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SUMMARY 

This study aims at developing a new set of equations of mean motion in the presence of 

surface waves, which is practically applicable from deep water to the coastal zone, 

estuaries, and outflow areas. The Generalized Lagrangian Mean method is employed to 

derive a set of Quasi-Eulerian mean three-dimensional equations of motion, where effects 

of surface waves are included through source terms. The obtained equations are expressed 

to the second-order of wave amplitude. Whereas the classical Eulerian-mean equations of 

motion are only applicable below the wave trough, the new set of equations is valid until 

the mean water surface even in the presence of finite-amplitude surface waves. Both 

conservative and non-conservative waves are under consideration, especially in the 

presence of a strong ambient current. A concept of three-dimensional wave radiation 

stress is introduced to express the effects of surface waves on the currents. It is an 

extension of the classical radiation stress concept. Especially, the relationship between 

three-dimensional wave radiation stress and vortex force representations is investigated 

in detail in conditions of both conservative and nonconservative waves. Through that 

relationship, comparisons between the new set of equations and other sets of equations 

implemented in recent well-known numerical models are given. It is useful for selecting 

a suitable numerical ocean model to simulate the mean current in a specific condition of 

waves combined with currents. 

A two-dimensional numerical model (2DV model) is developed to validate the new set 

of equations of motion. The model passes the test of steady monochromatic waves 

propagating on a slope without dissipation (adiabatic condition). This is a primary test for 

equations of mean motion with a known analytical solution. In addition to this, 

experimental data for the interaction between random waves and currents in both non-

breaking and breaking waves are employed to validate the 2DV model. As shown by this 

successful implementation and validation, the implementation of the new set of equations 

in any 3D model code is straightforward and may be expected to provide consistent results 

from deep water to the surfzone, in both conditions of weak and strong ambient currents. 
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SAMENVATTING 

Deze studie heeft tot doel een nieuwe reeks vergelijkingen van gemiddelde beweging in 

aanwezigheid van oppervlaktegolven te ontwikkelen, die praktisch toepasbaar is van diep 

water tot de kustzone, estuaria en uitstroomgebieden. De gegeneraliseerde Lagrangiaanse 

gemiddelde methode wordt gebruikt om een reeks quasi-Euleriaanse gemiddelde 

driedimensionale bewegingsvergelijkingen af te leiden, waarbij effecten van 

oppervlaktegolven worden opgenomen via brontermen. De verkregen vergelijkingen 

worden uitgedrukt in de tweede orde van golfamplitude. Terwijl de klassieke Euleriaanse 

gemiddelde bewegingsvergelijkingen alleen van toepassing zijn onder het golfdal, is de 

nieuwe reeks vergelijkingen geldig tot het gemiddelde wateroppervlak, zelfs in de 

aanwezigheid van oppervlaktegolven met eindige amplitude. Zowel conservatieve als 

niet-conservatieve golven worden overwogen, vooral in de aanwezigheid van een sterke 

omgevingsstroom. Een concept van driedimensionale golfstralingsspanning wordt 

geïntroduceerd om de effecten van oppervlaktegolven op de stromingen uit te drukken. 

Het is een uitbreiding van het klassieke concept van stralingsstress. Vooral de relatie 

tussen driedimensionale golfstralingsspanning en vortexkrachtrepresentaties wordt in 

detail onderzocht in omstandigheden van zowel conservatieve als niet-conservatieve 

golven. Door die relatie worden vergelijkingen gegeven tussen de nieuwe reeks 

vergelijkingen en andere reeksen vergelijkingen die in recente bekende numerieke 

modellen zijn geïmplementeerd. Het is nuttig voor het selecteren van een geschikt 

numeriek oceaanmodel om de gemiddelde stroming in een specifieke toestand van golven 

in combinatie met stromingen te simuleren. 

Een tweedimensionaal numeriek model (2DV-model) is ontwikkeld om de nieuwe reeks 

bewegingsvergelijkingen te valideren. Het model doorstaat de test van stabiele 

monochromatische golven die zich voortplanten op een helling zonder dissipatie 

(adiabatische toestand). Dit is een primaire test voor vergelijkingen van gemiddelde 

beweging met een bekende analytische oplossing. Daarnaast worden experimentele 

gegevens voor de interactie tussen willekeurige golven en stromen in zowel niet-brekende 

als brekende golven gebruikt om het 2DV-model te valideren. Zoals blijkt uit deze 

succesvolle implementatie en validatie, is de implementatie van de nieuwe reeks 

vergelijkingen in elke 3D-modelcode eenvoudig en kan worden verwacht dat deze 

consistente resultaten oplevert van diep water tot de surfzone, zowel in omstandigheden 

van zwakke als sterke omgevingsstromingen. 
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1.1 GENERAL INTRODUCTION TO THE STUDY 

In the ocean, the surface waves do not travel on a quiescent water surface but travel on 

the currents. Due to the effects of currents, the wave field is modified by processes such 

as diffraction, dissipation, refraction, or deformation. The surface waves also modify the 

oceanic currents, particularly in the near-shore and coastal oceans. The surface gravity 

waves generate the Stokes drift, which affects the sea state and ocean circulation 

(Longuet-Higgins and Stewart, 1960). In many cases, the interaction between waves and 

currents plays a significant role that we cannot ignore in processes such as contaminant 

and sediment transport, Langmuir currents, long-shore currents, rip currents, and wave 

set-down and setup. The requirements for improving the accuracy of coastal and ocean 

forecasts are increasing due to the increase in human activities on the ocean. Two methods 

are usually applied to simulate ocean currents. They are the Eulerian mean and the 

Generalized Lagrangian Mean (GLM) methods. 

In the Eulerian mean method, the mean flow properties are obtained by a time-averaged 

technique. However, the difference in temporal and spatial scales between surface gravity 

waves and currents is extremely large. Then, the use of a direct numerical simulation 

approach is impractical. To solve this problem, a multi-scale asymptotic theory was 

proposed by McWilliams et al. (2004). Equations for the evolution of mean current were 

obtained in the presence of surface gravity waves. Their equations are valid in conditions 

of coastal water outside the surfzone. In the presence of finite-amplitude waves, the region 

between wave trough and wave crest is not always filled by the fluid but by the air during 

part of the wave period. Then, the use of the Eulerian mean method in this region poses 

a problem due to a large difference in density between the fluid and the air. 

Another approach is using the GLM method introduced by Andrews and McIntyre (1978). 

This method is capable of properly separating air and water between the wave crest and 

the wave trough leading to the physical interpretation of definitions of mean properties 

from the wave trough to the mean water level. The problem with this method is that the 

wave properties are expressed implicitly through disturbance quantities, which represent 

departures from conservative motion. In practice, it is necessary to have an explicit 

approximation of wave action or wave momentum from wave kinetics. 

In this study, equations of mean motion are developed based on the GLM method. These 

equations are written in terms of Quasi-Eulerian velocity which is defined as GLM 

velocity minus Stokes drift. The new equations are valid from offshore to coastal areas. 

In the case of infinitesimal and conservative waves, the new equations reduce to the well-

known classical Eulerian mean equations of motion. The new equations are validated and 

calibrated with various sets of experimental data including adiabatic test, non-breaking 

random waves propagating on a strong ambient current in a wave flume (Klopman, 1994), 

breaking random waves propagating over a barred profile in a wave flume (Boers, 2005), 

and breaking random waves propagating in a large-scale laboratory facility (Hamilton 
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and Ebersole, 2001). These works were published in a recent paper by Nguyen et al. 

(2021a). 

The effect of waves on the mean current is expressed explicitly in terms of three-

dimensional (3D) wave radiation stress representation. Moreover, the relationship 

between 3D wave radiation stress and vortex force representations is proven 

mathematically. Besides, comparisons between the new set of equations of mean motion 

and other sets of equations implemented in recent well-known numerical models are 

given. It is useful for selecting a suitable numerical ocean model to simulate the mean 

current in specific conditions of waves combined with currents. These works are 

presented in Nguyen et al. (2021b). 

1.2 RESEARCH QUESTIONS AND OBJECTIVES OF THIS STUDY 

1.2.1 Research questions 

This study aims to answer the following questions: 

1) How to simulate three-dimensional mean currents from the deep ocean to the coastal, 

estuary, and outflow areas in the presence of finite-amplitude nonconservative waves? 

2) How to express the effects of surface waves on three-dimensional mean currents, 

especially under the condition of non-conservative waves and strong ambient currents? 

3) Is there any relationship between vortex force and radiation stress representations? 

1.2.2 Objectives of this study 

1) Develop a practical set of three-dimensional equations of mean motion which is valid 

from the bottom to the mean surface even in the presence of finite-amplitude non-

conservative surface waves. The new set of equations should be suitable for applications 

from the deep water to the coastal, estuaries, and outflow areas. 

2) Study the wave-induced forcing on the mean current and the relationship between 3D 

wave radiation stress and vortex force representations. 

3) Develop a two-dimensional numerical model (2DV model) to validate the new set of 

equations of mean motion. The following experiments are employed: 

- Adiabatic test: a monochromatic wave propagates on a slope without dissipation. 

- The experiment of Klopman (1994): random non-breaking waves propagate on a strong 

ambient current in a wave flume. 

- The experiment of Boers (2005): random breaking waves propagate in a wave flume. 

- The experiment of Hamilton and Ebersole (2001): random breaking waves propagate in 

a Large-Scale Sediment Transport Facility (LSTF). 
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4) Compare the new set of equations with other sets of equations implemented in well-

known numerical ocean models. 

1.2.3 Literature review 

The interaction between waves and currents has been the subject of much research in 

recent decades. There are two representations of wave-averaged effects on the currents 

called “radiation stress” and “vortex force”. The concept of “radiation stress: was first 

introduced by Longuet-Higgins and Stewart (1960) to explain the transfer of wave energy 

to a uniform current. This concept was used by Longuet-Higgins and Stewart (1962) to 

study the changes in the mean surface level and the currents caused by gravity waves. 

The radiation stress concept has been successful in explaining phenomena such as wave 

“set-up”, “surf beats”, the steepening of the surface waves on adverse currents (Longuet-

Higgins and Stewart, 1964), and the generation of long-shore currents by oblique incident 

waves (Bowen, 1969; Longuet-Higgins, 1970; Thornton, 1970). However, since 

“radiation stress” introduced by Longuet-Higgins and Stewart (1960) is a two-

dimensional horizontal tensor it is only practical for two-dimensional, depth-averaged 

models. In reality, the current is depth-dependent, so the vertical structure of the radiation 

stress should be specified. 

Some scientists attempted to apply the “radiation stress” concept in three-dimensional 

models. Xie et al. (2001) applied the radiation stress as a depth uniform body force in the 

Princeton Ocean Model (POM), even though the radiation stress is caused by depth-

varying wave velocity and hydrodynamic pressure. Therefore, their assumption for the 

vertical structure of radiation stress is not accurate. Xia et al. (2004) considered the 

vertical structure of radiation stress; however, the three-dimensional radiation stress 

formulation was derived from two-dimensional radiation stress. 

The second representation of the wave and current interaction is expressed in terms of the 

vortex force. This representation was first developed by Craik and Leibovich (1976) in 

the work of constructing a realistic theoretical model of steady Langmuir circulations. 

Their research focused on the near-surface layer to explain the generation of Langmuir 

currents as a result of the interaction between surface waves and wind-driven circulation 

through the action of a vortex force. Leibovich (1977) extended this theory to allow 

vertical density stratification and slow time variation. McWilliams and Restrepo (1999) 

developed a perturbation theory to obtain wave-averaged equations of motion. Their 

theory is based on the assumption of small wave slope and deep water. McWilliams et al. 

(2004) developed a system of mean equations of motion based on an asymptotic theory 

to account for the interaction of waves and currents. In this, the effects of waves on the 

current are expressed in terms of the vortex force formalism. However, the equations of 

McWilliams et al. (2004) are only valid when the ratio of mean current to the wave orbital 

velocity is a small quantity, and are only applicable outside the breaking zone. Newberger 

and Allen (2007) developed a three-dimensional, hydrostatic model for surf zone 
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applications, with applicability to linear waves interacting with a depth-uniform mean 

current. They divided the effect of waves on the mean currents into surface and body 

forces. The surface force represents the wave dissipation, and the body force represents 

the gradient of the Bernoulli head and vortex-force. Equations of  McWilliams et al. (2004) 

were used by Uchiyama et al. (2010) for surf zone applications. In this, the non-

conservative forcing by breaking waves, roller waves, bottom and surface streaming and 

wave-enhanced mixing are added through empirical formulas. Their equations were 

implemented in the COAWST (coupled ocean-atmosphere-wave-sediment transport) 

modeling system by Kumar et al. (2012) with some modifications for empirical formulas 

of wave-induced forcing. 

The relationship between “radiation stress” and “vortex force” representations was 

studied by Lane et al. (2007). In this, the asymptotic assumption proposed by McWilliams 

et al. (2004) was used to look for the similarities and discrepancies between these two 

representations. They proved that these two representations are equivalent. However, 

their work was restricted to non-dissipative waves only. All the theories mentioned above 

are expressed in an Eulerian-mean framework, though when finite-amplitude waves are 

present, the region between the wave trough and wave crest is not always filled by the 

fluid but by the air during part of the wave period. This poses a problem due to a large 

difference in density between the fluid and the air. 

In the work of Mellor (2003) and Mellor (2008), a wave-following sigma-coordinate 

system was employed to couple the three-dimensional circulation models with wave 

models. The coupling included depth-dependent wave radiation stress terms. Their 

equations are inconsistent in the simple case of shoaling waves without energy dissipation 

(Ardhuin et al., 2008). Recently, Mellor (2015) and Mellor (2016) derived prognostic 

equations for Eulerian mean flow on sigma coordinates. The three-dimensional 

momentum equations were inferred from the vertically integrated momentum equations 

by adding a term for which vertical integration is zero. Similar to the work of Xia et al. 

(2004), the inference of three-dimensional momentum equations from two-dimensional 

momentum equations is not straightforward. This inconsistency was also pointed out by 

Ardhuin et al. (2017). Moreover, in the momentum equation of Mellor (2015) and Mellor 

(2016), there is a missing term related to the divergence of the vertical momentum flux 

(Ardhuin et al., 2017). 

The generalized Lagrangian mean (GLM) method was introduced by Andrews and 

McIntyre (1978), hereafter referred to as AM. The basic idea of this method is to average 

over disturbance positions of the fluid particle. Therefore, the GLM method is valid from 

the bottom to the mean water surface even in conditions of finite-amplitude waves. This 

method provides a powerful foundation for the analysis of the wave-current interaction 

and gives a physical interpretation of the interaction between waves and currents. Based 

on the GLM method, AM developed a set of equations of mean motion in a general 

condition of the wave-current interaction. Their set of equations is complete and depends 
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on thermodynamic properties such as entropy and enthalpy. However, the disturbance-

related quantities, which include both wave-induced and turbulence-induced effects, are 

not explicitly represented through source terms. Their equations were employed by 

Leibovich (1980) to derive Langmuir circulation equations under the assumption that the 

waves are dominated by their irrotational part. The GLM equations of AM were 

simplified by Dingemans (1997) with the assumption of constant density, and removing 

all thermodynamic terms, yet leaving the disturbance quantities as implicit. Groeneweg 

(1999) used an alternative method to obtain GLM equations, where the Reynolds-

averaged Navier–Stokes (RANS) equations were rewritten in terms of GLM quantities. 

The mean quantities in RANS equations are obtained by applying the Eulerian mean 

method; therefore, the set of equations of Groeneweg (1999) is not suitable for the region 

above the wave trough. His set of equations was implemented in the Delft3D-FLOW 

model by Walstra et al. (2001) with simplification for the wave-induced driving force. 

Ardhuin et al. (2008) developed a practical set of equations of mean motion based on the 

work of Dingemans (1997). Their equations are written in terms of Quasi-Eulerian mean 

velocity ˆ
iu  defined by: 

 ˆ ,L

i i iu u= −p  (1.1) 

where, L

iu  is the ith- component of GLM velocity and ip  is the ith-component of 

pseudomomentum defined by: 

 ( ) ,j l

i j j
i

u
x


= + 


p  (1.2) 

where, ix  is the ith-component of position x,   is the disturbance displacement of the 

fluid particle, 
l

ju  is the jth-component of Lagrangian disturbance velocity, and   is the 

angular velocity of the Earth. In the equation (1.2) the summation convention for the 

indices is employed. This convention is also used throughout this work with the indices 

from 1 to 3. 

