
D
E

L
F

T
U

N
IV

E
R

S
IT

Y
O

F
T

E
C

H
N

O
L

O
G

Y

USING EXPLAINABLE ARTIFICIAL INTELLIGENCE TO IN-
CREASE TRANSPARENCY OF REINFORCEMENT LEARNING

FOR FLIGHT CONTROL

BREAKING OPEN THE BLACK BOX

MSC THESIS REPORT

J.A.J. VAN ZIJL

USING EXPLAINABLE ARTIFICIAL INTELLIGENCE TO INCREASE

TRANSPARENCY OF REINFORCEMENT LEARNING FOR FLIGHT

CONTROL

BREAKING OPEN THE BLACK BOX

MSC THESIS REPORT

by

J.A.J. van Zijl

to obtain the degree of
Master of Science in Aerospace Engineering

at Delft University of Technology

Student number: 4380185
Date: January 28, 2022

Thesis committee: Dr. ir. M. M. van Paassen Delft University of Technology Committee chair
Dr. ir. E. van Kampen Delft University of Technology Supervisor
T. Nunes, MSc Delft University of Technology Supervisor
Dr. ir. E. Mooij Delft University of Technology External examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/

Preface

This master thesis report concludes my amazing time as an aerospace engineering student in Delft, at the
Control & Simulation department. The subject of explainable artificial intelligence presented in this report
sparked my interest the first time Erik-Jan mentioned it as a potential graduation subject, and this interest has
only grown during the last year. I find it fascinating that we as humans cannot only use AI for automation,
but can now also learn from it. My hope is that you will also learn about, and from AI while reading this thesis
report.

There are multiple people I would like to thank for their support and their direct and indirect contribution to
this thesis report. First of all, I would like to express my deepest gratitude towards Erik-Jan and Tiago for the
great support and guidance during the last year. Every week I was looking forward to our meeting, including
interesting and sometimes philosophical discussions about (explainable) artificial intelligence. The positive
energy and attention you were able to give on a weekly basis enabled me to keep learning and improving,
almost like a reinforcement learning agent. Your detailed feedback helped me tremendously. Furthermore
I would like to express my appreciation towards my friends, for studying together and therefore making the
graduation process under the sometimes tight pandemic restrictions more bearable. Our discussions sparked
many ideas, and kept me sharp during the often long days of studying. Last, but definitely not least, I would
like to thank my parents and sisters for always supporting me, not only during the past year, but also during
the rest of my time in Delft.

Job van Zijl
Den Haag, January 2022

iii

Table of Contents

List of Figures vi
List of Tables ix
List of Acronyms xi

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Research goal and research questions . 3
1.4 Report Outline . 4

I Scientific Paper 5

II Literature Review and Preliminary Analysis 29

2 Reinforcement Learning Fundamentals 31
2.1 Key Concepts . 31

2.1.1 Markov Decision Process . 31
2.1.2 Return . 32
2.1.3 Policy and Value . 32
2.1.4 Optimal Policy . 33

2.2 Dynamic Programming . 34
2.2.1 Policy Evaluation . 34
2.2.2 Policy Improvement . 34
2.2.3 Generalized Policy Iteration . 35

2.3 Model-Free Algorithms . 35
2.3.1 Monte Carlo Methods . 36
2.3.2 Temporal-Difference Learning . 36

2.4 Approximate Reinforcement Learning . 37
2.4.1 Artificial Neural Networks . 38
2.4.2 Value-based Approximation . 40
2.4.3 Policy-based Approximation . 41

2.5 Actor-Critic Algorithms . 42

3 Reinforcement Learning for Flight Control 45
3.1 RL for Flight Control Classification . 45
3.2 Adaptive Critic Designs . 47
3.3 Adaptive Critic Design Applications in Flight Control . 49
3.4 Dual Heuristic Programming . 50
3.5 Incremental Dual Heuristic Programming . 53

4 Explainable AI Techniques 55
4.1 Motivation, Challenges, and Terminology . 55
4.2 Literature Selection Methodology . 58
4.3 Transparent Design . 58

iv

TABLE OF CONTENTS v

4.3.1 Explainable Navigation using Fuzzy Reinforcement Learning 58
4.3.2 Reward Decomposition . 60

4.4 Post-Hoc Explainability . 61
4.4.1 Local Interpretable Model-agnostic Explanations (LIME) 63
4.4.2 SHapley Additive exPlanations (SHAP) . 64

4.5 Conclusions . 69

5 Preliminary Analysis 71
5.1 preliminary analysis Setup . 71

5.1.1 Environment . 71
5.1.2 Discrete Control - Advantage Actor Critic (A2C) . 73
5.1.3 Continuous Control - Deep Deterministic Policy Gradient (DDPG) 74

5.2 Results of Discrete Control Preliminary Analysis . 76
5.2.1 Input Analysis . 76
5.2.2 Output Analysis . 77
5.2.3 Input-Output Analysis Using SHAP . 77

5.3 Results of Continuous Control Preliminary Analysis . 83
5.3.1 Input Analysis . 84
5.3.2 Output Analysis . 84
5.3.3 Input-Output Analysis Using SHAP . 85

III Additional Results and Discussions 91

6 Validation of the Linear Representation Models 93

7 Illustrating and Explaining Adaptive Properties using SHAP 97
7.1 Showing Adaptation Using the Linear Slope . 97
7.2 Illustrating Fault-Tolerant Adaptation . 98

IV Wrap-Up 102

8 Conclusions 103
8.1 Synopsis . 103
8.2 Answers to the Research Questions . 104

9 Recommendations 107

V Appendices 108

A Training Convergence - Part of the graded preliminary analysis 109

List of Figures

1.1 Terminology of artificial intelligence, adapted from [8]. 1
1.2 Schematic representation of the reinforcement learning process [9]. 2
1.3 Trade-off between model interpretability and performance, and a representation of the area

of improvement where the potential of XAI (eXplainable Artificial Intelligence) techniques and
tools resides [18]. 3

2.1 Interaction between the agent and its environment, displayed as a Markov Decision Process [9]. 31
2.2 Example backup diagram for a non-deterministic MDP [9]. 33
2.3 Example backup diagram for a non-deterministic MDP [9]. 35
2.4 General structure of a feedforward neural network. 39
2.5 Two examples of activation functions, the Rectified Linear Unit and hyperbolic tangent. 39
2.6 Internal processing of a single neuron connected with 3 other neurons. 39
2.7 Actor-critic algorithm schematic, with the dashed lines illustrating the critic updating the pa-

rameters of the actor and critic itself. 42

3.1 Non-exhaustive classification of RL for flight control, based on academic research available
through Scopus. 45

3.2 Control hierarchy for unmanned aerial vehicles, also applicable to other aerospace applications
[40]. 46

3.3 Example of an adaptive critic design structure: Dual Heuristic Programming [17]. 47
3.4 Overview of the three adaptive critic design variants, and their action-dependent alternatives

[54]. 48
3.5 Online tracking task comparison between DHP and IDHP, for a non-linear missile model [17].

IDHP here shows superior tracking performance and more rapid convergence to αr e f 50
3.6 Schematic overview of the IDHP algorithm, where the dashed lines indicate backpropagation

paths [17]. 54

4.1 Schematic representation of how XAI techniques can be used for RL researchers to adjust their
algorithm in a design cycle. 56

4.2 Trade-off between model interpretability and performance, and a representation of the area of
improvement where the potential of XAI (eXplainable AI) techniques and tools resides [18]. . . . 57

4.3 Comparison of the research into eXplainable AI and eXplainable RL, retrieved from Scopus in
June 2021. 58

4.4 Selection funnel of the XAI research for this literature review. 58
4.5 Schematic representation of the fuzzy decision-making process, starting and ending with crisp

values[64]. Through design of the (de)fuzzification and the rule-base, expert knowledge is uti-
lized in the process. 59

4.6 Diagram of the Fuzzy Reinforcement Learning system [65]. The "exp" block resembles an er

function, where r is the reward vector. 59
4.7 Two methods for explaining the decisions of the agent using reward decomposition in the Lunar

Lander environment [71] . 61
4.8 Schematic representation of the surrogate model, used in both LIME and SHAP. 62
4.9 Global and local explanations, where the red dots represent feature data, the blue line is the ap-

proximated model f (x), and the yellow dashed lines represent local and/or global explanations
g (x). 62

vi

LIST OF FIGURES vii

4.10 Example to explain the local-global difference for LIME [73]. The blue-pink background is the
non-linear classification function f , which is approximated using a linear explanation model g
around the dashed line. 64

4.11 Example of a SHAP waterfall plot, where the model output is explained using the baseline and
feature effects for a given action. This example illustrates an explanation for longitudinal accel-
eration of a car [76]. 65

4.12 Example of a SHAP summary plot, where the x-axis indicates SHAP value and the color repre-
sents feature value. The model output of this example is a person’s estimated biological age,
based on concentrations of various chemical compounds present in the human body [77]. . . . 66

4.13 Example SHAP dependence plots, where the model output predicts the income of individuals
in the 90s [78]. 67

4.14 Example of a RL-SHAP diagram, for longitudinal acceleration control of a car [76]. The first
subplot shows the velocity and speed limit over time, the second subplot is the actor NN output,
and the other 7 subplots are the NN inputs. The horizontal grey line of the action is the SHAP
baseline, and the vertical dashed line corresponds to the waterfall plot shown in Figure 4.11. . . 67

4.15 Number of publications for LIME + "Machine Learning" and SHAP + "Machine Learning". Data
retrieved from Scopus on June 29 2021. 68

5.1 Screenshot from Open AI’s lunar lander environment, including the purple spacecraft and the
landing pad between the two yellow flags [80]. The terrain is generated randomly for every
episode. 71

5.2 Action space for the continuous lunar lander environment. The thrusters are only active on the
blue domains. 72

5.3 Schematic overview of the (advantage) actor critic structure. The dashed lines indicate the back-
propagation paths for updating both the critic and actor. 73

5.4 Neural network structure of both the actor and the critic for A2C. The critic and the actor share
the same neurons in their hidden layer. 74

5.5 Global structure of the DDPG algorithm, where the dashed lines indicate the backpropagation
paths. 75

5.6 Neural network structures for the DDPG agent. The target networks follow the exact same struc-
ture. 75

5.7 Boxplot for the encountered continuous states during simulation of 10 episodes for an un-
trained and trained discrete agent. 78

5.8 Model output and observed states, for an untrained and trained agent. 78
5.9 Waterfall plot for the "fire main thruster" action during flight, showing the baseline E [f (x)] at

the bottom, and the model output f (x) at the top. The lack of feature values complicates the
interpretability, but the waterfall plot helps to understand how a SHAP explanation works. . . . 79

5.10 SHAP summary plots for the do nothing and fire main thruster actions, generated using 20
episodes for improved state-space coverage. Instances where one the continuous feature’s SHAP
value is not in the µ±2σ range are excluded. 80

5.11 SHAP summary plots for the rotational actions, generated using 20 episodes for improved state-
space coverage. Instances where one the continuous feature’s SHAP value is not in the µ±2σ
range are excluded. 80

5.12 RL-SHAP diagrams for the do nothing and fire main thruster actions. The grey dashed lines
indicate the base SHAP values of the action. 81

5.13 RL-SHAP diagrams for the rotational actions. The grey dashed lines indicate the base SHAP
values of the action. 82

5.14 Feature dominance over time, quantified as the average absolute SHAP value measured during
50 episodes for every model. 83

5.15 Feature dominance over time, quantified as the average absolute SHAP value during 50 episodes
for every model. 84

5.16 Continuous control environment - boxplots for the encountered continuous states during 50
episodes for an untrained and trained DDPG agent. 84

5.17 Model output and observed states, for an untrained and trained DDPG agent in the continuous
lunar lander environment. The red dashed lines indicate the limits of the rotational thrusters
for a1, while the main thruster is active when a0 > 0. 85

viii LIST OF FIGURES

5.18 SHAP summary plot for a0, firing the main thruster, of the continuous DDPG agent. The plot
shows samples from 50 episodes, without outlier filtering. 85

5.19 SHAP feature importance for the continuous DDPG agent, measured as the mean absolute
SHAP value. The plots helps identifying the most important global features. 86

5.20 Dependence plot of feature x for a0 of the continuous DDPG agent, showing the increase in
thrust when the spacecraft is not above the landing pad. 86

5.21 SHAP summary plot for a1, rotational thrust, of the continuous DDPG agent. The plot shows
samples from 50 episodes, without outlier filtering. 87

5.22 Dependence plot of feature y for a1 of the continuous DDPG agent. 87
5.23 RL-SHAP diagrams for the rotational actions. The grey dashed lines indicate the base SHAP

values of the action. 88
5.24 Dependence plot of x for a1, with Vx interaction. 89
5.25 Feature dominance over time for DDPG, quantified as the mean absolute SHAP value during 20

episodes for every model. 90

6.1 Validation of the linear models, during simulation of a mission profile starting at H0 = 2000 m
and V0 = 80 m/s. The blue lines represent the state space and reference states of the linear
models, and the orange lines for IDHP. The red dashed lines represent actuator trim values,
and the black dashed lines represent the mission profile identical to both the IDHP and linear
controllers. The time traces of q are shown separately in Figure 6.2 for better interpretability. . . 94

6.2 Time traces of q for the linear controller shown in blue, and the IDHP controller in orange. . . . 95

7.1 Linear explanation model slopes for δe during the mission profile introduced in Part I, starting
at H0 = 2000 m and V0 = 80 m/s. The slopes are determined using SHAP, based on segments with
100 samples. The shown segments are not used to determine the slopes, but allow comparison
between the decisions of CWSD and the learned strategy. 98

7.2 Time traces for the linear slope between α and its SHAP value, and the true airspeed Vt as 98
7.3 Linear explanation model slopes for δa and δr during the mission profile introduced in Part I,

starting at H0 = 2000 m and V0 = 80 m/s. The slopes are determined using SHAP, based on
segments with 100 samples. The shown segments are not used to determine the slopes, but
allow comparison between the decisions of CWSD and the learned strategy. 99

7.4 Input and output of the flight controller during the mission profile, starting at H0 = 2000 m and
V0 = 80 m/s, with an aileron failure at 67 s, indicated by the dashed red line. After this failure,
the aileron is 25% less effective. 99

7.5 Constant weight segment detection for the lateral controller, during the mission profile with
a 25% aileron effectiveness failure after t=67 s, indicated by the vertical red dashed line. The
centre segment points, used to copy the wa weights are removed to clearly present the time of
failure. 100

7.6 Combined dependence plots for δa during the mission profile with aileron failure. 100
7.7 Combined dependence plots for δr during the mission profile with aileron failure. 101
7.8 Progression of slopes of the linear representation model forδa andδr during the mission profile,

with aileron failure starting at t=67 s. 101

A.1 Agent training for the discrete lunar lander environment, using the A2C algorithm. 109
A.2 Agent training for the continuous lunar lander environment, using the DDPG algorithm. 109

List of Tables

3.1 Overview of the six adaptive critic design structures . 49

4.1 Example of Shapley value calculation for a game with 2 players. 65

5.1 State space of the lunar lander environment. 72
5.2 Hyperparameters of the A2C agent resulting in solving the discrete lunar lander environment. . 74
5.3 Hyperparameters of the DDPG agent networks resulting in solving the continuous lunar lander

environment. 76
5.4 General hyperparameters for the DDPG agent, used to solve the continuous lunar lander envi-

ronment. 76

6.1 Coefficients used for the validation of the linear model for δe . 93
6.2 Coefficients used for the validation of the linear model for δa and δr 93

ix

List of Acronyms

A2C Advantage Actor-Critic.

ACD Adaptive Critic Designs.

ADDHP Action-Dependent Dual Heuristic Programming.

ADGDHP Action-Dependent Globalized Dual Heuristic Programming.

ADHDP Action-Dependent Heuristic Dynamic Programming.

ADP Approximate Dynamic Programming.

AFCS Automatic Flight Control System.

AI Artificial Intelligence.

ARL Approximate Reinforcement Learning.

CWSD Constant Weight Segment Detection.

DDPG Deep Deterministic Policy Gradient.

DHP Dual Heuristic Programming.

DL Deep Learning.

DP Dynamic Programming.

DQN Deep Q Network.

DRL Deep Reinforcement Learning.

GDHP Globalized Dual Heuristic Programming.

GPI Generalized Policy Iteration.

HDP Heuristic Dynamic Programming.

IDHP Incremental Dual Heuristic Programming.

LIME Local Interpretable Model-agnostic Explanations.

MC Monte Carlo.

MDP Markov Decision Process.

ML Machine Learning.

MSE Mean Squared Error.

MSX Minimal Sufficient eXplanations.

NN Artificial Neural Network.

PID Proportional-Integral-Derivative.

PPO Proximal Policy Optimization.

RDX Reward Difference eXplanations.

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

SHAP Shapley Additive Explanations.

x

LIST OF ACRONYMS xi

SL Supervised Learning.

TD Temporal Difference.

UAV Unmanned Aerial Vehicle.

USL Unsupervised Learning.

XAI Explainable Artificial Intelligence.

XRL Explainable Reinforcement Learning.

1 | Introduction

1.1. MOTIVATION
Artificial Intelligence (AI), defined as the ability of an automation agent to independently interpret and learn
from external data to achieve specific outcomes by flexible adaptation [1], is currently widespread in society,
as it is employed by numerous companies, governmental organizations, and other institutions [2]. Appli-
cations of AI include image recognition [3], control of autonomous vehicles [4] and autonomous planning
[5]. The variety of applications and their complexity will increase extensively in the coming years [2]. This
acceleration of AI applications and its widespread adoption can be attributed to the tremendous increase in
capabilities of AI during the last 20 years, due to advancements in computer hardware, improved optimiza-
tion algorithms, the emergence of open-source AI libraries and the rise of Big Data [6] [7]. Machine Learning
(ML) is the subset of AI, where machines learn from external data or experience, without being explicitly
programmed [8]. ML can be divided into the following three forms: supervised learning (SL), unsupervised
learning (USL), and reinforcement learning (RL). A subset of ML, Deep Learning (DL), is recently gaining trac-
tion within the academic world [2]. DL encapsulates all ML techniques utilizing one or more artificial Neural
Networks (NNs). These function approximators are currently used extensively in the academic and profes-
sional world due to their high approximation power and flexibility [2]. The terminologies of AI, ML, and DL
are summarized in Figure 1.1.

Artificial Intelligence

Machine Learning

Deep Learning

Creating intelligent machines that can sense, reason, act,
and optimize

Learning from data to predict without being
explicitly programmed

Field of machine learning where
artificial neural networks are used,

resulting in more autonomy

Figure 1.1: Terminology of artificial intelligence, adapted from [8].

In SL, the ML algorithm learns from a training set with labeled data, aiming to extend this learned functional-
ity to data sets the algorithm has not seen before. Common applications in SL include classification, such as
image classification, and regression analysis like market forecasting. USL on the other hand learns from unla-
beled data, reducing the need for the time-consuming labeling process. USL algorithms analyze and cluster
these unlabeled data sets, aiming to discover patterns in large amounts of data. Common applications of
USL include clustering tasks, such as finding similarities between customers, and dimensionality reduction
as pre-processing of large data sets. Finally, RL differentiates itself from SL and USL as the ML algorithm
makes a series of decisions, learned from experience through trial and error [9]. In RL, an agent picks an
action at every time step, based on the current state of the agent’s environment, to maximize its reward over
time. This interaction process is illustrated in Figure 1.2. By interacting with its environment and observing
the reward signal, the agent learns which actions are encouraged or penalized. As RL addresses problems
where a series of decisions should be made, RL applications include real-time decision-making processes,
robotic navigation and control of autonomous vehicles. Deep Reinforcement Learning (DRL), which com-
bines RL with NNs, has recently achieved super-human performance in video games [10] and outperformed
the world’s best Go player [11]. Where initial RL algorithms were only capable of simple navigation tasks due
to their limited complexity, the field of DRL has resulted in successful completion of complex tasks and DRL
gaining more traction in the academic world [12].

1

2 1. INTRODUCTION

Figure 1.2: Schematic representation of the reinforcement learning process [9].

Due to the increasing performance of DRL, flight control using DRL is an increasingly active research field
[13]. Current automatic flight control systems often use classic linear control techniques such as PID control.
As the encountered dynamics change during flight, for example due to changes in altitude, gain scheduling
methods are used to change between predetermined operating conditions. Not only is engineering this gain
scheduling a time-consuming process, it also results in sub optimal control as the nonlinear flight dynam-
ics are approximated using linear control. Furthermore, this traditional control is only suitable around the
predetermined operating points, allowing little robustness to unknown flight dynamics and fault-tolerance.
The complexity of deep NNs, consisting of multiple hidden layers of neurons, and their nonlinear activation
functions, allows interaction with the complex and nonlinear dynamics encountered by aerospace vehicles.
Examples include the inverted flight of a helicopter [14] and attitude control of an Unmanned Aerial Vehi-
cle (UAV) [15]. Not only do DRL techniques show superior tracking performance with respect to traditional
flight control methods like PID control [16], the flexibility of NNs allows adaptability to different flight cir-
cumstances and fault-tolerance [17].

The increasing complexity of ML techniques comes with a major drawback. Where the initial ML models were
easy to interpret due to their limited complexity, state-of-the-art ML models are considerably more opaque
due to their many parameters [18]. Current ML models are often referred to as black box models, due to their
lack of transparency [19]. As current models are already considered opaque, and ML models are becoming
more and more complex, future ML models are likely to become more opaque [18]. Interpretability is defined
in this thesis as the ability to explain something in terms understandable to a human, and transparent is
defined as being inherently understandable. Explainability on the other hand is defined as the ability to
make a decision-making process understandable to humans, while still providing an accurate notion of this
decision-making process.

This thesis aims to increase the transparency of RL algorithms used for flight control. For aerospace appli-
cations, the lack of transparency is a major drawback when comparing DRL with classical techniques like
PID control. Before DRL algorithms are allowed for use in aerospace vehicle control, it is essential for control
engineers, other experts and regulatory agencies that the working principles can be explained. Therefore, the
need arises for eXplainable Reinforcement Learning (XRL) for flight control. Flight control engineers or other
experts working with RL for flight control will be able to enhance the performance of the flight control since
XRL provides more insight into the decision-making process of the RL agent. Finally, another promising ad-
vantage of explainable RL for flight control is the reduced development time. DRL models are often hard to
debug due to the complex and nonlinear models, dependence on the agent’s environment and the design of
the reward function. Having an explainable model could help debugging whenever the algorithm does not
work as intended, potentially reducing the development time by a significant amount.

1.2. CHALLENGES
Generally, the model interpretability of a machine learning model reduces as the model complexity is in-
creased [18], as displayed in Figure 1.3. Note that in this figure, complex models are regarded as more accu-
rate. However, simple models can be perfectly accurate for simple tasks. Complex models like deep learning
on the other hand, are not guaranteed to be always accurate. The complex and nonlinear nature of aerospace
vehicle dynamics requires the model to be, in itself, complex which in RL implies the use of DRL models.
Explaining these extensive and nonlinear models, often with many continuous inputs, in a clear way is a big
challenge. Therefore, breaking open the black box of DRL is a complex task in itself. Secondly, what is defined
as a clear explanation is open to interpretation and depends on the addressed audience. Currently, there is

1.3. RESEARCH GOAL AND RESEARCH QUESTIONS 3

no defined metric how the explainability for ML models can be assessed. Thirdly, another big challenge in
XRL for flight control is that every flight control application requires its own explanation. As an example, the
control strategy employed by a small UAV using monocular vision for obstacle avoidance should be explained
differently than the control strategy learned for fault-tolerant control of an airliner. No standard method ex-
ists, and while the working principles can be described in general to explain RL for flight control, this will
reduce the accuracy of the explanation and cause fine details specific to a certain application to be missed.
Finally, DRL for flight control, and especially explainability, is a very young research field, with limited pre-
vious research. At time of writing, research into eXplainable Artificial Intelligence (XAI) is accelerating [18],
however only one publication could be found focusing on explaining RL for flight control [20].

Figure 1.3: Trade-off between model interpretability and performance, and a representation of the area of improvement where the
potential of XAI (eXplainable Artificial Intelligence) techniques and tools resides [18].

1.3. RESEARCH GOAL AND RESEARCH QUESTIONS
The research goal of this thesis is defined as follows:

Research goal

Improve the transparency of reinforcement learning algorithms for flight control, by investigating ex-
isting explainable artificial intelligence techniques, and applying the most promising techniques to
explain flight control using a state-of-the-art reinforcement learning method.

This thesis aims to contribute to this research goal by answering the following research questions:

4 1. INTRODUCTION

Research questions

1. How can reinforcement learning (RL) methods be used for autonomous flight control?
1.1. What is the state-of-the art in RL for flight control?
1.2. Which aspects of RL for flight control are currently the least transparent?
1.3. Which working principles of RL for flight control are most helpful to explain for flight con-

trol engineers or other experts working with the algorithms?
2. How can eXplainable Artificial Intelligence (XAI) techniques be used to gain more insight into

the working principles of reinforcement learning?
2.1. What is the state-of-the-art of transparent RL algorithm design?
2.2. What is the state-of-the-art of post-hoc explainability techniques suitable for RL?

3. How can explainable reinforcement learning techniques be used to increase the trans-
parency of RL for adaptive flight control?
3.1. Which XAI techniques can be integrated with RL for adaptive flight control?
3.2. How can the most important flight control inputs be determined using XAI and how do

these influence the actuator output?
3.3. What is the influence of changing model weights to the accuracy of explanations produced

by the XAI technique?

1.4. REPORT OUTLINE
The remainder of this thesis report is structured as follows. Part I contains the main findings of the conducted
research in the form of a scientific paper, presenting how SHAP can be used to explain the learned strategy of
an online adaptive RL framework controlling six-dimensional nonlinear flight of a Cessna Citation I aircraft.
The utilized RL framework is Incremental Dual Heuristic Programming (IDHP), a state-of-the-art adaptive
critic design for adaptive and fault-tolerant control. First, the paper presents how SHAP can be used to explain
the input-output mapping of the actor module of the RL framework, responsible for applying the learned
strategy. Secondly, the paper presents how segments with near-constant weights can be distinguished, to
facilitate SHAP computations and explain the control strategy over time. Finally, the paper presents how the
learned control strategy of IDHP can be accurately explained linear models. Part II contains the literature
review used to select SHAP out of existing XAI techniques, and the preliminary analysis used to assess the
strengths and weaknesses of SHAP for explaining RL for low-level flight control 1. In Part III, additional results
are presented. First the linear explanation models obtained in Part I are validated by using these as control
laws for the Cessna Citation simulation. Secondly, it is shown how SHAP can be used to illustrate adaptive
properties of RL for flight control. Finally, the thesis is concluded in Part IV, presenting the answers to the
formulated research questions and including recommendations for future research.

1Part II has been graded as part of the AE4020 Literature Study course

I
SCIENTIFIC PAPER

5

Using Explainable Artificial Intelligence to Improve
Transparency of Reinforcement Learning for Online Adaptive

Flight Control

J.A.J. van Zijl∗ T. M. M. Nunes†, supervisor E. van Kampen‡, supervisor
Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Deep Reinforcement Learning (DRL) shows great potential for flight control, due to its
adaptability, fault-tolerance, and as it does not require an accurate system model. However,
these techniques, like many machine learning applications, are considered black-box as their
inner workings are hidden. This paper aims to break open the black box of RL for adaptive
flight control by applying Shapley Additive Explanations (SHAP). The generated explanations
are aimed at control experts, but can be useful for anyone interested in RL for adaptive
flight control. This research proposes a novel Constant Weight Segment Detection (CWSD)
algorithm, facilitating the use of eXplainable Artificial Intelligence techniques to adaptive
RL. The algorithm and its usefulness are tested on an Adaptive Critic Design controlling a
high-fidelity model of a Cessna Citation aircraft. It is demonstrated that SHAP in combination
with CWSD provides detailed and useful insights into the relation between input and output
of the RL algorithm. Using SHAP, linear relations between input and output are discovered,
simplifying the understanding of the learned strategy.

I. Introduction

Automation in vehicle control is currently gaining traction due to the increasing adoption and projected growth
of Unmanned Aerial Vehicles (UAVs) [1] and the development of self-driving cars [2]. These automatic control

systems require adaptability in order to operate in complex environments. Where one of the dominant challenges for
self-driving cars is the highly dynamic urban environment [3], the main challenges for Automatic Flight Control Systems
(AFCS) are the nonlinear and uncertain flight dynamics [4]. Typically, the AFCS of modern passenger aircraft is designed
using classical control theory switching between multiple linear controllers tuned around predetermined operating
conditions through gain-scheduling [5]. As the performance and stability of the AFCS designed through gain-scheduling
is heavily dependent on the accuracy of the flight model, extensive verification and validation of this model is required.
Not only is engineering this control technique a complex and time-consuming process, gain-scheduling also does not
guarantee stability for coupled dynamics [6] and allows only limited autonomous control under adverse, hazardous
flight conditions [7] and allows little fault-tolerance.

Reinforcement Learning (RL), one of the three domains of Machine Learning (ML), allows for adaptive control
without an accurate system model [8]. This ML framework bridges the gap between traditional optimal control,
adaptive control, and bio-inspired learning techniques [9]. The field of Deep Reinforcement Learning (DRL), which
combines RL with artificial Neural Networks (NNs), is currently gaining traction in the academic world [10], has
achieved super-human performance in video games [11] and outperformed the world’s best Go player [12]. While
RL shows potential for online adaptive flight control and numerous other applications, the increasing complexity of
ML techniques comes with a major drawback. Where initial ML models were easy to interpret due to their limited
complexity, state-of-the-art ML models are considerably more opaque due to their many parameters [13]. The attitude
policy NN in [14] for example consists of 9 input neurons, 2 layers with 64 hidden neurons, and 6 output neurons,
resulting in 5056 weights and 134 biases. From this type of NN it is not easy to interpret the control law that is learned
by the agent. The current trend of growing complexity in AI will further limit its interpretability [13]. Many modern
ML models are often referred to as black box models, as one can observe the input and output of the model, but the
inner workings are hidden [15]. This lack of transparency limits the trustworthiness of the chosen actions, which can be
a serious obstacle for real-life applications involving RL [16]. The research field of eXplainable Artificial Intelligence

∗Graduate Student, Faculty of Aerospace Engineering, Control and Simulation Department, Delft University of Technology
†PhD Student, Faculty of Aerospace Engineering, Control and Simulation Department, Delft University of Technology
‡Assistant Professor, Faculty of Aerospace Engineering, Control and Simulation Department, Delft University of Technology

1

(XAI) aims to improve the interpretability of AI. This paper aims to break open the black box of RL algorithms for
flight control, by increasing its transparency using existing XAI techniques.

The target audience is a key aspect regarding explainability of ML models, as it determines the specific level of
detail and content of the explanation [13]. The content and form of the explanation are therefore dependent on the
audience, and the quality of the explanation is assessed by this audience. This research targets aerospace control experts
as well as RL experts and developers, to facilitate development of RL for flight control. However, other audiences such
as control engineers unfamiliar with RL can also learn from the insights into the inner workings of RL for flight control.
Aerospace control and RL experts desire insights into the working principles of their algorithms for multiple reasons.
First of all, state-of-the-art RL algorithms are often hard to debug due to their complexity. Improved transparency for RL
can ease detecting and solving possible errors of the algorithms. Furthermore, better understanding of the algorithms
allows assessment of the robustness to unknown circumstances. Therefore, the RL expert may gain confidence in the
algorithm if it shows logical reasoning. Finally, RL experts may be able to learn from new insights provided by the
algorithm, made possible using explainable RL. These goals require technical and in-depth explanations, which will be
provided in this paper.

RL is used for flight control in different hierarchical levels of autonomy. High-level control includes autonomous
decision making, path planning, trajectory generation, and obstacle avoidance, as these tasks are ultimately responsible
for creating the trajectory. Low-level control comprises trajectory following using sensors and actuators. Within
these levels of automation, RL is used for at least 4 distinct applications. High-level RL control applications include
goal-based navigation [17–20] and autonomous obstacle avoidance [21, 22] , while low-level RL control applications
include adaptive flight control [23–26], and flight controller tuning [27, 28]. [29] shows how XAI can be used for UAV
goal-based navigation. From the four categories, adaptive control is the most active research field, due to the large
potential of NNs for adaptive control [30]. However, research into explainability of RL for adaptive flight control is
currently scarce.

The main contribution of this paper is to improve the transparency of RL techniques for adaptive flight control using
Shapley Additive Explanations (SHAP), a feature relevance XAI technique. A second contribution of this paper is
to facilitate the use of XAI techniques for adaptive control with continually changing NN parameters. In this work,
a novel algorithm, Constant Weight Segment Detection (CWSD), is proposed to enable SHAP computations in the
continually learning environment of online adaptive flight control. A state-of-the-art RL framework for adaptive control
is applied to simulate flight of a Cessna Citation I aircraft, after which the learned control strategy is explained using
SHAP. It is shown that SHAP in combination with CWSD can provide useful explanations, giving meaningful insights
into the inner workings of RL for adaptive flight control. One of the insights that will be shown is the discovery that the
strategy learned by the adaptive critic design for a simulated mission profile can be accurately represented using linear
expressions.

This paper is structured as follows. Section II presents how RL is used for adaptive flight control, including the
foundations of the Incremental Dual Heuristic Programming framework used as the example algorithm for this research.
Furthermore XAI techniques are introduced, including the method chosen for this research. Section III presents the
explanation methodology and facilitation of SHAP for explaining adaptive RL. Subsequently, Section IV presents the
flight simulation, used as example for the explanations. In Section V the controller is tested and its control strategy is
explained for an online training phase and a representative mission profile including online learning. Furthermore, the
effect of segment length on the explanation accuracy is investigated. Finally, the conclusions are presented in Section VI.

II. Foundations
This section introduces how RL is used for adaptive flight control, after which the selected framework is presented.

Subsequently, XAI techniques suitable for RL are presented. Finally, the selected XAI method is introduced.

A. Reinforcement Learning for Adaptive Flight Control
State-of-the-art RL frameworks such as Proximal Policy Optimization (PPO) outperform PID control for UAV

attitude control on multiple metrics including rise time, and average tracking error [24]. Adaptive Critic Designs (ACDs)
use NNs for approximation of the policy function (the actor module) and the value function (the critic module), and in
some variants for approximation of the global system dynamics [31]. By applying temporal-difference (TD) learning,
ACDs have shown accurate tracking and stable adaptive control for continuous and nonlinear problems, such as the
automatic landing of an aircraft [32], for six degree-of-freedom flight of a business jet [33], and for flight control of a
fighter jet [34]. While the ACD frameworks used in these researches and other RL frameworks such as PPO do not

2

require prior information about the controlled system, an offline learning phase is required. Recently developed ACD
frameworks such as IDHP [26], remove the need for this prior learning phase due to the introduction of incremental
control techniques. This framework allows online adaptive control of systems with unknown nonlinear dynamics [26],
shows superior tracking when compared to PID control and other ACDs, and shows robustness to unknown system
parameters and fault-tolerance during six-degrees of freedom nonlinear simulation of a Cessna Citation business jet
[35]. IDHP is used in this research as the example framework to show how XAI can be applied to explain RL for flight
control. While the chosen application is an adaptive RL control technique, the proposed explanation methodology is
relevant for any RL application using actor-critic structures.

ACDs, PPO and many other state-of-the-art RL algorithms such as Deep Deterministic Policy Gradient all share the
use of the-actor-critic structure, in which the actor represents the control policy 𝜋 used to select an action u𝑡 ∈ R𝑛×1,
where 𝑛 is the number of actions, based on the current state x𝑡 ∈ R𝑚×1, where 𝑚 is the number of states, and reference
state x𝑅𝑡 ∈ R𝑝×1, where 𝑝 is the number of reference states, as illustrated by Equation (1). Following this chosen action
and the state of the environment, the controlled system changes according to the potentially nonlinear discrete-time state
transition, represented by the function 𝑓 in Equation (2). Following this change in state, the agent receives a reward 𝑟𝑡 .
The sum of discounted future rewards from a certain state is defined as the value or cost-to-go (V), which is estimated by
the critic. The definition for the cost-to-go for this paper is shown in Equation (3), where the discount factor 𝛾 ∈ [0, 1]
is used to diminish future rewards. The policy 𝜋 is optimized during training to maximize the cost-to-go. Therefore, the
reward signal should reinforce desired control behavior

u𝑡 = 𝜋(x𝑡 , x𝑅
𝑡) (1)

x𝑡+1 = 𝑓 (x𝑡 , u𝑡) (2)

𝑉 (x𝑡 , x𝑅
𝑡) =

∞∑︁
𝑙=𝑡

𝛾𝑙−𝑡𝑟𝑡 (3)

B. Incremental Dual Heuristic Programming
The IDHP framework described in the following subsection and used throughout the paper is adapted from [35]. The

reward function, given by Equation (4), is defined as the negative weighted difference between x𝑅𝑡 and x𝑡+1, to penalize
discrepancies between the reference and actual state. The boolean selection matrix P ∈ R𝑝×𝑚 selects the controlled
states from x, while the symmetric weighing matrix Q ∈ R𝑝×𝑝 controls the relative cost between the 𝑝 controlled states.
IDHP does not use the scalar reward itself for optimizing the approximator weights, but utilizes 𝛿𝑟𝑡+1

𝛿x𝑡+1 ∈ R1×𝑚: the
derivative of the reward function with respect to the state vector x𝑡+1 as given by Equation (5).

𝑟𝑡+1 = 𝑟 (x𝑅
𝑡 , x𝑡+1) = −

[
P · x𝑡+1 − x𝑅

𝑡

]𝑇 Q
[
P · x𝑡+1 − x𝑅

𝑡

]
(4)

𝛿𝑟𝑡+1
𝛿x𝑡+1

=
𝛿𝑟 (x𝑅

𝑡 , x𝑡+1)
𝛿x𝑡+1

= −2
[
x𝑡+1 − x𝑅

𝑡

]𝑇 QP (5)

The schematic representation of the feedforward signal flow of the used IDHP framework for a single time step is
presented in Figure 1, including the three trainable parametric modules: the critic approximating the derivative of the
value function with respect to the state vector 𝜆̂𝑡 (x𝑡 , x𝑅

𝑡 ,w𝑐) = 𝛿V̂ (x𝑡)
𝛿x𝑡 , the actor approximating the optimal control

strategy 𝜋̂(x𝑡 , x𝑅
𝑡 ,w𝑎) and the incremental system model. The reference signal x𝑅 originates from the outer loop

reference, while the state vector x is the system output from the previous time step. The 𝑧−1 blocks represent one
step time delays. Not only are the NNs themselves black-box elements, the complex structure of IDHP includes an
incremental model and intensive routing which further limits the transparency of the framework.

1. Critic and Actor Neural Networks
The critic and actor use single hidden layer fully connected multilayer perceptron NNs, schematically illustrated in

Figure 2. The critic estimates the partial derivatives of the value function with respect to the state vector, while the actor
NN approximates the control policy by mapping (x, x𝑅) to the actuator deflections u. Both NNs use the same input
structure and each has one hidden layer consisting of 10 neurons utilizing the hyperbolic tangent activation function

3

Actor System

Critic

Incremental
Model

+

-

+

-

Reward
Function

Fig. 1 Feedforward flow of the IDHP framework during a single time step, adapted from [35].

with limits [−1, 1]. The output layer neurons of the critic use linear activation functions such that the output of this NN
is unbounded. The output layer neurons of the actor use hyperbolic tangent functions bounded on the domain complying
with the physical limits of the control actuators introduced in Section IV. The NNs do not use neuron bias because the
trim values of the aircraft are known to the controller, which will be further elaborated on in Section III.

