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Abstract: This paper presents an adaptive approximation-based scheme for learning a partially
known ship power propulsion plant under various environmental conditions. Considering the
effect of water depth on the engine power, a dynamic model is defined comprised of the
engine dynamics and the 1-DoF ship manoeuvring dynamics. The modelling challenge is the
determination of ship resistance. To meet this challenge analytical modelling of ship resistance is
combined with an error-filtering online learning (EFOL) scheme for computing an approximation
of the unmodeled part of ship resistance related to wind and air. After simulations under multiple
weather conditions, the trained model was demonstrated to efficiently estimate the unmodelled
part of the ship resistance for an inland vessel.

Keywords: On-line learning scheme, surface vehicles, speed-power prediction, ship resistance,
shallow water.

1. INTRODUCTION

Increasing environmental concerns and global warming
have prompted international regulations on energy effi-
ciency for ocean-going vessels. According to the Interna-
tional Maritime Organisation (IMO), maritime transport
emits around 940 million tonnes of CO2 annually and is
responsible for about 2.5% of global greenhouse gas emis-
sions (GHGs). At the current pace, the annual GHGs from
maritime transport in 2050 are estimated to exceed the
total shipping emissions in 2008 by 90-130%, undermining
the 50% reduction imposed by the Paris Agreement (IMO,
2020). Thereby, the shipping industry is striving to employ
measures for fuel efficiency, that depends on the powering
performance of vessels.

Propulsion performance is a measure of the energy con-
sumption at a certain state, and can be studied as the
relation between a ship’s speed and the required propulsion
power (Pedersen and Larsen, 2009). During the lifetime
of a ship, speed is bound to decrease for the same input
powers as a result of performance reduction. As ships are
subject to external factors such as wind and waves, it
is unlikely that two identical operational scenarios occur,
making the estimation of propulsion performance complex.

Analytical mathematical models have been predominantly
used to address powering performance by quantifying the
speed-power relation based on speed loss due to ship resis-
tance. For ocean-going vessels, a primarily utilised calcu-
⋆ This research is supported by the project “Novel inland waterway
transport concepts for moving freight effectively (NOVIMOVE)”.
Funded by the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 858508 and the
Researchlab Autonomous Shipping (RAS) of Delft University of
Technology.

lation is the procedure presented in Holtrop (1984) and re-
cently validated in Nikolopoulos and Boulougouris (2019)
and Grabowska and Szczuko (2015). In regards to inland
waterways, shallow water depths significantly increase ship
resistance, making propulsion estimation highly intricate
(Zeng, 2019). A common practice in the literature is to
apply a correction on either the propulsion power or the
ship velocity of a deepwater method. The most renowned
shallow water resistance correction methods can be argued
to be the ones presented in Raven (2016), Schlichting
(1934), and Lackenby (1963).

Limitations in terms of the accuracy and applicability of
analytical methods mainly rely on their empirical nature.
As a result of being based on model tests carried out under
design conditions, when implemented in real-life a rough
estimate of the actual propulsion performance is achieved
(Pedersen and Larsen, 2009). Furthermore, as calculations
are based on the parametrisation of the hull shape, solely
ships within a set of specification limits may be considered.
According to Bertram (2012), analytical methods are thus
bound to become invalid for modern vessel shapes. With
respect to inland waterways, Zeng (2019) and Schlichting
(1934) have further claimed shallow water methods to be
physically weak and questionable given their dependency
on deepwater calculations.

With computational techniques becoming increasingly
powerful and efficient, data-driven methods for analysing
the powering performance of ships using measurement
data have attracted increased attention (Yoo and Kim,
2019). Particularly, machine learning (ML) techniques
have been shown to improve the accuracy of propul-
sion performance estimation. In the paper by de Geus-
Moussault et al. (2021), an artificial neural network (ANN)
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respect to inland waterways, Zeng (2019) and Schlichting
(1934) have further claimed shallow water methods to be
physically weak and questionable given their dependency
on deepwater calculations.

