Performance

RouUng%%eums

by

L ouls Sikkes

Nicle

S

[
L4
Wt By b
CL

.

e

o

Performa ﬂce

Rouﬂng%%eumsics

by

Louls Sikkes

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Monday October 28, 2019 at 10:00 AM.

]
TUDelft

ORrRTcC

Student number: 4298977
Project duration: February 1, 2019 - October 28, 2019

Thesis committee: Dr. Neil Yorke Smith Associate Professor Algorithmics, TU Delft
Dr. Annibale Panichella Assistant Professor Software Engineering, TU Delft
Joost Donkers Software Engineer, ORTEC

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

This thesis has researched the automation of performance evaluation of vehicle routing heuristics. The trade-
off between solution quality, which is composed of multiple variables, and runtime make performance evalu-
ation challenging. Therefore, it is often done by human experts. The research question of this thesis is: “How
can we determine a performance measure that correctly represents the trade off between quality and runtime
in vehicle routing heuristics?”.

A literature review revealed that much research was done on performance evaluation, but not on heuris-
tics specifically. The performance profile, a cumulative distribution function, is said to reflect all major per-
formance characteristics of a solver. This, combined with a clustering algorithm, is used in this thesis in
a classifier to detect performance anomalies. The performance profile needs a performance measure, for
which three options were introduced: the area under the chart, the quality at the same time and the maxi-
mum difference. Through experimentation, 18 measure configurations were tested and rated on their accu-
racy and apparent issues. Three of the measure configurations have promising results, with an accuracy of
roughly 80%.

iii

Preface

Before you lies my thesis "Performance Evaluation of Vehicle Routing Heuristics". This thesis has researched
the automation of performance evaluation and specifically, ways to evaluate the quality versus runtime trade
off. After little over 6 years, this thesis earns me the degree of master of science in computer science at the
Delft University of Technology, where I also earned my bachelors degree. This thesis started with nothing but
a subject and a completely new environment. Especially the first few months were difficult, where in a new
environment and with a new subject I was posed with the challenge of formulating a research question. After
9 months of hard work, I am very happy with the end result.

I want to thank everyone who has supported me in the past months while writing my thesis. First, I want
to thank my supervisors Neil Yorke-Smith of the Delft University of Technology and Joost Donkers of ORTEC
for their advise during my thesis. Then, I want to thank everyone at ORTEC, who have provided me with the
context for my project and a friendly and helpful environment for me to work in. Lastly, I want to thank my
family for their support and encouragement during my years of study.

Louis Sikkes
Delft, October 2019

1

Contents

Introduction 1
1.1 ContextdesCription. o e e e e e e e e e 1
1.1.1 Introductionto ORTEC o it i it et 1
1.1.2 Vehicleroutingproblems L 2
1.1.3 The performance testingprocedure L. 3
1.2 Motivation Lo e e e e e e e 4
1.2.1 Issueswith currentprocedureo 4
1.2.2 Researchquestions 4
1.3 Methodology e e e e e e e 5
1.3.1 Contributions L. e 5
1.4 Overview of remainingchapters e 5
Literature Survey 7
2.1 Literature SUrvey strategy« .t b it e e e e e e e e e e e e e e e e e 7
2.1.1 Systematic approach to conducting literaturesurvey 7
2.1.2 The do’s and dont’s of experimental algorithm analysis 8
2.1.3 Good lab practice: what to do to ensure reproducibleresults 9
2.2 Performanceanalysis. Lo e 9
2.2.1 Howtomeasure performancet i e e e e e e e e 9
2.2.2 Performance analysis of optimization algorithms 9
2.2.3 Performance analysis in vehicle routing problems 11
2.2.4 Performance analysis outside optimization algorithms 12
225 Codeprofiling e 13
2.3 Anomalydetection L e e e e e 14
2.3.1 Anomaly detection techniques. L Lo 14
23.2 Typesofanomalies. L L 14
2.3.3 Applicableresearchareas 15
2.3.4 Anomaly detection usingclustering Lo oL 15
24 SUMMATY« 0 v vttt e e e e e e e e e e e e e e e e 16
Classifier Design 17
3.1 Availabledata. L e 17
3.1.1 KeyPerformanceIndicators L e 17
3.1.2 RuntimemeasuresS. v v v v v it e e e e e e e e e e e e e e e e 18
3.2 Performance profiles to create an overview L. Lo Lo e e e 19
3.2.1 Motivation for using performance profiles.o Lo oL 19
3.2.2 Implementation of performance profiles 19
3.3 Anomaly detection usingclustering. Lo Lo 20
3.3.1 K-meansimplementation L. 20
3.4 Implementation e e e e e e e 21
3.4.1 Stepl:Analysingtestruns.ot e e e e e e 21
3.4.2 Step2: Analysingtestcasest 22
3.4.3 Step3:Analysingtheresults Lo Lo 22
35 Summary e e e e e e e e e e e e e e e e 23
Performance Measures 25
4.1 Issueswith runtime as performance measure.ot e .. 25
4.2 Alternative performance measures v e e e e e e e e e e e e e 25
4.2.1 Quality comparison atsameruntime Lo e o0 26
422 Areaunderthechart. L L e 26
4.2.3 Maximum difference in cost between solutions 27

vii

viii

Contents

4.3 Alternative measuringpoints e ..

4.3.1 Determining the end time when runtimes are different

4.3.2 Alternative times for performance comparison
44 SUMMATY o v v v vt e e e e e e e e e e e

5 Experiments

5.1 Experimentdesign o o
5.1.1 Approach
5.1.2 Metrics for evaluating combinations.
5.1.3 Cross-validation,

5.2 Exploratory test case investigation
52.1 Conclusion. e

53 Results
5.3.1 Comparison of measure variables
5.3.2 Comparison of test runs marked as anomalous
5.3.3 Issueswiththeclassifier
5.3.4 Trainingdataconclusions
5.3.5 Analysis of verification dataresults

54 Summary oL e e e e e e e e e e

6 Conclusion

6.1 Futurework. e e

A Evaluation sheet
B Tool images

Bibliography

Introduction

By 2050, the world’s population is estimated to reach about 9 billion. Without innovation and optimization,
three planets are needed in terms of available resources. ORTEC believes that for organizations, advanced
analytics and optimization are key to survive, innovate and outperform. ORTEC is one of the largest suppliers
of optimization software and analytics solutions of the world. They own a large variety of software products.
The research of this thesis was done in collaboration with ORTEC and will focus specifically on their vehicle
routing products.

This report will highlight the most important aspects of a thesis that has researched the automation of
performance analysis in heuristics for vehicle routing problems. Performance analysis is often conducted
through performance tests. These tests consist of common tasks for the software to execute that often require
ahefty amount of resources. Unlike other types of tests, performance tests are not a simple pass or fail, but are
more complicated in their evaluation. The trade off between solution quality, which is composed of multiple
variables, and the runtime make this a hard task to do. Therefore, this evaluation is often done by human
experts. As part of this thesis, a tool was developed that aids developers by detecting anomalies in the results
of performance tests and provides additional insights, which can be helpful to resolve the issue at hand.

This introduction will first describe the problem at hand by providing the context to the research. This
then leads into the issues with the current situation and a motivation of the research questions. Next, the
methodology will outline how these research questions will be answered and what the contributions of this
thesis are. Finally, an overview of the remainder of this document is given.

1.1. Context description

Before presenting the research questions and contributions made by this thesis, it is important to gain some
knowledge about performance testing and the specific situation that will be researched during this thesis.
This section will provide that information. Since this thesis was done in collaboration with ORTEC, the com-
pany will first be shortly introduced to provide the context of the research. Then, before describing the con-
tributions of this thesis, the vehicle routing problem and the procedure of performance testing are explained.

1.1.1. Introduction to ORTEC

As stated earlier, this thesis has been done in collaboration with ORTEC. ORTEC is a company that specialises
in optimisation software. Their biggest product solves vehicle routing problems at large customers all over the
world. This product is being researched in this thesis. Even though the research is done within this specific
context, abstractions are made so that the research can be applied to other situations as well, in order to
increase its usefulness.

Customers expect orders to be delivered correctly and on time, regardless of last-minute changes, traffic
jams or defects. The routing products of ORTEC optimize daily activities by dynamically planning deliveries,
assets and loads. They also offer the possibility to plan for a specific season or a multi-year strategy. The
routing software offers multiple solutions for varying scenario’s so manufacturers can react to last-minute
order changes and can take well-founded decisions regarding complex routes and deliveries. The results are
perfectly executed logistical processes in every situation. The software developed at ORTEC is deployed for
large companies like Coca Cola and Walmart.

2 1. Introduction

Route 1

Route 2

O Route 3

Figure 1.1: A simple example of the vehicle routing problem. Given are 1 depot with goods, 15 delivery locations and 3 available vehicles.
The goal is to determine the most efficient route planning. Source: [38]

ORTEC is responsible for development and maintenance of their standard software solutions (products)
for resource optimization. Their activities also include software testing, product support and UX/UI design.
They own multiple products, but the focus of this project will be the vehicle routing optimizer. Other products
include vehicle load optimization, warehouse logistical problems and workforce scheduling.

1.1.2. Vehicle routing problems

The vehicle routing problem (VRP) is an optimization problem with the goal of planning transport routes for
a set of vehicles. Its goal is to deliver goods to the right location, with regards to a set of given constraints.
The vehicle routing problem is a generalisation of the traveling salesman problem. Given a set of available
vehicles, the current location and the destination of goods, the algorithm tries to create an efficient route plan
for each vehicle. A visual example of the vehicle routing problem can be seen in Figure 1.1, which includes
one depot from which 3 vehicles deliver goods to 15 locations. This problem is known to be NP-hard, which
means that there is no method available to solve all problems in a reasonable amount of time, especially as
cases grow large. Due to the practical applications of this problem, it has been researched a lot in the existing
literature. There are many variations of the problem that include multiple depots, pickups of goods, time
windows on pickups or deliveries and more, see Braekers et al. [11]. As a result it is impossible to generalise
the research on these different situations.

Since the problem is NP-hard, most practical solutions to the vehicle routing problem make use of heuris-
tics. Heuristics are algorithms that have shown to give good solutions in a small amount of time. These are
different from exact methods, which calculate the optimal solution, rather than a good solution. Another
category of optimization algorithms is approximation algorithms. These also calculate good solutions within
a short amount of time. The difference between approximation algorithms and heuristics is that approxima-
tion algorithms have a mathematical boundary on solution quality that is proven. In contrast, the solution
quality of heuristics is shown to be good in practice, based on past experiences, but has no mathematical
prove behind it.

The primary objective of the software is to provide a high quality solution, a route planning. The reason
this software is used is to reduce the cost for executing the route plan by means of optimizing several objec-
tives. Since this has to be done on a daily basis and orders are often added throughout the day, this introduces
a constraint on the amount of time available to obtain this solution. Since the problem instances are large and
there is a restriction on the amount of computation time available, it is not feasible to calculate the optimal
solution. The solution created by ORTEC combines multiple heuristics to calculate a route. Rather than the
optimal solution, it creates a basic solution that satisfies the given constraints. Then, among many iterations,
several heuristics aim to improve this solution. The algorithm that is run each iteration is semi-random. The
routes are created to optimize KPIs (Key Performance Indicator’s), for instance to minimize distance and cost
and to maximize the amount of tasks planned. The solution that was implemented to solve the quality versus
runtime trade off is that the software executes a set amount of optimization iterations. The optimization calls
that plan the routes are complicated. Several algorithms are sequentially executed to improve the routes bit

1.1. Context description 3

by bit. One optimization call includes hundreds of trucks and thousands of stops. It takes a lot of computa-
tional power to calculate a solution.

Although each customer uses the same software, there are large differences in requirements for each cus-
tomer. Some customers may have 10 minutes to calculate their daily routes, while others may have 30 min-
utes. One customer might do parcel delivery with small trucks, while another does restocking of warehouses
with large trucks. There are many more different characteristics that introduce different challenges. It is hard
to have a single piece of software be able to handle all of these different situations. The way that ORTEC han-
dles this is by using settings to be able to tweak the software to the needs of each customer. These settings
include the heuristics that are being run, but also the amount of iterations to come to a solution. There is
a team of specialists within ORTEC to tweak these settings for each customer, with the help of several tools.
Since this is outside the scope of this research, this will not further be discussed. The important aspect is
that the results of the performance tests serve as a general basis. The test cases used in the performance tests
serve to create confidence that the current software is of good quality. Then, when the software is deployed
at a customer, the settings will be tweaked in order to optimize the results for that specific customer.

1.1.3. The performance testing procedure

As part of the testing procedure of ORTEC, 200 dedicated virtual machines run millions of automated tests ev-
ery night. Among these tests are the performance tests. Performance tests measure the amount of resources
required to perform certain predefined tasks. One problem that performance tests often face is that when
the tests are ran on different machines, this introduces irregularities in the results of the tests. In order to
keep the measurements of these resources as fair as possible, the performance tests at ORTEC are ran on a
dedicated machine that only runs performance tests. Although this does not completely remove these irreg-
ularities, it highly reduces them to a small margin. Throughout the remainder of this thesis, it is assumed
that these irregularities are negligible. Performance tests produce a set of resource measurements through
benchmarking multiple scenarios. These measurements then have to be analysed to determine whether the
software shows regression. The performance tests at ORTEC generate thousands of resource measurements
on a weekly basis.

The situation under research makes use of Jenkins [28] to automate running the performance tests. There
are roughly 20 regularly run test cases that present different scenario’s in the routing software. These can
range from parcel deliveries (which require a lot of small packages at multiple destinations) to restocking
warehouses (where a truck needs to transport all its goods to one location) to everything in between. Jenkins
runs these cases on a weekly basis on the most recent development version and stores the results. This setup
has changed about a year before the start of this thesis from a similar setup with some minor differences.
The reason for this change was the adoption of Jenkins. The test cases have stayed similar although their
naming has changed slightly. The regularity of running these tests was not on a weekly basis, but rather when
developers deemed it necessary. Although multiple test runs were conducted monthly, this resulted in a more
skewed result set with a difference in which tests were run and on what time interval.

Performance analysis in other area’s of software engineering, such as enterprise software or web applica-
tions, often has a clear objective; regression is defined as an increase in resource usage. The goal of perfor-
mance analysis is then to observe the resource usage of common tasks over time and detect regression. In
contrast, the primary goal of a heuristic is not just to minimize the amount of resources spend, but rather to
improve the quality of the solution with regards to the KPIs. Resource usage is still an important aspect, but a
secondary one rather than the primary objective. As a result, an increase in resource usage is not necessarily
aregression, as long as the quality of the solution has improved accordingly.

The step of analysing the performance results, which is arguably the most important step, since it involves
drawing conclusions, is currently done by a human expert. Although there is a tool to observe the results, by
means of visualizing them, no system has yet been developed to process these results. Due to the complex na-
ture of these optimization calls, small changes in the product can have a huge impact on performance. These
performance changes can result from necessary changes, which can result in a decrease in performance but
are necessary, or can be the result of a human error or illogical decision. In the second case, the changes that
resulted in this change of performance have to be investigated. Small changes in the performance results are
often a strong indicator of problematic performance issues. Conversely, small changes in the performance
results can come from changes in the algorithms and do not necessarily mean that there is a performance
issue. With continuous developments on the product and its algorithms in such a complex environment,
improvements on the detection of performance anomalies can severely increase development efficiency.

4 1. Introduction

1.2. Motivation

After introducing the context of this project in the previous section, this section will describe what will be
researched during this project and provide argumentation why. The first subsection will describe the issues
with the current procedure. The second subsection will present the research questions that followed from
these issues.

1.2.1. Issues with current procedure

Anomalies can be defined as patterns in the data that do not behave as expected. Anomalies can be found by
comparing the data points against each other and observing which ones are different from most. Note that
different is a vague description and can be interpreted in several ways. Finding these anomalies, also called
outliers, is called anomaly detection [16]. The goal of analysing the results of the performance tests is to detect
anomalies, since these are indicators for regressions or bugs. Whenever an anomaly is detected, the next step
is for a developer to investigate the potential issue. There is often limited information available about the
sources of an anomaly and detecting the issue often requires a large amount of time. Usually, finding the
source of the anomaly takes up a substantial amount of time, compared to actually fixing the issue.