Equations of mean motion by Ardhuin et al. (2008) are explicit in terms of the wave 

forcing and applicable outside the breaking zone; their equations provide qualitative 

results for surf zone applications (Ardhuin et al., 2008). This is due to the fact that the 

Stokes drift only approximates to pseudomomentum when the waves are irrotational and 

the mean flow is of second-order of the disturbance amplitude (AM). Equations of 

Ardhuin et al. (2008) were employed by Bennis et al. (2011) for coastal applications with 

an addition of dissipative forcing terms (i.e. breaking wave and roller wave-induced 

forcing, wave-induced mixing, wave-induced bottom friction). 

In this study, a set of equations of mean motion using the GLM method is developed. 

These equations are written in terms of Quasi-Eulerian velocity defined as GLM velocity 

minus Stokes drift. The new equations are valid from offshore to coastal areas. Outside 
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the surf zone and for non-dissipative waves, the new equations are identical to the 

equations of Ardhuin et al. (2008); for dissipative waves, there are subtle differences. In 

the case of infinitesimal and conservative waves, the new equations reduce to the well-

known classical Eulerian mean equations of motion. The new set of equations is validated 

with an adiabatic test, non-breaking waves propagating on a strong ambient current in a 

wave flume, breaking waves propagating over a barred profile in a wave flume, and 

obliquely incident breaking waves in a large-scale sediment transport facility (LSTF). 

1.2.4 The outline of this dissertation 

This dissertation is organized as follows:  

In Chapter 1, the general information and the need of carrying out this study are presented. 

The research questions, objectives, literature review, and the outline of this dissertation 

are given in the second part of this Chapter. The derivation of the new equations of motion 

is presented in detail in Chapter 2. In this, the momentum equation and continuity 

equation are expressed in terms of Quasi-Eulerian mean quantities. In Chapter 3, a 

concept of 3D wave radiation stress is introduced to express the mean effect of waves on 

3D currents. The 3D wave radiation stress is specified in different conditions of waves 

combined with currents. Besides, the relationship between 3D wave radiation stress and 

vortex force representation is also proved mathematically. In Chapter 4, the Quasi-

Eulerian mean equations of motion are simplified under the hydrostatic assumption of the 

mean flow. Equations of motion are expressed in terms of both Quasi-Eulerian mean and 

GLM velocities. In Chapter 5, various experimental data sets are employed to validate 

the new set of equations of mean motion. Four experiments were selected including 

steady monochromatic waves propagating on a slope without dissipation (adiabatic 

condition), random non-breaking waves propagating on a strong ambient current in a 

wave flume, random breaking waves propagating on a sloping bed, and random breaking 

waves propagating in a Large-Scale Sediment Transport (LSTF) facility. The comparison 

of the new equations of motion with recent well-known equations of the mean motion of 

fluid-particle is given in Chapter 6. The general conclusion of this study is given in 

Chapter 7. 





 

 

2 
2 DERIVATION OF THE QUASI-

EULERIAN MEAN 

EQUATIONS OF MOTION1 

 

 

 

 

 

 

 

  

 

1 This Chapter is based on the publication: Nguyen, D.T., Jacobsen, N.G., Roelvink, D., 2021a. Development and 

Validation of Quasi-Eulerian Mean Three-Dimensional Equations of Motion Using the Generalized Lagrangian Mean 

Method. Journal of Marine Science and Engineering 9, 76. 
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2.1 DEFINITION OF QUASI-EULERIAN MEAN QUANTITY 

2.1.1 Overview of Generalized Lagrangian Mean method 

The GLM method is an exact theory of nonlinear waves on a Lagrangian-mean flow 

proposed by AM. In the following, only some properties of the GLM operator are present. 

Full details of this method are given in the original paper of AM. The basic idea of the 

GLM method is to average over positions displaced by a certain disturbance. The GLM 

of any quantity ( , )t x  is defined as: 

  ( , ) ( , ), ,L t t t =  + x x x  (2.1) 

where, operator ( )  expresses a time average over a wave period. The term on the right-

hand side of equation (2.1) is a usual Eulerian mean operator. Where, the particle 

displacement is assumed a true disturbance quantity, i.e.: 

 ( , ) 0.t =x  (2.2) 

The following notation was employed throughout this study: 

  ( , ), ( , ).t t t + = x x x  (2.3) 

The Lagrangian disturbance quantity 
l  is defined as the deviation of the real quantity 

  from the GLM quantity 
L , i.e.: 

 ( , ) ( , ) ( , ).l Lt t t =  −x x x  (2.4) 

If the quantity   is the velocity vector u  then we have the following definition of the 

GLM velocity: 

 ( , ) ( , ).L t t=u x u x  (2.5) 

The Lagrangian mean material derivative is defined as (AM): 

 / . ,L LD t=   + u  (2.6) 

where, , ,
x y z

   
 =  

   
 is the gradient operator. From equation (2.4) the Lagrangian 

disturbance velocity vector is defined by: 

 ( , ) .l Lt = −u x u u  (2.7) 

As pointed out by AM, the disturbance velocity 
l

u  is equal to the mean material rate of 

change of disturbance displacement  , i.e.: 

 .L lD  = u  (2.8) 



2.1. Definition of Quasi-Eulerian mean quantity 

 

11 

 

Evidently, the Lagrangian disturbance velocity is also a true disturbance quantity, i.e.: 

  0.l =u  (2.9) 

Equations (2.1), (2.2), (2.7), and (2.8) are the fundamental equations of the GLM theory. 

2.1.2 Definition of Quasi-Eulerian mean quantity 

In this part, the fluid is assumed incompressible ( const = ) and the dependence of 

hydrodynamic processes on thermo-dynamics terms is neglected (assumption A1). For 

small disturbance amplitude, using a Taylor expansion the value of the function   at the 

disturbance position ( , ) ( , )t t = +x x x  is expressed by: 

 
2

31
( , ) ( , ) ( ),

2
j j k

j j k

t t O
x x x

   
 =  + +   +

  
x x   (2.10)  

where, Einstein summation convention is employed with  j and k run from 1 to 3,  =   

is a small parameter in the order of disturbance displacement amplitude. The first term on 

the right-hand side of equation (2.10) is the Quasi-Eulerian quantity. The second and the 

third terms on the right-hand side of equation (2.10) express the effect of disturbance 

motion on function   correct to the second order of  . 

The Quasi-Eulerian mean quantity   is defined by: 

 ( ) ( ) ( ), , , ,L St t t =  −x x x  (2.11) 

where, 
S  is the Stokes correction of the Quasi-Eulerian mean quantity   defined by 

(AM): 

 ( )
2

31
, ( ),

2

S

j j k

j j k

t O
x x x


  

 =  +   +
  

x  (2.12) 

where,   is the Quasi-Eulerian disturbance defined as the difference between the Quasi-

Eulerian quantity   and the Quasi-Eulerian mean quantity  : 

  = −  (2.13) 

Equations (2.11) and (2.12) show that the Quasi-Eulerian mean quantity is approximated 

to the second-order of the disturbance amplitude. 

We assume that any Quasi-Eulerian disturbance can be decomposed into wave and 

turbulence components, such as: 

 ,t = +  (2.14) 
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where,   and 
t  are the wave and turbulent quantities, respectively. Moreover, the 

turbulent and wave quantities are assumed to be uncorrelated, i.e., for any   and   we 

have: 

 0.t =  (2.15) 

2.2 DERIVATION OF QUASI-EULERIAN MEAN MOMENTUM EQUATION 

Let us start with the momentum equation for the total flow written in the Eulerian 

framework. The ith equation is expressed by: 

 
1

2( ) 0,i i
j i i

j i i

u u p
u X

t x x x

   
+ +  + + + =

    
u  (2.16) 

where, Einstein summation convention is applied with j runs from 1 to 3, the angular 

velocity of the Earth Ω is assumed constant, ( , )t x  is the potential of the gravitational 

force, p is pressure, and X  is a function of non-wave dissipative forcing. 

Evaluating equation (2.16) at disturbance position of the fluid particle  = +x  to obtain: 

 ( ) ( )
1

2( ) 0.i i
j i i

j i i

u u p
u X

t x x x

  

         
+ +  + + + =              

u  (2.17) 

Equation (2.17) is valid from the bottom to the free water surface. Assuming that the 

gravitational acceleration g is constant, we have: 

 
3 ,i

i

g
x


= 


 (2.18) 

where, 3i  is Kronecker delta function given by: 

 3

1    if 3
.

0   otherwise
i

i =
 = 


 (2.19) 

The GLM momentum equation is obtained by averaging equation (2.17) over a wave 

period, i.e.: 

 ( ) ( )
1

2( ) 0.i i
j i i

j i i

u u p
u X

t x x x

  

         
+ +  + + + =              

u  (2.20) 

According to AM, the first term on the left-hand side of equation (2.20) can be rewritten 

as: 
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 .L Li i
j i

j

u u
u D u

t x



  
+ =    

 (2.21) 

Since Ω is constant then the second term on the left-hand side of equation (2.20) becomes: 

 ( )2( ) 2( ) .L

i i


 = u u  (2.22) 

From equation (2.18), the third term on the left-hand side of equation (2.20) is: 

 ( )3 3 .i i

i

g g
x



 
=  =  

 
 (2.23) 

When . 0 =u  the divergence of disturbance displacement is of the second order of small 

disturbance amplitude (AM), i.e.: 

 
2. ( ).O  =   (2.24) 

Using a Taylor expansion and equation (2.24) the pressure gradient term in equation 

(2.20) can be expressed as: 

 
3

31 1 1 1
( ).

2
j j k

i i j i i j k

p p p p
O

x x x x x x x




       
= +  +   +   

             
 (2.25) 

Inserting equations (2.21), (2.22) (2.23) and (2.25) into equation (2.20), we obtain the 

following momentum equation in the GLM framework, i.e.: 

 

( ) 3

3
3

1 1
2

1
( ).

2

L L L L

i i i ji
i j i

j k

i j k

p p
D u g X

x x x

p
O

x x x




   
+  +  + + = −  

     


−   +

  

u

 (2.26) 

In the above equation, both effects of waves and turbulence on the current are involved 

in the Quasi-Eulerian disturbance and GLM terms. For example, Quasi-Eulerian 

disturbance pressure p  includes wave-induced pressure p  and turbulence-induced 

pressure
tp . However, there is no available theory to calculate such Quasi-Eulerian 

disturbance terms. Therefore, it is necessary to separate wave and turbulent terms from 

the Quasi-Eulerian disturbance. In the following, equation (2.26) is used to develop a 

Quasi-Eulerian mean momentum equation in the GLM framework. The goal of this 

exercise is that the wave-induced velocity, the turbulence, and the mean current velocity 

are separated. 

For any quantity  , AM obtained the following relationship between Lagrangian 

disturbance and Quasi-Eulerian disturbance: 
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2( ).l

j

j

O
x




 =  +  +


 (2.27) 

Using equation (2.27) the first term in the right-hand side of equation (2.26) can be 

expressed as: 

 
2

31 1 1
( ).

l

j j j k

j i j i j k i

p p p
O

x x x x x x x


             =  −   +     
                

 (2.28) 

Subtracting equation (2.26) from equation (2.17) to obtain the following equation for the 

evolution of disturbance motion: 

 ( ) ( ) ( )3

1
2( ) 0.

l

l l lL l

i i i i

i

p
D u g X

x

 
+  +  + + = 

  
u  (2.29) 

Since the gravitational acceleration g is assumed constant, the third term on the left-hand 

side of equation (2.29) is neglected. Multiply equation (2.29) with 
j  and then take the 

spatial derivative / jx   to obtain: 

 ( ) ( ) ( )1
2 ( ) .

l

L l l l

j j i j i j i

j i j j j

p
D u X

x x x x x

 
       = −  −   −  

       
 

u  (2.30) 

The first term on the right-hand side of equation (2.30) is decomposed as: 

 ( )
( )

( ) 3( ).

l
l L

j i
L l L l Li k

j i j i j

j j k j j

uu u
D u D u D O

x x x x x


    
 =  + −  + 

      

 (2.31) 

From the definition of Lagrangian velocity disturbance (2.8) the second term on the right-

hand side of equation (2.31) becomes: 

 ( )
( )

.

l l

i j
l L

i j

j j

u u
u D

x x


 =

 
 (2.32) 

Substitute equations (2.32) and (2.31) into equation (2.30) we obtain: 

 

( ) ( )

( ) ( ) 3

1

2 ( ) ( ).

l l ll
l L

j i i j
L i k

j j

j i j k j j

l l

j i j i

j j

u u uu up
D

x x x x x x

X O
x x



           = −  − +               

 
−   −  +
 

u

 (2.33) 
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In the following, all terms on the right-hand side of equation (2.33) are rewritten in terms 

of Quasi-Eulerian disturbance based on the relationship (2.27). The first term in the right-

hand side of equation (2.33) can be expressed as: 

 
2

3

' '

( ).

l
L L L Li i i i

j j j k j

j j j k j

j kL i i l l i
j k j k

j k l k j j k l

u u u u
D D D D

x x x x x

u u u u u
D O

x x x x x x x x


           
 =  +   =                        

        
+   − −  +  
         

 (2.34) 

Similarly, the second term on the right-hand side of equation (2.33) becomes: 

 

( ) ( )

( )

2

2
3( ).

l
L Lj ij i j l

k k i k k i
j l

k j k j k l j j k l

j l
k i k k i

j i j l

k j k l j j k l

uu u u u u u u

x x x x x x x x x x

u u u u u
u O

x x x x x x x x


             = + +  
         

        =  + +   +          

 (2.35) 

The third term on the right-hand side of equation (2.33) is expressed by: 

 
( ) ( )

3
' '

' ' ( ).

l l

i j i j j ji i
i l j k k l

j j j l k k l

u u u u u uu u
u u O

x x x x x x x


     
= +  +  +   + 

       
 (2.36) 

Similarly, the fourth term on the right-hand side of equation (2.33) is expressed in term 

of Quasi-Eulerian disturbance quantities as: 

 

( ) 3

3

2 ( ) 2 ( )

2 2 ( ),

l
l n

j i imn m j

j j

n n
imn m j imn m j k

j j k

u
O

x x

u u
O

x x x

 

  


  =   +

 

  
=   +    + 

   

u

 

(2.37) 

where, imn  is the Levi-Civita symbol defined by: 

 

( )

( )

1 if , ,  is an even permutation of (1,2,3)

1      if , ,  is an odd permutation of (1,2,3) .

  0      if any index is repeated

imn

i m n

i m n

+


= −



 (2.38) 

The fifth term on the right-hand side of equation (2.33) is expressed by: 

 ( ) 3( ).
l

l i i i
j i j j j k

j j j j k

X X X
X O

x x x x x


     
 =  =  +   + 

     
 (2.39) 
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From equations (2.34)-(2.39) equation (2.33) can be expressed in terms of Quasi-Eulerian 

disturbance quantities as: 

 

( )' '1
'

'
2

2

l

i j ji i
j j k k l

j i j j k k l

L Li i n
j j k imn m j

j j k j

n i i
imn m j k j j k

j k j j k

u u uu up
u

x x x x x x x

u u u
D D

x x x x

u X X

x x x x x





           = +  +     
           
 

       
−  −   −             

     
−    − −    
      

3( ).O 

+


 (2.40) 

Replacing equation (2.40) into equation (2.28) we obtain: 

( )

( )

' ' '1
2

'

2

i j L i n i
j j imn m j j

j i j j j j

j L Li i i i
j k k l j k j k

j k k l j k j k

n
imn m j k

j k

u u u u Xp
D

x x x x x x

uu u u u
u D D

x x x x x x x x

u

x x





        
 = −  −   −             

           
+  +   −   −       
             

  
−    − 
   

2
31

( ).i
j k j k

j k j k i

X p
O

x x x x x


     
  −   +   

       

 (2.41) 

From equation (2.8) and equation (2.27) the sixth term on the right-hand side of equation 

(2.41) can be expressed as: 

 

( ) ( )

3( ).