With computational techniques becoming increasingly
powerful and efficient, data-driven methods for analysing
the powering performance of ships using measurement
data have attracted increased attention (Yoo and Kim,
2019). Particularly, machine learning (ML) techniques
have been shown to improve the accuracy of propul-
sion performance estimation. In the paper by de Geus-
Moussault et al. (2021), an artificial neural network (ANN)
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1. INTRODUCTION

Increasing environmental concerns and global warming
have prompted international regulations on energy effi-
ciency for ocean-going vessels. According to the Interna-
tional Maritime Organisation (IMO), maritime transport
emits around 940 million tonnes of CO2 annually and is
responsible for about 2.5% of global greenhouse gas emis-
sions (GHGs). At the current pace, the annual GHGs from
maritime transport in 2050 are estimated to exceed the
total shipping emissions in 2008 by 90-130%, undermining
the 50% reduction imposed by the Paris Agreement (IMO,
2020). Thereby, the shipping industry is striving to employ
measures for fuel efficiency, that depends on the powering
performance of vessels.

Propulsion performance is a measure of the energy con-
sumption at a certain state, and can be studied as the
relation between a ship’s speed and the required propulsion
power (Pedersen and Larsen, 2009). During the lifetime
of a ship, speed is bound to decrease for the same input
powers as a result of performance reduction. As ships are
subject to external factors such as wind and waves, it
is unlikely that two identical operational scenarios occur,
making the estimation of propulsion performance complex.

Analytical mathematical models have been predominantly
used to address powering performance by quantifying the
speed-power relation based on speed loss due to ship resis-
tance. For ocean-going vessels, a primarily utilised calcu-
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lation is the procedure presented in Holtrop (1984) and re-
cently validated in Nikolopoulos and Boulougouris (2019)
and Grabowska and Szczuko (2015). In regards to inland
waterways, shallow water depths significantly increase ship
resistance, making propulsion estimation highly intricate
(Zeng, 2019). A common practice in the literature is to
apply a correction on either the propulsion power or the
ship velocity of a deepwater method. The most renowned
shallow water resistance correction methods can be argued
to be the ones presented in Raven (2016), Schlichting
(1934), and Lackenby (1963).

Limitations in terms of the accuracy and applicability of
analytical methods mainly rely on their empirical nature.
As a result of being based on model tests carried out under
design conditions, when implemented in real-life a rough
estimate of the actual propulsion performance is achieved
(Pedersen and Larsen, 2009). Furthermore, as calculations
are based on the parametrisation of the hull shape, solely
ships within a set of specification limits may be considered.
According to Bertram (2012), analytical methods are thus
bound to become invalid for modern vessel shapes. With
respect to inland waterways, Zeng (2019) and Schlichting
(1934) have further claimed shallow water methods to be
physically weak and questionable given their dependency
on deepwater calculations.

With computational techniques becoming increasingly
powerful and efficient, data-driven methods for analysing
the powering performance of ships using measurement
data have attracted increased attention (Yoo and Kim,
2019). Particularly, machine learning (ML) techniques
have been shown to improve the accuracy of propul-
sion performance estimation. In the paper by de Geus-
Moussault et al. (2021), an artificial neural network (ANN)



2 Nicolas Dann  et al. / IFAC PapersOnLine 55-31 (2022) 1–6

and a convolutional neural network (CNN) were developed
for the speed prediction of ocean-going ships, conclud-
ing on their superior prediction accuracy, particularly by
the ANN. Similarly, Moreira et al. (2021) introduced an
ANN for propulsion performance estimation by predicting
speed and fuel consumption, while Abebe et al. (2020)
implemented a variety of regression methods such as forest
and gradient boosting regressors. The shorter computation
time and higher accuracy of ML techniques compared to
analytical methods make ML an appealing technology,
particularly given its easy implementation on board any
ship comprising the designated set of sensors (Abebe et al.,
2020).

Although ML techniques can be powerful in estimating
the power propulsion performance of a ship, deriving
guarantees for their performance considering properties
like convergence is not possible. There has been significant
research activity on techniques that integrate model-based
and data-driven techniques in adaptive learning schemes
(Farrell and Polycarpou, 2006), (Reppa et al., 2016). These
schemes are developed by carrying out stability analysis
that offers valuable information about the properties of
the adaptive scheme and a systematic way to select the
design parameters.

