

Delft University of Technology

Extras and Premiums
Local PCN Routing with Redundancy and Fees
Shen, Yu; Ersoy, Oğuzhan; Roos, Stefanie

DOI
10.1007/978-3-031-47751-5_7
Publication date
2024
Document Version
Final published version
Published in
Financial Cryptography and Data Security - 27th International Conference, FC 2023, Revised Selected
Papers

Citation (APA)
Shen, Y., Ersoy, O., & Roos, S. (2024). Extras and Premiums: Local PCN Routing with Redundancy
and Fees. In F. Baldimtsi, & C. Cachin (Eds.), Financial Cryptography and Data Security - 27th International
Conference, FC 2023, Revised Selected Papers (pp. 110-127). (Lecture Notes in Computer Science; Vol.
13951). Springer. https://doi.org/10.1007/978-3-031-47751-5_7
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-47751-5_7
https://doi.org/10.1007/978-3-031-47751-5_7

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Extras and Premiums: Local PCN
Routing with Redundancy and Fees

Yu Shen1(B), Oğuzhan Ersoy1,2, and Stefanie Roos1

1 Delft University of Technology, Delft, The Netherlands
{y.shen-5,s.roos}@tudelft.nl

2 Radboud University, Nijmegen, The Netherlands
oguzhan.ersoy@ru.nl

Abstract. Payment channel networks (PCNs) are a promising solution
to the blockchain scalability problem. In PCNs, a sender can route a
multi-hop payment to a receiver via intermediaries. Yet, Lightning, the
only prominent payment channel network, has two major issues when
it comes to multi-hop payments. First, the sender decides on the path
without being able to take local capacity restrictions into account. Sec-
ond, due to the atomicity of payments, any failure in the path causes
a failure of the complete payment. In this work, we propose Forward-
Update-Finalize (FUFi): The sender adds redundancy to a locally routed
payment by initially committing to sending a higher amount than the
actual payment value. Intermediaries decide on how to forward a received
payment, potentially splitting it between multiple paths. If they cannot
forward the total payment value, they may reduce the amount they for-
ward. If paths for sufficient funds are found, the receiver and sender
jointly select the paths and amounts that will actually be paid. Payment
commitments are updated accordingly and fulfilled. In order to guaran-
tee atomicity and correctness of the payment value, we use a modified
Hashed Time Lock Contract (HTLC) for paying that requires both the
sender and the receiver to provide a secret preimage. FUFi furthermore
is the first local routing protocol to include fees and specify a fee pol-
icy to intermediaries on how to determine their fair share of fees. We
prove that the proposed protocol achieves all key security properties of
multi-hop payments. Furthermore, our evaluation on both synthetic and
real-world Lightning topologies shows FUFi outperforms existing algo-
rithms in terms of fraction of successful payments by about 10%.

1 Introduction

Payment channel networks (PCNs) enable blockchain scalability by increasing
the throughput of transactions and reducing latency, and fees [14]. They move
payments off-chain, i.e., not all payments have to be included in the blockchain.
Thus, they do not require that every payment is broadcast to all participants
and verified by them.

c© International Financial Cryptography Association 2024
F. Baldimtsi and C. Cachin (Eds.): FC 2023, LNCS 13951, pp. 110–127, 2024.
https://doi.org/10.1007/978-3-031-47751-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47751-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-47751-5_7

Extras and Premiums: Local PCN Routing with Redundancy and Fees 111

Two parties fund a payment channel by depositing coins into a joined account
using a blockchain transaction, and then they can make direct transactions in
the channel [4]. Opening such a channel only pays off for frequent transaction
partners due to the need for the initial blockchain transaction. If a sender S
wants to send funds to a receiver R without having a direct channel, they can
route the funds via multiple existing channels. For instance if both S and R
have a channel with P, P can act as intermediary. It is important that both the
channel between S and P and the one between P and R have sufficient funds [17].

Designing routing algorithms to find sufficiently funded paths between
senders and receivers successfully and swiftly is thus the key for a usable PCN. In
the literature, there are two types of routing algorithms: source routing, in which
the sender decides on the path, and local routing, where intermediaries decide
on which neighbor they forward the payment to. Lightning, Bitcoin’s PCN, uses
source routing: The sender determines one path to the receiver based on a pub-
licly available snapshot of the network topology [14]. However, the snapshot does
not include the exact amount of funds available in each channel. So payments
may fail due to channels in the path having insufficient funds.

There are approaches for the sender to split payments into multiple sub-
payments, each routed via a different path [13,20]. Smaller payments are less
likely to exceed the amount of available funds in a channel and congestion infor-
mation can be utilized to determine the most suitable paths [20]. Yet, if only
one channel in one path has insufficient funds, the payment fails. You can retry
the payment using different paths and splits of the total payment amount but it
might take a large number of tries until you find a distribution of funds on paths
that works. Boomerang [3] adds redundancy to the payment, i.e., the sender
initially sends more funds than the actual payment value. In this manner, some
failures along individual paths do not result in the overall payment failing. If
more than the payment value arrive at the receiver, they are returned to the
sender.

Boomerang mitigates the lack of knowledge about local distributions of funds
but does not fundamentally address it. In contrast, local routing protocols leave
the decision of how to find a path to the intermediaries of a payment, who are
clearly aware of the amount of funds in their channels [6,17]. However, failures
are still possible if the routing ends up at a node that does not have any outgoing
channels with sufficient funds. So, redundancy should be included here as well.
Applying Boomerang is possible, however, it requires that the sender splits the
payment whereas local routing protocols leave the splitting to intermediaries [6].
In addition, intermediaries typically receive a fee to incentivize participation. In
source routing, the sender can compute the required fee as they know the path
or paths but in local routing, the sender cannot know the fee in advance and it
is challenging to find a suitable algorithm for fee computation. So, local routing
due to its awareness of local constraints is more suitable for PCNs than source
routing but the existing local routing algorithms are not useful in practice due
to their lack of redundancy and incentives.