Hidden
layerInput Output

layer

(a) Critic, with linear activation for the output

Hidden
layerInput Output

layer

(b) Actor, with hyperbolic tangent activation for the output

Fig. 2 Schematic representation of the neural network approximators. Neuron bias is not applied and both
networks use hyperbolic tangent activation functions for the hidden layer.

The update rule of the critic is defined in Equation (6), where e𝑐 (𝑡) is defined as in Equation (7) [26]. The update rule
of the actor is presented in Equation (8) [26].

w𝑐 (𝑡 + 1) = w𝑐 (𝑡) − 𝜂𝑐 · e𝑐 (𝑡)𝑇 · 𝜕𝜆̂(x𝑡)
𝜕w𝑐 (𝑡) (6)

e𝑐 (𝑡) = 𝜆̂(x𝑡) − 𝛾𝜆̂(x𝑡+1) 𝜕x𝑡+1
𝜕x𝑡

− 𝜕𝑟𝑡
𝜕x𝑡

(7)

w𝑎 (𝑡 + 1) = w𝑎 (𝑡) − 𝜂𝑎 ·
[
𝜕𝑟𝑡
𝜕u𝑡
+ 𝛾𝜆(x𝑡+1)G𝑡−1

]
· 𝜕𝜋(x𝑡 , x

𝑅
𝑡 ,w𝑎 (𝑡))

𝜕w𝑎 (𝑡) (8)

2. Incremental Model
IDHP differentiates itself from other ACD frameworks by using an incremental model for approximation of the

system dynamics, exploiting the high-frequency measurements of x and u. This technique can successfully manage
nonlinear systems if the sample rate of the measurements is sufficiently high [36]. The incremental model is presented
in Equation (9), where the state increment Δx𝑡+1 = x𝑡+1 − x𝑡 , the system matrix F𝑡−1 = F(x𝑡−1, u𝑡−1), the control
effectiveness matrix G𝑡−1 = G(x𝑡−1, u𝑡−1), and the control increment Δu = u𝑡 − u𝑡−1. Assuming that the sampling

4

frequency is sufficiently high and the system is relatively slow-varying, Equation (9) describes a linear time-varying
approximation of the nonlinear aircraft dynamics [26]. The update rules used for this model are derived in [37].

Δx𝑡+1 ≈ F𝑡−1Δx𝑡 +G𝑡−1Δu𝑡 (9)

C. Explainable Artificial Intelligence
The research field of XAI aims to solve the black box problem of state-of-the-art AI techniques, where the many

model parameters and complex structures limit model interpretability. Generally speaking, there is a trade-off for AI
models between interpretability and model approximation power as illustrated in Figure 3. The inner workings of
models such as decision trees for example is easy to understand, but their modelling power is limited. NNs on the
other hand are among the most powerful tools in terms of modelling power, but are difficult to understand due to their
many parameters and nonlinearities. Interpretability in this paper is defined as the ability to explain something in terms
understandable to a human [13]. Models are considered opaque or black box if their inner workings are hidden [15],
while the antonym of this property is transparent. Most AI models cannot be described using these two extremes, but
are best described on the spectrum between transparent and black box.

Fig. 3 Trade-off between model interpretability and performance, and a representation of the potential of
explainable artificial intelligence techniques, adapted from [13].

While XAI is becoming a more intensive research field [13], research into eXplainable Reinforcement Learning
(XRL) is relatively sparse [38]. Currently, most XRL solutions apply transparent design where interpretability is one of
the design drivers. Examples include reward decomposition to generate explanations using trade-offs in the reward signal
[39], and explainable navigation using fuzzy RL with linguistic terms and logical IF-THEN statements [40]. The other
suite of XAI techniques, post-hoc explainability, show more potential for explaining RL for flight control as they do not
require compromises of accuracy for interpretability and because these techniques are often model-agnostic, meaning
that they are not designed with a specific framework in mind and are therefore suitable for any ML model. Grad-CAM is
an example of a model-agnostic post-hoc XAI technique [41], generating visual explanations of ML models utilizing
convolutional NNs. Local Interpretable Model-agnostic Explanations (LIME) [42] and SHapley Additive eXplanations
(SHAP) [43] are feature relevance XAI techniques, aiming at ranking and/or measuring every feature’s influence on the
prediction output of the ML model [13]. While being developed for supervised and unsupervised learning, SHAP has
been proven to provide useful explanations for RL applications such as the longitudinal acceleration control of a car [44]
and for goal-based UAV navigation [29].

SHAP is used in this research to explain the input-output mapping of the actor NN for multiple reasons. First of all,
SHAP is a post-hoc explainability tool, therefore no compromises are required in terms of reduced complexity of the
implemented ML model for increased transparency. Secondly, SHAP is model-agnostic, indicating that it can be used
for any ML model, allowing the explanation methodology to be used with any RL framework. Finally, SHAP is more
accurate than LIME, as the output of SHAP’s explanation model is proven to always match the original model [43]. A
disadvantage of SHAP is its computational expense, which is considerably higher than LIME. However, as this research
aims at providing meaningful and trustworthy insights of the RL algorithms for control experts, accuracy is deemed
more important than computational expense.

5

D. Shapley Additive Explanations
Inspired by Shapley values from cooperative game theory, SHAP [43] provides explanations for any ML model

using the additive feature attribution shown in Equation (10), where 𝑓 (𝑥) is the original model (not to be confused
with the state transition model), 𝑔(𝑥 ′) a simplified explanation model and 𝑥 ′𝑖 , the simplified input using the mapping
function 𝑥 = ℎ𝑥 (𝑥 ′). The base value, 𝜙0 = 𝑓 (ℎ𝑥 (0)), represents the model output without knowledge of any of the
features. Features are defined as the observation space, the states returned by the environment used as input by the NN.
By calculating the marginal contributions of all features in all possible permutations, SHAP determines the SHAP
values 𝜙, representing the contributions of every feature to the model output.

𝑓 (𝑥) ≈ 𝑔(𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 (10)

To apply SHAP for NNs with nonlinearities, this paper uses DeepSHAP [45], a model-specific algorithm of SHAP
developed using the DeepLIFT algorithm [46]. This algorithm locally linearizes nonlinearities in the NN to compute
the gradients between input and output, and uses a set of background samples to calculate the marginal contributions
under all permutations, resulting in a guarantee of local accuracy [29]. This background set is often a random subset of
all provided samples. In DeepSHAP, the mapping function 𝑥 = ℎ𝑥 (𝑥 ′) represents whether a feature is missing from the
data set. As this paper assumes that all states are constantly measurable, all features are always assumed to be known and
hence 𝑥 ′𝑖 = 1 ∀ 𝑖. Furthermore, as the local accuracy holds under DeepSHAP, Equation (10) can be rewritten as follows:

𝑓 (𝑥) = 𝑔(𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖 (11)

III. Explanation Methodology for Adaptive Reinforcement Learning
This section presents how SHAP can be used to explain the inner workings of adaptive RL. First, the general

explanation strategy for actor-critic structures with SHAP will be introduced. Subsequently, the technique for facilitating
SHAP for adaptive control using the constant weight segment detection algorithm will be presented. Finally, the
characteristics and possibilities of two specific SHAP plots will be explained.

A. Explaining Actor Input-Ouput Mapping using SHAP
Many state-of-the-art RL frameworks developed for low-level autonomous control, including IDHP, use the

actor-critic structure as foundation of the framework. The actor and critic modules are often supplemented with
additional framework-specific elements like the incremental model for IDHP [26], a target critic network [35], or
experience replay for Deep Deterministic Policy Gradient [24]. This results in opaque decision-making, as not only the
framework structure is complex, the inner workings of the individual elements including the NN of the actor and critic
are also often hidden. However, only the actor module holds the policy function 𝜋(x, x𝑅), ultimately responsible for
choosing the actions based on the measured state and desired state. Therefore, the actor contains the learned strategy
represented by w𝑎, while the other elements are responsible for the learning process. The proposed methodology to
better understand the inner workings of actor-critic RL is to extract this learned strategy by explaining the input-output
mapping of the actor module using SHAP, as illustrated in Figure 4.
By recording the input of the actor NN and its weight vector w𝑎, the SHAP values 𝜙 can be computed. Using SHAP’s
DeepExplainer, a copy of the actor NN is created with the same model parameters. Then, using the recorded inputs and
the explanation model, the SHAP values are calculated. For the Shapley permutation calculations, a set of background
samples is required. Generally speaking, the accuracy of the explanation increases when the number of background
samples increases, but the computation time increases exponentially. Currently a rule of thumb for the number of
background samples does not yet exist. In this research, 200 background samples are used for the SHAP calculations,
unless differently specified.

B. Constant Weight Segment Detection
The SHAP explanation model requires constant model parameters. The actor weight vector w𝑎 in adaptive flight

control, however, is often changing due to the online learning. As non-constant model parameters have not yet been
studied for SHAP models, a novel Constant Weight Segment Detection (CWSD) technique is proposed. The goal of

6

Actor System

Critic and
other elements

Explanation
model

Fig. 4 General explanation strategy for actor-critic RL frameworks, illustrated for the IDHP example. The
orange arrow indicates backpropagation for optimizing the actor parameters, and the blue arrow represents
copying of the actor network parameters for the SHAP analysis.

this algorithm is to generalize the behavior of the adaptive agent, by selecting segments with near-constant weights.
However, different weights do not necessarily imply that the input-output mapping has changed. Therefore it is possible
that CWSD selects multiple segments where the input-output mapping is actually similar. Whether these segments show
different learned behavior can be analyzed using SHAP or potentially other XAI techniques. This method, summarized
in Algorithm 1, selects time segments in which w𝑎 is kept within a certain variation, based on the tunable maximum
allowable weight deviation Δ𝑤𝑚𝑎𝑥 , minimum segment length 𝑆𝑚𝑖𝑛, and maximum segment length 𝑆𝑚𝑎𝑥 . Starting from
𝑡 = 0, the actor weight vector w𝑎 (𝑡) is marked as a border 𝑏 when any of its elements deviates more than Δ𝑤𝑚𝑎𝑥 with
respect to the previous border. The definition of this maximum deviation is presented in Equation (12), where 𝜖𝐶𝑊 is a
tunable parameter determining Δ𝑤𝑚𝑎𝑥 as a percentage of the maximum deviation in w𝑎. Another reason for defining
w𝑎 (𝑡) as a border is when the number of time steps since the previous border surpasses the maximum segment length
parameter 𝑆𝑚𝑎𝑥 . After the borders have been determined, the segments between borders are selected if their length
is more than the minimum segment length 𝑆𝑚𝑖𝑛. The resulting output is S, the set of constant weight sections with
potentially unequal lengths. The SHAP analysis, following the CWSD, uses w𝑎 at the centre point of the segment. The
sample coverage metric, defined in Equation (13) where 𝐿𝑠 ∈ N represents segment length and N is the total number
of samples, assesses the ratio between the samples covered by the constant weight segments and the total number of
samples. An example outcome of the CWSD algorithm can be seen in Figure 12, where the borders are represented
using vertical blue lines, and the selected regions by the blue shaded area between the borders.

Δ𝑤𝑚𝑎𝑥 = 𝜖𝐶𝑊 · (max w𝑎 −min w𝑎) (12)

sample coverage =

∑𝑆
𝑠=0 𝐿𝑠

𝑁
(13)

With CWSD, a trade-off can be made between accuracy of the constant weights section approximations, and generalization
of the dynamics, using 𝜖𝐶𝑊 . A low 𝜖𝐶𝑊 setting allows little weight variance within a segment, often resulting in many
shorter segments. The function approximation of these shorter segments is generally better compared to segments
detected with higher 𝜖𝐶𝑊 settings, but the use of many segments prevents generalization of the dynamics. Furthermore,
it will be shown that segments that are too short can result in accurate global function approximation, but poor local
approximation. With a higher 𝜖𝐶𝑊 setting, CWSD is more lenient regarding weight variance, often resulting in fewer
and longer segments, with a reduced function approximation accuracy. However, this limited number of segments is
beneficial for generalization of the dynamics.

The 𝑆𝑚𝑖𝑛 parameter allows a trade-off between sample coverage and SHAP accuracy. Generally speaking, the
accuracy of the SHAP values increases when the number of background samples increases. Therefore, SHAP values
within longer constant weight segments will likely be more accurate. Currently, a rule of thumb regarding the
recommended number of SHAP background samples for RL does not yet exist. Another difficulty is that there is yet no
method of assessing the accuracy or certainty of SHAP values. Higher 𝑆𝑚𝑖𝑛 settings will often result in reduced sample
coverage, as potential segments shorter than 𝑆𝑚𝑖𝑛 will be excluded. Furthermore, 𝑆𝑚𝑖𝑛 can be used to prevent very short
segments which, as mentioned for 𝜖𝐶𝑊 , can exhibit poor local accuracy. Finally, the 𝑆𝑚𝑎𝑥 parameter does not control a

7

Algorithm 1: Constant Weight Segment Detection
input : Actor parameter vector w𝑎 ∈ R𝑀𝑥𝑁 , maximum allowable deviation 𝜖 , minimum segment length 𝑆𝑚𝑖𝑛,

maximum segment length 𝑆𝑚𝑎𝑥

output : Constant weight segments S
determine maximum allowable weight change Δ𝑤𝑚𝑎𝑥 ← 𝜖 · (max(w𝑎) −min(w𝑎)) ;
initialize empty border list B;
initialize last border vector w𝑙𝑖𝑚 ← w𝑎 (𝑡 = 0) ;
B.insert(0);
for t=0, 1, 2, ..., N do

for m=0, 1, 2, ..., M do
if w𝑎 (𝑚) − w𝑙𝑖𝑚 (𝑚) > Δ𝑤𝑚𝑎𝑥 or 𝑡 − 𝑏𝑙𝑎𝑠𝑡 > 𝑆𝑚𝑎𝑥 then
B.insert(t) ;
break

end
end

end
set number of borders 𝐵← B.𝑙𝑒𝑛𝑔𝑡ℎ ;
for b=0, 1, 2, ..., B-1 do

if B(𝑏 + 1) − B(𝑏) > 𝑆𝑚𝑖𝑛 then
S.insert(b) ;

end
end

trade-off, but can be used to force long segments into multiple shorter segments, if segments with similar length are
desired for example. The relation between number of background samples and accuracy of the SHAP values will be
investigated by comparing the SHAP results of the same time series data, with altering 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 values.

C. Combined Dependence Plot
The SHAP dependence plot shows the relation between feature value 𝑥𝑖 and SHAP value 𝜙𝑖 for one of the NN’s

inputs. This allows detailed investigation of the relation between feature value and its effect on the model output. To
compare this relation between the different segments, the novel combined dependence plot is proposed. This plot shows
the relation between 𝑥𝑖 and 𝜙𝑖 for every segment on the same plot. Furthermore, the dependence plots for all features
can be combined in the same figure. By including the dependence plots of the other features and using the same scale
for 𝜙, feature importance can be estimated by comparing the range of 𝜙. A feature with higher importance will have a
larger range and vice versa.

IV. Flight Simulation
This section presents the flight simulation of a Cessna Citation II controlled with IDHP, serving as an example to

investigate how SHAP can be used to explain RL for adaptive flight control. The flight control simulation is adapted
from [35]. First, the high-fidelity simulation model will be introduced. Secondly, the flight controller including IDHP
will be presented together with the used hyperparameters.

A. Cessna Citation Simulation Model
The data used is generated using a high-fidelity, six degrees-of-freedom, non-linear model of the Cessna Citation

500, developed by Delft University of Technology. The model includes engine and actuator dynamics as well as sensor
models. The state space of the simulation is presented in Equation (14), and the action space in Equation (15). The roll
angle is described using 𝜑, to prevent confusion with the SHAP values. 𝑝, 𝑞 and 𝑟 are the roll rate, pitch rate and yaw
rate, respectively. 𝑉𝑡𝑎𝑠 is the aircraft’s true airspeed. 𝛼, 𝛽 and 𝜃 are the angle of attack, sideslip angle and pitch angle,
respectively. Finally, 𝐻 is the aircraft’s altitude.

For this simulation, a sampling frequency of 50 Hz is used. The thrust of the aircraft is controlled using autothrottle,

8

and the built-in yaw damper is disabled to allow full control authority of the rudder. Furthermore perfect measurements
are assumed, therefore the sensor models are not used. The asymmetric actuator deflection saturation limit for 𝛿𝑒 is
[-20.05, 14.90] deg. The symmetrical saturation limits for 𝛿𝑎 and 𝛿𝑟 are respectively ± 37.24 deg and ± 21.77 deg.

x𝑇 = [𝑝 𝑞 𝑟 𝑉𝑡𝑎𝑠 𝛼 𝛽 𝜑 𝜃 𝐻] (14)

u𝑇 = [𝛿𝑒 𝛿𝑎 𝛿𝑟] (15)

B. Flight Controller
The flight controller used to control the simulated Cessna Citation is schematically illustrated in Figure 5. Assuming

no significant coupling between longitudinal and lateral controller, the IDHP framework is used for angular rate control,
for both longitudinal and lateral control. Rate control is less complex than angle control due to the direct relation
between actuator output and angular rate. PID controllers are used for the outer loop control, resulting in 𝑝𝑟𝑒 𝑓 for
the lateral IDHP controller controlling 𝛿𝑒, and 𝑞𝑟𝑒 𝑓 for the longitudinal controller controlling 𝛿𝑎 and 𝛿𝑟 . 𝛽𝑟𝑒 𝑓 is
always set to 0, to prevent undesired sideslip. The boolean selection matrices P as defined in Equation (5) are set up
to select the relevant controlled states. Q𝑙𝑜𝑛 is 1, as the longitudinal controls one state. The lateral controller uses
Q𝑙𝑎𝑡 = diag(1, 100) as the 𝛽 − 𝛽𝑟𝑒 𝑓 error is often significantly smaller than the 𝑝 − 𝑝𝑟𝑒 𝑓 error.

+
-

PID +
-

-
+

PID Longitudinal
Controller

+

-
PID Lateral

Controller

Plant

+

+

+
+

Fig. 5 Schematic representation of the flight controller, adapted from [35].

The hyperparameters of both the lateral and longitudinal IDHP controllers are similar: the learning rate of the actor, 𝜂𝑎,
is fixed at 1, and the learning rate of the critic, 𝜂𝑐, is fixed at 2. The discount factor 𝛾 = 0.8. The NN weight vectors w𝑎

and w𝑐 are randomly initialised with 𝑁 (𝜇 = 0, 𝜎 = 0.05).

V. Results and Discussion
This section presents the results and discussion of the conducted experiment. First, the longitudinal and lateral

controller are trained using pitch and roll rate tracking tasks, after which the learned control behavior is explained
using a waterfall plot, to introduce how SHAP can be used to explain RL for flight control, and using SHAP summary
plots to show feature importance and relation between input-output mapping of the actor. Secondly, the trained IDHP
controller is used to simulate a typical flight profile including climbs, descents, and coordinated turns, after which the
learned control strategy is explained. Both the training and mission profile phase use online control, indicating that the
framework is learning on-the-go from the data it generates by executing its policy. As the model parameters change
during the online adaptive flight, CWSD is used after the simulation to generalize the control strategy. As the CWSD
algorithm requires the complete w𝑎 vector over time, the SHAP analysis is performed after the simulation. Finally, the
effect of segment length and of background samples on the explanation model accuracy is investigated.

A. Training Phase
In this section, the training process of both the longitudinal and the lateral controllers is discussed, after which the

learned strategy is explained using SHAP. As the model parameters are stable when training converges, the training

9

process is relatively simple process to explain how SHAP can be used to interpret the learned strategy of RL for flight
control, before moving on to the mission profile with continuously changing weights.

1. Simulation
Similar to [35], the longitudinal and lateral controller are trained separately such that the system matrix F̂, control

effectiveness matrices Ĝ and actor and critic parameters w𝑎 & w𝑐 converge to stable values. To minimize coupling
effects, both controllers are trained while keeping the actuators associated with the other controller constant at trim
value. The longitudinal controller is trained using a sinusoidal pitch rate tracking task with an amplitude of 5◦ and a
frequency of 0.2 Hz, during a period of 60 s as shown in Figure 6.

5

0

5

q
[d

eg
/s

]

Longitudinal

4

6

 [d
eg

]

2.5

5.0

 [d
eg

]

0 10 20 30 40 50 60
time [s]

3
2
1

e [
de

g]

5
0
5

p
[d

eg
/s

] Lateral

0.5
0.0
0.5

r [
de

g/
s]

0.25
0.00
0.25

 [d
eg

]

5
0

 [d
eg

]

1
0
1

a [
de

g]

0 20 40 60 80 100 120 140
time [s]

0.5
0.0
0.5

r [
de

g]

Fig. 6 Input and output of the actor neural network during the individual longitudinal and lateral training
phase. Reference values are indicated using the black dashed lines, while the trim conditions are illustrated
using the orange dashed lines. The sample indicated with the red dashed line for the longitudinal controller is
explained in Figure 8.

The lateral controller is trained using a roll rate tracking task with an amplitude of 5◦ and frequency of 0.1 Hz and
𝛽𝑟𝑒 𝑓 = 0. The training phase of the lateral controller is 150 s, as the task of minimizing sideslip is more complex
than a rate tracking task, due to the rudder deflection being more closely related to yawing rate than to the sideslip
angle. The elevator deflection 𝛿𝑒 and the aileron deflection 𝛿𝑎 have a relatively direct relation to 𝑞 and 𝑝, respectively.
The relation between the rudder deflection 𝛿𝑟 and the sideslip angle 𝛽 is more difficult to learn. To force state-space
exploration, exponentially decaying sinusoidal excitation is used for 𝛿𝑒 and 𝛿𝑎. This excitation is a damped sine wave,
with an amplitude of 1◦, the frequency is 0.2 Hz, and the time constant 𝜏 is 5 s. The excitation decays over time such
that controllers do not learn to compensate for the decaying signal. The sinusoidal excitation is not used for 𝛿𝑟 as the
yawing movement is excited through the aircraft’s Dutch roll eigenmode. Figure 6 shows the input and output of the
actor NN during the training phase for both the longitudinal and the lateral controller. Stable tracking of 𝑝𝑟𝑒 𝑓 and 𝑞𝑟𝑒 𝑓
is obtained in 15 seconds, while 𝛽 is minimized after approximately 90 seconds. The reason for the slower minimization
of 𝛽 will be explained using the system identification visualization.

Figure 7 presents the convergence of the system model estimates and the actor and critic weights. Most parameters
of F̂ and Ĝ converge in approximately 15 seconds, except for the parameters corresponding to 𝛽 and 𝛿𝑟 , as the yawing
motion is more complex to estimate due to the rudder not being directly excited and the control surfaces being more
related to angular rotation than to the sideslip angle [35]. The stable model identification parameters allow w𝑐 and w𝑎

to converge after approximately 40 seconds for both the longitudinal and the lateral controller. As these last 20 seconds
of the training phase show constant weights, this time segment is used to explain the learned strategy using SHAP.

10

0 10 20 30 40 50 60

0

5

F
[-]

q
q

q

q
q

q

q

0 20 40 60 80 100 120 140

0.0

0.5

1.0

F
[-]

p
p
r
p

p

p
p
r
r
r

r

r
p

r
p
r

0 10 20 30 40 50 60

1.0

0.5

0.0

G
 [-

]

q
e e e

0 20 40 60 80 100 120 140

0.2

0.1

0.0

G
 [-

]

p
a
r
a

a

a

p
r

r
r

r

r

0 10 20 30 40 50 60

0.5

0.0

0.5

w
a [

-]

0 20 40 60 80 100 120 140
0.50

0.25

0.00

0.25

w
a [

-]

0 10 20 30 40 50 60
t [s]

5

0

5

w
c [

-]

0 20 40 60 80 100 120 140
t [s]

5

0

5

w
c [

-]

Fig. 7 Convergence of the system and control effectiveness matrices and the actor and critic weights during
training of the longitudinal (left) and lateral (right) controllers. The sample at the time step indicated with the
red line of the longitudinal controller is explained in Figure 8.

2. Explanation
To introduce how SHAP can be used to explain RL for flight control, the waterfall plot will be presented first. This

plot is less complex compared to other SHAP plots as it explains one single prediction as opposed to global insights.
The waterfall plot is created for the time instance indicated using the red dashed line in Figure 6 and Figure 7, and the
used SHAP values are calculated based on all samples during the last 20 seconds of the longitudinal training phase.
It is assumed the weights are near-constant during this period, as the actor weights have converged before it. From
these last 20 seconds, 200 randomly selected instances are selected as the SHAP background samples. Figure 8 shows
the waterfall plot for the longitudinal controller at 𝑡 = 57.24𝑠, the time instance marked with the red dashed line in
Figure 6 and Figure 7. This time step is selected as it displays both positive and negative SHAP values. Starting from
the SHAP base value, calculated as the average NN output during the last 20 seconds 𝜙0 = 𝐸 [𝛿𝑒] = 0.181 deg, the
individual SHAP components 𝜙𝑖 are added, resulting in the final actor output 𝛿𝑒,𝑆𝐻𝐴𝑃 = −0.024 deg. This model
output is the deviation from the elevator trim setting 𝛿𝑒𝑡 = −2.49 deg. Note that the trim value is not the same as the
SHAP base value, as 𝜙0 is computed as the average model output during the provided time instances and therefore
changes depending on the provided time window. Using the individual SHAP values 𝜙𝑖 , the waterfall plot shows how
every feature contributes to the final model output. Given the time instance illustrated in Figure 8 for example, both 𝑞
and 𝜃 have an important contribution, pushing or pulling 𝛿𝑒 relative from its base value. The provided value of 𝜃 has a
positive contribution, while 𝑞 for this sample has a negative contribution. The contribution from 𝛼 and 𝑒𝑟𝑟𝑞 is less
significant for this sample. As SHAP measures the marginal contribution, which is often dependent on the distribution
of the other feature values, the SHAP value for a given feature value can change depending on the other features. For
example, 𝜙𝑞 = 0.4833 for 𝑞 = 0.16524 deg/s according to Figure 8. While keeping 𝑞 constant but changing the value of
the other features, it is possible that 𝜙𝑞 changes. To investigate this interaction behavior, more samples are required.

While the waterfall plot is useful for local interpretability and to introduce the basic principles of SHAP, it does not
offer global insights such as average feature importance, relation between feature value and SHAP value, and insights
into interaction behavior. The SHAP summary plot provides global interpretability by showing feature importance and

11

0.1 0.0 0.1 0.2 0.3 0.4 0.5
SHAP value

errq = 0.048 deg/s

 = 6.367 deg

 = 4.087 deg

q = 1.6525 deg/s

+0.0461

-0.0623

+0.2835

-0.4755

E[e]=0.184

e = 0.024

Fig. 8 Waterfall plot for 𝛿𝑒 at 𝑡 = 57.24 s, showing the positive and negative contributions to 𝛿𝑒, starting from
the base value 𝐸 [𝛿𝑒] = 0.181 deg. The model output 𝛿𝑒 = −0.024 deg represents the deviation from the elevator
trim value 𝛿𝑒𝑡 = −2.49 deg.

a qualitative description of the relation between feature value and SHAP value. Figure 9 shows the SHAP summary plot
of 𝛿𝑒, based on all x samples and the near-constant w𝑎 during the last 20 seconds of the longitudinal controller training.
Figure 9 shows that the high feature importance of 𝑞 and 𝜃 in the waterfall plot Figure 8 is not incidental, as these
two features are significantly more important than 𝛼 and 𝑒𝑟𝑟𝑞 . Furthermore, Figure 8 shows the qualitative relation
between SHAP value on the x-axis and feature value, colored from low represented with blue to high represented in red.
This explains that high pitch rates enforce negative 𝛿𝑒 and vice versa, while high 𝜃 enforces positive 𝛿𝑒 and vice versa.
The exact relation between feature value and SHAP value can be observed using the dependence plots, which will be
introduced to explain the mission profile, together with a more extensive analysis of the learned strategy.

1.5 1.0 0.5 0.0 0.5 1.0
SHAP value (impact on model output)

errq

q

Low

High
Fe

at
ur

e
va

lu
e

Fig. 9 SHAP summary plot for 𝛿𝑒, using all samples of the last 20 seconds of longitudinal controller training.

Figure 10 shows the summary plots for 𝛿𝑎 and 𝛿𝑟 , based on the last 20 seconds of the lateral controller tuning. For both
these actor outputs, 𝑝 is the most important feature, followed by 𝜑. The other features are significantly less important.
Similar to 𝛿𝑒, the exact relations between the feature values and their corresponding SHAP values are presented during
the analysis of the full mission profile.

1.0 0.5 0.0 0.5
SHAP value (impact on model output)

err

errp

r

p

Low

High

Fe
at

ur
e

va
lu

e

(a) 𝛿𝑎 output

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
SHAP value (impact on model output)

err

r

errp

p

Low

High

Fe
at

ur
e

va
lu

e

(b) 𝛿𝑟 output

Fig. 10 SHAP summary plots of the lateral controller based on the last 20 seconds of the training phase.

12

B. Full Mission Profile
After the online training phase, the converged incremental model parameters and NN parameters of the actor

and critic are used to initialize the longitudinal and lateral controller to simulate a typical mission profile where the
online-learning longitudinal and lateral controller are used simultaneously. This section first presents the results from
the mission profile. Then the learned strategy of the longitudinal controller is explained using the CWSD algorithm and
SHAP. Finally, the learned control strategy of the lateral controller is explained.

1. Simulation
The mission profile, similar to [35], includes a climb, descent, and multiple left and right turns executed during

270 s. While the converged incremental model and actor and critic parameters are used to initialize the longitudinal
and lateral controllers, online learning continues during flight. Figure 11 shows the executed mission profile, starting
at 𝐻 = 2000 m and 𝑉0 = 90 m/s. For the longitudinal controller, the altitude mission profile is converted into 𝑞𝑟𝑒 𝑓
using the PID controller. For the lateral controller, the coordinated bank profile is converted into 𝑝𝑟𝑒 𝑓 using the PID
controller, which is forwarded to the IDHP agent together with 𝛽𝑟𝑒 𝑓 = 0.

0.0
2.5

q
[d

eg
/s

] Longitudinal

5
0
5

p
[d

eg
/s

] Lateral

4

6

 [d
eg

]

2.5
0.0
2.5

r [
de

g/
s]

0

10

 [d
eg

]

0.2
0.0

 [d
eg

]

3.5
3.0
2.5

a [
de

g]

1
0
1

a [
de

g]

2000
2250

H
[m

]

0.5
0.0
0.5

r [
de

g]

0 50 100 150 200 250
time [s]

77.5
80.0

V
[m

/s
]

0 50 100 150 200 250
time [s]

25
0

25

 [d
eg

]

Fig. 11 Input and output of the actor neural network during the combined mission profile, for both the
longitudinal and the lateral controller. The reference values for both IDHP and the PID controllers are shown in
black dashed lines, while the actuator trim values are shown using orange dashed lines.

2. Explanation Longitudinal Controller
The changing actor model parameters of the longitudinal agent are presented in Figure 12, together with the

selected segments, the result of the CWSD algorithm applied to the longitudinal controller. The CWSD algorithm
uses 𝜖𝐶𝑊 = 0.05, 𝑆𝑚𝑖𝑛 = 200, and 𝑆𝑚𝑎𝑥 = ∞. The 𝜖𝐶𝑊 parameter is found by trial and error, and the 𝑆𝑚𝑖𝑛 parameter
prevents segments that are too short, which lead to poor local fit as will be described in more detail later. The borders of
the selected segments are indicated using the vertical blue lines, while the vertical red dashed lines indicate the centre of
the segments where the model weights are selected for the SHAP analysis.

To present and compare the SHAP values from all segments, the combined dependence plots are used. Figure 13
shows these plots for 𝛿𝑒, where linear relations between feature value and SHAP value for every segment of 𝛿𝑒 can be
observed. The summations of neurons and nonlinear activation functions allow nonlinear relations, but the learned
strategy between feature value and SHAP value is apparently linear. In the rest of this paper, the relationships between
feature value and SHAP value will be described using linear relationship properties like slope and bias. Not only are
the relationships between feature value and SHAP value for 𝛿𝑒 linear, the slope of the relations appears to be similar
for many segments. Particularly the relationships of 𝑞 and 𝑒𝑟𝑟𝑞 appear to be parallel, while slight variations can be
observed for 𝛼 and 𝜃.
Using the information provided in the combined dependence plot for 𝛿𝑒, Figure 13, the following observations can be
made about the learned behavior regarding elevator control during the mission profile:

• The pitch rate 𝑞 is the most dominant feature for 𝛿𝑒, as it shows the largest range of SHAP values in Figure 13. The

13

0 50 100 150 200 250
time [s]

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

w
a [

-]

0 1 2 3 4 5 6 7

Sample coverage: 77.22%

(a) CWSD result

160 180 200 220 240
time [s]

0.2

0.1

0.0

0.1

0.2

w
a [

-]

0 1 2 3 4 5 6 7

Closeup sections 2-7

(b) Closeup sections 2-7

Fig. 12 Actor weight matrix w𝑎 of the longitudinal controller during the mission profile, with the segments
selected by the constant weight segment detection algorithm. The blue vertical lines represent borders of the
selected segments, while the red dashed lines indicate the time instance where the weights are selected. The
closeup of sections 2-7 with a reduced vertical range is included to clarify why certain regions are defined as
constant-weight sections.

1 0 1
q [deg/s]

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
]

q

4.5 5.0 5.5
 [deg]

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
]

0 2 4 6 8 10
 [deg]

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
]

0.0 0.2 0.4
errq [deg]

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
]

errq

Elevator e output

Segment 0
Segment 5

Segment 1
Segment 6

Segment 2
Segment 7

Segment 3 Segment 4

Fig. 13 Combined dependence plot for 𝛿𝑒 during the mission profile.

relation between pitch rate and its SHAP values is negative, implying that negative 𝛿𝑒 is enforced during pitch-up
maneuvers. Interestingly, this is in theory destabilizing control behavior, as negative 𝛿𝑒 result in additional
pitch-up. However, the slope 𝑎𝑞 is significantly less than 𝑎𝑒𝑟𝑟𝑞 hence the overall elevator control behavior is still
stabilizing. The reason for the negative slope is likely the large damping factor 𝐶𝑚𝑞 mainly caused by the fuselage
and the horizontal stabilizers. To counteract this damping factor during pitching maneuvers, the longitudinal
IDHP agent has learned to use the elevator.

• The importance of 𝛼 is lower when compared to 𝑞, but is still significant. The explanation for the negative slope is
similar to that of 𝑎𝑞: the stabilizing 𝐶𝑚𝛼 from the horizontal stabilizers is counteracted with the elevator. The
reason for the shifting slopes is currently unknown. Potentially there is connection with the shifting slopes of 𝜃, as
these features together form the flight path angle 𝛾 = 𝜃 − 𝛼. Further research is required to investigate whether
this is the right explanation.

• The importance of the pitch angle 𝜃 is minimal compared to the other features. The relation between 𝜃 and 𝜙𝜃

appears to be negative for low 𝜃 values, and around 0 for higher 𝜃 values. As mentioned, there might be feature

14

interaction with 𝛼.
• The pitch rate error 𝑞 − 𝑞𝑟𝑒 𝑓 is the second most important feature and has the steepest slope of all features for the

elevator. If the error is positive, indicating too high pitch rate, positive 𝛿𝑒 is enforced, lowering the pitch rate and
vice versa.

While the linear relations presented in Figure 13 make the control strategy learned by IDHP during this mission
profile easier to understand, more simplifications can be made, starting from the additive feature property as shown in
Equation (16). While the slope of the linear relationship is often close to constant for most segments, the linear bias
changes significantly. Assuming that the relation between feature value and SHAP value is linear, and using the property
of no bias in the NNs, it can be shown that the bias in the combined dependence plots is irrelevant.

𝑓 (𝑥) = 𝑔(𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑥
′
𝑖 (16)

The combined dependence plots show that all partial dependence relations can be approximated using a linear relationship
as represented by Equation (17). Assuming this linear expression is valid for all features, this linear representation can
be inserted into the additive feature property (Equation (16)) resulting in the expression shown in Equation (18).

𝜙𝑖 = 𝑎𝑖 · 𝑥𝑖 + 𝑏𝑖 (17)

𝑔(𝑥 ′) = 𝜙0 +
𝑀∑︁
𝑖=1
[𝑎𝑖 · 𝑥𝑖 + 𝑏𝑖] (18)

As the actor NN does not use bias, 𝛿𝑒 = 𝛿𝑒𝑆𝐻𝐴𝑃 = 0 when x = 0. Inserting this condition in Equation (18) shows that
the SHAP base value is equal to the negative sum of bias values as shown in Equation (19).

𝜙0 = −
𝑀∑︁
𝑖=1
[𝑏𝑖] (19)

Using this expression, Equation (16) can be simplified to the form as shown in Equation (20). The learned strategy for
𝛿𝑒 can therefore be modelled as in Equation (21), showing that only the slopes of the relations between feature value and
SHAP value are relevant.

𝑔(𝑥 ′) =
𝑀∑︁
𝑖=1
[𝑎𝑖 · 𝑥𝑖] (20)

𝛿𝑒𝑙𝑖𝑛 = 𝑎𝑞 · 𝑞 + 𝑎𝛼 · 𝛼 + 𝑎𝜃 · 𝜃 + 𝑎𝑒𝑟𝑟𝑞 · 𝑒𝑟𝑟𝑞 (21)

The SHAP and linear representation models for 𝛿𝑒 are verified by comparing their outputs with the actual deflection 𝛿𝑒
and the output of the actor NN with the constant weights assumption in Figure 14. The constant weight model 𝛿𝑒𝐶𝑊

represents the elevator deflection as commanded by IDHP, using fixed weights during the segment. The SHAP model
and linear representation exactly match the constant weight model, verifying both the accuracy of the SHAP values, and
the legitimacy of the linear representation.

3. Explanation Lateral Controller
As with the longitudinal controller, the segments are created based on the changing weight vector w𝑎, as shown in

Figure 15. The same CWSD parameters are used: 𝜖𝐶𝑊 = 0.05, 𝑆𝑚𝑖𝑛 = 200 and 𝑆𝑚𝑎𝑥 = ∞. As the actor NN of the
lateral IDHP agent controls both 𝛿𝑎 and 𝛿𝑟 , the presented segments are similar for these two actuators.

The combined dependence plot for 𝛿𝑎 is presented in Figure 16. As with 𝛿𝑒, all relations between feature value and
SHAP value are linear, hence the linear representation can be used to describe the learned strategy of the controller. The
linear representation for 𝛿𝑎 is shown in Equation (22).

15

0 50 100 150 200 250
time [s]

1.25

1.00

0.75

0.50

0.25

0.00

0.25

e [
de

g]

0 1 2 3 4 5 6 7
Elevator verification

e

eCW

eSHAP

elin

Fig. 14 Verification of the elevator SHAP model and linear representation model, by comparing their output
with the actual 𝛿𝑒 and the constant weight model.

0 50 100 150 200 250
time [s]

0.6

0.4

0.2

0.0

0.2

0.4

w
a [

-]

0 1 2 3 4 5 6 7 8 91011 12 13 14 15
Sample coverage: 68.44%

Fig. 15 Actor weight matrix w𝑎 of the lateral controller during the mission profile, with the segments selected
by the constant weight segment detection algorithm. The blue vertical lines represent borders of the selected
segments, while the red dashed lines indicate the time instance where the weights are selected.