L L L l li i i
j k j k k j j k k j

k k k

ji i k i i
j k k j j l k l

k k l k l k

u u u
D D D u u

x x x

uu u u u u
u u O

x x x x x x


     =   +   =  + 
   

     =  +  +   +   +
     

 (2.42) 

Similarly, the seventh term on the right-hand side of equation (2.41) is expressed as: 

 ( ) 3( ).
L

L Li l i
j k j k i j k

k k k l

u u u
D D u O

x x x x


   
  =   −  + 

    
 (2.43) 

Then, the total of the last four terms on the right-hand side of equation (2.41) is expressed 

by: 
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 ( )

2

3

3

1
2

1
2

( ).

L i n i
j k imn m j k j k j k

j k k k k i

L

j k i i ii
j k i

l i
j k

j k l

u u X p
D

x x x x x x

p
D u g X

x x x

u u
O

x x x





           
  +    +   +          

              

    
=   +  +  + +  
     

  
−   + 
   

u  (2.44) 

Since 
2( )S O  =  then from equation (2.26) we have: 

 ( ) 2

3

1
2 ( ).L

i i ii
i

p
D u g X O

x



+  + + + =

 
u  (2.45) 

Therefore, in the second-order of the accuracy of the small disturbance amplitude 

equation (2.44) can be rewritten as: 

 

2

3

1
2

( ).

L i n i
j k imn m j k j k j k

j k k k k i

l i
j k

j k l

u u X p
D

x x x x x x

u u
O

x x x





           
  +    +   +          

              

  
= −   + 

     

(2.46)

 

From equations (2.42) and (2.46), the total of the last six terms on the right-hand side of  

equation (2.41) can be expressed by: 

 

( )

2

'

1
2

j L Li i i i
j k k l j k j k

j k k l j k j k

n i
imn m j k j k j k

j k j k j k i
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j k

j k

uu u u u
u D D

x x x x x x x x

u X p

x x x x x x x

u
u

x x



           
 +   −   −       

             

              
−    −   −            
                 

 = − 
 

3( ).O 
 

+ 
 

(2.47) 

Substitute equation (2.47) into equation (2.41) to obtain the following relationship: 

 

( )

3

' ' '1
2

( ).

i j L i n
j j imn m j

j i j j j

i i
j j k

j j k

u u u up
D

x x x x x

X u
u O

x x x





       
 = −  −              

    − −  + 
   

 (2.48) 

Following the definition of Stokes correction (2.12) the second term on the right-hand 

side of equation (2.48) can be expressed as: 
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      = −   +       

 (2.49) 

where, S

iu is the ith- component of Stoke drift 
S

u . 

Using equations (2.8) and (2.27) the second term in the right-hand side of equation (2.49) 

is expressed as: 

 

( )

( )

2 2 2

2 2 22

2

1 1 1

2 2 2

1

2

1

2

L L Li i i
j k j k j k

j k j k j k

L l i l i l i
j k i

j k j k l k j l j k l

jk i
j k j l k j k l

l l j

u u u
D D D

x x x x x x

u u u u u u
D u

x x x x x x x x x x x

uu u
u u

x x x

     
  =   +                

      
=   − − − 

            

   +  +   +  +   
    
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



+

     =   −   +  + 
        

 (2.50) 

The last three terms on the right-hand side of equation (2.48) can be expressed, 

respectively, as: 

 ( )
2

31
2 2 2 ( ),

2

Sn n
imn m j imn m j ki

j j k

u u
O

x x x
  

   
  =  −    +     

u  (2.51) 
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       =  +  
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   = −   +  +
     

 (2.53) 

Replacing equations from (2.49) to (2.53) into equation (2.48), we obtain: 
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   
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       

 
= − +

 

u

 (2.54) 
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Equation (2.54) expresses the relationship between the evolution of Stokes drift and the 

disturbance of fluid particles. This is the basis to develop Quasi-Eulerian mean equations 

of motion. 

From (2.14) and (2.15) the first term on the right-hand side of equation (2.54) can be 

decomposed into the wave and turbulence components, such as: 

 
( ) ( ) ( )' '

,

t t

i ji j i j

j j j

u uu u u u

x x x

 
− = − −

  
 (2.55) 

where, iu  and t

iu are ith- components of wave and turbulent velocities, respectively. It is 

stressed that an assumption of no correlation between wave and turbulent quantities is 

employed in this step. 

Using the definition of Quasi-Eulerian mean quantity (2.11) the GLM equation (2.26) can 

be rewritten as: 
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1 1
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


+  +  + + = − −  −

 

   
−  −   + 
      

u u

 (2.56) 

Inserting equations (2.54) and (2.55) into equation (2.56) we obtain the momentum 

equation expressed in terms of Quasi-Eulerian mean velocity, i.e.: 

 ( )
( )

3

3

1 1
2 ( ),

i j iji
i ii

i j j

u uDu p
g X O

Dt x x x




 
+  +  + = − − + +

    
u  (2.57) 

where, 
t t

ij i ju u = −  is the turbulent stress tensor. 

The momentum equation (2.57) includes four variables: three components of Quasi-

Eulerian mean velocity u  and pressure p . Effects of waves and turbulence can be 

modeled as source terms. The momentum equation can be solved in combination with the 

continuity equation. The turbulent effect is expressed in the form of Reynolds turbulent 

stress, which can be calculated by using existing turbulent submodels, and the wave effect 

following an appropriate wave model. 

2.3 DERIVATION OF THE QUASI-EULERIAN MEAN MASS CONSERVATION 

EQUATION 

The mass conservation equation is necessary to close the set of equations of the mean 

motion. The mass conservation is simplified under the assumption of slow modulation of 
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the waves (assumption A2). For an incompressible fluid (assumption A1), the mass 

conservation equation is expressed by (AM): 

 

3 3
1

.
2

L L L
j k j kL

l

j k l j k

u v w
u

x y z t x x x x x

        
+ + = + 

          

 (2.58) 

In the following, the vertical GLM velocity is assumed a small quantity, i.e., ( )Lw O = . 

Using assumption A2 the right-hand side of equation (2.58) is simplified as: 

 

3 3 2 2
33

2

1 1
( ).

2 2

j k j kL

l

j k l j k

u O
t x x x x x t z


         

+ = +  
             

 (2.59) 

Notice that Quasi-Eulerian mean quantities are averaged over the wave period. Therefore, 

on the scale of the mean current, the right-hand side of equation (2.59), generally, differs 

from zero. According to the definition of Stokes correction in AM, the term in brackets 

on the right-hand side of equation (2.59) is the Stokes correction of the mean position of 

fluid-particle SZ , i.e.: 

 
2 2

33

2

1
( ).

2

SZ O
z


 

= +


 (2.60) 

In stationary waves, the temporal derivative of SZ is zero, so equation (2.58) becomes: 

 .
S S Su v w u v w

x y z x y z

      
+ + = − + + 

      
 (2.61) 

However, in nonstationary waves, the right-hand side of equation (2.59) differs from zero 

and is also of second-order in the disturbance amplitude. In general, the continuity 

equation (2.58) is rewritten as: 

 .
S S S Su v w Z u v w

x y z t x y z

       
+ + = − + + 

       
 (2.62) 

Equation (2.62) indicates that the divergence of Quasi-Eulerian mean velocity is 

compensated by the divergence of Stokes drift and the time variation of Stokes correction 

of the mean position of the fluid particle. As pointed out by Tamura et al. (2012), the 

divergence of Stokes drift might cause vertical velocity which is comparable to Ekman 

velocity and has important effects to the upper ocean dynamics. Besides, the divergence 

of Stokes drift also contributes to the set-down/setup of mean water level. 

Combined with the momentum equation (2.57) we had a set of four independent 

equations in four unknowns as long as the wave and turbulent motions are described by 

an appropriate wave theory and a relation to the mean flow, respectively. In principle, 

these equations can be solved numerically. 
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2 This Chapter is based on the publication: Nguyen, D.T., Reniers, A.J.H.M., Roelvink, D., 2021b. Relationship 

between Three-Dimensional Radiation Stress and Vortex-Force Representations. Ibid., 791. 
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3.1 INTRODUCTION 

There are two representations of wave-averaged effects on the currents called 'radiation 

stress' and 'vortex force'. Both representations have been applied widely in the ocean and 

coastal numerical models. 

The radiation stress representation was introduced by Longuet-Higgins and Stewart 

(1960). It was successful in explaining the transfer of momentum flux from the waves to 

the mean current. However, it is a two-dimensional (2D) tensor, and as such it is only 

suitable for depth-averaged numerical models. The extension of the ‘traditional’ radiation 

stress concept to three-dimensional (3D) space has been the subject of many studies. In 

Xia et al. (2004), the 3D radiation stress was inferred from the classical 2D radiation 

stress concept of Longuet-Higgins and Stewart (1960). This method was also applied by 

Mellor (2015). However, as indicated by Ardhuin et al. (2017), this method is “incorrect 

because of a derivation error”. Recently, Nguyen et al. (2021a) obtained a depth-

dependent wave radiation stress tensor in the Generalized Lagrangian Mean (GLM) 

framework. It was applied in their Quasi-Eulerian mean equations of motion. With the 

use of the depth-dependent wave radiation stress formulation, their equations were 

successfully validated with various experimental data in conditions of waves combined 

with currents. 

The vortex force representation is an alternative way to express the mean effect of waves 

on the current. It was first introduced by Craik and Leibovich (1976) to explain the 

evolution of Langmuir circulations. The vortex-force representation involves a gradient 

of the Bernoulli head and a vortex force. This concept has been widely applied by the 

ocean and coastal communities such as McWilliams et al. (2004), Newberger and Allen 

(2007), Ardhuin et al. (2008) Michaud et al. (2011); and Bennis et al. (2011). 

In Lane et al. (2007), a comparison of ‘radiation stress’ and ‘vortex force’ representations 

was made. Their study showed that these two representations are equivalent in the 

condition of conservative waves. However, the relationship between these two 

representations for non-conservative waves was not addressed in their study. 

In this Chapter, the concept of three-dimensional wave radiation stress tensor is 

introduced. Besides, the relationship between three-dimensional wave radiation stress and 

vortex-force representations in both conditions of conservative waves and non-

conservative waves is presented in detail. In this study, the concept of conservative wave 

means the wave propagates without wave energy dissipation, and the concept of non-

conservative wave means the wave propagates with the presence of wave energy 

dissipation (due to breaking wave, roller wave, or bottom friction). 
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3.2 THREE-DIMENSIONAL WAVE RADIATION STRESS REPRESENTATION 

The components of three-dimensional wave radiation stress S are defined by: 

 ( )2 2

11 12 13 ,S u w S uv S uw=  − =  =   (3.1) 

 ( )2 2

21 22 23 ,S vu S v w S vw=  =  − =   (3.2) 

 31 32 33 0.S wu S wv S=  =  =  (3.3) 

The modulation of wave amplitude is assumed slowly in the horizontal direction. Then, 

local linear wave theory is applied to calculate the following wave forcing terms: 

11 /S x  , 12 /S y  , 21 /S x  , 22 /S y  , 31 /S x  , 32 /S y  . 

Using local linear wave theory, components of wave velocity are: 

 
( )

( )1
1 2

cosh
cos ,

sinh

k z hk a
u k x k y t

k kh




+
= + −  (3.4) 

 
( )

( )2
1 2

cosh
cos ,

sinh

k z hk a
v k x k y t

k kh




+
= + −  (3.5) 

where, a is the wave amplitude, k  is the wave number, k  ( 1;2 =  represents for 

horizontal direction) is the component of wave number in the   direction, h is still water 

depth, and tanhgk kh =  is the angular frequency of the wave. 

From equations (3.4) and (3.5), the vertical component of wave velocity is calculated 

from the continuity equation for the wave motion: 

 

( )
( )

( )
( )

1 2

1 2 1 22
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sin
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k kh x y

 




+
= + −

+   
− + + − 

  

 (3.6) 

From equations (3.4), 3.5), and (3.6) we obtain: 
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 (3.7) 
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 (3.9) 
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2 sinh 2
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S k k

k kh x y

+    
= − + 

  
 (3.11) 

In the condition of conservative waves propagating in deep water, the wave forcing which 

is caused by normal components of wave radiation stress, 13 /S z   and 23 /S z  , can be 

calculated by the local linear wave theory. We have: 
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13 1 22
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,

2 sinh 2

k z hgk a a a
S k k

k kh x y

+    
= − + 
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sinh 2
.

2 sinh 2

k z hgk a a a
S k k

k kh x y

+    
= − + 

  
 (3.13) 

However, in the presence of dissipative forcing, the local linear wave theory is no longer 

suitable to calculate 13S  and 23S . The vertical distribution of the normal components of 

wave radiation stress in dissipative waves was analyzed by Deigaard and Fredsøe (1989). 

Their study is restricted to the shallow water waves, where the horizontal wave velocity 

is assumed to be depth independent. This results in the linear variation of 13S  and 23S  

with depth. Usually, the horizontal wave velocity is a depth-dependent quantity (e.g., 

wind waves in deep water) in which case more general formulas for 13S  and 23S  are 

required. In general, the normal components of wave radiation stress can be decomposed 

into conservative and decay parts, such as: 

 ( )13 ,CS DCS uw uw=  +  (3.14) 

 ( )23 ,CS DCS vw vw=  +  (3.15) 

where, the subscripts CS and DC represent the conservative and decay parts of normal 

components of wave radiation stress, respectively. 

3.2.1 Conservative part of the normal component of the wave 
radiation stress in weak ambient current 

In this part, the ambient current is assumed small in comparison with the near-bed orbital 

velocity, i.e. orbu u , and the surface waves are approximated irrotational. Then, the 

effect of mean currents on the wave radiation stress is neglected. The local linear wave 

theory can be used to calculate conservative parts of normal components of wave 

radiation stress. The above assumptions were also employed by McWilliams et al. (2004) 

to obtain an asymptotic theory for the interaction of waves and currents in coastal water. 
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Then, conservative parts of normal components of wave radiation stress are given by: 

 
( )

1
1 22

sinh 2
,

2 sinh 2
CS

k z hk ga a a
uw k k

k kh x y

+   
= − + 

  
 (3.16) 

 
( )

2
1 22

sinh 2
.

2 sinh 2
CS

k z hk ga a a
vw k k

k kh x y

+   
= − + 

  
 (3.17) 

The above formulas agree with the results obtained by You (1997) and Groeneweg (1999) 

when the incident angle of the wave is zero (
00 = ). 

3.2.2 Conservative part of the normal component of the wave 
radiation stress in a strong ambient current 

As pointed out by Supharatid et al. (1992) and Nielsen and You (1997), the ambient 

current has a significant impact on the vertical distribution of wave radiation stress. 

Therefore, in the presence of a strong ambient current, equations (3.16) and (3.17) are no 

longer suitable. The normal component of the wave radiation stress is enhanced by a 

factor ( ),1 ,2,WR WR WRC C C=  representing the effect of the ambient current. Equations (3.16) 

and (3.17) become: 

 
( ),1 1

1 22

sinh 2
,

2 sinh 2

WR
CS

C k ga k z h a a
uw k k

k kh x y

+   
= − + 

  
 (3.18) 

 
( ),2 2

1 22

sinh 2
.

2 sinh 2

WR
CS

C k ga k z h a a
vw k k

k kh x y

+   
= − + 

  
 (3.19) 

For regular wave, the empirical factors 
,1WRC  and 

,2WRC  are calculated by (Nielsen and 

You, 1997): 

 
( )

*
,1 1 100 ,WR

z hu
C

a D

+
= +  (3.20) 

 
( )

*
,2 1 100 ,WR

z hv
C

a D

+
= +  (3.21) 

where, ( )* *,u v  is the friction velocity, and D h= +   with   is the Quasi-Eulerian mean 

water level. 

As indicated by Ockenden and Soulsby (1994), for a substantial part of the time, the 

bottom shear stresses caused by random waves exceed those caused by the corresponding 

regular waves. In this study, formulas (3.18) and (3.19) are modified to apply to random 

waves as follows: 
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( )

*
,1 1 100 2 ,WR

z hu
C

a D

+
= +  (3.22) 

 
( )

*
,2 1 100 2 ,WR

z hv
C

a D

+
= +  (3.23) 

where, 0.5 rmsa H=  with rmsH  is the root mean square wave height. The empirical 

coefficient is approximated to unity when the ambient current is small in comparison with 

the near-bed orbital velocity. The friction velocity components caused by waves and 

currents are calculated by: 

 * ,1 * ,2/ / ,b bu v =  =   (3.24) 

where, ( ),1 ,2,b b b  =  is the mean of total bed-shear stress caused by waves and currents. 