As mentioned before, the analysis of the performance results is currently done by a human expert. This
brings several issues that could be solved by automating this process. First of all, doing this analysis by hand
on a regular basis requires time and expertise. Especially expertise is a tricky one, since its definition is not
immediately clear and employees with the required knowledge could be unavailable or not present at all. To
add to this, humans are not objective in their judgements. Experts often look at a certain set of measures,
based on their previous experience. This can leave clear signs in other measurements completely ignored,
resulting in issues left unnoticed.

Secondly, it is hard for a human to judge the overall performance of a build based on a set of results for
several test cases. What should the conclusion be if one case shows regression and another shows improve-
ments? Is there a threshold for deciding whether something is a regression or just a result of the hardware
irregularity? There are no clear guidelines here, which make it hard to judge the overall performance of a test
run and rather than rely on the data, experts often rely on past experience.

Finally, even within a test case it is hard to determine whether it has regressed or not. Heuristics aim
to optimize several objectives while still remaining fast. Again, there are no guidelines as to what makes a
regression a regression. What if the distance has reduced by 5% but the runtime has increased by 15%? And
what if the runtime has instead decreased by 25%? Different experts would judge these situations differently
based on their own experience, which makes it unreliable. There is no single measure available yet that
represents the trade off between solution quality and runtime. The main focus of this thesis will be on finding
a good measurement to compare two test runs.

Although fully automating the analysis of performance results would be ideal, it is not a feasible objective.
A change in performance can be a logical result of for instance a bug fix, in which case no action should be
taken. On the other hand it could be a unintended side issue that arises from a human error or illogical
change, in which case the issue should be further investigated. The software responsible for the optimization
is complex and non-deterministic. As a result, fully automating this process is deemed unfeasible. Instead
the change in performance should be analyzed and when deemed necessary a notification should be made.
A person can then further investigate the issue and determine the next steps.

To summarize, the current issues are:

e Human experts are non-deterministic and in practice often do not do analysis regularly.

* Given a set of measures from multiple test cases and multiple test runs, it is hard to judge the overall
performance of a test run.

e Itis unclear which of the many measures correctly represent a regression.

1.2.2. Research questions

During this thesis, a classifier was created to mark builds as anomalous. This classifier was inspired by the
performance profile and initially used the runtime as a performance measure. After evaluation of this clas-
sifier, it was concluded that the runtime was not an appropriate measure to evaluate the performance of
heuristics. In heuristics, there is a trade off between runtime and quality, which is not reflected when using
only the runtime. This issue will be further discussed in Chapter 4. This has resulted in the following research

1.3. Methodology 5

question:

How can we determine a performance measure that correctly represents the trade off between quality
and runtime in vehicle routing heuristics?

This question will be answered through the following sub questions:

¢ Which performance measures are available?
¢ What are the theoretical pros and cons of each measure?
¢ Which performance measure(s) perform(s) best in a real-world scenario?

¢ What can be said about the quality of the best performance measures?

1.3. Methodology

In order to answer the aforementioned research questions, several steps were taken. This section will outline
the used methodology briefly. For a more detailed description, refer to Chapters 3 and 4 for the theory and
Chapter 5 for the experiments. Also a summary of the contributions made by this thesis will be given.

The first step that was taken was the creation of a classifier for the test runs. It is hard to judge a test run
when comparing the results of different test cases. The proposed solution makes use of a technique used
for evaluating exact optimization algorithm called performance profiles [18]. Although this technique was
developed for exact methods, it is also useful in the context of this project. In order to detect anomalies in the
performance profiles, a clustering algorithm was implemented. The combination of these two techniques is
able to mark builds as anomalies based on the results of performance tests.

The performance profile is based on a performance measure. The original paper on performance profiles
uses the runtime as a performance measure, since runtime is a useful comparison method for exact meth-
ods. However, heuristics function differently and therefore the runtime does not suffice. There is a trade off
between runtime and quality, which is not reflected when evaluating based solely on the runtime. This led
to the research question: "How can we determine a performance measure that correctly represents the trade
off between quality and runtime in vehicle routing heuristics?" In order to answer this question, alternative
measures are proposed and tested through experimentation.

The experimentation and context are within the data of ORTEC. The developed approach is built such
that it is applicable to any performance test and conclusions drawn can be generalized to other data sets.
Since the performance evaluation is based upon the performance tests, there will be a brief analysis of these
tests. This analysis will focus on the usefulness and diversity of the test cases by investigating their changes
over the last years. The analysis will establish confidence that these test cases are sufficient with regards to
this thesis.

1.3.1. Contributions
The contributions that this thesis will make:

» Introduce a classifier to detect regressions in the continuous development process of vehicle routing
heuristics, based on performance profiles [18]. Details will be described in Chapter 3.

¢ Introduce and evaluate three alternative performance measures, which represent the trade off between
quality and runtime in vehicle routing heuristics. These measures are used in combination with the
classifier from the previous point. Details will be described in Chapter 4.

e Test the aforementioned classifier and measures on real data of a large company. Details will be de-
scribed in Chapter 5.

1.4. Overview of remaining chapters

The remainder of this report will be structured as follows. The next chapter will be a research on related
literature, which discusses what others have done and where the possibilities for additions are. Chapter 3
will discuss how the classifier for detecting anomalous test runs works. Then, Chapter 4 will outline the
issues that arose when implementing this classifier and propose the performance measures to be used in

6 1. Introduction

the experiments. The experiments and their results will be described and discussed in Chapter 5. Finally, a
conclusion will be given in Chapter 6. Most chapters contain a short summary at the end of the chapter. This
summary is meant to recap the most important aspects of each chapter and guide the reader through the
report.

Literature Survey

Before being able to make a useful contribution to a research field it is important to understand what others
have researched. This can also shed some light on which aspects could be interesting to further investigate.
From Chapter 1, it has become clear that there are two areas of interest to discover, they will be described in
this chapter. First is the area of performance analysis of software systems. This is the main focus of this thesis
so discovering what others have researched will be of interest. Secondly, effort will be spent on the detection
of anomalies during this project. This is not something new and there has been a lot of research on this topic.

Since before this project I was relatively new to these specific research fields and doing research in general,
itis important to have a systematical approach to this literature survey in order to facilitate completeness and
reproducibility. The method described by Lavallée et al. [34] has been used to conduct the literature survey
in a systematical way. This chapter will first describe the strategy adopted in this literature survey and then
describe the research that has been done in the two areas of interest.

2.1. Literature survey strategy

In order to keep the quality of this thesis high, it is important to adopt some guidelines. These guidelines
are meant to give all research papers a similar structure, which increases both their readability and useful-
ness. Therefore, this section will first describe the systematic approach that was used during the literature
survey. Next, the do’s and dont’s for experimental algorithm analysis are discussed. Finally there will be a
word on good lab practice to ensure useful experiments. The next three sections reflect the core tasks during
this thesis: writing a literature review, the methodology, which applies experimental analysis and finally the
experiments themselves.

2.1.1. Systematic approach to conducting literature survey

According to Kitchenham et al. [31], the two key aspects of a systematic literature review are completeness
and repeatability. Completeness refers to having researched all relevant literature in a certain domain. Re-
peatability implies that independent researchers, following the same procedure, should arrive at the same
results. Lavallée et al. [34] add to this that novices to either doing research or a specific research domain
often struggle with repeatability. Poor repeatability can result in serious doubts over the scientific value of
the literature review. Therefore, they suggest an iterative systematic review (iSR) approach to doing a litera-
ture review, which is based on the theory of experiential learning. The following definition of learning best
describes experiential learning: "Learning is the process whereby knowledge is created through the transfor-
mation of experience." [32]. The iSR approach will be used during the remainder of this literature survey.

Search strategy
In order to increase the scientific value of this project it is important to have a systematic approach to the
literature survey. This chapter has been written throughout several months of the research project. Although
most of this chapter was written at the start of the project, more information was added when new interesting
topics or papers were discovered. The remainder of this section will describe this process.

Doing the literature research was among the first steps taken in this project. Since I was a novice to both
the topic and the context, these first steps were of an exploratory nature. At the start of the thesis, there was

8 2. Literature Survey

no specific goal of the research yet, only a subject: the performance of vehicle routing heuristics. As such, the

non

first queries used to find papers were: "performance analysis", "performance anomaly" and "performance
regression”. In order to narrow the scope the following words were added to the queries: "heuristics", "op-
timization" and "vehicle routing problem". This resulted in an initial set of interesting papers. The next set
of papers were ones that were found through this initial set. These were found firstly through references and
secondly through terms often used in those papers. This lead to three new queries to search papers: "code
profiling", "anomaly detection" and "performance profiles". The final set of papers was obtained as a re-
sult of feedback from the university faculty and other students doing their master thesis, after presenting the

midterm results of this thesis.

2.1.2. The do’s and dont’s of experimental algorithm analysis
Heuristics are experimental by nature, their success does not have a mathematical proof but rather relies on
experience that it performed well. Therefore, analysis on heuristics is done through experimental analysis,
where observations are done through a set of experiments. This subsection will discuss a paper on guidelines
when doing experimental algorithm analysis by Johnson [29]. He defines three approaches to algorithmic
analysis: worst-case analysis, average-case analysis and experimental analysis. Although he notes that exper-
imental analysis is the least exact and therefore least scientifically used, it has its uses. Since heuristics are
not exact by nature, experimental analysis is the only option for evaluating them. Experimental analysis is
conducted on real-world scenario’s and applications and can lead to new issues and questions to be studied.
However in this paper the focus will be on how theoretical analysis can improve experimental analysis.

To further illustrate the use case of experimental analysis, he makes a distinction between four types of
papers that each represent a different reason to implement an algorithm. These four reasons are:

* To use an algorithm in a particular application. This typically leads to an application paper which
specifically researches the context and use case of that application.

¢ To prove that an algorithm is better than others. This type of paper is called a horse race paper, where
algorithms are benchmarked against other algorithms on specific cases and their superiority is shown.

» To better understand the strengths, weaknesses and operations of algorithmic ideas in practice. This
motivates writing an experimental analysis paper.

» To analyse the average-case behaviour of algorithms in a specific distribution where probabilistic anal-
ysis is too hard. This leads to an experimental average-case paper.

Although a lot of points can be made for all of these paper types, the paper by Johnson specifically dis-
cusses the experimental analysis paper. It notes that papers often show defects and describe the pitfalls
through ten basic principles one should consider when writing a paper. For further details on each of these
principles, please refer to the paper itself. The principles are:

1. Perform newsworthy experiments

2. Tie your paper to the literature

3. Use instance testbeds that can support general conclusions
4. Use efficient and effective experimental designs

5. Use reasonably efficient implementations

6. Ensure reproducibility

7. Ensure comparability

8. Report the full story

9. Draw well-justified conclusions and look for explanations

10. Present your data in informative ways

2.2. Performance analysis 9

2.1.3. Good lab practice: what to do to ensure reproducible results

Finally, doing experiments is an integral part to any thesis and doing them well can make a big difference.
Therefore, a paper on good lab practices will be discussed, written by Kendall et al. [30]. The motivation
behind this paper is that optimization research is said to have no standards regarding the reporting of al-
gorithmic results. A comparison is made with Good Laboratory Practice, a set of standards which has been
developed for non-clinical research in laboratories. These standards ensure uniformity, consistency, reliabil-
ity, reproducibility, quality and integrity of the research. A similar set of rules would benefit any research area
since these benefits form the basis of scientific research. The standards are presented as a set of 54 recom-
mendations. Most of these are not new, although practice has shown that bad practices still exist. The full set
of recommendations can be read in the original paper.

2.2, Performance analysis

The focus of this research will be on analysing performance results and therefore it is important to discover
what has already been researched. After reading the literature, it has become clear that there are three types
of performance analysis that are of interest to research, with two being closely related. First, there is research
in the field of performance analysis of optimization solvers or mathematical software in general. This can be
split in exact methods and heuristics. Although research on heuristics would be exactly the problem that is
being researched in this thesis, more research has been done on exact methods. Finally, there is the detec-
tion of performance regressions of software systems in general. Most research in this area has been done on
web applications and enterprise software. Although this is technically a different research area, it can also
be reduced to the analysis of software systems through a set of metrics and both are therefore interesting to
investigate. The first subsection will introduce empirical evaluation, which is a technique often used for per-
formance evaluation. Later subsections will describe research on performance analysis in the optimization,
non-optimization and vehicle routing fields, as well as a section on code profiling.

2.2.1. How to measure performance

This first paper, by Hutter et al. [26], addresses the issue of comparing different algorithm designs. During the
development of heuristics, different design approaches can be used. One issue that always arises, no matter
the taken approach, is that different algorithm designs have to be compared. As in other domains of interest,
the existing theoretical techniques are not powerful enough to answer this question. As such, the comparison
is often based on empirical evaluation.

Doing an empirical evaluation means that several algorithm designs are applied to a collection of specific
instances and the solution quality and resource costs are compared. Since practical applications are always
somewhat time constrained, it is infeasible to run every algorithm design on every instance available. There-
fore the question arises: Which algorithm designs do I test and which instances do I use? Finally a decision
on resource limitations has to be made. Heuristics can run for a long time and their performance may vary
depending on their allowed time. A careful decision has to be made when to stop each algorithm.

This paper resolves these issues through answering eight questions. The first questions were of an ex-
ploratory nature. They mainly look at the difference between the algorithm designs and which instances
could potentially be useful for ranking the algorithms. They do this by comparing plots of the hardness and
CPU times. Next, they discussed the trade offs in ranking the algorithms on performance. The penalize aver-
age runtime (PAR) of a set of runs with cutoff time k is defined as the mean runtime, where unsuccessful runs
are counted as a * k with a constant a = 1. Next, the performance is evaluated at a captime of k4%, kmax/10
and k;,4x/100. Finally, the described approach is applied to six algorithm designs based on state-of-the-art
algorithms.

2.2.2. Performance analysis of optimization algorithms

The comparison of optimization algorithms is a complicated task. It might not always immediately be clear
which one is better, since better can be subject to change depending on the situation. Therefore, in order
to obtain a fair and unbiased comparison there is a need for a systematic analysis. Recently, Beiranvand et
al. [5] have outlined the best practices when benchmarking optimization algorithms. By gathering data from
earlier reports and comparing methodologies they have extracted the following steps:

1. Clarify the reason for benchmarking. There can be several reasons to benchmark. A different reason can
require a different approach. Whenever the reason for benchmarking is unclear some pitfalls can arise.
Some examples of reasons to benchmark are: selecting the best algorithm for a real-world application,

10 2. Literature Survey

showing the value of a novel algorithm or comparing a new version of optimization software with earlier
releases.

2. Select the test set. There are various problem categories that require different test sets to experiment
with. This choice will mainly depend on the reason for benchmarking that was described before.

3. Perform the experiments. Designing and performing experiments in such a way that they verify your
methodology and are reproducible can be hard. Therefore it is important to outline the thought process
as well as the different variables taken into account.

4. Analyze and report the results. This is possibly the most important aspect, it is where conclusions are
drawn. There are different methods for reporting results that are relevant in different situations. Some
examples are tabular methods, trajectory plots and ratio-based plots.

Furthermore it is noted that automated benchmarking is a promising concept and that research in this area
is starting to rise. There are however some downsides with the current results so none of the developed tools
are widely adopted yet.

One of the main issues of analyzing performance results is to get an overview of a solver in different sce-
nario’s. The performance results are often generated by running multiple solvers on multiple test cases. An-
alyzing these piece by piece is a time consuming job and judging the overall performance is hard, especially
when done manually. Both in the field of performance analysis of optimization algorithmics and in perfor-
mance regression detection techniques are developed to solve this issue. A developed technique in perfor-
mance regression detection will be described later in Section 2.2.4.