Using the combined dependence plots for 𝛿𝑎, Figure 16, the following conclusions about the learned aileron strategy
can be drawn:

• The roll rate 𝑝 has strong influence on 𝛿𝑎, and a negative effect. Hence, during rolling, the agent has learned to
maintain the ailerons to sustain the roll. Similar to the pitch rate for 𝛿𝑒, the negative relation between 𝑝 and its
SHAP values is destabilizing, but is required to sustain the angular motion. During a rolling maneuver, there is a
strong damping moment 𝐶𝑙𝑝 due to the wings. The agent has learned to counteract this moment using the ailerons.

• The yawing moment 𝑟 is less significant, and shows a positive relation. This learned behavior can likely be
attributed to the Dutch roll eigenmode. During positive yawing movement, e.g. the nose of the aircraft is turning
to the right, the left aircraft wing has more velocity with respect to the right wing. This induces a positive rolling
moment, which is counteracted with positive 𝛿𝑎.

• The sideslip angle 𝛽 is irrelevant for 𝛿𝑎.
• The importance of the roll angle 𝜑 is relatively low, but the relation between roll angle and SHAP value changes

between positive and negative during the mission profile. The reason for this is unknown. Further research is
required to investigate whether this behavior is useful or not.

• The influence of the error 𝑝 − 𝑝𝑟𝑒 𝑓 is significant, and positive, similar to 𝑞 − 𝑞𝑟𝑒 𝑓 for 𝛿𝑒. When the error is
positive, and hence the roll rate is larger than required, 𝜙𝑒𝑟𝑟𝑝 is positive to encourage counteractive rolling.

• Similar to 𝛽 the error 𝛽 − 𝛽𝑟𝑒 𝑓 appears to be irrelevant for 𝛿𝑎.

16

2.5 0.0 2.5 5.0
p [deg/s]

0.5

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
] p

2 0 2
r [deg/s]

0.5

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
] r

0.1 0.0 0.1
 [deg]

0.5

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
]

20 0 20
 [deg]

0.5

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
]

0.2 0.0 0.2
errp [deg]

0.5

0.0

0.5
SH

AP
 v

al
ue

 [d
eg

] errp

0.1 0.0 0.1
err [deg]

0.5

0.0

0.5

SH
AP

 v
al

ue
 [d

eg
] err

Aileron a output

Segment 0
Segment 6
Segment 12

Segment 1
Segment 7
Segment 13

Segment 2
Segment 8
Segment 14

Segment 3
Segment 9
Segment 15

Segment 4
Segment 10

Segment 5
Segment 11

Fig. 16 Combined dependence plots for 𝛿𝑎 during the mission profile.

The combined dependence plots for 𝛿𝑟 are presented in Figure 17.
Similar to 𝛿𝑒 and 𝛿𝑎, the relations between feature value and SHAP value are linear for 𝛿𝑟 . The following characteristics
of the learned behavior for the rudder can be extracted from the combined dependence plots for 𝛿𝑟 :

• During rolling maneuvers, the two wings cause adverse yaw due to different induced drag forces. The corresponding
𝐶𝑛𝑝 derivative is negative for the Cessna Citation I aircraft. Therefore, during a roll to the right, the wings induce
a negative yawing moment. The negative SHAP values for positive 𝑝 encourage positive yawing, cancelling the
adverse yaw.

• The roll rate 𝑟 is insignificant for 𝛿𝑟 .
• The 𝛽 and 𝛽 − 𝛽𝑟𝑒 𝑓 features are in fact similar, as 𝛽𝑟𝑒 𝑓 = 0. Interestingly, these features are irrelevant for 𝛿𝑟 .

Apparently, the other features are more effective at canceling sideslip.
• The roll angle 𝜑 is significant for 𝛿𝑟 and has a negative effect. This behavior is likely learned to ensure a

coordinated turn.

Due to the linear relations between feature value and SHAP value, the control strategy for 𝛿𝑎 and 𝛿𝑟 can be represented as
a linear controller, as shown in Equation (22) and Equation (23), respectively. These models, and the SHAP explanation
models for 𝛿𝑎 and 𝛿𝑟 are verified with the actual deflections, and the output of the IDHP controller when assuming
constant weights in Figure 19.

𝛿𝑎𝑙𝑖𝑛 = 𝑎𝑝𝛿𝑎
· 𝑝 + 𝑎𝑟𝛿𝑎 · 𝑟 + 𝑎𝛽𝛿𝑎

· 𝛽 + 𝑎𝜙𝛿𝑎
· 𝜙 + 𝑎𝑒𝑟𝑟𝑝 𝛿𝑎

· 𝑒𝑟𝑟𝑝 + 𝑎𝑒𝑟𝑟𝛽 𝛿𝑎
· 𝑒𝑟𝑟𝛽 (22)

𝛿𝑟𝑙𝑖𝑛 = 𝑎𝑝𝛿𝑟
· 𝑝 + 𝑎𝑟𝛿𝑟 · 𝑟 + 𝑎𝛽𝛿𝑟

· 𝛽 + 𝑎𝜙𝛿𝑟
· 𝜙 + 𝑎𝑒𝑟𝑟𝑝 𝛿𝑟

· 𝑒𝑟𝑟𝑝 + 𝑎𝑒𝑟𝑟𝛽 𝛿𝑟
· 𝑒𝑟𝑟𝛽 (23)

C. Minimum Segment Length Analysis
As stated in Section III, there is no rule of thumb yet for the number of background samples to analyse RL using

SHAP. Furthermore, to maximize sample coverage of CWSD, it would be beneficial to use the shortest segments
possible. The maximum number of background samples within a segment is limited to the number of samples covered
by the segment. Therefore, segments that are too short may result in inaccurate SHAP values as there are not enough
background samples. To investigate the effect of segment length, and therefore also the effect of background samples,
on the SHAP analysis for RL, this section explores what happens when 𝑆𝑚𝑖𝑛 is minimized.

17

2.5 0.0 2.5 5.0
p [deg/s]

0.2

0.0

0.2

SH
AP

 v
al

ue
 [d

eg
] p

2 0 2
r [deg/s]

0.2

0.0

0.2

SH
AP

 v
al

ue
 [d

eg
] r

0.1 0.0 0.1
 [deg]

0.2

0.0

0.2

SH
AP

 v
al

ue
 [d

eg
]

20 0 20
 [deg]

0.2

0.0

0.2

SH
AP

 v
al

ue
 [d

eg
]

0.2 0.0 0.2
errp [deg]

0.2

0.0

0.2

SH
AP

 v
al

ue
 [d

eg
] errp

0.1 0.0 0.1
err [deg]

0.2

0.0

0.2

SH
AP

 v
al

ue
 [d

eg
] err

Rudder r output

Segment 0
Segment 6
Segment 12

Segment 1
Segment 7
Segment 13

Segment 2
Segment 8
Segment 14

Segment 3
Segment 9
Segment 15

Segment 4
Segment 10

Segment 5
Segment 11

Fig. 17 Combined dependence plots for 𝛿𝑟 during the mission profile.

0 50 100 150 200 250
time [s]

1.0

0.5

0.0

0.5

1.0

a [
de

g]

0 1 2 3 4 5 6 7 8 91011 12 13 14 15
Aileron verification

a

aCW

aSHAP

alin

(a) Aileron 𝛿𝑎

0 50 100 150 200 250
time [s]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

r [
de

g]

0 1 2 3 4 5 6 7 8 91011 12 13 14 15
Rudder verification

r

rCW

rSHAP

rlin

(b) Rudder 𝛿𝑟

Fig. 18 Verification of the SHAP model and the linear representation for the lateral controller.

The same mission profile as shown in Figure 11, and the same actor weights w𝑎 over time of the longitudinal
controller as depicted in Figure 12 are used. The CWSD parameters 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 are now set to 20 and 20 respectively,
to force all segments to be 20 samples long. The SHAP values are calculated for every segment, using all 20 samples as
background samples for the permutations. As there are now 640 segments, the combined dependence plots are too
cluttered. However, from the verification plot, Figure 19, several useful conclusions about segment length can be drawn.

As expected, Figure 19 shows significantly more sample coverage than the original SHAP analysis for the mission
profile. 𝑆𝑚𝑖𝑛 = 20 results in a sample coverage of 99.56%. Furthermore, the global accuracy looks better the SHAP
analysis using 𝑆𝑚𝑖𝑛 = 200. However, locally the models show inaccuracies regarding the actual elevator deflection,
as shown in the close-up. Upon close inspection it can be observed that 𝛿𝑒𝐶𝑊 = 𝛿𝑒𝑆𝐻𝐴𝑃 = 𝛿𝑒𝑙𝑖𝑛 , and that these three
models do not match the actual 𝛿𝑒. Hence, these inaccuracies are caused by the constant weight assumption, and not by
inaccuracies of SHAP. The ability of SHAP to match 𝛿𝑒𝐶𝑊 , the output it is trying to explain, with minimal background
samples can likely be attributed to DeepSHAP’s effective method of calculating the gradient of the NN’s output with
respect to its inputs.

18

(a) Global accuracy (b) Close-up showing local inaccuracies

Fig. 19 SHAP and linear representation models verification for 𝛿𝑒, now using 𝑆𝑚𝑖𝑛 = 20, 𝑆𝑚𝑎𝑥 = 20 to force
shorter segments.

D. Discussion of the Results
The preceding subsections show that SHAP can provide useful insights into the inner workings of RL for adaptive

flight control, by identifying the relations between the actor’s input and the commanded actuator deflections. Where
previous research focused on explaining high-level goal based navigation, this research investigated how XAI can be
used to explain RL for low-level adaptive flight control. The identified input-output mappings can help control experts,
the main target audience, recognize potential agent misbehavior by comparing the learned strategy with their expert
domain knowledge. Furthermore, the assessment of feature importance can help control experts in limiting the input
space used by the RL framework.

As constant model parameters are required by SHAP, the CWSD algorithm allows identification of segments with
near-constant weights. The generated explanations are proven to match the IDHP output under the constant weights
assumption. However, by fixing the weights in the selected segments, the learned control behavior is generalized,
resulting in inaccuracies between the actual model output and the model output using fixed weights. Using the CWSD
approach, there will always be a trade-off between generalization of the dynamics and accurate representation of the
learned behavior. Control experts can use CWSD’s 𝜖𝐶𝑊 and 𝑆𝑚𝑖𝑛 parameters to control this trade-off. Furthermore, the
relations between feature value and SHAP value identified in this research are all linear, likely due to the relatively simple
NN architecture and the relatively simple inner-loop rate tracking task. The functionality of the proposed combined
dependence plots may be reduced when the input-output mappings are more nonlinear, potentially cluttering the plots.

While explaining the input-output mapping of the actor allows interpretation of the learned strategy, a limitation
of this approach is that only the "what" is explained, and not the "why". Control expert knowledge is required to
interpret why the control strategy is employed and to assess if this is desired behavior. Interpreting the interaction
between the incremental model, critic and actor could potentially lead to insights into the reason for the values of
the actor parameters, and therefore explain the "why". Another limitation of the presented research is the lack of
human-in-the-loop experiments with control experts to assess the quality and level of detail of the generated explanations.
Future research should therefore include control experts for assessment of the explanation quality and usefulness during
RL algorithm design. Finally, another limitation of the presented approach is that the explanation methodology is only
applied to one adaptive RL framework and for one flight application. Further research should therefore test the flexibility
of SHAP and CWSD by applying these techniques on other adaptive RL frameworks and different control tasks.

VI. Conclusions
This work has explored how the transparency of RL techniques for adaptive flight control can be improved using the

existing XAI technique SHAP. To facilitate XAI techniques requiring constant weights, an algorithm was developed to
select time segments with near-constant model parameters, under the assumption the the learned control strategy does
not change within these segments.

The constant weight segment detection algorithm successfully detects regions where the learned strategy is
near-constant, while still significantly generalizing the control behavior. It was shown for the IDHP controller that
SHAP can accurately explain the model, even with minimal background samples. Therefore. assuming that minimum
segment length is not a limitation for SHAP, the 𝑆𝑚𝑖𝑛 parameter can be mainly used for generalization of the agent’s
dynamics. Namely, short segments will result in high sample coverage, but also many different segments to analyze and

19

explain. Using the CWSD parameters, RL developers can trade-off accuracy and generalization according to their needs.
Furthermore, the usefulness of CWSD is not limited to flight control, as it can be used for any adaptive DRL technique.

Based on the selected segments, SHAP provides useful and detailed insights into the input-output mapping of the
actor. Detailed explanations can be created using the local interpretability waterfall plot, to explain specific complex
situations. Furthermore, the SHAP summary plot can be used to easily identify feature importance and the global
relation between feature value and SHAP value. To quantitatively investigate this relationship, and compare the learned
behavior of distinct segments, the proposed combined dependence plot can be used.

Control experts can use SHAP for multiple purposes during control design. First of all, the feature importance
provided by SHAP can be used to select the most relevant and critical features, and therefore minimize algorithm
complexity. This could prove particularly useful for small UAV design, where the mass and computational budget is
limited. Furthermore, SHAP can be used to accurately identify the contribution of algorithm inputs on the final output.
The linear relations discovered in this research could for example be used to design simple proportional controllers if the
computational budget is limited.

Further research into explainable RL for flight control using SHAP should investigate two main topics. First of
all, the quality of the explanations should be assessed using human-in-the-loop experiments, involving RL control
experts. Secondly, the applicability to other RL frameworks and more complex control tasks should be investigated.
The application chosen in this research resulted in simple linear explanations, likely due to the relatively simple rate
control task. It would be interesting to see whether nonlinear relations can also be discovered using the proposed
methodology. Another interesting research topic is using SHAP to illustrate the adaptive properties and fault-tolerance
of RL techniques for flight control.

References
[1] Gupta, A., Afrin, T., Scully, E., and Yodo, N., “Advances of UAVs toward Future Transportation: The State-of-the-Art,

Challenges, and Opportunities,” Future Transportation, Vol. 1, 2021, pp. 326–350. https://doi.org/10.3390/futuretransp1020019.

[2] Litman, T., “Autonomous vehicle implementation predictions: Implications for transport planning,” Victoria Transport Policy
Institute, 2020.

[3] Rao, Q., and Frtunikj, J., “Deep Learning for Self-Driving Cars: Chances and Challenges,” Proceedings of the 1st International
Workshop on Software Engineering for AI in Autonomous Systems, Association for Computing Machinery, New York, NY,
USA, 2018, p. 35–38. https://doi.org/10.1145/3194085.3194087.

[4] Santoso, F., Garratt, M., and Anavatti, S., “State-of-the-Art Intelligent Flight Control Systems in Unmanned Aerial Vehicles,”
IEEE Transactions on Automation Science and Engineering, Vol. 15, No. 2, 2018, pp. 613–627. https://doi.org/10.1109/TASE.
2017.2651109.

[5] Vesely, V., and Ilka, A., “Gain-scheduled PID controller design,” Journal of Process Control, Vol. 23, 2013, pp. 1141–1148.
https://doi.org/10.1016/j.jprocont.2013.07.002.

[6] Singh, S., and Padhi, R., “Automatic path planning and control design for autonomous landing of UAVs using dynamic inversion,”
Proceedings of the American Control Conference, 2009, pp. 2409–2414. https://doi.org/10.1109/ACC.2009.5160444.

[7] Garcia, G., and Keshmiri, S., “Adaptive and resilient flight control system for a small unmanned aerial system,” International
Journal of Aerospace Engineering, 2013. https://doi.org/10.1155/2013/289357.

[8] Khan, S. G., Herrmann, G., Lewis, F. L., Pipe, T., and Melhuish, C., “Reinforcement learning and optimal adaptive
control: An overview and implementation examples,” Annual Reviews in Control, Vol. 36, No. 1, 2012, pp. 42–59.
https://doi.org/https://doi.org/10.1016/j.arcontrol.2012.03.004.

[9] Williams, J., “Reinforcement learning of optimal controls,” Artificial Intelligence Methods in the Environmental Sciences, 2009,
pp. 297–327. https://doi.org/10.1007/978-1-4020-9119-3_15.

[10] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A., “Deep Reinforcement Learning: A Brief Survey,”
IEEE Signal Processing Magazine, Vol. 34, No. 6, 2017, p. 26–38. https://doi.org/10.1109/msp.2017.2743240.

[11] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves, A., Riedmiller, M., Fidjeland, A.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D., “Human-level control through deep reinforcement learning,” Nature, Vol. 518, No. 7540, 2015, pp. 529–533.
https://doi.org/10.1038/nature14236.

20

[12] Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D., “Mastering the game of Go with deep neural networks and tree search,” Nature, Vol. 529, No.
7587, 2016, pp. 484–489. https://doi.org/10.1038/nature16961.

[13] Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D.,
Benjamins, R., Chatila, R., and Herrera, F., “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI,” Information Fusion, Vol. 58, 2020, pp. 82–115. https://doi.org/10.1016/j.inffus.2019.12.012.

[14] Dally, K., and Van Kampen, E.-J., “Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control,” AIAA
SCITECH 2022 Forum, 2022, p. 2078. https://doi.org/10.2514/6.2022-2078.

[15] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D., “A Survey of Methods for Explaining Black
Box Models,” ACM Computing Surveys, Vol. 51, No. 5, 2018. https://doi.org/10.1145/3236009.

[16] Gunning, D., and Aha, D., “DARPA’s explainable artificial intelligence program,” AI Magazine, Vol. 40, No. 2, 2019, pp. 44–58.
https://doi.org/10.1609/aimag.v40i2.2850.

[17] Bayerlein, H., De Kerret, P., and Gesbert, D., “Trajectory Optimization for Autonomous Flying Base Station via Reinforcement
Learning,” IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, Vol. 2018-June, 2018.
https://doi.org/10.1109/SPAWC.2018.8445768.

[18] Furfaro, R., and Linares, R., “Waypoint-Based generalized ZEM/ZEV feedback guidance for planetary landing via a
reinforcement learning approach,” 2017, pp. 401–416.

[19] Miller, D., and Linares, R., “Low-thrust optimal control via reinforcement learning,” Advances in the Astronautical Sciences,
Vol. 168, 2019, pp. 1817–1834.

[20] Li, Y., Eslamiat, H., Wang, N., Zhao, Z., Sanyal, A., and Qiu, Q., “Autonomous waypoints planning and trajectory generation
for multi-rotor UAVs,” DESTION 2019 - Proceedings of the Workshop on Design Automation for CPS and IoT, 2019, pp. 31–40.
https://doi.org/10.1145/3313151.3313163.

[21] Zhao, Y., Zheng, Z., Zhang, X., and Liu, Y., “Q learning algorithm based UAV path learning and obstacle avoidence approach,”
Chinese Control Conference, CCC, 2017, pp. 3397–3402. https://doi.org/10.23919/ChiCC.2017.8027884.

[22] Ma, Z., Wang, C., Niu, Y., Wang, X., and Shen, L., “A saliency-based reinforcement learning approach for a UAV to avoid
flying obstacles,” Robotics and Autonomous Systems, Vol. 100, 2018, pp. 108–118. https://doi.org/10.1016/j.robot.2017.10.009.

[23] Fei, F., Tu, Z., Zhang, J., and Deng, X., “Learning extreme hummingbird maneuvers on flapping wing robots,” Proceedings -
IEEE International Conference on Robotics and Automation, Vol. 2019-May, 2019, pp. 109–115. https://doi.org/10.1109/ICRA.
2019.8794100.

[24] Koch, W., Mancuso, R., West, R., and Bestavros, A., “Reinforcement learning for UAV attitude control,” ACM Transactions on
Cyber-Physical Systems, Vol. 3, No. 2, 2019. https://doi.org/10.1145/3301273.

[25] Scorsoglio, A., Furfaro, R., Linares, R., and Gaudet, B., “Image-based deep reinforcement learning for autonomous lunar
landing,” AIAA Scitech 2020 Forum, Vol. 1 PartF, 2020. https://doi.org/10.2514/6.2020-1910.

[26] Zhou, Y., van Kampen, E.-J., and Chu, Q., “Incremental model based online dual heuristic programming for nonlinear adaptive
control,” Control Engineering Practice, Vol. 73, 2018, pp. 13–25. https://doi.org/10.1016/j.conengprac.2017.12.011.

[27] Lee, S., and Bang, H., “Automatic Gain Tuning Method of a Quad-Rotor Geometric Attitude Controller Using A3C,” International
Journal of Aeronautical and Space Sciences, Vol. 21, No. 2, 2020, pp. 469–478. https://doi.org/10.1007/s42405-019-00233-x.

[28] Goedhart, M., Van Kampeny, E.-J., Armaniniz, S., De Visser, C., and Chu, Q., “Machine learning for flapping wing flight
control,” AIAA Infotech at Aerospace, , No. 209989, 2018. https://doi.org/10.2514/6.2018-2135.

[29] He, L., Aouf, N., and Song, B., “Explainable Deep Reinforcement Learning for UAV autonomous path planning,” Aerospace
Science and Technology, Vol. 118, 2021. https://doi.org/10.1016/j.ast.2021.107052.

[30] Dwivedi, Y., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A.,
Galanos, V., Ilavarasan, P., Janssen, M., Jones, P., Kar, A., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Medaglia, R.,
Le Meunier-FitzHugh, K., Le Meunier-FitzHugh, L., Misra, S., Mogaji, E., Sharma, S., Singh, J., Raghavan, V., Raman, R.,
Rana, N., Samothrakis, S., Spencer, J., Tamilmani, K., Tubadji, A., Walton, P., and Williams, M., “Artificial Intelligence
(AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,”
International Journal of Information Management, Vol. 57, 2021. https://doi.org/10.1016/j.ijinfomgt.2019.08.002.

21

[31] Prokhorov, D., and Wunsch II, D., “Adaptive critic designs,” IEEE Transactions on Neural Networks, Vol. 8, No. 5, 1997, pp.
997–1007. https://doi.org/10.1109/72.623201.

[32] Prokhorov, D. V., Santiago, R. A., and Wunsch, D. C., “Adaptive critic designs: A case study for neurocontrol,” Neural Networks,
Vol. 8, No. 9, 1995, pp. 1367–1372. https://doi.org/https://doi.org/10.1016/0893-6080(95)00042-9.

[33] Ferrari, S., and Stengel, R., “Online adaptive critic flight control,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 5,
2004, pp. 777–786. https://doi.org/10.2514/1.12597.

[34] Van Kampen, E., Chu, Q., and Mulder, J., “Continuous adaptive critic flight control aided with approximated plant dynamics,”
Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2006, Vol. 5, 2006, pp. 2989–3016.
https://doi.org/10.2514/6.2006-6429.

[35] Heyer, S., Kroezen, D., and van Kampen, E., “Online adaptive incremental reinforcement learning flight control for a cs-25
class aircraft,” AIAA Scitech 2020 Forum, Vol. 1 Part F, 2020. https://doi.org/10.2514/6.2020-1844.

[36] Sieberling, S., Chu, Q., and Mulder, J., “Robust flight control using incremental nonlinear dynamic inversion and angular
acceleration prediction,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 6, 2010, pp. 1732–1742. https:
//doi.org/10.2514/1.49978.

[37] Haykin, S. S., Adaptive filter theory, Pearson Education India, 2008.

[38] Heuillet, A., Couthouis, F., and Díaz-Rodríguez, N., “Explainability in deep reinforcement learning,” Knowledge-Based Systems,
Vol. 214, 2021. https://doi.org/10.1016/j.knosys.2020.106685.

[39] Juozapaitis, Z., Koul, A., Fern, A., Erwig, M., and Doshi-Velez, F., “Explainable reinforcement learning via reward
decomposition,” IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019.

[40] Bautista-Montesano, R., Bustamante-Bello, R., and Ramirez-Mendoza, R. A., “Explainable navigation system using fuzzy
reinforcement learning,” International Journal on Interactive Design and Manufacturing, Vol. 14, No. 4, 2020, pp. 1411–1428.
https://doi.org/10.1007/s12008-020-00717-1.

[41] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D., “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-Based Localization,” Proceedings of the IEEE International Conference on Computer Vision, Vol.
2017-October, 2017, pp. 618–626. https://doi.org/10.1109/ICCV.2017.74.

[42] Ribeiro, M., Singh, S., and Guestrin, C., “"Why should i trust you?" Explaining the predictions of any classifier,” Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol. 13-17-August-2016, 2016, pp.
1135–1144. https://doi.org/10.1145/2939672.2939778.

[43] Lundberg, S. M., and Lee, S.-I., “A Unified Approach to Interpreting Model Predictions,” Advances in Neural Information
Processing Systems, Vol. 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Curran Associates, Inc., 2017.

[44] Liessner, R., Dohmen, J., and Wiering, M., “Explainable reinforcement learning for longitudinal control,” ICAART 2021 -
Proceedings of the 13th International Conference on Agents and Artificial Intelligence, Vol. 2, 2021, pp. 874–881.

[45] Chen, H., Lundberg, S., and Lee, S.-I., “Explaining Models by Propagating Shapley Values of Local Components,” Studies in
Computational Intelligence, Vol. 914, 2021, pp. 261–270. https://doi.org/10.1007/978-3-030-53352-6_24.

[46] Shrikumar, A., Greenside, P., and Kundaje, A., “Learning important features through propagating activation differences,” 34th
International Conference on Machine Learning, ICML 2017, Vol. 7, 2017, pp. 4844–4866.

22

II
LITERATURE REVIEW AND PRELIMINARY

ANALYSIS

29

2 | Reinforcement Learning Fundamen-
tals

Reinforcement learning is one of the three traditionally described forms of machine learning problems, the
other two being supervised learning and unsupervised learning [21]. Where supervised learning focuses on
classification and regression of data, learned from a set of labeled examples supplied by an external super-
visor, unsupervised learning is about discovering regularities or patterns in unlabeled data. Reinforcement
learning differentiates itself from these two types of machine learning by making decisions, learned from ex-
perience [9]. By interaction with the environment, the learner discovers which action is the most preferable
to take, given a certain circumstance, to maximize its reward signal over time.

As the optimal action is not specified by an external supervisor, a learner applying RL can find itself adapting
to new and unfamiliar circumstances, distinguishing RL from supervised learning. Furthermore, as the goal
in RL is to maximize a reward signal over time as opposed to identifying patterns, RL also distinguishes itself
from unsupervised learning. With this reward signal maximization, a learner applying RL might choose not
to pursue a short-term small reward but focus on a larger reward in the future. The competence to adapt
to changing circumstances and the ability to make a trade-off between near and future rewards are the two
most important distinguishing features of RL [9]. Furthermore, as the agent adjusts its behavior based on
its experience through the reward signal, a well-designed reward system is essential to achieve the desired
results.

This chapter introduces the basic principles of reinforcement learning, by first explaining its key concepts
in Section 2.1, followed by an a division of RL methods into dynamic programming methods introduced
in Section 2.2 and model-free methods introduced in Section 2.3. Then Section 2.4 introduces the field of
approximate RL, including the basics of neural networks for function approximation. Finally, Section 2.5
introduces actor-critic algorithms, used in many state-of-the-art RL applications.

2.1. KEY CONCEPTS
The entity in RL responsible for the decision-making and learning is defined as the agent. In a sequential
decision-making process, the agent interacts with the environment, which comprises everything outside of
the agent. This process is illustrated schematically in Figure 2.1.

Figure 2.1: Interaction between the agent and its environment, displayed as a Markov Decision Process [9].

2.1.1. MARKOV DECISION PROCESS
The interaction process is often specified in discrete-time where t = 0,1,2, ..., but the principles can be ex-
tended to continuous time as well [9][22]. For the discrete-time scenario, the sequence of decision-making
for RL can be formalized using a Markov Decision Process. The interaction process consists of two repeating
steps: the agent chooses an action At ∈A ⊂ Rm to perform based on the observed state of the environment
St ∈ S ⊂ Rn . Due to this action and possibly other dynamics the environment changes to another state St+1,

31

32 2. REINFORCEMENT LEARNING FUNDAMENTALS

and the agent receives a corresponding scalar reward Rt+1 ∈R⊂R. The notation for the reward correspond-
ing to action At differs between Rt and Rt+1 in literature. In this report Rt+1 will be used as this reward is
received at the same time step as the environment transitions to St+1. The sequence or trajectory of states,
actions, and rewards is typical for RL processes and can be noted as S0, A0,R1,S1, A1,R2,S2, A2,R3...

When the decision-making process is described as a finite MDP, the state, action, and reward spacesS ,A,&R
are limited. This causes the random variables St and Rt to have a well-defined discrete probability distribu-
tion, based on exclusively the previous state and action pair. The dynamics of the finite MDP for all s′ ∈ S ,
r ∈R, and a ∈A can then be described using Equation (2.1.1).

p(s′,r |s, a)
.= Pr{St = s′,Rt = r | St−1 = s, At−1 = a} (2.1.1)

One of the characteristics of a MDP is the Markov property, which is also reflected in Equation (2.1.1). This
property states that the Markov process is fully characterized in each time step, by completely capturing
all relevant information, which might influence the future, in every state. This property is reflected in Equa-
tion (2.1.1) as the probabilities for each St and Rt are exclusively dependent on the preceding state and action
St−1 and At−1. In other words, for Markov decision processes knowing the state and action at a certain time
step should be enough information to compute the probabilities for all possible states and rewards in the
next time step.

2.1.2. RETURN
A RL agent learns and adjusts its behavior to maximize the reward signal over time. Whenever an agent only
pursues the immediate reward, the agent is considered myopic. More often, not only immediate rewards are
pursued, but the agent tries to maximize the expected value of the cumulative sum of the reward signal. In a
more formal way, the agent tries to maximize the expected return, where the return Gt is some function of the
accumulation of rewards as shown in Equation (2.1.2).

Gt
.= Rt+1 +Rt+2 +Rt+3 + ...+RT (2.1.2)

For continuous processes however, where the assumption of T =∞ is made, the return could become infinite
as well. To solve this problem, the return as shown in Equation (2.1.2) is discounted using a discount factor
0 ≤ γ ≤ 1 as shown in Equation (2.1.3). The discount factor determines how far-sighted the agent is, and is
used when tuning RL algorithms to balance immediate and future rewards.

Gt
.= Rt+1 +γRt+2 +γ2Rt+3 + ... =

∞∑
k=0

γk Rt+k+1 (2.1.3)

The relation between returns at subsequent time steps shows an important characteristic of RL problems, as
illustrated in Equation (2.1.4). This characteristic makes it possible to easily determine the return throughout
the decision making process, based upon the sequence of rewards.

Gt
.= Rt+1 +γGt+1 (2.1.4)

2.1.3. POLICY AND VALUE
As mentioned before, the agent tries to maximize the expected return by, at every time step, selecting an
action most likely to lead to an optimal trajectory. The probability distribution for choosing actions, based
upon the state is defined as the policy denoted as π. If an agent follows this policy at time step t, then π(a|s) is
the chance of choosing action At given state St . By updating the policy, the agent will show different behavior.
The agent’s goal is to create an optimal policy, which when followed will cause the highest return.

To formalize this optimization process, the value function is defined. This function vπ(s) specifies the ex-
pected return when in s, while following policy π. The formal definition of the value function is shown in
Equation (2.1.5). Likewise, an action-value function can be given to a state s, when choosing an action a, and
afterwards following policy π as shown in Equation (2.1.6).

2.1. KEY CONCEPTS 33

vπ(s)
.= Eπ [Gt | St = s] = Eπ

[∞∑
k=0

γk Rt+k+1 | St = s

]
, for all s ∈S (2.1.5)

qπ(s, a)
.= Eπ [Gt | St = s, At = a] = Eπ

[∞∑
k=0

γk Rt+k+1 | St = s, At = a

]
(2.1.6)

In the same fashion as the return, the relation between the value functions at state s and its successive states
can be derived using the recursive relationship as shown in Equation (2.1.7). This recursive property is used
by many RL methods.

vπ(s)
.= Eπ [Gt | St = s]

= Eπ
[
Rt+1 +γGt+1 | St = s

] (2.1.7)

When the state and action spaces are discrete, the Bellman optimality equation can be deduced from Equa-
tion (2.1.7) by rewriting the expectation of the reward as a multiplication of the policy and the MDP dynamics,
as shown in Equation (2.1.8). An example of a backup diagram, a schematic drawing exemplifying a RL pro-
cess, corresponding to a non-deterministic MDP is shown in Figure 2.2. The value function for s, as calculated
with Equation (2.1.7), is the expected return starting from the open node s at the top.

vπ(s) =∑
a
π(a | s)

∑
s′

∑
r

p
(
s′,r | s, a

)[
r +γEπ

[
Gt+1 | St+1 = s′

]]
=∑

a
π(a | s)

∑
s′,r

p
(
s′,r | s, a

)[
r +γvπ

(
s′

)]
for all s ∈S (2.1.8)

Figure 2.2: Example backup diagram for a non-deterministic MDP [9].

2.1.4. OPTIMAL POLICY
If the value functions are perfectly known and accurate for a decision-making process, the optimal policy is
easily found by choosing the action sequence leading to the highest return. Determining the value functions
is not always straightforward though, especially when the process is stochastic, when the state-action space
is large or when the system dynamics are unknown. The value function and the action-value function can be
determined either using knowledge of the model, or estimated from experience.

Policies can be compared, and hence a policy can be upgraded, by evaluation of their corresponding value
functions for every state. A policy π is better than another policy π′ when its expected return is higher for all
states. Hence π ≥ π′ if and only if vπ(s) ≥ vπ′ (s) for all s ∈ S . For every RL problem, there is always one or
more policies which are using the mathematical statement above, better than or equal to all other policies.
This policy is called the optimal policy. There is always at least one optimal policy, but it is possible there are
multiple policies for which this optimality holds. An optimal policy is denoted by π∗, and all optimal policies
have the same state-value function, the optimal state-value function v∗, as shown in Equation (2.1.9).

v∗(s)
.= max

π
vπ(s), for all s ∈S (2.1.9)

Likewise, the optimal action-value function is also shared by optimal policies, as shown in Equation (2.1.10).

q∗(s, a)
.= max

π
qπ(s, a), for all s ∈S and a ∈A (2.1.10)

34 2. REINFORCEMENT LEARNING FUNDAMENTALS

2.2. DYNAMIC PROGRAMMING
As mentioned in Section 2.1, in the special case when the dynamics of an MDP are completely known, the
state-value function can be determined without any agent-environment interaction experience. To find the
optimal policy of such problems, Dynamic Programming (DP) can be applied. The collection of methods
depending on a model of the MDP are known as model-based approaches. As this collection of methods,
known as DP, requires a perfect model of the environment and has a large computational complexity, its use
is often limited for practical applications. However, as the methods required for solving DP problems are
often not complex, DP methods are a good starting point for showing the essentials of solving RL problems.
An example of this is Generalized Policy Iteration (GPI), a method often applied for DP problems, but also
occurring in other RL approaches shown in the subsequent sections. In this section, finite MDPs are assumed,
but the ideas can be extrapolated to continuous problems as well.

2.2.1. POLICY EVALUATION
The essence of DP and other RL methods is to structure the search towards an optimal policy π∗ using value
functions. In the case of a finite MDP, where the dynamics are completely known, the Bellman optimality
equation as shown in Equation (2.1.8) can be written as a system of linear equations. Through iteration,
these equations are approximated. For this iteration, a recursive equation of the state-value function is re-
quired, which is shown in Equation (2.2.1). This equation is used in policy iteration algorithms, where the
approximated value function becomes the true value function when the amount of iterations goes to ∞. This
algorithm can be used to extract a state-value function from a given policy. The value-iteration algorithm is
shown in Algorithm 2.1. Note that in this algorithm a threshold θ is inserted, to prevent the algorithm from
running infinitely long.

vk+1(s)
.= Eπ

[
Rt+1 +γvk (St+1) | St = s

]
=∑

a
π(a | s)

∑
s′,r

p
(
s′,r | s, a

)[
r +γvk

(
s′

)] (2.2.1)

Algorithm 2.1: Iterative Policy Evaluation [9]

input : State space S , action space A, state transition dynamics p, reward function r , discount rate γ,
iteration threshold θ

output: Near-optimal state value function V∗(s)
initialize V0(s) arbitrarily for all s ∈S , except V(ter mi nal)=0 ;
while ∆≥ θ do
∆← 0 ;
for s ∈S do

V j+1(s) ←∑
a π(a|s)

∑
s′,r p(s′,r |s, a)

[
r +γV j (s′)

]
;

∆← max(∆,
∣∣V j+1(s)−V j (s)

∣∣) ;
end

end

2.2.2. POLICY IMPROVEMENT
Just like a value function can be created based on a policy, a policy can be generated based on a value function.
By selecting the action leading to the highest expected return, a policy can be improved, a process known as
policy improvement. This leads to a greedy policy π′, as shown in Equation (2.2.2).

π′(s)
.= argmax

a
qπ(s, a)

= argmax
a
E
[
Rt+1 +γvπ(St+1)|St = s, At = a

]
= argmax

a

∑
s′,r

p(s′,r |s, a)
[
r +γvπ(s′)

] (2.2.2)

2.3. MODEL-FREE ALGORITHMS 35

2.2.3. GENERALIZED POLICY ITERATION
If the two procedures mentioned above, policy evaluation and policy improvement, are successively repeated
after one another, the policy will continue to improve until it converges to the optimal policy. This process is
known as Generalized Policy Iteration (GPI), and it is applied in many RL algorithms. The optimal policy has
been found when the policy is greedy with respect to its own value function found using policy evaluation.
This process is shown schematically in Figure 2.3. The pseudocode for dynamic programming policy iteration
is shown in algorithm 2.2. As can be seen in this algorithm, the method requires a complete sweep through
the state space S and the action space A for every iteration. This is feasible for small state-action spaces, but
for larger problems DP suffers from the curse of dimensionality, where the number of computations grows
exponentially with the number of state variables. This curse of dimensionality renders DP virtually unusable
for some problems.

Figure 2.3: Example backup diagram for a non-deterministic MDP [9].

Algorithm 2.2: Policy Iteration Algorithm for Estimating π≈π∗ [9]

input : State space S , action space A, state transition dynamics p, reward function r , discount rate γ,
iteration threshold θ

output: Near-optimal state value function V∗(s) and near-optimal policy π∗
initialize V0(s) and π0(s) arbitrarily for all s ∈S ;
repeat

repeat
∆← 0 ;
for s ∈S do

Vk+1(s) ←∑
a π j (a|s)

∑
s′,r p(s′,r |s, a)

[
r +γVk (s′)

]
∆← max(∆, |Vk+1(s)−Vk (s)|)

end
until ∆≥ θ;

π j+1 ← argmaxa
∑

s′,r p(s′,r |s, a)
[

r +γvπ j (s′)
]

j ← j +1until π j+1(s) =π j (s) for all s ∈S ;

2.3. MODEL-FREE ALGORITHMS
In many RL problems complete knowledge of the underlying MDP is unavailable. For these situations the dy-
namics of the transition probability distribution can be estimated using experience from agent-environment
interaction. This estimation becomes more accurate as every state-action pair is visited more times, by aver-
aging their value functions. The used experience can either be actual or simulated experience. One subset of
model-free algorithms is the collection of Monte Carlo (MC) methods, which uses experience from separate
episodes to average the returns from the same state-action pair to estimate its value function. An episode is
defined as the interaction between the starting and end state. MC algorithms are explained in more detail
in Section 2.3.1. Another subset of methods is Temporal-Difference Learning (TD), which uses subsequent
samples to estimate the value function, as will be explained in more detail in Section 2.3.2. MC methods and
TD are two non-exhaustive subsets of model-free algorithms. There are also methods in-between MC and
TD, where longer sequences of samples are used to estimate the value function, such as n-step Bootstrapping
methods.