112 Y. Shen et al.

We here address both issues by presenting Forward-Update-Finalize(FUFi).
We integrate fees into local routing by having the sender add a separate amount
dedicated to fees to each payment, which they compute based on the expected
number of intermediaries. Intermediaries know how much of the payment they
receive is dedicated to fees and can then subtract an amount as their own fees.
We suggest but do not enforce a policy on how to choose the amount, which
provides more fees to the parties early on in the path who take a higher risk as
they need to lock up funds for longer than parties close to the receiver. While we
do not enforce the policy as such, taking more funds than suggested results in
insufficient fees for successors on the path who then do not forward the payment.
If a payment fails, no fees are paid, so nodes are disincentivized from deviating
from the fee policy.

For redundancy in FUFi, the sender increases the payment amount by a
factor r. Intermediaries may then reduce the amount they forward. Concretely,
when an intermediary receives amount a to forward1, they determine a set of
neighbors that can provide them with a path to the receiver. If the amount a can
be split between these neighbors, the intermediary splits the amount a; otherwise,
a smaller amount is split. In the first phase of routing, only commitments are
made to pay the respective amounts but payments and amounts are not yet
finalized. Once sufficient funds reach the receiver, commitments are updated
such that incoming funds (minus fees) at an intermediaries match the outgoing
funds and any redundant funds are returned to the sender. In order to ensure
updated commitments, parties are incentivized to revoke the old commitment as
the alternative is a failed payment, which implies no fees. After the amounts are
updated, the payments can be finalized. In Lightning, finalization means that
the receiver reveals a hash preimage that allows them and all intermediaries to
claim their funds. However, with redundancy present, a rational receiver should
reveal the secret before updating to gain additional funds. To prevent this loss
of funds, the sender needs to also provide a second hash preimage, which they
only provide once all commitments are updated.

We prove that intermediaries do not lose any funds by participating in FUFi,
the sender only loses the original payment value plus fees, and the payment ter-
minates. Furthermore, the sender loses funds only if they obtain a signed receipt
of the receiver. In turn, if the receiver provides a receipt, they are indeed paid. To
show that FUFi indeed achieves better performance than state-of-the-art rout-
ing algorithms, we extend an existing payment channel network simulator. Our
results on both real-world Lightning snapshots and synthetic topologies indicates
that a redundancy factor r = 1.8 achieves the best results. Furthermore, for such
redundancy values, FUFi improves upon Boomerang and the local routing pro-
tocol Interdimensional SpeedyMurmurs [6] by about 10% in terms of fraction of
successful payments.

1 so a is the amount after they subtracted their fees.

Extras and Premiums: Local PCN Routing with Redundancy and Fees 113

2 Background and Related Work

In this section, we first provide the necessary background on PCNs and the rout-
ing of the payments. Then, we discuss closely related works on routing protocols.

2.1 Payment Channel Networks

A payment channel allows two parties to exchange transactions without publish-
ing them on the blockchain [9]. First, two parties open a channel by publishing
a funding transaction on the blockchain. Then, they can send and receive coins
by exchanging authenticated messages to update the channel state. Assume in a
channel between v1 and v2, v1 contributes c1 and v2 contributes c2 coins. Then
v1 can send up to c1 coins to P2 locally. After sending a coins, v1 can now still
send c1 − a coins but there are more coins available for v2, mainly c2 + a. We
call c = c1 + c2 the capacity of the channel. The balance in the direction of v1 to
v2 is the maximum amount that can be sent by v1 and changes with every local
payment. Later on, parties can close the channel by publishing the latest state
of the channel on the blockchain. Disputes about the balance are also handled
on the blockchain.

A payment channel network (PCN) allows parties (nodes) who do not have
a direct channel (edge) to make payments by using the channels in the network.
In such a multi-hop payment (MHP), the payment between the sender and the
receiver is forwarded via a path of connected channels [2,8,12,14,23,24]. The
Lightning Network [14], a PCN on top of Bitcoin, realizes MHPs via Hash-Time-
Locked-Contracts (HTLCs). A HTLC between a payer and a payee is defined
wrt. a payment amount a, a hash value h and a timelock t, and implements the
following two logical conditions:

1. If a value x is given such that H(x) = h (where H is a hash function), then
the payee can claim the a coins.

2. If t has expired, then the payer can claim the a coins.

An HTLC-based MHP works as follows: First, the receiver chooses a random
value x shares h = H(x) with the sender. Then, each channel on the path (from
the sender to the receiver) locks coins wrt. hash condition h, corresponding
payment value (plus fee), and a timelock. The first of two subsequent nodes on
the path acts a the payer and the second as the payee for the HTLC. Once the last
channel has locked coins, the receiver reveals the value x to the last intermediary
in the path and claims the payment amount. The last intermediary shares the
same x with the previous party and obtains the corresponding amount of coins
in their channel. This continues until the sender has paid the first intermediary.

Routing protocols find a path between a sender and a receiver. In Lightning,
the sender decides on the path based on snapshot of the network topology [21].
Apart from the nodes and edges/channels, the snapshot includes the following
information per channel: the fee policy, i.e., how to determine the fee claimed
by the nodes for a given payment value, the timelock t that the nodes in the

114 Y. Shen et al.

channel want to use for a HTLC, and the capacity c. Based on the provided
information, the sender determines a least costly path. The cost function used
to evaluate the cost of a path differs between Lightning clients [22].