The goal and the main contributions of this work are:
(1) the analytical ship power propulsion modelling for
inland waterways based on state-of-the-art propulsion and
resistance calculation methods, and (2) a novel error-
filtering online learning (EFOL) scheme based on a ra-
dial basis function neural network (RBFNN). The EFOL
scheme integrates an adaptive nonlinear approximator of
the unmodelled effect of ship resistance and an estima-
tor that utilizes analytical models (i.e. prior knowledge)
of the ship power propulsion and filters some signals to
limit the effects of noise. On a wider note, this paper
aims to contribute towards the development of a tool to
be implemented onboard a ship for real-time propulsion
performance prediction.

This paper is organized as follows. The analytical propul-
sion and resistance models are presented in Sections 2
and 3, respectively. In Section 4, the developed adaptive
learning scheme is presented, which is later tested in a case
study in Section 5. Finally, Section 6 addresses concluding
remarks and future research avenues.

2. SHIP POWER PROPULSION MODEL

In this work, ship propulsion is considered to be described
based on the following equations (Yoo and Kim, 2017):

Engine Speed : nb = GRnp, (1a)

Engine power : P = 2πnbQB , (1b)

Propeller thrust : T = KT ρn
2
pD

4, (1c)

Propeller torque : Qp = KQρn
2
pD

5, (1d)

Engine dynamics : 2πIpṅp = ηSGRQB −Qp, (1e)

Ship dynamics : (m+ma)V̇S = T −R, (1f)

Ship resistance : R = fr(VS ,W ), (1g)

where GR is the gear ratio between the propeller shaft
and ship engine [-], np is the propeller speed [Hz], nb is the
engine speed [Hz], QB is the engine torque [N ·m], ρ is the

density of water [kg/m3], D is the propeller diameter [m],
Ip is the total inertia of the propeller [kg · m2], ηS is the
mechanical efficiency from the engine to the propeller [-],
Qp is the propeller torque [N · m], m is the ship’s mass
[kg], ma is the ship’s added mass [kg], VS is the ship
speed through water [m/s], and R is the ship resistance
[N]. The latter will be further derived as a function fr of
the ship speed VS and wind conditions W in Section 3.
In this paper, the inland vessel and propeller parameters
of “Ship 2” presented in the study by Nuij (2021) will
be considered. Based on equations (1a)-(1g), the following
dynamic model is derived:

ṅp =
ηS

4π2Ip

P

np
− KQρD

5

2πIp
np

2

V̇S =
1

m+ma
KT ρD

4np
2 − 1

m+ma
fr(VS ,W ).

(2)

Ship manoeuvring and its required set of sensors are con-
sidered out of the scope of this study, therefore simplifying
ship motions to 1 DoF, such that lateral (i.e sway), vertical
(i.e heave), and rotational motions are neglected.
In the case of shallow water, the water depth affects
the ship’s propulsion performance. This is considered by
correcting the engine power P [W] in (2) to incorporate
the power increase effects of shallow water operation as
(Raven, 2016):

P → P

Rsink
− ∆RV VS

ηDid
. (3)

Thereafter, (2) becomes:

ṅp =
ηS

4π2IpRsink(H)

P

np
− ηS∆RV (H)

4π2IpηDid

VS

np
− KQρD

5

2πIp
np

2

V̇S =
1

m+ma
KT ρD

4np
2 − 1

m+ma
fr(VS ,W ), (4)

where the viscous resistance increase due to shallow water,
the resistance due to sinkage, and the propulsive efficiency
coefficient in ideal condition are respectively defined as:

∆RV = RV deep0.57(T/H)1.79, (5)

Rsink = (1 + δ

∆

)2/3, (6)

ηDid = ηOηRid
1− τid
1− wSid

, (7)

where T is the ship draft [m], H is the water depth [m],
τid is the ideal thrust deduction factor [-], wid is the ideal
full-scale wake fraction [-], ηO is the propeller’s open-
water efficiency [-], and ηRid is the ideal factor for relative
rotative efficiency [-]. The deepwater viscous resistance and
additional displacement due to sinkage are calculated as:

RV deep = C ′
v

1

2
ρV 2

SS, (8)

δ

∆

= d(sinkage)AW /

∆

, (9)

where C ′
v is the viscous resistance coefficient [-] derived as

a function of the Reynold’s number (Raven, 2016), AW

is the frontal projected area [m2], and d(sinkage) [m] is
determined as:

d(sinkage) = 1.46
BTMCB

Lpp

[
Fr2h√
1− Fr2h

− Fr2hd√
1− Fr2hd

]
,

(10)
with:

Frhd =
VS√

0.3gLpp

Frh =
VS√
gH

,

(11)

where Lpp denotes the ship’s length between perpendicu-
lars [m], B is the ship molded beam [m], TM is the draught
at midship [m], CB is the Block coefficient [-], and g is the
gravitational acceleration constant [m/s2].
The objective of this work is to define the ship resistance in
(1g) by integrating analytical modelling and an adaptive
learning scheme.

3. ANALYTICAL MODELLING OF SHIP
RESISTANCE

The deepwater resistance method derived in Holtrop
(1984) computes a dimensional total resistance [N] (12)
based on the ship’s speed and its principal dimensions.

R = (1+k)RF+RAPP+RW+RB+RTR+RA+RAA. (12)

The frictional resistance RF (13) is multiplied by the hull
form factor k and can be computed as:

RF =
1

2
ρV 2

SSCF , (13)

where S is the wetted surface area [m2] and CF is the
model–ship correlation line coefficient [-], which may be
calculated as a function of the Reynold’s number Re (1957
ITTC Standards):

CF =
0.075

(log10Re− 2)2
. (14)

The appendage resistanceRAPP is calculated as the sum of
the resistance due to the appendages and the bow thruster
resistance, quantified by the expression:

RAPP =
1

2
ρV 2

S

∑
i(1 + k2)SAPPi∑

i SAPPi

CF

∑
i

SAPPi
+RTH ,

(15)
where the (1 + k2) values for each appendage i are pre-
sented in Holtrop (1984), SAPPi

denotes the surface area
of each considered appendage i [m2], and the resistance
due to the bow thruster tunnel opening RTH is computed
as:

RTH = ρV 2
S πd

2
THCD,TH , (16)

with the drag coefficient CD,TH for the thruster tunnel
assuming values between 0.003 and 0.012 (Birk, 2019), and
with dTH being the thruster tunnel’s diameter [m].
Furthermore, the wave-making resistance RW is estimated
as a function of the Froude number Fr [-] (Holtrop, 1984):

• for Fr < 0.4:

RWa(Fr) = c1c2c5ρgV e[m1Frd+m4cos(λFr−2)], (17)

• for Fr > 0.55:

RWb(Fr) = c17c2c5ρgV e[m3Frd+m4cos(λFr−2)], (18)

• for 0.4 < Fr ≤ 0.55, an interpolation of (17) and (18)
applies:

RW (Fr) = RWa(0.4)+
(20Fr − 8)

3
[RWb(0.55)−RWa(0.4)] ,

(19)
where the parameters denoted c and m are dimensionless
calculation coefficients presented in Holtrop (1984).

The additional bulbous bow resistance RB is computed
according to:

RB = 0.11ρg(
√
ABT )

3 Fri
3

1 + Fri
2 e

(−3.0PB
−2), (20)

where Fri denotes the immersion Froude number [-].
The immersed transom resistance RTR is further com-
puted as:

RTR =
1

2
ρVS

2AT c6. (21)

Additionally, the Holtrop (1984) method accounts for a
correlation allowance resistance RA to include the effects
of roughness and additional phenomena not captured in
the previous resistance components:

RA =
1

2
ρVS

2(CA +∆CA)

[
S +

∑
i

SAPPi

]
, (22)

where CA and ∆CA are correlation allowance coefficients
[-] specified in Holtrop (1984).
Finally, the shape of the ship has a direct influence on
its aerodynamics, which is quantified as air and wind
resistance RAA, defined by:

RAA =
1

2
ρAV

2
w,refCwAW , (23)

where Cw is the wind coefficient [-] and Vw,ref is the
relative wind speed [m/s], calculated as the difference
between the ship’s forward speed through water VS and
the wind velocity uw in the x-direction [m/s]:

uw = Vwcos(ψw), (24)

where Vw is the sensed wind speed [m/s] and ψw denotes
the wind direction, with ψw = 0 indicating headwind.
The complexity of parameterising a ship’s geometry and
computing the frontal projected area AW using analytical
methods makes RAA highly intricate to estimate. There-
after, RAA will be considered as the function to be approxi-
mated, with the objective of learning the unknown relation
between its inputs through an approximation scheme.

4. ADAPTIVE LEARNING SCHEME

The dynamic system in (4) can be re-written in state-space
form by considering x = [npVS ]

T and u(t) = P as:

ẋ1 =
ηS

4π2Ip

(
1

Rsink(H)

u

x1
− ∆RV (H)

ηDid

x2

x1

)
− KQρD

5

2πIp
x2
1

ẋ2 =
1

m+ma
KT ρD

4x1
2 − 1

m+ma
[(1 + k)RF +RAPP

+RW +RB +RTR +RA]−
1

m+ma
RAA.

(25)

Equation (25) can be expressed as:

ẋ1 = f0,1(x1, x2, u, d3), (26a)

ẋ2 = f0,2(x1, x2) + f∗
2 (x2, d1, d2), (26b)

where f0,1 and f0,2 are considered as known functions,
while f∗

2 is an unknown function to be learned. The
disturbance due to Vw, ψw, and H are denoted d1, d2,
and d3, respectively.
An adaptive learning scheme is designed considering only
(26b) since (26a) does not contain any uncertainty. In
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Frhd =
VS√

0.3gLpp

Frh =
VS√
gH

,

(11)

where Lpp denotes the ship’s length between perpendicu-
lars [m], B is the ship molded beam [m], TM is the draught
at midship [m], CB is the Block coefficient [-], and g is the
gravitational acceleration constant [m/s2].
The objective of this work is to define the ship resistance in
(1g) by integrating analytical modelling and an adaptive
learning scheme.

3. ANALYTICAL MODELLING OF SHIP
RESISTANCE

The deepwater resistance method derived in Holtrop
(1984) computes a dimensional total resistance [N] (12)
based on the ship’s speed and its principal dimensions.

R = (1+k)RF+RAPP+RW+RB+RTR+RA+RAA. (12)

The frictional resistance RF (13) is multiplied by the hull
form factor k and can be computed as:

RF =
1

2
ρV 2

SSCF , (13)

where S is the wetted surface area [m2] and CF is the
model–ship correlation line coefficient [-], which may be
calculated as a function of the Reynold’s number Re (1957
ITTC Standards):

CF =
0.075

(log10Re− 2)2
. (14)

The appendage resistanceRAPP is calculated as the sum of
the resistance due to the appendages and the bow thruster
resistance, quantified by the expression:

RAPP =
1

2
ρV 2

S

∑
i(1 + k2)SAPPi∑

i SAPPi

CF

∑
i

SAPPi
+RTH ,

(15)
where the (1 + k2) values for each appendage i are pre-
sented in Holtrop (1984), SAPPi

denotes the surface area
of each considered appendage i [m2], and the resistance
due to the bow thruster tunnel opening RTH is computed
as:

RTH = ρV 2
S πd

2
THCD,TH , (16)

with the drag coefficient CD,TH for the thruster tunnel
assuming values between 0.003 and 0.012 (Birk, 2019), and
with dTH being the thruster tunnel’s diameter [m].
Furthermore, the wave-making resistance RW is estimated
as a function of the Froude number Fr [-] (Holtrop, 1984):

• for Fr < 0.4:

RWa(Fr) = c1c2c5ρgV e[m1Frd+m4cos(λFr−2)], (17)

• for Fr > 0.55:

RWb(Fr) = c17c2c5ρgV e[m3Frd+m4cos(λFr−2)], (18)

• for 0.4 < Fr ≤ 0.55, an interpolation of (17) and (18)
applies:

RW (Fr) = RWa(0.4)+
(20Fr − 8)

3
[RWb(0.55)−RWa(0.4)] ,

(19)
where the parameters denoted c and m are dimensionless
calculation coefficients presented in Holtrop (1984).