36 2. REINFORCEMENT LEARNING FUNDAMENTALS

2.3.1. MONTE CARLO METHODS
Monte Carlo (MC) methods learn the state-value function for a given policy, by applying this policy during
episodes and saving the samples generated from the agent-environment interaction. With the knowledge of
the return signal during the episode, the return can be determined at every time step, giving insight into the
value function for the encountered state-action pairs. Due to this return calculation method, MC methods
are only suitable for episodic tasks. With each episode, return values for state-action pairs are generated.
Thanks to the law of large numbers, simulating sufficient episodes allows the value functions to be estimated
accurately, by averaging the encountered return values for every state-action pair. The same method can be
applied to state-value functions, rather than state-action pairs. For the sample generation, a certain policy is
followed. This policy can then be upgraded by analysis of the value functions as estimated with the samples.
This sequence policy evaluation and policy improvement is another example of generalized policy generation
as described for the DP methods.

A distinction can be between first-visit MC methods, where vπ is estimated by averaging the returns from
every first visit to a state-action pair (s,a), and every-visit MC methods where the returns of every visit to the
state-action pair are included in the calculation. Another distinction that can be made between MC methods,
but also for other RL algorithms like TD, is which policy is being evaluated and improved. On-policy methods
evaluate and improve the policy which is being used to generate the samples, while off-policy methods eval-
uate and improve a policy separate from the one producing the agent-environment experience. Off-policy
methods can therefore also use experience from other sources, such as human experts, to evaluate and op-
timize value functions. Furthermore MC methods, as opposed to DP methods, do not use bootstrapping.
Bootstrapping is using estimated values in the update step for the same variable, which can be seen for DP in
Equation (2.2.1).

Due to the reliance on generated data rather than knowledge of the model, MC methods are the first collec-
tion of methods who suffer from the exploration-exploitation problem. This problem refers to the complex
balance between exploration of unknown or rarely-visited state-action pairs, and exploitation of gained ex-
perience to generate a high return using the currently optimal policy. Due to the lack of experience, every
untrained agent starts of with exploration.

The balance between exploration and exploitation is problem-specific, and currently no golden standard to
solve this problem exists.

2.3.2. TEMPORAL-DIFFERENCE LEARNING
Like MC methods, Temporal-Difference Learning (TD) methods learn from experience rather than knowl-
edge of the model’s dynamics. However, where MC methods analyze the agent-environment experience per
episode, Temporal-Difference Learning use sequential data points and bootstrapping to estimate the value
functions. As these sequential samples can be any experienced transitions, TD methods can also be used for
continuous tasks, rather than only episodic tasks. Furthermore, as TD methods do not have to wait until the
end of an episode before learning takes place, learning rates can be higher for tasks with long episodes. The
simplest example of TD learning is one-step TD, or T D(0), which uses two consecutive samples for the update
rule as shown in Equation (2.3.1).

V j+1(St) ←V j (St)+α[
Rt+1 +γV j (St+1)−V j (St)

]
(2.3.1)

From this Equation, it can be observed that TD learning make use of bootstrapping just like DP methods,
as the update rule for V (St) makes use of the estimates of this same variable. Hence, TD learning combines
the bootstrapping of DP methods with the sample updates of MC methods. The part between brackets in
Equation (2.3.1), isolated for clarification in Equation (2.3.2), is called the TD error, an important concept in
RL:

δt
.= Rt+1 +γV (St+1)−V (St) (2.3.2)

By setting the learning rate parameter α in Equation (2.3.1) it can be decided how aggressively the estimate
of V (St) can be updated with every time step. The learning rate is one of the tools that can be used for setting
the balance between speed of learning and stability. This stability is an important issue for TD learning due to

2.4. APPROXIMATE REINFORCEMENT LEARNING 37

the use of bootstrapping. However, using a small enough α, and using batch updating where all the training
experience is presented repeatedly, often allows T D(0) methods to converge. Convergence is even proven
deterministically when all state-action pairs are visited an infinite number of times [9].

2.4. APPROXIMATE REINFORCEMENT LEARNING
The classical RL algorithms mentioned above are tabular methods, requiring exact representations of the
value functions and/or policies. However, for very large state spacesS or action spacesA, this exact represen-
tation becomes problematic. When S consists of n states, computational operations such as n-dimensional
inner products can become prohibitively time-consuming or even impossible when the n-vector cannot be
stored in the computer memory [23]. Not only is the necessary time and memory for this representation
troublesome, also the data required to fill the tables becomes problematic for large S and A [9]. The chance
of visiting a state-action pair once or multiple times reduces when the state-action space grows, causing bi-
ased or even missing estimates for a large portion of the state-action pairs. As an example, consider a simple
discrete system with 10 binary variables, resulting in 210 state combinations. Now if these states can have 10
possible values, there are already 1010 state combinations. Considering that continuous variables can have
more than 10 possible values, continuous problems require function approximators.

To make well-considered choices in the whole state-action space based upon experience in a limited part of
the state-action space requires generalization from previous encounters [9]. Generalization from examples
is a common study field, allowing integration of existing knowledge into the field of RL. Function approxi-
mation is a very suitable form of generalization to be used for large state-action spaces. This method allows
a function to be approximated by generalization by sampling the function in only a part of the domain. As
a consequence of this generalization, an update originating from a single state visit influences the approx-
imated value of many states. This generalization makes the learning more powerful, but often makes the
policy less explainable [9]. Providing more insight into the function approximation in RL is one of the key
goals of this work.

Applying function approximation to RL problems leads to approximate reinforcement learning (ARL). A com-
mon classification of approximators is the use of parameters for the function approximation. Nonparametric
approximators are very flexible, but they become less computationally efficient when the amount of data
grows [24]. In particular, for online RL algorithms, the growing amount of data is troublesome for nonpara-
metric approximators. On the other hand, parametric approximators are more common in the field of ARL.
These approximators use a set of tuneable parameters to approximate a function. As an example of a para-
metric approximator, a Q-function approximated with parameter vector w ∈ Rn is denoted by an approxi-
mation mapping F : Rn →Q, in which Rn is the parameter space, while Q is the space of the approximated
Q-function [24]. Adjusting the parameter vector w results in different approximations of the Q-function as
displayed in Equation (2.4.1).

Q̂ = F (w) (2.4.1)

Parametrized approximations are often classified as linear or non-linear. An example of a linearly parametrized
approximation, which is linear in the parameters, is shown for the action-value function. This function is ap-
proximated using n basis functions φ1,φ2, ...,φn , and a parameter vector w ∈Rn , as shown in Equation (2.4.2)
[24]. φ(x,u) in this Equation is the vector of basis functions

[
φ1(x,u),φ2(x,u), ...,φn(x,u)

]
. The basis func-

tions are also known as features, as they generalize a function based upon smaller features.

Q̂(s, a;w) =
n∑

i=1
φi (s, a)wi =φT (s, a)w (2.4.2)

This is an example of a linearly parametrized approximation, but the approximator can also be non-linear
such as a multilayer artificial neural networks (NN). The field of ARL applying NNs for function approxima-
tion is known as Deep Learning (DL), which is currently among the most research-intensive domains of RL
[12]. Deep learning is an often preferred approach for RL problems, thanks to the flexibility and high repre-
sentation power of NNs. Nonlinear parametrized approximators often have a higher approximation accuracy
and are hence better at representation of the function, but cause the performance of the approximate RL
algorithm to be more difficult to analyze. Furthermore, linear methods can be very efficient concerning the

38 2. REINFORCEMENT LEARNING FUNDAMENTALS

amount of computation and data, but they require specific domain knowledge to be effective [9]. The chosen
linear approximator requires specific features of the function which is to be approximated for the algorithm
to converge.

To evaluate an approximation of a function, for example the value function, a numeric assessment of the
approximation compared with the actual function is required. For this the Mean Squared Value Error can
be used, as presented in Equation (2.4.3). µ(s) is often defined as the fraction of time spent in s compared
to the other states in S . By reducing the Mean Squared Value Error, the approximation is improved. An
approximated value function with a minimized VE is however not necessarily the optimal value function, as
this measure does not asses the optimality of the value function.

VE(w)
.= ∑

s∈S
µ(s) [vπ(s)− v̂(s,w)]2 (2.4.3)

For updating the parameter vector w multiple methods exist, with Gradient Descent being among the most
widely used methods. This parameter update method is used in common classes of ARL such as policy gra-
dient [25] and is used as the foundation of neural network optimization methods such as Adam [26]. The
general form of gradient descent methods is displayed in Equation (2.4.4) and will be explained further when
RL algorithms are discussed. J (w) in this equation is a cost function, which is minimized by updating the
parameter vector w.

wt+1 = wt −γ∇J (wt) (2.4.4)

Generally speaking, approximate RL methods approximate the value function, the policy, or both. Value-
based approximation methods are addressed in more detail in Section 2.4.2, policy-based approximation
methods in Section 2.4.3, and actor-critic methods, combining both value-based and policy-based approxi-
mation, in Section 2.5.

2.4.1. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks (NNs) are one of the most widely-used, nonlinear function approximators thanks
to their accuracy and flexibility. Furthermore, advancements in computing power have enabled faster con-
vergence of these function approximators. Using NNs for function approximation, little to no knowledge is
required of the function which is approximated. The first steps to NNs were made when the logic of bio-
logical neuron firings were applied to electronical circuits [27]. Currently many types of NNs exist, ranging
from simple single-layer perceptrons to more complex neural networks capable of analyzing time series such
as recurrent neural networks. For ARL, feedforward (FF) neural networks are the most common function
approximators. This subchapter will therefore focus on the working principles of feed forward neural net-
works.

A feedforward neural network maps its input x to an output y based on the network’s parameters θ as y =
F (x,θ). This mapping is carried out by passing information through simple, connected processors defined
as neurons [28]. As illustrated in Figure 2.4, these neurons are structured in at least three layers: the input
layer, the output layer, and one or more hidden layers. In the case of more than one hidden layer, the NN is
considered as a deep neural network. Inspired by biological neurons in the brain, each artificial neuron pro-
duces an output signal based on the input to the neuron. This input-output mapping of an individual neuron
is defined as activation. Input neurons are activated based on the inputs of the neural network x, while the
other neurons are activated based on the output of the connected neurons in the preceding layer.

The activation of a neuron depends on the chosen activation function, which specifies the output of a neuron
based on the input. Many variations of activation functions exist, ranging from simple binary activation
where the neuron fires at a constant value once the threshold is reached, to more complex sigmoid functions.
Two examples of common activation functions are illustrated in Figure 2.5, these are the Rectified Linear Unit
(ReLU) and hyperbolic tangent (tanh) functions.

An example of the internal processing of a neuron, connected to three preceding neurons, is shown in Fig-
ure 2.6. The output of the preceding neurons are multiplied with the corresponding weights of the connec-
tions, summed together with a bias during propagation, and then passed through the activation function as

2.4. APPROXIMATE REINFORCEMENT LEARNING 39

Figure 2.4: General structure of a feedforward neural network.

Figure 2.5: Two examples of activation functions, the Rectified Linear Unit and hyperbolic tangent.

shown in Equation (2.4.5). The biases of all neurons, and the weights of all connections in the NN together
comprise the parameter vector θ of the neural network, which is adjusted during training to cause the de-
sired input-output mapping. The type of activation function can differ from layer to layer, but is not adjusted
during training of the neural network.

Figure 2.6: Internal processing of a single neuron connected with 3 other neurons.

nout = F

(
b +

n∑
i=1

wn ·an

)
(2.4.5)

Through successive training of the neural network, where the NNs parameters θ are adjusted, the neural net-
work will aim to map the input to the desired output. This convergence is however not guaranteed, and can
only happen when training is functioning properly. And even when training is set up properly, convergence
is not guaranteed, depending on the initial NN parameters. One of the requirements for functional training
is having a proper setting of hyperparameters. Furthermore, even when training is functional, there is no
guarantee of the NN being 100% accurate of the desired value function or policy. In the sense of mapping
input to desired output, training a neural network based on desired output is a form of supervised learning.
Training of the neural network requires examples of input-output mapping, known as the target or training

40 2. REINFORCEMENT LEARNING FUNDAMENTALS

data. During training, the prediction of the neural network is compared with the desired target data using a
loss function, such as the mean squared error (MSE). Multiple methods exist for tuning the NNs parameters,
of which most are based on the gradient descent as shown in Equation (2.4.4).

As each neuron has a bias and a weight for every connecting neuron, a complex modern NN requires tuning
many parameters, as can be seen for the following example: consider an NN aiming to classify an image of
100 by 100 pixels. This results in 100∗ 100 inputs, and assuming there are 2 hidden layers of 128 neurons,
this NN already requires tuning of 1.33 million weights and 258 biases. Efficient learning of complex NNs
has been made possible through the use of backpropagation, which is currently used by the most popular
update algorithms [28]. Through backpropagation, the gradients of the loss function with respect to the pa-
rameters θ are calculated. The parameters can then be updated in the direction resulting in the largest loss
reduction. The degree in which the parameters are updated in the direction of the gradients is determined
by the learning rate. This is an important parameter for using NNs, and tuning this hyperparameter can be a
time-consuming process, as low values result in slow learning, while a high learning rate may result in unsta-
ble behavior. Furthermore, a low learning rate might cause the NN to be optimized for a local minimum of
the complex loss function, rather than the global minimum. This can be visualized using the analogy of a ball
rolling over a field with small ditches representing the local minima. With a sufficiently high learning rate,
the ball has sufficient momentum to roll over these local minima, potentially ending in the global minimum.
When the learning rate would be low however, the ball would stop in a local minimum. State-of-the-art NN
optimizers typically use a variable learning rate aim to combine the best of both worlds: stability and fast
convergence to a global minimum.

2.4.2. VALUE-BASED APPROXIMATION
Value-based approximation methods approximate the optimal value function using agent-environment in-
teraction data. One of the key methods in this class is Deep Q Learning (DQN), first introduced by [10]. This
method applies classical Q-learning combined with a deep neural network, hence the adjective deep, for the
value function approximation. This DQN algorithm in [10] is able to outperform humans for 49 Atari games. A
popular successor of DQN is Double Q-learning, introduced by [29], reducing the problem of over-estimation
from which DQN is suffering. Other approximators than NNs are also used for value-based approximation,
such as the Fourier basis as presented in [30].

The gradient descent method introduced in Equation (2.4.4) can also be applied to classical value-based
methods. These gradient-descent methods alter w in the direction that causes the most error reduction,
as shown in Equation (2.4.6).

wt+1
.= wt − 1

2
α∇[vπ(St)− v̂(St ,wt]2

= wt +α [vπ(St)− v̂(St ,wt)]∇v̂(St ,wt)
(2.4.6)

The true value function vπ(St) in Equation (2.4.6) is generally unknown however, and must be replaced by
an unbiased estimate of the value function Ut . In the case of Gradient MC methods for example, the value
function is estimated using the return Gt , resulting in Equation (2.4.7). In the case of Semi-gradient TD(0) the
return uses the Bellman equation, as shown in Equation (2.4.8).

wt+1
.= wt +α [Gt − v̂(St ,wt)]∇v̂(St ,wt) (2.4.7)

wt+1
.= wt +α

[
Rt +γv̂t (St+1,w)− v̂(St ,wt)

]∇v̂(St ,wt) (2.4.8)

The Q-learning algorithm, used to achieve super-human performance in the Atari games [10], is presented in
Algorithm 2.3. The value-based approximation methods described here estimate the value function, but do
not yet specify the optimal action. When |A| is small, finding the action maximizing Q̂ is trivial, but this does
not hold for large and continuous action spaces. Due to this curse of dimensionality for large action spaces,
the mentioned algorithms are generally not suited for continuous action spaces. For applications with large
or continuous action spaces, policy-based approximation methods are required.

2.4. APPROXIMATE REINFORCEMENT LEARNING 41

Algorithm 2.3: Q-learning algorithm for estimating π∗, a value-based approximation technique [9]

input : learning rate α
output: Near-optimal value function Q∗
initialize Q(S, A) randomly;
for each episode do

initialize episode, observe s0;
for every time step do

sample A based upon policy from Q given S ;
simulate next time step using A, observe R and S′ ;
update value function Q(S, A) ←Q(S, A)+α[

R +γmaxa Q(S′, a)−Q(S, A)
]

;
S ← S′

end
end

2.4.3. POLICY-BASED APPROXIMATION
Policy-based approximation methods, such as REINFORCE [31], directly learn a policy for a RL problem, se-
lecting actions without the use of a value function allowing these methods to cope with large or continuous
action spaces [9]. Furthermore, a useful characteristic of policy-based approximation methods is their abil-
ity to cope with stochastic environments, thanks to the structure of these methods. Another advantage of
policy-based methods is that some RL problems are easier to solve, when the value function would be hard
to approximate, while the policy would be less complex. Methods applying policy approximation without
value function estimation are known as actor-only methods. The methods described in Section 2.4.2, which
only approximate the value function and then choose actions accordingly, are defined as critic-only methods.
Whenever both the value function and the policy are approximated, the method is regarded as actor-critic
[32]. Algorithms in the latter class are also known as adaptive-critic designs (ACDs) [33].

Some policy-based approximation methods are non-parametric [34], but generally the learned policy is para-
metric. Parametric policies are described using the parameter vector θ ∈Rd ′

. Many policy-based approxima-
tion methods are based on the idea of policy-gradient learning [35], which is derived from gradient-descent
as shown in Equation (2.4.4). In policy-gradient methods, the policy is represented using a parametric and
differentiable function [36], which is optimized for (locally) maximum returns using gradient updates. The
gradient is the direction causing reduction in cost J (θ), where the cost is defined differently for episodic
and continuous tasks. For episodic tasks the cost is defined as the value of the starting state s0, shown in
Equation (2.4.9). For continuing tasks, the average rate of reward per time step is used, shown in Equa-
tion (2.4.10).

J1(θ)
.= vπθθθ (s0) (2.4.9)

JavR (θ)
.=∑

s
dπ(s)

∑
a
πθθθ(s, a)Ra

s (2.4.10)

Using the policy-gradient theorem, presented in Equation (2.4.11), update rules for policy approximation
methods can be constructed. The first algorithm applying gradient-descent for policy approximation was
REINFORCE [37], which can be regarded as classical MC combined with gradient-descent used for policy
approximation. For this algorithm, the gradient is defined as shown in Equation (2.4.12).

∇J (θ) ∝∑
x
µ(x)

∑
u

qπ(x,u)∇π(u|x,θ) (2.4.11)

∇J (θ) ∝ Eπ

[
Gt

∇π(At |St ,θ)

π(At |St ,θ)

]
(2.4.12)

The expectation in Equation (2.4.12) is estimated in the REINFORCE method by sampling multiple episodes,
similar to classical MC learning. Then using the gradient descent equation, previously presented in Equa-

42 2. REINFORCEMENT LEARNING FUNDAMENTALS

tion (2.4.4), the parameters of the approximated policy can be changed using the update equation for REIN-
FORCE, as shown in Equation (2.4.13). The REINFORCE algorithm is presented in Algorithm 2.4.

θt+1 = θt +αGt
∇π(At |St ,θ)

π(At |St ,θ)
(2.4.13)

Algorithm 2.4: REINFORCE algorithm for estimating π∗, a policy-based approximating technique using
episodic data [9]

input : Policy approximation function π(, learning rate α
output: Near-optimal policy π∗
initialize θ randomly;
for each episode do

Simulate episode S0, A0,R0, ...,ST−1, AT−1,RT using π(·|·,θ ;
for t = 0,1,2, ...,T −1 do

determine return G ←∑T
k=t+1γ

k−t−1Rk ;
update policy θ← θ+αγt G∇ lnπ(At |St ,θ)

end
end

While the update rule for REINFORCE shown in Equation (2.4.13) is simple to implement, the substantial
variance of this algorithm makes it infeasible for most applications. One way of reducing this variance is
by not only estimating the policy, but also the value function. This class of actor-critic algorithms will be
introduced next in Section 2.5.

2.5. ACTOR-CRITIC ALGORITHMS
Actor-critic algorithms approximate both the policy and value function to combine the best of both worlds.
Thanks to properties of policy gradient, actor-critic algorithms can provide continuous action output. The
entity in actor-critic algorithms responsible for the action output is defined as the actor. The other entity,
defined as the critic, evaluates the current policy of the actor by approximating the value function. Using
this evaluation, the actor’s approximation parameters can be adjusted in the direction causing the highest
performance increase. This cooperation between the actor and critic significantly reduces the variance and
increases sample-efficiency compared to actor-only methods [38]. The process of critic, actor, and environ-
ment interaction is illustrated in Section 2.5, where the dashed lines illustrate parameter updates caused by
the critic.

u

Actor

Critic

r

x

Environment

x

Figure 2.7: Actor-critic algorithm schematic, with the dashed lines illustrating the critic updating the parameters of the actor and critic
itself.

The characteristics of an actor-critic algorithm are conveniently described by comparison with the REIN-
FORCE algorithm as presented in Section 2.4.3. The policy for an actor-critic algorithm is updated using the
gradient of the approximated value function rather than the gradient of the return. The approximated value
function can be the action-value function such as in Q actor-critic, but other variations such as TD actor-critic
exist. The comparison between these three algorithms is shown in Equation (2.5.1).

2.5. ACTOR-CRITIC ALGORITHMS 43

∇θ J (θ) = Eπθ [∇θ lnπθ(x,u)Gt] for REINFORCE

= Eπθ
[∇θ lnπθ(x,u)Qw(x,u)

]
for Q actor-critic

= Eπθ [∇θ lnπθ(x,u)δ] for TD actor-critic

(2.5.1)

Equation (2.5.1) shows the core principles of 2 actor-critic algorithms, but many more variations of actor-
critic algorithms exist. Q actor-critic is an example of actor-critic learning in its most basic form, which will
therefore be used as an example to illustrate the general working principles of actor-critic algorithms.

Critic
The critic in Q actor-critic learning is updated using the TD-error, as presented in Equation (2.3.2) and re-
peated here for convenience:

δt
.= Rt+1 +γV (St+1)−V (St) (2.5.2)

As the true value function is now approximated with a parametric function, Equation (2.5.3) is used to calcu-
late the TD-error for Q actor-critic.

δt
.= Rt+1 +γQw(x′,u′)−Qw(x,u) (2.5.3)

Using this TD-error, the parameters for the approximation of the Q-function are updated using the update
rule shown in Equation (2.5.4).

wt+1 = wt +αwδt∇wQw(x,u) (2.5.4)

Actor
Using the approximated Q-function, the policy approximation for the Q actor-critic algorithm is updated
using gradient-descent, as shown in Equation (2.5.5). How these update steps for the critic and the actor can
be used for control of a RL problem is shown in Algorithm 2.5.

θt+1 = θt +αθQw(x,u)∇θ lnπθ(u|x) (2.5.5)

Algorithm 2.5: Pseudocode for the Q actor-critic algorithm

initialize x,θ,w at random; sample u ∼πθ(u,x);
for t = 1,2, ...,T do

apply ut , observe xt+1 and rt+1 ;
sample next action ut+1 ∼πθ(·|xt+1) ;
calculate the TD-error: δt ← rt+1 +γQw(xt+1,ut+1)−Qw(x,u) ;
update w: wt+1 ← wt +αwδt∇wQw(xt ,ut) ;
update θ: θt+1 ← θt +αθQw(xt ,ut)∇θ lnπθ(ut |xt) ;

end

SYNOPSIS
This Chapter started by covering the key elements in RL, and ended with a type of ARL commonly found
in state-of-the art literature: actor-critic algorithms [12]. Chapter 3 will continue on this topic, elaborating
how these algorithms are used for aerospace control. Furthermore, the different applications of RL for flight
control will be presented.

3 | Reinforcement Learning for Flight Control

This chapter addresses the use of RL for flight control. First, the applications of RL in flight control are classified in Section 3.1. Secondly, adaptive critic designs
are introduced in Section 3.2. Thirdly, applications of these adaptive critic designs in flight control are introduced and compared in Section 3.3. Then, one of the
adaptive critic designs, Dual Heuristic Programming is featured in more detail in Section 3.4, followed by its extension Incremental Dual Heuristic Programming in
Section 3.5.

3.1. RL FOR FLIGHT CONTROL CLASSIFICATION
The classification is shown in Figure 3.1. The classification is further elaborated on the next page, including examples of the cited publications.

Reinforcement Learning for Flight Control

Lee S. & Bang H. (2020) - Automatic Gain Tuning
Method of a Quad-Rotor Geometric Attitude Controller

Using A3C

Autonomous Trajectory or Path Planning
(High-level control)

Adaptive Reconfigurable Control
(Low-level control)

Goal-Based Navigation Autonomous Obstacle Avoidance

Goedhart et al. (2018) - Machine Learning for
Flapping Wing Flight Control

Ma et al. (2018) - A Saliency-Based RL Approach for a
UAV to Avoid Flying Obstacles

Fei et al. (2019) - Learning Extreme Hummingbird
Maneuvers on Flapping Wing Robots

Koch et al. (2019) - RL for UAV Attitude Control

Scorsoglio et al. (2020) - Image-Based Deep RL for
Autonomous Lunar Landing

Heyer, S., Kroezen, D. & van Kampen, E. (2020) -
Online Adaptive Incremental RL Flight Control for a

CS-25 Class Aircraft

Zhao et al. (2017) - Q Learning Algorithm Based UAV
Path Learning and Obstacle Avoidance Approach

Applying feed-forward neural networks

Applying convolutional neural networks

He, L., Nabil, A. & Song, B. - Explainable Deep RL for
UAV Autonomous Navigation

Applying both FF and CNN

Controller Tuning(Adaptive) Control

Bayerlein, H., De Kerret, P. & Gesbert. D (2018) -
Trajectory Optimization for Autonomous Flying Base

Station via RL

Furfaro, R., Linares R. (2017) - Waypoint-Based
Generalized ZEM/ZEV Feedback Guidance for

Planetary Landing via a RL approach

Miller, D., Linares, R. (2019) - Low-Thrust Optimal
Control via RL

Li et al. (2019) - Autonomous Waypoints Planning and
Trajectory Generation for Multi-Rotor UAVs

Goal-Based Navigation

Autonomous Trajectory or Path Planning
(High-level control)

Figure 3.1: Non-exhaustive classification of RL for flight control, based on academic research available through Scopus.

45

46 3. REINFORCEMENT LEARNING FOR FLIGHT CONTROL

The non-exhaustive classification presented in Figure 3.1 is inspired by all TU Delft research into RL for flight
control. As of July 2021, all research into RL for flight control published through TU Delft can be classified
into one of the presented categories. The upper branch of the classification divides the research into either
high-level or low-level control. In literature, multiple methods of classifying autonomous control exist, such
as the following structure of a hierarchical, ordered from high-level to low-level control: [39]

• Autonomous decision making - top-level decisions, such as trade-off between mission success and
vehicle survivability, also includes obstacle avoidance

• Autonomous path planning - generation of the waypoints which are to be followed by the autonomous
application

• Autonomous trajectory generation - generation of the trajectory through the specified waypoints while
taking into consideration the physical limits of the application

• Adaptive reconfigurable controller - responsible for the trajectory following using sensors and actuators

Another control hierarchy for unmanned aerial vehicles is illustrated in Figure 3.2.

Figure 3.2: Control hierarchy for unmanned aerial vehicles, also applicable to other aerospace applications [40].

Based on these levels of autonomy, the analyzed RL papers for flight control presented in Figure 3.1 are clas-
sified into either high-level or low-level control. Referencing the first classification, high-level control covers
autonomous decision making, autonomous path planning, and autonomous trajectory generation, as these
tasks are ultimately responsible for creating the trajectory. Low-level control covers the trajectory following
using sensors and actuators, including both trajectory-following and propulsion system control mentioned
in Figure 3.2. Based on the available RL literature for flight control, the research is further divided into the
following categories:

• Goal-based navigation - research utilizing RL for waypoint and/or trajectory generation [41] [42] [43]
[44]. Research in this category typically focuses on generating a trajectory while minimizing time flown
or energy spent. The included research in this category all used feed-forward neural networks.

• Autonomous obstacle avoidance - research applying RL methods for active obstacle avoidance, where
the computed trajectory is infeasible due to an obstruction [45] [46] [20]. Typically works in this cate-
gory utilize convolutional neural networks for image analysis. Currently, this class of RL applications
includes the only work applying explainable RL for flight control [20].

• Adaptive control - low-level control of the aerospace application, using RL for trajectory-following
and/or propulsion system control [47] [15] [48] [49]. In terms of number of publications, this class
of RL research is currently the largest.

• Controller tuning - research where RL is used for controller adjustments, such as gain tuning [50] [51].

SYNOPSIS
From the classification, adaptive control is the largest of the four categories when considering the number
of publications. This extensive research is likely due to the potential of RL for adaptive control. The flexible
characteristics of function approximators, especially NNs, allow both good tracking and robust control of
aerospace applications. However, these same complex function approximators lack transparency due to the
extensive number of parameters. Currently, only one publication aims at improving the explainability of
reinforcement learning for flight control [20]. As adaptive control is likely the most powerful flight control

3.2. ADAPTIVE CRITIC DESIGNS 47

application for RL, and because these methods still significantly lack transparency due to the limited amount
of research, improving the explainability of RL flight control will be the main focus of this research. More
details about explainability, including terminology, is presented in Chapter 4.

3.2. ADAPTIVE CRITIC DESIGNS
The application of neural networks for the function and policy approximation in actor-critic algorithms, and
the development of the backpropagation algorithm, led to the development of adaptive critic designs (ACDs)
[52]. This class of RL algorithms is first introduced as an approach for approximate/adaptive dynamic pro-
gramming (ADP), by using neural networks for approximation of the value and policy function. Later this
approach is referred to as adaptive critic designs. These methods, specifically developed for engineering con-
trol, typically utilize neural networks for the actor and the critic, and potentially a neural network for approx-
imation of the global system dynamics [16]. These neural networks for the global system model, the actor,
and the critic have respectively weights wm ,wa , and wc . Adaptive critic designs apply temporal-difference
learning, allowing a problem to be solved forward-in-time [53], therefore enabling online control just like the
methods introduced in Section 2.3.2. A schematic representation of Dual Heuristic Programming, one of the
ACD variants is shown in Figure 3.3. In this example, NNs are used for the actor, critic, and the global system
model.

Figure 3.3: Example of an adaptive critic design structure: Dual Heuristic Programming [17].

Adaptive critic designs can be categorized into heuristic dynamic programming (HDP), dual heuristic pro-
gramming (DHP), and globalized dual heuristic programming (GDHP). Additionally, an ACD can be action-
dependent when the actor’s output is used for the value function approximation, resulting the prefix AD-.
The three main categories and their action-dependent variants are illustrated in Figure 3.4.

The characteristics of the six variants shown in Figure 3.4 are described below: [53]

• HDP: All ACD methods alternate between policy evaluation and policy improvement, like the DP meth-
ods explained in Section 2.2. In heuristic dynamic programming, the critic outputs V̂t as the estimate
of Vt based on the current state xt . By sampling the states xt and reward or cost ct encountered during
control, the error used for updating the critic network can be computed. As therefore all knowledge re-
quired for updating the critic network is available, HDP does not require a plant model for updating wc .
Training of the actor network however requires the derivative ∂V (t)

∂u(t) , which is dependent on the deriva-

tives ∂V (t)
∂x(t) and ∂x(t)

∂u(t) through the chain rule. This first derivative is found through backpropagation of
the critic NN, but to compute the latter derivative a model of the system dynamics is required. There-
fore HDP does not require a model for critic training, but does require a plant model for training of the
actor network. This plant model is also updated during training, for example with gradient-descent
using the error between the prediction of the next state and the actual measured state in the following
time step.

48 3. REINFORCEMENT LEARNING FOR FLIGHT CONTROL

Figure 3.4: Overview of the three adaptive critic design variants, and their action-dependent alternatives [54].

• ADHDP: Action-dependent heuristic dynamic programming (ADHDP) uses the same critic structure
and training as HDP. By also using the action output of the actor as an input of the critic, the derivative
∂x(t)
∂u(t) can be determined directly through backpropagation of the critic network. Therefore the need
for a plant model for updating wa is removed. As a result, ADHDP does not require a plant model for
updating any parameters.

• DHP: In dual heuristic programming, the critic does not estimate the value function Vt , but it estimates

the gradient of the value function with respect to the state: λ̂(xt) = ∂V̂ (t)
∂x(t) . As a result, updating the critic

requires the term ∂x(t+1)
∂x(t) which is obtained through backpropagation of the estimated model dynamics.

Training of the actor for DHP, like the case of HDP, requires the derivatives ∂V (t)
∂x(t) and ∂x(t)

∂u(t) . This first
derivative, λ(t) is directly available for DHP through the critic network, while the second is obtained
through the global system model. In conclusion, DHP uses the global system model for both the critic
and actor updates.

• ADDHP: Like ADHDP, action-dependent dynamic heuristic (ADDHP) programming uses the mea-
sured state and output of the actor as inputs for the critic. The derivative required for updating the
actor network is now available through the critic, removing the need for a global system model for up-
dating wa . Therefore ADDHP only requires the approximation of the global system model for updating
the critic.

• GDHP: Global dynamic heuristic programming can be regarded as a combination of HDP and DHP, as
the critic outputs both V̂ (xt) and λ̂(xt). This first term is computed as in HDP, without using a global
system model. Due to the latter term however, like DHP, updating the critic does require a global system
model. Actor training is similar to HDP, and DHP, and therefore also requires the global system model.

• ADGDHP: Similar to the preceding action-dependent ACDs, ADGDHP uses not only the measured
states as input for the critic, but also the output of the actor. This removes the need for a global system
model for updating the actor. The plant model is still required however for computation of the λ̂(xt)
output of the critic.

The requirements for having a global system model for training of the critic or actor of all six adaptive critic
design categories are summarized in Table 3.1.

3.3. ADAPTIVE CRITIC DESIGN APPLICATIONS IN FLIGHT CONTROL 49

Table 3.1: Overview of the six adaptive critic design structures

ACD Structure Critic structure System model requirement:
Input Output Critic Actor

HDP [x] V ✓
ADHDP [x u] Q

DHP [x] ∂V
∂x ✓ ✓

ADDHP [x u]
[
∂Q
∂x

∂Q
∂u

]
✓

GDHP [x]
[

V ∂V
∂x

]
✓ ✓

ADGDHP [x u]
[
Q ∂Q

∂x
∂Q
∂u

]
✓

3.3. ADAPTIVE CRITIC DESIGN APPLICATIONS IN FLIGHT CONTROL
One of the earliest applications of adaptive critic designs for flight control is presented in a comparison be-
tween a classical PID controller with HDP and DHP controllers for a non-linear auto-landing control problem
with disturbance. In this comparison, DHP has been proven to show the best tracking behavior [16]. The HDP
controller in this research is also able to show sufficient tracking, but is less consistent than the DHP and PID
controller. Additionally, in other comparative research DHP has been shown to outperform HDP for non-
linear voltage regulation of a turbo generator [55]. These two researches show that both HDP and DHP can
be successful in non-linear tracking tasks, but DHP shows overall more consistent and accurate control be-
havior. The performance advantage of DHP above HDP is attributed to the use of the λ̂(xt) terms in DHP
[56]. These terms reduce the chance of introducing errors in the trained parameters due to backpropagation.
As GDHP can be regarded as a combination of HDP and DHP, one might expect this ACD to have superior
performance when compared to the other two. The performance advantage is minor however, while the
increased computational complexity of GDHP is significantly higher than that of DHP [56].

In 2004 DHP was successfully applied to a six-degree-of-freedom flight control problem, using a simulation
of a business jet [57]. This research shows that DHP can still provide adequate tracking under unforeseen
circumstances, such as control failures and unmodelled dynamics. Before this controller can be used for
online control however, the DHP controller’s critic and actor neural networks require an offline training
phase.

In other research, HDP and ADHDP are implemented successfully for flight control of a non-linear F-16 sim-
ulation [58]. The ADDHP controller uses the ADDHP framework above, with a neural network modelling the
plant dynamics used for updating the critic’s weights. After an offline training phase, both ADDHP and AD-
HDP successfully complete a pitch angle tracking task. Offline in this sense does not imply that the agents
are learning from samples generated by external agents, but that the simulation used for learning can be
reset whenever unstable behavior is detected. During offline training, the ADDHP agent’s chance of a sat-
isfactory run is twice as high as the ADHDP agent. As both ADDHP and ADHDP are implemented in this
research, both methods can be compared to assess their adaptability. In this research, ADDHP adapts better
to different plant dynamics and flight conditions than ADHDP agent, but the ADHDP agent is more robust to
measurement noise.

In 2018, the DHP framework was extended using a recursive least squares method for online incremental
model identification [17]. This method, called Incremental Dual Heuristic Programming (IDHP) utilizes an in-
cremental model, removing the need for an offline training phase. The IDHP framework allows near-optimal
control without a prior learning phase, and without any knowledge of the system dynamics. Figure 3.5 shows
a comparison between the tracking performance of the DHP and IDHP framework, for control of a non-linear
missile model.

In the example shown in Figure 3.5, IDHP has a significantly shorter settling time, and the tracking is clearly
more accurate. Furthermore, the online learning ability of IDHP allows adaptation to changing system dy-
namics during flight. Due to the superior tracking performance, settling time, and fault-tolerance of IDHP
compared to other RL flight control frameworks, this algorithm is considered the state-of-the-art of RL for
flight control and will therefore be the framework of choice for this thesis.

50 3. REINFORCEMENT LEARNING FOR FLIGHT CONTROL

Figure 3.5: Online tracking task comparison between DHP and IDHP, for a non-linear missile model [17]. IDHP here shows superior
tracking performance and more rapid convergence to αr e f .

3.4. DUAL HEURISTIC PROGRAMMING
Before presenting the IDHP framework in detail, DHP will be introduced first. As IDHP is an extension of the
DHP framework, this non-incremental framework will be presented first in detail. Dual heuristic program-
ming requires three non-linear function approximators, for approximation of the value function, the optimal
policy, and for the system dynamics with respectively weights wc , wa , and wm . The critic in DHP estimates

the derivatives of the value function V (xt) with respect to the system’s state xt , defined as λ̂(xt) = ∂V̂ (t)
∂x(t) .

System model:
This global system approximation in DHP is used to backpropagate error signals through to update the critic
and actor approximators. The system model approximates the dynamics of the global system, using the ob-
served state of the system xt ∈ Rn and the action chosen by the actor ut ∈ Rm as inputs. Using these inputs,
and the system model based on the weights wm(t), the next state of the system is estimated as x̂t+1 ∈ Rn .
At every time step during training, the system model can be optimized based upon the measured new state.
For this optimization the model error Em(t), shown in Equation (3.4.1), is continuously minimized by updat-
ing the system weights. em is defined as the error between the measured and estimated state, as shown in
Equation (3.4.2).

Em(t) = 1

2
e2

m(t) (3.4.1)

em = xt − x̂t (3.4.2)

The system model weights can, for example be updated using gradient descent, as described in Section 2.4,
resulting in Equation (3.4.3). The gradient ∆wm(t) is scaled with the model learning rate 0 < ηm < 1 as dis-
played in Equation (3.4.4).

wm(t +1) = wm(t)+∆wm(t) (3.4.3)

∆wm(t) =−ηm · ∂Em(t +1)

∂wm(t)

=−ηm · ∂Em(t +1)

∂x̂t+1

∂x̂t+1

∂wm(t)

(3.4.4)

Critic:
In DHP, the critic approximates the gradient of the true value function V (xt) with respect to the state vector
xt . In ADP, the value function is defined as the discounted cumulative cost over time, also defined in ADP

3.4. DUAL HEURISTIC PROGRAMMING 51

literature as the cost-to-go:

V (xt) =
∞∑

l=t
γl−t cl (3.4.5)

Where c is defined as the non-negative cost due to transitioning from xt to xt+1, comparable with a penalty
for classical RL problems. This cost is part of the design of the problem, and can for example be based on the
state, chosen action, and reference state. Similar to the Q actor-critic example in Section 2.5, the critic network
is updated using the TD-error. The recursive property of the value function, repeated here in Equation (3.4.6),
can be rewritten for λ(xt) as shown in Equation (3.4.7).

