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A n experimental study was conducted to investigate the flow around two tandem cylinders placed near 

and parallel to a plane wall . The Reynolds number based on the cylinder diameter (D) was 6300. The 

cylinder centre-to-centre spacing ratio (Z.*=£,/D) w a s varied from 1.5 to 6, and the gap-height-to-

cylinder-diameter ratio (G* = G / D ) from 0.15 to 2. The f low fields were measured using Particle Image 

Velocimetry (PIV), in conjunction w i t h measurements of fluid dynamic forces (drag and lift) on the 

downstream cylinder using load cell. The flow strongly depends on the combined value of G* and I * . 

W i t h reference to G*, the f low could be classified as vortex-shedding suppression regime ( G * < 0 . 3 ) , 

intermediate-gap regime ( 0 . 3 < G * < 1 ) w h e r e vortex shedding o'ccurs but is influenced by wal l 

proximity, and large-gap regime ( C * > 1) w h e r e the wal l influence becomes negligible. Similarly, three 

categories can be identified as a function o f i * , namely, extended-body regime 1 <£,* < 2 , reattachment 

regime at 2 <Z,* < 4 , and impinging regime at L* > 4 . Variations of dynamic drag and lift coefficients, 

spectra, Strouhal numbers, and Reynolds shear stress are also presented to characterize the different 

flow regimes in the G * - L * plane. 

© 2014 Elsevier Ltd. Al l rights reserved. 

1. Introduction 

The interference o f f l o w around t w o circular cyl inders is of b o t h 

academic interest and practical importance , see Sumner (2010) for 

a comprehensive review. A m o n g the many possible arrangements 

o f the t w o cylinders to be positioned i n relative to the f l o w direction, 

the tandem configuration has been extensively studied. This type of 

interference, refened to as 'wake interference' by Zdrvkovich (1987), 

is a func t ion o f the inter-cylinder distance (expressed as the ratio 

between the centre-to-centi-e spacing and the cylinder diameter, 

L * = L / D , thereafter abbreviated as the spacing ratio). Zdravkovich 

(1987) proposed that the f l o w can be classified into three basic types: 

( i ) single b luff -body regime at small L* (1 < L * < 1.2~1.8), where 

periodic von Karman vortex shedding is observed only i n the wake of 

the downst ream cylinder; ( i i ) read:achment regime at moderate L* 

(1.2 —1.8 < L* < 3.4~3.8) , where the shear layers emanating f r o m the 

upstream cylinder read:ach onto the sutface of the downstream 

cylinder; ( i i i ) impinging regime at large L* (L* > 3.4 ~ 3.8), where von 

Karman vortices are shed f r o m the upstream cylinder and per iodi ­

cally impinge on the downst ream cylinder. Zhou and Yiu (2006) 

showed that the reattachment regime (2 < L* < 5) can be fur ther 
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sub-divided into t w o distinct categories, for w h i c h the reattachment 

is on the rear and leading surfaces o f the downstream cylinder, 

respectively (see Fig. 1). The exact values o f L* to delineate the 

boundaries between di f ferent regimes depend on the value of 

Reynolds number (Carmo et al., 2010) and free-stream turbulence 

intensity (Ljungkrona et al., 1991). The critical spacing ratio ( !*„ ) , at 

w h i c h periodic vortex shedding begins to occur f r o m the upstream 

cylinder, varies f r o m L*cr=3 to 5 i n the literature (e.g., Lee et al., 

2009). Correspondingly, the f l u i d forces on the cylinders w o u l d 

experience a discontinuous ' j ump ' at about L*a (Zdravkovich and 

Pridden, 1977). Moreover, Xu and Zhou (2004) showed that the 

vortex shedding frequency is dependent on Reynolds number over 

the range Re = 800-4.2 x lO' ' (Ke=UD/v, where u is the kinematic 

viscosity of f lu id) . 

On the other hand, there are a number of engineering practices 

i n w h i c h cyl indrical structures are placed near a plane wa l l , such as 

submarine pipelines, risers and cables on seabed. To date, many 

researchers have examined the influence o f w a l l p r o x i m i t y on a 

single cylinder w i t h the cross-section o f ei ther circular (e.g., 

Bearman and Zdravkovich, 1978; Lei et al., 1999; Price et al., 2002; 

Dipankar and Sengupta, 2005; Nishino e t al., 2007; W a n g and Tan, 

2008a; Lin et al., 2009; Sarkar and Sarkar, 2010; Ong et al., 2012; 

W a n g et al., 2013), square (e.g., Wang and Tan 2008b; Mahir , 2009) 

or rectangular (e.g., M a i t i , 2012; Mai t i and Bhad:, 2014). The nearby 

w a l l affects no t only the dynamic pressure and forces o n the 
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cylinder, but also the wake pattern and f low- induced vibrations. 

The rat io between the gap height to the cyl inder diameter 

( G * = G / D , abbreviated hereafter as the gap ratio) is f o u n d to be 

the predominant parameter The impermeabi l i ty o f the wa l l poses 

an i r ro ta t ional constraint to the wake development, resulting i n 

suppression of the classical von Karman vortex shedding that is i n 

absolute instabil i ty (Huerre and Monkewi tz , 1990) below a cri t ical 

gap rat io (G*cr). As sketched i n Fig. 2(a), w h e n G* < G\r, the wake is 

steady w i t h a long recirculation region: w h i l e the gap f l o w keeps 

attached on the wal l , the upper shear layer emanating f r o m the 

cylinder exhibits as elongated Kelvin-Helmhol tz (K-H) type o f r o l l -

ups ( i n convective instabi l i ty) . However, w h e n G* > G'cr (Fig. 2(b)), 

the gap f l o w is strong enough to detach upward f r o m the w a l l (or 

upwash), and to interact w i t h the upper shear layer to f o r m discrete 

vortices. I t should be noted that the vortex shedding is asymmetric 

about the horizontal wake centerline; also, there is a coupl ing 

between the lower shear layer and the w a l l boundary layer, as 

reflected by the phenomenon that each anticlocl<wise vortex is 

accompanied by a small cloclcwise vortex i n the near w a l l region. 