3.2.3 Decay-related part of normal components of the wave 
radiation stress 

Outside the bottom boundary layer, the decayed-related part of wave radiation stress 

gradient is caused by the dissipative forcing, i.e.: 

 
,1 ,1( ) ( )

,
DC br mxF z F zuw

z


= − −

  
 (3.25) 

 
,2 ,2( ) ( )

,
DC br mxF z F zvw

z


= − −

  
 (3.26) 

where, ( ),1 ,2,br br brF F F=  represents the effect of breaking waves and rollers, and 

( ),1 ,2,mx mx mxF F F=  represents the wave-induced mixing. The vertical distribution of the 

wave-induced forcing terms brF  and mxF  can be estimated by empirical formulas 

proposed by Uchiyama et al. (2010). 

Therefore, with a correction for the effect of Coriolis forcing on Stokes drift, the wave 

radiation stress can be expressed by: 

 
( )2 2

,1 ,11311 121
,

CS br mxS
u w F FSS S uv uw

fv
x y z x y z

 −    
+ + = + + − − − 

         
 (3.27) 

 
( )2 2

,2 ,22321 221
,

CS br mxS
v w F FSS S vu vw

fu
x y z x y z

 −    
+ + = + + + − − 

         
 (3.28) 
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 31 32 331
,

S S S wu wv

x y z x y

     
+ + = + 

      
 (3.29) 

where, 2 sinf =   as Coriolis frequency, and   the latitude at the given position. 

3.3 VORTEX FORCE REPRESENTATION 

Another way to express the effect of waves on currents is using vortex-force 

representation. This method was proposed by McWilliams et al. (2004). In their work, 

the surface waves are assumed slow varying, weakly nonlinear, and irrotational up to 

second-order of the wave amplitude. Further, the mean currents are assumed to vary 

slowly and are small in comparison with the near-bed orbital velocity, i.e., orbu u . 

In vortex force representation, the wave-induced forcing is given by: 

 1 ,S SJ v u u
VF v f w

x x y z

     
= − + − +  
     

 (3.30) 

 2 ,S SJ v u v
VF u f w

y x y z

     
= + + − +  
     

 (3.31) 

 
3 ,S Su v

VF u v
z z

  
= − + 

  
 (3.32) 

where, iVF  is wave-induced forcing in terms of vortex force representation, and J  is 

wave-induced kinematic pressure defined by: 

 
2

.
2sinh 2

gka
J

kh
=  (3.33) 

3.4 RELATIONSHIP BETWEEN WAVE RADIATION STRESS AND VORTEX 

FORCE REPRESENTATIONS 

In this section, the effects of turbulence and non-wave dissipative forcing X are neglected. 

Multiplying equation (2.17) with /j ix   and averaging over wave period to obtain the 

following equation for the evolution of Lagrangian disturbance velocity 
lu : 

 ( )
1

2( ) 0.

l l

lj j j jL l

j j

i i i j i j

p
D u

x x x x x x

       
+  + + =               

u  (3.34) 

The pseudo-momentum 0

ip  defined by (Andrews and McIntyre, 1978): 
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0 .

j l

i j

i

u
x


= −


p  (3.35) 

Using the relation (2.8) and definition (3.35), the first term on the left-hand side of 

equation (3.34) can be expressed as: 

 

( )
( )

0 01
.

2

j j j jL l L l l L L l

j j j j

i i i i

l lL L
j jjl L l Lk k

j j j i k

i k i i i

D u D u u D D u
x x x x

u uu u
u D u D

x x x x x

       
= − =              

       −  − = − + + 
         

p p

 (3.36) 

The second term on the left-hand side of equation (3.34) is approximated by: 

 ( ) ( )2( ) 2( ) 2( ) .
lj j S

j j i

i ix x

 
    − 

 
u u u  (3.37) 

From equation (2.18) the third term on the left-hand side of equation (3.34) can be 

neglected, i.e.: 

 ( )3 0.

l

lj j

j

i j i

g
x x x

  
=  =     

 (3.38) 

The relationship between Lagrangian disturbance and Quasi-Eulerian disturbance is 

given by relationship (2.27). Then, the fourth term on the left-hand side of equation (3.34) 

can be expressed as: 
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2

l
S

j

j j k

i j i i j i k j

p p p p
O

x x x x x x x


     
= − −   +          

 (3.39) 

where, 
Sp  is Stokes correction of mean pressure. 

Then, equation (3.34) becomes: 

 

( )
0 0

2 3

1 1
2( )

2

1 1
.

2

l l L S
j jL Sk

i k i

i i i

j j k

i j i k j

u u u p
D

x x x

p p

x x x x

  
− − − −  +

   

 
=  +  
     

p p u

 (3.40) 

From equation (2.54) we have: 
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( )
( )
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3
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+ ( ).

2

i j L S S S i
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j i k i

j j k

j i i j k

u u uw w
D u u

x x x x

p p
O

x x x x x


   
− = +  + −

   

   
+    + 
       

u

 (3.41) 

If the effect of turbulence is neglected then the Quasi-Eulerian disturbance   is replaced 

by wave quantity  . From equations (3.40) and (3.41) we obtain: 
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( )

( ) ( )

2
2

0 0 3
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2

( ).

S
i j jl l S i

j j j

j i i i j

L

jL S S

i i j j
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u u u uw p
u u w u

x x x x x

u
D u u O

x


     
− = − − − −            


− − − − +


p p

 (3.42) 

Equation (3.42) expresses the general relationship between wave radiation stress and the 

vortex-force representations. In this, the first term on the right-hand side represents the 

changes in the wave-related Bernouilli head, and the second term on the right-hand side 

of equation (3.42) expresses the vortex force of the mean current. The remaining terms 

on the right-hand side are a function of the mismatch between the pseudo momentum and 

the Stokes drift. According to Andrews and McIntyre (1978), the Stokes drift is defined 

by: 

 ( )
2

31
.

2

S i i
i j j k

j j k

u u
u O

x x x


 
=  +   +
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 (3.43) 

From definitions (3.35) and (3.43) we obtain: 
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1
( ).

2

jS i i
i i j

i j

u u u
u O

x x z


   
−   − −  +     

p  (3.44) 

The first term on the right-hand side of equation (3.44) expresses the effect of rotation of 

the wave, and the second term relates to the shear effect of the mean current. The 

calculation of the first term on the right-hand side of equation (3.44) requires a rotational 

wave theory. However, the use of rotational wave theory is still a challenge for coastal 

and ocean applications. In the next sections, the right-hand side of equation (3.42) will be 

expressed explicitly under specific conditions of the waves combined with the mean 

currents. 

3.4.1 Conservative waves 

In this part, the following conditions are applied: 

i) The waves are conservative and irrotational up to the second-order of wave amplitude. 
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ii) The mean currents are slow variation and small in comparison with near-bed orbital 

velocity, i.e. orbu u . 

The above conditions were also used by McWilliams et al. (2004) to obtain the vortex 

force representation. With conditions (i) and (ii), the formula (3.44) becomes: 

 0 3( ).S

i iu O − =p  (3.45) 

Thus, the pseudo-momentum 0

ip  can be approximated by the Stokes drift S

iu . Therefore, 

the last two terms on the right-hand side of equation (3.42) can be neglected giving: 
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( )
2

2 31
( ).

2

S
i j jl l S i

j j j

j i i i j

u u u uw p
u u w u O

x x x x x


     
− = − − − − +            

 (3.46) 

The term / 2l l

j ju u  is the Bernoulli head defined in the GLM framework. From the 

relationship (2.27) we obtain: 

 ( ) ( )
1 1

,
2 2

l l

j j j ju u u u K= +  (3.47) 

where, the term K is a correction to the Bernoulli head defined by: 

 

2
2

.
2

j jk
j k

k k

u u
K u

x x

  
=  +  

  
 (3.48) 

Using linear wave theory we obtain: 

 ( )
2

21
.

2 2sinh 2

S

j j

p gka
u u w

kh
− − =


 (3.49) 

Combining (3.47) and (3.49) gives: 

 ( )
( )21

,
2

S
l l

j j

i i

J Kp
u u w

x x

 + 
− − = 

   
 (3.50) 

where, the term J  is defined by (3.33). 

In the ocean and coastal environment, it is usually that / /w x u z    . Therefore, the 

term /S

iu w x   can be neglected in the vortex force representation. From equation (3.50) 

and including the Coriolis effect in the radiation stress forcing equation (3.46) can be 

expressed explicitly as: 

 
( ) 31311 121

( ),S S
J KSS S v u u

v f w O
x y z x x y z


  +       

+ + = − + − + +    
           

 (3.51) 
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( ),S S
J KSS S v u v

u f w O
x y z y x y z


  +       

+ + = + + − + +    
           

 (3.52) 
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( ).S SS S S K u v
u v O

x y z z z z


       
+ + = − + +   

        
 (3.53) 

Equations (3.51)-(3.53) show the relationship between radiation stress and vortex force 

representations in conservative waves. The right-hand side of these equations is vortex 

force representation obtained by McWilliams et al. (2004) with a correction of the 

Bernoulli head K. Therefore, in conditions of weakly nonlinear waves and weak ambient 

current, the radiation stress and vortex force representations are equivalent. 

3.4.2 Non-conservative waves 

In this section, the relationship between radiation stress and vortex force representations 

will be studied in the following conditions:  

i) The evolution of the waves is dominated by dissipative processes, such as breaking 

waves, rollers, white-capping, and bottom friction. 

ii) The mean currents are slowly varying and small in comparison with near-bed orbital 

velocity, i.e. orbu u . 

In the presence of non-conservative processes, the last two terms on the right-hand side 

of equation (3.42) express the evolution of the rotation of the waves. In the presence of 

wave dissipation, we do not have any relationship between S

iu  and 0

ip . If the current is 

small in comparison with the wave velocity then its effect on the wave-induced forcing 

can be neglected. The evolution of the rotation of the waves is approximated by 

dissipative wave forcing, i.e.: 

 ( ) ( ) , ,0 0 .

L

j br i mx iL S S

i i j j

i

u F F
D u u

x


− + − = +

  
p p  (3.54) 

From equations (3.50) and (3.54) equation (3.42) is now expressed as: 
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( ).S SS S S K u v
u v O

x y z z z z

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+ + = − + +   

        
 (3.57) 

Equations (3.55)-(3.57) expresses the relationship between radiation stress and vortex 

force representations in the condition of non-conservative waves propagating on a weak 

current. It shows that the wave radiation stress gradient is the total of vortex-force and 

nonconservative wave forcing. 

3.5 CONCLUSIONS 

In this Chapter, a three-dimensional wave radiation stress formalism was introduced. In 

this formalism, the effects of non-conservative waves and ambient current on three-

dimensional wave radiation stress are taken into account. An empirical coefficient WRC  

was proposed to account for the effect of strong ambient current on the vertical 

distribution of wave radiation stress components.  

Besides, the relationship between 3D wave radiation stress and vortex force 

representations was proven mathematically. It showed that: 

i) In conservative waves and weak ambient current, the wave radiation stress and vortex 

force representations are equivalent. 

ii) In non-conservative waves and weak ambient current, the wave radiation stress 

representation is equivalent to the total of vortex force and wave-induced dissipative 

forcing terms.
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4.1 QUASI-EULERIAN MEAN EQUATIONS OF MOTION 

4.1.1 Momentum equation of motion 

In this Chapter, equations of mean motion are obtained in the hydrostatic assumption for 

the mean flow. This means that acceleration of mean velocity and dissipative forcing are 

neglected in the vertical momentum equation. This assumption is suitable for most 

hydrodynamic problems in the deep ocean and coastal zones. 

From equation (2.57) the Quasi-Eulerian mean vertical momentum equation is expressed 

explicitly as: 

 
2

331 32 33
3

1 1 1 1
( ).

Dw p uw vw w
g X O

Dt z x y z x y z

  


     
+ + = − − − − + + + +

          
(4.1) 

With the use of hydrostatic assumption for the mean flow equation (4.1) becomes: 
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( ).

p uw vw w
g O

z x y z


   
+ + + + =

    
 (4.2) 

According to Longuet-Higgins and Stewart (1964), hydrostatic pressure 
Hp  is defined 

by: 

 2.Hp p w= +  (4.3) 

The vertical momentum equation (4.2) becomes: 
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( ).
Hp uw vw

g O
z x y


  

+ + + =
   

 (4.4) 

Substituting equation (4.3) into the momentum equation (2.57) and using the 

formulations (3.27) and (3.28) to obtain the following Quasi-Eulerian mean horizontal 

momentum equations: 
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Equations (4.5) and (4.6) are Quasi-Eulerian mean horizontal momentum equations in 

hydrostatic assumption. The mean velocity will be solved when coupling these equations 

with the mass conservation equation presented below. 

4.1.2 Depth-integrated continuity equation 

The mass conservation equation is given by (2.62). At the second-order of the wave 

amplitude, the Stokes correction of the mean position of a fluid particle SZ  can be 

estimated by: 

 
2 2 3

2

cosh 2 ( )
( ).

sinh

S k z h
Z k a O

kh


+
= +  (4.7) 

The Quasi-Eulerian mean water level is calculated by solving the depth-integrated mass 

conservation equation. Vertical integration of the continuity equation (2.62) to obtain: 

 ( ) ( ) ,
L L LL L S

L L L

h h h

u v Z
dz dz w w h dz

x y t

  

− − −

  
+ +  − − =

      (4.8) 

where, 
L S =  +   is the GLM water surface, and 

S  is Stokes correction of mean water 

level and approximated by: 

 
2

3( ).
2 tanh

S ka
O

kh
 = +  (4.9) 

From equations (4.7) and (4.9) we have: 

 3( ).
L

S S

h
Z dz O 



−
 = +  (4.10) 

Equation (4.10) suggests that the Stokes correction of the mean water level is the 

cumulative effect of the Stokes correction of the mean position of the fluid particles. 

Applying Leibniz integral rule for the first and the second terms on the left-hand side of 

equation (4.8) we obtain: 

 ( ) ( ) ,
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h h

u h
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x x x x
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The boundary conditions at the water surface and water bottom are given by: 

 ( ) ( ) ( ) ,
L L L

L L L L L Lw u v
t x y

  
 = +  + 
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 (4.13) 



4.2. Generalized Lagrangian Mean equations of motion 

 

36 

 

 ( ) ( ) ( ) .L L Lh h h
w h u h v h

t x y

   
− = − + − + − 

   
 (4.14) 

Replacing of (4.11)-(4.14) into equation (4.8) we obtain: 
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(4.15) 

Equation (4.15) is the depth-integrated continuity equation. The solution of this equation 

gives the evolution of the mean water level. 

When local linear wave theory is employed the Stokes drift is expressed explicitly by: 
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4.2 GENERALIZED LAGRANGIAN MEAN EQUATIONS OF MOTION 

4.2.1 Momentum equation of motion 

In this section, the Quasi-Eulerian mean equations of motion are expressed in terms of 

GLM quantities assuming hydrostatic conditions. 

According to Ardhuin et al. (2008), hydrostatic pressure 
Hp  is calculated by: 

 ( ) ,H

ap p g z= +  −  (4.18) 

Besides, using local linear wave theory to calculate Stokes correction of mean pressure 

we obtain: 

 ( )2 .S Sp g w=  +   (4.19) 

Then, hydrostatic pressure 
Hp  can be calculated by: 

 ( ) ( )2 .H L S

ap p g z p gw= +  − − −  (4.20) 

From relationship (2.11) and equation (4.20) equations (4.5) and  (4.6) can be expressed 

in terms of GLM quantities as: 
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 (4.22) 

where, the terms 1T  and 2T  are defined by: 

 1 ,
L L L

L S S S S Su u u
T D u u v w u

x y z


  
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 2 .
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T D v u v w v
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
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  
 (4.24) 

The term T  is of second-order of the wave amplitude and should not be neglected, 

especially in dissipative waves. 