Performance profiles

The golden standard of creating such an overview in the field of optimization algorithmics is called a per-
formance profile, which was developed by Dolan and Moré [18]. They claim that a plot of the performance
profile reveals all of the major performance characteristics. A performance profile is the cumulative distribu-
tion function such that the performance ratio of a solver is within a factor 7 of the best known possible ratio.
Performance profiles are introduced using the runtime as a performance measure and this has been widely
adopted as the standard. It is however possible to use other performance measures, like Moré and Wild [37]
have done in a later research. They used the amount of function evaluations as performance measure, which
is of particular interest to fields that use function evaluations with heavy costs, like derivative-free optimiza-
tion algorithms. The performance metric £, ; is defined as the runtime (or some other metric) obtained by
solver s solving problem p. The performance ratio of a solver is then defined by dividing the performance
metric of a specific solver by the best known:

Ip,s

= (2.1)
min{tys:se S}

p,s

To get an overall assessment of the performance of a solver, the performance profile is introduced. A
performance profile is defined as the percentage of performance ratio’s that is within a factor 7 of the best
known solution for each test case. It is a cumulative distribution function of its performance ratio over all test
cases, meaning that it is a value between 0 and 1 that is increasing the less strict the factor 7 is. In the next
equation 7, denotes the total number of test cases and P is the problem space that contains all test cases.
The performance profile of solver s is defined as a function of 7:

ps(T) = nisize{peP:rp,Ssr} (2.2)
P

This definition of performance profiles may sound a bit complicated without numbers, therefore an ex-
ample is provided. Let’s assume that after conducting a performance test the data as shown in Figure 2.1, on
the left, is obtained. For each version of the software, there are 3 test cases that took a certain amount of sec-
onds to complete. Version 1 of the software has taken 20 seconds to complete Case 1. Since the performance
of the code is being optimized, the lower the number the better. From observing the results, Version 3 seems
to be the best in 2 test cases while Version 2 is the best in the last case. There is not one version that clearly
stands out as the best one. To create performance profiles from these test results, the first step is to calculate
the performance ratio’s of each of the results. This is done with respect to the best known, using Equation 2.1.

These ratio’s are displayed in the Figure 2.1 on the right.

2.2. Performance analysis 11

Casel Case2 Case3 Casel Case2 Case3
Version1l 20 190 1000 Version1l 2,00 1,06 1,43
Version2 15 230 700 Version2 1,50 1,28 1,00
Version3 10 180 950 Version3 1,00 1,00 1,36

Figure 2.1: Data to exemplify the performance profiles. The tables contain the results of test cases Case 1, Case 2, Case 3 against Version
1, Version 2 and Version 3 of the software. The left table shows the actual runtimes in seconds. The right table has converted these to
performance ratio’s with respect to the best ones known.

To obtain the performance profiles, the percentage of runs above factor t are counted, with 7 increasing
in steps of 20%. These factors can be chosen based on the ratio’s, but in this case increments of 20% were
chosen, since that keeps the example readable and clear. In an actual application these steps could be 1% or
even less, depending on the minimum and maximum values and the required precision. Since a performance
profile counts the fraction of tests that are at most x% worst than the best known, the faster its value goes to
1.00, the better. Doing this on the same data gives us the performance profiles that can be observed in Figure
2.2. By observing them, it can be observed that Version 1 is clearly slacking compared to the others, since its
consistently the lowest line. Version 3 is clearly the best one since it is the best one in 2/3 cases and the last
one is also quite good. In short, the performance profiles are capable of showing which solver is optimal in a
situation where the raw data was insufficient to do so.

An example of where performance profiles are used in practice can be seen in PAVER [13], an environ-
ment for analyzing and verifying benchmarking data of mathematical programming problems. Their system
generates several results, including performance profiles. Performance profiles have also been successfully
applied to benchmark structural topology optimizers [40], in order to determine which type of solvers are
efficient and reliable. Although performance profiles are widely adopted, recently there has been a study that
shows the possibility of misinterpretation when benchmarking with performance profiles [23]. They warn for
issues when comparing the 2nd and 3rd and so on best algorithms to each other, using an incomplete data
set. Finally, Weise et al. [42] argue that end-of-run results alone do not give sufficient information to evaluate
performance and therefore include an analysis of the algorithm’s progress over time [42]. The measures that
they use include cumulative distribution functions and the area under the curve.

2.2.3. Performance analysis in vehicle routing problems

Next, the existing literature on performance analysis in vehicle routing problems is discussed. Most types of
analysis that were found were not that different from the ones earlier discussed. Most of the research in this
area is focused on developing new methods to improve heuristics. These methods are then benchmarked on
some data set and provide some basic analysis through a set of metrics.

0% 20% 40% 60% 80% 100%

Versionl 0,00 033 033 067 0,67 1,00
Version2 0,33 033 0,67 1,00 1,00 1,00
Version3 0,67 0,67 1,00 1,00 1,00 1,00

Performance profiles

20% 40% 60% B0% 100%

w—ersion 1 Version 2 Version 3

Figure 2.2: The data of Table 2.1 turned into performance profiles. These are distribution functions that count the amount of cases which
have a performance ratio above a certain threshold (percentage). The image on the bottom shows a plot of the table on the top.

12 2. Literature Survey

Before discussing specifics of performance analysis in vehicle routing problems, there are two things that
should be noted. First off, most research that was found is based on scientific, generated data. Although the
usefulness of this data lies in its artificial completeness (it covers a lot of hard cases), it is debatable whether
this data is realistic. Secondly, most research focuses on solutions to vehicle routing problems rather than
evaluating its performance. Since they often use benchmark data, they use the same measures that others
have, for instance Carlsson et al. [15]. These are often simple measures such as total distance travelled, rather
than something more complex that represents the trade off between runtime and quality. The reason for this
is that the runtime is often limited to a set amount, which makes the quality the only interesting attribute.

One option for comparing performance of vehicle routing problems across multiple optimization objec-
tives is to use a hierarchical objective function. This is done by Berger et al. [8], in their research where they
propose a hybrid genetic algorithm to solve vehicle routing with time windows. They omit the runtime in the
evaluation of performance since they have put a time limit on each of the solvers. The hierarchical objective
function looks primarily at the number of vehicles used and secondly at either the total distance or the total
duration. This means that only when the number of vehicles is the same, it looks at the difference in the
secondary objective.

Some researches have a less strict performance metric regarding runtime. Berger and Barkaoui [7] also
work on a hybrid genetic algorithm for vehicle routing with time windows. They mostly focus on solution
quality over runtime. Rather than concluding a best approach, they eliminate all approaches with a average
deviation from best over 1%. They argue that the results of their experiments do not show any conclusive
evidence to support a dominating heuristic over the others, even though the runtime differences are as large
as average time (in minutes) ranging from 3,84 to 222,85.

Since the quality runtime trade off is present in most heuristics, not only vehicle routing problems, this fi-
nal paper is one focused on heuristics in general, rather than vehicle routing heuristics specifically. The paper
by Berthold [9] discusses the need of a new measure for evaluating the performance of primal heuristics. An
important aspect here is finding and improving a feasible solution early in the process. They argue that clas-
sical performance measures, such as runtime, reflect the performance badly. Therefore the primal integral is
introduced, which is tested on five state-of-the-art MIP solvers. The primal integral is based on the primal
gap, which is defined as the gap between the current solution and the optimal solution. When this is taken as
a function over time, the integral can be calculated from this function, resulting in the primal integral.

2.2.4. Performance analysis outside optimization algorithms
This section discusses the research that has been conducted in performance analysis in computer science
fields other than optimization algorithms. Although these studies were not conducted in the field of opti-
mization algorithms, they still compare the performance of different pieces of software. The techniques that
are used in these studies have some subtle differences but may still be applicable to the problem that is re-
searched during this project. Therefore investigating what has been studied in this area is deemed interesting.
Most research on performance analysis has been done on detecting performance regressions or anoma-
lies. There are several techniques that can be applied to a wide variety of measures. Therefore the goal of
this section is to give examples of what has been done. Although each study uses different techniques, their
general approach is often the same. In contrast to many other software bugs, which trigger direct failures
or unexpected function returns, performance anomalies often manifest in the form of increased resource
usage. The performance tests or load tests require the simulation of a lot of users sending requests to the
system. These simulations require a hefty amount of resources and are therefore often not executed as of-
ten as they should be. Ideally these tests would be ran on every new version of software, even during early
stages of development. In practice this is almost never done and issues are usually detected in the production
environment, where their impact is much larger, according to Langner and Andrzejak [33]. After gathering
enough performance data, this data is used to create an expectation of the behaviour of the performance of a
system. This is often done using statistical or machine learning approaches. The expected behaviour that is
created is often called a model, profile or signature. Whenever a new version of the system is benchmarked,
it is compared to the expected behaviour to detect regressions. Most of these studies are aimed at either web
based applications or enterprise software.

General approach to performance analysis

Shang et al. [41] formulate the problem with performance analysis in the following way. During a perfor-
mance test thousands of counters are collected. Some examples of these counters are CPU usage, memory
usage and response time. The process of comparing thousands of counters across multiple versions of soft-

2.2. Performance analysis 13

ware is not only time consuming but also error-prone. This problem only becomes bigger when multiple
scenario’s generate even more results. Therefore experts often build a model from only a handful of these
counters. This selection is based on experience or gut feeling and therefore often not objective relative to the
data that was gathered. Furthermore, new forms of regressions, that show different behaviour than in the
past, often go unnoticed because of this. In their research, Shang et al. [41] first group the performance coun-
ters into clusters. From each of the clusters they then select the most representative measure to represent
the performance of the system. They then use statistical tests to build a regression model of the expected
performance behaviour. This model is then applied to a new version of the system to detect performance
regressions. One of the main advantages of this approach is that analysis of a system does not require an
in-depth experience since the algorithm determines which measures to use based on the data.

Use cases of performance analysis

It is also possible to determine a lower and an upper threshold for a series of measure and calculate the vio-
lation rate of a piece of software, as done by Nguyen et al. [39]. These so called control charts originate from
manufacturing processes, where they are widely used. If the violation rate exceeds a predetermine rate, a
warning is triggered. Another commonly used technique is to train a classifier which can classify a piece of
software as either having expected or unexpected behaviour. Li et al. [36] have conducted a benchmarking
study in software defect prediction using 17 classifiers on 27 datasets. They observe that using a complex
model rather than a simpler approach does not necessarily improve the results. Furthermore, even when
using different measures, they cannot find a single best classifier but are able to determine a set of models
that achieve good result. Other techniques that are used to detect performance regressions include Appli-
cation Performance Management tools [3], transaction profiles [21], resource profiles [12] and performance
signatures [17].

Finally it is noted that practical applications of performance regression detection techniques are often
hindered by the assumption that all testing environments are homogeneous. This assumptions is often false
in practice. Foo et al. [20] propose a solution that consist of ensemble models to compose individual models
of the expected behaviour. It makes use of association rule derivation, after which the distance with a new
test run’s data is computed to detect regressions.

2.2.5. Code profiling

Finally, code profiling is a software analysis technique that reports the resources being spent by different parts
of the software. This form of analysis is dynamic rather than static, meaning that it requires the code to run in
order to gather information. The goal of this analysis is often to give developers insight as to where to focus
their efforts in optimizing their software, as a means to improve software quality. A tool that conducts the
profiling of source code is called a profiler. After the profiler has reported where the resources are being used,
developers can use this information to detect hot spots and performance bottlenecks. The resources that are
spent are, according to Bergel et al. [6], often presented as numerical measurements such as the number of
method invocations, the number of object creations or the time spent in a method or piece of code. Reporting
such information about resources being spent causes some overhead. There are two methods of profiling:
sampled profiling and exact profiling. Sampled profiling gathers data every x seconds whereas exact profiling
gathers all possible data from every call that is being made. The exact methods provides the most complete
data but also causes the most overhead. This is a trade off that has to be made and the best method is different
depending on the use case and context. In his research, Walter [10] reduces the overhead of the profiler by
exploiting instruction counting.

One area where profiling is often used is for big data applications. These applications are very demanding
in terms of resources and therefore require an in-depth analysis of where these resources are being spent. In
their paper, Enes et al. [19], have developed BDWatchdog, a solution for code profiling of big data applica-
tions. A major reason for this platform is the fact that more and more modern technologies no longer run on
isolated instances but rather on software containers, for instance Docker [27]. Because of this, their analysis
monitors the resources of processes as opposed to machines, which is often used by others.

Since the goal of a profiler is to provide insights, it is important to visualize all the gathered data in a
correct way to the developers, as understated by Byma and Larus [14], while building Memoro for heap pro-
filing. The tools provided by a profiler collect large amounts of raw data which often contains patterns that
are hard to observe. Memoro solves this by calculating scores for specific patterns in order to help this pro-
cess. In combination with other visualization techniques, these scores provide useful insights in the runtime
behaviour of the code. Finally, the visualizer is divided in two views. The ’global view’ provides the developer

14 2. Literature Survey

with an overview of the behaviour of the program as a whole. The 'detailed view’ provides a more detailed
specification of a specific point in the program.

2.3. Anomaly detection

This section will focus on the research that has been done in anomaly detection. Anomaly detection can be
defined as an analysis where one or more data points are discovered as being different with respect to the
entire data set. The detection of anomalies becomes increasingly difficult as the complexity of a data set
increases. An often used synonym for an anomaly is an outlier. Anomalies in data often reveal a significant
amount of information and are used in a variety of different fields. This section will first describe the different
techniques to detect anomalies. Then it will differentiate between the types of anomalies and some research
fields in which anomaly detection is applicable are discussed. Finally an algorithm for anomaly detection is
discussed.

Even though a lot research has been done in this field, with many different techniques considered, the
approach that is used is often a set of steps that are the same. In short, from a monitored environment, a
selection of parameters is made which are then used to create a data set. This data set is then used to create
amodel that represents the expected behaviour of the system, based on previously observed behaviour. The
creating of this model often includes a training stage, where the model is iteratively modified. Any data that
is not conform to this model is then marked as unexpected or anomalous data [1].

2.3.1. Anomaly detection techniques

Within anomaly detection, there are different types of techniques that are applicable to different types of data
in different scenario’s. Which type of technique is useful in which situation will now be discussed. The main
types of techniques that recur in most researches, according to Ahmed et al. [2] and Agrawal and Agrawal
[1], are classification and clustering. Classification is a type of algorithm that classifies a data set in one of
x classes. In the case of anomaly detection there would be two classes: normal behaviour and anomalous
behaviour. A classification algorithm is trained using data for which the class is known before hand. The
training of a classifier requires a data set that contains information about whether is represents normal or
anomalous behaviour. This type of data, where the class is known beforehand, is called labelled data. After
training on enough data, the assumption is that the classifier is able to classify unknown data into one of its
classes. Clustering on the other hand works with unlabelled data. For this type of algorithm, there is data
available, but it is unknown whether the data exerts normal or anomalous behaviour. This method relies on
the assumption that the majority of the data is normal behaviour. The data is clustered into groups based
on a similarity function. After clustering, the biggest group of data is assumed to be normal behaviour and
smaller groups or singular points are marked as anomalous. This distinction is also called supervised learn-
ing, which uses labelled data. The opposite is unsupervised learning, which uses unlabelled data. Generally,
supervised learning is more reliable in terms of results, but it requires labelled data. This labelled data is often
not available or costly to acquire, which is often why unsupervised learning is used. Goldstein and Seiichi [22]
have researched unsupervised detection algorithms and add to this that clustering techniques have a lower
computation time compared to classification approaches.

Classification and clustering are both approaches that originate from computer science research. There
are different approaches that are often used, originating from different research fields. Two other often used
techniques are noted by, amongst others, Ahmed et al. [2] and Hubert et al. [25]. The first describe statistical
techniques, which originate from mathematics. Statistical techniques build a stochastic model that repre-
sents the expected behaviour. Data that is not generated by the assumed model is marked as anomalous.
Specific statistical techniques include Gaussian model-, regression model- and histogram based techniques.
The other type of technique originates from information theory. These techniques analyse the content of
a data set using different measures like entropy and information gain or cost. The key assumption is that
anomalies in data induce irregularities in the information content of the data set.

2.3.2. Types of anomalies

The definition of an anomaly is broad. Unexpected behaviour can be significantly different based on the
context of the data. Therefore it is important to know what types of anomalies can occur. The research of
Chandola et al. [16] distinguishes 3 types of anomalies, that require different techniques of detection. A
similar distinction is made by Hubert et al. [25], but they differentiate between a short or long interval of
anomalous data. The 3 types detected by Chandola are:

2.3. Anomaly detection 15

¢ Point anomalies. Single points of data that exert anomalous behaviour with respect to the other data.
These anomalies are the simplest and most obvious to spot. An example is the number 105 in the
following set of numbers {1, 2, 1, 3, 105, 2, 4}.