The value of G*cr« 0.3 slightly varies w i t h Re and thickness of the 

wal l boundary layer (e.g., Buresti and Lanciotti, 1992; Price et al., 

2002). 

However, l i t t l e a t ten t ion has been paid to the conf igura t ion o f 

t w o t andem cylinders i n p r o x i m i t y to a plane w a l l (see Fig. 3) . The 

flow interference be tween the t w o cylinders is f u r t h e r c o m p l i ­

cated due to the presence of the w a l l boundary. Bhattacharyya and 

Dhinakaran (2008) numer ica l ly s tudied the 2-dimensional (2D) 

flow around t w o t andem square cylinders w i t h a l inear inc ident 

veloci ty prof i le at G* = 0.5 and L*=1.5-6 . The non-un i fo rm approach 

flow causes difference i n the strength of the upper and lower shear 

layers. The flow can be steady up to Re = 125 depending on the value 

of L*. More recently, Harichandan and Roy (2012) simulated the flow 

around t w o near-wall t andem cylinders (circular/square) at Re=:100 

and 200, G*=0.5 and 1, and L * = 2 and 5. For a given Re, the Strouhal 

numbers o f the t w o cylinders are identical, but the l i f t and drag 

coefficients are different . 

As described above, there is l im i t ed in fo rma t ion available o n the 

flow around t w o tandem cylinders i n p r o x i m i t y to a w a l l boundary. 

Two aspects need at tent ion. Firstiy, the only t w o published studies, 

namely, Dhinakaran (2008) and Harichandan and Roy (2012), were 

conducted at relatively l o w Re (up to 200), that is, i n the laminar 

regime. Yet, i n engineering practice the flow is generally i n the 

subcritical regime. Secondly, bo th studies considered only a rather 

l imi ted number o f combinations of G* and L*, and hence a complete 

picture i n the G*-L* plane is st i l l unavailable. These motivate the 

present relatively systematic investigation for 0 . 1 5 < C * < 2 and 

1.5 < L* < 7 under a constant Reynolds number i n subcritical regime 

(Re=6300) . 

2. Experimental set-up and methodology 

The experiments were pe r fo rmed i n a re-c i rcula t ing open 

channel located at M a r i t i m e Research Centre, Nanyang Technolo­

gical University, w i t h a test section o f 5 m x 0.3 m x 0.45 m 

( length X w i d t h x height ) . The channel bed and the t w o side wal ls 

o f the test section were made of glass to a l low fo r optical access. 

The free-s tream veloci ty was u n i f o r m to w i t h i n 1.5% across the test 

section, and the turbulence in tens i ty i n the f ree stream was 

be low 2%. 

Fig. 3 shows a sketch of the t w o t andem cylinders placed near 

and parallel to a plane w a l l . The cyl inder models were made o f 

smooth, transparent acrylic rod w i t h an outer d iameter of D = 1 5 

m m . D u r i n g the experiments, the free-s tream veloci ty was kept 

constant at L/=0.42 m/s (Re=6300) . The approach boundary layer 

was f u l l y developed w i t h a thickness o f 5 = 7 m m ( - 0.5D). The 

cylinders ' centre-to-centre spacing was varied as L = 2 2 . 5 , 30, 45, 

60, 75, 90 and 105 m m (L* = 1.5-7), and the gap he igh t G=2.25 , 6, 

9,12, 21 and 30 m m (C*=0.15-2) . Therefore, to ta l ly 42 cases were 

considered i n the present study. 

The span [b) o f the cylinders was 200 m m , leading to an aspect 

ratio (AR) o f i / D = 1 3 . 3 . This value was considered to be large 

enough ( A R > 1 0 according to previous finding, fo r example. Lam 

and Zou, 2010) to ensure a nomina l l y 2D flow i n the near wake . 

Therefore, the veloci ty measurements w i t h Particle Image Veloc i ­

me t ry (PIV) were pe r fo rmed i n the mid-span plane. The or ig in o f 

the coordinate system was located at the center o f the upstream 

cylinder, w i t h x, y and z denot ing the streamwise, transverse and 

spanwise directions, respectively. The posit ive drag and l i f t forces 

are i n the x- and y-direct ions , respectively. 

Velocity measurements were p e r f o m e d using a digital PIV 

system (LaVision model). The flow field was i l luminated w i t h a 

double cavity Nd:YAG laser l ight sheet at 532 n m wavelength (Litron 

model, p o w e r ~ 1 3 5 mJ per pulse, d u r a t i o n ~ 5 ns). Spher ice l® 110P8 

ho l low glass spheres (neutrally buoyant w i t h a mean diameter of 13 

p m ) were seeded in the flow as Q-acer particles. The images were 

Upper shear layer (elongated, K-H type) 

Gap flow 

b Upper shear layer (broken, Kérman type) 

L 

Upwash <ï*5 

Fig. 2. Schematic of the flow around a near-wall single cylinder: (a) vortex-

sheddlng-suppression regime at small gap ratio; and (b) vortex-shedding regime 

at moderate gap ratio. Proposed based on the flow measurement results in Wang 

and Tan (2008a). 

1 D - 2 D 2D-3D 

Kcnltuclimcnt oii rcur surface 
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Rcntlachnicni on leading surface 

> 5 D 
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Fig. 1. Schematic of the flow around two tandem cylinders as a function of spacing ratio (L*) under free-standing conditions. Modified from Zhou and Yiu (2006). 



3S X.K Wang et al / Ocean Engineering 94 (2015) 36-50 

Upstream cylinder Downstream cylinder 

Fig. 3. Schematic of the flow around two near-wall tandem cylinders. 

recorded using a 1 2 - b i t CCD camera w i t l i a resolution of 

1600 X 1200 pixels. LaVision Davis software (Version 7.2) was used 

to process the particle images and determine the velocity vectors. 

