

2.3.2. Steam-water experiments

These experiments differ significantly from the air-water experiments by

the absence of the void fraction measurements. The steel pressure vessel
enclosing the test sections - necessary at the process conditions ranging

up to nuclear reactor operating conditions (7 MN/m2 and 2869C) - makes it
impossible to use the y-ray technique applied for the void fraction
measurement in the air-water experiments. Nor is there another void fraction
measuring technique which can be readily used under these circumstances.

2.3.2.1. Outline of the method

Because of the absence of measured void fractions the methods for computing
the experimental values of the drag force coefficient Cp and virtual mass
coefficient B will have to differ from those applied before. Mathematically
spoken the lack of the void fraction measurements presents a problem with
two equations: the momentum balances, and three unknowns: void fraction a,
drag force coefficient Cp and virtual mass coefficient B, requiring the

*) The splitting of the vzrtual mass term — as announced in subsection
2.3.1.1.2. - 18 mostly done to evaluate the relative importance of these
two parts.
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introduction of a third equation. This third equation differs for the
experiments in the straight and converging*) test sections, viz.:

- in the straight test section the acceleration due to condensation/
flashing of the steam is small enough for the virtual mass term to
be neglected, Teaving the void fraction o and drag force coefficient
Cp as unknowns

- in the experiments with the converging test section a correlation
for the drag force coefficient Cy is introduced, while the virtual
mass coefficient B and the void Qraction are computed from the two
momentum balances.

This correlation for Cp will partly be based on knowledge gained
from the air-water experiments and partly on the experimental data
obtained from the measurements with steam-water mixtures in the
straight test section. In subsection 2.3.1.6.2.1. it is concluded
for the air-water mixtures that the acceleration in the converging
test section does not significantly affect the values for Cp. The
same is supposed to hold for the steam-water mixtures and tEe
correlation for the drag force coefficient C, found in the straight
test section for steam-water mixtures will tRerefore be used in the
computations for the converging test section.

Further details of these two computations will be discussed in the next two
subsections.

2.3.2.1.1. Drag force coefficient

As in the case of the air-water experiments the drag force coefficient Cp
is computed on the basis of the 1liquid phase momentum balance for pseudo
one-dimensional flow (2-107), yielding:

d 2 d d
Cp  Kepy qrl(1-0)ud) + K (1-a)GE + K (1-a)eq9 + (G4, -
2= (2-140)
K /K g 7Kg ,Uy
%“pl(K51“g+K52 1 53UgU1) 0 -
. 51 g

which differs from equation (2-113) by the elimination of the flow area A
which is constant in the present computations because no drag force coeffi-
cients are conuted in the converging test section.

The quot1ent-a— is subsequently multiplied by the bubble diameter d computed

from correlation (2-98) in order to obtain the drag force coefficient Cp.
The right hand side of expression (2-140) is computed from measurements of

- pressure distribution along the test section (cf. subsection
2.3.2.4.2.2.), yielding the pressure gradient 3

- the water and steam mass flows ¢p] and mg (cf. subsection 2.3.2.4.2.1.),

y . o : N ml .

y1e1d1n% the liquid velocity up = Ti ek and gas velocity
ug = 35_%' These mass flows will be corr;cted for variations along
the tes% section due to condensation/flashing, which will be expressed
in term of the quality x = x(z).

The void fraction - needed in expression (2-140) - is computed from the

* . . i . .
) The experiments with the venturi-shaped test section were omitted because
they yield almost no additional information, as apparent from the air-water
experiments.
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mixture momentum balance, which is chosen because of the absence of the
drag force. This balance yields the expression

d 2 8 .0 "2 d d
Ky gz (epgu2) + Keoq gl (1-a)uy) + K, Hg + Kgoq9 + ‘ag)fr bi,
o K (57009 )
3Vl ~g :

which is obtained by

- addition of the gas phase and 1iquid phase momentum balances
(2-106) and (2-107) respectively 4B
- omission of the virtual mass term (B and il taken equal to zero)