V (xt) = ct+1 +γV (xt+1) (3.4.6)

∂V (xt)

∂xt
= ∂ct+1

∂xt
+γ∂V (xt+1)

∂xt

→λ(xt) = ∂ct+1

∂xt
+γλ(xt+1)

(3.4.7)

The difference between the left- and right-hand side of Equation (3.4.7) defines the TD-error for the critic.
This TD-error ec (t) is hence defined as:

ec (t) = ∂ct+1

∂xt
+γλ(xt+1)−λ(xt)

= ∂V (xt)

∂xt
−γ∂V (xt+1)

∂xt
− ∂ct

∂xt

(3.4.8)

The term ∂V (xt+1)
∂xt

in Equation (3.4.8) can be expanded using the chain rule, as follows:

∂V (xt+1)

∂xt
= ∂V (xt+1)

∂xt+1
· ∂xt+1

∂xt
(3.4.9)

This expression of ∂V (xt+1)
∂xt

, and the definition of λ(xt) can then be used to write the TD-error for the critic
using gradient functions, as presented in Equation (3.4.10).

ec (t) =λ(xt)−γλ(xt+1)
∂xt+1

∂xt
− ∂ct

∂xt
(3.4.10)

Using this TD-error, the loss function for the critic can be defined, as shown in Equation (3.4.11). By miniza-
tion of this error measure, the parameters of the critic are tuned.

Ec (t) = 1

2
ec (t)T ec (t) (3.4.11)

The terms λ(xt) and λ(xt+1) in Equation (3.4.8) are computed by respectively passing xt and xt+1 through the
critic network, while ∂ct

∂xt
is computed with the chosen cost function. The ∂xt+1

∂xt
term, however, is less easily

computed. The global system model gives x̂t+1 as an output based on the measured input xt , therefore the
derivative ∂xt+1

∂xt
is available through backpropagation of the system model. However, due to a change in xt ,

the actor will also give another output ut , which also influences the system model. Therefore the term ∂ut
∂xt

due

to the actor and the term ∂xt+1
∂ut

due to the system model should also be incorporated in the backpropagation

path for determining ec (t). Equation (3.4.12) shows this complete calculation for ∂xt+1
∂xt

[59].

52 3. REINFORCEMENT LEARNING FOR FLIGHT CONTROL

∂xt+1

∂xt
= ∂xt+1

∂xt︸ ︷︷ ︸
System model

+ ∂xt+1

∂ut︸ ︷︷ ︸
System model

· ∂ut

∂xt︸︷︷︸
Actor

(3.4.12)

Similar to the global system model, the critic’s parameters can be updated using gradient-descent. The up-
date step for this training is shown in Equation (3.4.13), where the increment ∆wc (t) is extended in Equa-
tion (3.4.14).

wc (t +1) = wc (t)+∆wc (t) (3.4.13)

∆wc (t) =−ηc · ∂Ec (t)

∂λ̂(xt)
· ∂λ̂(xt)

∂wc (t)

=−ηc ·ec (t)T · ∂λ̂(xt)

∂wc (t)

(3.4.14)

Actor:
The optimal control action at every time step is the one minimizing the value function, as presented in Equa-
tion (3.4.15) [59].

u∗
t = argmin

ut
V (xt) (3.4.15)

The loss function is therefore defined as in Equation (3.4.16). Then using the recursive expression of the value
function, shown in Equation (3.4.6), the gradient of Ea(t) with respect to the actor’s parameters wa(t) can be
expanded as in Equation (3.4.17).

Ea(t) =V (xt) (3.4.16)

∂Ea(t)

∂wa(t)
= ∂V (xt)

∂ut
· ∂ut

∂wa(t)

=
[
∂ct

∂ut
+γ∂V (xt+1)

∂ut

]
· ∂ut

∂wa(t)

=
[
∂ct

∂ut
+γ∂V (xt+1)

∂xt+1

∂xt+1

∂ut

]
· ∂ut

∂wa(t)

=
[
∂ct

∂ut
+γλ(xt+1)

∂xt+1

∂ut

]
· ∂ut

∂wa(t)

(3.4.17)

The gradient shown in Equation (3.4.17) is used to calculate∆wa(t), as shown in Equation (3.4.18), which also
displays the entities responsible for the different elements in the equation. Finally, Equation (3.4.19) shows
the update equation for the actor’s parameters.

∆wa(t) =−ηa · ∂Ea(t)

∂wa(t)

=−ηa ·
[∂ct

∂ut︸︷︷︸
Reward
signal

+γλ(xt+1)︸ ︷︷ ︸
Critic

∂xt+1

∂ut︸ ︷︷ ︸
System
model

]
· ∂ut

∂wa(t)︸ ︷︷ ︸
Actor

(3.4.18)

wa(t +1) = wa(t)+∆wa(t) (3.4.19)

3.5. INCREMENTAL DUAL HEURISTIC PROGRAMMING 53

3.5. INCREMENTAL DUAL HEURISTIC PROGRAMMING
The IDHP framework is an extension of the DHP framework, using incremental control techniques [17]. The
main difference compared to DHP is the use of incremental model identification, as opposed to DHP’s global
system model. Using only a few state and input measurements, the critic and actor can be updated resulting
in near-optimal control after a short settling-time. The requirements for this incremental model identifica-
tion are high frequency state and input measurements, and relatively slow-varying system states.

Incremental system model:
Rather than using a function approximator for estimation of the global system dynamics, IDHP utilizes high-
frequency system measurements and the Recursive Least Squares approach to estimate the system transition
and input distribution matrices. The dynamics of a non-linear system can in general be modelled as in Equa-
tion (3.5.1).

ẋ(t) = f [x(t),u(t)]

y(t) = h[x(t)]
(3.5.1)

The form shown in Equation (3.5.1) is continuous, but measurements in flight control are discrete. Rewriting
this general description of a non-linear system to a discrete form results in:

xt+1 = f (xt ,ut) (3.5.2)

Using the requirement for high-frequency state and input measurements described above, Equation (3.5.2)
can be linearized to:

xt+1 ≈ xt +Ft−1 · (xt −xt−1)+Gt−1 · (ut −ut−1) (3.5.3)

Then, Equation (3.5.3) is rewritten into the incremental control form as shown in Equation (3.5.4). In this
incremental form Ft−1 is the system transition matrix at t − 1, and Gt−1 is the input distribution matrix at
t −1.

∆xt+1 ≈ Ft−1∆xt +Gt−1∆ut (3.5.4)

By measuring ∆xt and ∆ut with high frequency, Ft−1 and Gt−1 are estimated. In IDHP, Recursive Least
Squares is used for this parameter estimation.

Critic:
Updating of the critic weights is similar to DHP:

∆wc (t) =−ηc ·ec (t)T · ∂λ̂ (xt)

∂wc (t)
(3.5.5)

Where ec (t) is similar to in the DHP framework:

ec (t) =λ(xt)−γλ(xt+1)
∂xt+1

∂xt
− ∂ct

∂xt
(3.5.6)

Using the incremental system identification model, the calculation of ∂xt+1
∂xt

is simplified to:

∂xt+1

∂xt
≈ F̂t−1 + Ĝt−1 · ∂ut

∂xt
|a (3.5.7)

Actor:
In DHP, the actor weights are updated using Equation (3.4.18). For IDHP, the ∂xt+1

∂ut
term is approximated

using the incremental model:

54 3. REINFORCEMENT LEARNING FOR FLIGHT CONTROL

∂xt+1

∂ut
≈ Gt−1 (3.5.8)

Resulting in the simplified equation for updating the actor weights in IDHP:

∆wa(t) =−ηa ·
[
∂ct

∂ut
+γλ (xt+1)Gt−1

]
∂ut

∂wa(t)
(3.5.9)

The schematic outline of the IDHP is shown in Figure 3.6, illustrating the backpropagation paths and feed-
forward connections between the critic, actor, incremental model, and system.

Figure 3.6: Schematic overview of the IDHP algorithm, where the dashed lines indicate backpropagation paths [17].

SYNOPSIS
RL is used for several purposes in flight control research, including goal-based navigation, autonomous ob-
stacle avoidance, adaptive control and controller tuning. Based on the literature classification of RL for flight
control, adaptive control is currently the most active research field. Furthermore, DRL shows great poten-
tial for this application due to flexibility of the NNs. From the reviewed RL for adaptive control publications,
IDHP is considered the state-of-the-art due to its superior performance, adaptability, and fault-tolerance.
This model, like many DRL techniques, is considered a block-box model due to the opaqueness of the NNs
used for the actor and critic modules. As the actor is ultimately responsible for mapping the observable
states of the aerospace vehicle to actuator outputs, explaining the inner workings of this module will provide
useful insights into the mechanics of IDHP. In an effort to create these explanations, the following Chap-
ter will review existing XAI techniques, and make an selection of potentially useful XAI methods to explain
IDHP.

4 | Explainable AI Techniques

As illustrated in the preceding chapter, artificial intelligence methods such as deep RL can show exceptional
performance for complex tasks. A major drawback of many AI methods however is the black box property,
meaning its lack of transparency in its decision-making. The input and output of the AI model can be clearly
observed, but what happens inside the black box remains a mystery. Especially state-of-the art AI techniques
utilize millions of parameters, hindering the ability to easily interpret these methods. In recent years there
has been an extensive effort into the development of both interpretable AI and explainable AI techniques.
First of all, this chapter introduces the topic of both interpretable and explainable AI in Section 4.1. Secondly,
in Section 4.2 the methodology for selecting the XAI literature for this thesis is presented. Then the selected
recent XAI techniques which could be relevant for explainable RL for flight control are introduced, by first
addressing transparent design techniques in Section 4.3, and then post-hoc explainability techniques in Sec-
tion 4.4. These selected AI techniques are featured by first explaining their methodology for explanation, then
their strengths and weaknesses are highlighted, and finally these are assessed based on their applicability to
explainable RL for flight control. Finally the chapter is concluded in Section 4.5 where the most promising AI
technique is selected.

4.1. MOTIVATION, CHALLENGES, AND TERMINOLOGY
While the origin of AI has been established in the 50s, the ability to handle complex tasks such as image
recognition, audio processing, and data analysis has only emerged in the current millennium [6]. The forms
of AI designed in the 20th century are of limited complexity compared to the wide range of AI applications
used today. The acceleration of AI performance since the 2000s, and especially in the last decade, is mainly
achieved by improved optimization algorithms, the emergence of open-source AI libraries, the rise of Big
Data and advancements in the computing power of hardware [6] [7]. However, where the first AI systems
were easy to interpret due to their limited complexity, state-of-the art AI systems such as deep learning are
considerably more opaque [18]. Interpretability in this thesis is defined as the ability to explain something
in terms understandable to a human. The parameter space of deep learning methods, as explained in Sec-
tion 2.4, grows exponentially when increasing the number of neurons, making the method less interpretable.
When the inner workings of a model are hidden, the model is often defined as a black box model [19]. If the
inner workings are completely clear on the other hand, the model is regarded as transparent. However, the
interpretability of many ML models cannot be classified using these two extremes, but is best described on
the spectrum between transparent and black box.

The opaqueness is one of the major drawbacks of AI methods, and can be a severe limitation in applying
AI techniques to solve daily problems. The danger of opaqueness is the possibility of a decision not being
justifiable or legitimate [18]. Additionally, it is often desirable to understand the reasoning behind a certain
action, to trust the decision being made. Furthermore, the need for transparency grows when the stakes
involved in the decision-making process are higher. For some fields, such as self-driving cars where lives are
involved, explanations of the prediction of a model are crucial before AI methods can be used.

Another disadvantage of opaque AI models can be explained using the irony of automation [60]. This theory
states that as processes are automated, as AI is currently doing on a large scale, human operators are charged
with the following two tasks: monitoring the operation of the autonomous agent, and taking over control
manually when the task is too complex for the automated machine. Both cases can be described using a
human pilot, monitoring the flight of the autopilot, and taking over control in the case of for example an
engine failure. Monitoring an autonomous system can only be done while understanding the mechanics
of the controller and the controlled system. The pilot must understand how the aircraft and the autopilot
operate nominally to monitor its operation. For the second task, the irony of automation states that when
simple tasks are automated, the human expert loses skill [60]. When manual take-over is required though,
the control task is likely difficult as the automated machine is not able to fulfill it. The human expert is
however less skilled to complete this task due to the simple tasks being automated. Using the pilot again as

55

56 4. EXPLAINABLE AI TECHNIQUES

an example: when the aircraft is flown using the autopilot, the pilot will slowly lose his proficiency of manual
flight. Whenever manual take-over is necessary, the flight control task likely requires a lot of skill, due to for
example the event of a failure. For both monitoring and intervention, transparency of AI models is essential.
For monitoring, the human expert requires understanding of the mechanics of the AI model. In addition,
explainability of AI models can mitigate skill loss due to automation. If the mechanics of the AI model are
properly explained, experts can learn from what the algorithm is doing, reducing skill loss compared to the
case where the black box makes all decisions without any justification.

In [18], the following three reasons are mentioned for using interpretability as a design driver for a ML model
[18]:

1. Interpretability helps ensure impartiality in decision-making, i.e. to detect, and consequently, correct
from bias in the training dataset.

2. Interpretability facilitates the provision of robustness by highlighting potential adversarial perturba-
tions that could change the prediction.

3. Interpretability can act as an insurance that only meaningful variables infer the output, i.e., guarantee-
ing that an underlying truthful causality exists in the model reasoning.

These three reasons are mainly focused on shortcomings in AI for classification and prediction, mainly through
supervised and unsupervised learning. However, RL also suffers from the same shortcomings. In RL, the first
reason helps to identify decision-making based on unrealistic training data. As RL often requires a lot of
sampling data before an agent is successful, learning which data is responsible for the actions of the agent
can help in identifying training bias. The second reason is also applicable to RL, as having insights into the
sensitivity of a decision with respect to the input variables improves the robustness. Finally, the third rea-
son is likely the most important for RL applications, as proof that the input-output mapping follows logical
reasoning will greatly increase the trustworthiness.

In recent years the opaqueness problem is tackled by the development of both interpretable AI and eXplain-
able AI (XAI) methods. Interpretable AI is defined as AI methods which are inherently understandable by a
human without any prior knowledge. For these methods it is clear how a change in input alters the output of
the model. Explainable AI methods on the other hand aim to explain the inner workings of ML models which
are not inherently interpretable. The suite of XAI methods can be defined as follows: Given an audience, an
explainable Artificial Intelligence is one that produces details or reasons to make its functioning clear or easy to
under-stand [18].

The audience is an important term in the XAI definition, as explainability can be very subjective according to
the audience to which the explanation is given. Possible target audiences are for example regulatory agencies
responsible for the legislation of a self-driving car utilizing AI for its navigation, but also users affected by the
decisions of a model such as bank customers applying for a loan which is judged using a ML model. The main
target audience for this thesis is RL researchers. The choice of this audience stems from the current state of
RL for flight control. While the current state-of-the-art RL methods like IDHP show great performance, their
technology readiness level is not high enough for these methods to be explained to for example regulatory
instances. For RL researchers, having insights into the working principles of the RL algorithms can aid devel-
opment as potential bugs or biases are easier to detect, significantly accelerating development. An example
of how XAI techniques could be used in a design cycle for RL development is shown in Figure 4.1.

Figure 4.1: Schematic representation of how XAI techniques can be used for RL researchers to adjust their algorithm in a design cycle.

4.1. MOTIVATION, CHALLENGES, AND TERMINOLOGY 57

In the example shown in Figure 4.1, a newly designed RL algorithm is tested in a simulation or real life to
generate test data. These test samples are then used in the post-hoc, or after data generation, design analysis
to generate explanations of the algorithm. These insights can then be used to update the RL algorithm after
which the design cycle is repeated until the goal is fulfilled. Where typically only the environment reward,
the output of the RL agent, and the time traces of the states can be used for analysis, post-hoc methods allow
insights into the input-output mapping of the agent. Potentially, this allows for detection of flaws in the
design of the reward function or the agent that are otherwise unobservable.

The major benefit of XAI techniques above interpretable AI is that no compromises are required in terms of
reduced model complexity for increased interpretability. Where interpretable AI has its limitations in terms
of complexity to be understood, XAI techniques aim to make complex AI methods more understandable, or
more formally: "The XAI program’s goal is to create a suite of new or modified ML techniques that produce ex-
plainable models that, when combined with effective explanation techniques, enable end users to understand,
appropriately trust, and effectively manage the emerging generation of AI systems" [61]. Figure 4.2 shows the
tradeoff between model accuracy and model interpretability mentioned before, and how XAI aims to improve
both these characteristics. While this tradeoff mentions accuracy, this does not imply that simple models
cannot be accurate, or that complex models are inherently more accurate. For example, for a simple task
a rule-based learning model can be perfectly accurate, while for a complex non-linear control task a deep
learning model is not necessarily accurate. Complex models however offer more flexibility, allowing higher
accuracy for complex tasks.

Figure 4.2: Trade-off between model interpretability and performance, and a representation of the area of improvement where the
potential of XAI (eXplainable AI) techniques and tools resides [18].

In the literature survey of [18], a taxonomy is used where the analyzed XAI works are classified as transparent
model, or post-hoc explainability techniques. Transparent models follow the definition of interpretable AI,
however the model is not required to be inherently interpretable, as long as some form of interpretability
is used in the design of the model. Following this definition, multiple levels of transparency are possible
ranging from simple decision trees to more complex Bayesian models. Post-hoc explainability techniques on
the other hand aim at explaining already designed models. According to the taxonomy, post-hoc explanation
methods generally use three techniques: model simplification, feature relevance, and visualization. More
details of post-hoc explainability methods are featured in Section 4.4, and more extensive in [18].

While the latest years have shown a tremendous growth in the development of explainability techniques for
ML models in supervised and unsupervised learning, the RL domain still has many intricacies to be better
understood [62]. This difference can be observed in the amount of publications into XAI and eXplainable
reinforcement learning (XRL), shown in Figure 4.3. While giving some indication, the number of publications
presented in Figure 4.3 is likely not exhaustive. The selected XAI works applying transparent design presented
in Section 4.3 are all XRL methods, while the post-hoc techniques presented in Section 4.4 are developed with
supervised learning in mind, but also useful for RL. A more extensive collection of XRL methods is available
in the survey for XRL methods [63] and in the survey of explainable DRL methods [62].

58 4. EXPLAINABLE AI TECHNIQUES

2017 2018 2019 2020
year

0

100

200

300

400

500

#
 p

ub
lic

at
io

ns

XAI
XRL

Figure 4.3: Comparison of the research into eXplainable AI and eXplainable RL, retrieved from Scopus in June 2021.

4.2. LITERATURE SELECTION METHODOLOGY
The XAI research covered in this literature review follows from a literature elimination process, where a large
selection of the available XAI literature is narrowed down to potentially useful publications for explainability
of flight control using RL. This process is shown schematically in Figure 4.4.

XAI techniques suitable for RL

XAI techniques suitable for adaptive control
problems using RL

XAI techniques

Figure 4.4: Selection funnel of the XAI research for this literature review.

The available XAI techniques, shown at the top in Figure 4.4 are explored through literature reviews and
through Scopus [18] [62] [63]. Then, these works are filtered based on suitability for providing useful expla-
nations for RL. Finally, another selection takes place based on the potential for explaining RL used for control
problems, resulting in the provided literature. This latter selection is required as many XRL techniques fo-
cus on high-level control, as defined in the RL for flight control classification presented in Section 3.1. Other
unsuitable works include XAI techniques utilizing less complex feature approximation methods, such as deci-
sion trees. The selected XAI works are divided according to the transparent design and post-hoc explainability
classifications described above, and analyzed according to the following structure:

• Methodology - explaining how this XAI aims to provide explanations

• Strengths and weaknesses - description of the opportunities and limitations of these methods

• Synopsis - concluding analysis of how the selected work could be useful for creating explanations for
RL flight control

4.3. TRANSPARENT DESIGN
This section highlights some explainable AI methods applying transparent design, in which explainability
is one of the key drivers in the design of the AI method. First in Section 4.3.1 a navigation system will be
introduced, utilizing fuzzy RL for explainability. Then in Section 4.3.2 RL explainability using reward system
decomposition will be featured.

4.3.1. EXPLAINABLE NAVIGATION USING FUZZY REINFORCEMENT LEARNING

4.3. TRANSPARENT DESIGN 59

METHODOLOGY

Fuzzy control is one of the intelligent control methods, applying fuzzy logic to control systems. Fuzzy logic,
as opposed to Boolean logic, allows logical values to be partially true by ranging between false and true. By
applying fuzzy logic to control systems, control engineers can introduce knowledge about the system into the
control laws. This knowledge is introduced through linguistic variables, such as cold-warm-hot for control
involving temperature, and through logic IF-THEN rules [64]. The input variables of a fuzzy control system
have numerical or crisp values. These crisp signals are transformed using the linguistic variables into a fuzzy
state of the system through a process defined as fuzzification. Then utilizing the system knowledge of the
designer, the fuzzified variables are used to produce a fuzzy decision, following the IF-THEN rules in a pro-
cess defined as inference. However, as the actual system requires a numerical input, the fuzzy decisions are
defuzzified into crisp values which can are used as system input. This process is illustrated schematically in
Figure 4.6.

Figure 4.5: Schematic representation of the fuzzy decision-making process, starting and ending with crisp values[64]. Through design
of the (de)fuzzification and the rule-base, expert knowledge is utilized in the process.

In one example of transparent design, fuzzy control is combined with DRL to create an explainable navigation
system for an autonomous racing car [65]. The environment of the system is transformed into linguistic
variables. The position on the track is for example defined as [middle, center, edge], while steering is defined
as [left, center, right], and speed as [slow, fast]. Using these linguistic terms the inference rules are used
to create the reward function. An example of this is the following rule: Right lane: IF Speed is Slow AND
Steering is Left AND Distance to center is Center THEN Reward is High. Through these inference rules, human
knowledge about driving a car is inserted into the reward signal for the RL problem. Subsequently, the reward
signal is passed through an exponential function, to punish low rewards and reinforce high rewards. The
agent is trained with the Proximal Policy Optimization actor critic algorithm, resulting in stable performance
with the car driving along the centre of the racetrack.

Figure 4.6: Diagram of the Fuzzy Reinforcement Learning system [65]. The "exp" block resembles an er function, where r is the reward
vector.

SYNOPSIS

Due to the relatively simple IF-THEN inference rules, fuzzy control is often not as well-performing as other RL
methods and has limited potential for complex and non-linear tracking tasks. However, Fuzzy RL as defined
in the paper is not classic fuzzy control but rather a combination of fuzzy logic and DRL. According to the XAI
classification presented in Section 4.1, Fuzzy RL is a combination of two learning methods: rule-based learn-
ing and deep learning. The fuzzy inference module for generating the reward system is rule-based learning,
due to the IF-THEN rules. Applying fuzzy logic to rule-based learning improves both the model explainability

60 4. EXPLAINABLE AI TECHNIQUES

and accuracy [18]. Rule-based models applying fuzzy logic are more understandable thanks to the linguistic
terms, and are more accurate in domains where the truth values are best described using fuzzy rather than
Boolean logic. In the paper of Fuzzy RL, deep learning is applied for training of the autonomous racing car,
mapping the input (velocity, steering angle, and distance to centre of lane) to the actions (velocity and steer-
ing angle) using the fuzzy rule-based reward system. Due to this combination of two learning systems, the
reward signal is easy to understand while the steering system allows complex behavior thanks to complexity
of the actor’s neural network used for steering and velocity control.

Fuzzy control has been used for flight control in simulations for an unmanned aerial vehicle (UAV) [66],
quadrotor [67] and helicopter [68], and has also been proven to be able to control a real-life helicopter during
a flight test [69]. These simulations and flight tests show promising results, although stability and robustness
is not always guaranteed. In comparison to DRL, fuzzy control does not possess the same level of adapt-
ability, but fuzzy logic can be an adequate approach for inserting human knowledge into the reward signal
[65].

4.3.2. REWARD DECOMPOSITION

METHODOLOGY

As explained in Chapter 2, reward signal design is vital to successfully solving a RL problem, as the desired
behavior is reflected through this function. A RL problem can appear to be solved when an agent is succes-
sively achieving high rewards, however achieving a high score is no guarantee for desired decision making
of the agent. Only when the reward function is designed properly will the agent show the wanted behavior.
This reward function consists of either positive rewards for reinforcing desired behaviors, negative rewards
or penalties for preventing undesired behaviors, or a mix of both positive and negative rewards. A commonly
applied approach for reward function design is reward shaping, where the agent is given rewards based on
prior knowledge of the domain. Through this reward shaping, the agent receives the highest return by transi-
tioning into the desired state, allowing the agent to receive continuous feedback rather than a sparse reward
[70].

The reward signal can comprise multiple sources of feedback. An example of this for an engineering problem
could be gaining positive reward for steering through a target, but simultaneously receiving negative reward
for consuming fuel. The authors in [71] make use of reward signals comprising of multiple sources to explain
the decisions of the RL agent through their approach called reward decomposition. Typically, the rewards
originating from the multiple sources are summed to a scalar value, which is passed to the agent for learning.
However, as only the sum of the components is known to the agent and not the individual contributions,
information about the decision-making is lost. For example, in Q-learning it can only be observed which
action is preferred according to policy, but not what are positive or negative motives for awarding a certain
Q-value to an action.

Through reward decomposition the decomposed reward signal is exposed in the form of a vector to the agent
for improved explainability. This decomposition has been studied more often for the benefit of improved
learning speed, but in [71] the decomposition is applied purely for improved explainability. The agent is still
trained to maximize the total reward signal over time, but by conveying the reward signal as a vector, a Q-
function can be determined for every reward signal component Rc . These component Q-functions Qπ

c (s, a)
are summed together for the overall Q-function, as illustrated in Equation (4.3.1). Using the component Q-

values, the Q-function can be defined as vector
−→
Q π(s, a)

Qπ(s, a) =∑
c

Qπ
c (s, a) (4.3.1)

In [71], two methods are proposed for using the component Q-values for explaining the agents behavior: Re-
ward Difference eXplanations (RDX) and Minimal Sufficient eXplanations (MSX). To investigate why a certain

action is preferred over another, their vector Q-functions
−→
Q π(s, a1) and

−→
Q π(s, a2) can be compared, resulting

in the RDX. Each component of the RDX is either a positive or negative motivation for choosing a1 above a2,
as illustrated for the Lunar Lander environment in Figure 4.7a. The purpose of MSX on the other hand is to
deal with environments containing many reward sources. For these environments it can be hard to distin-
guish which individual components are the most important reason for choosing one action over the other.
The MSX aims to identify a small set of the most critical reasons why a1 is preferred above a2, illustrated in

4.4. POST-HOC EXPLAINABILITY 61

Figure 4.7b. The calculation for choosing this set of components is given in [71].

(a) Reward Difference eXplanations (RDX) (b) Minimal Sufficient eXplanations (MSX)

Figure 4.7: Two methods for explaining the decisions of the agent using reward decomposition in the Lunar Lander environment [71]

SYNOPSIS

Reward decomposition aids in explaining the actions of an agent by making use of information already present
in the environment. Insight into the decision-making based on the reward signals can help in spotting errors
relating to the reward function, which is essential for the agent to show the desired behavior. A prerequisite
for using reward decomposition for RL explainability is the presence of multiple components in the reward
signal, or the ability to split the single channel into multiple components. For example, in [71] the environ-
ment is tweaked to extend the single shaping reward into their separate components, such as the angle of the
spacecraft and its distance to the landing pad. Having more sources allows for more detailed insights into the
decision-making, but at least 2 components are required for using reward decomposition. Furthermore, re-
ward decomposition for explainability has been proven to work for Q-learning, but not for other approaches
of RL such as actor-critic.

4.4. POST-HOC EXPLAINABILITY
Post-hoc explainability methods aim to explain AI models that are not inherently interpretable. All selected
post-hoc explainability methods are not RL-specific, and originate from SL and/or USL.

Simple models such as linear regression models are easily interpreted by investigation of the model itself. Due
to the lack of complexity in these models, it is easy to interpret why a certain output is given by inspection of
the feature values and the weights of the models. Additionally, these models can be interpreted by investiga-
tion of the model itself, they do not require simplifications or assumptions to explain the decision-making.
On the other hand, more complex models such as Bayesian models and especially deep learning models are
not interpretable by the model itself, these require an explanation model. Ideally this explanation model, also
defined as surrogate model, allows to give insight into the actual AI model, while still accurately represent-
ing the predictions of this AI model. As the machine learning model is not adjusted for explainability but a
separate explanation model is created for this goal, methods using explanation models are model-agnostic.
A schematic representation of the surrogate model structure is presented in Figure 4.8. As indicated in this
Figure, the actual model is represented by f (x), and the explanation model using g (x).

An explanation for a simple univariate linear regression model, shown in Figure 4.9a, would explain the whole
model. An explanation valid for the whole model is defined as a global explanation. An explanation valid
around an instance of a model, is defined as a local explanation. For non-linear models, as the example
shown in Figure 4.9b, a local explanation is not enough to globally describe the model.

ADDITIVE FEATURE ATTRIBUTION METHODS
Explanation methods known as additive feature attribution methods apply an explanation model which can
be represented as a linear function with binary variables:

f (x) ≈ g (x ′) =φ0 +
M∑

i=1
φi x ′

i (4.4.1)

62 4. EXPLAINABLE AI TECHNIQUES

Figure 4.8: Schematic representation of the surrogate model, used in both LIME and SHAP.

(a) A univariate linear model is fully
explainable by one local explanation.

(b) For non-linear functions, multiple
different local explanations exist.

Figure 4.9: Global and local explanations, where the red dots represent feature data, the blue line is the approximated model f (x), and
the yellow dashed lines represent local and/or global explanations g (x).

Where f (x) is the true function, g (x ′) is the approximation function, φi ∈ R is the contribution of feature i ,
and x ′ ∈ {0,1} is a binary vector with M elements, equal to the number of features.

For additive feature attribution methods, three desirable conditions can be used for assessing their approxi-
mation capabilities [72]:

1. Local accuracy:
The approximation model is locally accurate when the following holds:

f (x) = g (x ′) =φ0 +
M∑

i=1
φi x ′

i (4.4.2)

When compared with Equation (4.4.1) it can be observed that for local accuracy approximation is not enough,
f (x) and g (x ′) should locally be the same function.

2. Missingness:
The missingness property implies the following:

x ′
i = 0 ⇒ φi = 0 (4.4.3)

Hence, when a feature is missing there should be no consequence for the model output. Note that follow-
ing the definition for local accuracy given in Equation (4.4.2), the contribution to the approximation model
would be zero due to the multiplication with x ′

i . The definition forces only one solution to the three desired
properties, as without the missingness property infinite combinations of φ would be possible.

3. Consistency:

4.4. POST-HOC EXPLAINABILITY 63

Finally, let fx (z ′) = f (hx (z ′)) and let z ′ i indicate that z ′
i = 0, then when comparing two models f and f ′:

fx (z ′)− f ′
x (z ′ i) ≥ fx (z ′)− fx (z ′ i) (4.4.4)

For all inputs z ′ ∈ {0,1}M , then the following should hold:

φi (f ′, x) ≥φi (f , x) (4.4.5)

This consistency property states that when the model changes such that the contribution of an input in-
creases or stays the same while other contribution decrease, its attribution should not decrease with respect
to the attribution of the other features. When this property would be violated, the feature orderings cannot
be trusted, even within the same model.

4.4.1. LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS (LIME)
Local Interpretable Model-Agnostic Explanations (LIME), published in 2016, is an explanation technique ca-
pable of interpreting any classification model [73]. Because no knowledge of the original model is required
and any type of ML model can be explained through LIME, the method is model-agnostic. As stated in the
name of this explanation method, LIME interprets the original model locally around a prediction, through
creation of a surrogate model. A complex ML model such as a linear model with 100 terms is difficult to inter-
pret globally, but upon inspection of a single prediction it might become apparent that only a few terms are
dominant for this prediction.

METHODOLOGY

LIME applies a local explanation model, using the additive feature attribution form presented in Equation (4.4.1).
The feature attribution vector φ is obtained by solving Equation (4.4.6) [73].

ξ(x) = argmin
g∈G

L
(

f , g ,πx
)+Ω(g) (4.4.6)

Where g is the explanation model out of G possible explanation model types, L is the fidelity function assess-
ing the accuracy of the fit, and πx is a measure for the proximity around the prediction instance. Furthermore
Ω(g) is added to the loss function to penalize g (z ′) and therefore discourage the complexity of the explana-
tion model. The loss function is therefore a balance between the approximation power and the complexity of
the explanation model. The complexity of a decision tree model can for example be the amount of branches.
LIME makes use of sparse linear models for the local explanations, where g (z ′) = wg · z ′. The used fidelity
function L is presented in Equation (4.4.7). In practice, the Ω(g) function is often applied by choosing the
number of features for an explanation.

L(f , g ,πx) = ∑
z,z ′∈Z

πx (z)(f (z)− g (z ′))2 (4.4.7)

The weights wg are determined by sampling around the desired prediction, and minimizing the loss de-
fined in Equation (4.4.6). Through these sampling deviations ∆x from the instance x, the surrogate model
is formed, as previously illustrated in Figure 4.8. A graphical example of forming this local model for a com-
plex classification model is shown in Figure 4.10, where the blue-pink background represents the complex
function f . This function is explained around one instance, illustrated with the bold plus symbol. The lo-
cal explanation model g is represented by the dashed line. Through the proximity function πx , samples are
weighed based on their distance from the prediction x, illustrated through the difference in size.

STRENGTHS AND WEAKNESSES

As LIME utilizes a surrogate model, any ML model ranging from simple linear models to deep neural networks
can be interpreted using this method. This offers great flexibility in the number of applications where LIME
can be applied. Another advantage of LIME offering flexibility is that no prior knowledge of the model is
required. Furthermore, the fidelity function L produces a measure indicating the fit of the interpretation
with respect to the original function. This allows to assess the reliability of the explanation. Finally, as only

64 4. EXPLAINABLE AI TECHNIQUES

Figure 4.10: Example to explain the local-global difference for LIME [73]. The blue-pink background is the non-linear classification
function f , which is approximated using a linear explanation model g around the dashed line.

local samples are used for computation of the weights, LIME is a fast algorithm compared to other post-hoc
XAI techniques.

However, using linear models for model approximation has drawbacks. For instance, where the local model
represents linearity, such as the instance explained in Figure 4.10, this approximation is valid for a signifi-
cant part of the complex model. For more complex models however, the linearity assumption will only be
correct for a small region around the chosen instance. Additionally, regarding the three desirable properties
for feature attribution methods, according to the decision of the fidelity function L, weighing function πx ,
and complexity function ω, a choice has to be made between either local accuracy or consistency. Therefore,
a model interpretation produced by LIME will never adhere to all three desirable properties. Furthermore,
tuning of the proximity function for defining the locality of the explanation is often difficult in practice. Ad-
ditionally, the perturbations for sampling are chosen randomly following a Gaussian distribution, not taking
into account the actual variance of the features. Another major drawback of LIME is its stability. Testing expla-
nations for random forest and gradient boosting trees has exposed three types of uncertainty: the (Gaussian)
randomness in selecting the samples, variations due to sampling proximity, and variation in model credibil-
ity for different data points [74]. Finally, it has been shown that ML models can be manipulated to be biased,
while appearing to have no bias when interpreting this model using LIME [75].

SYNOPSIS

The ability for post-hoc interpretation of any ML model shows potential for using LIME for explainable RL for
flight control. As a surrogate model is utilized for the explanations, the original model requires no compro-
mises of complexity for explainability. However, LIME is lacking both accuracy and stability, which are highly
desired to accurately explain the inner workings of a RL algorithm. Regarding the three desirable properties
for additive feature attribution methods, a choice is required between either local accuracy or consistency.
For a compromise of accuracy LIME does however offer low computation times for explanations. This creates
interesting opportunities for real-time analysis, such as live explanation of a RL agent controlling an aircraft
giving the pilots insight into the decision-making process, or live feedback of an unmanned UAV where the
operators can interpret the choices being made by the RL algorithm.

4.4.2. SHAPLEY ADDITIVE EXPLANATIONS (SHAP)
METHODOLOGY

Shapley values, originating from game theory in 1951, are the only set of values adhering to a set of axioms
similar to the three desirable conditions for additive feature attribution methods [72]. (Lundberg & Lee) prove
that SHapley Additive exPlanations (SHAP), utilizing Shapley game theory for determination of the feature
contributions, is the only additive feature attribution method capable of producing explanations which si-
multaneously adhering to all three desired properties for additive feature attribution methods: local accuracy,
missingness, and consistency.

These Shapley values can be used to allocate value to individual players in a collaborative turn-based game.
The Shapley value is defined as the average expected marginal contribution of a player during a game, when
considering all possible combinations of how the game could be played. Table 4.1 shows an example of this
calculation, for a game with two players. The total contribution of the two players is 20 for both possibilities
of games, but their contribution depends on the order in which the game is played. By taking the average of
the marginal contributions for both players, the fair contribution of each player is determined.

4.4. POST-HOC EXPLAINABILITY 65

Table 4.1: Example of Shapley value calculation for a game with 2 players.

Order Probability Total contribution Marginal contribution A Marginal contribution B
AB 1

2 20 v({A}) = 8 v({A}) = v({AB})− v({A}) = 12
BA 1

2 20 v({B}) = v({AB})− v({B}) = 6 v({B}) = 14
Shapley Value φA = 1

2 ·8+ 1
2 ·6 = 7 φB = 1

2 ·12+ 1
2 ·14 = 13

As SHAP is a feature attribution method, the following equation is used to create a single explanation:

f (x) ≈ g (x ′) =φ0 +
M∑

i=1
φi x ′

i (4.4.8)

In this equation, φ0 is the expected model output when one would have no knowledge about the feature
values, defined as E

[
f (x)

]
. In SHAP, this value is calculated as the average of all predictions. This value is

defined as the base rate or baseline. The feature values, or SHAP values, φi for i = {1,2, ..., M } are added to this
base rate, resulting in the final model output. As an analogy, the SHAP values can be seen as forces summing
towards a net force.

Waterfall plot:
Figure 4.11 shows an example of a SHAP waterfall plot. The waterfall plot can be used to illustrate the expla-
nation for an individual prediction, also defined as an instance. The plot shows how the actual model output
is obtained by adding the feature effects at the specified instance to the base rate. This allows to observe the
magnitude of the feature effects, and whether they are positive or negative. The explanation of the prediction
is illustrated by starting at the base rate E

[
f (x)

]
at the bottom. From this baseline, the marginal contribu-

tions from all features are added, resulting in the actual model output. The waterfall plot shown in Figure 4.11
originates from a RL control example, where the model output is used to control the longitudinal accelera-
tion of a car[76]. Features having a positive contribution to the model output are colored red, while negative
contributions are colored blue. Waterfall plots are useful to illustrate a single prediction, but it is often hard to
extract global explanation information from this plot. For a more global understanding of the feature effects,
summary plots can be used.

Figure 4.11: Example of a SHAP waterfall plot, where the model output is explained using the baseline and feature effects for a given
action. This example illustrates an explanation for longitudinal acceleration of a car [76].