4.2.2 Mass conservation equation of motion 

The mass conservation equation in the GLM framework is given by: 

 .
L L L Su v w Z

x y z t

   
+ + =

   
 (4.25) 

The depth-integrated mass conservation equation written is: 
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h h

h
u dz v dz

t x y t

 

− −

  +   
+ + =

      (4.26) 

The right-hand side of equation (4.26) is a term of second-order of wave amplitude. It can 

be neglected in case of stationary waves. 
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4.3 EQUATIONS OF MEAN MOTION IN VORTEX FORCE REPRESENTATION 

In this section, the new Quasi-Eulerian mean equations are expressed in terms of vortex 

force representation. It is noticed that the vortex force representation is only valid in the 

condition of weak ambient current, i.e. orbu u . 

From the relationship between radiation stress and vortex force representation (3.55)-

(3.56), the Quasi-Eulerian mean horizontal momentum equations (4.5) and (4.6)  are 

rewritten as:  

 

( )

,1 ,1 31311 12

1

1
( ),

H
S

br mxS

mol

J Ku u u u p v u
u v w fv v f

t x y z x x x y

F Fu
w u O

z x y z

 
 



  +        
+ + + − = − − + + −  

          

  
− + + + + + +  + 

      

(4.27) 

 

( )

,2 ,2 32321 22

1

1
( ).

H
S

br mxS

mol

J Kv v v v p v u
u v w fu u f

t x y z y y x y

F Fv
w v O

z x y z

 
 



  +        
+ + + + = − − − + −  

          

  
− + + + + + +  + 

      

 (4.28) 

The vertical momentum equation is given by (4.4), the mass conservation equation is 

given by equation (2.62), and the depth-integrated mass conservation equation is given 

by equation (4.15). 



 

 

5 
5 APPLICATIONS3 

 

 

 

 

 

 

 

  

 

3 This Chapter is based on the publication: Nguyen, D.T., Jacobsen, N.G., Roelvink, D., 2021a. Development and 

Validation of Quasi-Eulerian Mean Three-Dimensional Equations of Motion Using the Generalized Lagrangian Mean 

Method. Ibid., 76. 
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5.1 MODEL IMPLEMENTATION 

 

Figure 5.1 A flowchart of the validation scheme 

A 2DV numerical model was developed based on Quasi-Eulerian mean equations of 

motion. Various tests of wave combined with current were employed to validate the new 

equations of motion. In these tests, the wave period, wave frequency, and wave number 

are assumed slowly variations in time and space. Therefore, the wave energy balance 
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Wave energy balance equation 

Empirical closure for strong wave-current interaction 
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Non-breaking waves propagate on a 

slope without dissipation 
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cross-shore currents and setup 

Hamilton and Ebersole (2001) 

3D wave basin test 

Oblique breaking waves, cross-shore 
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equation is applied instead of the wave action balance equation. A flowchart of the 

validation scheme is described in Figure 5.1. 

5.1.1 Wave energy balance equation 

In this Chapter, we assume that the relative wave frequency, wave period, and 

wavenumber are slowly variations in the experimental flumes. Then, the wave energy 

balance equation can be applied instead of the wave action balance equation. 

If the wave field is assumed uniform in the y-direction then the wave balance equation is 

given by (Roelvink and Reniers, 2011): 

 ( )cos 0.g w f

E
Ec D D

t x


 
+ + + =

 
 (5.1) 

where, 2 / 8rmsE gH=   is the wave energy density with rmsH  is the root mean square wave 

height, 
gc  is the wave group velocity,   is the incident angle of the wave, wD  is the wave 

energy dissipation rate due to breaking wave, 
fD  is the wave energy dissipation rate due 

to bottom friction. 

The wave energy dissipation rate due to breaking wave is calculated by (Battjes and 

Janssen, 1978): 
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1
,

4

br
w b p b

H
D g f Q

h
=    (5.2) 

where, 2 /p pf T= is the peak frequency and 
pT  is the peak period of the wave, b  is a 

constant of order one, brH  is the breaking wave height, and bQ  is the fraction of breaking 

wave given by the following relationship: 
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b b
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H
Q Q

H

  
= − −   

  

 (5.3) 

The breaking wave height is calculated by Miche criterion, i.e.:  

 
0.88

tanh ,
0.88

br

kh
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k

 
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 
 (5.4) 

where,   is the breaking index ( 0.6 0.8 − ). This index can be calculated by the 

following equation (Battjes and Stive, 1985): 

 0.5 0.4 tanh 33 ,rms

rms

H

L


 
= +  

 
 (5.5) 

with rmsL  is the root mean square wavelength at deep water. 
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To calculate the mean current in the surfzone, an additional component called roller is 

included (Svendsen, 1984). The idea is that some fractions of breaking waves r  (from 

0 to 1) are transferred to the roller before dissipating. The evolution equation for the roller 

energy density is given by (Roelvink and Reniers, 2011): 

 
( )cos

,
rr

r w r

E cE
D D

t x


+ =  −

 
 (5.6) 

where, rE  is the roller energy density, c is the wave celerity, and rD  is the roller wave 

dissipation rate calculated by (Nairn et al., 1991): 

 2 ,r
r

gE
D

c
=  (5.7) 

where,   is the mean slope under the roller. 

The bottom friction dissipation rate is calculated by (Putnam and Johson, 1949): 

 ,f b bD = u  (5.8) 

where, bu  is the horizontal wave velocity vector above the bottom boundary layer, and 

b  is the instantaneous total bed shear stress. Simply, the instantaneous total bed shear 

stress can be decomposed as: 

 ,b w cw  = +  (5.9) 

where, w  is the wave-induced bed shear stress, and cw  is the bed-shear stress due to the 

mean current. Then, equation (5.8) can be rewritten as: 

 
, , ,f f w f cwD D D= +  (5.10) 

where, 
,f wD  is the wave energy dissipation caused by wave-induced bed shear stress, and 

,f cwD  is the wave energy dissipation caused by mean current-induced bed shear stress 

defined by: 

 , ,f w w bD = u  (5.11) 

 , .f cw cw bD = u  (5.12) 

The wave-induced bed shear stress w  is calculated by (Soulsby, 1997): 

 
1

,
2

w w b bf =  u u  (5.13) 

where, wf  is the friction factor for wave motion calculated by: 
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A
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−

 
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 
 (5.14) 

with / 2orb orb pA T = u  is the semi-orbital excursion, and 0z  is the bottom roughness 

height. The near-bed orbital velocity amplitude is calculated by: 

 .
2sinh

rms
orb

H

kh


=u  (5.15) 

For random waves, we use the assumption of the Gaussian distribution of the wave 

velocity. According to Guza and Thornton (1985), we have: 

 
2 2 ,b s=u  (5.16) 

 ( )
3/2

3 2
1.60 ,b b=u u  (5.17) 

where, s is the near-bed standard deviation of the velocity. The Gaussian moments can 

express by ‘equivalent monochromatic wave’ moments by the following relationship: 

 
2 2

0.5 .b orb=u u  (5.18) 

Therefore, the relationship (5.17) can be expressed as: 

 
3 3

0.57 .b orb=u u  (5.19) 

It furthermore follows that the mean of the absolute velocity reads: 

 
2

.
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b

s

 
= =

u
u  (5.20) 

Therefore, the wave energy dissipations caused by wave-induced friction and current-

induced friction are calculated, respectively, by: 

 
3

, 0.28 ,f w w orbD f= u  (5.21) 

 ,

1
.f cw cw orbD 


= u  (5.22) 

According to Van Rijn (2011), the magnitude of the near-bed current can be calculated 

by: 

 
22 1
,

2
b b orb= +u u u  (5.23) 
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where, ( ),b b bu v=u  is horizontal mean velocity near the bed. Then, the mean bed shear 

stress for combined waves and currents cw  is calculated by: 

 
221 1
,

2 2
cw cw bb b orbf = −  +u u u  (5.24) 

where, cwf  is the friction factor of the mean current. The formula (5.24) was derived for 

monochromatic waves. For random waves, we modify the formula (5.24) based on the 

approximate practical formula of  Feddersen et al. (2000) to obtain: 

 
2 21

(1.16 ) .
2

cw cw bb bf s = −  +u u  (5.25) 

The friction factor of the mean current is given by: 

 ( )
2

0.242 log 12 / ,cw af h k
−

=     (5.26) 

where, ak  is the apparent roughness calculated from the near-bed layer thickness 

calculated by: 

 30 / ,ak e=   (5.27) 

with e  is the base of the natural logarithm, and   is the bottom boundary layer thickness. 

In current-only condition, the boundary layer thickness is given by (Van Rijn, 2011): 

 0.ez =  (5.28) 

In wave-only condition, the bottom boundary layer thickness is calculated by (Jonsson 

and Carlsen, 1976), i.e.: 

 ( )
0.25

0.072 / .orb orb nA A k
−

 =  (5.29) 

In the condition of waves combined with current, Van Rijn (2011) proposed the following 

formula: 

 ( )
0.25

0.2 / ,orb orb nA A k
−

 =  (5.30) 

where, 030nk z=  is the Nikuradse roughness. However, equation (5.30) does not account 

for the effect of near-bed mean current on the bottom boundary layer thickness. Therefore, 

it is only suitable if the near-bed mean current is small in comparison with the near-bed 

orbital velocity. When the near-bed current is significant and is comparable to the orbital 

velocity the following formula is proposed: 

 ( ) ( )
0.25

0.2 / 1 / .orb orb n b orbA A k
−

 = + u u  (5.31) 
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It is clear that when b orbu u  the formula (5.31) reduces to formula (5.30). 

5.1.2 The 2DV governing equations 

In this part, a two-dimensional numerical model is developed based on the Quasi-Eulerian 

mean equations of motion, which were developed in the previous part. The model is 

written for the variation of hydrodynamic properties in the x- and z-directions (2DV 

model). All hydrodynamic properties are assumed to be uniform in the y-direction. The 

accelerations of mean vertical velocity and dissipative forcing are neglected in the vertical 

momentum equation of mean motion. Besides, the horizontal variation of the mean 

atmospheric pressure at the water surface and Coriolis’ effect are assumed small and 

neglected. 

Using equation (4.18) momentum equations in the 2DV model are given by: 
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 (5.33) 

where, only molecular viscosity is considered as non-wave dissipative forcing and   is 

molecular viscosity. 

The components of turbulence stress tensor are parameterized by: 

 11 13, ,T T

h v

u u

x z
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  (5.34) 
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 
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  (5.35) 

where, T

h  and T

v  are horizontal and vertical turbulent viscosities, respectively. In this 

study, horizontal turbulent viscosity is assumed a constant 31.0 10T

h
−=  m2/s, and 

vertical turbulent viscosity is assumed a constant-parabolic distribution, i.e.: 
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 (5.36) 

where, 0.41 =  is the Von Karman constant, *, /c c= u  is friction velocity caused 

by mean current, and c  is the bed shear stress caused by mean current calculated by: 
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c cw b bf = −  u u   (5.37) 

In the condition of stationary waves, Quasi-Eulerian mean continuity equation in the 2DV 

model is: 

 .
S Su w u w

x z x z
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 (5.38) 

If the bed level is fixed then depth-integrated continuity equation is simplified as: 
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5.1.3 Vertical distribution of wave-induced forcing 

In the 2DV model, the vertical distribution of the wave-induced forcing brF  and mxF  is 

estimated using the empirical formula proposed by Uchiyama et al. (2010). The breaking 

and roller forcing is calculated by: 
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where, ( )bf z  represents the penetration of momentum associated with breaking waves 

and rollers. Here, the Type I and Type III of function ( )bf z  proposed by Uchiyama et al. 

(2010) is employed, i.e.: 
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where, ( )
1

b b rmsk a H
−

=  is the vertical length scale controlling the penetration depth of the 

breaking wave, and ba  is a (1)O  constant. Type I is applied for the deep water and type 

III for the shallow water (characterized by the ratio /h L ). 

The wave-induced momentum mixing is parameterized similar to turbulent stress 

(Uchiyama et al., 2010), i.e.: 

 ( ) ,mx b frF K K
z z

  
= −  +   

u
  (5.43) 
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where, 
frK  is the wave-induced mixing coefficient due to the wave decay at the bottom, 

and bK  is the wave-induced mixing coefficient due to breaking waves. 

The vertical distribution of the wave-induced mixing coefficients 
frK  and bK  are 

necessary to calculate the wave-induced forcing mxF . In this study, the wave-induced 

mixing coefficient 
frK  is parameterized similar to the turbulent viscosity, i.e.: 
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  (5.44) 

where, 
*, * *,cw c= −u u u  is a component of friction velocity which arises in the presence of 

the waves. 

The wave-induced mixing coefficient bK  is calculated following the empirical formula 

given by Uchiyama et al. (2010), i.e.: 
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where, bc  is a (0.1)O  parameter, and ( )Kvf z  is a decay function. Here, we use two types 

of decay function ( )Kvf z , i.e. Type I and Type III, proposed by Uchiyama et al. (2010). 

Type I for the deep water application, and Type III for the shallow water application. 
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with ( )
1

Kv Kv rmsk a H
−

=  is the decay length controlling the penetration depth of the wave-

induced mixing, and Kva  is (1)O  constant. 

In the following, we define totF  as the total of wave-induced mixing and current-induced 

turbulent forcing, i.e.: 
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Defining wF  as the total of wave-induced forcing caused by the conservative part of the 

wave radiation stress and breaking wave and roller-induced forcing, i.e.: 
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The total forcing ( )w totF F+  then represents the total effects of waves and turbulence on 

the mean current. 

5.2 NUMERICAL APPROXIMATION  

The 2DV equations of mean motion are discretized based on the finite difference method 

on a fully staggered grid (C-grid). An implicit numerical scheme has been used to 

discretize these equations. Finally, the tri-diagonal matrix algorithm (Thomas algorithm) 

has been used to solve these equations. In the model, the water level is approximated at 

the grid point ( ),i k , the horizontal component of velocity at ( )1/ 2,i k+ , and the vertical 

component of velocity at ( ), 1/ 2i k + . The advection terms are approximated following 

the principles described in Stelling and Busnelli (2001). This method ensures the 

conservation of properties near large local gradient areas. The 2DV model developed in 

this study is a time-domain model starting from rest and simulating to equilibrium in all 

cases. 

5.3 ADIABATIC TEST 

The adiabatic test, described in Bennis et al. (2011), is a seemingly simple but challenging 

test of the derived equations since any imbalance leads to strong spurious circulations. 

This test was applied first by Ardhuin et al. (2008). In this, a steady monochromatic small-

amplitude wave propagates over a slope without dissipation. This test has an exact 

solution by solving Laplace’s equation for the instantaneous velocity potential with given 

bottom, surface, and lateral boundary conditions (Ardhuin et al., 2008). In the work of 

Ardhuin et al. (2008), the adiabatic test was solved by using the NTUA-nl2 model 

(National Technical University of Athens numerical model) developed by Belibassakis 

and Athanassoulis (2002). The Quasi-Eulerian mean current is depth uniform. 
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5.3.1 Bathymetry 

The bathymetry is symmetrical and varies slowly from 4 m to 6 m in the x-direction and 

is uniform in the y-direction (Figure 5.2). The maximum bottom slope is 2.6x10-2, and 

the reflection coefficient is 
91.4 10R −=  , so we can neglect the reflected wave in the 

momentum balance (Ardhuin et al., 2008). 

 

Figure 5.2 Bathymetry of the computational area 

5.3.2 Boundary conditions 

At the boundary, a regular wave with 1.02 m height and a period of 5.26 s is imposed. 

This is also the wave that was used by Ardhuin et al. (2008), and Bennis et al. (2011) to 

test their model in adiabatic condition. The mean water level at the boundary is given by: 

 
2

.
sinh 2

ka

kh
 = −


 (5.52) 

At the inflow boundary, the Quasi-Eulerian mean velocity is vertical uniform and given 

by: 
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At the outflow boundary, the Neumann boundary condition is applied, i.e.: 

 .
Su u

x x

 
= −

 
  (5.54) 

5.3.3 Numerical results 

Figure 5.3 shows the spatial distribution of Stokes drift in the x-direction. It shows that 

the Stokes drift is constant over the horizontal bed and the magnitude of the Stokes drift 

increases with a decrease in water depth and vice versa. 
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Figure 5.3 Spatial distribution of Stokes drift 

The comparison of mean water level calculated by the numerical model and mean water 

level calculated by the formula of Longuet-Higgins and Stewart (1964) is given in Figure 

5.4. It shows a perfect agreement between the two calculation methods. 

 

Figure 5.4 Distribution of mean water level 

In the adiabatic condition, the total forcing 
,1totF  was zero. The vertical distribution of the 

wave forcing term 
,1 /wF   is presented in Figure 5.5. It shows that wave-induced forcing 

,1 /wF   was zero when the waves propagated over a flat bed. On a sloping bed, this 

forcing was not nil and was distributed uniformly over depth. Then, the total forcing 

( ),1 ,1w totF F+  was depth-uniform in the adiabatic condition. 