* Contextual anomalies. These anomalies are only considered anomalous in their specific context. In
another context their behaviour might not be marked as anomalous. An example is the second 1 in the
following sequence of numbers {1, 2, 3, 4, 1, 5, 6, 7}. All numbers are increasing, with exception of the
the second 1. Note that the number 1 would not be anomalous if the ordering, i.e. the context, was
different.

* Collective anomalies. A collection of data points that may not be anomalous by themselves, but as a
group exert anomalous behaviour with respect to the other data. An example is the sequence of 20’s in
the sequence {10, 20, 10, 20, 20, 20, 20, 10, 20, 10, 20 } when the expected behaviour is a 10 followed by
a 20 followed by a 10, etc.

2.3.3. Applicable research areas

Since the definition of an anomaly is so broad, anomaly detection is useful in several different areas of re-
search. This section describes some of the uses of anomaly detection. The following examples should give an
indication of possible uses of anomaly detection algorithms:

* Intrusion detection is concerned with computers or networks of computers that are intruded by people
with malicious intents. This intrusion is often done by sending malicious packets to the computers.
Once a computer is intruded, intruders have access to (sensitive) data and the sooner an intrusion
is detected, the sooner actions can be taken. Anomaly detection is used to detect these anomalous
packages and neutralize the dangers they bring.

o Fraud detection is concerned with different methods of fraud, like credit card fraud, insurance claim
fraud or insider trading. The behaviour of frauds is often anomalous with respect to historical data
or data from others. An example could be a number of large purchases on a credit card, which could
indicate that it was stolen.

e Medical and publical health is concerned with working with patient records or instrumentation- or
recording errors. By comparing the records among different patients, anomalies could be detected.
Detecting disease outbreaks in an area has also been researched.

* Industrial damage detection is concerned with the detection of faulty mechanical units or structural
defects. Due to the continuous usage of these units, they suffer damage. These damaged materials
require early detection to prevent further escalation and losses.

* Image processing is concerned with the detection of abnormal regions within an image, but also motion
detection in a series of images. Anomaly detection techniques can help reduce the amount of data
required to represent an image or video.

2.3.4. Anomaly detection using clustering
One method to do anomaly detection is to use clustering. Clustering is the task of grouping data into clus-
ters that have similar behaviour. Clustering is an unsupervised technique that has the advantage of being
understandable for humans due to the ease of visualizing clusters. The specific clustering algorithm that was
used, k-means clustering, has been around for half a century and is often used for its simplicity and compu-
tational speed. It has to be noted though that, as stated by Chandola et al. [16], anomaly detection comes
as a by-product of clustering and it is therefore not optimized for this goal. Its primary goal is to cluster data
based on similarities. There are two possible assumptions underlying anomaly detection using clustering.
These assumptions are: "Normal data instances lie close to their closest cluster centroid, while anomalies
are far away from their closest cluster centroid." and "Normal data instances belong to large and dense clus-
ters while anomalies either belong to small or sparse clusters.", both cited from Chandola et al. [16]. Even
though clustering is not designed for anomaly detection, these points argue why it is a good method to detect
anomalies.

The k-means clustering algorithm is quite simple to understand, yet effective in its goal. It consist of
several steps that continue until convergence or a maximum number of iterations. A visualized example

16 2. Literature Survey

can be seen in Figure 3.3, which contains a red and a yellow cluster. The initial division on the top left is
not that great, but after 3 more iterations of the k-means clustering algorithm the bottom left shows a large
improvement. The steps taken in this algorithm are:

1. Define / determine the number of clusters K

2. Initialize K centers. There are different ways to do that that might affect the outcome of the algorithm.
The initial centers are often chosen (semi-)randomly but there a multiple options available.

3. For all points in the data set: calculate their distance to the center, based on some distance metric, and
assign to the closest center.

4. Recalculate the center based on the current clusters by taking the one with the smallest total distance
to the other members of the cluster.

5. Go back to step 3 until the centers converge or the maximum number of iterations has been reached.

2.4. Summary

This chapter has discussed the existing literature related to this thesis project. The first section focused on
guidelines to increase the quality of this thesis. Next was a section on performance analysis. Although a lot
of research has been done on performance analysis, not so much was done on performance of heuristics
specifically. The performance profile mentioned in this section has inspired the classifier that is developed
for this thesis. Finally there was a section on anomaly detection techniques, types and areas where it’s used.
This will be useful for finding anomalies in the performance profiles as part of the classifier.

Next, Chapter 3 will explain the methodology behind the classifier that is built, which was inspired by
the performance profile, described in Section 2.2. This performance profile needs a performance measure to
compare tests against each other. The existing measures are insufficient for evaluating heuristics, so Chapter
4 will explain the alternative measures that could be useful.

Classifier Design

One of the issues that was described in Section 1.2 was that it is hard to make a judgement, given a set of
measures over a set of test cases for multiple test runs. This chapter will discuss the approach that was taken
to solve this issue. The first section will describe and discuss the available data. The next section will focus
on how this data is used to create an overview of a test run. Thirdly, the clustering algorithm, used to find
anomalies in this overview is explained. The final section will discuss how this approach is used on the ORTEC
data. The approach described in this chapter will be used during the experiments, as will be described later
in Chapter 5.

3.1. Available data

In order judge the performance of different test runs automatically, there is a need for data. This section will
present the available data and its usefulness in evaluating the performance. The data available is generated
by running performance tests on a regular basis, currently weekly. The available data spans almost three
years, from 2017 untill 2019. Given the current development version, a predefined set of test cases is ran on
this build and the results are stored for comparison. The next subsections will discuss the measurements
obtained from running the tests.

3.1.1. Key Performance Indicators

The Key Performance Indicators or KPI's measure the quality of the generated solution. The KPI's themselves
are values that are being optimized, be it maximized or minimized, during the execution of the algorithmics.
These are essentially the most important results that customers are interested in, as they represent the quality
of the generated solution. The better optimized these values are, the more efficient the solution is. During the
development cycle these values should not change much. If they do change this is often the result of a bug
or large development project. Changes in these values are often an indicator of bugs, even when they show
improvements. One of the difficulties of detecting regressions is determining whether changes in the KPI's
are the result of an intentional change or of a performance bug. The following values are being optimized in
each test case:

¢ Distance travelled - The objective of this measure is straight forward. A decrease in distance travelled
results in less total time spend, which leaves more time for additional tasks. It also leads to less gasoline
used, which is good for the environment but also reduces the costs for executing this route planning.
The distance is a minimization objective.

¢ Costs - This measure is related to the distance travelled, but not the same. The cost function is a user
defined function which often has the distance as (one of) its input variables. The costs represent the
relative value of executing this route planning. The costs are a minimization objective.

¢ Amount of tasks planned - The amount of tasks planned is a variable rather than a predefined amount.
This is because most of the time there are more tasks that can be planned than tasks that can be exe-
cuted. The remainder of the tasks, the ones that are not executed, have to be planned at a later moment.
The amount of tasks planned is a maximization objective.

17

18 3. Classifier Design

S~ S,

cost

time (s)

Figure 3.1: An example of the cost function over time. This image shows two different builds with minor performance differences. The
chart can be split in two phases: The first phase is where the cost increases due to a solution being created. The second phase is the
optimization phase which shows a decrease in the costs.

¢ Amount of trucks used - Although the amount of available trucks is a constant, the amount of trucks
that is actually used is variable. Less vehicles can lead to a decrease in the amount of costs, but a single
vehicle cannot efficiently deliver all packages.

These variables often interact with each other and a combination of them is required to come to a good
solution. There is often a trade off that has to be made between increasing one KPI while reducing another,
for instance: the distance travelled can be reduced, but this results in additional trucks used. However, if a
trip is already passing a specific destination on its route, adding that task which destination would already be
visited anyway results in (almost) no increase in distance and costs.

As will be explained later in Chapter 4, the final results are not always a proper representation of the per-
formance of a test run. Therefore it could be interesting to look at how the KPI's change during the execution
of the algorithms, in addition to the end results. Figure 3.1 shows a real example of the cost function over time
for a single test case, for two different test runs. The vertical axis shows the current costs and the horizontal
axis shows the time. The image shows two test runs that have minor differences. The chart can be split in two
phases: The first phase is where the cost increases due to a solution being created. The second phase is the
optimization phase which shows a decrease in the costs. As illustration, to evaluate the performance in the
old procedure, a human expert has to analyze 4 of these graphs per test case (for each of the KPI’s), for 10+
test cases, for multiple test runs.

3.1.2. Runtime measures

In contrast to the KPI's, which are meant to measure the quality of a solution, the runtime measures reflect
the amount of resources or computational requirements required to create this solution. The first and main
measure available in this category is the amount of time which it takes to come to the given solution. Some-
thing that has to be considered is that the runtime can vary, based on the system that it is run on. Therefore,
comparing the results obtained from multiple machines is a daunting challenge that has been the subject of
several researches. In the data that is used in this thesis it is however assumed that all the data is obtained
from running the performance tests on the same hardware. This is the case for the ORTEC data, which is
generated from a single machine that is dedicated to only running the performance tests to maximize the
fairness of the runtime results.

Since the solver makes use of heuristics, there is a trade off between runtime and solution quality. One of
the two does not tell the whole story, therefore a combination of these measures has to be observed. What
if the runtime has decreased with 5% but the solution quality has increased with 5%? Is that a good or a bad
thing?

In order to analyze the reasons for a performance anomaly, there is additional information available re-
garding the runtime. The code base contains a set of marks, which report the time at which they were en-
countered. These marks can be combined to measure how much time has been spent in specific parts of
the system. These results are logged with the user-defined name of the part, together with the amount of
time that was spent in it. Since each of these parts is called multiple times, a summary can be generated by
summing the times of each part with the same name. This summary could also include the amount of times
that this part was ran, which could possibly explain the increase in time spent in a part. Although this data is

3.2. Performance profiles to create an overview 19

Figure 3.2: The performance profiles on the real data of ORTEC for the first months of 2019, using area under the chart. See Section 4.2
for more on this measure. The horizontal axis shows the factor of performance ratio’s and the vertical axis shows the percentage of test
cases within this factor. Each line represents a different test run. It can be observed that many test runs have 70% of their tests cases be
at most 1% worse than the best known solution. The image shows 3 clear anomalous test runs.

not used in the end result of this thesis, its uses have been investigated and it could be useful when trying to
improve the current system.

3.2. Performance profiles to create an overview

Looking at the results of all test cases and getting an overview can be overwhelming. Not only that, but the
interpretation is speculative and can lead to disagreement. In order to create an overview of all test cases,
the performance profiles that were explained in Section 2.2.2 will be used. This section will first describe the
motivation for using the performance profiles. Then it will outline how the performance profiles are used.
Finally, the issues are discussed.

3.2.1. Motivation for using performance profiles

During the research no other significant methods for creating an overview have been found. Some researchers
have used the average or total cumulative runtimes to create an overview of the overall performance. There
are some issues with these techniques which is why the performance profiles were chosen. The first reason
is that with the average or cumulative total, large cases tend to dominate the performance metrics in favour
of smaller instances. Imagine two test cases with a runtime of 10 seconds and of 1000 seconds. The average
would be 505 and the cumulative total would be 1010. There could be a small change in the large case which
could lead it to 995 seconds. The average and cumulative would then be 503 and 1005 respectively. There
is however no difference with the case that the small case would have changed from 10 to 5, which would
be a 50% change. As a result, cases with large numbers tend to dominate the performance metrics. The
performance profile counters this by calculating the relative change of a metric using its performance ratio.
Another issue with the average or cumulative is that, since it is a single number, it is hard to discriminate
between changes in a single case. One case could increase with the same amount that another decreases.
The average or cumulative values would not change at all, although a significant difference could indicate an
issue. The performance profiles make use of a distribution function, which reflects this property better.

3.2.2. Implementation of performance profiles

In order to create the performance profiles a performance measure has to be chosen. Initially the runtime
was chosen, since this was used by others. During the project it became clear that the runtime was not an
appropriate measure to evaluate the performance of vehicle routing heuristics. Chapter 4 outlines why the
runtime is not an appropriate measure and which measures could be useful in evaluating the performance
of these heuristics. However, the initial version was built using the runtime and since it does not affect the
explanation, this section uses the version with the runtime as performance measure.

20 3. Classifier Design

K-means clustering example

t . A \
8 I o @
KT ®L %e 4 e \ ®a %
& 0 O =4 & {1 @v®
‘\\ I‘|‘ O
o o ° e, ©
[7 -
" e S 5 ®e /
od o o) yn ks ¢ o)
° @ .
‘e o ® b o °

Figure 3.3: A visual example of k-means clustering, which contains a red and a yellow cluster. The initial division on the top left is not
that great, but after 3 more iterations of the k-means clustering algorithm the bottom left shows a large improvement. Source: [35]

At first, the performance profiles had to be created. The first step is determining per test case what the
best known solution is. Then, using these solutions, the raw runtime data are converted to performance
ratio’s, with respect to the best known solution. Finally, these performance ratio’s are used to create the per-
formance profiles. For a more detailed explanation on the performance profiles, see Section 2.2.2. During the
implementation, the data for the first months of 2019 was used, since using all data made the computation
time too long to test with. The results for the 2019 data can be seen in Figure 3.2. The horizontal axis shows
the factor of performance ratio’s and the vertical axis shows the percentage of test cases within this factor.

3.3. Anomaly detection using clustering

The problem of anomaly detection is one occurring in many different fields of research. Given a set of data
points, find the ones that do not behave as expected. Section 2.3 has explained this problem and the existing
techniques within the literature. This section will describe the requirements for this specific use case and
how it was implemented.

The first thing to note is that there is no labelled data available. Although data of performance test of
previous years are available, there is no knowing which of these are anomalous or not and labelling the data
is both costly and time expensive. Therefore, the technique should be unsupervised of nature. Secondly,
one of the goals of this thesis is to explain the reason for an anomaly. Therefore it would be preferred if

the technique that is chosen reflects this. It is a pro if there is some form of visualization or other form of
understanding that humans can have to the technique.

3.3.1. K-means implementation

The technique that was chosen to detect anomalies is k-means clustering, which was described in Section
2.3. Although the implementation of this algorithm is straight forward, there are two design choices that have
to be made. The first choice that has to be made is how to create the initial centers. The literature discusses
different techniques, varying from choosing k at random to more advanced techniques. The one chosen is
described by Arthur and Vassilvitskii [4] in their paper on k-means++. Their technique chooses the first center
atrandom and then proceeds to choose the remaining centers with a probability that is based on the distance
to the closest center. The larger this distance, the larger the chance this point will be a center. This technique
was chosen since it is widely used for its simplicity and speed, which are appealing in practice. Although

this technique was chosen and implemented, it is not actually used in the current implementation. Since the

amount of clusters is set to 1, since there was 1 clear baseline for each performance profile, the initial cluster

3.4. Implementation 21

FROM 01/01/2019 © 0 12/31/2019 ©

Product version: ¥ Transport::Development
9-01-01 : 2019-12-31

© Details

© Details

© Details

1161254 © Details

1161596 © Details

1164080 © Details
© Details
© Details
© Details
D
© Details
© Details
© Details
© Details
© Details

© Details

Figure 3.4: An overview of the performance tests that were ran during the first months of 2019. The performance profiles and clustering
techniques were used to mark 2 test runs as anomalous. The next step is to further investigate these test runs regarding information on
the specific test cases that cause this anomaly.

center is simply chosen at random.

The second and last choice was determining a distance function. Again the choice has been made for a
widely used technique, the Euclidian distance. For two vectors (or lines) this is defined as sum of the root of
the squared difference between two points, or, with g; and p; values at point i and n the length of the lines:

(3.1

3.4. Implementation

Recall that the goal of this research project is to investigate the performance to find anomalies and investi-
gate the reasons for these anomalies. This section will give a description of the approach that was used to
reach this goal. Although the final tool looks different to the images in this section, it functions the same and
therefore the images used in this section will suffice.