Particle displacement was calculated using the fast-Fourier-transfoim 

(FFT) based cross-conelation a lgor i thm w i t h standard Gaussian sub-

pixel f i t structured as an iterative mul t i -g r id method. The processing 

procedure included t w o passes, starting w i t h a gr id size of 64 x 64 

pixels, stepping d o w n to 32 x 32 pke l s overlapping by 50%, w h i c h 

resulted i n a set o f 7500 vectors (100 x 75) f o r a typical f ie ld. In 

be tween the t w o passes, the vector maps were f i l tered by using a 3 

x 3 median f i l t e r in order to remove possible outliers. The number 

of particles i n a 32 x 32 pixel w i n d o w was of the order of 10~15 to 

yield strong correlations. The f ie ld of v i e w was set at 190 m m x 143 

m m , therefore the spatial resolution was 1.9 m m x 1.9 m m (i.e., 

0.13D x 0.13D). For each case, a series of 1050 instantaneous f l o w 

fields was acquired at the sampling frequency of 1 5 f i z (or 7 0 s 

recordings), i n order to achieve a reasonably statistical convergence 

o f the measured quantities, such as Reynolds shear stress. The 

uncei ta inty i n the instantaneous velocities (it and v) was estimated 

to be about 3.5% for the present setup. The instantaneous spanwise 

vor t ic i ty (cOz = A v / A x - A u / A y ) was calculated using the least 

squares extrapolation scheme. The uncei ta inty i n Wz was estimated 

to be about 10% based on the method proposed by Fouras and Soria 

(1998). 

A piezoelectric load cell (Kistler Mode l 9317B) was used to 

direct ly measure the fluid dynamic forces o n the downs t ream 

cylinder, drag ( F D ) and l i f t [FL). The ou tpu t signal was captured 

w i t h a National Instruments A/D card at a sampl ing rate o f 100 Hz 

(at least 1 order o f magni tude greater than the vortex shedding 

frequency, w h i c h was about 5-6 Hz). The dura t ion of recording for 

each case was about 200 s, w h i c h corresponded to about 1000 

cycles o f vo i t ex shedding and was suff ic ient ly long according to the 

cr i te r ion proposed by Sakamoto et al. (1987). The dimensionless 

shedding frequency was expressed as Strouhal number ( S t = / D / U ) , 

where ƒ is the frequency determined f r o m spectral analysis of the 

fluctuating l i f t coefficient using power spectral density (PSD) f u n ­

ct ion. Also, the mean and root-mean-square (RMS) values o f fluid 

dynamic drag and l i f t coefficients {CD = 2FD/plfiDb and CL^2FI/ 

pU'^Db) were calculated, where p is the fluid density. Through a 

number of repeated measurements o n a single cylinder, the uncer­

ta in ty i n the mean drag was determined to be w i t h i n 1%. The data 

fo r a f ree-s tanding (isolated) single cylinder measured at the same 

Reynolds number ( R e = 6 3 0 0 ) served as the benchmark reference: 

Coo = l . l , CD'O =0 .055 , Cid =0 .075 and Sto=0.2 (where the subscript 

0 denotes the isolated cylinder) . 

3. Results and discussion 

3.1. Near-wall single cylinder 

The effects o f w a l l p r o x i m i t y on a single cyl inder has been 

examined i n this section. Fig. 4 shows the var ia t ion o f the dynamic 

force coefficients (CD, Q , Ch and Ci) versus G*, together w i t h the 

data reporiied by Roshko et al. (1975) and Lei et al. (1999). As 

s h o w n i n Fig. 4(a), a p r o m i n e n t feature is tha t the most dramat ic 

change o f Co occurs f r o m smal l - to intermediate-gap ratios (e.g., 

G * < 0 . 7 5 ) ; w h e n G * > 1 , by contrast, i t remains approximate ly 

constant at CD « 1 . 1 (asymptot ica l ly approaching the value fo r an 

isolated cyl inder) , ind ica t ing tha t the w a l l effects become negl i ­

gible. A s imilar t r end is f o u n d fo r the RMS coefficients (Có and Cl) 

as s h o w n i n Fig. 4(c). However, i t is noted tha t the asymptot ic 

values are considerably l ower than those repor ted i n Roshko et al. 

(1975) and Lei et al. (1999), namely, Co « 1 . 1 versus 1.3 and Ci 

0.075 versus 0.6. The discrepancy is l ike ly a t t r ibu ted to the 

d i f ference i n measurement techniques and oncoming flow cond i ­

t ions (such as Re and <5). Note the data i n Roshko et al. (1975) and 

Lei et al . (1999) were based on pressure d i s t r i bu t ion a round the 

cyl inder circumference for an elemental slice (referred to as sectional 

force by Norberg (2003)), w h i l e the present study measured the total 

force on the whole span of the cylinder, w h i c h always has a lower 

magnidide due to the end effects (West and Apelt , 1997). In the 

present study, the thickness o f boundary layers developed on the 

side walls where the t w o ends of the cylinder were attached was 

about 0.5D, so the length of the cylinder subjected to end effects was 

about I D (or 75% o f the total span). Therefore, the difference 

between the measured total force and the ideal sectional force w o u l d 

be less than 10%. In fact, the present results are i n good agreement 

w i t h the published data on a single^cylinder using similar measure­

men t technique (load cell), such as Co « 1 . 1 8 6 and Ci « 0.089 i n Lam 

et al. (2003) for Re=4.8 x W, and C/ « 0.08 in Tadrist et al. (1990) 

for Re=7000 . As depicted i n Fig. 4(b), the cylinder experiences a 

positive mean l i f t ( Q > 0) at small- to intermediate-G*, suggesting 

that the cylinder is pushed upward fi'om the wa l l . The mean l i f t 

coefficient has a m a x i m u m of Q x 0.3 at the smallest gap ratio 

(G*=0 .15) , and thereafter decreases monotonical ly un t i l reaching the 

asymptotic value o f C i ,=0 at G * > 1. 

Fig. 5(a) shows the time histories o f dynamic l i f t coef f ic ien t ( C L ) 

on the cyl inder at d i f f e ren t gap ratios. As G * increases, the signal 

changes f r o m a chaotic pa t t e rn at G* = 0.15 and 0.25, to a periodic 

pa t t e rn at G * > 0.4 w i t h a m u c h higher magni tude o f fluctuation. 