The additional bulbous bow resistance RB is computed
according to:

RB = 0.11ρg(
√
ABT )

3 Fri
3

1 + Fri
2 e

(−3.0PB
−2), (20)

where Fri denotes the immersion Froude number [-].
The immersed transom resistance RTR is further com-
puted as:

RTR =
1

2
ρVS

2AT c6. (21)

Additionally, the Holtrop (1984) method accounts for a
correlation allowance resistance RA to include the effects
of roughness and additional phenomena not captured in
the previous resistance components:

RA =
1

2
ρVS

2(CA +∆CA)

[
S +

∑
i

SAPPi

]
, (22)

where CA and ∆CA are correlation allowance coefficients
[-] specified in Holtrop (1984).
Finally, the shape of the ship has a direct influence on
its aerodynamics, which is quantified as air and wind
resistance RAA, defined by:

RAA =
1

2
ρAV

2
w,refCwAW , (23)

where Cw is the wind coefficient [-] and Vw,ref is the
relative wind speed [m/s], calculated as the difference
between the ship’s forward speed through water VS and
the wind velocity uw in the x-direction [m/s]:

uw = Vwcos(ψw), (24)

where Vw is the sensed wind speed [m/s] and ψw denotes
the wind direction, with ψw = 0 indicating headwind.
The complexity of parameterising a ship’s geometry and
computing the frontal projected area AW using analytical
methods makes RAA highly intricate to estimate. There-
after, RAA will be considered as the function to be approxi-
mated, with the objective of learning the unknown relation
between its inputs through an approximation scheme.

4. ADAPTIVE LEARNING SCHEME

The dynamic system in (4) can be re-written in state-space
form by considering x = [npVS ]

T and u(t) = P as:

ẋ1 =
ηS

4π2Ip

(
1

Rsink(H)

u

x1
− ∆RV (H)

ηDid

x2

x1

)
− KQρD

5

2πIp
x2
1

ẋ2 =
1

m+ma
KT ρD

4x1
2 − 1

m+ma
[(1 + k)RF +RAPP

+RW +RB +RTR +RA]−
1

m+ma
RAA.

(25)

Equation (25) can be expressed as:

ẋ1 = f0,1(x1, x2, u, d3), (26a)

ẋ2 = f0,2(x1, x2) + f∗
2 (x2, d1, d2), (26b)

where f0,1 and f0,2 are considered as known functions,
while f∗

2 is an unknown function to be learned. The
disturbance due to Vw, ψw, and H are denoted d1, d2,
and d3, respectively.
An adaptive learning scheme is designed considering only
(26b) since (26a) does not contain any uncertainty. In
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addition, it is assumed that x1, x2, d1, d2, d3 are all
measured and the output of the sensors are:

y1 = x1 + w1

y2 = x2 + w2
,

yd1 = d1 + w3

yd2 = d2 + w4

yd3 = d3 + w5

, (27)

where w denotes sensor measurement uncertainty. The
states x1 and x2 can be measured by a differential GPS
and an RPM sensor, respectively. In regards to the dis-
turbances, d1 and d2 can be respectively measured by an
anemometer and weathervane, while an echo sounder can
be used to measure d3.
The developed learning scheme is comprised of a paramet-
ric model and an error filtering online learning scheme.

4.1 Parametric Model

The parametric model is defined as:

χ2(t) = f̂2 (x2(t); θ
∗) + δ2(t), (28)

where χ2(t) is given by:

χ2(t) = ẋ2(t)− f0,2(x1(t), x2(t)), (29)

and f̂2 is an adaptive approximation model (e.g radial
basis function, sigmoidal neural network) which, based on
unknown parameter weights θ∗i , intends to decrease the
minimum functional approximation error (MFAE) δ2(t),
defined as:

δ2(t) = f∗
2 (x2(t), d1(t), d2(t))− f̂2(x2(t); θ

∗). (30)