Before explaining the approach is it important to know what the data looks like. The easiest way to un-
derstand it is to envision a matrix that contains test runs as rows and test cases as columns. Each entry of the
matrix is made up of the results of a single run that belongs to one test case run on one changelist. It should
be noted that the matrix is not completely filled, meaning that not each test case has been run during every
test run. The approach that was taken analyses the data in different steps, where each step goes into more
details to uncover the reason for the anomaly.

3.4.1. Step 1: Analysing test runs
The first step is to compare test runs against each other. One way to do this would be to compare the results
of each test case of each test run against the other test cases. However, this poses some problems which is
why a different approach is taken. First of all, not every test case is ran on every test run and therefore it is not
possible to compare each of the results since they are not complete. Secondly, this approach is error-prone
and takes a lot of time.

A solution was found in the literature. The golden standard for benchmarking optimization software are
performance profiles, by Dolan and Moré [18]. These have been explained before in Section 3.2. The claim
that the paper by Dolan and Moré makes is that a plot of the performance profiles reveals all of the major

22 3. Classifier Design

Product version: ¥ transport::development

ebruary 2019
Total run:
Detected anomalies
Previous # 1157870
20190206012450757 = CVRS _distribution_1 © Details
#20190205231940355 © Details

#20190205225913048 CVRS_distribution_3 © Details

20190205232158437 = CVRS_distribution_4 © Details

= HomeDeliveryE upermarket_Case1400 © Details

= LongTripsWithLegi: | Case1000 © Details

© Details

21 VithLegisla se5 © Details
information found
##20190206024214497 = LotOf] esInTrip_Case1000 @ Details
No processing time information found
20190 1448 = LotO nTrip_Case2000 @ Details
No processing time information found
3 20190206044213064 = Lotof] ase500 © Details
Nopy time information found
20190206024145498 = RefillSupermarket_ © Details
ing time information found
1136039 = RefillSupermarket_Case1000_2 © Details
time information found
20190205200845100 fillS: ark © Details

No processing time information found.

Figure 3.5: The first step of the anomaly explanation procedure. The initial step has marked this build as anomalous. This image shows
an overview of all the test cases that were ran on this build, along with some of its results. The clustering algorithm was used to determine
which test cases showed anomalous runtime behaviour.

performance characteristics.

As such, the first step taken to analyse changelists is to create a performance profile for each changelist
and compare them to each other. After one or multiple test runs have been marked as anomalous they can
be further investigated. This comparison will be done using k-means clustering as an anomaly detection
technique. The results can be seen in Figure 3.4.

3.4.2. Step 2: Analysing test cases

The first step has marked a test run as anomalous or regular. This step used the performance profiles to judge
the overall performance of each test run. Now that it is known whether the build is anomalous or not, it would
be interesting to find out why it is anomalous. One way of doing this would be to compare the individual
test cases of a run to other runs. The same clustering algorithm is used to detect anomalies based on the
individual running times of each test case. It is possible that even though a test run is marked as anomalous,
none of the test cases are anomalous by itself, which is a great benefit. In this case, each case could be a little
worse, which is still an anomaly. The results can be seen in Figure 3.5.

3.4.3. Step 3: Analysing the results

To understand the last step of the approach, recall that the intent of the approach is to inform developers
of anomalies and to point them in the right directions to solving this anomaly. Step 2 has left us with an
anomalous test case for an anomalous test run. The last step is to convey information to the developer which
can be used to solve the anomaly.

The way to do this is to visualize the results of a test case and compare them to other non-anomalous test
cases in such a way that the developer can deduce which part of the software needs fixing. The results can
be seen in Figure 3.6. This figure shows all the information available on a single test case of a single test run.
On the top is the run information, which includes the test case and date it was run. The KPI end values show
the final results of the optimizer. Then, the algorithm processing times show how much time the optimizer
has spent using each of the heuristics that was used during optimization. Finally, these algorithm processing
times are compared to those of other test runs, which can be used to spot differences.

3.5. Summary

23

RUN INFORMATION KPI END VALUES

Case CVRS_distribution_3 -d

Changelist 1161254 -Sp
Product version e +TA
Run ID 25913048 t

Date Feb. , 10:59 p.m. -#ut

ALGORITHM PROCESSING TIMES

CAlgLargeSwapInCurrentSolution
CAIg20ptInCurrentSolution

InCurrentSolution

CAlgMergeAndSwapInCurrentSolution

T T 0

9796.16
64296.89
992.0
246.0
21.0

0
B DR R 4 Y TGO P BT BB TERDOES055 1154 2B BBV B TP I 4 Y TISE T SIED TP 0SS) 1154 25 EB VGBI 01 R OBV HEY TIBE P B OB B YRR OES055

ingelist st

"ROSSExchangelnCurrentSolution CAlglargeMergeInCurrenSolution CAlgParallelCheapestInsertion

0
115464 B0 D7 61 PER Y Y 1RO EZBT S BIED TERPUEE058 11544 Y EBO B AY S01PE4 AT $ Y TIBOPHE TS SIED TERPOLES 058

Changelist Changelist

R e P e e e]

Changelist

Figure 3.6: The final step of the anomaly detection procedure, where the results of a specific test case on a specific build are shown. The
bar charts show the runtimes of other builds on specific parts of the algorithmics. The bar chart on the bottom shows a single larger bar,

which could indicate an issue in that algorithm.

3.5. Summary

Chapter 3 has explained the basic structure of the classifier. It is inspired by the performance profile, which
originates from evaluating exact optimization methods. This is a cumulative distribution function such that
the performance ratio of a solver is within a factor 7 of the best known possible ratio. Through a clustering
algorithm, the anomalous builds are then detected from these performance profiles. The initial implemen-
tation used the runtime as a performance measure, but this does not suffice for heuristics, since it does not
account for the solution quality. Therefore, Chapter 4 will explain which alternatives will be tested through

the experiments, which will be described in Chapter 5.

Performance Measures

Chapter 3 has described the classifier that is used to determine which test runs show anomalous behaviour.
This approach is based on a performance measure, for which the runtime was initially used. During this
thesis, the conclusion was drawn that runtime was not an appropriate measure to evaluate the performance
of vehicle routing heuristics. This chapter will provide arguments for this statement. Furthermore, it will state
which characteristics the measure should have. Finally, the alternative measures will be outlined. Chapter 5
will explain how the experiments will be used to show the usefulness of each of these measures and present
their results.

4.1. Issues with runtime as performance measure

The initial classifier that was created to detect anomalous test runs made use of runtime as the performance
measure. This does not appropriately evaluate the performance of a heuristic. To recap, a heuristic is a
technique for solving optimization problems that is used when exact methods are too slow. Heuristics employ
methods that have shown to be useful in practice. In contrast to approximation algorithms, there are no
guarantees on their solution quality. As a result, there is a trade off between runtime and quality, that should
be reflected when evaluating the performance. Letting a heuristic run for longer often increases the quality
at the cost of it requiring more time.

The problem with using runtime as the performance measure is that it does not reflect the full picture
of this trade off. Imagine that the runtime has shown some regression. In one scenario, the solution quality
could have improved a lot, in which case the overall performance has improved so this should not be marked
as an anomaly. If in another scenario the solution quality has stayed the same, the overall performance has
decreased and it should be marked as an anomaly. As said before, the runtime alone does not reflect the full
picture.

To further illustrate this example, take a look at Figure 4.1. This image shows the results of two builds,
the green and red lines, on the same test case. The chart shows the cost function on the y-axis and the time
on the x-axis. The chart can be divided in two phases: The first phase, where the value of the cost function is
increasing, is where the algorithm starts with an empty solution and starts planning tasks to create a solution.
The second phase starts when the value of the cost function starts decreasing since the heuristics start to
optimize the given solution iteratively. From the chart it can be observed that the green line ends before the
red line. However, the quality of the green line is worse than that of the red line, since the value of the cost
function is higher. Again, if only the runtime would be considered, the wrong conclusions would be drawn.
The remainder of this chapter will outline other measures and motivate their usefulness.

4.2, Alternative performance measures

It has been concluded that the runtime is not an appropriate measure to evaluate the performance of vehicle
routing heuristics. It does not reflect the quality runtime trade off that is the most desired characteristic of
this measure. This section will discuss which measures would be appropriate to evaluate the performance.
It will first explain them and finally outline the theoretical pros and cons of each measure. Chapter 5 will
discuss how these measures will be tested and how the measures perform in practice. Most of the measures

25

26 4, Performance Measures

Cost function over time

25

20

.
o

Build 1

Cost function

=
o

| —Build 2
5 I
|

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Time (s)

Figure 4.1: This image shows the results of two test runs, the green and red lines, on the same test case. The chart shows the cost function
on the y-axis and the time on the x-axis. The chart can be divided in two phases: The first phase, where the value of the cost function is
increasing, is where the algorithm starts with an empty solution and starts planning tasks to create a solution. The second phase starts
when the value of the cost function starts decreasing since the heuristics start to optimize the given solution iteratively. The red line
would be the better build in this situation, since its solution quality is better if it is compared at the same point in time.

that will be described rely on a point in time to measure them at. A discussion on the options will be given in
Section 4.3. A summary of the pros and cons of the measures can be seen in Table 4.1.

4.2.1. Quality comparison at same runtime

The first measure compares the quality of both solutions at the same point in time. A major issue in com-
paring the performance is that comparing two solutions at different points in time is difficult. Generally, the
longer the algorithm runs, the better the solution becomes. As an example, observe Figure 4.1. There are two
solution paths that lead to different solutions. Although the green build takes less time to reach its solution,
its quality is also worse. This newly proposed measure would evaluate the quality of both builds at the same
point in time, which is visualized with the dotted line. At this point in time, the red build is clearly better than
the green solution. This solution is a realistic one, since the limit on computation time allowed can be altered.
This would result in the situation just described.

The pro of this measure is that it is able to compare the solution quality of two builds at a specific point
in time. It is a concrete measure, where the only point of debate would be at which point in time to compare
the quality. The con of this measure is that the quality is only reflected at a single point in time. For instance,
observe Figure 4.2. The builds in this example result in the same end solution. However, the yellow build has
a better temporary solution. If the quality would only be compared at the end of the run, it would seem like
these builds have the same performance, although they clearly don't.

4.2.2. Area under the chart
Whereas the previous measure focused on comparing a single point in time, the area under the chart gives
an overview of the solution quality over its whole runtime. The area under the chart can be calculated using
an integral between points. Although the test cases reflect some of the real world scenario’s, there are still
different characteristics between customers. One customer may have 10 minutes available to compute a
solution, while another may have 30 minutes available. Not all of these situations can be reflected in the test
cases, since there are too many variables. As a result, the intermediate solutions should also be somewhat
evaluated. An example of the usefulness of the area under the chart can be seen in Figure 4.2.The yellow
build achieves the same end result as the blue one, while its intermediate solutions are better. Therefore, the
yellow build is the preferred one in this scenario, which is reflected when using the area under the chart. A
point of debate for this measure is the points in time to use for calculating the area under the chart. Although
this example has two builds with the same runtime, this is often not the case. Using different points in time
could give a twisted result, since a longer runtime inevitably increases the area under the chart. Therefore the
decision has been made to use the same point in time when evaluating the performance.

The pro of this measure is that is gives an overview of the solution quality during the computation process.
Itis able to give a preference to builds with a better intermediate solution. The performance of both examples
in Figures 4.1 and 4.2 could be appropriately evaluated using this measure. The con of this measure is that it

4.2. Alternative performance measures 27

Cost function over time

) // Z i

1 2 3 4 5 6 7 8 9 10 11 12 13
Time (s)

Cost function
= = [[w (%5
[=] (%2} [=] v o (%2

wv

Figure 4.2: An example of the usefulness of the area under the chart as a measure of evaluating the performance. Contrary to comparing
at a single point in time, the area under the chart gives an overview of the solution quality over the whole runtime. The yellow build
achieves the same end result as the blue one, while its intermediate solutions are better. Therefore the yellow build is the preferred one
in this scenario, which is reflected when using the area under the chart.

might prefer a better intermediate solution, at the cost of ignoring the quality of the end solution. It is debat-
able whether this behaviour is desired, since it can be argued that the end solution is the most important.

4.2.3. Maximum difference in cost between solutions

The final measure that will be discussed will be the maximum difference in costs between two builds. The
previous solutions considered the solution quality at the end of the run and over the duration of the run.
Although these were good at pointing out a clear winner, such as in Figures 4.1 and 4.2, there may be situations
where there is no clear winner, as in Figure 4.3. In this figure, the orange build has a better early solution,
while the purple build has the better final solution. It could be argued that the final solution is the most
important and therefore the purple build should be preferred build in this scenario. However, there are some
other interesting measures that could be used to make a performance comparison between these two builds.
This would be to look at the maximum distance between the builds, both vertically and horizontally. Large
distances between two builds would be a good indicator for large changes, which are often an indication of
anomalies or at least worth inspecting anyway. Using this as a method for evaluating the performance could
be a good option. The maximum vertical distance between two builds would reflect the maximum difference
in solution quality. The larger the gap, the worse the performance. Overall, the more consistent build is often
preferable, therefore in Figure 4.3, the purple line would be the preferred one, since the gap in solution quality
is quite large.

Cost function over time

w
o

w
=]

N
o

™~
S

Build 1
—Build 2

Cost function
=
w

N
S)

[0}

Time (s)

Figure 4.3: An example that shows the usefulness of the maximum distance between two solutions. The previously discussed examples
show a clear better build, while there is more discussion possible in this one. Both the vertical and horizontal difference could be useful
when discussing the better build in this situation.

28 4, Performance Measures

Subsection Pros Cons

Concrete and realistic comparison
of final results.
Assesses the quality of the whole Might prefer intermediate solutions

Quality 4.2.1 Only reflects a single point in time.

Area 4.2.2 . .
computation process. over end solutions.
Can spot large changes which

Difference 4.2.3 P & g Not so useful when changes are small.
often reflect issues.

Table 4.1: A summary of the theoretical pros and cons of each performance measure. For details on the measures, read their respective
subsection.

The pro of this measure is its ability to evaluate the performance in case of large differences, such as in
Figure 4.3. In these scenario’s, the two earlier described measures are indecisive, although the charts show
clear differences between the builds. The con of this measure is when there are small differences between the
builds. Although Figure 4.1 has a clear winner, the distances between the lines are so small that the maximum
distance would poorly reflect this.

4.3. Alternative measuring points

The first two measures, being the comparison at the same runtime and the area under the chart, both require
a point or area at which to calculate its value. If the runtime of both builds is the same, this is not an issue,
since the end time can be used. However, in practice the runtime is often not the same. This section will
discuss the possibilities and discuss an alternative for these points.

4.3.1. Determining the end time when runtimes are different

The first debate is the definition of the end time when the runtime of two builds is different. There are two
viable options which will be discussed. The first option is to use the end time of the shortest build as the end
time, which can be seen in Fig 4.1 at the dotted line. In the situation of this example this would arguably be
the best option. It is certain what the solution quality at this time is for both solutions. The issue arises when
the green line would instead stop a lot earlier due to for instance a bug. At that point in time the solution
quality could be different, resulting in a wrong evaluation of the performance. The solution for this would be
to ignore the runtime of both builds and look at the solution quality obtained at the end of the end of the run.
This would be equivalent to evaluating the performance at the end time of the longest run, while extending
the line of the shortest run by a straight horizontal line. However, the downside of this method is that if the
shorter line would be allowed more runtime, for instance by fixing the bug that caused it to stop earlier, it
will generally further optimize its solution further and it might be the better build of the two. This would
be the case if an improvement was made, but also a small bug was inserted. Both of these methods will be
experimented with. During later chapters the term LONG will refer to the end time of the longest build, while
SHORT will refer to the end time of the shortest build.

4.3.2. Alternative times for performance comparison

The first measure, to compare the quality at the same point in time, has been described by comparing the
quality at the end time of the builds. Although this is a good option that has its uses, there are alternatives
that would better reflect the intermediate quality of each of the builds. Hutter et al. [26] made use of the
captime, which is the time a heuristic was allowed to run. In their research they have observed the solution
quality of their heuristics at captimes of k4, kmax/10 and kp,45/100. This would reflect the intermediate
qualities, as well as the end solution. Therefore, during the experiments the solution quality at 10%, 50% and
100% will be evaluated. The change in numbers was made since this includes one point in the construction
phase of the algorithm, and two times in the optimization phase. During later chapters the term START will
refer to the quality at 10%, MIDDLE will refer to 50% and END will refer to 100%.