The chaotic pa t te rn at smal l -G* is due to the cessation o f periodic 
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Present 
Lei etal. (1999) 
Roshko et al. (1975) 

shedding becomes stronger w i t h i n this range (a s imi la r t rend is 

in fe r red f r o m the ve loc i ty data i n W a n g and Tan (2008a)) . A t 

G*=0.15 or 0.25, on the other hand, a weak peak is discernible at a 

relat ively h igh frequency, tha t is, S t » 0.85, w h i c h corresponds to 

the K-H roU-ups i n shear layer instabil i ty. Rajagopalan and Anton ia 

(2005) proposed an empi r ica l relat ionship be tween the shear layer 

ins tabi l i ty f requency ( f d ) and the vortex shedding f requency ( f y ) 

as a f u n c t i o n o f Re fo r an isolated cylinder, n a m e l y , / s i / / , / = 0 . 0 2 9 x 

[̂ g0.65_ j j ^ g predicted value using this equat ion f o r R e = 6 3 0 0 is 

f^^/fy=8.55, w h i c h is about twice the measured value o f 0.85/ 

0 .2=4.25 . However i t is noted that the work ing f l u i d in Rajagopalan 

and Antonia (2005) is air (vs. water in the present study), w h i c h wou ld 

result in relatively thinner shear layers and hence higher ƒ j , , since/si is 

inversely proportional to the shear layer thickness (Gerrard, 1967). 

Fig. 5(b) also shows that at G* = 0.4 (corresponding to onset of periodic 

vortex shedding), the spectmm exhibits co-existence of both peaks 

( S t « 0.2 and 0.85), albeit rather weak, imply ing a transition/competi­

tion between the t w o types of instability (von Karman vs. K-H). 
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Fig. 4. Variation of dynamic force coefficients with C for the near-wall single 
cylinder: (a) mean drag coefficient (Co); (b) mean lift coefficient (Cj.); and (c) RMS 
drag (Cd) and lift (CÏ) coefficients. Present: Re=6300 and a=0.5D; Lei et al. (1999): 
Re=1.36x10" and 5=0.140; Roshko e t a l (1975): R e = 2 x l O " a n d «=0 .5D. 

vor tex shedding f r o m the cy l inder (e.g.. Price et al., 2002; W a n g 

and Tan, 2008a). Also, the cr i t ica l gap rat io (G*cr) is be tween 0.25 

and 0.4, i n accordance w i t h the repor ted value o f G*cr« 0.3 i n the 

l i terature . The per iod ic i ty o f l i f t signals is ref lected i n the corre­

sponding spectra s h o w n i n Fig. 5(b). For G* > 0.4, each spec t rum 

displays one obvious peak at S t « 0.2 (s imi lar t o the case o f an 

isolated cylinder) , w i t h the magni tude o f the peak progressively 

increasing w i t h G* u n t i l G* = 0.8. This indicates tha t vor tex 

3.2. Near-wall tandem cylinders 

3.2.1. Instantaneous flow patterns around the cylinders 

Fig. 6 shows a representative snapshot of the instantaneous 

vort ic i ty fields around the near-wall tandem cylinders at selected 

gap ratios (G*=0.15, 0.4, 0.6 and 1.4) and spacing ratios ( L * = 2 , 3 and 

5). I t is obvious that the flow pattems depend on bo th G* and L*. 

Periodic vo i tex shedding f r o m both cylinders is suppressed w h e n G* 

is small. For G* =0.15 (1^'^ row) , the upper shear layer emanat ing f r o m 

the upstream cylinder is K-H type of roU-ups (elongated i n the 

streamwise direction w i t h negative vort ici ty) , w h i c h pass over (or 

overshoot) the downstream cyl inder However, the lower shear layer, 

w h i c h is evident i n the spacing between the cylinders, is rather weak 

in magnitude and small i n size. For G''' = 0.4 (2""^ row) , both shear 

layers are still largely in K-H type at small spacing ratios (e.g., L * = 2 or 

3). At L * = 5 , on tiie other hand, they begin to display as relatively large, 

discrete 'patches' of voi t ic i ty behind the downstream cylinder, i nd i ­

cative of the occurrence of vortex shedding. However, no vortex 

shedding is observed f r o m the upsb-eam cylinder: w h i l e the upper 

shear layer is st i l l i n K-H type, the lower shear layer either reattaches 

steadily on the leading surface of the downstream cylinder at L '*=2 

and 3, or dissipates around x / D 4 at L* = 5. In addition, flow-induced 

separation is found i n the near wa l l region, similar to the case of the 

near-wall single cylinder shown i n Fig. 2(b). W h e n C* increases to 0.6 

(3'''' row) , the wa l l effects still exist, but to a lesser degree. A t this gap 

ratio, periodic vortex shedding is always observed f r o m the d o w n -

sti-eam cylinder, as we l l as f r o m the upstream cylinder at wide-spacing 

ratios (e.g., L* = 5). A t G'' = 1.4 ( 4 * row), the wa l l effects become almost 

negligible such that the flow is similar to the free-standing case. 

Obviously, the three cases, L*=2, 3 and 5, belong to the 'extended-

body', 'reattachment and ' impinging' regimes, respectively, as shown 

in Fig. 1. The critical spacing ratio is L*cr ~ 4.5, w h i c h is also consistent 

w i t h the reported values of L*a-=3-5 i n the literature. 

A closer examinat ion o f the instantaneous v o r t i c i t y fields i n d i ­

cates tha t the effects o f wa l l p r o x i m i t y cannot s imply be described 

as i n h i b i t i n g vor tex shedding f r o m the cylinders; instead, i t plays a 

complex role i n affect ing the shear layer deve lopment and interac­

t ion . Take the case o f L* = 2 at d i f fe ren t gap ratios ( l e f t c o l u m n i n 

Fig. 6 ) as an example. A t G'* = 1.4, the flow is i n extended-body 

regime, and the t w o shear layers separated f r o m the upstream 

cyl inder are kept nearly horizontal ly and w r a p a round the d o w n ­

stream cyl inder A t intermediate gap ratios (G* = 0.4 and 0.6), 

however, the lower shear layer is broken in to t w o segments. The 

one i n between the t w o cylinders deflects u p w a r d and reattaches 

on the leading surface of the downs t ream cylinder. Similar shear 

layer def lect ion and reattachment are evident f o r L * = 3 at inter­

mediate gap ratios. 
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Based o n the PIV measurement results, a map o f f l o w patterns 

around the near-wall tandem cylinders i n the G*-L* plane is 

proposed i n Fig. 7. W i t h reference to L*, i t can be roughly divided 

into three basic types o f spacing, tha t is, close (1 < L* < 2), moderate 

(2 < I * < 4 ) and w i d e (L* > 4), w h i c h are roughly equivalent to the 

'extended-body', 'reattachment' and ' impinging ' regimes, respec­

tively, fo r free-standing tandem cylinders. Similarly, the f l o w can be 

broadly classified as a func t ion of G*: ( i ) large-gap regime (approx. 