- substitution of K; = K3 and K, = Kg according to table 2-21
- elimination of the cross-sectional area A
The derivative %% appearing in the acceleration terms K1 %2(apgu3) and
K6p] %E(l'a)u%) of equations (2-140) and (2-141) should formally be

obtained via an iterative computation and an additional polynomial approxi-
mation. However, these acceleration terms yield only a small correction in
the momentum balances for the present steam-water flows, hence it is

sufficiently accurate to obtain the derivative %% using a slip correlation

and the "measured" derivative of the quality %;: As derived in appendix
2-K this yield the expression

20p
9Ky da _ B~ "g dx _
where 6
- B is the volumetric quality g = Y
3K ¢vg+¢v1
- the derivative 55'15 given by JONES and DIGHT [76 ] as
%5 = P(l-KB)ar-l with r = 3.33+o.577(5£—)+4.74(—2—)2, while
Kg = 0.7140.29(5E-) according to BANKOFF [47. "
gy

Because of the continuity of the polynomial approximations for the pressure
and for the derivative of the void fraction, it is possible to compute the
drag force coefficient and void fraction at any place along the test section.
However, in order to Timit the number of data and to achieve some con-
formity with the air-water experiments, the computations are only carried
out for the Tocations of the pressure taps of the test section (cf. sub-
section 2.3.2.3.2.), resulting in ten values per mixture adjustment.

2.3.2.1.2. Virtual mass coefficient

As mentioned above the virtual mass coefficient B is computed from the
experiments with the conical test section, using the two available momentum
balances and a correlation for the drag force coefficient Cp in order to
solve for the virtual mass coefficient B and void fraction o. The correlation
for Cp is that obtained from the measurements in the straight test section
discussed in subsection 2.3.2.6.2.1., while the virtual mass coefficient B

is computed from the mixture momentum balance equation (2-114) also used

for the air-water experiments. The derivative of the void fraction %% is
obtained from the 1iquid momentum balance (2-107) yielding '
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Yy | sy

%;_‘ = {-K,(1-a)A %g - Kg(1-a)Aoqg - (%%)f,f\ +

L /F_—u /f_-u

D g 51°g 52 1
+ 30A T ° (K51ug+K52u] K53ugu]) )
52 1
1 dA 1 d 2 ~
et R G2 - 5 a7 o) /KNS (2-143)

The same fourth order predictor corrector method is used for the integration

do dB da . " _
of T and-a— These two integrations of o= and Iz are carried out simultane

ously because the frictional pressure drop (dg)fr is affected by the

acceleration terms 1nc1ud1ng the virtual mass term, as mentioned at the
end of subsection 2.2.3.1.

In the implementation of the abovementioned method of integration a procedure
has to be found for computation of the initial values at the bottom of the
test section: the absence of measured void fraction values introduces the
need for an initial computation for o, while application of the central
difference approximation - used in the initial value computation of B for

the air-water experiments - leads to wildly erratic B values in the case

of steam-water experiments.

Both initial value computations are carried out for the straight part of

the test section upstream of the cone and are based on:

- angiterative procedure for determining %%, in use to obtain the
initial value of the void fraction
- the assumption that-a— 0 immediately ahead of the cone for obtaining
the initial value of the virtual mass coefficient.
Computation of the void fraction o starts with the approximation of gﬁ
- for the region from 0.17 up to 0.07 m ahead of the cone of the test
section - on the basis of the der1vat1ve of the quality %5, using equation
(2-142). These derivatives %9 and H_ are used in the 1iquid momentum
balance (2-107) ol to compute the void fraction yielding
u
e (07U 45+ 17 fm) * Ky 1o * Kep19 * (@B)gy
C I/Fa—u -vK__u
K dp K.p.g + 3 D p1(K ulek_u2-K__u u ) g3 ]
7'3% 8”1 d P1'\Ts17g 5271 T537g 1 /F;I“g /F;;ul

Q
[}

(2-144)
This equation for the void fraction o is implicit because the 1liquid

velocity Uy and the frictional pressure drop (%g)fr depend on the void
fraction a. Hence this equation is solved using the Newton-Raphson method.