4.4. Summary

The classifier that was described in Chapter 3 requires a performance measure to compare test results against
each other. The original paper on performance profiles used the runtime as a performance measure for exact

4.4. Summary 29

optimization methods. However, the goal of this thesis is to evaluate heuristics. When evaluating heuristics
it is important to also consider the quality of the obtained solution, which is not reflected by the runtime.
Since the runtime did not suffice for evaluating heuristics, this chapter introduced three alternatives. The
first alternative is to evaluate the quality of the obtained solutions, at the same point in time. This measure
focuses on the end result, since that is arguably the most important. The second option, the area under the
chart, gives a better overview of the complete run. Finally, the maximum difference should be useful when
there are large changes between two cost functions, that might not be reflected in the other two measures. For
each of the three measures, there are several evaluation options available. This chapter introduced the LONG
and SHORT terms for which end time to use, when runtimes are different. Then it introduced the START,
MIDDLE and END terms as alternatives times for performance comparison. This results in 3 measures * 2
end times * 3 evaluation points = 18 measure configurations total. Next, Chapter 5 will explain how these 18
measure configurations will be used in the experiments and present the results.

Experiments

The previous chapters have provided a theoretical description of the methodology of this thesis. First, Chap-
ter 3 has described the methodology behind the classifier that will be used. Next, Chapter 4 has described
three possible measures to compare the tests results against each other. Including the variables evaluation
point and end point, there are 18 measure configurations. This chapter will describe how the experiments will
test which of these 18 measures is best able to detect anomalies in the performance test results and finally
present the results.

Secondly, this chapter will include a brief exploratory test case investigation. The goal of the classifier is
to detect anomalies. This exploratory investigation will observe the diversity of the test cases and their ability
to spot anomalies. These two characteristics make the test cases useful in detecting anomalous test runs.

5.1. Experiment design

The goal of the experiments is to apply the theory that was described in the previous chapters to a real world
scenario. In short, the approach used in the experiments is to test the different combinations that have been
described in Chapter 4 and see how they perform in practice. Each combination will be evaluated individu-
ally to evaluate its strengths, weaknesses and possible issues. Once that is done, there will be a comparison
between all of the combinations. The goal of this comparison is to find out which one(s) perform best in gen-
eral and to determine whether there are specific situations in which the measures are good or bad. For each
combination, the judgement made will be evaluated by analysing test runs. This will result in a positive or
negative judgement for the analysed test runs. Based on this, the combinations will be ranked and an overall
judgement on them will be made.

The remainder of this section will discuss the most important aspects of the experimental procedure.
First, the used approach will be further specified. Then, the evaluation of each combination will be discussed.
Finally, it will be explained how cross-validation has been applied.

5.1.1. Approach

In order to evaluate each measure configuration in the same fair way, it is important to adopt a systematic
approach to doing this evaluation. The systematic approach adopted in this thesis can be described in a
couple of steps. This will be done during this subsection.

As mentioned, each measure configuration will be evaluated individually at first. The goal of this evalu-
ation is to observe how well this configuration works in practice and to see if there are any apparent issues
with it. To do this, each test run that is marked as anomalous is inspected. The majority of the test run will
be marked as non-anomalous. Of these non-anomalous test runs, 10% will be inspected at random. After
inspecting a single test run with multiple test cases, it will be judged as a good or a bad marking. These
judgements will then be used to calculate the amount of false positives and false negatives per measure con-
figuration. Comparing the amount of false positives and false negatives across the different configurations
gives a good indication as to which configurations perform well and which do not.

For the analysis of each test run, a tool has been developed to help in this process. Images of this tool
can be observed in Figure 5.1 or Appendix B, which contains more detailed images. This tool consist of three
columns. The left column shows the test runs that have been analysed. Each test run that is marked as

31

32 5. Experiments

PERFORMANCE RESULTS

CHANGELISTS TEST CASES RUN INFORMATION

+ 1019112

+ 105656

+ 1083686 04 Hay 2018

Figure 5.1: The tool that was used to analyse the test runs and test cases of a single combination and evaluate its usefulness. It is split
in three columns. The left column shows all the analysed test runs. The middle column shows the test cases for the currently selected
test run. Finally, the right column shows the information for the currently selected test case and compares the measure values and cost
functions to other runs of the same test case.

anomalous has been given a red color. The middle column shows the test cases for the currently selected test
run. Again, the anomalous ones are marked as red. Finally, the right column shows the information for the
selected test case. This column includes the measure value in the bar chart, which also contains the results
of other runs of this test case. The bottom line chart plots the cost function, also of the other runs of this test
case.

Secondly, an evaluation sheet was made to help with the evaluation of the measure configuration on
several test runs, see Appendix A for an example. Each anomalous test case will be inspected, as well as 3
randomly selected non-anomalous test cases. Since the marking of anomalous or non-anomalous is made
based on the measure value, this one is first observed. The next step is to look at the line chart of the cost
function to determine whether this test run is actually anomalous or not, and a severity of 1-5 will be given.
The combination of these two observations, for multiple test cases of a test run, gives enough information
to draw a conclusion about the judgement made for this test run, either good or bad. Finally, any apparent
issues will also be noted.

5.1.2. Metrics for evaluating combinations

As part of the systematic procedure of evaluation, it is important to adopt a set of metrics that will be used to
evaluate the performance of each of the combinations. There are several options to evaluate the performance
of binary classifiers. The most obvious choice is to calculate the amount of times the classifier had it right or
wrong. This leads to the first four metrics: false positives, false negatives, true positives and true negatives.
In the context of this thesis, a positive result is a test run that is marked as non-anomalous, while a negative
value is a test run that is marked as anomalous. As such, a true positive is a test run that is correctly marked as
non-anomalous. Conversely, a false positive is a test run that is marked as non-anomalous, while it is actually
anomalous. The reverse goes for true and false negatives. Since the goal of a classifier is to minimize the
amount of times it is wrong, the average of the false positives and false negatives is also adopted as a metric.

Although the average of wrong classifications is a good metric, it does not consider the ratio false positives
to false negatives. A metric that better reflects this ratio is the F) score. The F) score considers the recall and
the precision of the classifier and is a measure for its accuracy. The precision tells us how many of the selected
items are relevant. The recall tells us how many of the relevant items that are in the set we have selected. The
equations for precision (p), recall (r) and F; can be found in Equations 5.1, 5.2 and 5.3. The terms TP, FP and
FN are used for True Positives, False Positives and False Negatives respectively. An application of the F; score
can be found in this paper by Goutte and Gaussier [24].

5.2. Exploratory test case investigation 33

Cost over time of CVRS_distribution_1 x 285 Cost over time of CVRS_distribution_2 x 285

140000
120000 4 100000

100000 1
|

80000

Cost

60000

40000

20000

0 T T T T T T T T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600 0 250 500 750 1000 1250 1500 1750

Time (s) Time (s)
Cost over time of CVRS_distribution_3 x 285 Cost over time of CVRS_distribution_4 x 285

120000 4
100000 1

1

80000 \w

sm)(mJ e
rﬂ\%rﬁi\‘d

80000 «{

Cost
Cost

60000

40000

40000

20000
20000

o

0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200
Time (s) Time (s)

Figure 5.2: Cost functions over runtime of the CVRS distribution cases for data of 2017, 2018 and 2019. Four different cases, each ran 285
times throughout the years.

TP o)
P=Tp+Fp :
TP
r=——— (5.2)
TP+FN
2
F = cEpIr (5.3)
p+ r

5.1.3. Cross-validation
The data available to run the experiments covers a period of 3 years, ranging from 2017 to 2019. During these
3 years, the performance tests are run semi-regularly, on average about once a week.

An often used technique when experimenting is called cross-validation. It is a technique that assesses
how well a developed model behaves in general. This is done by splitting the data in two parts. The first set of
the data is used to train the model. This set is called the training or known data set. After the model has been
trained on the first set, its working is validated on the second set. This second set is called the validation or
unknown data set. The goal of this technique is to test the functioning of the model on data that it was not
trained with. Since training is considered harder than validating, the training data set is often larger than the
validation data set.

Cross-validation has been adopted in this thesis in order to increase confidence in the developed method-
ology. As stated before, the available data originated from three years; 2017, 2018 and 2019. For the experi-
ments, the data has been split in two. The training set consist of all data originating from 2017 and 2018. This
data will be used to train the model. In this case, that means that all 18 combinations will be ran and analysed
on this data set. The best combination(s) will then be validated on the validation data set, which consist of
the data originating from 2019.

5.2. Exploratory test case investigation

The working of the methodology developed during this thesis relies on the ability of the test cases to detect
anomalies. A good test case has a few characteristics. Although analysing the usefulness of a set of test cases

34 5. Experiments

Cost over time of HomeDeliveryEnglishSupermarket_Casel400 x 350

50000

40000

10000

o 2000 4000 6000 8000
Time (s)

Figure 5.3: Cost functions over runtime of the Home Delivery English Supermarket case for data of 2017, 2018 and 2019. One cases, ran
about 350 times throughout the years.

could be a thesis by itself, it is still useful to do a small exploratory investigation. The goal of this investigation
is to verify that the test cases are able to find anomalies and to show their diversity. All of this will be done
using the available data.

Throughout the years of the available data, some test cases have been used regularly, while others were
used more infrequent. The regular ones are of interest to investigate and can be divided into four categories,
based on their names. These four categories contain 13 test cases which appear regularly throughout the
data of 2017, 2018 and 2019. To asses the usefulness of each of the test cases, their cost functions have been
plotted. A good test set would contain different characteristics for these cost functions that also show clear
differences within the case itself, which would indicate anomalies. The following subsections highlight the
important aspects of each category.

CVRS distribution

The first set of cases are the CVRS distribution cases of which there are four. CVRS is ORTEC’s route optimizer
and since the test cases are just numbered 1 until 4, this probably means that they are different routes. The
plots can be found in Figure 5.2. The characteristics from these four test cases look similar; each of them is
ran about 285 times, the cost function has values in the range of 100.000 more or less and the runtime of each
case is about 1.500 seconds. The shape of each of the plots is similar, which can be explained by them being
in the same category. Finally, each case has a baseline, a line which most of the cases follow. All the cases have
some lines that are significantly different from this baseline, which would indicate anomalies. To conclude,
these test cases look useful. The four cases have a clear baseline and some deviations from this, which means
the cases are able to detect anomalies.

HomeDeliveryEnglishSupermarket

This second category only contains a single test case. It has the suffix "_Case1400", which indicates 1400 de-
liveries to do. The plot can be found in Figure 5.3. The characteristics are quite different from the ones in the
previous section; its ran 350 times, the cost peaks around 50.000 and then slowly converges to 40.000 and the
time required is up to 8.000 seconds. Even though these characteristics are different, there are no significant
differences regarding the cost function within this case itself. There are differences in the amount of runtime
taken, but this could simply be changed by limiting the amount of allowed runtime given. The ability of this
case to detect anomalies is therefore questionable. As such, even though this test cases’ characteristics are
different from the first category, is it not as useful in detecting anomalies.

LongTripsWithLegislation

The third category contains three test cases. Their suffixes are "500", "1000" and "2000", which again, indicate
the amount of deliveries to do. Their plots can be found in Figure 5.4. Unlike the CVRS distribution categories,
the cost and runtime of these test cases are quite different, which can be explained by the fact that there are
varying amounts of deliveries to do. These cases are each ran about 330 times. The things that makes these
test cases different is their shape. Where other cases started at ¢ = 0, these cases require a startup period,
which clearly varies. This unique characteristics, along with the fact that they also show clear differences,
make this test cases a strong addition to the test suite.

5.3. Results 35

Cost over time of LongTripsWithLegislation_Case500 x 336

Cost over time of LongTripsWithLegislation_Case1000 x 338

500000 4 1400000
1200000
400000 o
1000000
300000 800000

§ §

600000
200000 4

400000

100000 1 200000

0

600 800 1000 1200 1400 1600
0 100 200 300 400 500 600 700 800 Time (s)
Time (s)

2000000 ! — e —————

1500000

Cost.

1000000

500000

o 1000 1500 2000 2500 3000 3500 4000
Time (s)

Figure 5.4: Cost functions over runtime of the Long Trips With Legislation cases for data of 2017, 2018 and 2019. Three different cases,
each ran about 350 times throughout the years.

RefillSupermarket

The final category contains five test cases. Their suffixes are "500", "500_2", "1000", "1000_2" and "2000",
which again, indicate the amount of deliveries to do. The plots can be found in Figure 5.5. These cases
are ran about 330 times each and have notable different costs and runtimes, as in the previous category. The
shape of the plots is similar to those of the CVRS distribution category, but there is also a difference in starting
time. The thing that makes this category unique, is its shape. Other categories have a steady converging line,
whereas this category does not. There are notable spikes where the cost function increases again, which is
likely due to another optimization being more important. Along with the fact that there are differences within
the individual cases make this a strong addition to the test suite.

5.2.1. Conclusion

The goal of this exploratory test case investigation was to verify the ability of the test cases to find anomalies
and to show their diversity. Four categories were inspected, which are run a significant amount of times.
Three out of the four categories show the ability to detect anomalies, while all categories have clearly different
categories. Therefore it can be concluded that this test suite is well suited for the purposes of this thesis, which
is detecting anomalies in different scenario’s.

5.3. Results

This section will present the results obtained by running the experiments described in the previous sections.
The reasoning for each measure variable used has been described in Chapter 4. The experiments have been
conducted in two phases, as prescribed by the cross-validation technique: a training phase and a validation
phase. The first subsections of this section will discuss the results obtained by the training phase. The final
subsection discusses the observations obtained from the verification phase.

5.3.1. Comparison of measure variables
The first set of results that will be discussed are obtained during the training phase. As described in Section
5.1, all 18 combinations have been run on data of the years 2017 and 2018. The results can be observed
in Table 5.1. The metrics shown in this table have also been described in Section 5.1. The yellow marked
measure configurations are the best performing configurations, based on the metrics average and F1-score.
The remainder of this section will discuss observations made from these results.

First, it can be noted that the measures "area under the chart", or area from now on, and "quality at the
same time", or quality from now on, both have well performing configurations. Several measure configura-

36

5. Experiments

Cost

Cost

Cost over time of RefillSupermarket Case500 x 322

350000

300000

250000

200000 4

150000 4

100000 4

50000 1

50 100 150 200 250
Time (s)

Cost over time of RefillSupermarket_Casel000 x 324

400000 4

350000

300000

250000 4

200000 4

150000 4

100000 1

50000 4

oA
0

100 200 300 400 500 600 700 800
Time (s)

Cost over time of RefillSupermarket Case500_2 x 326

160000

140000

120000

100000

Cost

80000

60000

40000

20000

0 T T T

0 25 50 75 100 125 150 175 200
Time (s)

Cost over time of RefillSupermarket_Casel000_2 x 328

400000

300000

Cost

200000

100000

0 200 400 600 800
Time (s)

Cost over time of RefillSupermarket_Case2000 x 324

800000 4

600000 4

Cost

400000 1

200000

o 500 1000

2000 2500 3000 3500

Time (s)

Figure 5.5: Cost functions over runtime of the Refill Supermarket cases for data of 2017, 2018 and 2019. Four different cases, each ran
about 330 times throughout the years.