> 1), the f l o w and vortex shedding characteristic are similar to the 

free-standing case; ( i i ) intermediate-gap regime (approx. 0.3 < 1 ) , 

where periodic vortex shedding occurs, bu t the strength o f vortex 

shedding reduces w i t h decreasing G*; and ( i i i ) small-gap regime 

(approx. G* < 0.3), where periodic vortex shedding is completely 

suppressed. 

3.2.2. Forces, lift spectra and Strouhal numbers on the downstream 

cylinder 

This section presents the time histories o f f luc tua t ing l i f t on the 

downs t ream cyl inder and the corresponding spectra fo r d i f f e ren t 
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combinat ions t o L* and G*. The results for L* = 1.5-7 at G*=0.15 are 

s h o w n i n Fig. 8. I t is clear tha t the f l o w is i n the vor tex-shedding 

suppression regime. Accordingly, the l i f t signal is i r regular for al l 

spacing ratios considered. Similar to the case o f the near-wal l 

single cyl inder (Fig. 5), each spect rum displays a peak at S t « 0.85 

associated w i t h K-H type o f roU-ups. I t is noted that fo r w i d e -
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spacing conf igura t ion (L* > 4 ) , there is an addi t ional pealc a round 

S t » 0 . 1 8 (corresponding to tire large-scale von Karman vor tex 

shedding) bu t i t is ra ther broad-banded. 

For G*=0.4 (Fig. 9(a)), the signal gradually changes f r o m a 

chaotic pa t te rn at L* = 1.5 and 2, to a more periodic pa t t e rn at 

I * >: 4. The ampl i tude o f f l uc tua t ion increases sharply w i t h iL* f r o m 

close- to modera te - I* ( L * < 4 ) . As s h o w n i n Fig. 9(b), each spe­

c t r u m always exhibits a peak at St as 0.83-0.86 associated w i t h the 

K-H instabi l i ty , i m p l y i n g tha t the w a l l effects are s t i l l s ignif icant . I t 

should be noted tha t f r o m L * = 3 onward , an addi t ional peak at 

Sta: 0.18 appears as w e l l . The double-peak character indicates the 

co-existence o f t w o d i f f e r e n t f l u i d dynamic processes, as cou ld be 

appreciated f r o m Fig. 6. Located i n the lee of the ups t ream 

cylinder, the downs t ream cyl inder is subjected to shear layer 

reat tachment on its surface. A t C*=0.4, the shear layers are 

basically i n K-H type o f roU-ups. However, w h e n L* is large enough 

(e.g., I * = 5), discrete 'patches' o f vo r t i c i t y are f o r m e d i n the wake 

of the downs t r eam cylinder, indicat ive o f occurrence o f vor tex 

shedding a t relat ively l o w frequency. Fig. 9(b) shows that i n the 

case o f L * = 3 , the peak at St a; 0.19 is rather broad-banded and 

small i n ampl i tude; w i t h f u r t h e r increase i n L*, i t becomes more 

distinct, suggesting tha t vor tex shedding becomes more regular 

and stronger. 

The results for G*=0.6 are shown i n Fig. 10. In this case, the l i f t 

signal becomes s ignif icant ly more per iodic than that o f G ' '=0 .4 at 

the same spacing rat io. On the other hand, the peak f o r the h i g h -

frequency K - H rol l -ups becomes nearly invisible as a t i ny h u m p , 

indica t ing tha t the w a l l effects reduce w i t h increasing G*. A l l the 

spectra except for those at L*=3 and 4 display a d o m i n a n t 

frequency o f S t=0.18-0 .2 corresponding to periodic vor tex shed­

ding. A t L * = 3 and 4, however, the spectral peak is rather broad-

banded, suggestive o f weakened vor tex shedding activity. 

A t G* > 1, the w a l l effects become nearly negligible, see Fig. 11 

for G* = 1.4. The h igh- f requency component that may o therwise 

exist at smal l - and intermediate-G"^ disappears completely, so each 

spec t rum is characterized by a we l l -de f ined f requency at S t = 0 . 1 5 -

0.19. Based on the proposed classification, they belong to exte­

nded-body regime (L* = 1.5 and 2), reat tachment regime (L*=3 

and 4), and i m p i n g i n g regime (I ,* = 5 ,6 and 7), respectively. Several 

features can be observed. Firstly, i n ei ther extended-body or 

i m p i n g i n g regime, the peak is we l l -de f ined , w h i l e i n rea t tachment 

regime ( I * = 3 and 4 ) i t is somewhat broad-banded. Secondly, the 

per iod ic i ty o f l i f t signal does n o t vary mono ton ica l ly w i t h L*; 

instead, i t first achieves a m i n i m u m at L'*=3 (onset of reat tach­

m e n t regime) and then a m a x i m u m at L'* = 5 (onset o f i m p i n g i n g 
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regime), as indicated by the ampl i tude of l i f t f l uc tua t ion or the 

magni tude o f spectral peak. These observations indicate t ha t the 

downs t r eam cyl inder is in f luenced by the advect ion and i m p i n g e ­

m e n t o f vortices shed f r o m the upstream cylinder. A t L* > 5, the 

peak continues to decrease i n magni tude w i t h increasing L*, 

suggesting tha t the interference be tween the t w o cylinders is 

reducing. 