 

Figure 5.5 Distribution of 
,1 /wF   (

2/m s ) 

When the wave propagates over a slope, the change of the wave height leads to the change 

of Stokes drift. Due to the conservation of mass and momentum the Quasi-Eulerian mean 
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velocity also changes. However, the vertical integration of total flow is still unchanged, 

and in this case, it equals zero, i.e.: 

 0.
L

L

h
u dz



−
=   (5.55) 

Since all dissipative forcing was absent, the Quasi-Eulerian mean horizontal velocity was 

uniformly distributed over the vertical. However, the GLM velocity inherited the non-

uniformity from the Stokes drift (Figure 5.6a). Figure 5.6b presents the Quasi-Eulerian 

mean velocity calculated with the 2DV model. It proves that Quasi-Eulerian mean 

equations of motion passed the adiabatic test. 

 
(a) GLM velocity 

 
(b) Quasi-Eulerian mean velocity 

Figure 5.6 Vertical distribution of horizontal mean velocity 

5.4 MEAN CURRENTS IN THE PRESENCE OF NON-BREAKING WAVES 

In the experiment of Klopman (1994), the vertical distribution of the mean current was 

measured in three different types of waves: monochromatic waves, bi-chromatic waves, 

and random waves. The experiments were performed for four conditions of ambient 

currents: currents only (CO), waves only (WO), waves following currents (WFC), and 

waves opposing currents (WOC). The wave height was chosen so that no wave breaking 

took place. Therefore, the bottom friction plays an important role in the vertical 

distribution of the mean current. In the following, the experimental data for random waves 

were employed to validate the 2DV numerical model. 

5.4.1 Input parameters 

The experiment was performed in a wave flume that has a horizontal flat bottom. The 

flume has a size of 45 m long, 1 m wide, and 0.5 m deep. The total discharge was kept 

constant: 0.Q =  m3/s for the case wave-only, and 0.08Q = m3/s for the remaining cases. 

The properties of the random waves at the wave paddle are given in Table 5-1. 
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Table 5-1 Wave properties at the paddle 

Wave type Tp (s) Hrms (m) h (m) 

Random 1.7 0.1 0.5 

The flow velocities were measured at the center of the channel, i.e., 22.5 m from the wave 

paddle. Two Laser-Doppler Velocimetry flow meters (LDV’s) were used to measure flow 

velocity components. The vertical distributions of Eulerian-mean velocities measured at 

the center of the flume are present in Figure 5.7. 

 
(a) Wave only 

 
(b) Wave combined with current 

Figure 5.7 Vertical distribution of the Eulerian-mean velocity 

On the left-hand side of Figure 5.7 (WO condition), the wave propagates from the right-

hand side to the left-hand side. The wave-induced streaming near the bed is in the same 

direction as the propagation of the surface waves. The horizontal mean velocity changes 

sign at the height 0.13z   m (Klopman, 1994). Outside the bottom streaming layer, the 

mean velocity varies almost linearly. On the right-hand side of Figure 5.7, we present the 

vertical distribution of horizontal mean velocity in three conditions: CO, WFC, and WOC. 

It shows that vertical profiles of mean current change significantly in the presence of 

surface waves. In the WFC condition, the velocity shear /u z   is negative in the upper 

part of the water column (z/h > 0.4). In the WOC condition, the mean velocity decreases 

near the bed (z/h < 0.4) and increases near the surface (z/h > 0.4) in comparison with the 

current-only condition. 

By linear extrapolation of the velocities in a semi-logarithmic scale, Klopman (1994) 

obtained the friction velocity * 7.3u  mm/s. The vertical distribution of the Reynolds 

shear stress 
t tu w−  is present in Figure 5.8. The bottom shear stress was estimated by 

Klopman (1994) at about 5/b
− =  m2/s2, corresponding to the friction velocity of 



5.4. Mean currents in the presence of non-breaking waves 

 

53 

 

* / 6.7bu =    mm/s. Then, the friction velocity calculated from the bed shear stress 

is slightly smaller than obtained from the velocity profile. 

 

Figure 5.8 Vertical distribution of observed Reynolds shear stress 
t tu w−  in the CO 

condition 

5.4.2 Boundary conditions 

a) Surface and bottom boundary conditions 

In the model, the total shear stress is assumed to vanish at the mean water surface, since 

non-breaking waves are considered, i.e.: 
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where, T

v v mol  = + .  

At the bottom, the bottom boundary condition is given by: 
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b) Lateral boundary conditions 

At the outflow boundary, the boundary condition for the mean water level and the mean 

current is given by: 
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At the inflow boundary, the Quasi-Eulerian mean velocity is given by: 

 
1

( ) ( ),L S

L
u z Q u z

h
= −

+ 
  (5.60) 

where, 
LQ  is the mean of total discharge through the pipe. 

5.4.3 The numerical results 

The experiment of Klopman (1994) is simulated by the 2DV model with spatial steps of 

0.15x = m, 0.0025z = m, and a time step of 0.5t = s. In the experiment, due to small 

technical issues, there was uncertainty in the measured discharge (see Klopman (1994) 

for more detail). However, these errors were not corrected in his document. Generally, 

the measured discharge is expressed as a total of the real discharge and error discharge, 

i.e.: 

 ,measured real errQ Q Q= +  (5.61) 

where, realQ  is the real discharge through the wave flume, measuredQ  is the measured 

discharge, and errQ  is the error of flow discharge. In the CO condition, it was found that 

when errQ approximates to 0.003 m3s−1 (3.75% of the real discharge) a good agreement 

between numerical results and experimental data was obtained. In waves combined with 

current conditions, the error of flow discharge is assumed similar to the current only 

condition. In the WO condition, flow discharge errQ is zero by definition. In all tests, the 

bed roughness is kept constant 5

0 4.0 10z −=  m, corresponding to a Nikuradse roughness 

of 31.2 10nk −=  m. In Table 2, the bottom boundary thickness is presented. In the 

condition of waves combined with current, bottom boundary thickness   was calculated 

by two methods: the formula of Van Rijn (2011) and its modified formula 62. The results 

are presented in Table 5-2. 

Table 5-2 Bottom boundary thickness   in different waves and current condition 

Conditions 
Formula (5.31) 

(
310−  m) 

Van Rijn (2011) 

(
310−  m) 

CO 0.1 0.1 

WO 1.3 1.3 

WFC 5.3 3.6 

WOC 4.9 3.6 
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The wave energy dissipation in different conditions of waves combined with the current 

is present in Table 5-3. It shows that with the same wave height and ambient current 

velocity, the wave energy dissipation due to the following current is bigger than due to 

opposing current. The wave energy dissipation due to current-induced bottom friction 

,f cwD  approximates 42% and 31% of the total energy dissipation 
fD  due to bottom 

friction in the WFC, and WOC conditions, respectively. Moreover, the energy dissipation 

due to bottom friction in the WFC condition is bigger than that in the WOC condition. 

Table 5-3 Wave energy dissipation 

Conditions 
,f wD (

2W/m ) 
,f cwD (

2W/m ) 

WO 0.046 0 

WFC 0.044 0.032 

WOC 0.045 0.020 

Table 5-4 presents the characteristics of the mean flow near the bed calculated by the 

2DV model. It shows that bottom stress in conditions of waves combined with the current 

was much higher than that in conditions of WO and CO. This is because momentum 

mixing under wave-current interaction conditions was much higher than in conditions of 

both WO and CO (see for instance the discussion in Chapter 3 of Deigaard (1992)). 

Table 5-4 Characteristics of the near-bed mean flow 

Conditions 
bu  

(
210−  m/s) 

b  

(
210−  kgm2/s2) 

*u  

(
210−  m/s) 

CO 8.16 5.4 0.74 

WO 0.9 0.21 0.13 

WFC 8.10 37.67 1.94 

WOC 5.86 24.6 1.56 

The vertical distribution of Reynolds turbulent viscosity is present in Figure 5.9. It shows 

that the viscosity in WFC condition is bigger than in WOC condition, and viscosity in 

waves combined with current conditions is bigger than in CO condition. Moreover, the 

viscosity in the WO condition is much smaller than in other conditions. 



5.4. Mean currents in the presence of non-breaking waves 

 

56 

 

 

Figure 5.9 Reynolds turbulent viscosity ( T

v ) 

In Figure 5.10, the conservative part of uw  in different conditions of waves combined 

with the current was plotted. It clearly shows that the ambient current had a significant 

impact on the normal component of the wave radiation stress. Moreover, the conservative 

part of the normal component of wave radiation stress uw  in the condition of the 

following waves was slightly bigger than that in the condition of the opposing waves. 

 

Figure 5.10 Vertical distribution of the wave radiation stress component CSuw  

In non-breaking waves, the wave-induced forcing term 
,1 /wF   only represents the effect 

of the conservative part of the wave radiation stress. Figure 5.11 shows the vertical 

distributions of forcing term 
,1 /wF   and mixing term 

,1 /totF   at the center of the wave 

flume. In all three tests, i.e., WO, WFC, and WOC, the forcing 
,1wF  is completely 
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compensated by total mixing 
,1totF  at any water depth level. The total of these two forcing 

terms, i.e., ( ),1 ,1w totF F+ , is depth-uniform in the non-breaking wave condition. 

 

(a) WO 

 

(b) WFC 

 

(c) WOC 

Figure 5.11 Vertical distribution of wave-induced forcing terms 

Figure 5.12 shows the vertical distribution of Reynolds turbulent stress at the center of 

the wave flume. Near the bed, the turbulent stress calculated by the 2DV numerical model 

is about 6/ 54.4 10b
−   m2 /s2, and the corresponding friction velocity is 7.4 mm/s 

(Table 5-4), which is in good agreement with the friction velocity obtained from the mean 

velocity profile by Klopman (1994), i.e. 7.3 mm/s. 

 

Figure 5.12 Spatial distribution of Quasi-Eulerian mean velocity in the CO condition 

The spatial distribution of the Quasi-Eulerian mean velocity calculated with the 2DV 

model in the condition of CO is given in Figure 5.13. The (vertically uniform) inflow 

boundary was specified at position 0x =  m. 
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Figure 5.13 Spatial distribution of Quasi-Eulerian mean velocity in CO condition 

The comparison between numerical results and experimental data in the middle of the 

flume is given in Figure 5.14. The comparison is given in both the linear scale and 

semilogarithmic scale. It shows that the mean current profile calculated with the 2DV 

model closely followed the experimental data. The agreement was good not only in the 

upper part of the water column but also close to the bed. 

 

(a) Linear scale 

 

(b) Semilogarithmic scale 

Figure 5.14 Vertical distribution of Quasi-Eulerian mean velocity in CO condition 

In Figure 5.15, the spatial distributions of Stokes drift and Quasi-Eulerian mean velocity 

in the WO condition are presented. In this, surface waves are imposed at 45x =  m and 

propagated towards the left. The Stokes drift was in the direction of the waves, whereas 

the Quasi-Eulerian mean velocity was in the opposite direction. The magnitude of Stokes 

drift and Quasi-Eulerian mean velocity decreased in the wave propagation direction due 

to the effect of bottom friction. However, the momentum transport of total flow through 

any vertical section was zero. 
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(a) Stokes drift 

 

(b) Quasi-Eulerian mean velocity 

Figure 5.15 Spatial distribution of mean velocity fields in the WO condition 

The comparison between the Quasi-Eulerian mean velocity calculated with the 2DV 

model and experimental data in the WO condition is given in Figure 5.16. It shows a very 

good agreement between model results and experimental data in the whole vertical 

section even on both linear scale and semilogarithmic scale. The near-bed wave-induced 

streaming is in the wave propagation direction. The mean horizontal velocity varied near-

linearly from above the bottom streaming layer up to the mean surface level. 

 

(a) Linear scale 

 

(b) Semilogarithmic scale 

Figure 5.16 Vertical distribution of Quasi-Eulerian mean velocity in the WO condition 

The spatial distribution of Quasi-Eulerian mean velocity in conditions of WFC and WOC 

is presented in Figure 5.17. In the case of WFC, the magnitude of the mean velocity was 

not the biggest at the water surface but located inside the water column. In the case of 

WOC, the magnitude of velocity increased from the bottom to the water surface. 
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(a) WFC 

 

(b) WOC 

Figure 5.17 Spatial distribution of Quasi-Eulerian mean velocity 

Figure 5.18 shows the comparisons between experimental data and numerical model 

results under the condition of waves combined with the current on a linear scale. It shows 

that the vertical profile of the mean velocity calculated by the 2DV model fits well with 

experimental data in the whole water column. The agreement holds for both WFC and 

WOC conditions. 

 

(a) WFC 

 

(b) WOC 

Figure 5.18 Distribution of Quasi-Eulerian mean velocity in the linear scale 

In Figure 5.19, the semilogarithmic scale is employed to see the agreement between the 

2DV model results and experimental results.  
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(a) WFC 

 

(b) WOC 

Figure 5.19 Distribution of Quasi-Eulerian mean velocity in the semilogarithmic scale 

It shows that the agreement between the 2DV model results and experimental data was 

very good even in the area very close to the bed. Besides, the mean current velocity 

profiles using the boundary layer thickness formulation proposed by Van Rijn (2011) 

(Formula (5.30)) were also plotted (dashed line). The result calculated by the modified 

formulation (5.31) was better than the result calculated by the formulation of Van Rijn 

(2011), especially in the region close to the bed. It is noticed that the formula to calculate 

boundary layer thickness  , i.e., Formula (5.31), is an extension of the formula proposed 

by Van Rijn (2011) (Formula (5.30)). In Formula (5.31), the effect of near-bed current is 

accounted for when calculating  . Table 2 presents boundary layer thickness   in 

different conditions of waves combined with the current. In the wave-only condition, 

formulas (5.31) and (5.30) are identical. However, the difference between them is 

significant in cases of a strong ambient current.  

5.5 BREAKING WAVES PROPAGATING IN A WAVE FLUME 

5.5.1 Bathymetry and the wave properties at the boundary 

The experiment of Boers (2005) was carried out in a wave flume with dimensions of 40 

m long, 1.05 m high, and 0.8 m wide. The bottom of the flume is filled with sand and 

mortar on the top layer. Two breaker bars are designed at the bottom. The still water level 

is fixed at the level z = 0 m. Bottom profile of calculation area is depicted in Figure 5.20. 
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Figure 5.20 The bottom profile 

Two wave conditions with the highest and lowest wave height at the boundary in the 

experiment of Boers (2005) are employed in this work (tests 1B and 1C). The properties 

of the waves at the offshore boundary are given in Table 5-5, where sH  is the significant 

wave height of the waves. 

Table 5-5 Wave properties at the offshore boundary. 

Experiment Hs (m) Tp (s) 

Test 1B 0.206 2.03 

Test 1C 0.103 3.33 

5.5.2 Boundary conditions 

a) Surface and bottom boundary conditions 

At the GLM water surface, the total shear stress is assumed to vanish, i.e.:  

 ( ) 0,
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z
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+ + =  
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where, T

v mol v  = + . 

At the bed, the momentum dissipated by bottom friction is assumed to be transferred to 

the vertical mixing, i.e.: 
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b) Lateral boundary conditions 

At the offshore boundary, the following conditions are applied: 
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At the land boundary, the GLM velocity is zero. Then, we have: 

 ( ) ( ).Su z u z= −  (5.66) 

5.5.3 Model validation 

In the experiment, the cross-shore distribution of significant wave height was calculated 

from the zeroth-order spectral moment of surface elevation (Boers, 2005), that is: 

 
0

4 ( ) ,
Nf

sH S f df=    (5.67) 

where, ( )S f  is the spectral energy density, and Nf  is the Nyquist frequency of the 

measurements ( 10 Hz ). 