5.3. Results 37

Name FP FN TP TN Avg. P R F1

AREA_LONG_START 0,17 0,0 083 0,40 0,38 0,83 0,58 0,68
AREA_LONG_MIDDLE 0,17 0,29 083 0,71 0,23 0,83 0,74 0,79
AREA _LONG_END 0,00 0,29 1,00 0,71 0,14 1,00 0,78 0,88
AREA_SHORT_START 078 0,71 022 029 075 022 024 0,23
AREA_SHORT_MIDDLE 0,33 0,63 0,67 038 048 0,67 0,52 0,58
AREA_SHORT_END 0,17 0,63 083 038 0,40 0,83 0,57 0,68
QUALITY_LONG_START 0,50 0,67 050 033 058 050 043 0,46
QUALITY_LONG_MIDDLE 0,00 0,50 1,00 0,50 0,25 1,00 0,67 0,80
QUALITY_LONG_END 0,17 0,25 083 0,75 0,21 0,83 0,77 0,80

QUALITY_SHORT_START 0,86 0,88 0,14 0,13 0,87 0,14 0,14 0,14
QUALITY_SHORT_MIDDILE 0,17 0,71 083 029 044 083 054 0,65

QUALITY_SHORT_END 0,17 0,25 083 0,75 0,21 0,83 0,77 0,80
DIFF_LONG_START 0,50 0,50 0,50 0,50 0,550 0,50 0,50 0,50
DIFF_LONG_MIDDLE 0,17 050 083 050 033 083 063 071
DIFF_LONG_END 033 0,78 067 022 05 0,67 046 0,55
DIFF_SHORT_START 0,75 1,00 0,25 0,00 0,88 0,25 0,20 0,22
DIFF_SHORT_MIDDLE 0,17 0,75 083 025 0,46 083 0,53 0,65
DIFF_SHORT_END 0,75 033 025 067 054 025 043 0,32

Table 5.1: Results of the training phase that show the metrics for all measure configurations. The acronyms are the true/false posi-
tives/negatives. The average metric is based on the FP and FN metrics. P is for precision and R is for recall. The yellow marked rows
are the best performing ones, according to the average and F1-score metrics. The F1-score should be maximized, since it represents
accuracy. The average should be minimized, since it represents wrong classifications.

tions that use these measures score well, judging by the metrics average and F1-score. These configurations
have a Fl-score of around 80%, with one even at 88%. This means that they are accurate roughly 80% of
the time. Although a higher score would be better, the current implementation is an initial version and im-
provements made could improve this score even more. The amount of false positives and negatives, that
constitute the average value, are relatively low for these configurations. The percentages higher than 0 repre-
sent 1 or sometimes 2 failures in a sample size of ~8 analysed test runs. In short, the experiments show that
the classifier can point out anomalies with reasonable certainty. The "maximum difference", difference from
now on, metric is notably worse in all its measure configurations.

In the two well performing measures, there seems to be a recurrent pattern when looking at the relation
between quality in the START, MIDDLE and END evaluation points. The START point seems to be the worst
one, with MIDDLE being better than it and END outperforming both. Similarly, the SHORT option seems to
be worse than the LONG option in most cases. Both of these observations can be summarized as the more
information is available, the more accurate the prediction becomes. Although this sounds straight forward,
there is a case to be made for the other configuration options that only consider a subsection of all available
data. There could be anomalies that are most prominent in the first half of the test case run. These issues
would potentially not appear when considering all available information. The argumentation to only using
a subsection of the available data was that different anomalies would be found that would otherwise not be
found. These measure configurations were not expected to do well in all situations, but rather complement
the other ones. To find out whether this was the case, further investigation is done in Section 5.3.2. The
SHORT variable was used to promote equal comparison between test runs with largely different running
times. It is inevitable that the longer the runtime, the better the solution. Therefore, comparing the solution
at the end of the shortest run seemed fair. Although the SHORT variable is worse than the LONG one in most
situations, the "QUALITY _x_END" configurations have the same results for LONG and SHORT.

Part of the reason why the "maximum difference" performed badly has to do with the method of com-
parison introduced by the performance profile. The performance metric used by the original paper that
introduced the performance profile is the runtime. This metric has a specific characteristic that the area and
quality measures also have, but the difference does not. The range of values of the runtime, area and quality
is relatively small, percentage wise, compared to the difference measure. A measure that is twice as bad, or
100% worse, as the best result obtained is extremely bad. Imagine a test of which the quality is suddenly twice
as bad, that should never happen. While performing the experiments, most if not all values were found to be

38 5. Experiments

within 30% of the best one. This is different for the difference measure, where the range is much larger. It is
not unusual for test runs to be similar to the previous one, which results in a small difference measure. Let’s
assume a cost function with a maximum value of 100.000 and imagine the best found difference to be 100. As
aresult, a test run with a difference of 500, which is still pretty good, is already 5 times or 500% worse. These
values are not unusual, but result in a much larger range of values. This makes the comparison of test runs
much harder and in the current implementation worse, as can be observed in the results. Some potential
improvements for the difference measure are discussed in Section 6.1.

5.3.2. Comparison of test runs marked as anomalous

To investigate whether the different measure configuration find different anomalies, a further analysis fo-
cused on which specific test runs were marked as anomalous, rather than just looking at how many were
correct or incorrect. If two measure configurations were to mark completely different test runs as anoma-
lous, both correctly, they might be useful in finding different types of anomalies. Although there were some
differences across the different configurations, most of these different anomalies were incorrectly marked
as anomalies. It was only rarely the case that these different anomalies were actually correct. A potential im-
provement could be to make use of multiple measure configurations and a decision rule to make a judgement
on anomalies. This will be discussed in Section 6.1.

5.3.3. Issues with the classifier

There was one issue that was noted for all measure configurations. Rather than being a strong or weak point of
a specific measure configuration, this issues represents a situation in which the classifier itself is performing
bad. Throughout the data, the amount of test cases that each test run contains varies. There were some test
runs that only contained 4 test cases, while some other situations had 15. In order to understand why this
is an issue, the structure of the classifier has to be inspected. The classifier makes use of the performance
profile to determine which test runs are anomalous. The performance profile is a cumulative distribution
function of which the y-axis values only increases as the x-axis values increase. The y-axis value represents a
fraction of the test suite. This means that if there are only 4 test cases, it will increase in steps of at least 0.25,
since that is equivalent to a single test case. However, if there are 15 test cases, the smallest step is 1/15 which
is roughly 0.07, much smaller. Anomalies are then detected by using a clustering algorithm, which calculates
the distance between these lines to cluster them. The two situations above are inevitably going to be far away
from each other, simply because their minimum step size is so different. This means that even though both
cases could be non-anomalous, the clustering will see one of them as far away and mark it as anomalous,
regardless of whether it is actually anomalous.

This issue is further enhanced by the already apparent difference that a differing amount of test cases
would bring. Imagine a situation in which 4 out of 20 test cases would be anomalous, while the others are
not. That might not be a big issue, since there are still a lot of cases that are non-anomalous. However, if in
the same situation these 4 anomalous test cases would be the only cases that were run, the same situation
would look severely worse. These two issues make it such that, with the current configuration, the classifier
does not handle a varying amount of test cases well.

A different issue that appeared in all measure configuration were test cases that were only ran a single
time. Since the performance profile compares each test case to the best known test case, it would think that
this single test case is the best one and see this test run as a good run, even though it is not compared with
anything. This skews the results of the other test cases present in this test run, potentially misinterpreting
them.

5.3.4. Training data conclusions

As can be seen in the results, there are 5 measure configurations that perform best according to the mea-
sures. These ones are marked yellow in Figure 5.1. These configurations have an average of below 25%
and a Fl-score of 79% or higher. The metrics show 4 configurations that perform equally well, with the
AREA_LONG_END being clearly the best one in both the average and F1-score metrics. Of the 5 well per-
forming configurations, there are 2 MIDDLE evaluation points. The corresponding END evaluation points
of the same variable options perform better, which is a pattern that was discussed before. This difference in
performance is only further enhanced by the fact that the SHORT and MIDDLE only use a part of the avail-
able data in the hopes of finding anomalies in that specific part. Therefore, even if they would obtain similar
results to the END variable, they would still be worse in general, since they ignore half of the data available
and as a consequence any anomalies present in that part of the data. Finally, the best methods all seemed to

5.3. Results 39

Name FpP FN TP TN Avg. P R F1

AREA_LONG_END 0,25 0,00 0,75 1,00 0,13 0,75 1,00 0,86
QUALITY_LONG_END 025 0,14 07 086 0,20 0,75 084 0,79
QUALITY_SHORT_END 0,00 038 1,00 063 019 1,00 073 0,84

Table 5.2: Results of the verification data that show the metrics for the three best performing measure configurations. The acronyms
are the true/false positives/negatives. The average metric considers the FP and FN metrics. P is for precision and R is for recall. The
F1-score should be maximized, since it represents accuracy. The average should be minimized, since it represents wrong classifications.
All configurations perform well with a over 80% accuracy and a low amount of false classifications.

mark similar test runs as anomalous, which further increases the confidence in their usability. As such, the
3 measure configurations that are deemed best are the AREA_ LONG_END, QUALITY_LONG_END and
QUALITY_SHORT_END. Since the other measure configurations have already shown to be worse, it is no
use running them again on the verification data. Therefore, the best three will be ran on the verification data
to confirm that they also work well on unseen data.

5.3.5. Analysis of verification data results

The experiments on the training data resulted in three measure configurations that performed best. These
three configurations have then been run on the verification data to verify that they also work on unseen data.
The results can be observed in Table 5.2 and will be discussed in this section.

The goal of running the same experiments again on a different data set are meant to increase confidence
in the developed system. It counters over-fitting on a single data set and confirms that the methodologies
work in general, rather than on a specific data set. From the results, it can be observed that all three mea-
sure configurations perform similar on the verification data as on the training data. The average values were
slightly over 20% on the training data. In the verification data they have similar values, even slightly below
the 20%. Secondly, the F1-scores are also similar with an accuracy of roughly 80%. Similar to the training
data, the AREA_LONG_END is again clearly the best configuration. Both the average and the F1-score are
better than the other two configurations. Second is the QUALITY_SHORT_END. Although the amount
of false negatives is quite high (38%), its accuracy is still good since it has no false positives. Finally, the
QUALITY_LONG_END performs well with an accuracy of 79%.

To confirm that the results that were obtained were correct, an ORTEC developer, who is an expert on
algorithmics, was asked to give a second opinion on the results. Since analysing all the results would take too
much time, only a part was discussed. If the expert agreed with that part, this would be a good indication
for the quality of the other results. The results that were discussed were the ones of the AREA_LONG_END
configuration. First off, he was enthusiastic and interested in the applications of the thesis. He agreed that the
analysis of the performance of routing heuristics is a difficult task and this thesis would help a lot to that end.
Through analysing the results, no strange judgements were found. The first interesting observation was on
the area, when the starting time of the algorithm is variable, as in Figure 5.6. The earlier the algorithm starts,
the better it is in general. However, the area under the chart becomes smaller if it starts later. Since the area
is the performance measure here, the classifier thinks that the bad ones are actually doing well. The expert
agrees with the intuition behind the area measure, but in this case its not doing what it should. It should be
noted that since all values are compared relatively to each other, the right ones are still marked as anomalous
though so this is not such a big issue, rather a minor one. The second interesting remark made was to see how
the anomalies that were found are reflected in the source code. It would be interesting to see if the developers
agree that there was an anomaly at those test runs. This would take a considerable amount of time to check,
especially since the test run of a period have to be combined since the tests are ran each week and not on
each change.

40 5. Experiments

2,000,000

1,800,000

1,600,000

1,400,000

1,200,000 —

1,000,000

800,000

600,000 1

400,000

200,000 4

0 T T T T T T T
0 200 400 800 200 1,000 1,200 1,400

Figure 5.6: Cost function of an example case where the starting time of the algorithms are variable. The intuition behind the area under
the chart is that the smaller the area, the better. In this situation, the runs with the later startup time have a smaller area while they are
actually worse.

5.4. Summary

This chapter has described how the theory of the previous chapters has been used in the experiments. All 18
measure configurations have been tested on their ability to detect anomalies. Each one has been evaluated
through a systematic approach that results in the metrics average (of false classifications) and the F; score.
The experiments were conducted in two phases, according to the cross-validation technique. Three measure
configurations performed best with an accuracy of roughly 80% on both data sets. The shortcomings of the
difference measure were mostly due to the large range of its values. The START and MIDDLE options were
mostly worse because they ignored part of the available data and produced too many false positives as a
result.

The next and final chapter of this thesis report will shortly summarize this report, draw conclusions and
present the future work.

Conclusion

This thesis has described research on the automation of the performance evaluation of vehicle routing heuris-
tics. Testing the performance of a heuristic is hard to do. There is a trade off between the quality of the so-
lution and the time spend to obtain that solution. What makes it even harder is that the solution quality
consist of several measurements. As such, the performance evaluation is often done by a human expert. Hu-
mans are not only non-deterministic in their evaluation, they also do not do it as regularly as a computer
would. Furthermore, it is hard to judge the performance of a test run by comparing the results of multiple
tests across multiple measures to each other. The research question of this thesis is: "How can we determine
a performance measure that correctly represents the trade off between quality and runtime in vehicle routing
heuristics?".

The literature survey revealed that a substantial amount of research has been done on performance eval-
uation, but not so much on performance evaluation of heuristics. The performance evaluation of heuristics
was often simple in that it focused on a single measure, rather than evaluating multiple. The survey lead to the
performance profiles, a method that is used to evaluate the performance of exact optimization algorithms.
The performance profile is used in the classifier developed during this thesis.

This thesis has made two contributions and tested both on real data of a large company. The first con-
tribution is a classifier that is able to detect regressions in the continuous development process of vehicle
routing heuristics software. This classifier is based on the performance profiles, which were found in the lit-
erature. A performance profile is the cumulative distribution function such that the performance ratio of a
solver is within a factor 7 of the best known possible ratio. To create this function, a performance measure is
needed, which will be described in the next paragraph. The original paper on performance profiles claimed
that they reflected all major performance characteristics of a solver. Therefore, anomalies in the performance
profiles indicate anomalous performance behaviour. The detection of these anomalies is done with a clus-
tering algorithm.

As a second contribution, this thesis has researched performance measures to use in the earlier described
classifier. The three possible measures are the area under the chart (area), the quality at the same time (qual-
ity) and the maximum difference in cost (difference). Theoretically, the quality is concrete and realistic but
only reflects a single point in time. The area assesses the average quality over time but not specifically the
end result. Finally the difference should work well when there are large, temporary differences. Two more
variables were introduced. First, the evaluation point, for which the options t,4x, tmax/2 and ty;4,/10 were
chosen. Secondly, the end times of the longest and the shortest builds will be used for evaluation. This re-
sulted in 18 measure configurations to be tested through experimentation.

The experimentation has tested all 18 possible measure configurations on the data provided by ORTEC.
The measure configurations were rated by their accuracy to classify test runs as anomalous or regular. The
best performing ones were the AREA_ LONG_END, QUALITY_LONG_END and QUALITY_SHORT_END, with
an accuracy of roughly 80%. These configurations did well because of their expected ability to detect anoma-
lies and because they considered most of the data, in contrast to other configurations. The START and MID-
DLE configurations were useful in some situations, but at the cost of introducing additional false classifica-
tions. The wide range of values for the difference measure was an issue with the current implementation, but

41

42 6. Conclusion

could possibly be fixed by somehow scaling it.

To recap, the research question is: "How can we determine a performance measure that correctly repre-
sents the trade off between quality and runtime in vehicle routing heuristics?". This thesis has described the
process of selecting the appropriate measures for evaluating the performance of vehicle routing heuristics.
This lead to three best performing measure configurations with an accuracy of roughly 80%. Although these
measure configurations are best for the ORTEC setup, different measure configurations could be best for a
different setup. The same methodology and evaluation approach described in this thesis could be applied to
find which are best or to test other alternative measures to evaluate the performance.

6.1. Future work

As Chapter 5 has described, there were some issues with the current implementation of the classifier. Since
there was a limited amount of time available for this project the following items were not explored. This
section will focus on the possible future work regarding the research of this thesis.

Classifier in different setups
First, it would be interesting to investigate how the research of this thesis holds up in a different setup. Three
measure configurations have shown an accuracy of roughly 80% on the data provided by ORTEC. This inves-
tigation could research whether the system works as well in the setup of a different system or with a different
heuristic type than vehicle routing.

Improving the difference measure

The first recommendation is to improve the difference measure. The idea is clear and has potential, but in
its current implementation it is lackluster. The biggest issue is the large range of values that this measure can
attain, which makes the comparison hard. Perhaps if the range of values were to be reduced by scaling it to
the maximum attained cost function.

Combination of measure configurations

The second recommendations is to combine the results of different measure configuration into a single
judgement. Each measure configuration produces a binary value for each test run that indicates whether
it is anomalous or regular. It would require a decision rule to combine the results of multiple configurations
in a single judgement. A simple example would be to take the best three configurations and mark a test run
as anomalous when 2 out of the 3 mark it as anomalous. Taking it even further, by annotating all test runs in
the current data set a supervised learning method could be used. This method could try out different combi-
nations and determine which one would be the best one. This supervised method would only work on that
data set, since it requires annotation of anomalous test runs.