Fig. 11(b) shows tha t the values o f St fo r the spectral peak i n 

i m p i n g i n g regime (L* > 5) main ta in approximate ly constant. For 

L * < 4 , on the other hand, St first drops w i t h L* f r o m 0.185 at 

L*=1.5 to a m i n i m u m o f 0.15 at L * = 3 , and then recovers to 0.17 at 

L * = 4 . The i n i t i a l decline o f St w i t h L* at smal l - to moderate-L* 

seems to be an inheren t feature w h e n the w a l l p r o x i m i t y effects 

are negligible, since a s imi lar t rend is f o u n d for G* = 2 as w e l l as for 

f ree-s tanding t andem cylinders publ ished i n the l i terature (e.g.. 

Igarashi 1981; X u and Zhou, 2004) , as s h o w n i n Fig. 12. This is 

l i ke ly a t t r ibuted to the fact tha t an increase i n L* al lows the shear 

layers emanated f r o m the upstream cyl inder to g r o w thicker upon 

reaching the surface o f the downs t r eam cylinder. Accordingly, St 

decreases progressively w i t h £*, because a th icker shear layer leads 

to a lower vor tex shedding frequency f r o m a cyl inder (Roshko, 

1954). However, this t r end cannot be sustained w i t h f u r t h e r i n ­

crease i n L* since the flow w o u l d change in to i m p i n g i n g regime at 

L*cr« 4, for w h i c h the shear layers emanated f r o m the upstream 

cyl inder w i l l r o l l up i n to discrete vortices i n be tween the t w o 

cylinders and are no longer d i rec t ly connected w i t h the vor tex 

f o r m a t i o n f r o m the downs t ream cylinder. 

The force data indicate tha t the w a l l p r o x i m i t y tends to i nh ib i t 

periodic vor tex shedding f r o m the cylinders. Furthermore, spectral 

analysis was applied to the veloci ty data to i l lustrate the periodic 
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nature o f the f l o w up to ƒ = 7 , 5 Hz (i.e., half the PIV sampling rate of 

15 Hz), or St Kl 0.27. Fig. 13 shows the velocity spertra between the t w o 

cylinders fo r the case of L * = 5 at difFerent gap ratios. The velocity 

signals are rehieved f r o m ( x , y ) = ( 2 . 5 D , - 0 . 5 D ) and (2.5D, - 0 . 5 D ) , 

w h i c h are respectively located i n the lower and upper shear layers. At 

G*=0.15, there is no peak over the measurement range, whereas at 

G*>0.4 , each spech'um begins to exhibit a dominant peak at 

St=0.17-0.2 (which is in accordance w i t l i the low-frequency compo­

nent i n l i f t spectra). This confirms the validity of using l i f t signal as an 

indicator of vortex shedding process. The peak magnitude increases 

w i t h G* particularly over the range of G*<0.8 , suggesting that the 

effects o f wal l proximity are decreasing and the strength of vortex 

shedding becomes sti'onger (similar conclusion is inferred f r o m the l i f t 

specti-a). It is noteworthy that for a given G*, the peak i n the upper 

shear layer (denoted by red line) is generally higher in magnitude than 

that in the lower shear layer (denoted by black line) for G* < 1.4, 

indicating flow asymmetry about the wake centeriine. At large enou 

gh gap ratios (e.g., G*=2), the t w o specfi-a almost coincide w i t h 

each other 

Fig. 14 presents the variations of the mean drag ( C D ) and l i f t 

( C L ) , RMS drag (Có) and l i f t {Q) coefflcients on the downs t r eam 

cyl inder as a func t i on o f L* for d i f fe ren t gap ratios, together w i t h 

the corresponding values of the isolated single cy l inder for com­

parison. Located i n the lee o f the upst ream cylinder, the mean drag 

coeff ic ient on the downs t r eam cyl inder (Co) remains consistently 

lower than that of the isolated cy l inde r As s h o w n i n Fig. 14(a), C D 

increases monoton ica l ly w i t h L* f o r a l l gap ratios considered, bu t 
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at d i f f e ren t rates (as ref lected by slope o f the curves). A t G*=0.15, 

CD is about 0.1 and increases s l ight ly w i t h L*. As C* increases to 2, 

the l o w end o f each curve (at L* = 1.5) decreases u n t i l reaching a 

m i n i m u m o f (CD)n,in=-0.13, whereas the h igh end (at L* = 7) 

continues to rise up to (CD)max=0-84. Therefore, w h e n G* is 

relat ively large (G* > 0.8), the downs t r eam cyl inder experiences 

a drag inverse ( f r o m negative to posi t ive) w i t h i n the range o f 

2 ^ L * < 3 . This is a w e l l - k n o w n phenomenon f o r f ree-s tanding 

t a n d e m cylinders, fo r instance, Sumner et al. (2005) repor ted a 

m i n i m u m o f (CD)n,in= - 0 . 5 5 at L*=1.125. The negative (at tractive) 

drag at small-L* is due to the fact tha t the d o w n s t r e a m cyl inder is 

comple te ly enwrapped by the shear layers f r o m the ups t ream 

cylinder, and hence experiences a negative pressure. The mean l i f t 

coeff ic ient (CL), as s h o w n i n Fig. 14(b), on the other hand, varies 

s igni f icant ly w i t h b o t h G* and L*. Similar to the near-wal l single 

cylinder, the downs t r eam cylinder general ly experiences a posit ive 
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mean l i f t ( Q > 0), bu t i t is considerably smaller i n ampl i tude 