Summary plot:
The SHAP summary plot shows the explanations for all predictions simultaneously. These plots allow inves-
tigation of the relation between feature value and SHAP value, and of feature importance. These plots are
generated for every output of the specified ML model. Hence, for a NN with 4 outputs, 4 separate SHAP sum-
mary plots are generated. For every instance x, a dot is plotted for every feature, along the x-axis correspond-
ing to its SHAP value. These dots are colored according to their feature value, from low to high. Overlapping
points in the summary plot are stacked in the y-direction, giving an idea of the distribution of SHAP values
for a given feature. The order of the features is determined by the sum of the absolute feature effect, shown

66 4. EXPLAINABLE AI TECHNIQUES

in Equation (4.4.9), ordered from high to low.

I j =
n∑

i=1

∣∣∣φ(i)
j

∣∣∣ (4.4.9)

By comparison of a feature’s color gradient and the SHAP values, the relation between feature value and SHAP
value can be observed. Furthermore, by investigation of the range of the SHAP values for a given feature, and
the distribution of these SHAP values, the importance of this feature for the specified action can be deter-
mined. Figure 4.12 shows an example of a SHAP summary plot for a supervised learning model, estimating a
person’s biological age. As the SHAP value is plotted along the x-axis, and the feature value is shown using the
color scale, the relation between SHAP value and feature value is easily observed. Additionally, the feature
importance is easily observed, not only by the ordering of the features based on Equation (4.4.9), ordered
from high to low, but also by the range between the smallest and largest SHAP value for a given feature, and
the distribution of SHAP values.

Figure 4.12: Example of a SHAP summary plot, where the x-axis indicates SHAP value and the color represents feature value. The model
output of this example is a person’s estimated biological age, based on concentrations of various chemical compounds present in the

human body [77].

Dependence plot:
The relation between feature value and SHAP value can roughly be determined using the SHAP summary
plot. However, the color scale indicating the feature value cannot be read quantitatively. To better observe
the relation between feature value and SHAP value, the dependence plot can be used. Figure 4.13a shows
an example of a simple SHAP dependence plot, with the feature value on the x-axis and the corresponding
SHAP value on the y-axis. Figure 4.13b shows a dependence plot where a second feature is added, indicated
using the color scale. This dual feature plotting allows for the interaction between 2 features to be investi-
gated. If vertical coloring patterns show up, like in Figure 4.13b, an interaction effect is present between the
2 features.

4.4. POST-HOC EXPLAINABILITY 67

(a) Simple dependence plot (b) Dependence plot with second feature for analyzing
interactivity

Figure 4.13: Example SHAP dependence plots, where the model output predicts the income of individuals in the 90s [78].

RL-SHAP diagram:
The SHAP plots shown so far are helpful for giving local and global explanations for a ML model, but lack
insight into the RL-specific decision making process over time. For this, RL-SHAP diagrams can be used.
Figure 4.14 is an example of a RL-SHAP diagram for the same longitudinal acceleration used in Figure 4.11
[76]. The black dashed line in the RL-SHAP diagram corresponds to the time step where the waterfall plot is
generated, shown in Figure 4.11.

Figure 4.14: Example of a RL-SHAP diagram, for longitudinal acceleration control of a car [76]. The first subplot shows the velocity and
speed limit over time, the second subplot is the actor NN output, and the other 7 subplots are the NN inputs. The horizontal grey line of

the action is the SHAP baseline, and the vertical dashed line corresponds to the waterfall plot shown in Figure 4.11.

68 4. EXPLAINABLE AI TECHNIQUES

The RL-SHAP diagram consists of multiple subplots. The top subplot shows relevant information about the
environment and the goal. In the case of Figure 4.14, the velocity of the car and the speed limit are plotted
against the driven distance. The second subplot shows the actor’s NN model output, the longitudinal accel-
erator, plotted against the driven distance. The other subplots show the feature values. Using the color scale,
the feature’s SHAP values over time are plotted, where blue represents negative SHAP values and red repre-
sents positive SHAP values. As indicated with the black dashed line in Figure 4.14, the RL-SHAP diagram is
essentially a series of waterfall plots stacked together, to illustrate the SHAP values over time.

STRENGTHS AND WEAKNESSES

Explanations using SHAP follow the three desirable features for additive feature attribution methods. In con-
trast to LIME, no trade-off between local accuracy and consistency is required. Therefore, the quality of the
explanations provided by SHAP are of higher accuracy. Furthermore, SHAP can not only be used for local
explanations, but also provides global insights of how the model output is influenced by the input features.
Using the SHAP summary plot for example, feature importance and SHAP correlation can be investigated.
Additionally, like LIME, SHAP provides explanations for any kind of ML model, increasing flexibility and re-
moving the need for model knowledge. The advantage of SHAP over LIME is also reflected in the amount of
scientific research performed into using these methods for explainable AI. Figure 4.15 shows the number of
publications for LIME + "Machine Learning" and SHAP + "Machine Learning" retrieved from Scopus on June
29 2021. Although SHAP has only been around for the last 3 years, the amount of research using this method
has already surpassed that of LIME, which has been around for 5 years.

Figure 4.15: Number of publications for LIME + "Machine Learning" and SHAP + "Machine Learning". Data retrieved from Scopus on
June 29 2021.

The main disadvantage of SHAP is the computational expense. Compared to LIME, creating explanations
using SHAP can be time-consuming. Another disadvantage of SHAP is that feature dependence is ignored
for sampling the coalition vector z ′. Random combinations of feature presence and absence are required for
sampling to determine the SHAP values, but these coalitions may be unrealistic. The consequence of this
is that when features are dependent, unlikely coalitions will contribute too much to the estimation of the
SHAP values. This problem is inherent to statistical methods using permutations for sampling. Finally, SHAP
explanations can be misinterpreted. It can be easy to assume that the SHAP value is equal to the difference of
the model output when the feature is removed. The SHAP value is however the difference between the average
model prediction and the actual prediction. This problem can, however, easily be mitigated by clearly stating
how these values should be interpreted.

SYNOPSIS

SHAP shows great potential for creating explanations for flight control using RL, as it is the state-of-the-art in
ML explainability and because of its post-hoc explanation ability, the local and global explanation methods,
and the high explanation accuracy. Like LIME, SHAP allows post-hoc interpretation of any ML model due

4.5. CONCLUSIONS 69

to the use of a surrogate explanation model. Therefore, no compromises in complexity of the model are
required. Furthermore no prior model knowledge is required and the to-be explained model can be easily
changed, allowing flexibility for researchers testing different RL models or model settings for flight control.
The advantages mentioned so far also apply to LIME, however the accuracy of the explanations provided by
SHAP are of higher quality. This high quality does however require longer computation times than LIME. For
the purpose of this research however, high accuracy is deemed more important than computation time, as
for researchers an in-depth analysis is often preferred in order to assess the quality of RL models for flight
control. Additionally, this research does not consider real-time applications. Therefore, computation time is
not as much of a concern.

Finally, SHAP has been proven to provide useful explanations for not only supervised and unsupervised learn-
ing, but also for RL applications. On the other hand, LIME has not been applied for RL problems in the aca-
demic world 1. SHAP on the other hand has been used for at least 5 RL applications, such as the explanation
of a learned strategy for traffic light control [79] 2.

One recent example of how SHAP is used for explaining the decision making process of a RL agent for a
control problem is the explanation of longitudinal acceleration of a self-driving car, where the RL-SHAP plots
are introduced [76]. Figure 4.11 and Figure 4.14 are from this paper. In another research where SHAP is used
for explaining RL for control, a flight application is used. In this research, RL is used to control the flight of an
unmanned aerial vehicle through an obstacle course.

4.5. CONCLUSIONS
Target audience is an important factor in the subjective field of explainability, as the type of audience influ-
ences the type of explanation and the desired level of explanation detail. Due to low technology readiness
level of current RL control applications for flight control, the main target audience of this research is RL re-
searchers. Explainable AI methods can aid RL researchers in better understanding their algorithms and notice
possible flaws, reducing the overall development time and potentially resulting in improved algorithms. RL
researchers can use these XAI methods in their design cycle, to assess their algorithms and update them using
the generated insights.

Accuracy is typically one of the key design drivers for RL applications in flight control due to the complex
and non-linear dynamics encountered in aerospace. This demand for accuracy limits the possibilities for
transparent design techniques, such as reward decomposition and explainable fuzzy RL, as these require
compromises in accuracy for increased interpretability. However, the other class of XAI, post-hoc explain-
ability techniques, are developed specifically to interpret already designed ML models. Therefore post-hoc
explainability methods will be used in this research, as these methods allow maximum accuracy of the to-
be explained ML model. Another advantage of this suite of explainability techniques is that RL researchers
can use these methods for already existing RL flight control algorithms, requiring no adaptations to their
work.

From the analyzed post-hoc explainability techniques, SHAP shows the most potential for explaining RL ap-
plications in aerospace. SHAP uses Shapley values from game theory to calculate feature importance, offer-
ing insightful local and global explanations. As the target audience for this research is researchers, accuracy
of explanations is deemed more important than computation time, resulting in the choice of SHAP for this
research. For other research subjects, such as real-time explanations, LIME could be more suitable. An exam-
ple of this is live explanations of a RL agent controlling an aircraft, to allow the pilot to monitor the decisions
being made during flight. In the preliminary analysis, SHAP will be used to create explanations for classic
and relatively simple RL problem, the lunar lander. This is a commonly studied RL problem encountered in
multiple academic publications, and allows both discrete and continuous control.

1Based on academic research available through Scopus - Query: LIME + reinforcement in June 2021
2Based on academic research available through Scopus - Query: SHAP + reinforcement in June 2021

5 | Preliminary Analysis

This chapter presents the preliminary analysis of this thesis. The goal of this preliminary analysis is to explore
the possibilities and limitations of the SHapley Additive exPlanations methodology to increase the trans-
parency of RL for flight control. In this preliminary analysis, a commonly used environment is applied to train
both discrete and continuous control RL agents. The decision-making processes of these agents are then ex-
plained using the techniques available through SHAP. First, the methodology of this analysis is presented in
Section 5.1, including the used environment and the discrete and continuous control algorithms. The results
of the discrete control analysis are then presented in Section 5.2. Finally, the results of the continuous control
analysis are shown in Section 5.3.

5.1. PRELIMINARY ANALYSIS SETUP

5.1.1. ENVIRONMENT
The lunar lander environment, part of Open AI’s Gym [80] RL testing toolbox, is inspired by the set of classic
arcade lunar landing games from the 70s. In this environment the goal is to land the lunar spacecraft on the
randomly generated lunar surface on the landing pad between the two yellow flags, located at coordinates
(0,0), as illustrated in Figure 5.1.

Figure 5.1: Screenshot from Open AI’s lunar lander environment, including the purple spacecraft and the landing pad between the two
yellow flags [80]. The terrain is generated randomly for every episode.

State space:
The following continuous states are available: the spacecraft’s position (x, y), the spacecraft’s velocity in the
inertial frame (Vx ,Vy), the spacecraft’s angle with respect to the positive vertical axis θ, the spacecraft’s ro-
tational velocity ω. Furthermore, 2 discrete states are used to indicate ground contact of the 2 landing legs
(legL , legR). The 2 discrete variables are binary, where a 0 indicates no ground contact while a 1 indicates
contact between the leg and the lunar surface. At the start of each episode, the agent is initialized at exactly
the same position near the top and centre of the screen. However, to discourage trivial solutions a force with
a random magnitude and direction is applied to the main body of the spacecraft during initialization. The
state space, including upper and lower limits, is summarized in Table 5.1.

Action space:
The action space of the lunar lander environment can be either discrete or continuous. In the discrete action
space, the following four actions are possible:

• a0: do nothing

• a1: fire left thruster, causing clockwise rotation

• a2: fire main thruster

71

72 5. PRELIMINARY ANALYSIS

Table 5.1: State space of the lunar lander environment.

State Description Unit Range
x Horizontal position m [-1.0, 1.0]
y Vertical position m [-0.2, 2.0]
Vx Horizontal velocity m s−1 [-∞, ∞]
Vy Vertical velocity m s−1 [-∞, ∞]
θ Angle with respect to positive y-axis rad [-π, π]
ω Angular velocity rad s−1 [-∞, ∞]
legL Left leg contact [-] [0,1]
legR Right leg contact [-] [0,1]

• a3: fire right thruster, causing counter-clockwise rotation

For the continuous lunar lander, the action space consists of the following:

• a0: main thruster ∈ [−1.0,1.0], where the thruster is only operational in the [0.0,1.0] domain. For the
other values the thruster is idling.

• a1: left-right thrusters ∈ [−1.0,1.0], where the right thruster (counter-clockwise rotation) is operational
for a1 ∈ [−1.0,−0.5], the left thruster (clockwise rotation) for a1 ∈ [0.5,1.0]. Both engines are idling for
a1 ∈<−0.5,0.5 >.

The action space of the continuous agent is illustrated in Figure 5.2.

Figure 5.2: Action space for the continuous lunar lander environment. The thrusters are only active on the blue domains.

Reward Function:
The reward signal is designed using reward shaping, the reward design method described in Section 4.3.2.
Through this function, positive reward is awarded by moving towards the goal at coordinate (0,0). Addition-
ally, minimizing the spacecraft’s velocity results in positive reward. Minimizing both the distance to the goal
and the spacecraft’s velocity results in 100 to 140 points, depending on the random initial condition. Further-
more, through the reward shaping function the agent is encouraged to minimize θ. Additionally, a reward of
10 points is given for each landing leg making contact with the lunar surface, to discourage flying away after
landing. The episode is terminated by either a successful landing where the spacecraft is stable on the sur-
face, or when crashed. A crash is defined as the scenario where the main body of the spacecraft makes contact
with the lunar surface, or when the spacecraft flies out of the horizontal coordinate bounds ([−1.0,1.0]). For
a successful landing 100 points are awarded, while for a crash -100 points are given. Finally, 0.3 points are de-
ducted for every time step where the main thruster is turned on to discourage fuel usage. The reward function
is summarized in Equation (5.1.1)

rtot al = rshapi ngx y + rshapi ngV + rshapi ngθ + rlegL + rlegR + rcr ash (5.1.1)

5.1. PRELIMINARY ANALYSIS SETUP 73

5.1.2. DISCRETE CONTROL - ADVANTAGE ACTOR CRITIC (A2C)
For discrete control of the lunar lander environment, the Advantage Actor Critic (A2C) algorithm is applied.
This algorithm shows many similarities with the Q actor-critic, presented as Algorithm 2.5 in Section 2.5. A
schematic overview of this algorithm is shown in Figure 5.3. As A2C is an actor critic algorithm, the actor is re-
sponsible for determining the action, while the critic estimates the value function. As shown in Figure 5.3, the
actor’s parameters θ and the critic’s parameters w are updated by backpropagation, using the value function
for both updates.

Figure 5.3: Schematic overview of the (advantage) actor critic structure. The dashed lines indicate the backpropagation paths for
updating both the critic and actor.

Instead of only using the estimated value V (x;w) for this update step, the advantage is utilized. The advantage
in A2C is defined as in Equation (5.1.2). By using the difference between the return and the estimated value
function, the gradients of the actor and the critic is either enhanced for positive advantage values, or reversed
for negative values, resulting in expedited learning and reduced variance.

A(xi ;w) = R −V (xi ;w) (5.1.2)

As a Monte Carlo method, A2C calculates the return for every time step at the end of each episode. Then, the
gradients for the actor dθ and critic dw are accumulated by stepping through every time step. Finally, using
the accumulated gradients, the parameter vectors θ and x are updated. This sequence of steps for training
the agent is shown in more detail in the pseudocode of Algorithm 5.1.

Algorithm 5.1: Pseudocode for training of the Advantage Actor Critic (A2C) algorithm

initialize x,θ,w at random; where θ is for the policy, and w for the value function ;
reset gradients: θ← 0 and w ← 0 ;
for each episode do

repeat
sample action ut ∼πθ(·|xt) ;
apply ut , observe xt+1 and rt+1 ;
set t ← t +1 ;

until sterminal or t > tmax ;
for i ∈ {t −1, t −2, ...,0} do

calculate return R ← ri +γR ;
accumulate θ gradient: dθ← dθ+∇θ logπ(ui |xi ;θ) · (R −V (xi ;w)) ;

accumulate w gradient: dw ← dw+ δV (xi ;w)
δw · (R −V (xi ;w))

end
update θ using dθ ;
update w using dw ;

end

For the preliminary analysis, NNs are used for approximation of both the policy and value function. The
neural structure is illustrated in Figure 5.4. The actor and critic network both have one hidden layer, and
share these neurons together for expedited learning. This means that the biases of these neurons are shared,
and that weights between the input layer and the hidden layer are similar for the actor and critic. The actor
network has 4 output neurons, one for every action, while the critic has one output neuron for estimation of
V (x)

74 5. PRELIMINARY ANALYSIS

Figure 5.4: Neural network structure of both the actor and the critic for A2C. The critic and the actor share the same neurons in their
hidden layer.

As the A2C algorithm is used for the discrete lunar lander environment, the output of the actor should be used
to choose 1 of the 4 possible actions at every time step. Therefore, the output of the actor is the probability
distribution for the 4 actions, using the softmax function as the activation function of the actor output layer.
This function, shown in Equation (5.1.3) transforms a vector of n elements into a vector summing up to 1,
resulting in a set of probabilities. Negative or small values receive a low probability while large values will
receive a large probability. Finally, the used hyperparameters for the A2C agent are presented in Table 5.2,
and the corresponding training convergence plot is presented in Appendix A.

s(xi) = exi∑n
j=1 ex j

(5.1.3)

Table 5.2: Hyperparameters of the A2C agent resulting in solving the discrete lunar lander environment.

Hidden layer Output layer
α γ n neurons Activation function n neurons Activation function

Critic 0.001 0.99
256 ReLU

4 softmax
Actor 0.001 0.99 1 -

5.1.3. CONTINUOUS CONTROL - DEEP DETERMINISTIC POLICY GRADIENT (DDPG)
The applied algorithm for the continuous control lunar lander environment is the Deep Deterministic Policy
Gradient (DDPG) algorithm. This algorithm provides continuous control and applies two strategies from pre-
viously developed algorithms: target networks from Deep Q-learning, and experience replay. Target networks
are developed to prevent catastrophic forgetting, defined as loss of performance over time of a RL agent. RL
algorithms applying bootstrapping are prone to instability, due to the use of estimations in the update equa-
tions. By applying one or more target networks, this instability can be reduced. In DDPG, both the actor and
the critic have a target network. The second adopted concept, experience replay, allows to store interaction
data in the replay buffer, in order to not only learn from all past experience rather than only the latest time
step. The general structure of the DDPG algorithm is visualized in Figure 5.5.

In DDPG, both the actor target network and the critic target network are updated every time step, using a
soft-update where the parameters of the target networks are pushed slightly in the direction of the local actor
and critic network using the hyperparameter τ. These two update steps are shown in Equation (5.1.4), where
θ represents the parameter vector of the actor NN, θ′ the parameter vector of the actor target NN, w the
parameter vector of the critic NN, and w′ the parameter vector of the critic target NN.

w′
t+1 = τ ·wt + (1−τ)w′

t

θ′
t+1 = τ ·θt + (1−τ)θ′

t
(5.1.4)

To stimulate exploration, DDPG agents add noise to the action output. Due to this noise, extra large regions

5.1. PRELIMINARY ANALYSIS SETUP 75

Soft update

Actor

Soft update

Critic

Environment

Actor targetCritic target

Replay
buffer

Noise

Store transitionSample

Figure 5.5: Global structure of the DDPG algorithm, where the dashed lines indicate the backpropagation paths.

of the state space are explored. Typically for DDPG, the noise is sampled from a Ornstein–Uhlenbeck process
[81], described in Equation (5.1.5). In this process, η(t) is commonly white noise with µ= 0 and σ= 1.

∂xt

∂t
=−θ · xt +σ ·η(t) (5.1.5)

To stimulate state space exploration at the start of training, but stimulate exploitation later in training when
the agent has become more intelligent, epsilon decay is used for the noise addition. At start of training,
ϵ = 1, and every time step ϵ is reduced with ϵdecay as shown in Equation (5.1.6). The added noise from the
Ornstein–Uhlenbeck process is multiplied with this ϵ, resulting in gradually decreasing influence from this
noise during training.

ϵt+1 = ϵt −ϵdecay (5.1.6)

The NN structures of the actor and critic are illustrated in Figure 5.6. The structures of the target NNs are equal
to what is displayed in Figure 5.6. The hyperparameters for these NNs are summarized in Table 5.3.

Hidden layers
(ReLU)

Input Output layer
(tanh)

(a) Actor

Hidden layer 1
(ReLU)

Output layer
(-)

State input

Hidden layer 2
(ReLU)

Action input

(b) Critic

Figure 5.6: Neural network structures for the DDPG agent. The target networks follow the exact same structure.

76 5. PRELIMINARY ANALYSIS

Table 5.3: Hyperparameters of the DDPG agent networks resulting in solving the continuous lunar lander environment.

Hidden layers
Output layer

α nneurons Activation function nneurons Activation function
Actor 10−4 128 ReLU 2 tanh
Critic 10−3 128 ReLU 1 -

The pseudocode for training the DDPG agent is presented in Algorithm 5.2. The nupdate hyperparameter in
the pseudocode defines the number of samples drawn from the replay buffer for learning. The hyperpa-
rameters mentioned in this pseudocode and other general parameters are summarized in Table 5.4, and the
training convergence plot is presented in Appendix A.

Table 5.4: General hyperparameters for the DDPG agent, used to solve the continuous lunar lander environment.

Hyperparameter Value
batch size 256
buffer size 106

ϵ 1
ϵdecay 10−6

γ 0.99
Tlearning 20
noise µ 0
noise σ 0.2
noise θ 0.15
optimizer Adam[26]
τ 10−3

nupdate 10

5.2. RESULTS OF DISCRETE CONTROL PRELIMINARY ANALYSIS
In this section the results of the discrete control environment preliminary analysis are presented, by explain-
ing the trained strategy of the discrete agents. The main tool for explaining this strategy is SHAP. However,
before interpreting the input-output mapping using SHAP values it is useful to understand the input space
and outputs of the NN. Therefore, in Section 5.2.1 the input space is analyzed for both an untrained and
trained agent. Then, in Section 5.2.2 the NN output is presented, including an explanation of the agent’s
strategy using these outputs. Finally, in Section 5.2.3 the input-output mapping is explained using SHAP
values and multiple types of SHAP plots.

5.2.1. INPUT ANALYSIS
As the main focus of this preliminary analysis for increasing RL explainability is the input-output mapping of
the actor’s NN, insight into the encountered inputs during the simulated episodes helps understanding the
agent’s choices. Figure 5.7 shows the encountered continuous states during 10 episodes for an untrained and
trained agent.

From Figure 5.7 several conclusions can be drawn:

• Both the trained and untrained agent show similar minimum and maximum values for the vertical
coordinate. As each episode is initialized near the maximum y-coordinate 1.5, and the ground is at 0,
this makes sense. The slightly negative values are explained due to variations in the terrain. At some
instances the spacecraft lands outside of the landing pad, causing it to slide down into a moon crater.

• The trained agent encounters lower vertical velocities. As the landing is better controlled, the agent is
not falling uncontrollably towards the ground.

• Significant differences are also observed in Vx . As the trained agent performs controlled landings, the
horizontal movement is minimized.

5.2. RESULTS OF DISCRETE CONTROL PRELIMINARY ANALYSIS 77

Algorithm 5.2: Pseudocode for training of the Deep Deterministic Policy Gradient (DDPG) algorithm

Initialize actor NN using randomly generated θ and critic network using randomly generated w ;
Initialize actor target network setting θ′ ← θ and critic target network w′ ← w ;
Initialize replay buffer R ;
Initialize random process N for exploration ;
for episode = 1,2, ..., M do

Initialize episode and get x0 ;
Initialize t ← 0 ;
for t = 0,1, ...,T do

Sample action with noise ut ∼πθ(·|xt)+ϵ ·Nt ;
Apply ut , observe xt+1 and rt+1 ;
Store xt ,ut ,rt ,xt+1 in R ;
if t % Tlearning = 0 then

for n = 0,1, ...,nupdate do
Sample N transitions xi ,ui ,ri ,xi+1 from R ;
Use actor target network for sampling next action: ui+1 ∼πθ′ (·|xi+1) ;

Use critic target network for sampling Qw′
(xi+1,ui+1) ;

Compute target Qtar ← ri +γ ·Qw′
(xi+1,ui+1) ;

Update critic using MSE loss L ← (Qtar −Qw(xi ,ui))2 ;
Sample action from actor network ui ∼πθ(·|xi) ;
Update actor using loss L ←−Qw(xi ,ui) ;
Update actor target network θ′ ← τ ·θ+ (1−τ) ·θ′ ;
Update critic target network w′ ← τ ·w+ (1−τ) ·w′

end
end

end
end

• Similarly, the encountered angle θ and rotational velocity ω of the spacecraft controlled by the trained
agent are significantly lower. The amount of outliers for ω is remarkable compared to the rest of the
encountered states, for both agents. These outliers of ω are encountered when the spacecraft lands
outside of the landing pad against the slope of a lunar hill, or in a trench. This rare phenomena causes
the spacecraft to quickly tip over, inducing a high |ω|.

5.2.2. OUTPUT ANALYSIS
Similar to understanding the encountered input space as presented in Section 5.2.1, knowledge of the actual
model output helps to explain the decisions of the agents and benefits interpretation of the SHAP analysis.
Figure 5.8 shows the simulation of one episode for both the untrained and trained agent. As illustrated in
Figure 5.8a, the 4 action probabilities for the untrained agent are equal and about constant throughout the
episode. Even though the 8 inputs changes considerably during the episode, their contribution to the model
output is negligible due to the lack of optimized weights and biases.

Figure 5.8b shows some insights into the learned behavior of the trained agent. At the start of the episode, the
highest probability is for a1: firing of the left thruster, causing clockwise rotation. Subsequently, after about
10 time steps a3 becomes the most dominant action, halting the rotation of the spacecraft. Then at about
t = 25 a2 receives the largest probability, for firing the main thruster slowing the spacecraft. Finally, when
the spacecraft touches the lunar surface around t = 140, a0 (do nothing) becomes the preferred action. This
forces the spacecraft to a halt, terminating the episode.

5.2.3. INPUT-OUTPUT ANALYSIS USING SHAP
This Section covers the SHAP analysis, the main explainable AI technique of this preliminary analysis, for the
discrete lunar lander environment. First, the waterfall plot will be presented, to provide an explanation for a
single time step. The waterfall plot offers a simple introduction to the realm of SHAP values for RL. Secondly,
SHAP summary plots are presented to provide global explanations. Using these plots, feature importance can

78 5. PRELIMINARY ANALYSIS

x [m] y [m] Vx [m/s] Vy [m/s] [rad] [rad/s]
state

5

4

3

2

1

0

1

2

3

va
lu

e

status
untrained
trained

Figure 5.7: Boxplot for the encountered continuous states during simulation of 10 episodes for an untrained and trained discrete agent.

0 10 20 30 40 50
0
1p(a|x)

a0 a1 a2 a3

0 10 20 30 40 50
−0.05
0.00
0.05x

0 10 20 30 40 50
0
1y

0 10 20 30 40 50
−0.1
0.0
0.1Vx

0 10 20 30 40 50
−1.5
−1.0Vy

0 10 20 30 40 50
−0.25
0.00θ

0 10 20 30 40 50
0

5ω

0 10 20 30 40 50
0

1legL

0 10 20 30 40 50
time

0

1legR

(a) Untrained agent (average score = -156.2).

0 25 50 75 100 125 150 175
0
1p(a|x)

a0 a1 a2 a3

0 25 50 75 100 125 150 175
0.00
0.25x

0 25 50 75 100 125 150 175
0
1y

0 25 50 75 100 125 150 175
0.0
0.5Vx

0 25 50 75 100 125 150 175
−0.5
0.0Vy

0 25 50 75 100 125 150 175
0.0
0.2θ

0 25 50 75 100 125 150 175
−0.25
0.00
0.25ω

0 25 50 75 100 125 150 175
0

1legL

0 25 50 75 100 125 150 175
time

0

1legR

(b) Trained agent (average score = 212.13).

Figure 5.8: Model output and observed states, for an untrained and trained agent.

be analyzed, and the relation between feature and SHAP value can be roughly determined. Thirdly, the RL-
SHAP plots are introduced, where all time steps of an episode are explained by combining feature time traces
and SHAP values. Finally, SHAP values are used to visualize the training process of the discrete agent.

WATERFALL PLOT

Due to the limited amount of information presented in one waterfall plot, the waterfall plot is the easiest
SHAP plot to fundamentally explain SHAP values. Therefore, the waterfall plot is the first type of SHAP plots
to be presented, before more complex SHAP plots are introduced. As explained in Section 4.4.2, the waterfall
plot shows the explanation of one instance. The waterfall plot illustrates how every feature contributes to
one prediction. Starting from the base value, defined as the expected model output E

∣∣ f (x)
∣∣, the SHAP values

are added, resulting in the actual model output f (x). Red bars indicate positive SHAP values, while blue
bars indicate negative contributions. Figure 5.9 shows the waterfall plot for a2, "fire main thruster", during
flight.

Without the feature values Figure 5.9 is however difficult to interpret. Later this chapter this will be easier,
when RL-SHAP diagrams are presented where the SHAP values are shown combined with the feature values.
The waterfall plot is however a good introduction for using SHAP values for analyzing the agent’s dynamics
during simulations in the lunar lander environment. The baseline or base rate is shown at the bottom, and
equals 0.299 for a2. This means that the average probability for the "fire main thruster" action during this

5.2. RESULTS OF DISCRETE CONTROL PRELIMINARY ANALYSIS 79

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 x

 legR

 ω

 θ

 Vx

 legL

 y

 Vy

 x

 legR

 ω

 θ

 Vx

 legL

 y

 Vy +0.63

+0.08

+0.04

+0.04

+0.03

−0.37

−0.02

−0.01

= 0.299= 0.299

= 0.716= 0.716

Figure 5.9: Waterfall plot for the "fire main thruster" action during flight, showing the baseline E [f (x)] at the bottom, and the model
output f (x) at the top. The lack of feature values complicates the interpretability, but the waterfall plot helps to understand how a SHAP

explanation works.

episode is 0.299. From this baseline, the feature SHAP values φ are added resulting in the final output f (x),
also described in Equation (5.2.1).

f (x) ≈φ0 +
8∑

i=1
φi x ′

i (5.2.1)

For the instance depicted in Figure 5.9 it is clear that Vy and y are the dominant features. As the waterfall plot
only illustrates a local explanation it is however impossible to determine from this plot if these features are
always dominant, and to estimate the relation between these feature values and their SHAP values. For these
analyses, the summary plot is a good option, which will be introduced next.

SUMMARY PLOT

The SHAP summary plots allow investigation of the relation between feature value and SHAP value, and of
feature importance. These plots are generated for every output of the specified ML model. Hence, for an NN
with 4 outputs, 4 separate SHAP summary plots are generated. For every instance x, a dot is plotted for every
feature, along the x-axis corresponding to its SHAP value. These dots are colored according to their feature
value, from low to high. Overlapping points in the summary plot are stacked in the y-direction, giving an idea
of the distribution of SHAP values for a given feature. The order of the features is determined by the sum of
the absolute feature effect, shown in Equation (5.2.2), ordered from high to low. By comparison of a feature’s
color gradient and the SHAP values, the relation between feature value and SHAP value can be observed.
Furthermore, by investigation of the range of the SHAP values for a given feature, and the distribution these
SHAP values, the importance of this feature for the specified action can be determined.

I j =
n∑

i=1

∣∣∣φ(i)
j

∣∣∣ (5.2.2)

Figure 5.10 shows the SHAP summary plot for the "do nothing" and "fire main thruster" actions, and Fig-
ure 5.11 shows the SHAP summary plot for the two rotational actions. These plots are generated using
samples from 20 episodes, for extended state space coverage. Due to the random initial conditions of ev-
ery episode, an agent will only cover a limited part of the state space during an episode. By increasing the
number of episodes, the SHAP summary plots will illustrate a larger part of the SHAP value domain, and will
therefore explain more about the dynamics of the spacecraft during simulation. Furthermore, the instances
marked as outliers are not shown in these SHAP summary plots, as including these makes interpretation of
the plots impossible. An instance is specified as an outlier when one of the 6 continuous features has a SHAP
value not in the µ±2σ range.

From Figure 5.10a it can be observed that legL is the most dominant state for determining p(a0|x), as the

80 5. PRELIMINARY ANALYSIS

range between the minimum and maximum value and the spread between the SHAP values is the largest.
The SHAP value is positive when the landing legs make contact, and negative when they do not. Hence
the agent is encouraged to "do nothing" when the landing legs make contact, and discouraged when the
spacecraft is flying in the air. Figure 5.10b clearly shows that for firing of the main thruster, Vy and y are the
most dominant features. These two features both show a negative correlation between the feature value and
SHAP value. Hence when Vy or y is low, firing the main thruster will be encouraged. The other 6 features are
significantly less important for a2.

For the two rotational actions shown in Figure 5.11, the distinction between important and less relevant fea-
tures is less clear. According to the sum of absolute SHAP effect, y and θ are the most important for both
a1 and a3. The vertical coordinate shows a positive correlation between feature and SHAP value for both
actions, indicating a larger chance of choosing these rotational actions at higher altitude. This relation for
θ is mirrored between a1 and a3 however. Where θ > 0 results in encouragement of a3, the opposite is true
for a1. This makes sense from the control perspective: positive theta indicates that the spacecraft is tilted
counter-clockwise. From this state, action 3 allows the spacecraft to level itself. For the rest of the features,
the order of the importance differs significantly between both actions. Also, the scale of the SHAP values for
a1 in Figure 5.11a and a3 in Figure 5.11b is different. Where the SHAP values for a1 are in the [−6.5,4.8] do-
main, the SHAP values for a3 are in the [−2.0,2.0] domain. The reason for this difference in the range of the
SHAP values is unknown.

(a) Action 0: do nothing (b) Action 2: fire main thruster

Figure 5.10: SHAP summary plots for the do nothing and fire main thruster actions, generated using 20 episodes for improved
state-space coverage. Instances where one the continuous feature’s SHAP value is not in the µ±2σ range are excluded.

RL-SHAP DIAGRAM

As explained in Section 4.4.2, the RL-SHAP diagram can be regarded as a sequence of waterfall plots. The
RL-SHAP diagram shows the actual model output over time, the inputs over time, and most importantly the
SHAP values for the inputs over time. Figure 5.12 shows the RL-SHAP diagrams for a0 and a2. These two are
grouped together as these actions influence the longitudinal acceleration of the spacecraft. Figure 5.13 shows

(a) Action 1: fire left thruster (clockwise rotation) (b) Action 3: fire right thruster (counter-clockwise rotation)

Figure 5.11: SHAP summary plots for the rotational actions, generated using 20 episodes for improved state-space coverage. Instances
where one the continuous feature’s SHAP value is not in the µ±2σ range are excluded.

5.2. RESULTS OF DISCRETE CONTROL PRELIMINARY ANALYSIS 81

0 25 50 75 100 125 150 175 200
0
1p

0 25 50 75 100 125 150 175 200
−0.2
−0.1x

0 25 50 75 100 125 150 175 200
0
1y

0 25 50 75 100 125 150 175 200
−0.25
0.00

V x

0 25 50 75 100 125 150 175 200
−0.5
0.0

V y

0 25 50 75 100 125 150 175 200
0.00
0.25

θ

0 25 50 75 100 125 150 175 200
−0.250.000.25ω

0 25 50 75 100 125 150 175 200
0
1

le
g L

0 25 50 75 100 125 150 175 200
0
1

le
g R

(a) Action 0: do nothing

0 25 50 75 100 125 150 175 200
0
1p

0 25 50 75 100 125 150 175 200
−0.2
−0.1x

0 25 50 75 100 125 150 175 200
0
1y

0 25 50 75 100 125 150 175 200
−0.25
0.00

V x

0 25 50 75 100 125 150 175 200
−0.5
0.0

V y

0 25 50 75 100 125 150 175 200
0.00
0.25

θ

0 25 50 75 100 125 150 175 200
−0.250.000.25ω

0 25 50 75 100 125 150 175 200
0
1

le
g L

0 25 50 75 100 125 150 175 200
0
1

le
g R

(b) Action 2: fire main thruster

Figure 5.12: RL-SHAP diagrams for the do nothing and fire main thruster actions. The grey dashed lines indicate the base SHAP values
of the action.

the RL-SHAP diagrams of a1 and a3, the clockwise and counter-clockwise rotation actions. The upper subplot
in the RL-diagrams shows the model output over time, equal to the probability of choosing the action. The
color scale of this subplot indicates the value of the model output, ranging from 0 to 1. The other subplots
show the feature values over time, where the color scale indicates the SHAP value.

From Figure 5.12a, the following conclusions for a0, "do nothing", can be made:

• The main contributor to choosing a0 is clearly distinguishable due to the bright and constant colors.
Once the landing legs make contact, and especially legL , the probability for doing nothing changes from
about 0 to 1.

• The vertical coordinate y shows a minor negative correlation, where a high altitude discourages "doing
nothing". As the landing pad is located at y = 0, the agent has good reasons to do so.

• Similarly, Vy is also used to judge the decision for doing nothing. This state on the other hand shows
a positive correlation, as a negative vertical speed discourages "doing nothing", while a near-zero Vy

results in positive SHAP values.

• The other states show no significant contribution for a0.

Using Figure 5.12b, the following conclusions for a2, "fire main thruster", can be made:

• The two most important states for a2 are y and Vy . Both these variables have a negative correlation be-
tween their state value and the corresponding SHAP value. At high values of y , the agent is discouraged
from choosing the main thruster, while at lower altitude this is encouraged. Similarly, when Vy is pos-
itive or near-zero, firing the main thruster is discouraged. Some interesting interaction between y and
Vy can be observed. From t = 30, Vy encourages choosing a2 From t = 30 to t = 80 y however it causes
discouragement, resulting in a compromise where p(a2|x) is increased from 0 to its base value. Only
when y causes positive SHAP values, from around t = 100 where y = 0.2, does p(a2|x) increase further.
The late deceleration resembles optimal control theory for spacecrafts, where maximum deceleration
at the latest moments results in the most efficient burns.

• The left landing leg, legL , shows negative SHAP values when making contact. This prevents the space-
craft from taking off when ground contact has been established, significantly reducing p(a2|x).

From Figure 5.13, the following conclusions for the rotational actions can be drawn:

• Based on the intensity of the colors, the most important features for both a1 and a3 are y , Vy , θ, and ω.