We abstract payment channel functionalities through APIs. Possible real-
izations of these APIs are discussed in [6], including realizations that can be
instantiated over Bitcoin. Different parties can call those APIs to communicate
and make payments. We use four APIs for different events:

– cPay is called when a party wants to establish an HTLC with a neighbor.
Unlike the HTLC of Lightning Network, two hashes are passed to cPay as
our payments require both the agreement of the sender and the receiver to
be finalized, as detailed below.

– updateHTLC is called when a party wants to modify the amount locked in a
HTLC.2 Modifying the payment amount can be necessary to remove redun-
dancy after paths have been found.

– cPay-unlock is called when a party provides the two preimages of an HTLC
and wants to unlock the funds in this HTLC.

– refund is used if the time-lock expires and a party wants to have their locked
coins returned.

For simplicity, we denote the calling to an API as API −→ F where F is a
Turning machine that implements those APIs. Yu Shen’s master thesis [19] gives
the formal descriptions of the APIs.

2.2 State-of-the-Art PCN Routing Protocols

To improve the success ratio of multi-hop payments, there have been several
works that can be divided into two categories: splitting the payment amount [13,
20] with redundancy [3,15] and local routing [5,6,17]. Here, we briefly explain
the most important state-of-the-art protocols.

AMP [13]: The Atomic Multi-Path payment (AMP) protocol allows a sender to
forward a payment through multiple paths to improve the success ratio of Light-
ning’s single-path HTLCs. Since the payment is divided into smaller amounts,
the probability of having sufficient funds is higher for one channel. However,
if any channel involved in the payment does not have a positive balance, the
payment still fails.

Boomerang [3]: Boomerang extends the AMP protocol by adding redun-
dancy to payments. Concretely, Boomerang makes k sub-payments of an equal
amount b such that k · b > a for payment amount a. Thus, even if some of
the sub-payments fail, the amount reaching the receiver may still be sufficient.
Boomerang ensures that receivers cannot claim more than amount a, i.e., any
funds reaching the receiver that exceed a are returned to the sender. However, for

2 We introduce updateHTLC API since FUFi allows parties to modify the locked
amount in the update phase. The realization of updateHTLC can be done by simply
revoking the existing HTLC while creating the new one in the same channel update.

Extras and Premiums: Local PCN Routing with Redundancy and Fees 115

the protocol to work, all sub-payments have to be of the same size and splitting
can only be done by the sender, not by intermediaries.

Spear [15]: Spear, like Boomerang, integrates redundancy into source routing. It
is more flexible than Boomerang as it can have sub-payments of varying amounts.
Spear uses a modified HTLC to realize the redundancy of payments. Each HTLC
has two hash conditions: one chosen by the sender and one chosen by the receiver.
Spear still requires that the amount of each sub-payment and the path taken by
the payment are fixed by the sender before starting the routing. We use the idea
of the two hash conditions in FUFi but only require one hash from the sender for
all sub-payments. By using local routing, we enable flexibility and allow parties
to adapt the sub-payment amount.

Spider [20]: Spider splits a payment into small sub-payments at the source and
forwards them separately. Rather than forwarding these sub-payments at once,
a sender can forward them over a longer period of time. During this time, they
react to feedback about congestion along the paths used to forward and adjust
the rate using a waterfilling algorithm to balance between paths. Communication
load and latency are drastically increased and the authors do not provide a
concrete method on how to achieve atomicity, i.e., ensure that either all sub-
payments are claimed by the receiver or all funds are returned to the sender.

Ethna [5]: Ethna is a local routing protocol that supports payment splitting
without atomicity. Intermediaries can split a payment into sub-payments and
forward them to different neighbors, and they can decrease the payment amount.
In this case, the payment can still be partly completed with a smaller payment
size. It is unclear which applications can profit from such partial payments as
usually the full payment value is expected for a purchase. Furthermore, Ethna
requires smart contract functionality that PCNs over Bitcoin, like the Lightning
Network, do not provide.

SpeedyMurmurs [17]: SpeedyMurmurs is a local routing algorithm: It estab-
lishes spanning trees in a distributed manner. Intermediaries then locally deter-
mine which of their neighbors provide short paths to the receiver based on the
spanning tree positions of the neighbors and the receiver. They forward to one
neighbor that provides a path to the receiver and has a channel with sufficient
balance. If no such channels exist, the routing fails. Splitting at the source is
possible but not at intermediaries. The paper only focuses on the routing and
does not specify the cryptography used to achieve atomicity.

Splitting Payments Locally [6]: Eckey et al. designed a protocol to enable
intermediate nodes to split a payment and still achieve atomicity. They show how
the protocol can be integrated into a number of routing protocols, including
SpeedyMurmurs. For deciding how much funds to give to each neighbor they
present two variants: SplitIfNecessary only locally splits payments if there is no
single channel that can handle the payment. SplitClosest minimizes the path
length and forwards as much as possible to the neighbor that is closest to the
receiver, in terms of the path length in the spanning trees. In contrast to original

116 Y. Shen et al.

SpeedyMurmurs, the paper provides a cryptographic protocol to guarantee that
payments are atomic and intermediaries do not lose funds. However, if only one
of the split subpayments fails, the complete payment still fails.

3 Our Protocol

After specifying our system and threat model, we first present the protocol
without fees. Afterwards, we show how to integrate fees into the protocol.