4.2 Error Filtering Online Learning Scheme

Due to the fact that ẋ2 is not available for measurement,
a filtering technique is applied. By filtering both sides of
(28) with a first-order filter, it yields:

χ̂2(t) =
λs

s+ λ
[x2]−

λ

s+ λ
[f0,2(x1, x2)]

χ̂2(t) =
λ

s+ λ

[
f̂2(x2(t); θ

∗)
]
+ δ̂2(t),

(31)

where δ̂2(t) is the filtered version of the MFAE and s is
the Laplace operator. The filters are described as transfer
functions, using the relation ẋ2 = s[x2(t)]. In this work, a
linearly parametrized approximator is considered, i.e,

f̂2(x2(t); θ
∗) =

qθ∑
i=1

θ∗i ϕi(x2(t)). (32)

The unknown parameters θ∗i are the adjustable parameters
that minimise the MFAE and ϕi denotes an element of the
regression vector. Considering the measurements of x2, the
EFOL scheme is designed as:

χ̂2 =
λs

s+ λ
[y2]−

λ

s+ λ
[f0,2(y1, y2)]

χ̂2 =
λ

s+ λ

[
θTϕ(y2)

]
,

(33)

The structure of the implemented EFOL scheme is pre-
sented in Fig. 1.

4.3 Adaptive Law

The update law for the unknown set of parameters θ∗(t)
must be further established. For this purpose, a lin-
early parametrized RBFNN approximator is implemented.

On-Line Learning Model

λ

f0,2(y1, y2) λ
s + λ

̂f2(y2; ̂θ )

+ + + -+ e(t)

+

Estimator

Approximator

y2(t)

y1(t)
y2(t)

y2(t)

+
+

+

+
-

·θ (t )

λ

f0,2(y1, y2) λ
s + λ
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+
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Fig. 1: Block diagram configuration of the EFOL scheme

Applications of RBFs in on-line learning approximation
schemes can be seen in the works of Liu et al. (2021),
Zhang (2016), Wu et al. (2012), and Gorinevsky (1993).
In this paper, Gaussian RBFs will be introduced, re-
defining (32) as:

f̂2(x2(t); θ
∗) = θ∗Tϕ(x, c, σ), (34)

where the regression vector ϕ(x, c, σ) consists of Gaussian
radial basis functions, with each RBF i being defined as:

ϕi(x, c, σ) = exp(−1

2

||x− ci||2

σ2
), (35)

where ci denotes the centre location for the i−th Gaussian
function and σ is the standard deviation or spread of the
functions. To balance the trade-off between computational
complexity and prediction accuracy, 12 neurons are consid-
ered, that is, i ∈ {1, ..., 12}. To increase the approximation
accuracy, the fixed centre locations for the RBFs are evenly
spaced over the operating velocity range of x2, which is
found to be {0, 5.5}, while the spread is tuned to σ = 0.61
for all RBFs using a brute-force approach.
In regards to learning, the output error signal of the
scheme e(t) = χ̂2(t)−χ2(t) is used to adjust the parameter
weights of the RBFNN. The Lyapunov synthesis method
is typically utilised for EFOL schemes given its inherent
stability properties (Farrell and Polycarpou, 2006). The
following parameter adaptive law is thus derived for θ:

˙̂
θ = −Γe(t)ϕ(y2, c, σ), (36)

where Γ denotes the adaptive gain matrix, or learning rate,
which will be simplified to Γ = γI, implying that each
element in θ(t) uses the same adaptive gain.

5. SIMULATION EXPERIMENT

5.1 Case Study

The inland vessel and propeller parameters of “Ship 2”
studied in Nuij (2021) are used for this case study. The
value of the design parameter λ is set to 1, while the
efficiency coefficients are set to: ηS = 0.95, ηDid = 0.95,
ηO = 0.37. The thrust, torque, wind resistance, and bow
thruster coefficients are set to: kT = 0.1965, kQ = 0.03316,
Cw = 0.6, and CD,TH = 0.07. Furthermore, the mass of
the ship is assumed to be m = 106kg while the added mass
ma is neglected.