 
(a) Test 1B 

 
(b) Test 1C 

Figure 5.21 Distribution of significant wave height 

The significant wave height in the 2DV numerical model is calculated from the wave 

energy balance equation (5.1). In Figure 5.21, the spatial distributions of significant wave 

height in tests 1B and 1C are presented. In this, the dots present the experimental data, 

and the solid line presents the numerical model results. It shows that the numerical model 

results fit well with measured data. In test 1B, the experimental data was slightly lower 

than the model results in the region from x = 5 m to x = 14 m. In test 1C, the recirculation 

was rather small then a better agreement between two kinds of data was obtained. 

Figure 5.22 shows the vertical distribution of the forcing term 
,1 /wF   and total mixing 

term 
,1 /totF   at 22.9x = m. It shows that the wave-induced forcing 

,1 /wF   is completely 

balanced by total mixing 
,1 /totF  . Total forcing ( ),1 ,1w totF F+  is depth-uniform in 

breaking wave conditions. 
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(a) Test 1B 

 

(b) Test 1C 

Figure 5.22 Distribution of wave-induced forcing terms at 22.9x = m 

The comparison of the mean water level calculated by the 2DV numerical model with 

measured data is given in Figure 5.23. In both tests, the calculated mean water level fits 

well with measured data even in the breaking wave area. 

 

(a) Test 1B 

 

(b) Test 1C 

Figure 5.23 Distribution of mean water level   

The horizontal distribution of Stokes drifts and Quasi-Eulerian mean velocities calculated 

by the 2DV model is presented in Figure 5.24. 

 

(a) Test 1B 

 

(b) Test 1C 
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(c) Test 1B 

 

(d) Test 1C 

Figure 5.24 Distribution of Stokes drift (a,b) and Quasi-Eulerian mean velocity (c,d) 

Figure 5.24(a) and Figure 5.24(b) show the spatial distribution of Stokes drift in Test 1B 

and Test 1C. The Stokes drift reaches local maximum above the peak of sandbars. Figure 

5.24(c) and Figure 5.24(d) present the spatial distribution of Quasi-Eulerian mean 

velocity in Test 1B and Test 1C, respectively. We can see a spatial lag between the 

location of the maximum wave-induced current at the surface level and the location of 

the breaking wave. This spatial lag is caused by roller effects. Besides, Figure 5.24(c) and 

Figure 5.24(d) show that the direction of the mean current at the upper part of the water 

column is shoreward. Whereas, the mean current at the lower part of the water column is 

offshore direction. 
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Figure 5.25 Vertical distribution of horizontal mean velocity in test 1B 
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Figure 5.26 Vertical distribution of horizontal mean velocity in test 1C 

The comparison between Quasi-Eulerian mean velocities calculated by the 2DV 

numerical model and measured data along the wave flume is given in Figure 5.25 and 

Figure 5.26. 

Overall, the 2DV model simulated quite well the vertical distribution of the mean velocity. 

In comparison with test 1B, the model results for test 1C show a better agreement with 

experimental data, especially near the sandbars. It suggests that empirical formulas of 

Uchiyama et al. (2010) can be applied well for small-amplitude waves. For the waves of 

high amplitude, these empirical formulas just give qualitative results in the breaking zone. 

Besides, in the 2DV model, the roller-induced mass flux is not taken into account. The 

inclusion of that flux might improve the results. Further research on the wave forcing in 

breaking wave areas is needed. 

5.6 BREAKING WAVES PROPAGATING IN A LARGE-SCALE FACILITY 

5.6.1 Laboratory setup 

In this section, the 2DV model was employed to simulate the cross-shore and the 

longshore currents with the input data obtained from the large-scale sediment transport 
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facility (LSTF). The design of the LSTF is presented in detail in the paper of Hamilton 

and Ebersole (2001). The facility has dimensions of approximately 30 m cross-shore by 

50 m longshore by 1.4 m deep. The concrete beach has a longshore dimension of 31 m 

and a cross-shore dimension of 21 m, with a slope of 1:30. Unidirectional long-crested 

waves were generated with four piston-type wave generators. An active pumping and 

recirculation system comprised of 20 independent pumps and pipelines was used to 

control the cross-shore distribution of mean longshore current. Pumping rates were 

adjusted iteratively to converge toward the proper setting, based on the measurements 

along the beach. 

The wave conditions at the offshore boundary are given in Table 5-6. The TMA spectrum 

(self-similar spectral shape) with the width parameter of 3.3 was employed. It is an 

extension of deep water spectrum JONSWAP for applications in shallow water. 

Table 5-6 Incident wave properties at the boundary 

Wave type Tp (s) Hs (m) ( )0  h (m) 

Irregular 2.5 0.225 10 0.667 

5.6.2 Boundary conditions 

a) Surface and bottom boundary conditions 

At the GLM water surface, the total shear stress is assumed to vanish. Therefore, the 

surface boundary conditions are:  

 ( ) 0,
L

v fr b

z

u
K K

z


=

 
+ + =  

 (5.68) 

 ( ) 0,
L

v fr b

z

v
K K

z


=

 
+ + =  

 (5.69) 

where, T

v mol v  = + . 

The bottom boundary condition in the cross-shore direction is given by: 

 ( ) 1 ,1
.

f cw

v fr b

z h

k Du
K K

z




=−

 
+ + = − −    

 (5.70) 

According to Longuet-Higgins (1970), the bed shear stress in the longshore direction can 

be calculated based on the local rate of energy dissipation. In the following, their formula 

is corrected with the bed shear stress caused by the mean current c . Therefore, we have: 
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( )2

,2 ,2

1
.

r w r f

cw c

k D D D
 



 − + + = − +   (5.71) 

From equations (5.25) and (5.71) the longshore current near the bed is calculated by: 
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  (5.72) 

b) Lateral boundary conditions 

At the offshore, boundary conditions for Quasi-Eulerian mean water level and Quasi-

Eulerian mean velocity components are: 

 
2

,
sinh 2

ka

kh
 = −


 (5.73) 
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−
= −

+     (5.74) 

 tan .v u =   (5.75) 

At the land boundary, the GLM velocity in the x-direction is zero. Besides, the no-slip 

boundary condition is assumed for Quasi-Eulerian velocity in the y-direction. Then: 

 ( ) ( ),Su z u z= −  (5.76) 

 ( ) 0.v z =  (5.77) 

5.6.3 Numerical results and discussion 

Figure 5.27 shows the comparison of significant wave height between experimental data 

and numerical results calculated by the 2DV model. The comparison shows a very good 

agreement between experimental data and model results. 

 

Figure 5.27 Distribution of significant wave height 

In Figure 5.28, a comparison of the mean water level between experimental data and the 

2DV model result is given. There was a small difference of about a few millimeters 



5.6. Breaking waves propagating in a large-scale facility 

 

71 

 

outside the breaking zone. The difference between these two kinds of data was bigger in 

the area closer to the coastline. It might be due to the recirculation system of the facility 

or because the experimental data was for a closed basin, so the volume of water in the 

setup was taken from offshore. 

 

Figure 5.28 Distribution of mean water level 

a) Cross-shore direction 

 

Figure 5.29 Vertical distribution of wave-induced forcing terms 

Figure 5.29 presents the vertical distribution of wave forcing term 
,1 /wF   and total 

mixing 
,1 /totF   at the location 10.9x = m. It shows that momentum caused by wave 

forcing was completely compensated by total mixing. The total of these two forcing terms 

was depth uniform. 

 

Figure 5.30 Distribution of cross-shore velocity 
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Figure 5.30 shows an overview of the spatial distribution of cross-shore velocity 

calculated by the 2DV model. It shows that outside the wave breaking zone, the vertical 

distribution of the Quasi-Eulerian mean velocity was almost uniform. However, inside 

the wave breaking zone, the mean velocity shows a strong vertical shear. 

The LSTF data was also employed by Teles et al. (2013) to validate the TELEMAC 3D 

model. In Figure 5.31, comparisons of cross-shore mean velocities between experimental 

data, results of the TELEMAC 3D model, and results of the 2DV model were carried out 

at six cross-shore locations. 

   

   

Figure 5.31 Vertical profiles of cross-shore velocity 

The results obtained from the 2DV model fit quite well with the experimental data, and 

are much better than the results obtained by the TELEMAC 3D model in most of the 

cross-sections. Closer to the surface and the land boundary the difference between 

experimental data and 2DV model results became bigger. The difference might be due to 

the use of empirical formulas for the wave-induced forcing, and the return flow in the 

facility. Improvement of these formulas by making use of the large body of literature on 

the return flow profiles is recommendable but outside the scope of this study. 

b) Longshore direction 
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Figure 5.32 shows the vertical distribution of the wave-induced forcing 
,2 /wF   and total 

mixing 
,2 /totF   in the longshore direction at 10.9x = m. It shows that the total mixing 

,2totF  is balanced by wave-induced forcing 
,2totF . The total forcing ( ),2 ,2w totF F+  is depth 

uniform. 

 

Figure 5.32 Vertical distribution of wave-induced forcing terms 

The cross-shore distribution of the longshore velocity calculated by the 2DV numerical 

model is presented in Figure 5.33. According to the results, the longshore velocity 

increases shoreward. The maximum magnitude of the longshore velocity reached 

approximately 0.35 m/s at the position 14x   m. After this point, the longshore velocity 

decreased toward the shoreline. 

 

Figure 5.33 Distribution of the longshore velocity 

In Figure 5.34, a comparison between experimental data and numerical results at one-

third of the water depth above the bottom is given. It shows that the results obtained by 

the 2DV model agreed well with the experimental data and matched the observed cross-

shore distribution better than the results obtained by the TELEMAC 3D model. 
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Figure 5.34 Longshore velocity at 2 / 3z h= −  

The comparison of the longshore velocities at different vertical cross-sections is given in 

Figure 5.35. The results of the TELEMAC 3D model show quite good agreement at four 

locations from x = 9.5 m to x = 13.9 m. However, at the location near the offshore x = 7.1 

m and the location near the coastline x = 15.3 m the differences between experimental 

data and results from the TELEMAC 3D model were significant. In contrast, the results 

of the 2DV model show good agreement with experimental data at all six cross-sections. 

   

   

Figure 5.35 Vertical profiles of the longshore velocity at different locations 
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5.7 DISCUSSION 

Following Van Rijn (2011), the bottom boundary layer thickness   was calculated by the 

formula (5.30). In this, the effect of mean current on bottom boundary layer thickness 

was neglected. However, interactions of the current with the wave boundary layer and 

waves with current boundary layer led to the enhancement of current-induced friction, 

wave energy dissipation, and bed shear stress. Then, both waves and current should be 

considered in calculating bottom boundary thickness. In this study, the formula given by 

Van Rijn (2011) was modified to take into account the effect of ambient currents. The use 

of the modified formula provided a better agreement with experimental data than the use 

of the original formula of Van Rijn (2011). 

In the work of Nielsen and You (1997), an empirical coefficient WRC  was proposed to 

account for the effect of strong ambient currents on the vertical distribution of wave 

radiation stress components. However, that coefficient is only applied to regular waves. 

In this study, a modified formula was proposed to apply to random waves. With that 

modification, the mean current profiles calculated by the 2DV model agreed well with 

experimental data obtained by Klopman (1994). 

In breaking wave conditions, dissipative wave forcing terms were estimated by using 

empirical formulas introduced by Uchiyama et al. (2010). The cross-shore velocity 

profiles obtained by the 2DV model showed good agreement with experimental data 

presented in the works of Boers (2005) and Hamilton and Ebersole (2001). However, 

there are differences between model results and observed data near the breaking points. 

It requires further research on the vertical distribution of wave breaking induced forcing. 

In the longshore direction, the effect of breaking wave-induced forcing was small. Then, 

the longshore current data calculated by the 2DV model fitted very well with experimental 

data.  

The LSTF test was also employed by Teles et al. (2013) to validate the TELEMAC 3D 

model. That model was developed based on the work of Ardhuin et al. (2008), and Bennis 

et al. (2011). As indicated by Ardhuin et al. (2008), their equations are only expected to 

give qualitative results for surfzone applications. The comparison presented in the 

previous part also showed that the 2DV model obtained a better agreement with observed 

data than TELEMAC 3D model. 





 

 

6 
6 COMPARISONS WITH OTHER 

SETS OF EQUATIONS OF 

MEAN MOTION4 

 

 

 

 

 

 

 

  

 

4 This Chapter is presented in the publication: Nguyen, D.T., Reniers, A.J.H.M., Roelvink, D., 2021b. Relationship 

between Three-Dimensional Radiation Stress and Vortex-Force Representations. Ibid., 791. 
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6.1 COMPARISON WITH EQUATIONS OF MOTION OF WALSTRA ET AL. (2001) 

A set of equations of mean motion of Walstra et al. (2001) has been implemented in the 

Delft3D-FLOW model. Details of the implementation are given in Deltares (2014). It is 

the simplification of a set of equations developed by Groeneweg (1999). In the following, 

horizontal momentum equations of Walstra et al. (2001) are expressed with the addition 

of the Coriolis effect and gradient of atmospheric pressure, i.e.: 
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where, 
L  is GLM turbulent stress, 

1

LS  and 
2

LS  are wave-induced driving forces given 

by: 
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 (5.81) 

where, 
S  is Stokes correction of turbulent stress.  

The depth-integrated continuity equation is: 

 0.
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L L

h h
u dz v dz

t x y

 
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In Table 6-1, a comparison between equations of Walstra et al. (2001) and new equations 

expressed in the GLM framework is presented for the x-direction. It shows that the 

difference between Walstra et al. (2001) and equations of Nguyen et al. (2021a) mainly 

comes from the wave-induced forcing terms. It shows that the terms 1T  and 
1 /Sp x−    

are absent in the conservative wave forcing term of Walstra et al. (2001). Those terms are 

considered in Groeneweg (1999), where 1T  corresponds to the evolution of 
l

j iu . The 

missing second-order of wave amplitude terms leads to an imbalance of the model and 

generates spurious oscillations, discussed below. 
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Table 6-1 Comparison between equations of Walstra et al. (2001) and the new set of 

equations in the GLM framework 

Terms Walstra et al. (2001) New equations 

Pressure 

gradient 

1 L
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g

x x

 
− −
  
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x x
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
: applied as a surface 

stress 
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
: applied as a bottom 

stress 
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
: applied as a body force 
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
: applied as a body force 
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
: applied as a bottom stress 

Turbulence 
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Moreover, according to Nielsen and You (1997), the effect of a strong current on the 

normal component of wave radiation stress gradient /uw z   is significant. This effect 

was not considered by Walstra et al. (2001). In new equations, the normal component of 

wave radiation stress is enhanced by a factor WRC  that represents the effect of current on 

the wave radiation stress. The factor WRC  is approximated to 1 in the condition of a weak 

current; however, it is significant in the presence of a strong current. 
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In Walstra et al. (2001), the breaking and roller wave-induced forcing term is provided 

as surface stress. The breaking induced turbulence is incorporated into the turbulence 

model as a surface boundary condition. However, this method is only suitable under the 

condition of strong vertical mixing due to breaking waves (Rascle et al., 2006). In 

addition, the Stokes correction of turbulent stress is a term of third-order of the wave 

amplitude, i.e., 1 3/ ( )S

ij jx O −   = . Therefore, it can be neglected if equations of 

motion are expressed to the second-order of wave amplitude. 

In new equations, the breaking wave and roller wave-induced forcing terms are applied 

as a body force. This method is suitable for both strong and weak vertical mixing 

conditions, where the empirical formulas proposed by Uchiyama et al. (2010) are applied 

to calculate the vertical distribution of wave breaking induced forcing term. 

The mass conservation equation of Walstra et al. (2001) is equivalent to the new mass 

conservation equation if the surface waves change slowly in time. 

In the following, an adiabatic test proposed by Bennis et al. (2011) is employed to test 

the equations of Walstra et al. (2001). In this, a monochromatic wave propagates on a 

slope without dissipation. This is a simple but very challenging test since any imbalanced 

forces might lead to a spurious oscillation of the mean current. The horizontal mean 

current should be uniform in a vertical direction even if the wave propagates on a sloping 

bed. The new equations were successful in testing with the adiabatic condition. 