3.1 System and Threat Model

Let V be the set of nodes in a PCN and E ⊂ V × V be the set of chan-
nels. We model a PCN as a directed graph G = (V,E) with a capacity func-
tion C : V × E → R. The function C returns the balance in a channel, i.e.,
C(vi, (vi, vj)) gives the available coins of vi in the channel (vi, vj). We assume
that there is synchronous communication and the protocol advances in rounds,
which correspond to the maximal delay of communication. It takes at Δ rounds
to publish information (e.g., disputes) on the chain.

We assume a local internal active adversary, i.e., the adversary can compro-
mise nodes in the network and adapt their behaviour arbitrarily. The attacker
cannot observe and control the behaviour of uncompromised parties. They fur-
ther do not control the network, e.g., they cannot delay messages of uncompro-
mised parties to cause time-locks to expire. The set of corrupted parties is static
during the execution of the protocol. The adversary is computationally bounded
and hence cannot break cryptographic primitives.

We focus on a rational adversary that aims to gain funds through an attack.
Thus, denial-of-service attacks where the adversary refuses to forward payments
to undermine the routing without causing other parties to lose funds are not
treated here. Such denial-of-service attacks have been evaluated in the context
of local routing [25]. We furthermore assume that all parties communicate via
secure authenticated channels.

3.2 Security Goals

We now define our security goals. Concretely, we modify the security goals —
balance security, bounded loss for the sender, atomicity, and finality — from [6] to
include fees. Informally, balance security implies that no honest node, excluding
the sender, loses funds during a payment. Bounded loss for the sender means
that the sender loses at most the payment value plus any fees paid. Atomicity
means that i) the sender only loses funds if they obtain a valid receipt in return
and ii) the receiver only provides the sender with a valid receipt if they are paid.
Last, finality states that the payment terminates.

The formal definitions of the above properties require us to first define the
concept of a receipt formally. Note that in contrast to [6], in line with our “c-Pay”
operation, two preimages are used for a receipt. Payments are routed from sender

Extras and Premiums: Local PCN Routing with Redundancy and Fees 117

S to receiver R. We assume a EUF-CMA-secure signature algorithm, which is
given by a triple of algorithms (KGen, Sign, V erify) for key generation, signing,
and verification, and a preimage-resistant hash function H.

Definition 1. A receipt is defined as

receipt(S,R, a, hs, hr) = SignskR
(S,R, a, hs, hr) (1)

where skR is the secret key of the receiver R with pkR being the corresponding
public key, a indicates the payment amount and hs and hr are two hash values.
We define a validation function validate such that

validate(receipt(S,R, a, hs, hr)) = true iff

1. V erify(pkR, receipt(S,R, a, hs, hr)) = true
2. S provides receipt(S,R, a, hs, hr), xs, xr, where H(xs) = hs, H(xr) = hr.

In our security definitions, we look at the capacity function C before a pay-
ment is executed and the function C ′ after the execution of the payment. For
clarity, we here assume that there are no concurrent payments that affect the
function C. Our evaluation considers concurrency. Let furthermore B be the set
of honest or benign nodes.

Definition 2 (Balance security for intermediaries).
∀ vi ∈ B \ {S},

∑
(vi,vj)∈E C

′
(vi, (vi, vj)) − ∑

(vi,vj)∈E C(vi, (vi, vj)) ≥ 0

Definition 3 (Bounded lose for sender). For a payment of amount a with
fee f : if S ∈ B, then

∑
(S,vj)∈E C(S, (S, vj)) − ∑

(S,vj)∈E C
′
(S, (S, vj)) ≤ a + f

Definition 4 (Atomicity). For a payment of amount a:

1. if
∑

(S,vj)∈E C
′
(S, (S, vj)) − ∑

(S,vj)∈E C(S, (S, vj)) < 0 ∧S ∈ B

then validate(receipt(S,R, size, hs, hr)) = true
2. if validate(receipt(S,R, size, hs, hr)) = true ∧R ∈ B

then
∑

(R,vj)∈E C
′
(R, (R, vj)) − ∑

(R,vj)∈E C(R, (R, vj)) ≥ a

Definition 5 (Finality). The protocol terminates for all honest parties, i.e.,
on all locked channels, either “refund” or “cPay-unlock” is eventually executed.

3.3 Protocol Description

The key idea of FUFi is to forward payments with redundancy and revoke those
redundant payments later. For this purpose, we divide the protocol into three
phases: Forward, Update, and Finalize. In the forward phase, sender and interme-
diaries split a payment into several sub-payments and forward them to neighbors
until the receiver is reached. In the update phase, intermediaries and the receiver
may modify the payment size. Only if the correct payment amount arrives at the
receiver, the payment can go through. The update phase is the key difference

118 Y. Shen et al.

of FUFi to previous routing algorithms, as it enables the use of redundancy.
The last phase, the finalize phase, completes the payment or revokes it. Figure 1
displays an example of the forward and update phase of FUFi, the finalize phase
merely executes the red payments that are agreed upon during the update phase.
We now go over each of the phases. Detailed pseudocode is given in Yu Shen’s
thesis [19]. In the following, we refer to HTLCs for which a node is a payee as
incoming HTLCs while outgoing HTLCs are those for which they are a payer.

Initialization. Before starting the actual routing, the sender S first uses a random
value xS and sends the hash hS = H(xS) to the receiver R. In response, the
receiver chooses their own random value xR and sends the corresponding hash
hR to S. Both preimages are necessary to obtain the funds promised in the
HTLCs applied during the finalize phase. Afterwards, S decides on the amount
they want to send, which is the payment amount a times a redundancy factor
r. Once the amount is fixed, the actual routing of the payment starts.