In regards to training the RBFNN, the root mean square

error (RMSE) of the prediction f̂2 with respect to f∗
2 is

used to define the scheme’s accuracy:

RMSE =

√∑N
i=1(x2,i − x̂2,i)2

N
, (37)

where N is the number of data points, x2,i are the actual

values of f∗
2 , and x̂2,i are the estimated values by f̂2. To

optimise the training process, the EFOL scheme was run
for a range of values of γ = {0.05, 0.1, ..., 1} for 40 epochs
each, and input power and disturbances P = 600kW and
d = [0, 0, 4.5]. On the one hand, small learning rates can
cause the process of learning to get stuck, whereas, on
the other hand, large learning rates can cause the model
to converge quickly to a sub-optimal solution. A value of
γ = 0.3 was found to increase this trade-off, and was used
to train the model for 400 epochs.

5.2 Design of the Experiment

An experimental scenario aiming to mimic realistic wind
conditions was designed to test the trained model.
Medium-scale winds of up to 36km/h in the form of
wind gusts were replicated by introducing a pulse and
a ramp function for the sensed wind speed signal yd1(t)
(Fig. 2). To imitate sensor noise, Gaussian white noise
was introduced. White noise is expressed by a sequence
of Gaussian variables, with their variance reflecting the
power or intensity at each time step (Miller and Childers,
2012). A power of E = 10−4 was selected, corresponding
to a standard deviation of 0.01N . Gaussian white noise
was introduced to the sensed input signals yd1(t), yd2(t),
and yd3(t). Furthermore, headwind (d2 = 0) together with
an input power of u = 600kW were considered. The
simulation of the EFOL scheme was then run for 104s.

5.3 Results and Discussion

The resulting approximation of the unknown function

f∗
2 (t) by the function approximator f̂2(t) and the error
signal of the EFOL scheme e(t) are plotted in Fig. 3(a) and
Fig. 3(b) for the pulse and ramp yd1(t) inputs, respectively.
In the plots, f∗

2 (t) can be seen to be closely replicated by

the approximator function f̂2(t), with the latter showing
slight fluctuations due to sensor measurement noise.
For a pulse wind input signal (Fig. 3(a)), a total RMSE of

11.5329N is obtained, caused by overshoots of f̂2(t) at the
pulse input changes of yd1(t) and by approximation error
due to sensor noise. Nevertheless, the error signal rapidly
decreases after each overshoot, with each spike elapsing
around 3 seconds.
In the case of yd1(t) being described by a ramp function
(Fig. 3(b)), a smaller RMSE of 10.0073N is obtained,
reflected in a smooth approximation of the unknown
function f∗

2 (t). Note that, despite an increase in the
sensed wind speed d1(t), the unknown air resistance f∗

2 (t)
decreases at around halfway of the function’s ramps. This
is a result of RAA being computed based on the wind
speed relative to the ship’s velocity. In reality, sensed wind
should increase with forward ship motion, which was not
accounted for in the theoretical yd1(t) signal.
In essence, the obtained results show the ability of the

learning model to rapidly adapt to a varying input and
closely learn the unknown system dynamics. Given the
magnitude of the resistance values at hand, the obtained
RMSE values can be argued to be significantly small.

6. CONCLUSIONS AND FURTHER RESEARCH

This paper studied the speed-power prediction of inland
ships, a fundamental aspect of their powering performance,
for which an approach combining an EFOL and a RBFNN
was proposed. Considering a partially-known system, a
set of dynamic equations were derived analytically for
the known fraction of the system, while the air and wind
resistance was considered an unknown function of onboard
sensor measurements.
Simulation experiments indicate that the proposed method
can closely approximate unknown dynamics, presenting
itself as a feasible speed-power approximation model. For
future validation, the model could be tested using real
sensor data. This work allows for a variety of further ex-
tensions, such as considering the influence of ship manoeu-
vring by including the set of sensors required to describe
ship motion in 6 DoFs.
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Fig. 2: Measured wind velocity yd1(t) input signals: (a) Pulse function, (b) Ramp function
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Fig. 3: Simulation results for: (a) Pulse yd1(t) signal, (b) Ramp yd1(t) signal
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