In adiabatic condition, momentum equations (5.78) and (5.79) becomes: 
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Depth-integrated continuity equation is: 

 0.
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The spatial distribution of Quasi-Eulerian mean horizontal velocity calculated by 

equations of Walstra et al. (2001) is presented in Figure 2a. That result was obtained after 

30 min of simulation time. On the slope, the horizontal velocity is non-uniform in the 

vertical direction. Moreover, the model is unstable and the mean velocity increases to 

infinity in time. Thus, equations of Walstra et al. (2001) do not pass the adiabatic test. 

The imbalance is caused by the omission of the second-order terms 1 /Sp x−

    and T .  
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Figure 6.1b presents the distribution of Quasi-Eulerian mean flow simulated with new 

equations of motion that include these terms showing the correct depth-uniform 

horizontal mean velocity on the slope. 

 

(a) Calculated by equations of Walstra et 

al. (2001) 

 

(b) Calculated by 2DV model 

Figure 6.1 Distribution of Quasi-Eulerian mean horizontal velocity 

6.2 COMPARISON WITH EQUATIONS OF MOTION OF BENNIS ET AL. (2011) 

In Bennis et al. (2011), the Quasi-Eulerian mean equations of Ardhuin et al. (2008) were 

employed. In this, dissipative wave forcing terms are expressed explicitly using empirical 

formulas. Their horizontal momentum equations are expressed by: 
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The continuity equation is: 

 0.
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x y z

  
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  
 (5.88) 

A comparison between the equations of Bennis et al. (2011) and the new equations 

expressed in the Quasi-Eulerian framework in the x-direction is presented in Table 6-2. It 

shows the momentum equations of Bennis et al. (2011) and Nguyen et al. (2021a) are 

equivalents. The vertical current shear K  is taken into account by Ardhuin et al. (2008); 

however, it is neglected in Bennis et al. (2011) to simplify their equations. The current-
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induced turbulence and the effect of molecular viscosity are excluded in equation of 

Bennis et al. (2011). These terms can be added to their equations without much effort. 

Table 6-2 Comparison of equations of Bennis et al. (2011) and new equations 

Terms Bennis et al. (2011) New equations 

Pressure 

gradient 

1 Hp

x


−


 

1 Hp

x


−
 

 

Conservative 

wave forcing 

ˆ ˆ

ˆ

S

S

J v u
v f

x x y

u
w

z

    
− + + −  
    


−



 

( ) S

S

J K v u
v f

x x y

u
w

z

  +   
− + + −  

    


−



 

Non-

conservative 

wave forcing 

,1brF


: applied as a surface 

stress 

,1mxF


: was not specified 

,1frF


: applied as a bottom 

stress 

,1brF


: applied as a body force 

,1mxF


: applied as a body force 

,1brF


: applied as a bottom stress 

Turbulence Excluded 
1311 121

x y z

 



  
+ + 

   
 

Mass 

conservation 
0

u v w

x y z

  
+ + =

  
 

S S S S

u v w

x y z

Z u v w

t x y z

  
+ +

  

    
= − + + 

    

 

The non-conservative wave forcing terms including brF , mxF , and 
frF  are included in the 

momentum equations of Bennis et al. (2011) and Nguyen et al. (2021a). The only 

difference is the way to calculate breaking wave and roller wave-induced forcing terms 

brF . In Bennis et al. (2011), it is assumed as surface stress, whereas it is provided as body 

force in Nguyen et al. (2021a). Therefore, the equations of Bennis et al. (2011) are valid 

in the condition of strong vertical mixing due to breaking waves when the vertical 



6.3. Comparison with equations of motion of Kumar et al. (2012) 

 

83 

 

distribution of breaking wave-induced forcing is not very important. In other conditions, 

the vertical distribution of breaking wave-induced forcing terms should be considered. 

The continuity equation of Bennis et al. (2011) shows the convergence of the Quasi-

Eulerian mean velocity consistent with the presence of conservative waves. For non-

conservative waves, the divergence of the Quasi-Eulerian mean velocity should be 

compensated by the divergence of the Stokes drift as presented in the new continuity 

equation. 

Finally, the equations of Bennis et al. (2011) are expressed in terms of the vortex force 

representation. As indicated in Section 2, this representation is based on the assumption 

that the ambient current is small in comparison with orbital velocity, i.e., orbu u . This 

assumption is not present in the wave radiation stress representation and is therefore 

potentially more suitable in the presence of strong ambient currents. 

6.3 COMPARISON WITH EQUATIONS OF MOTION OF KUMAR ET AL. (2012) 

Equations of motion of Kumar et al. (2012) are based on the asymptotic theory of 

McWilliams et al. (2004). In their equations, the dynamic pressure   is employed. The 

relationship between   and p  is given by (McWilliams et al., 2004): 

 ,wp p= +  (5.89) 

where, 
wp  is wave-induced pressure given by: 

 ( )2 2 21
.

2

wp u v w= −  + +  (5.90) 

Using the formula (4.3) we obtain the following relationship between   and 
Hp : 

 ,
Hp

J = +


 (5.91) 

where, J  is defined by (3.33). 

Using this, the momentum equations of Kumar et al. (2012) can be rewritten as: 

 

( )

1 1 1 1 1

1

' ' ,

H
s

s bf sf br

Ju u u u p v u
u v w fv v f

t x y z x x x y

u u
w u w F F F D F

z z z





  +        
+ + + − = − − + + −  

          

   
− − − + + + + + 

   

 (5.92) 
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( )

2 2 2 2 2

1

' ' ,

H
s

s bf sf br

Jv v v v p v u
u v w fu u f

t x y z y y x y

v v
w v w F F F D F

z z z





  +        
+ + + + = − − − + −  

          

   
− − − + + + + + 

   

 (5.93) 

 
1

,
H

S Sp u v
g u v

z z z z

    
+ = − + + 

     
 (5.94) 

where, bfF
 and sfF

 are wave-induced forcing terms due to bottom and surface streaming, 

respectively, brF
 is wave-induced forcing term due to white-capping, breaking wave, and 

roller, F  is non-wave non-conservative forcing and D  is horizontal mixing term.  

The Bernoulli head   is given by: 

 
( )

 
22

'22

.
sinh 2 ( ') '.

16 sinh ( )

z
rms

h

H
k z z dz

zk k h




−


= −

 +  


k u
 (5.95) 

If the effect of vertical shear of mean current in the wave forcing term is neglected then 

  can be neglected. 

Continuity equation shows the convergence of Eulerian mean velocity, i.e.: 

 0.
u v w

x y z

  
+ + =

  
 (5.96) 

In adiabatic condition, horizontal momentum equations (5.92) and (5.93) become: 

 

1

,

H

s s

u u u u p J
u v w fv

t x y z x x

v u u
v f w

x y z

     
+ + + − = − −

      

    
+ + − −  

    

 (5.97) 

 

1

.

H

s s

v v v v p J
u v w fu

t x y z y y

v u v
u f w

x y z

     
+ + + + = − −

      

    
− + − −  

    

 (5.98) 

Equations (5.97) and (5.98) are similar to horizontal momentums equations of Bennis et 

al. (2011) in adiabatic condition. Therefore, similar to the equations of Bennis et al. 

(2011), equations of Kumar et al. (2012) pass the adiabatic test. 

A comparison between the set of equations of Kumar et al. (2012) and the new set of 

equations for the x-direction is given in Table 6-3. It shows that hydrostatic pressure and 
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conservative wave forcing terms in momentum equations of Kumar et al. (2012), and new 

momentum equations are equivalent. 

In Kumar et al. (2012), the wave forcing is provided as a body force or bottom stress. 

These two approaches are implemented in their model to calculate the effect of bottom 

streaming on the current. The first approach (body force) is applied for the resolving 

bottom boundary layer condition, and the second approach (bottom stress) is suitable for 

non-resolving bottom boundary layer conditions. In new momentum equations, the 

bottom boundary layer is assumed non-resolved then the bottom stress approach is 

employed. The surface streaming is not considered by new momentum equations. This 

term could be significant outside the surfzone (Lentz et al., 2008). 

Table 6-3 Comparison between equations Kumar et al. (2012) and new equations 

Terms Kumar et al. (2012) New equations 

Pressure gradient 
1 Hp

x


−
 

 
1 Hp

x


−
 

 

Conservative 

wave forcing 

s

s

J v u
v f

x x y

u
w

z

    
− + + −  
    


−



 

( ) s

s

J K v u
v f

x x y

u
w

z

  +   
− + + −  

    


−



 

Non-

conservative 

wave forcing 

1

brF : applied as a body force 

1

sfF : surface streaming 

1

bfF : bottom streaming 

,1brF


: applied as a body force 

,1brF


: applied as a bottom stress 

,1mxF


: applied as a body force 

Turbulence 1' '
u

u w D
z z


  

− − + 
  

 1311 121
u

x y z

 




  
+ + +  

   
 

Mass 

conservation 
0

u v w

x y z

  
+ + =

  
 

S S S S

u v w

x y z

Z u v w

t x y z

  
+ +

  

    
= − + + 

    

 

The mass conservation equation of Kumar et al. (2012) shows a divergence-free Eulerian 

mean velocity field. It is thus representative of conservative surface waves. For non-
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conservative wave conditions, the divergence of Eulerian mean velocity is compensated 

by the divergence of wave-induced current (Stokes drift) included in new momentum 

equations. 

The equations of Kumar et al. (2012) are expressed in terms of vortex force representation, 

thus assuming that the mean current is weak in comparison with orbital velocity. 

Finally, with the use of the classical Eulerian mean method, the momentum equations of 

Kumar et al. (2012) are only valid below the wave trough. This implies that mean velocity 

has to be extrapolated from the trough to obtain the velocity profile up to the mean water 

level. 

6.4 CONCLUSIONS 

New equations were expressed in both radiation stress and vortex force representations. 

This set of equations was used to compare with recent well-known equations of mean 

motion. It showed that: 

- In Walstra et al. (2001), terms of second-order of wave amplitude, i.e., 
Sp  and T , 

are neglected in conservative wave forcing terms. This causes spurious oscillations 

and as a result, their set of equations did not pass the adiabatic test. 

- The effect of strong ambient currents on the wave-induced forcing term is not 

considered in the work of Walstra et al. (2001); Bennis et al. (2011); and Kumar et 

al. (2012). Therefore, it is a problem when applying their sets of equations for 

nearshore applications, where the current is usually comparable to the orbital velocity. 

- In Walstra et al. (2001); and Bennis et al. (2011) the wave forcing term caused by 

breaking wave and roller wave is applied as surface stress. This is only suitable in 

cases of strong vertical mixing due to breaking waves. In general, the vertical 

distribution of breaking wave and roller wave-induced forcing term is more 

appropriate. 

- Sets of equations of Bennis et al. (2011); and Kumar et al. (2012) are expressed in 

terms of vortex force representation. This is only suitable if the ambient current is 

small in comparison with orbital velocity, i.e., orbu u . When the ambient current 

is comparable to the orbital velocity, the wave radiation stress representation is 

preferred. 

- Mass conservation equation in Bennis et al. (2011); and Kumar, Voulgaris [21 shows 

a divergence-free Eulerian mean velocity field. This is suitable for conservative 

waves. In general, the divergence of Quasi-Eulerian mean velocity should be 

compensated by the divergence of Stokes drift. 
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7.1 CONCLUSIONS 

In this study, a new set of equations of motion written in terms of Quasi-Eulerian mean 

velocity was developed based on the GLM method. The new equations were valid from 

the bottom to the mean water surface even in the presence of finite-amplitude waves. 

These equations are practical for a wide range of applications from deep water to shallow 

water areas. All terms in these equations are expressed to the second-order of the wave 

amplitude. Both non-wave forcing and wave-induced forcing terms are under 

consideration. When the wave height is infinitesimal, the Quasi-Eulerian mean equations 

of motion reduce to the classical Eulerian mean equations of motion. In cases of density 

stratification, the buoyancy effect should be included as external forcing. 

In this study, a three-dimensional wave radiation stress formulation was introduced. The 

effects of surface waves on the mean current are specified at any level of the water column. 

With the use of an empirical coefficient WRC , the 3D wave radiation stress is suitable for 

the presence of a strong ambient current. The vertical integration of the new three-

dimensional wave radiation stress coincides with the traditional radiation stress. Besides, 

the comparison between three-dimensional radiation stress and vortex force 

representations was studied in detail. Those representations are equivalent if the 

irrotational part of the waves is dominated, and the mean current is weak in comparison 

with orbital velocity. 

A 2DV numerical model was developed to validate new Quasi-Eulerian mean equations 

of motion. The 2DV model passed the well-known adiabatic condition suggested by 

Ardhuin et al. (2008). It does not produce spurious velocities when the waves propagate 

on a sloping bottom. As a result, vertical uniform distribution of Quasi-Eulerian mean 

horizontal velocity was obtained even on the slope. 

Subsequently, the experiment of Klopman (1994) for random waves was employed to 

validate the 2DV model in the condition of non-breaking waves combined with a strong 

current. The comparison between experimental data and numerical results showed very 

good agreement in the whole vertical sections even in areas that were very close to the 

bed. In the condition of breaking waves, two experiments presented in the dissertation of 

Boers (2005) were employed. It showed that new equations performed very well for the 

experiment of smaller wave height (test 1C). In the experiment of bigger wave height (test 

1B), the vertical distribution of the mean velocity near the breaking point gave 

qualitatively correct results. In the comparison of longshore current in the LSTF test 

(Hamilton and Ebersole, 2001), a good agreement was found not only for depth-averaged 

longshore current but also for depth varying longshore current. For cross-shore currents, 

there was a difference between model results and experimental data in the wave-breaking 

zone. The difference between the experimental data and model results in tests 1B and 

LSTF was likely to be due to the empirical formulas for wave breaking that were strong 

simplifications of the complex breaking process. Further tuning of such formulations 
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against a large number of datasets on wave decay and generated longshore and cross-

shore currents was recommended. 

The comparisons with other well-known sets of equations of motion show that new set of 

equations of motion is more suitable in the presence of a strong ambient current, and finite 

amplitude nonconservative waves. New set of equations of motion can be applied in a 

wide range of applications from offshore to coastal zones, estuaries, and outflow areas. 

Finally, with the use of Quasi-Eulerian mean variables, new set of equations of motion 

can be easily implemented to existing 3D models developed based on the classical 

Eulerian mean method. The implementation is straightforward and does not require much 

effort. It can improve significantly the results of simulating coastal processes such as 

coastal sediment transport, transport of plastic, and other pollutants such as oil slicks. 

7.2 ANSWER TO RESEARCH QUESTIONS 

1. How to simulate three-dimensional mean current from the deep ocean to the coastal, 

estuary, and outflow areas in the presence of finite-amplitude non-conservative waves? 

The Eulerian mean method is usually applied to simulate the mean current. However, in 

the presence of finite-amplitude surface waves, the region between wave crest to wave 

trough is not always filled by water. Therefore, the use of the Eulerian mean method is 

not suitable to apply in this area. In the GLM method, the hydrodynamic quantities are 

averaged over disturbance positions of a fluid particle. Then, this method is valid from 

the bottom to the mean water surface even in the presence of finite-amplitude non-

conservative waves. This method provides a physical interpretation of definitions of mean 

properties from the wave trough to the mean water level. 

2. How to express the effects of surface waves on three-dimensional mean currents, 

especially under the condition of non-conservative waves and strong ambient currents? 

When the mean current is small in comparison with orbital velocity, the effect of surface 

waves on the currents can be expressed in terms of either radiation stress or vortex force 

representations. The wave radiation stress forcing is the total vortex force, Bernoulli head, 

and dissipative wave forcing. In the presence of a strong ambient current, the three-

dimensional wave radiation stress representation is recommended. 

3. Specify the relationship between vortex force and radiation stress representations in 

different conditions of surface waves combined with mean currents? 

In this study, the relationship between three-dimensional wave radiation stress and vortex 

force representations is investigated in detail. The results showed that: 

i) In conservative waves and weak ambient current: wave radiation stress and vortex force 

representations are equivalent. 
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ii) In non-conservative wave and weak ambient current: wave radiation stress 

representation is the sum of vortex force representation and wave-induced dissipative 

forcing terms. 
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