Forward. During the routing, both sender and intermediaries have to decide
which of their neighbours they forward sub-payments to. In [6], multiple methods
are proposed for splitting the payment such that the combined amount of all sub-
payments equals the total payment value. Since we include redundancy in our
payment, FUFi can also proceed if the amounts of the sub-payments sum up to
less than the total amount, as the total amount includes redundancy.

We abstract the splitting procedure as follows: A party P — sender or
intermediary — calls a function RouteG(aP , P,R, aux) where aP is the total
amount P wants to forward and aux is any auxiliary information the routing
algorithm may require. For instance, Interdimensional SpeedyMurmurs requires
the set of nodes that have previously been on the path to prevent routing loops.
RouteG(aP , P,R, aux) returns i) a set of tuples (ej , aj), such that ej indicates a
payment channel adjacent to P and aj the amount to be forwarded via this chan-
nel, and ii) an amount aRest that is not forwarded. We have aRest +

∑
j aj = aP ,

so the payment value is split over adjacent channels with a possible leftover.
There are many possible instantiations for RouteG(aP , P,R, aux), some of which
are introduced in Sect. 4 for our evaluation. The function is mostly identical to [6]
but in [6], aRest = 0 or the payment fails.

For each (ej , aj), P establishes a HTLC for the channel ej by calling “cPay”
stating that P will pay aj if they receive preimages for hS and hR within a
certain time. We will discuss how to choose the time-lock at the end of this
section. R keeps track of all sub-payments that arrive. If less than the payment
amount a arrives, the payment fails. After a HTLC timeouts, all involved parties
call “refund” to have their invested funds returned. Otherwise, if enough funds
reach R, the payment proceeds to the update phase.

Extras and Premiums: Local PCN Routing with Redundancy and Fees 119

Fig. 1. Forward and update phase of FUFi. Sender wants to make a payment of value
3 but initially sends 5 (blue). The first intermediary only forwards 4, split into two
payments of 2. After 4 coins arrive at the receiver, one payment path has to be updated
to only have 1 coin. Red indicates final payment after update. (Color figure online)

Update. The update phase, which is a new phase that none of the previous
protocols have, has to deal with the fact that S in the end only agrees to paying
a while initially sending r · a. S thus only provides the preimage for hS , which is
necessary to complete the payment, if the HTLCs are updated such that S loses
at most a coins.

At the end of the forward phase, let a+ δ coins being locked in R’s channels.
R has to update the HTLCs such that only a coins are locked. They hence select
HTLCs whose values are to be reduced. The HTLCs can also be completely
cancelled. Any method of choosing which HTLCs to reduce or cancel can be
applied as long as the final results restricts the incoming funds from the payment
at R to a. For the HTLCs that should be changed, R calls “updateHTLC” to
change the locked amount. One straight-forward method that we use in the
evaluation is to simply keep the HTLCs that are established first.

Now, for the sender’s outgoing HTLCs to have a combined value of a as
well, intermediaries have to update their HTLCs. During the update phase,
intermediaries check whether the funds they promise in their outgoing HTLCs,
i.e., the funds they pay if the payment succeeds, is lower than the amount they are
promised to receive from incoming HTLCs. The two may differ for two reasons:
i) a successor updated one of the outgoing HTLCs and ii) they were unable to
split the total incoming amount among their neighbors in the forward phase.

120 Y. Shen et al.

Independently of the reason, the intermediary updates their incoming HTLCs
such that incoming and outgoing funds match. Like for the receiver, the exact
protocol used to decide on which HTLCs to update does not matter for the
protocol to work. Once the incoming and outgoing funds of all intermediaries
match, the HTLCs of S should amount to exactly a because no funds are ‘lost’
to intermediaries.

The above protocol relies on the fact that intermediaries may not be willing
to update the HTLC, an operation that requires the agreement of both payer
and payee. In such a case, the funds are not reduced and the payment fails as
the sender does not provide their preimage xS . Intermediaries hence do not gain
fees if they refuse to update. Note that they even receive fees if the HTLC is
cancelled (e.g., modified to have an amount of 0), as we detail in Sect. 3.4.

Finalize. Once all the HTLCs are updated, the finalize phase completes the
payment: S provides the preimage xS to R. R then provides both xS and xR to
resolve the HTLCs with their neighbors, which then forward the preimages to
their predecessors on the path until all payments have been executed.

Time-Locks. Now, we can discuss the choice of time-locks. For HTLCs, we need
to ensure there is enough time for honest parties to update payments and publish
their HTLCs on chain in a dispute. It takes (Δ + 1) rounds for an intermediary
to know that its payment is published on chain by neighbours in the worst case.
To get money back, this node needs another (Δ+1) rounds to publish the HTLC
with its predecessors on chain. So, if we want to make sure honest nodes have
enough time to publish their HTLCs, the difference of time-locks for subsequent
nodes on a path should be at least 2·(Δ+1). Besides the time to publish HTLCs,
there is also one round of communication for both establishing the original HTLC
and possibly for updating it. Thus, the time-lock set by the sender should be
t0 + n · (2 + 2 · (Δ + 1)) where n is an upper bound on the expected number
of nodes on a path, with n depending on the routing algorithm, and t0 is the
current time.