* T . . -
) The liquid momentum balance is chosen, instead of that for the mixture used
in subsection 2.3.2.1.1., because of the absence from the former of the
virtual mass term which may not be omitted in the present computation.
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The void fraction o is thus computed at eleven equidistant points in the
abovementioned region between 0.17 m and 0.07 m ahead of the cone, after
which a first order polynomial approximation is computed for these void

fractions. The constant first derivative %% of this polynomial is compared

to the derivative used in equation (2-144) and the computation is repeated
until these two derivatives differ by less than 0.0001.

The initial value computation for the virtual mass coefficient B is based

on the normal forward integration of %% and %%—- as described above -
starting at the end of the region considered for the void fraction compu-
tation, i.e. 0.07 m ahead of the cone. A large number of preliminary
integrations using arbitrary initial values for the virtual mass coefficient
B resulted - for each of the investigated mixture adjustments - in curves

of the type shown in figure 2-51. The following remarks can be made perti-
nent to the use of these curves for the selection of appropriate initial
values for the virtual mass coefficient B:

e in the conical part of the test section the curves are almost
parallel, because the term aAp]u u gg-1's large compared to the

gr dz
term B %E(aAp]ugur). Hence no selection criterion can be based on

the values in this part of the test section.
e for each curve the derivative %%—is constant in the straight parts

upstream of the cone and after about 0.2 m downstream of the cone,
while the value of the derivative %% depends strongly on the value
for B because the two parts of the virtual mass term - mentioned
above - are of the same magnitude.

e there exist two discontinuities in each curve, coinciding with the
discontinuities in the test section. These are mathematically
caused by the discontinuities of the derivative of the cross-sectional

area gé-and are not realistic because the real flow contracts at

these locations causing a smooth transition of the true cross-
sectional area and its derivative.

The virtual mass coefficient has to be constant, i.e. its derivative must
equal zero, in the straight parts of the test section. Hence the curve

for which %% equals zero both at the smoothed approximation of the transition

s

test section geometry \

initial
values B

~ selected curve

KIGURE 2-51

Sehematical curves for
various initial values of
the virtual mass coefficient

7

\f
127 132

—————m=— test section height z [m]

e virtual mass coefficient B
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from upstream cylinder to cone and at the tail end of the downstream
cylinder should be selected. The former condition was mathematically re-
formulated to prescribe equal values for the virtual mass coefficients B
some centimeters upstream and downstream of the cylinder-to-cone transition.
Satisfactory results for the second condition - g%-~ 0 in the downstream
part of the tail pipe - were obtained by referring this condition to the
pressure taps 2 cm upstream and 3 cm downstream of that transition (z = 1.27
and 1.32 m, respectively).

This way of initial value computation will introduce an inaccuracy of

about 35%, caused by:

- the statement By 57 = By 35, whereas the decreasing curves for B
in the converging part 1n31cate that in reality the value B 332
will be somewhat lower than B, ,,. By computing some curves for
which By 35 was 0.01 or 0.02 *ess than By ,, it was found that the
error introduced by the omission of this fact amounts to about 15%

- the rather arbitrary selection of z=1.27 m and 1.32 m for comparison
of the B values; small changes of these locations yield a variation
of about 10% in the values for the virtual mass coefficient.

- the choice of 0.5 cm as a practical length of the integration step,
particularly regarding the integration step straddling in the discon-
tinuities in the test section geometry; computations with very
small integration steps show a difference of about 10% in the
values for B with respect to those obtained with the value of 0.5 cm
actually selected to obtain a reasonable computation time.