• The SHAP values of y , Vy , θ, andω change with a high frequency, especially for 0 < t < 75 in Figure 5.13a.
Some changes in SHAP value are so large that the sign changes, which can be seen through the color
changing from blue to red in only a few time steps. It appears that the when the SHAP value of one

82 5. PRELIMINARY ANALYSIS

0 25 50 75 100 125 150 175 200
0
1p

0 25 50 75 100 125 150 175 200
−0.2
−0.1x

0 25 50 75 100 125 150 175 200
0
1y

0 25 50 75 100 125 150 175 200
−0.25
0.00

V x

0 25 50 75 100 125 150 175 200
−0.5
0.0

V y

0 25 50 75 100 125 150 175 200
0.00
0.25

θ

0 25 50 75 100 125 150 175 200
0
1

ω

0 25 50 75 100 125 150 175 200
0
1

le
g L

0 25 50 75 100 125 150 175 200
0
1

le
g R

(a) Action 1: fire left thruster (clockwise rotation)

0 25 50 75 100 125 150 175 200
0
1p

0 25 50 75 100 125 150 175 200
−0.2
−0.1x

0 25 50 75 100 125 150 175 200
0
1y

0 25 50 75 100 125 150 175 200
−0.25

0.00

V x

0 25 50 75 100 125 150 175 200
−0.5
0.0

V y

0 25 50 75 100 125 150 175 200
0.00
0.25

θ

0 25 50 75 100 125 150 175 200
0
1

ω

0 25 50 75 100 125 150 175 200
0
1

le
g L

0 25 50 75 100 125 150 175 200
0
1

le
g R

(b) Action 3: fire right thruster (counter-clockwise rotation)

Figure 5.13: RL-SHAP diagrams for the rotational actions. The grey dashed lines indicate the base SHAP values of the action.

feature is suddenly reduced, the SHAP value of another feature is increased. Therefore the changes
in SHAP values of the features are significant, but the model output is barely changed. This can be
observed in Figure 5.13a for 10 < t < 25, where p(a1|x) is about constant around the baseline, while
the SHAP values change rapidly and with great magnitude. The high frequency changes in SHAP value
might indicate feature interaction. This is an interesting topic for future research, as it is possible that
the agent makes its decisions based on a feature consisting of a combination of states.

• Both a1 and a3 show a positive correlation with y : at greater altitude there is a higher chance of both
actions. The effect of y on p(a1|x) and p(a3|x) can be observed through the gradually decreasing line
in the upper subplots of Figure 5.13a and Figure 5.13b.

• Vy shows a similar positive correlation for both actions, however this effect is more pronounced for a1

than for a3.

• In the discussion of the waterfall plots, it is mentioned that the correlation between the feature value
of θ and its SHAP value is mirrored between the two actions. This can also be observed in the RL-SHAP
diagrams: when θ > 0, this causes a positive SHAP values for a3, but negative SHAP values for a1. As can
be seen in Figure 5.13b, the positive SHAP values when θ > 0, around t = 25 causes p(a3|x) to increase
significantly. Performing a3 then results in leveling of the spacecraft.

• The same correlations discussed for θ also hold for ω. This can best be observed around t = 150, where
a high positive ω is incited due to the spacecraft landing on a slope.

TRAINING VISUALIZATION

This subsection aims to investigate whether SHAP values can be used to visualize training and if these can be
used to assess convergence during training. This analysis is carried out by calculating the SHAP values of the
initial model, the final model, and intermediate models. The intermediate models are saved when the aver-
age score of the last 20 episodes is at least 25 points more than the latest saved model. Every model is used
to simulate 50 episodes, after which the SHAP values are calculated using 100 background samples. Then,
feature importance is determined using the mean absolute SHAP value method. The final and intermediate
models created for this analysis are different from those used for the SHAP analysis above. Therefore, differ-
ences can be observed in feature dominance between the models displayed in this section and those shown
above. Figure 5.14a shows the feature importance plotted against the the average score of the model, for the
"do nothing" action, while Figure 5.14b addresses the fire main thruster action.

From the two training visualization plots shown in Figure 5.15 the following conclusions can be drawn:

• Vy is the most dominant feature of both a0 and a2, for not only for the final models but also for many
intermediate models. For a0, Vy is the most dominant when the model has reached an average score
of about 80, and remains the most dominant until the end. Similarly for a2, Vy is the most dominant

5.3. RESULTS OF CONTINUOUS CONTROL PRELIMINARY ANALYSIS 83

−150 −100 −50 0 50 100 150 200
Average score

0.00

0.05

0.10

0.15

0.20

0.25

Fe
at

ur
e

im
po

rta
nc

e
a 0

 [m
ea

n
|S

HA
P

va
lu

e|
]

x
y
Vx
Vy
θ
ω
legL
legR

(a) Action 0: do nothing

−150 −100 −50 0 50 100 150 200
Average score

0.0

0.2

0.4

0.6

0.8

Fe
at
ur
e
im

po
rta

nc
e
a 2
 [m

ea
n
|S
HA

P
va

lu
e|
]

x

Vx
Vy
θ
ω
legL
legR

(b) Action 2: fire main thruster

Figure 5.14: Feature dominance over time, quantified as the average absolute SHAP value measured during 50 episodes for every model.

feature starting from an average score of around -30.

• For a0, the order of the features other than Vy is generally non-constant. When ranking the 8 features
based on mean absolute SHAP value, only the rank of Vy remains constant after the model with average
score 80. However, the rank of the other features varies extensively.

• For a2, the rank of the second-most important feature y is constant for the last three models. The rank
of the other features is however not constant.

The training visualization for a1 is shown in Figure 5.15a, and for a3 in Figure 5.15b. From these plots the
following conclusions are drawn:

• For a1, θ emerges as the most important feature. Its rank is constant for the last three analyzed models,
starting where the average score of the model is around 110. Also the rank of the second most important
feature Vy is constant for these three models.

• Similarly, y emerges as the most important feature for a3 during last three analyzed models.

• The rank of the other features for both a1 and a3 is not constant however. As an example, the rank of Vy

for a3 changes rapidly during the last 3 models. At average score 110 its rank is the four-most important
feature. Then around the average score of 160 it is the second-most important feature, while for the
final model it is the sixth-most important feature.

Based on these statements, it is concluded that SHAP could be used to assess training convergence, but more
research is required to confirm whether this is also the case for training using different random initializations.
In all 4 training convergence plots of the discrete agent, the most important feature is constant for at least
the final 3 models. The other features show less consistency. For future research it would be interesting to
investigate whether convergence of training for agents with other random initializations can also be assessed
by observing the consistency of the most important feature.

5.3. RESULTS OF CONTINUOUS CONTROL PRELIMINARY ANALYSIS
In this section the results of the continuous control analysis are presented. Similar to the discrete control
analysis. First, the encountered states are visualized and discussed in Section 5.3.1, to explain some of the
agent’s actions but most importantly to create some idea of the encountered states before interpreting the
SHAP plots for the continuous agent. Then, the output of the actor NN is analyzed for an episode in Sec-
tion 5.3.2. Finally, the SHAP analysis is presented in Section 5.3.3, where the decision-making process of the
agent is explained using SHAP summary plots, RL-SHAP diagrams, and SHAP dependence plots.

84 5. PRELIMINARY ANALYSIS

−150 −100 −50 0 50 100 150 200
Average score

0.00

0.05

0.10

0.15

0.20

0.25
Fe

at
ur

e
im

po
rta

nc
e
a 1

 [m
ea

n
|S

HA
P

va
lu

e|
]

x
y
Vx
Vy
θ
ω
legL
legR

(a) Action 1:

−150 −100 −50 0 50 100 150 200
Average score

0.00

0.05

0.10

0.15

0.20

0.25

Fe
at

ur
e

im
po

rta
nc

e
a 3

 [m
ea

n
|S

HA
P

va
lu

e|
]

x
y
Vx
Vy
θ
ω
legL
legR

(b) Action 3:

Figure 5.15: Feature dominance over time, quantified as the average absolute SHAP value during 50 episodes for every model.

5.3.1. INPUT ANALYSIS
Figure 5.16 shows the encountered state space for the 6 continuous states during 50 episodes of both an
untrained and trained DDPG agent. Similar to the encountered states of the discrete A2C agent illustrated in
Figure 5.7, the DDPG agent has learned to minimize Vx , Vy , θ, and ω. Another similarity to the input analysis
of the discrete agent is the great number of outliers for θ andω. Like in the discrete environment these outliers
are instances where the spacecraft lands under an angle, inducing high |ω|.

Figure 5.16: Continuous control environment - boxplots for the encountered continuous states during 50 episodes for an untrained and
trained DDPG agent.

5.3.2. OUTPUT ANALYSIS
Figure 5.17 shows the time traces of both the model output and the 8 inputs for an untrained and trained
agent, to better interpret the SHAP analysis in Section 5.3.3. The red dashed lines indicate the limits of the
rotational thruster actions, previously illustrated in Figure 5.2. The left thruster (clockwise rotation) is active
for a1 ∈ [0.5,1.0], while the right thruster is active for a1 ∈ [−1.0,−0.5]. Similar to the untrained discrete agent,
the output of the DDPG agent is constant. However, where the 4 outputs of the untrained A2C agent are close
to 0.25 due to the softmax function, the 2 outputs of the DDPG agent are 0. The output of the DDPG agent is
bounded on [−1.0,1.0] due to the tanh activation function.

The output of the trained agent illustrated in Figure 5.17 will be explained by first discussing a0, and then a1.
The main thruster setting a0 is initially negative, but increases after about 25 time steps when the spacecraft’s
Vy has decreased. a0 is then slightly positive until right before the landing around t = 160 when the thrust

5.3. RESULTS OF CONTINUOUS CONTROL PRELIMINARY ANALYSIS 85

(a) Untrained agent (b) Trained agent. The blue dots for a1 indicate where |a1| > 0.5

Figure 5.17: Model output and observed states, for an untrained and trained DDPG agent in the continuous lunar lander environment.
The red dashed lines indicate the limits of the rotational thrusters for a1, while the main thruster is active when a0 > 0.

increases before landing. Finally when the landing legs have made contact, a0 is completely reduced. a1 is ini-
tially negative, below the lower threshold, resulting in firing of the right thruster and hence counter-clockwise
rotation. This causes θ to increase, after which the opposite thruster is fired to counter the rotation around
t = 40. Then, from t = 50 to t = 150 both thrusters are slightly activated. Interestingly, the value of a1 oscil-
lates slightly around the cutoff values, first for the right thruster and then for the left thruster. Subsequently,
the left landing legs makes contact with the lunar surface after which the left thruster is activated. When both
landing legs make contact, the right thruster is slightly activated until the episode is terminated.

5.3.3. INPUT-OUTPUT ANALYSIS USING SHAP
SUMMARY PLOT

Figure 5.18 shows the SHAP summary plot for a0 of the DDPG agent. The plot is generated using samples
from 50 episodes. Unlike the SHAP values generated for the A2C agent, the SHAP value results for the DDPG
agent do not require outlier filtering, as the range of the SHAP values is smaller. Like in Section 5.2.3, the
features are ordered based on the feature importance measure shown in Equation (5.2.2).

Figure 5.18: SHAP summary plot for a0, firing the main thruster, of the continuous DDPG agent. The plot shows samples from 50
episodes, without outlier filtering.

From Figure 5.18 the following conclusions can be drawn about the learned strategy for a0:

• Like the discrete A2C agent, Vy and y are the most important features for firing the main thruster. These
two features show a negative correlation between feature value and SHAP value, like the discrete agent.
The feature importance of Vy and y can also be observed in the feature importance plot Figure 5.19a.

86 5. PRELIMINARY ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
mean(|SHAP value|) (average impact on model output magnitude)

θ

ω

Vx

legR

legL

x

y

Vy

(a) Action 0: main thruster

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
mean(|SHAP value|) (average impact on model output magnitude)

legR

legL

ω

Vx

θ

Vy

x

y

(b) Action 1: rotational thrusters

Figure 5.19: SHAP feature importance for the continuous DDPG agent, measured as the mean absolute SHAP value. The plots helps
identifying the most important global features.

(a) Simple dependence (b) Dual dependence showing the interaction with legL ,
explaining the deviation from the apparent quadratic

function

Figure 5.20: Dependence plot of feature x for a0 of the continuous DDPG agent, showing the increase in thrust when the spacecraft is
not above the landing pad.

• The horizontal coordinate does not appear to show a linear correlation, as the purple and red dots
overlay each other. This correlation is shown more clearly in Figure 5.20a, the feature dependence plot
for a0 and x. Here it can be observed that the correlation resembles a quadratic function, where φx is
negative for small |x| and positive otherwise. This indicates that the agent has learned to increase main
engine thrust when the spacecraft is not above the landing pad. This could be learned in order to spend
more time above the lunar surface, and prepare the landing by moving towards x = 0. The deviations
from what appears to be a quadratic function are explained by the interaction with legL . This can be
observed in the interaction dependence plot shown in Figure 5.20b. This interaction indicates that φx

is lower when the left landing legs makes contact, forcing the spacecraft on the ground.

• Interestingly, legL causes a positive contribution to a0 when making contact. Rather than preventing
taking off right after landing, the agent has learned to increase thrust when the left landing leg touches
the lunar surface. The SHAP values for legR when this leg makes contact on the other hand can be
either positive or negative.

Figure 5.21 shows the SHAP summary plot for a1. From this summary plot the following conclusions about
a1 for the DDPG agent can be drawn:

• The vertical coordinate y is one of the most important features for the rotational thrust. In the feature
importance plot for a1, Figure 5.19b, it becomes evident that y is the most important feature. For
the discrete agent, y is the most dominant feature for a3, and the second most dominant feature for
a1. For the discrete agent, the relation between y and φy is roughly linear for both a1 and a3, but this
appears to be a more complex function for the DDPG agent, due to the overlay of purple and red dots in

5.3. RESULTS OF CONTINUOUS CONTROL PRELIMINARY ANALYSIS 87

Figure 5.21: SHAP summary plot for a1, rotational thrust, of the continuous DDPG agent. The plot shows samples from 50 episodes,
without outlier filtering.

Figure 5.21. The complex function is illustrated in more detail in Figure 5.22a, the feature dependence
plot for y . Interestingly, φy > 0 for y < 0.3 indicating a preference for clockwise rotation when the
altitude is low. However, for altitudes close to 0, φy → 0. The function ofφy for y > 0.3 is more complex.
This part of the function is better explained using x as interaction data, illustrated in Figure 5.22b. From
this combined feature dependence plot it becomes evident that in the higher altitudes φy is slightly
negative or positive when x > 0, and φy is very negative when x < 0. From a control perspective this
seems counter-intuitive, as counter-clockwise rotation in the left region of the screen would result in
movement further away from the landing pad. Not only is this unexpected phenomenon observed in
the SHAP plots, this unexpected behavior is also observed during episodes in the continuous lunar
lander environment. This can also be seen in the output analysis, shown in Figure 5.17, where a1 < 0
at low altitude, and a1 > 0 near the ground. It is unknown if this learned behavior is beneficial, but the
SHAP plots permit identification of these anomalies.

• The second most dominant feature is x, showing a non-complex negative correlation between x and
φx . The correlation implies that φx causes counter-clockwise rotation when x is high, and clockwise
rotation for low x. This makes sense from the control perspective, as rotation towards x = 0 combined
with force from the main thruster results in movement towards the landing pad. Vx shows a similar
correlation between Vx and φx .

• The correlation between Vy andφVy shows similarities with the correlation between y andφy . Both are
in the top three of the most dominant features, and show a complex negative correlation between the
feature value and its SHAP value. This implies thatφVy favors counter-clockwise rotation at low vertical
speeds, and favors clockwise rotation when the spacecraft is quickly moving towards the lunar surface.

• The correlations for θ and ω are similar to those found for the discrete agent. Positive θ and ω indicate
counter-clockwise rotation, and result in positive φθ and φω values. Hence, these SHAP values try to
minimize the spacecraft’s angle and rotational rate.

(a) Simple dependence (b) Dual dependence showing the interaction with x

Figure 5.22: Dependence plot of feature y for a1 of the continuous DDPG agent.

88 5. PRELIMINARY ANALYSIS

0 50 100 150 200
−1
0
1

p(
a 0
|x
)

0 50 100 150 200

0.1
0.2

x

0 50 100 150 200
0
1y

0 50 100 150 200
0.0

0.5

V x

0 50 100 150 200

−0.5

0.0

V y

0 50 100 150 200
−0.25
0.00
0.25

θ

0 50 100 150 200
−0.5
0.0
0.5

ω

0 50 100 150 200
0

1

le
g L

0 50 100 150 200
0

1

le
g R

(a) Action 1: fire left thruster (clockwise rotation)

0 50 100 150 200
−1
0
1

p(
a 1
|x
)

0 50 100 150 200

0.1
0.2

x

0 50 100 150 200
0
1y

0 50 100 150 200
0.0

0.5

V x

0 50 100 150 200

−0.5

0.0

V y

0 50 100 150 200
−0.25
0.00
0.25

θ

0 50 100 150 200
−0.5
0.0
0.5

ω

0 50 100 150 200
0

1

le
g L

0 50 100 150 200
0

1

le
g R

(b) Action 3: fire right thruster (counter-clockwise rotation)

Figure 5.23: RL-SHAP diagrams for the rotational actions. The grey dashed lines indicate the base SHAP values of the action.

RL-SHAP DIAGRAM

An example of a RL-SHAP diagram for a0 is shown in Figure 5.23a and for a1 in Figure 5.23b. These di-
agrams are created using sample data from one episode, the same used for the output analysis shown in
Figure 5.17.

From Figure 5.23a the following conclusions about a0 can be made:

• In the discussion about the SHAP summary plot of a0 it is mentioned that y and Vy are the dominant
features for firing the main thruster. This same observation can be made in Figure 5.23a where these
two features have the brightest colors, indicating high

∣∣φ∣∣ values. The velocity-reducing effect of φVy is
clearly shown in Figure 5.23a where a0 is increased due to Vy when this feature becomes more negative.
Especially the sharp increase in a0 around t = 40 can be clearly attributed to Vy .

• The rapid oscillations of a0 after t = 150 are explained by the landing legs making and losing contact,
and the positive contributions of ω. Apparently, high |ω| values during this run increase a0. A possible
reason for this could be to spend more time in the air to prepare the landing by leveling the spacecraft.
Why legL induces a positive a0 is unknown.

• Around t = 170, legR makes contact with the ground. The corresponding negative SHAP values signifi-
cantly reduces a0, forcing the spacecraft on the lunar surface.

• Although x is the third most important feature according to the feature importance plot Figure 5.19,∣∣φx
∣∣ is small during the run shown in Figure 5.23a. This is due to the limited range of x during this

run. This can be observed in the dependence plot of x for a0 in Figure 5.20a, where φx is near zero for
|x| < 0.2.

• The features Vx and θ show no significant contribution to a0. This can be confirmed using the feature
importance plot Figure 5.19a as well, where these features are significantly less important than Vy and
y according to the mean absolute SHAP value measure.

From Figure 5.23b the following conclusions about a1 can be made:

• The initial low values of a1 are mainly caused by Vx . The spacecraft in this episode is initialized with
a positive Vx , indicating that the spacecraft moves towards the right of the screen. The resulting low
values of a1 cause counter-clockwise rotation. The learned strategy by doing so is to move towards the
centre of the screen when θ > 0 and then firing the main thruster. The direction of the force of the main

5.3. RESULTS OF CONTINUOUS CONTROL PRELIMINARY ANALYSIS 89

Figure 5.24: Dependence plot of x for a1, with Vx interaction.

thruster will then cancel the positive Vx . This can be observed in the value of Vx from t = 0 to around
t = 100 where Vx is reduced. Around t = 75 Vx is reduced to 0, and from t = 75 to t = 150 Vx is even
negative to counteract the previously travelled horizontal distance.

• The negative φVx values in the beginning, and the resulting negative a1 results in counter-clockwise
motion and hence positive ω. The corresponding positive φω values have a dampening effect on the
rotation, as a1 is increased and even becomes positive.

• As ω is positive during t = 0 and t = 50, θ increases. The values of θ from t = 30 to t = 60 cause positive
φθ values, significantly increasing a1. Between t = 40 and t = 60 a1 has reached a maximum due to
φθ and φω, causing clockwise rotation. The corresponding negative ω then reduces a1 again around
t = 50.

• As mentioned in the discussion of the SHAP summary plot, y is the most dominant feature for a1. The
effect of y on a1 can be observed during t = 60 and t = 150. From t = 60 to around t = 110, y > 0.3 and
φy is negative. This altitude of 0.3 is the switching point discussed in the SHAP summary plot using
the dependence plot Figure 5.22b. Interestingly, according to the SHAP values of y , counter-clockwise
rotation is favored at the higher altitudes before t = 110. Then when the altitude is reduced below
y = 0.3, clockwise rotation is induced. As explained in the discussion of the SHAP summary plot, it is
unknown why this strategy is learned, and whether it has any benefits. However, using the RL-SHAP
diagram, it becomes evident what is causing the sudden increase in a1 between t = 60 and t = 150. Even
though the behavior is unexpected, and potentially unwanted, the RL-SHAP plot allows identification
of this decision-making process.

• According to the feature importance plot for a1, Figure 5.19b, x is the second most important feature for
a1. In the RL-SHAP diagram however, x shows almost no significance. This is due to the same reason
presented in the discussion for a0. From the dependence plot of x for a1, shown in Figure 5.24, this can
be observed. The SHAP values for x can be significant, especially for low x. In the depicted episode
however, x ranges between 0 and 0.2. According to Figure 5.24 φx is small in this region, especially
when Vx is positive like in the depicted episode.

• In the depicted episode, the landing legs making contact cause SHAP values to incite rotation such that
the other landing leg also makes contact. The SHAP values for legL are positive when making contact,
increasing a1. Clockwise acceleration is triggered when a1 > 0.5, hence the positive φlegL

tries to level
the spacecraft after touchdown. The same effect occurs for the negative φlegR

encountered during the
episode. For φlegL

and φlegR
it can also be observed that these values are not constant over time, even

though their corresponding feature values are constant. φlegL
is for example grey during the first time

steps, and then becomes blue indicating φlegL
< 0. This shows that SHAP values are not exclusively

dependent on the value of the corresponding feature, but on the coalition of the corresponding feature,
taking into account the other contributing features.

90 5. PRELIMINARY ANALYSIS

TRAINING VISUALIZATION

Similar to the training visualization analysis, this section investigates whether SHAP values can be used for
assessing training convergence. Figure 5.25a is the training visualization plot for a0, and Figure 5.25b for
a1.

−1000 −800 −600 −400 −200 0 200
Average score

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fe
at

ur
e

im
po

rta
nc

e
a 0

 [m
ea

n
 S

HA
P

va
lu

e
]

x
y
Vx
Vy
θ
ω
legL
legR

(a) Action 0

−1000 −800 −600 −400 −200 0 200
Average score

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fe
at

ur
e

im
po

rta
nc

e
a 1

 [m
ea

n
 S

HA
P

va
lu

e
]

x
y
Vx
Vy
θ
ω
legL
legR

(b) Action 1

Figure 5.25: Feature dominance over time for DDPG, quantified as the mean absolute SHAP value during 20 episodes for every model.

From the training visualization plots shown in Figure 5.25 the following conclusions are drawn:

• Similar to the training visualization of a0 and a2 of the discrete agent, Vy emerges as the most important
feature for a0 of the continuous agent. The rank of Vy is constant for the last 7 models, and is hence
constant for the second half of training.

• The rank of all other features is however not constant.

Similar to the training visualization plots of the discrete agent, the training visualization plot of a0 of the
continuous agent shown in Figure 5.25a shows consistency in the most important feature for the final models.
This supports the statement of consistency of the most importance feature implying training convergence.
Figure 5.25b on the other hand contradicts this statement. Therefore this training convergence analysis using
SHAP requires more research before a conclusion can be drawn.

III
ADDITIONAL RESULTS AND DISCUSSIONS

91

6 | Validation of the Linear Representa-
tion Models

The paper presented in Part I introduces the linear representations of the learned strategy for δe , δa , and
δr . In the paper, it is shown that only the slope between feature value and SHAP value is relevant for the
linear models. The output of the three linear models is verified by comparison with the actual deflections as
controlled by the longitudinal and lateral IDHP agents. For every segment, it is shown that the linear model
matches the IDHP output under the assumption of constant weights. For this verification, the linear model
coefficients are determined separately for every segment, using linear regression based on the relation be-
tween feature value and SHAP value. To validate the linear models and test their stability and accuracy, the
linear representation models are used to actually control the simulated Cessna Citation aircraft. The differ-
ence between this experiment and the verification in Part I is that the linear models are now used to actually
control the aircraft, rather than being a post-hoc representation of the learned strategy using IDHP.

The flight task for this experiment is similar to the mission profile used in the scientific paper, starting at
H0 = 2000 m and V0 = 80 m/s. The longitudinal and lateral IDHP agent of the flight controller, as illustrated
in Figure 5 in Part I, are replaced by the linear models given by Equation (6.0.1), Equation (6.0.2), and Equa-
tion (6.0.3). The slope coefficients of these linear models are constant during flight, to simulate non-adaptive
linear control. The a-coefficients are based on the calculated SHAP values from the mission profile presented
in the paper, and are calculated as the mean a-coefficient during all constant weight segments. As not every
selected segment has the same length, the mean slope is calculated over all time samples within the selected
segments. The resulting coefficients for the linear longitudinal controller for δe are summarized in Table 6.1,
and for the lateral linear controllers in Table 6.2.

δel i n = aq ·q +aα ·α+aθ ·θ+aer rq ·er rq (6.0.1)

δal i n = apδa
·p +arδa

· r +aβδa
·β+aφδa

·φ+aer rpδa
·er rp +aer rβδa

·er rβ (6.0.2)

δrl i n = apδr
·p +arδr

· r +aβδr
·β+aφδr

·φ+aer rpδr
·er rp +aer rβδr

·er rβ (6.0.3)

Table 6.1: Coefficients used for the validation of the linear model for δe .

Feature Slope for δe

q -0.408
α -0.137
θ 0.054

er rq 0.746

Table 6.2: Coefficients used for the validation of the linear model for δa and δr .

Feature Slope for δa Slope for δr

p -0.219 -0.067
r 0.055 0.003
β -0.026 -0.007
ϕ 0.003 -0.023

er rp 0.665 0.050
er rβ 0.003 -0.001

93

94 6. VALIDATION OF THE LINEAR REPRESENTATION MODELS

The time traces of the simulated Cessna Citation controlled with the linear controllers are presented in Fig-
ure 6.1, plotted together with the time traces of the IDHP controllers for comparison. The time traces for q are
shown separately in Figure 6.2 for easier interpretability. The following observations can be made regarding
the linear model output, based on the time traces:

• Figure 6.1 shows that δal i n is very similar to the aileron deflection commanded by the lateral IDHP
controller. Consequently, the roll rate p is almost similar for both models. Furthermore, the roll rate
time traces for both models closely match pr e f .

• The rudder deflection commanded by the linear model, δrl i n , shows many similarities with δr from the
lateral IDHP controller. The sideslip angle β of the linear model is slightly more than that of the IDHP
controller, but does not exceed ± 0.2 deg.

• Larger differences can be observed for the elevator models in Figure 6.1 and Figure 6.2. Even though
the linear elevator deflection δel i n shows many similarities with the IDHP elevator deflection, the error
between pitch rate and commanded pitch rate is significantly larger for the linear model. Figure 6.2
clearly shows this offset between q and qr e f for the linear controller. Apparently, adaptability of the
longitudinal controller is required to accurately match qr e f . A possible explanation for the required
adaptability is the air speed Vt as as this is an important state for longitudinal motion and because this
state is not constant during the simulated mission profile. [49] shows that variations in Vt as cause
the actor parameters wa to change. Further research is required to verify if and how airspeed requires
adaptability of the longitudinal controller.

0.0

2.5

q
[d

eg
/s

]

Longitudinal
IDHP
linear

5

0

5

p
[d

eg
/s

]

Lateral

4

6

 [d
eg

]

2.5
0.0
2.5

r [
de

g/
s]

0

10

 [d
eg

]

0.2

0.0

 [d
eg

]

3

2

a [
de

g]

1

0

1

a [
de

g]

2000

2250

H
[m

]

0.5
0.0
0.5

r [
de

g]

0 50 100 150 200 250
time [s]

77.5

80.0

82.5

V
[m

/s
]

0 50 100 150 200 250
time [s]

25

0

25

 [d
eg

]

Figure 6.1: Validation of the linear models, during simulation of a mission profile starting at H0 = 2000 m and V0 = 80 m/s. The blue
lines represent the state space and reference states of the linear models, and the orange lines for IDHP. The red dashed lines represent

actuator trim values, and the black dashed lines represent the mission profile identical to both the IDHP and linear controllers. The
time traces of q are shown separately in Figure 6.2 for better interpretability.

DISCUSSION
Though there are differences between the time traces of the linear and IDHP models, due to the fixed lin-
ear model not adapting to different flight conditions, the linear models allow stable tracking of the mission
profile. Not only does this validate the linear models obtained through the SHAP analysis in Part I, it also
opens the door to interesting opportunities regarding the extraction of control laws. The control architecture
of aerospace applications with limited computational complexity may for example be designed using linear
control laws, obtained through SHAP analysis.

0

2

lin
ea

r m
od

el
 q

 [d
eg

/s
]

0 50 100 150 200 250
time [s]

0

2
ID

HP
 q

 [d
eg

/s
]

Figure 6.2: Time traces of q for the linear controller shown in blue, and the IDHP controller in orange.

7 | Illustrating and Explaining Adaptive
Properties using SHAP

This chapter presents how the adaptive properties of RL for flight control can be visualized using SHAP and
CWSD. First, the adaptation of the IDHP controller during the mission profile introduced in Part I is visualized
by plotting the linear slopes over time and comparing the variation in this control behavior with the segments
selected by CWSD. Subsequently, the fault-tolerance of IDHP to reduced aileron deflection IDHP is visualized
using the combined dependence plots.

7.1. SHOWING ADAPTATION USING THE LINEAR SLOPE
The combined dependence plots introduced in Part I explain how the learned strategy changes during flight,
by illustrating the relation between feature value and SHAP value for all selected constant-weight segments.
As these relations are linear for the selected application, and because only the slope of the linear relation is
important, the changing slopes can be plotted over time. This allows to investigate one of the possible short-
comings of the CWSD algorithm, where sections with different weights do not necessarily imply different
learned behavior as the input-output mapping can still be similar. As ultimately the slopes between feature
value and SHAP value define the learned control behavior, inspecting how these relations change over time
creates understanding of the control strategy adaptation.

To show how this control adaptation can be explained using the progression of the slopes, this section presents
how the slopes of the linear representation models for δe , δa , and δr change during the mission profile intro-
duced in Part I. The same starting conditions, H0 = 2000 m and V0 = 80 m/s, are used. To force the slopes to
be computed throughout the whole profile, the mission profile is divided into segments with a length of 100
samples, in which the SHAP values are calculated. Therefore, the weights are assumed to be constant during
every time window of 100 samples, equalling a period of 2 seconds as fs = 50 Hz. Even though the CWSD
algorithm would not specify many of these windows as constant weight segments, dividing the mission pro-
file into windows of 100 samples allows the progression of the slopes to be determined as a smooth function.
Within every window, the SHAP values are calculated using all 100 samples as background samples.

Figure 7.1 shows the linear coefficients for δe over time. Furthermore, the segments selected by the CWSD
algorithm are included are included to compare how the selected segments compare with the changes in
slopes. The changes in slope of features q and er rq = q −qr e f are smaller than the changes in slope of α and
θ. A possible explanation for the adaptation of these two features could be the changes in true airspeed Vt as

as mentioned in Chapter 6. Figure 7.2 presents the time traces for aα and Vt as in more detail, showing their
possible relation. However, Vt as appears to lag the slope aα, contradicting the statement of Vt as influencing
aα. Further research is required to investigate the influence of Vt as on the slopes of the linear representation
for δe .

Furthermore, Figure 7.1 shows that the change in of the slopes is minimal during the time segments selected
by CWSD. Except for segments 1 and 2, every segment appears to show different slopes. Apparently, even
though the weights change enough between segments 1 and 2 to define these as segments with different
weights, the resulting learned strategy does not change. This shows that the learned behavior can be more
generalized than what the CWSD algorithm implies. This shortcoming of the CWSD can be overcome by
interpreting the SHAP results after the constant-weight segments are selected, and combining segments with
similar behavior.

The progression of the slopes for the linear representation of δa and δr is shown in Figure 7.2. The slope of ϕ
for for δr right before t=50 s. The reason for this is that the SHAP values for ϕ are close to 0 and barely change
in this region. Therefore it is hard to calculate the linear fit in this time window for ϕ. This problem could
be overcome by choosing larger windows. However, this would limit the resolution of the slope plot. For this
analysis, the jump to 0 will be considered as a defect of the slope determination methodology.

97

98 7. ILLUSTRATING AND EXPLAINING ADAPTIVE PROPERTIES USING SHAP

0 50 100 150 200 250
time [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

slo
pe

 [-
]

0 1 2 3 4 5 6 7

q

errq

Figure 7.1: Linear explanation model slopes for δe during the mission profile introduced in Part I, starting at H0 = 2000 m and V0 = 80
m/s. The slopes are determined using SHAP, based on segments with 100 samples. The shown segments are not used to determine the

slopes, but allow comparison between the decisions of CWSD and the learned strategy.

0 50 100 150 200 250
time (s)

0.15

0.10

0.05

0.00

0.05

a
 [-

]

77

78

79

80

81

82

V t
as

 [m
/s

]

Figure 7.2: Time traces for the linear slope between α and its SHAP value, and the true airspeed Vt as .

Figure 7.3 shows that many slopes for δa and δr are consistent throughout the mission profile. The largest
adaptation is observed forϕ in the linear representation model for δr . The reason for the variance in the slope
of this feature for δr could also be the air speed Vt as . Further research is required to confirm this potential
influence. Figure 7.3 shows multiple segments with similar slopes, hence the behavior can be further general-
ized. Similar to the longitudinal controller explanation methodology, this generalization could be made after
the SHAP analysis by comparing the learned behavior between segments, and combining segments when
the strategy is consistent. Furthermore, there are multiple regions in the plot for δa where the slopes appear
to be constant, yet these are not selected by the CWSD algorithm. The reason for this is that the complete
wa parameter vector is used for the selection of segments for the lateral controller. As the lateral IDHP has
two outputs, there are regions where the weights corresponding with the δr output change, while the weights
corresponding with δa are constant and vice versa. An example of this is the region between segments 3 and
4. Knowing this, higher sample coverage for both outputs can be obtained by only using the relevant weights
for a certain output to the CWSD algorithm. For example, the weights between the hidden layer and the δr

output are irrelevant for the δa analysis.

7.2. ILLUSTRATING FAULT-TOLERANT ADAPTATION
One of the key strengths of IDHP and other adaptive RL frameworks for flight control is their fault-tolerance.
[49] shows that the IDHP framework, including a target critic NN, is able to quickly adapt to an aileron fail-
ure, resulting in stable and accurate flight. The failure used in this research is a 50% less effective aileron
deflection. Hence, the commanded aileron deflection is halved before passing it to the plant.

SHAP, in combination with the CWSD algorithm, can be used to illustrate the adaptation to failures like these.
As an example, the mission profile control experiment introduced in Part I is repeated, now with an aileron
failure introduced at 67 seconds. After this moment, the control effectiveness is 25%, hence the commanded
aileron output is multiplied with 0.25 before passing it to the simulated plant. The agent will have to adapt to
these new dynamics by updating its weights. SHAP can illustrate how the control strategy has changed after
the failure. Figure 7.4 shows the mission profile before and after the aileron failure at 67 seconds, indicated
by the red dashed line. Around 50 seconds after the failure, the agent has successfully adapted its strategy
regarding δa , as the roll rate p closely follows pr e f again. For adapting the control strategy of the rudder δr ,

7.2. ILLUSTRATING FAULT-TOLERANT ADAPTATION 99

0.2

0.0

0.2

0.4

0.6

slo
pe

 [-
]

0 1 2 3 4 5 6 7 8 91011 12 13 14 15
Aileron a output

p
r

errp

err

0 50 100 150 200 250
time [s]

0.075

0.050

0.025

0.000

0.025

0.050

slo
pe

 [-
]

0 1 2 3 4 5 6 7 8 91011 12 13 14 15
Rudder r output

Figure 7.3: Linear explanation model slopes for δa and δr during the mission profile introduced in Part I, starting at H0 = 2000 m and
V0 = 80 m/s. The slopes are determined using SHAP, based on segments with 100 samples. The shown segments are not used to

determine the slopes, but allow comparison between the decisions of CWSD and the learned strategy.

the agent requires more time than provided in this mission profile, assuming it will improve at all. The peaks
in sideslip in the last 100 seconds are in the order of ±0.5 deg, while the lateral controller presented in Part I
was able to minimize β to ±0.1 deg.

0.0

2.5

q
[d

eg
/s

]

Longitudinal

5
0
5

p
[d

eg
/s

]

Lateral

4

6

 [d
eg

]

2.5
0.0
2.5

r [
de

g/
s]

0

10

 [d
eg

]

1

0

 [d
eg

]

4

2

a [
de

g]

1
0
1

a [
de

g]

2000

2250

H
[m

]

0.5
0.0
0.5

r [
de

g]

0 50 100 150 200 250
time [s]

77.5
80.0
82.5

V
[m

/s
]

0 50 100 150 200 250
time [s]

25
0

25

 [d
eg

]

Figure 7.4: Input and output of the flight controller during the mission profile, starting at H0 = 2000 m and V0 = 80 m/s, with an aileron
failure at 67 s, indicated by the dashed red line. After this failure, the aileron is 25% less effective.

Figure 7.5 shows the longitudinal and lateral IDHP controller parameters during the mission profile, includ-
ing the segments selected by CWSD. The progression of wa for the longitudinal controller is similar to the
progression presented in Part I. The wa weights for the longitudinal controller show more changes, to ac-
count for the reduced aileron effectiveness. The SHAP results for every segment presented next will illustrate
this adaption.

The combined dependence plots for δa and δr are presented in, respectively, Figure 7.6 and Figure 7.7. The
combined dependence plot for δe is not included as there are no failures regarding longitudinal control, and
the combined dependence plots for δe are very similar to those presented in Part I.

Both Figure 7.6 and Figure 7.7 show significant changes in slope for the most important features: p, ϕ, and
er rp . With these steeper slopes, the lateral IDHP controller will output more extensive values for δa and δr

for the same feature values. After the transformation with the 0.25% aileron control effectiveness multiplier,
the control output for δa is in the same domain as presented in Part I. In theory, when pr e f is accurately

100 7. ILLUSTRATING AND EXPLAINING ADAPTIVE PROPERTIES USING SHAP

0 50 100 150 200 250
time [s]

0.5

0.0

0.5

1.0

1.5

w
a [

-]

0 1 2 3 4 5 6 7 8

Sample coverage: 73.67%

(a) Longitudinal controller

0 50 100 150 200 250
time [s]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

w
a [

-]

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Sample coverage: 81.1%

(b) Lateral controller

Figure 7.5: Constant weight segment detection for the lateral controller, during the mission profile with a 25% aileron effectiveness
failure after t=67 s, indicated by the vertical red dashed line. The centre segment points, used to copy the wa weights are removed to

clearly present the time of failure.

4 2 0 2 4
p [deg/s]

2

0

2

SH
AP

 v
al

ue
 [d

eg
] p

2 0 2
r [deg/s]

2

0

2

SH
AP

 v
al

ue
 [d

eg
] r

0.4 0.2 0.0 0.2 0.4 0.6
 [deg]

2

0

2

SH
AP

 v
al

ue
 [d

eg
]

20 10 0 10 20
 [deg]

2

0

2

SH
AP

 v
al

ue
 [d

eg
]

1.0 0.5 0.0 0.5 1.0 1.5
errp [deg]

2

0

2

SH
AP

 v
al

ue
 [d

eg
] errp

0.4 0.2 0.0 0.2 0.4 0.6
err [deg]

2

0

2

SH
AP

 v
al

ue
 [d

eg
] err

Aileron a output

Segment 0
Segment 6
Segment 12

Segment 1
Segment 7
Segment 13

Segment 2
Segment 8
Segment 14

Segment 3
Segment 9
Segment 15

Segment 4
Segment 10

Segment 5
Segment 11

Figure 7.6: Combined dependence plots for δa during the mission profile with aileron failure.

followed as in Part I, the rudder output δr can remain unchanged. However, Figure 7.7 shows that also rudder
is now more sensitive to its inputs. This is likely due to the shared neurons and weights between the input
and output layer of the actor NN.