3.4 Fees

In PCNs, nodes are incentivized by fees to participate. Yet, previous local routing
protocols disregard fees and how to assign them [6,17]. In the Lightning network,
fees are computed in advance and added to the payment amount. However,
the computation is only possible as the source decides on the path and knows
the fee policies of all nodes. As the paths in local routing are determined by
intermediaries, the exact fee cannot be computed in advance. In addition to this
known challenge in local routing, FUFi suffers from a second challenge: nodes
need to be incentivized to revoke their HTLCs. Such revocation fees need to be
paid even if the receiver decides not to use a channel for routing as the nodes
would otherwise refuse to revoke and let the payment fail.

We use a relatively simple idea for fees: The sender S decides on an amount
f they are willing to pay as fees and then route the amount a + r + f consisting

Extras and Premiums: Local PCN Routing with Redundancy and Fees 121

of the actual payment amount, the redundancy, and the maximal fee. Interme-
diaries learn the amount f and can then decide how much they take as a fee.
They forward the remaining fees to the subsequent nodes. If they take a large
amount, subsequent nodes may refuse to route the payment due to insufficient
compensation, meaning that greedy intermediaries may not receive funds due to
the payment failing. Moreover, the more fee they take, the less likely the receiver
will choose theirs in the case of receiving more than a amount.

Ersoy et al. [7] analyzed how to determine propagation fees for forwarding
transactions in the Bitcoin network. Two requirements defined in their fee policy:
i) nodes should not gain more fees by acting maliciously like introducing Sybil
nodes, ii) rational nodes should benefit from forwarding. They showed that hon-
est intermediary nodes are incentivized to claim a fraction C of the remaining
fee that they receive, and the receiver obtains the remaining part. Here, C is a
globally agreed-upon constant. Any remaining fees are taken by the receiver. We
apply this fee policy in our evaluation.

Note that the previously discussed fees are only paid upon success. We now
discuss the revocation fees. Revocation fees should not exceed the fees for a
successful payment to prevent intermediaries from intentionally failing payments.
We use a separate transaction with a new HTLC for the same two hash conditions
to forward revoke fees. So, two transactions with different temporary secret keys
are required for one sub-payment: one for the normal payment and the other one
for revoking fees. With this construction, the transaction for revocation fees still
exists after the revocation of a normal payment and the node can claim their
fee once the preimages are revealed. If a party refuses to revoke, the payment
amount exceeds v and the sender S does not provide their preimage, meaning
that the party does not gain any fees, not even revocation fees.

We have now specified the phases of our protocol and how it handles fees. Yu
Shen’s thesis shows that FUFi indeed achieves the claimed security goals [19]. In
the security proofs, we prove termination separately for sender, intermediaries,
and receiver. For balance security, we note that parties never promise to pay
more than they are promised to receive and if they pay, they are also paid.
Similarly, for bounded loss for the sender, we argue that the sender does not
reveal their preimage unless the bounded loss is guaranteed. Atomicity is argued
similarly to [6].

4 Evaluation

We simulate FUFi’s performance in a simulator by extending a known PCN
simulator3. Our simulator4 executes payments concurrently. We adapt routing
algorithms from previous work to include an update phase and compute their
success ratio.

3 https://github.com/stef-roos/PaymentRouting.
4 https://github.com/tokisamu/PaymentRouting.

https://github.com/stef-roos/PaymentRouting
https://github.com/tokisamu/PaymentRouting

122 Y. Shen et al.

4.1 Routing Algorithms

The performance of three different routing protocols is compared in our simu-
lations. SplitClosest is a local routing protocol with splitting, introduced as a
variant of SpeedyMurmurs [6]. It consumes channels’ capacities in the order of
closeness to the receiver and has been shown to have the best success ratio of
all the algorithms evaluated in [6].

A new routing algorithm has been designed for FUFi. Like SplitClosest, it
is a variant of SpeedyMurmurs with splitting. It differs from SplitClosest in two
aspects: i) it utilizes redundancy and fees as introduced in Sect. 3 and ii) it uses a
waterfilling algorithm for splitting the forwarded amount between neighbors that
offer a shorter path to the receiver. Concretely, a node splits the payment value
to forward such that the available funds in the channels are as close to equal
as possible. As stated in Sect. 3, parties may have to update incoming HTLCs.
They choose the HTLC in order of arrival, i.e., they prioritise older HTLCs and
revoke the ones most recently established. To determine the impact of each of
the two changes i) and ii), we also consider SplitClosest with redundancy, i.e.,
only change i), and FUFi without redundancy, i.e., only change ii). As a third
algorithm, we use Boomerang. It is a source routing algorithm with redundancy.
In our simulations, we use the parameters that achieved the best performance
in the original paper (100 sub-payments redundancy 1.33 [3]).

4.2 Setup

We evaluate the different routing algorithms on a snapshot of the Lightning
network and a randomly generated scale-free graph. The Lightning Network
snapshot is from December 30, 2021. We delete disconnected nodes and chan-
nels without capacity. Then, we obtain a graph with 18081 nodes and 76427
channels. To simulate the size of the Lightning Network in the future, we use
the Barabasi-Albert (BA) model [1] to generate the topology of network. BA
graph is a scale-free model that means only a few nodes have a high degree,
similar to Lightning [16]. We use the BA graph to approximate Lightning in
the future, with a larger network size, and generate a graph with 25000 nodes
where each new node is connected to 6 existing nodes. Most of channels in the
Lightning Network snapshot have a low capacity. To simulate the capacity dis-
tribution of the Lightning Network, we use an exponential distribution with an
average value of 200 to generate channels’ balances in the random graph.