(CL i « 0.05-0,2). The s ignif icant var ia t ion o f CL w i t h G* and L* is 

probably due to the f o l l o w i n g t w o reasons. The f i r s t is the possible 

misa l ignment o f the models, since i t is ext remely d i f f i c u l t , i f no t 

impossible, to achieve a perfect a l ignment exper imental ly . Sec­

ondly, the f l o w i n the gap m a y keep steadily reattached on the 

surface o f the downs t r eam cylinder, bu t may also spontaneously 

f l i p - f l o p ver t ica l ly so tha t the reat tachment po in t varies i r regular ly 

over t ime , w h i c h is i n analogy to the f l o w be tween t w o side-by-

side cylinders at smal l gap ratios (Sumner et al., 1999). Figs. 14 

(c) and 14(d) show that the var ia t ion trends of Cb and Cl w i t h I * 

are similar, a l though the lat ter has a m u c h higher ( 3 ~ 4 t imes) 

magni tude . In general, CÓ and Cl display d i f f e ren t var ia t ion trends 

w i t h respect to L* depending on the value o f G*, w h i c h is 

consistent w i t h the PlV data. A t G*=0.15 w h e n vor tex shedding 

is suppressed, Cl and Cl increase steadily w i t h L* over the 

measurement range. In intermediate-gap regime (G*=0.4 , 

0.6 and 0.8), they increase rap id ly w i t h L* u n t i l reaching a 

m a x i m u m at L * = 5 (i.e., onset of i m p i n g i n g regime). A s imilar 

convex shape is f o u n d fo r G*=1.4 and 2, whe re the t w o curves 

a lmost coincide, i m p l y i n g d i m i n i s h i n g effects of w a l l p r o x i m i t y . 

Depending on the values o f G* and L*, the shear layers emanated 

f r o m the upstream cylinder may overshoot, reattach or impinge 

upon the downstream cylinder and then separate, perhaps j o in ing 

those developed on the downstream cylinder i tself to f o i m vortices 

around the downstream cyl inder This results in dif ferent behavi­

ors o f f l u i d dynamic forces on the downst ream cyl inder Here, an 

a t tempt is made to ident i fy the critical gap (G*cr) and spacing ( !*„ ) 

ratios f o r vortex shedding based on the periodicity of f luctuat ing l i f t 

signals and the intensity o f the peak in l i f t spectra as shown i n 

Figs. 8 - 1 1 (similar observation can be obtained by analysis of the 

velocity signal as shown i n Fig. 13). The map for absence/presence of 

vortex shedding from the downstream cylinder i n G*-L* plane is 

presented i n Fig. 15. The vortex-shedding suppression regime is 

main ly located at the lower- lef t corner (i.e., small-G* and small-L*): 

at the smallest gap ratio (G* = 0.15), i t extends the whole L* range; as 

G* increases, i t gradually shrinks in w i d t h un t i l completely disap­

pears at G* = 0.8. I n addition, the values of Cl can be used to 
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Fig. 18. Profiles of the normalized streamwise mean velocity (u/U) along two vertical lines (i.e., A-A and B-B, located behind the upstream cylinder and the downstream 
cylinder, respectively) for different gap and spacing ratios. 
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qualitatively determine the strength o f vortex shedding. I t should be 

noted that measurements with a higher resolution i n G*-L* plane are 

desirable i n order to more accurately define the boundaries separat­

ing the d i f ferent f l o w regimes. Furthermore, as shown in Figs. 9 - 1 1 , 

due to enhanced activity of shear layer reattachment fo r L * = 3 and 

4 i n intermediate-G* regime, the spectral peak is broad-banded i n 

these cases, w h i c h has been highlighted by the shaded region i n 

Fig. 15. 

_ As shown i n Fig. 16(a), variat ions o f the mean drag coeff ic ient 

( C D ) on the downs t r eam cyl inder w i t h G* at the largest spacing 

ra t io ( L * = 7 ) have been compared w i t h the publ ished data (Roshko 

et al., 1975) and the present measurement o n a near -wal l single 

cylinder. Similar to the case o f the single cylinder, C D in i t i a l l y 

experiences a sharp increase w i t h G* before level ing o f f at large 

enough gap ratios (G* s 1). However, at the same G* i t is appre­

ciably lower than tha t o f the single cyl inder (par t icular w h e n G* is 

small) , due to the effects f r o m the upst ream cylinder. This suggests 

tha t the spacing rat io o f L * = 7 is s t i l l no t suf f ic ien t ly large f o r the 

t w o t andem cylinders t o be considered independent ly . On the 

o ther hand, as shown i n Fig. 16(b), the var ia t ion o f CD w i t h L* at 

G*=3 agrees w e l l w i t h the publ ished data under f ree-s tanding 

condi t ions (Zdravkovich and Pridden, 1977; H a r i m i and Saghafian, 

2012), c o n f i r m i n g tha t the gap rat io o f G*=3 is large enough fo r 

neglect ing the w a l l effects. 

3.2.3. Ensemble-averaged flow pattems around the cylinders 

As s h o w n above, the vortex shedding characteristics f r o m the 

cylinders depend o n bo th G* and L*. This leads to corresponding 

var ia t ion i n the statistical quanti t ies o f the f l o w , such as d i s t r i bu ­

tions o f mean velocity vectors and Reynolds shear stresses. 

Consistent w i t h the instantaneous f l o w structure, the mean 

veloc i ty vector f i e l d (Fig. 17) gradual ly changes f r o m asymmetr ica l 

patterns about the wake centeriine at smal l - and intermediate-gap 

ratios (G* < 1), to symmetr ica l patterns at large gap ratios (G* > 1). 

For a given L*, the recirculat ion length , def ined as the distance 

f r o m the cyl inder base to the zero mean streamwise veloci ty po in t 

a long the wake centeriine, increases w i t h G*. Meanwhi l e , the gap 

flow is deflected upward i n y - d i r e c t i o n and reattach on the leading 

face o f the downs t ream cylinder, most notably i n the case o f 

intermediate-G* and moderate-L* (e.g., G*= 0.6 and L * = 3 ) . This 

corresponds to the region o f broad-banded peaks i n the l i f t 

spectra, as s h o w n i n Fig. 15. 

Profiles o f the normal ized streamwise mean veloc i ty {u/U) 

along t w o ver t ical lines located at 0.5D af ter the t r a i l ing edges o f 

the t w o cylinders (i.e., A - A and B-B) fo r d i f f e ren t gap and spacing 

ratios are provided i n Fig. 18. One obvious feature is tha t f o r a fixed 

G*, the profi les at d i f f e ren t L* at A - A almost collapse, whereas 

those at B-B deviate f r o m each other more evidently. This indicates 

that the presence o f the d o w n s t r e a m cyl inder ma in ly affects the 

flow behind i t . The presence o f the cylinders results i n the veloci ty 

defect behind each cylinder, so tha t the veloci ty profiles exhib i t as 

an "S"-shape. W h e n G* < G*cr (e.g., G* = 0.15), however, the lower 

ha l f o f the "S"-shape is n o t obvious or even completely disappears 

due to the rather weak gap flow. 