DISCUSSION
The characteristics from the extracted linear control laws can be exploited to determine whether the seg-
ments selected using the CWSD algorithm exhibit similar or different learned control strategies. This could
help further generalization of the learned control strategy by combining segments exhibiting similar con-
trol behavior. Furthermore, the progression of slopes can potentially give clues about the cause of adaption.
The correlation between aα and Vt as could for example indicate that Vt as is an important state for longitu-
dinal control. Furthermore, the changes in slope shown in the combined dependence plots for δa and δr

illustrate that these plots can be used to illustrate fault-tolerance for adaptive RL frameworks. However. the
changes in slope in the combined dependence plots for δr are unexpected, since in theory the rudder control
strategy can remain unchanged after the lateral IDHP controller has adapted to its original control behav-
ior by commanding more aggressive aileron deflection. This assumed undesired control behavior results in
larger values for β than those observed in Part I. SHAP has exposed this divergent behavior. While the rudder
strategy might be improved over time, with more interaction data by extending the mission profile after the
simulated 270 s, another possible solution to the increased sensitivity of δr resulting from failures in δa could
be to create two independent NNs for the lateral IDHP controller.

7.2. ILLUSTRATING FAULT-TOLERANT ADAPTATION 101

5.0 2.5 0.0 2.5 5.0
p [deg/s]

0.25

0.00

0.25

SH
AP

 v
al

ue
 [d

eg
] p

2 0 2
r [deg/s]

0.25

0.00

0.25

SH
AP

 v
al

ue
 [d

eg
] r

0.50 0.25 0.00 0.25 0.50
 [deg]

0.25

0.00

0.25

SH
AP

 v
al

ue
 [d

eg
]

20 0 20
 [deg]

0.25

0.00

0.25

SH
AP

 v
al

ue
 [d

eg
]

1 0 1
errp [deg]

0.25

0.00

0.25
SH

AP
 v

al
ue

 [d
eg

] errp

0.50 0.25 0.00 0.25 0.50
err [deg]

0.25

0.00

0.25

SH
AP

 v
al

ue
 [d

eg
] err

Rudder r output

Segment 0
Segment 6
Segment 12

Segment 1
Segment 7
Segment 13

Segment 2
Segment 8
Segment 14

Segment 3
Segment 9
Segment 15

Segment 4
Segment 10

Segment 5
Segment 11

Figure 7.7: Combined dependence plots for δr during the mission profile with aileron failure.

1.0
0.5
0.0
0.5
1.0
1.5

slo
pe

 [-
]

0 1 2 3 4 5 6 7 8 9

Aileron a output

p
r

errp

err

0 50 100 150 200 250
time [s]

0.4

0.2

0.0

0.2

0.4

slo
pe

 [-
]

0 1 2 3 4 5 6 7 8 9
Rudder r output

Figure 7.8: Progression of slopes of the linear representation model for δa and δr during the mission profile, with aileron failure starting
at t=67 s.

IV
WRAP-UP

102

8 | Conclusions

This chapter presents the answers to the research questions, preceded by a synopsis of the research findings
and contributions.

8.1. SYNOPSIS
The main contributions of this thesis are twofold. First of all, it is demonstrated how SHAP, a feature-relevance
XAI technique, can be used to generate useful and detailed insights into the learned strategy for flight control
of an adaptive RL agent. The second main contribution is the CWSD algorithm, enabling the use of XAI
techniques, requiring constant weights, for adaptive RL frameworks by identifying time segments with near-
constant NN parameters. The increase in interpretability of adaptive RL frameworks for flight control can
help control experts improve the robustness of the RL algorithms by highlighting sensitivities of the function
approximators, improving trustworthiness of the by understanding the input-output relations of the function
approximators, and accelerating development by making debugging of the algorithms easier. Furthermore,
the potential of the used explanation methodology involving SHAP and the CWSD algorithm is not limited to
flight control, as these techniques can be applied to any adaptive RL problem using a NN as policy function
approximator.

The literature review of this thesis shows how RL can be applied to flight control, and how XAI techniques are
used to improve the interpretability of ML models. The classification tree in the literature review shows that
existing publications into RL for flight control can be labeled into two categories for high-level control, goal-
based navigation and autonomous obstacle avoidance, and two categories for low-level control: adaptive
control and controller tuning. Adaptive control is chosen as the main focus for this thesis, due to the traction
in this research field and the large potential of deep RL for adaptive flight control, due to the adaptability of
NNs. From the adaptive control using RL literature, IDHP is selected as the state-of-the-art framework for
this thesis, due to its superior performance, fault-tolerance, and adaptability to unknown flight dynamics. To
investigate how this framework can be explained, the literature review presents and compares XAI techniques
showing potential for explaining deep reinforcement applications for flight control. From these techniques,
SHAP is selected as the most promising technique, as it is the most accurate technique of the reviewed post-
hoc explainability methods. This post-hoc explainability property prevents any compromises of accuracy for
interpretability.

In the preliminary analysis it is shown how SHAP can be used to generate useful explanations for offline deep
RL agents. As the agents used in this preliminary analysis do not exhibit online learning, their model param-
eters are fixed during every episode. As SHAP requires constant weights for the computations of the feature
contributions, the offline learning frameworks served as a proof of concept for using SHAP to explain offline
RL for flight control, in both discrete and continuous environments. After training discrete A2C and con-
tinuous DDPG agents in an high-dimensional environment with continuous states, their decision-making
process is globally and locally explained using SHAP. Local explanations, presented using a waterfall plot,
show the positive and negative contributions for the prediction of the optimal action at one time step. While
this local explanation can give some idea relation between feature value and SHAP value, more useful insights
are obtained by concatenation of the local explanations. These global explanations show feature importance,
and relation between feature and SHAP value. The global importance of all features can be compared us-
ing the SHAP summary plot, while the dependence plot shows a detailed relation between feature value and
SHAP value for one feature. Finally, the RL-SHAP diagrams are used in the preliminary analysis to visualize
how the SHAP values change over time, and what feature values are causing these contributions to the model
output.

The main contributions of this research are presented in the scientific paper, where the proof of concept of
SHAP developed during the preliminary analysis is extended to online adaptive RL. The IDHP framework,
controlling a simulated Cessna Citation I aircraft, is used to generate online adaptive RL data. The novel
proposed CWSD algorithm is used to identify segments with minimal variation in model parameters. It is

103

104 8. CONCLUSIONS

demonstrated that SHAP can accurately explain the learned control strategy within these segments. Further-
more, the novel combined dependence plot allows the control strategies of different segments to be com-
pared, in terms of feature importance and relation between feature value and their contribution to the model
output. The insights into feature importance can be used to limit RL agent complexity, by only selecting
the features relevant during the control task. The use of SHAP and CWSD has led to the discovery that the
control strategy of the used IDHP framework can locally be described using linear control laws. It has been
verified that the extracted linear control laws match the actual actuator deflections commanded by the IDHP
controllers when using fixed weights. Furthermore, these linear control laws have been validated by using
these to control the simulated Cessna Citation, showing stable and similar control behavior when following
the same mission profile used to explain online adaptive IDHP. This demonstrates that SHAP can be used
to extract control laws from flight data. When adaptation to unknown flight circumstances is not required,
this control law extraction could be useful to completely or partly replace adaptive RL agents with simpler
control laws, for example when the computational budget is limited. Finally, it has been demonstrated how
the combined dependence plots can be used to illustrate the fault-tolerance of IDHP. These plots illustrate
different input-output mappings for a lateral IDHP controller after a less effective aileron failure is triggered.
Furthermore, these combined dependence plots show that also the rudder control strategy is updated due
to the adaptation to the aileron failure. This is an example of divergent control behavior identified using
SHAP.

8.2. ANSWERS TO THE RESEARCH QUESTIONS
The first research question is answered using the literature review presented in Chapter 3 and the scientific
paper presented in Part I.

Research question 1

1. How can RL methods be used for autonomous flight control?
1.1. What is the state-of-the art in RL for flight control?

The comparative literature study reviews recent publications in the realm of adaptive critic
designs for flight control. From the six classic adaptive critic designs, Dual Heuristic Pro-
gramming shows the best tracking performance and robustness. Recently DHP has been
extended using incremental control techniques, resulting in IDHP. This framework shows
better tracking performance, reduced settling-times, and most importantly removes the
need of a prior offline training phase. Therefore IDHP is regarded as the state-of-the-art
in RL for flight control and is therefore the application for this thesis.

1.2. Which aspects of RL for flight control are currently the least transparent?
The drawback of IDHP, like other approximate RL methods, is the lack of transparency
due to the use of complex function approximators. Furthermore, the complex architec-
ture of IDHP, including many feedforward signal and backpropagation routes, makes the
decision-making process of the agent harder to understand.

1.3. Which working principles of RL for flight control are most helpful to explain for flight
control engineers or other experts working with the algorithms?
In actor-critic RL frameworks, like IDHP, the actor module is ultimately responsible for
the actual control output based on the measured system and reference states. By explain-
ing this element of the RL framework, the decision-making process of the agent becomes
more interpretable. The results presented in the scientific paper show that illustrating
the input-output relations of the actor NN gives meaningful insights into the control
strategy employed by the IDHP framework. This explanation methodology, however,
only gives insights in what the agent has learned, and not why the agent has learned this
behavior. To interpret the reasoning for learning this control strategy, expert knowledge is
required. As the other elements in IDHP, the critic and the incremental model, are used
to determine the parameters of this actor NN, extracting knowledge from these modules
might lead to more direct insights into the reason why the agent has learned a specific
control strategy.

The XAI literature review presented in Chapter 4 is used to answer the following question:

8.2. ANSWERS TO THE RESEARCH QUESTIONS 105

Research question 2

2. How can eXplainable Artificial Intelligence (XAI) techniques be used to gain more insight into
the working principles of RL?
2.1. What is the state-of-the-art of transparent RL algorithm design?

Out of the available transparent RL publications, explainable fuzzy RL and reward decom-
position are selected as potentially useful techniques for adaptive control using RL. Both
these methods provide useful explanations for the reward signal in RL. However, this re-
ward signal is often a straightforward penalty for tracking error in adaptive flight control.
Furthermore, interpretability is one of the key design drivers of the control system for
transparent RL techniques. However, this often results in a compromise of accuracy for
improved interpretability, which is unacceptable for many aerospace applications. This
suite of techniques is therefore not selected for this research.

2.2. What is the state-of-the-art of post-hoc explainability techniques suitable for RL?
The reviewed post-hoc explainability techniques, LIME and SHAP, provide insights into
the mechanics of already designed AI methods. From this suite of techniques, SHAP is
deemed the state-of-the-art due to its superior accuracy in generating explanations. SHAP
is proven to provide useful explanations for RL applied for engineering control. Further-
more, SHAP allows ML models to be explained both locally and globally. A local explana-
tion for RL is the prediction of the optimal action at one time step, while global explana-
tions describe the input-output dynamics of the described model on a larger scale.

Finally research question 3 is answered using the findings of the preliminary analysis presented in Chapter 5
and those included in the scientific paper, presented in Part I. The answers to research question 3 are printed
on the next page.

106 8. CONCLUSIONS

Research question 3

3. How can XRL techniques be used to increase the transparency of RL for adaptive flight con-
trol?
3.1. Which XAI techniques can be integrated with RL for adaptive flight control?

As described in RQ 1.3, the actor module of the IDHP framework is opaque due to the NN
function approximator, while it is the most important module to describe the flight me-
chanics, as this module is ultimately responsible for choosing the actuator outputs based
on the measured states. Making this module more interpretable will enhance the trans-
parency of the whole framework. For explaining this input-output mapping, SHAP is a
good candidate as it can describe the relation between the output and every individual
input.

3.2. How can the proposed XAI technique be used to identify the most important flight control
inputs and analyze how do these influence the actuator output?
It has been demonstrated that SHAP can accurately extract the relations between the
adaptive RL framework’s input and the commanded actuator deflections for both online
and offline RL agents. The waterfall plot can be used to create an explanation for a sin-
gle time step, showing every feature’s contribution to the NN output. The key strength of
SHAP lies in the global patterns visible through the analysis of many time steps. The fea-
ture importance can be inspected using the SHAP summary plot, which ranks the features
based on their average contribution to the model output. The relation between model
output and a specific feature can be observed in detail using the SHAP dependence plot,
and the RL-SHAP diagram can be used to show these relations over time, illustrating the
interaction between features. For online adaptive RL applications, where the input-output
relations often change during the control task, the combined dependence plot can be used
to assess the feature importance and input-output simultaneously for all analyzed time
segments. The accuracy of the SHAP explanation model has been verified by comparing
its output with the IDHP controller output with fixed weights. Furthermore, the discov-
ered linear relations between feature value and their contribution to the model output
have been validated by using these control laws to control the simulated Cessna Citation.
As SHAP values can be used to determine feature importance, this analysis can help in
selecting the most relevant features out of a list of possible features. Selecting the mini-
mum number of features, while still acquiring good control performance, minimizes the
complexity of the control system and hence improves transparency of the control system.
Furthermore, this feature selection using SHAP can be used to select sensors required for
control of an aerospace application. As an example, for miniature unmanned aerial vehi-
cles where the power and weight budget for sensors is limited, SHAP feature importance
analysis can help in selecting the most relevant sensors for control of the vehicle.

3.3. What is the influence of changing model weights to the accuracy of explanations produced
by the XAI technique?
The CWSD algorithm is introduced to select segments with minimal variance of actor
model parameters. Within these segments, it has been verified that the SHAP model out-
put matches the IDHP controller when its model parameters are fixed. It has been shown
that inaccuracies between the SHAP model output and the actual IDHP controller output
are caused by the constant-weight assumption, and not by the SHAP calculations. When
the model parameters are changing during online adaptive flight control, there is always
a trade-off between accuracy of the explanations and generalization when using the pro-
posed CWSD technique. When the limit on NN parameter variation is lenient, long and
relatively inaccurate segments are created, improving the generalization and vice versa.
However, it is shown that for segments that are too short, the explanations show good
global accuracy, but poor local approximation due to the constant weight assumption.

9 | Recommendations

The work presented in this thesis can be considered as an initial effort to increase the transparency of RL for
adaptive flight control. To investigate the applicability of the used explanation methodology to different RL
frameworks and other control problems, further research is required. Furthermore. based on the mentioned
limitations of SHAP and CWSD for explaining RL for adaptive flight control, and other insights gained during
the research, the following recommendations for future research are presented:

• As the goal of an explanation is to make something understandable to a human, the quality of an ex-
planation is subjective. Assessing the quality of the generated explanations therefore requires human-
in-the-loop experiments. These experiments were out of scope for this research, but inviting control
experts to assess the quality and helpfulness of the explanations will likely benefit development of XRL
for flight control, as the explanation methodology can be tuned to provide more useful insights. Possi-
ble approaches for these human-in-the-loop experiment are presented in [82] and [73], where subjects
are asked to assess trust in the ML model’s prediction before and after receiving an explanation gener-
ated through XAI.

• While the results show that meaningful insights can be extracted from the control strategy learned by
IDHP, the RL framework chosen for this thesis, further research is required to investigate whether this
also holds true for other adaptive RL frameworks.

• The relations between feature value and SHAP value extracted through SHAP in combination with
CWSD are all linear in this research. The adaptive RL framework is used for inner-loop rate control,
a relatively simple tracking task. Extending the IDHP hierarchy to perform more complex tasks, such
as altitude and pitch angle tracking, and using a more complex NN architecture, could result in more
complex and potentially nonlinear input-output relations. To investigate its flexibility, the proposed
explanation methodology should be applied to more complex control tasks. The presented combined
dependence plots may for example be less informative when the relation between feature value and
SHAP value is highly nonlinear, cluttering the plots.

• The proposed explanation methodology allows insights into the learned control strategy, but expert
knowledge is still required to interpret why the agent has learned this behavior. Future research could
focus on extracting information from other modules present in the RL framework, such as the critic or
the incremental model in the case of IDHP, to also explain why the control strategy is learned.

• Feature selection out of a large number of measured states is one of the proposed applications of SHAP
for adaptive RL. An idea for future research is therefore to use many potential states for input of the RL
agent, and select only the states identified as important through SHAP.

• The progression of the slopes of the extracted linear control laws for δe show possible relations with
the true air speed Vt as . Future research could further investigate this relation to identify if and how the
actor NN parameters are adapting due to changes in airspeed. This might result in insights into the
adaptation process of the IDHP controller for the selected flight application.

• Finally, one of the intended goals of increased transparency in RL for adaptive flight control is accel-
erated development of RL algorithms by identifying potential undesired behavior of the agent. During
early stages of development, the actor parameters of the RL agent could show more variance than the
actor weights in this research. This could result in very short segments, in which the accuracy of the
explanations is reduced. Future research should therefore investigate the usefulness of the proposed
explanation methodology during early stages of RL algorithm development.

107

V
APPENDICES

108

A | Training Convergence - Part of the graded
preliminary analysis

DISCRETE CONTROL AGENT TRAINING
The discrete agent is defined to be successfully trained when the mean score of the last 20 episodes sur-
passes 200, as this score corresponds to a successful landing. The summary of training is illustrated in Fig-
ure A.1.

0 200 400 600 800 1000
Episode

−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

Sc
or

e

per episode
average of last 20 episodes
goal

Figure A.1: Agent training for the discrete lunar lander environment, using the A2C algorithm.

CONTINUOUS CONTROL AGENT TRAINING
The used hyperparameters for training the DDPG agent are summarized in Table 5.3. Training in the con-
tinuous lunar lander environment is considered successful when the average score of the last 100 episodes
surpasses 200 points. The training curve of the DDPG agent is summarized in Figure A.2.

0 200 400 600 800 1000 1200 1400
Episode

−1200

−1000

−800

−600

−400

−200

0

200

Sc
or

e

score per episode
average of last 100 episodes
goal

Figure A.2: Agent training for the continuous lunar lander environment, using the DDPG algorithm.

109

Bibliography

[1] A. Kaplan and M. Haenlein. “Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations,
illustrations, and implications of artificial intelligence”. In: Business Horizons 62.1 (2019), pp. 15–25.
DOI: 10.1016/j.bushor.2018.08.004.

[2] Yogesh K. Dwivedi et al. “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging chal-
lenges, opportunities, and agenda for research, practice and policy”. English. In: International Journal
of Information Management 57 (2019). ISSN: 0268-4012. DOI: 10.1016/j.ijinfomgt.2019.08.002.

[3] K. He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition 2016-December (2016), pp. 770–778. DOI: 10.
1109/CVPR.2016.90.

[4] L.A. Marina et al. “Deep Grid Net (DGN): A Deep Learning System for Real-Time Driving Context Under-
standing”. In: Proceedings - 3rd IEEE International Conference on Robotic Computing, IRC 2019 (2019),
pp. 399–402. DOI: 10.1109/IRC.2019.00073.

[5] P. Jamshidi et al. “Machine learning meets quantitative planning: Enabling self-adaptation in autonomous
robots”. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems 2019-May
(2019), pp. 39–50. DOI: 10.1109/SEAMS.2019.00015.

[6] M. Haenlein and A. Kaplan. “A Brief History of Artificial Intelligence: On the Past, Present, and Fu-
ture of Artificial Intelligence”. In: California Management Review 61.4 (2019), pp. 5–14. DOI: 10.1177/
0008125619864925.

[7] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. “Explainable artificial intelligence: A survey”. In:
2018 41st International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). 2018, pp. 0210–0215. DOI: 10.23919/MIPRO.2018.8400040.

[8] H.M. El Misilmani, T. Naous, and S.K. Al Khatib. “A review on the design and optimization of antennas
using machine learning algorithms and techniques”. In: International Journal of RF and Microwave
Computer-Aided Engineering 30.10 (2020). DOI: 10.1002/mmce.22356.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The MIT
Press, 2018.

[10] Volodymyr Mnih et al. Human-level control through deep reinforcement learning. Feb. 2015.

[11] D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In: Nature
529.7587 (2016), pp. 484–489. DOI: 10.1038/nature16961.

[12] Kai Arulkumaran et al. “Deep Reinforcement Learning: A Brief Survey”. In: IEEE Signal Processing Mag-
azine 34.6 (Nov. 2017), pp. 26–38. ISSN: 1053-5888. DOI: 10.1109/msp.2017.2743240.

[13] F. Santoso, M.A. Garratt, and S.G. Anavatti. “State-of-the-Art Intelligent Flight Control Systems in Un-
manned Aerial Vehicles”. In: IEEE Transactions on Automation Science and Engineering 15.2 (2018),
pp. 613–627. DOI: 10.1109/TASE.2017.2651109.

[14] A.Y. Ng et al. “Autonomous inverted helicopter flight via reinforcement earning”. In: Springer Tracts in
Advanced Robotics 21 (2006), pp. 363–372. DOI: 10.1007/11552246_35.

[15] W. Koch et al. “Reinforcement learning for UAV attitude control”. In: ACM Transactions on Cyber-Physical
Systems 3.2 (2019). DOI: 10.1145/3301273.

[16] Danil V. Prokhorov, Roberto A. Santiago, and Donald C. Wunsch. “Adaptive critic designs: A case study
for neurocontrol”. In: Neural Networks 8.9 (1995), pp. 1367–1372. ISSN: 0893-6080. DOI: https://doi.
org/10.1016/0893-6080(95)00042-9.

[17] Y. Zhou, E.-J. van Kampen, and Q.P. Chu. “Incremental model based online dual heuristic programming
for nonlinear adaptive control”. In: Control Engineering Practice 73 (2018), pp. 13–25. DOI: 10.1016/
j.conengprac.2017.12.011.

111

https://doi.org/10.1016/j.bushor.2018.08.004
https://doi.org/10.1016/j.ijinfomgt.2019.08.002
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/IRC.2019.00073
https://doi.org/10.1109/SEAMS.2019.00015
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.1002/mmce.22356
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/msp.2017.2743240
https://doi.org/10.1109/TASE.2017.2651109
https://doi.org/10.1007/11552246_35
https://doi.org/10.1145/3301273
https://doi.org/https://doi.org/10.1016/0893-6080(95)00042-9
https://doi.org/https://doi.org/10.1016/0893-6080(95)00042-9
https://doi.org/10.1016/j.conengprac.2017.12.011
https://doi.org/10.1016/j.conengprac.2017.12.011

112 BIBLIOGRAPHY

[18] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, oppor-
tunities and challenges toward responsible AI”. In: arXiv 58.October 2019 (2019), pp. 82–115.

[19] Riccardo Guidotti et al. “A Survey of Methods for Explaining Black Box Models”. In: ACM Comput. Surv.
51.5 (Aug. 2018). ISSN: 0360-0300. DOI: 10.1145/3236009.

[20] L. He, N. Aouf, and B. Song. “Explainable Deep Reinforcement Learning for UAV autonomous path
planning”. In: Aerospace Science and Technology 118 (2021). DOI: 10.1016/j.ast.2021.107052.

[21] Ethem Alpaydın. Introduction to Machine Learning. Cambridge, Massachusetts: The MIT Press, 2010.

[22] Kenji Doya. Reinforcement Learning in Continuous Time and Space. The MIT Press, 2000.

[23] Dimitri P Bertsekas. Dynamic Programming and Optimal Control 3rd Edition , Volume II by Chapter
6 Approximate Dynamic Programming Approximate Dynamic Programming. Vol. II. 2010, pp. 1–200.
ISBN: 1886529302.

[24] L. Buşoniu et al. Reinforcement Learning and Dynamic Programming Using Function Approximators.
Boca Raton, Florida: CRC Press, 2010. DOI: 10.1201/9781439821091.

[25] Richard Sutton et al. “Policy Gradient Methods for Reinforcement Learning with Function Approxima-
tion”. In: Adv. Neural Inf. Process. Syst 12 (Feb. 2000).

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980
[cs.LG].

[27] W.S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity”. In: The
Bulletin of Mathematical Biophysics 5.4 (1943), pp. 115–133. DOI: 10.1007/BF02478259.

[28] J. Schmidhuber. “Deep Learning in neural networks: An overview”. In: Neural Networks 61 (2015),
pp. 85–117. DOI: 10.1016/j.neunet.2014.09.003.

[29] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double Q-Learning.
Mar. 2016.

[30] George Konidaris, Sarah Osentoski, and Philip Thomas. Value Function Approximation in Reinforce-
ment Learning Using the Fourier Basis. 2011.

[31] Richard Sutton et al. “Policy Gradient Methods for Reinforcement Learning with Function Approxima-
tion”. In: Adv. Neural Inf. Process. Syst 12 (Feb. 2000).

[32] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult learn-
ing control problems. 1983.

[33] D. V. Prokhorov and D. C. Wunsch. Adaptive critic designs. 1997. DOI: 10.1109/72.623201.

[34] H. Van Hoof, J. Peters, and G. Neumann. “Learning of non-parametric control policies with high-dimensional
state features”. In: Journal of Machine Learning Research 38 (2015), pp. 995–1003.

[35] Richard S Sutton et al. Policy gradient methods for reinforcement learning with function approximation.
Citeseer, 1999.

[36] Lucian Buşoniu et al. “Approximate reinforcement learning: An overview”. In: IEEE SSCI 2011: Sympo-
sium Series on Computational Intelligence - ADPRL 2011: 2011 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning May 2014 (2011), pp. 1–8. DOI: 10.1109/ADPRL.2011.
5967353.

[37] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. 1992.

[38] B. Kiumarsi and F.L. Lewis. “Actor-critic-based optimal tracking for partially unknown nonlinear discrete-
time systems”. In: IEEE Transactions on Neural Networks and Learning Systems 26.1 (2015), pp. 140–151.
DOI: 10.1109/TNNLS.2014.2358227.

[39] J.D. Boskovic, R. Prasanth, and R.K. Mehra. “A multi-layer autonomous intelligent control architecture
for unmanned aerial vehicles”. In: Journal of Aerospace Computing, Information and Communication
DEC. (2004), pp. 605–628. DOI: 10.2514/1.12823.

[40] D.C. Gandolfo et al. “Energy evaluation of low-level control in UAVs powered by lithium polymer bat-
tery”. In: ISA Transactions 71 (2017), pp. 563–572. DOI: 10.1016/j.isatra.2017.08.010.

https://doi.org/10.1145/3236009
https://doi.org/10.1016/j.ast.2021.107052
https://doi.org/10.1201/9781439821091
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/72.623201
https://doi.org/10.1109/ADPRL.2011.5967353
https://doi.org/10.1109/ADPRL.2011.5967353
https://doi.org/10.1109/TNNLS.2014.2358227
https://doi.org/10.2514/1.12823
https://doi.org/10.1016/j.isatra.2017.08.010

BIBLIOGRAPHY 113

[41] H. Bayerlein, P. De Kerret, and D. Gesbert. “Trajectory Optimization for Autonomous Flying Base Station
via Reinforcement Learning”. In: IEEE Workshop on Signal Processing Advances in Wireless Communi-
cations, SPAWC 2018-June (2018). DOI: 10.1109/SPAWC.2018.8445768.

[42] R. Furfaro and R. Linares. “Waypoint-Based generalized ZEM/ZEV feedback guidance for planetary
landing via a reinforcement learning approach”. In: Advances in the Astronautical Sciences 161 (2017),
pp. 401–416.

[43] D. Miller and R. Linares. “Low-thrust optimal control via reinforcement learning”. In: Advances in the
Astronautical Sciences 168 (2019), pp. 1817–1834.

[44] Y. Li et al. “Autonomous waypoints planning and trajectory generation for multi-rotor UAVs”. In: DES-
TION 2019 - Proceedings of the Workshop on Design Automation for CPS and IoT (2019), pp. 31–40. DOI:
10.1145/3313151.3313163.

[45] Y. Zhao et al. “Q learning algorithm based UAV path learning and obstacle avoidence approach”. In:
Chinese Control Conference, CCC (2017), pp. 3397–3402. DOI: 10.23919/ChiCC.2017.8027884.

[46] Z. Ma et al. “A saliency-based reinforcement learning approach for a UAV to avoid flying obstacles”. In:
Robotics and Autonomous Systems 100 (2018), pp. 108–118. DOI: 10.1016/j.robot.2017.10.009.

[47] F. Fei et al. “Learning extreme hummingbird maneuvers on flapping wing robots”. In: Proceedings -
IEEE International Conference on Robotics and Automation 2019-May (2019), pp. 109–115. DOI: 10.
1109/ICRA.2019.8794100.

[48] A. Scorsoglio et al. “Image-based deep reinforcement learning for autonomous lunar landing”. In: AIAA
Scitech 2020 Forum 1 PartF (2020). DOI: 10.2514/6.2020-1910.

[49] S. Heyer, D. Kroezen, and E. van Kampen. “Online adaptive incremental reinforcement learning flight
control for a cs-25 class aircraft”. In: AIAA Scitech 2020 Forum 1 PartF (2020). DOI: 10.2514/6.2020-
1844.

[50] S. Lee and H. Bang. “Automatic Gain Tuning Method of a Quad-Rotor Geometric Attitude Controller
Using A3C”. In: International Journal of Aeronautical and Space Sciences 21.2 (2020), pp. 469–478. DOI:
10.1007/s42405-019-00233-x.

[51] M.W. Goedhart et al. “Machine learning for flapping wing flight control”. In: AIAA Information Systems-
AIAA Infotech at Aerospace, 2018 209989 (2018). DOI: 10.2514/6.2018-2135.

[52] D.V. Prokhorov and D.C. Wunsch II. “Adaptive critic designs”. In: IEEE Transactions on Neural Networks
8.5 (1997), pp. 997–1007. DOI: 10.1109/72.623201.

[53] George G. Lendaris and James C. Neidhoefer. “Guidance in the Use of Adaptive Critics for Control”. In:
Handbook of Learning and Approximate Dynamic Programming. John Wiley Sons, Ltd, 2004. Chap. 4,
pp. 97–124. ISBN: 9780470544785. DOI: https://doi.org/10.1002/9780470544785.ch4.

[54] M. Szuster and Z. Hendzel. “Discrete Globalised Dual Heuristic Dynamic Programming in Control of
the Two-Wheeled Mobile Robot”. In: Mathematical Problems in Engineering 2014 (2014). DOI: 10 .
1155/2014/628798.

[55] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch. “Comparison of heuristic dynamic program-
ming and dual heuristic programming adaptive critics for neurocontrol of a turbogenerator”. In: IEEE
Transactions on Neural Networks 13.3 (2002), pp. 764–773. DOI: 10.1109/TNN.2002.1000146.

[56] J. Si and Y.-T. Wang. “On-line learning control by association and reinforcement”. In: IEEE Transactions
on Neural Networks 12.2 (2001), pp. 264–276. DOI: 10.1109/72.914523.

[57] S. Ferrari and R.F. Stengel. “Online adaptive critic flight control”. In: Journal of Guidance, Control, and
Dynamics 27.5 (2004), pp. 777–786. DOI: 10.2514/1.12597.

[58] E. Van Kampen, Q.P. Chu, and J.A. Mulder. “Continuous adaptive critic flight control aided with approx-
imated plant dynamics”. In: Collection of Technical Papers - AIAA Guidance, Navigation, and Control
Conference 2006 5 (2006), pp. 2989–3016. DOI: 10.2514/6.2006-6429.

[59] Ye Zhou. “Online reinforcement learning control for aerospace systems”. PhD thesis. Delft University
of Technology, May 2018.

[60] L. Bainbridge. “Ironies of automation”. In: Automatica 19.6 (1983), pp. 775–779. DOI: 10.1016/0005-
1098(83)90046-8.

https://doi.org/10.1109/SPAWC.2018.8445768
https://doi.org/10.1145/3313151.3313163
https://doi.org/10.23919/ChiCC.2017.8027884
https://doi.org/10.1016/j.robot.2017.10.009
https://doi.org/10.1109/ICRA.2019.8794100
https://doi.org/10.1109/ICRA.2019.8794100
https://doi.org/10.2514/6.2020-1910
https://doi.org/10.2514/6.2020-1844
https://doi.org/10.2514/6.2020-1844
https://doi.org/10.1007/s42405-019-00233-x
https://doi.org/10.2514/6.2018-2135
https://doi.org/10.1109/72.623201
https://doi.org/https://doi.org/10.1002/9780470544785.ch4
https://doi.org/10.1155/2014/628798
https://doi.org/10.1155/2014/628798
https://doi.org/10.1109/TNN.2002.1000146
https://doi.org/10.1109/72.914523
https://doi.org/10.2514/1.12597
https://doi.org/10.2514/6.2006-6429
https://doi.org/10.1016/0005-1098(83)90046-8
https://doi.org/10.1016/0005-1098(83)90046-8

114 BIBLIOGRAPHY

[61] D. Gunning and D.W. Aha. “DARPA’s explainable artificial intelligence program”. In: AI Magazine 40.2
(2019), pp. 44–58. DOI: 10.1609/aimag.v40i2.2850.

[62] A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez. “Explainability in deep reinforcement learning”. In:
Knowledge-Based Systems 214 (2021). DOI: 10.1016/j.knosys.2020.106685.

[63] Erika Puiutta and Eric MSP Veith. Explainable Reinforcement Learning: A Survey. 2020. arXiv: 2005.
06247 [cs.LG].

[64] Jens Jaekel, Ralf Mikut, and Georg Bretthauer. “Fuzzy Control Systems”. In: Jan. 2004.

[65] Rolando Bautista-Montesano, Rogelio Bustamante-Bello, and Ricardo A. Ramirez-Mendoza. “Explain-
able navigation system using fuzzy reinforcement learning”. In: International Journal on Interactive
Design and Manufacturing 14.4 (2020), pp. 1411–1428. ISSN: 19552505.

[66] Sefer Kurnaz, Omer Cetin, and Okyay Kaynak. “Adaptive neuro-fuzzy inference system based autonomous
flight control of unmanned air vehicles”. In: Expert Systems with Applications 37.2 (2010), pp. 1229–
1234. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2009.06.009.

[67] M. Santos, V. López, and F. Morata. “Intelligent fuzzy controller of a quadrotor”. In: Proceedings of 2010
IEEE International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2010 (2010),
pp. 141–146. DOI: 10.1109/ISKE.2010.5680812.

[68] Edgar N. Sanchez, Hector M. Becerra, and Carlos M. Velez. “Combining fuzzy, PID and regulation con-
trol for an autonomous mini-helicopter”. In: Information Sciences 177.10 (2007). Including Special Is-
sue on Hybrid Intelligent Systems, pp. 1999–2022. ISSN: 0020-0255. DOI: https://doi.org/10.1016/
j.ins.2006.10.001.

[69] Robert L. Wade and Gregory W. Walker. “Flight test results of the fuzzy logic adaptive controller-helicopter
(FLAC-H)”. In: Navigation and Control Technologies for Unmanned Systems. Ed. by Scott A. Speigle.
Vol. 2738. International Society for Optics and Photonics. SPIE, 1996, pp. 200–208.

[70] Adam Daniel Laud. Theory and application of reward shaping in reinforcement learning. Tech. rep.
2004.

[71] Zoe Juozapaitis et al. “Explainable reinforcement learning via reward decomposition”. In: IJCAI/ECAI
Workshop on Explainable Artificial Intelligence. 2019.

[72] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”. In: Advances
in Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.

[73] M.T. Ribeiro, S. Singh, and C. Guestrin. “"Why should i trust you?" Explaining the predictions of any
classifier”. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining 13-17-August-2016 (2016), pp. 1135–1144. DOI: 10.1145/2939672.2939778.

[74] Yujia Zhang et al. "Why Should You Trust My Explanation?" Understanding Uncertainty in LIME Expla-
nations. 2019. arXiv: 1904.12991 [cs.LG].

[75] D. Slack et al. “Fooling LIME and SHAP: Adversarial attacks on post hoc explanation methods”. In:
AIES 2020 - Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (2020), pp. 180–186. DOI:
10.1145/3375627.3375830.

[76] R. Liessner, J. Dohmen, and M. Wiering. “Explainable reinforcement learning for longitudinal control”.
In: ICAART 2021 - Proceedings of the 13th International Conference on Agents and Artificial Intelligence
2 (2021), pp. 874–881.

[77] T. Wood et al. “An interpretable machine learning model of biological age [version 1; peer review: 2
approved with reservations]”. In: F1000Research 8 (2019). DOI: 10.12688/F1000RESEARCH.17555.1.

[78] Scott Slundberg. SHAP Documentation. URL: https://github.com/slundberg/shap.

[79] S.G. Rizzo, G. Vantini, and S. Chawla. “Reinforcement Learning with Explainability for Traffic Signal
Control”. In: 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019 (2019), pp. 3567–3572.
DOI: 10.1109/ITSC.2019.8917519.

[80] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].

[81] T.P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: 4th International Con-
ference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2016).

[82] P. Madumal et al. “Explainable reinforcement learning through a causal lens”. In: AAAI 2020 - 34th AAAI
Conference on Artificial Intelligence (2020), pp. 2493–2500.

https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1016/j.knosys.2020.106685
https://arxiv.org/abs/2005.06247
https://arxiv.org/abs/2005.06247
https://doi.org/https://doi.org/10.1016/j.eswa.2009.06.009
https://doi.org/10.1109/ISKE.2010.5680812
https://doi.org/https://doi.org/10.1016/j.ins.2006.10.001
https://doi.org/https://doi.org/10.1016/j.ins.2006.10.001
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/1904.12991
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.12688/F1000RESEARCH.17555.1
https://github.com/slundberg/shap
https://doi.org/10.1109/ITSC.2019.8917519
https://arxiv.org/abs/1606.01540

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Challenges
	Research goal and research questions
	Report Outline

	I Scientific Paper
	II Literature Review and Preliminary Analysis
	Reinforcement Learning Fundamentals
	Key Concepts
	Markov Decision Process
	Return
	Policy and Value
	Optimal Policy

	Dynamic Programming
	Policy Evaluation
	Policy Improvement
	Generalized Policy Iteration

	Model-Free Algorithms
	Monte Carlo Methods
	Temporal-Difference Learning

	Approximate Reinforcement Learning
	Artificial Neural Networks
	Value-based Approximation
	Policy-based Approximation

	Actor-Critic Algorithms

	Reinforcement Learning for Flight Control
	RL for Flight Control Classification
	Adaptive Critic Designs
	Adaptive Critic Design Applications in Flight Control
	Dual Heuristic Programming
	Incremental Dual Heuristic Programming

	Explainable AI Techniques
	Motivation, Challenges, and Terminology
	Literature Selection Methodology
	Transparent Design
	Explainable Navigation using Fuzzy Reinforcement Learning
	Reward Decomposition

	Post-Hoc Explainability
	Local Interpretable Model-agnostic Explanations (LIME)
	SHapley Additive exPlanations (SHAP)

	Conclusions

	Preliminary Analysis
	preliminary analysis Setup
	Environment
	Discrete Control - Advantage Actor Critic (A2C)
	Continuous Control - Deep Deterministic Policy Gradient (DDPG)

	Results of Discrete Control Preliminary Analysis
	Input Analysis
	Output Analysis
	Input-Output Analysis Using SHAP

	Results of Continuous Control Preliminary Analysis
	Input Analysis
	Output Analysis
	Input-Output Analysis Using SHAP

	III Additional Results and Discussions
	Validation of the Linear Representation Models
	Illustrating and Explaining Adaptive Properties using SHAP
	Showing Adaptation Using the Linear Slope
	Illustrating Fault-Tolerant Adaptation

	IV Wrap-Up
	Conclusions
	Synopsis
	Answers to the Research Questions

	Recommendations

	V Appendices
	Training Convergence - Part of the graded preliminary analysis