While large by itself, this mathematically introduced inaccuracy is,
however, small compared to that caused by measurements errors as apparent
from the air-water experiments (cf. figures 2-47 through 2-50), and hence
of minor importance.

The computation of the final curve for the coefficient B (and void fraction
o) is performed for the region from 7 cm in front of the cone (z=1.22 m)

to 36 cm in the tail end of the test section (z=2.04 m). For the reason
mentioned for the drag force computations only ten values per mixture
adjustment - viz. those at the pressure tap locations (cf. subsection
2.3.2.3.2.) - will be used for further evaluation of the experiments.

2.3.2.2. Range of variables

The principle for establishing the mixture adjustments is the same as for
the air-water experiments, viz. the combination of a number of fixed void
fractions and a number of fixed superficial water velocities.
For the purpose of comparison the adjustments used in the air-water experi-
ments are included in the set of steam-water adjustments, while the omission
of the void fraction measurements leads to such a reduction in the amount
of experimental work per adjustment that the number of mixture adjustments
can be significantly enlarged. In view of these considerations nine nominal
void fractions were selected viz. from 0.1875 to 0.6875 in fixed intervals
of 0.0625. Unfortunately the void fraction «=0.75 - as in case of the air-
water experiments - could not be reached due to the large amount of carry-
under steam, as will be discussed below. In addition ten superficial water
velocities were selected increasing by fixed intervals of 0.2 m/s from 0.7
up to 2.5 m/s. These 90 mixture adjustments were applied in both test
sections for nominal pressures of 5 and 7 MN/m?, yielding a total number
of 360 measurements. Prior to these 360 measurements a full set of 90
measurements was carried out for both the straight and converging test
sections - at pressures of 7 and 5 MN /m2 respectively - in order to acquire
experience in handling the test facility.
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Because the adjustment parameters refer to the test section inlet - equal
for both test sections - the adjusted flows are equal for the straight and
converging test section.

The steam mass flows needed for the desired void fractions were determined
from the results of the air-water experiments in the straight test section.
The same void fractions are obtained for corresponding adjustments if the
volumetric quality g is identical, as may be seen from the slip correlation
of BANKOFF [4 1:

s = e (2-145)
which together with the definition of the slip
¢ <
s u_g = 3 vg/aA  _ 1?3 1a°t (2-146)
1 vl/(1-a)A
yields
o = KB (2-147)

Because the constant K 1ncreases by about 10% by raising the pressure from
atmospheric to 5 & 7 MN/m?2 (cf. appendix 2-K) the volumetric quality has
to be reduced by 10% to obtain the same void fraction o. However, this
reduction of quality occurs "automatically" in the test facility, because
the water - being mixed with somewhat superheated steam - is about 1 & 2°C
subcooled and hence part of the steam is condensed. It appears that this
condensation concerns about 10% of the steam flow, hence the initial ad-
justment of volumetric qualities identical to those of the air-water
mixtures will result in the desired void fractions after mixing.

Table 2-52 - showing the steam flows before mixing - indicates that not
all 90 adjustments have been realized. The steam flows for the lowest void
fraction a=0.1875 are so low - less than 0.1 kg/s - as to be outside the
normal range of the steam flow meters. The resulting measuring problems
led to the deletion of these adjustments. For the highest void fractions
carry-under flows exceed the capacity of the quench cooler (cf. subsection
2.3.2.3.1.), making it impossible to perform experiments at steam flows
exceeding 1.7 kg/s. Because carry-under behaviour depends on test section
geometry some of the experiments which could not be done with the straight
test section succeeded with the converging test section, as apparent from
table 2-52.

The final number of experiments was thus reduced to 143 for the straight
test section and 136 for the converging test section, while 71 + 68 = 139
preliminary experiments were performed.

The coding system for these measurements is the same as for the air-water
experiments. Each number consists of three figures. The first points to
the test section geometry: 0 (which is often omitted) for the straight and
1 for the converging test section, the second figure refers to the superficial
water velocity: from 1 for ug1=0.7 m/