Furthermore, the shear layer developments can be appreciated 

f r o m the contours o f the normal ized Reynolds shear stress 

( ï ï V / L f ^ ) i n Fig. 19. A t smal l - or intermediate-G*, the upper shear 

layer is bo th stronger i n magni tude and larger i n size than the 

lower one. For a given L*, as G* increases f r o m 0.15 t o 1.4, the 

dis t r ibut ions o f W/U^ gradual ly become more symmet r ic about 

the wake centeriine; meanwhi le , regions o f s ignif icant uY/U^ 

contract i n the streamwise d i r ec t j on (to smaller x) , together w i t h 

elevated level (or magni tude) o f u'v'/U^. 

Similar to the flow classif ication based on the instantaneous 

vo r t i c i t y fields, the dis t r ibut ions o f uV/U^ can be d iv ided in to 

three d i f fe ren t patterns - Pattern 1 : regions o f s ignif icant u'v'/U^ 

are f o u n d i n the wake o f the downs t r eam cyl inder on ly (e.g., fo r al l 
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Fig. 19. Contours ofthe normalized Reynolds shear stress (u'v'/ü^) for l ' = 2 , 3 and 5 and G*=0.15, 0.4,0.6 and 1.4. Positive: solid red lines; negative; dashed blue lines. Cut­

off value luV/U^I =0.01; contour interval=0.005 (For interpretation ofthe references to color in this figure, the reader is referred to the web version of this article.). 
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gap ratios at L* = 2, and fo r relat ively small gap ratios G* ^ 0,6 at 

L * = 3 ) ; Pattern 2: on ly the upper shear layer is evident, w h i c h is, 

however, located no t on ly behind the downs t ream cylinder, bu t 

also i n the space between the t w o cylinders (e.g., fo r G*=0.15 and 

L*=5y, Pattern 3: bo th the lower and upper shear layers are 

observable i n between the t w o cylinders (e.g., fo r G* > 0.4 and 

L * = 5 , and f o r G*=1.4 and L*=3). 

The dis t r ibut ions o f uV'/Lf^ f o r the case o f G* = 1.4 and L* = 5 

(where the w a l l effects are negligible and the f l o w is i n i m p i n g i n g 

reg ime) are n o t e w o r t h y I n the wake of the upstream cylinder, 

besides the t w o large-scale clusters o f ü V / l / ^ , there are t w o 

addi t ional small-scale clusters o f opposite-signed vo r t i c i t y i m m e ­

diate ly located upstream o f the m a i n shear layers (as h ighl igh ted 

by black arrows). This feature agrees w i t h the results of Dong et al. 

(2006) on an isolated single cyl inder at R e = 4 0 0 0 and 10 000 . The 

dis t r ibut ions of u ' v ' / U ^ i n the wake o f the downs t ream cyl inder 

are conf ined t o a smaller region as compared to those o f the 

ups t ream cylinder. 

4. Concluding remarks 

Flow around t w o near-wal l t andem cylinders at R e = 6 3 0 0 has 

been investigated extensively fo r 6 gap ratios (G*=0.15, 0.4, 0.6, 

0.8,1.4 and 2) and 7 in ter-cyl inder spacing ratios (L* = 1.5, 2 , 3 , 4 , 5, 

6 and 7), mak ing 42 combinat ions i n total . The results show that 

bo th the f l o w patterns (instantaneous and ensemble-average) and 

the dynamic forces (drag and l i f t ) are h igh ly dependent o n the 

combined values o f G* and L*, due to m i x e d effects o f w a l l 

p r o x i m i t y and m u t u a l interference be tween the t w o cylinders. 

W i t h reference to L*, the f l o w interference be tween the t w o 

cylinders changes f r o m extended-body regime at close-spacing 

ratios (1 < L* < 2), reat tachment regime at moderate-spacing 

ratios ( 2 < L * < 4 ) , to i m p i n g i n g regime at wide-spacing ratios 

( L * > 4 ) . However, this classification is val id on ly for large gap 

ratios ( G * > 1 ) . 

The nearby w a l l tends to p romote the K-H type of ro l l -ups and 

i n h i b i t periodic vortex shedding f r o m the cylinders. Therefore, i n 

intermediate-gap regime ( 0 . 3 < G * < 1 ) vor tex shedding takes 

places but i n an asymmetr ic manner about the wake centerline, 

whereas i n small-gap regime ( G * < 0 . 3 ) vortex shedding is sup­

pressed completely. W h e n G* < 0.4, the l i f t spec t rum displays a 

double-peak mode fo r L* > 3, namely, St KI 0.18-0.2 and 0.83-0.85, 

ind ica t ing the co-existence o f t w o ins tabi l i ty mechanisms (i.e., v o n 

Karman vortex shedding and K - H ro l l -up ) . On the other hand, 

e i ther an increment or a decrement i n G* w o u l d result i n single-

peak mode, tha t is, S t 0 . 8 4 fo r G*=0.15, and St « 0 . 1 9 fo r 

G * ^ 0 . 6 . 

For close- and moderate-spacing configurat ions, the shear 

layers emanated f r o m the ups t ream cyl inder ( w h i c h w o u l d other­

wise be kept roughly hor izonta l ) def lect upwards and reattach on 

the leading surface o f the downs t r eam cylinder, leads to relat ively 

higher mean drag ( C D ) and RMS drag / l i f t (Có and C i ) coefficients 

on the la t te r The enhanced act iv i ty o f shear layer reat tachment 

also results i n broadened spectral peak fo r vor tex shedding at 

moderate-L* ( L * = 3 - 4 ) and intermediate-G* (G*=0 .4 -0 .8 ) . The 

s tudy also attempts to quant i ta t ive ly i d e n t i f y the cr i t ica l gap 

(G*cr) and spacing (L*cr) ratios for the onset o f vortex shedding 

f r o m the downs t ream cyl inder based o n the f luc tua t ing l i f t and the 

l i f t spectra. 
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