Improving robustness against varying amount of test cases

The final recommendation concerns improving the robustness of the classifier in situations where the amount
of test cases varies. The current implementation has the issue that two test runs with a different amount of
test cases result in a large distance between their performance profiles, regardless of the actual results of those
test cases. This is not desired behaviour, but there is an argument to be made that it is not that bad. Compar-
ing two test runs on only a small set of cases is error-prone. In general, more test cases means more reliable
results. Considering this, simply flagging a build as anomalous because of this might actually be a good thing.
Alternatively, instead of calculating the distance between the performance profiles, a threshold could be used
for when they reach 0.9 or 0.99 for instance. The simplest option might be to ensure all cases have roughly
the same amount of tests. This could be ensured by simply ignoring all test runs with a significantly different
amount of cases.

Finally, the people at ORTEC were pleased with the end results of this thesis and plan to implement it
in their real world system. It has given them a useful tool to evaluate the performance of their algorithms,
which had to be done manually before. The results were promising and the tool that was developed can be
used to gain insights in why test runs are marked as anomalous. To conclude, this thesis has shown a method
to automate the performance analysis of vehicle routing algorithms. The three best measure configurations
showed a accuracy of roughly 80%. Combined with the fact that the evaluation is now automated, instead of

6.1. Future work

43

done manually, this is a big improvement to the performance evaluation process.

Evaluation sheet

Changelist 966745

Date 14-4-2017
non-anomalous 8 47,06%
anomalous 9 52,94%
#total 17
Case name Anomalous (measure) Anomalous (KPI chart) Severity of anomaly (0-5) Comment
Anomalous case1 CVRS_distribution_2 Yes a bit No 0
Ol Anomalous case 2 CVRS_distribution_3 Yes a bit Yes a bit 2
Anomalous case 3 RefillSupermarket_Case500 Yes Yes 4
Anomalous case 4 RefillSupermarket_Case1000_2 Yes Yes 5
Anomalous case 5 RefillSupermarket_Case2000 Yes Yes 5
Anomalous case 6 LongTripsWithLegislation_Case1000 Yes Yes 5
Anomalous case 7 LongTripsWithLegislation_Case2000 Yes Yes 5
Sl Anomalous case 8 CVRS_distribution_2_converted No No 0 Only 3 runs
Ml Anomalous case 9 HomeDeliveryEnglishSupermarket_Case1400 Yes Yes 4
sl Anomalous case 10
cll Anomalous case 11
i)l Anomalous case 12
Anomalous case 13
Anomalous case 14
£l Anomalous case 15
Regular case 1 CVRS_distribution_1 No No 0
Regular case 2 CVRS_distribution_1_converted No No 0 Only 3 runs

Regular case 3
Issues Cases with only 3 runs

Conclusion Definetly an anomaly

Figure A.1: Example of the evaluation form used during the experiments. This sheet inspects a single test run. All anomalous test cases
are inspected and some non-anomalous cases are checked. Based on the aggregation of whether the judgement was agreeable, this test
run is marked as a true/false positive/negative.

45

Tool images

PERFORMANCE RESULTS

CHANGELISTS TEST CASES RUN INFORMATION

+ 101912

201302162145300026 s
+ 1015206

+ 1030922

-5 212048.74

4 1082002

4 1042357

4 1085303
+ 1046645

4 1083830 20 gan 2018

+ 1053545 03 reb 2028

4 1053175 03 ves 2010
+ 10sesea 16 veb 2038
+ 1000274

+ 1062776
4 1052205

+ 1065035

+ 1083686 04 way 2018
4 1092515

Figure B.1: The tool that was used to analyse the test runs and test cases of a single combination and evaluate its usefulness. It is split
in three columns. The left column shows all the analysed test runs. The middle column shows the test cases for the currently selected

test run. Finally, the right column shows the information for the currently selected test case and compares the measure values and cost
functions to other runs of the same test case.

47

48

B. Tool images

PERFORMANCE RESULTS

CHANGELISTS

1015112
1015246
1034923
1042802
1043357
1044303
1046649
1048430
1053949
1055175
1056968
1060274
1062776
1068355

oo o o o H o R R H H H R e

10698359

1083686
1093515

0.04 0.06 0.08 0.10 0 0.14 0.18 018

13
13
14
23
25
05
13
20
03
0%
16
23
04
21
23

04
11

Dec
Dec
Dec
Dec
Dec
Jan
Jan
Jan
Feb
Feb
Feb
Feb
Mar
Mar

Mar

May

Jun

2017 »
2017
2017
2017
2017
2018
2018
2018
2018
2018
2018
2018
2018
2018
2018

2018

2018

Figure B.2: Image of the tool, zoomed in on the changelist section. On the top are all the analysed test runs. The red ones are anomalous,

the yellow one is currently selected. On the bottom is a plot of all performance profiles of these test runs.

49

TEST CASES

transport.performance.transport COPS_CVRS_distribution_l_None 201802162145300026

transport.performance. transport COPS_CVRS distribution 3_None 201802162145300028

tx rt. ce.b . verification.distribution.in: ill . Cageb00

transport_performance.b ‘hmark wverification.distribution.instance=RefillSupermarket Casel000

201802162145300032
transport.performance.b ‘hmark verification.distribution.instance=RefillSupermarket Casel000_2

201802162145300033
transport_performance.b ‘hmark wverification.distribution.instance=RefillSupermarket Case2000

201802162145300034

Figure B.3: Image of the tool, zoomed in on the test cases section. These are all the test cases for the currently selected test run. The red
ones are anomalous, the yellow one is currently selected. On the left is the name of the test case and on the right the date.

50 B. Tool images

RUN INFORMATION

KPIS
—-d 184%7.72
—$p 212048.74
+{TR 974
= 150
—fut 47

MEASURE VALUES

4.21, 4.21, 4.21, 4.21, 4.11, 4.21, 4.21, 4.21, 4.21, 4.19, 4.21, 4.22, 4.21, 4.21, 4.21, 4.21, 4.22, 4.22,
4.21, 4.22, 4.16, 4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.1§, 4.15, 4.15, 4.1§, 4.15, 4.15, 4.15, 4.15,
4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.10, 4.15, 4.15, 4.15, 4.15, 4.15, 4.15, 4.10,
4.15, 4.15, 4.10, 4.15, 4.15, 4.15, 4.09, 4.15, 4.16, 4.15, 4.10, 4.09, 4.1, 4.15, 4.15, 4.18, 4.03, 4.15,
4.15, 4.15, 4.11, 4.11, 4.10, 4.11, 4.10, 4.11, 4.11, 4.11, 4.12, 4.11, 4.10, 4.30, 4.32

Figure B.4: Image of the tool, zoomed in on the run information section. This is the available information for the currently selected test
case of the currently selected test run. The measure values are plotted to compare them to other test runs. On the bottom is a plot of the
cost functions of this test case.

(1]

(2]

(3]

(4]

(5]

[6

[7

[8

9

[10]

(11]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

Bibliography

S. Agrawal and J. Agrawal. Survey on anomaly detection using data mining techniques. In Procedia
Computer Science, 60, 2015.

M. Ahmed, A.N. Mahmood, and J. Hu. A survey of network anomaly detection techniques. In Journal of
Network and Computer Applications, 60, 2016.

T.M. Ahmed, C.P. Bezemer, T.H. Chen, A.E. Hassan, and W. Shang. Studying the effectiveness of applica-
tion performance management (apm) tools for detecting performance regressions for web applications:
an experience report. In Proceedings of the 13th International Conference on Mining Software Reposito-
ries, 2016.

D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007.

V. Beiranvand, W. Hare, and Y. Lucet. Best practices for comparing optimization algorithms. In Opti-
mization and Engineering, 18(4), 2017.

A. Bergel, E Banados, R. Robbes, and D. Rothlisberger. Spy: A flexible code profiling framework. In
Computer Languages, Systems & Structures, 38(1), 2012.

J. Berger and M. Barkaoui. A hybrid genetic algorithm for the capacitated vehicle routing problem. In
Genetic and evolutionary computation conference, 2003.

J. Berger and M. Barkaoui. A parallel hybrid genetic algorithm for the vehicle routing problem with time
windows. In Computers & operations research, 31(12), 2004.

T. Berthold. Measuring the impact of primal heuristics. In Operations Research Letters, 41(6), 2013.

W. Binder. Portable and accurate sampling profiling for java. In Software: Practice and Experience, 36(6),
2006.

K. Braekers, K. Ramaekers, and 1. Van Nieuwenhuyse. The vehicle routing problem: State of the art
classification and review. In Computers & Industrial Engineering, 49, 2016.

A. Brunnert and H. Krcmar. Detecting performance change in enterprise application versions using re-
source profiles. In Proceedings of the 8th International Conference on Performance Evaluation Method-
ologies and Tools, 2014.

M.R. Bussieck, S.P. Dirkse, and S. Vigerske. Paver 2.0: An open source environment for automated per-
formance analysis of benchmarking data. In Journal of Global Optimization, 59(2-3), 2014.

S. Byma and J.R. Larus. Detailed heap profiling. In Proceedings of the 2018 ACM SIGPLAN International
Symposium on Memory Management, 2018.

J. Carlsson, D. Ge, A. Subramaniam, A. Wu, and Y. Ye. Solving min-max multi-depot vehicle routing
problem. In Lectures on global optimization, 55, 2009.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. In ACM computing surveys (CSUR),
41(3), 2009.

L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni. Anomaly? application change? or workload
change? towards automated detection of application performance anomaly and change. In 2008 IEEE
International Conference on Dependable Systems and Networks With FTCS and DCC (DSN), 2008.

E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles. In Mathe-
matical programming, 91(2), 2002.

51

52

Bibliography

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]
(28]

(29]

[30]

(31]

(32]

[33]

(34]

[35]

(36]

[37]

[38]

J. Enes, R.R. Exp6sito, and J. Tourifio. Bdwatchdog: Real-time monitoring and profiling of big data ap-
plications and frameworks. In Future Generation Computer Systems, 87, 2018.

K.C. Foo, Z.M.]. Jiang, B. Adams, A.E Hassan, Y. Zou, and P. Flora. An industrial case study on the auto-
mated detection of performance regressions in heterogeneous environments. In Proceedings of the 37th
International Conference on Software Engineering, 2, 2015.

S. Ghaith, M. Wang, P. Perry, Z.M. Jiang, P. O’Sullivan, and J. Murphy. Anomaly detection in perfor-
mance regression testing by transaction profile estimation. In Software Testing, Verification and Relia-
bility, 26(1), 2016.

M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anomaly detection algorithms
for multivariate data. In PloS one, 11(4), 2016.

N. Gould and J. Scott. A note on performance profiles for benchmarking software. In ACM Transactions
on Mathematical Software (TOMS), 43(2), 2016.

C. Goutte and E. Gaussier. A probabilistic interpretation of precision, recall and f-score, with implication
for evaluation. In European Conference on Information Retrieval, 2005.

M. Hubert, PJ. Rousseeuw, and P. Segaert. Multivariate functional outlier detection. In Statistical Meth-
ods & Applications, 24(2), 2015.

E Hutter, H.H. Hoos, and K. Leyton-Brown. Tradeoffs in the empirical evaluation of competing algorithm
designs. In Annals of Mathematics and Artificial Intelligence, 60, volume 60, 2010.

Docker Inc. Docker. https://www.docker.com/, 2019. Accessed: 24-05-2019.
Jenkins. Jenkins. https://jenkins.io/, 2019. Accessed: 19-06-2019.

D.S. Johnson. A theoretician’s guide to the experimental analysis of algorithms. In Data structures, near
neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges, 59, 2002.

G. Kendall, R. Bai, J. Btazewicz, P. De Causmaecker, M. Gendreau, R. John, J. Li, B. McCollum, E. Pesch,
R. Qu, et al. Good laboratory practice for optimization research. In Journal of the Operational Research
Society, 67(4), 2016.

B. Kitchenham, P. Brereton, and D. Budgen. Mapping study completeness and reliability-a case study. In
16th International Conference on Evaluation & Assessment in Software Engineering (EASE 2012), 2012.

D.A. Kolb. Experiential learning: Experience as the source of learning and development. In FT press,
2014.

FE Langner and A. Andrzejak. Detecting software aging in a cloud computing framework by comparing
development versions. In 2013 IFIP/IEEE International Symposium on Integrated Network Management
(IM 2013), 2013.

M. Lavallee, PN. Robillard, and R. Mirsalari. Performing systematic literature reviews with novices: An
iterative approach. In IEEE Transactions on Education, 57(3), 2014.

V. Lavrenko. K-means clustering: how it works. https://www.youtube.com/watch?v=_aWzGGNrcic,
2014. Accessed: 24-09-2019.

L. Li, S. Lessmann, and B. Baesens. Evaluating software defect prediction performance: An updated
benchmarking study. In arXiv preprint arXiv:1901.01726, 2019.

J.J. Moré and S.M. Wild. Benchmarking derivative-free optimization algorithms. In SIAM Journal on
Optimization, 20(1), 2009.

NEO: Networking and Emerging Optimization. Dynamic vehicle routing problem (dvrp). http://neo.
lcc.uma.es/dynamic/vrp.html, 2009. Accessed: 24-09-2019.

https://www.docker.com/
https://jenkins.io/
https://www.youtube.com/watch?v=_aWzGGNrcic
http://neo.lcc.uma.es/dynamic/vrp.html
http://neo.lcc.uma.es/dynamic/vrp.html

Bibliography 53

[39] T.H.D. Nguyen, B. Adams, Z.M. Jiang, A.E. Hassan, M. Nasser, and P. Flora. Automated detection of per-
formance regressions using statistical process control techniques. In Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, 2012.

[40] S. Rojas-Labanda and M. Stolpe. Benchmarking optimization solvers for structural topology optimiza-
tion. In Structural and Multidisciplinary Optimization, 52(3), 2015.

[41] W. Shang, A.E. Hassan, M. Nasser, and P. Flora. Automated detection of performance regressions using
regression models on clustered performance counters. In Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, 2015.

[42] T. Weise, R. Chiong, J. Lassig, K. Tang, S. Tsutsui, W. Chen, Z. Michalewicz, and X. Yao. Benchmark-
ing optimization algorithms: An open source framework for the traveling salesman problem. In IEEE
Computational Intelligence Magazine, 9(3), 2014.

	Introduction
	Context description
	Introduction to ORTEC
	Vehicle routing problems
	The performance testing procedure

	Motivation
	Issues with current procedure
	Research questions

	Methodology
	Contributions

	Overview of remaining chapters

	Literature Survey
	Literature survey strategy
	Systematic approach to conducting literature survey
	The do's and dont's of experimental algorithm analysis
	Good lab practice: what to do to ensure reproducible results

	Performance analysis
	How to measure performance
	Performance analysis of optimization algorithms
	Performance analysis in vehicle routing problems
	Performance analysis outside optimization algorithms
	Code profiling

	Anomaly detection
	Anomaly detection techniques
	Types of anomalies
	Applicable research areas
	Anomaly detection using clustering

	Summary

	Classifier Design
	Available data
	Key Performance Indicators
	Runtime measures

	Performance profiles to create an overview
	Motivation for using performance profiles
	Implementation of performance profiles

	Anomaly detection using clustering
	K-means implementation

	Implementation
	Step 1: Analysing test runs
	Step 2: Analysing test cases
	Step 3: Analysing the results

	Summary

	Performance Measures
	Issues with runtime as performance measure
	Alternative performance measures
	Quality comparison at same runtime
	Area under the chart
	Maximum difference in cost between solutions

	Alternative measuring points
	Determining the end time when runtimes are different
	Alternative times for performance comparison

	Summary

	Experiments
	Experiment design
	Approach
	Metrics for evaluating combinations
	Cross-validation

	Exploratory test case investigation
	Conclusion

	Results
	Comparison of measure variables
	Comparison of test runs marked as anomalous
	Issues with the classifier
	Training data conclusions
	Analysis of verification data results

	Summary

	Conclusion
	Future work

	Evaluation sheet
	Tool images
	Bibliography