In our simulations, the delay of payment forwarding is set to 10 s and C is
set to 0.4. In [7], C is chosen in relation to the average degree of the nodes,
which is 9 for the snapshot. C = 0.4 has been identified as a good choice for
incentivizing intermediaries to forward if the average degree is 9 or higher. For
redundancy in FUFi, we consider 1.1, 1.4, and 1.8. In our first experiment, we
change the payment amount and simulate 100000 payments in 1000 s. We start
from a relatively small payment amount that is smaller than a single channel’s
capacity on average. To study the impact of payment splitting and redundancy,
the payment amount is increased to a larger number that makes payment split-
ting necessary. For the random graph, the payment size varies from 50 to 400

Extras and Premiums: Local PCN Routing with Redundancy and Fees 123

(a) Lightning Network (b) Random Graph (BA)

Fig. 2. Success rate with different payment sizes

because the expected capacity of a channel is 200. In the Lightning network,
the capacity of channels varies a lot. Thus, using a constant payment amount
frequently results in the payment amount exceeding the total capacities of out-
going channels of the sender, meaning that the payment fails in the first step
regardless of the protocol. To exclude such unavoidable failures, we instead set a
payment amount rate p ∈ (0, 1). When a sender starts a payment, the payment
amount is p times the combined balance.

In the second experiment, we simulate 300000 payments in 3000 s and mon-
itor how the success rate changes over time. The payment amount rate of the
Lightning Network is 0.8 while the payment amount is set to 400 in the random
graph.

Finally, we have an experiment to measure the influence of redundancy and
the waterfilling algorithm separately. In this experiment, the redundancy is set
to 1.4, payment amount rate of the Lightning Network is 0.8, payment amount
of the random graph is 400, and 100000 payments are simulated in 1000 s.

(a) Lightning Network (b) Random Graph (BA)

Fig. 3. The change of success rate over time

124 Y. Shen et al.

4.3 Simulation Results

Figure 2a and Fig. 2b show the success ratio of different payment amounts. In
the Lightning Network, FUFi with 1.8 redundancy improves the success ratio
of SplitClosest by about 10%. Boomerang is outperformed by other protocols
because it uses a source routing algorithm that can not adapt to the changes of
channels’ capacities. This result shows the effectiveness of combining local split-
ting and redundancy. The result of the random graph is similar to the Lightning
Network. However, the differences in performance between the protocols are
more pronounced, which can be explained by the better connectivity of the ran-
dom graph. Nodes have more choices to forward and hence the payment is less
likely to fail.

Figure 3a shows the success rate over time, which decreases over time in the
Lightning Network. However, FUFi’s success rate is retained at a higher level
than SplitClosest because of the use of waterfilling. SplitClosest tends to use
up all the funds in channels to have short paths whereas waterfilling tries to
balance the funds. For the random graph, there is no negative impact over time
for waterfilling. The higher number of paths enables nodes to better balance
their channels and hence avoid depletion, i.e., channels with no or hardly any
funds on one direction. For SplitClosest, there still is a negative impact as it
does actively deplete channels.

Figure 4 compares the impact of our two changes, with the result that redun-
dancy has more impact than waterfilling, which has no significant impact on
Lightning and a smaller impact on the random graph.

Fig. 4. Impact of redundancy in comparison to varying splitting protocol.

5 Conclusion

We have introduced FUFi, which increases the performance of local routing by
about 10% and is the first local routing protocol for PCNs that integrates fees.

Yet, we mainly disregarded the aspect of privacy: Hiding the identity of
sender and receiver as well as channel capacities are important privacy properties

Extras and Premiums: Local PCN Routing with Redundancy and Fees 125

for PCNs [11]. While Lightning was initially thought to be private, it has been
shown that it is vulnerable to multiple attacks [10,18]. The exact attacks are
not possible for local routing; yet, it is likely that FUFi is vulnerable to similar
attacks. In future work, we thus aim to investigate which privacy attacks are
possible, how they affect FUFi, and how to defend against the attacks.

Acknowledgments. This research was partially funded by Ripple’s University
Blockchain Research Initiative. Experiments were run on the Distributed ASCI super-
computer (https://www.cs.vu.nl/das5/).

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002). https://doi.org/10.1103/RevModPhys.74.47

2. Aumayr, L., Moreno-Sanchez, P., Kate, A., Maffei, M.: Blitz: secure multi-hop
payments without two-phase commits. In: Bailey, M., Greenstadt, R. (eds.)
30th USENIX Security Symposium, USENIX Security 2021, 11–13 August 2021,
pp. 4043–4060. USENIX Association (2021). https://www.usenix.org/conference/
usenixsecurity21/presentation/aumayr

3. Bagaria, V., Neu, J., Tse, D.: Boomerang: redundancy improves latency and
throughput in payment-channel networks. In: Bonneau, J., Heninger, N. (eds.)
FC 2020. LNCS, vol. 12059, pp. 304–324. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51280-4 17

4. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

5. Dziembowski, S., Kedzior, P.: Ethna: Channel network with dynamic internal pay-
ment splitting. IACR Cryptol. ePrint Arch., 166 (2020). https://eprint.iacr.org/
2020/166

6. Eckey, L., Faust, S., Hostáková, K., Roos, S.: Splitting payments locally while
routing interdimensionally. IACR Cryptol. ePrint Arch., 555 (2020). https://eprint.
iacr.org/2020/555

7. Ersoy, O., Ren, Z., Erkin, Z., Lagendijk, R.L.: Transaction propagation on permis-
sionless blockchains: incentive and routing mechanisms. In: Crypto Valley Confer-
ence on Blockchain Technology, CVCBT 2018, Zug, Switzerland, 20–22 June 2018,
pp. 20–30. IEEE (2018). https://doi.org/10.1109/CVCBT.2018.00008

8. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized curren-
cies. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03 2017, pp. 473–489. ACM
(2017). https://doi.org/10.1145/3133956.3134093

9. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

https://www.cs.vu.nl/das5/
https://doi.org/10.1103/RevModPhys.74.47
https://www.usenix.org/conference/usenixsecurity21/presentation/aumayr
https://www.usenix.org/conference/usenixsecurity21/presentation/aumayr
https://doi.org/10.1007/978-3-030-51280-4_17
https://doi.org/10.1007/978-3-030-51280-4_17
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://eprint.iacr.org/2020/166
https://eprint.iacr.org/2020/166
https://eprint.iacr.org/2020/555
https://eprint.iacr.org/2020/555
https://doi.org/10.1109/CVCBT.2018.00008
https://doi.org/10.1145/3133956.3134093
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12

126 Y. Shen et al.

10. Herrera-Joancomart́ı, J., Navarro-Arribas, G., Ranchal-Pedrosa, A., Pérez-Solà,
C., Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network
channels. In: Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, pp. 602–612 (2019)

11. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and
privacy with payment-channel networks. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 455–471 (2017)

12. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.:
Anonymous multi-hop locks for blockchain scalability and interoperability. In:
26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, 24–27 February 2019. The Internet Soci-
ety (2019). https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-
locks-for-blockchain-scalability-and-interoperability/

13. Osuntokun, O.: AMP: atomic multi-path payments over lightning. Accessed 06 Feb
2018

14. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant
payments (2016). https://www.bitcoinlightning.com/wp-content/uploads/2018/
03/lightning-network-paper.pdf

15. Rahimpour, S., Khabbazian, M.: Spear: fast multi-path payment with redundancy.
In: Baldimtsi, F., Roughgarden, T. (eds.) AFT ’21: 3rd ACM Conference on
Advances in Financial Technologies, Arlington, Virginia, USA, 26–28 September
2021, pp. 183–191. ACM (2021). https://doi.org/10.1145/3479722.3480997

16. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: quantifying
the lightning network’s resilience to topology-based attacks. In: 2019 IEEE Euro-
pean Symposium on Security and Privacy Workshops (EuroS&PW), pp. 347–356.
IEEE (2019)

17. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments
fast and private: efficient decentralized routing for path-based transac-
tions. In: 25th Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, San Diego, California, USA, 18–21 February 2018. The
Internet Society (2018). https://wp.internetsociety.org/ndss/wp-content/uploads/
sites/25/2018/02/ndss2018 09-3 Roos paper.pdf

18. Sharma, P.K., Gosain, D., Diaz, C.: On the anonymity of peer-to-peer network
anonymity schemes used by cryptocurrencies. arXiv preprint: arXiv:2201.11860
(2022)

19. Shen, Y.: Revoke and update: a more flexible payment protocol for payment chan-
nel networks (2022). https://repository.tudelft.nl/islandora/object/uuid:5f9ee6f5-
7f8b-4889-80b5-b641f15de9b5

20. Sivaraman, V., Venkatakrishnan, S.B., Alizadeh, M., Fanti, G., Viswanath, P.:
Routing cryptocurrency with the spider network. In: Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, HotNets 2018, Redmond, WA, USA, 15–16
November 2018, pp. 29–35. ACM (2018). https://doi.org/10.1145/3286062.3286067

21. Sunshine, C.A.: Source routing in computer networks. Comput. Commun. Rev.
7(1), 29–33 (1977). https://doi.org/10.1145/1024853.1024855

22. Tochner, S., Zohar, A., Schmid, S.: Route hijacking and dos in off-chain networks.
In: Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pp. 228–240 (2020)

23. Tripathy, S., Mohanty, S.K.: MAPPCN: multi-hop anonymous and privacy-
preserving payment channel network. In: Bernhard, M., et al. (eds.) FC 2020.
LNCS, vol. 12063, pp. 481–495. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-54455-3 34

https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://doi.org/10.1145/3479722.3480997
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
http://arxiv.org/abs/2201.11860
https://repository.tudelft.nl/islandora/object/uuid:5f9ee6f5-7f8b-4889-80b5-b641f15de9b5
https://repository.tudelft.nl/islandora/object/uuid:5f9ee6f5-7f8b-4889-80b5-b641f15de9b5
https://doi.org/10.1145/3286062.3286067
https://doi.org/10.1145/1024853.1024855
https://doi.org/10.1007/978-3-030-54455-3_34
https://doi.org/10.1007/978-3-030-54455-3_34

Extras and Premiums: Local PCN Routing with Redundancy and Fees 127

24. Tsabary, I., Yechieli, M., Manuskin, A., Eyal, I.: MAD-HTLC: because HTLC is
crazy-cheap to attack. In: 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24–27 May 2021, pp. 1230–1248. IEEE (2021).
https://doi.org/10.1109/SP40001.2021.00080

25. Weintraub, B., Nita-Rotaru, C., Roos, S.: Structural attacks on local routing in
payment channel networks. In: 2021 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), pp. 367–379. IEEE (2021)

https://doi.org/10.1109/SP40001.2021.00080

	Extras and Premiums: Local PCN Routing with Redundancy and Fees
	1 Introduction
	2 Background and Related Work
	2.1 Payment Channel Networks
	2.2 State-of-the-Art PCN Routing Protocols

	3 Our Protocol
	3.1 System and Threat Model
	3.2 Security Goals
	3.3 Protocol Description
	3.4 Fees

	4 Evaluation
	4.1 Routing Algorithms
	4.2 Setup
	4.3 Simulation Results

	5 Conclusion
	References

